|
|
@@ -0,0 +1,571 @@
|
|
|
+// Copyright 2014 Google Inc.
|
|
|
+//
|
|
|
+// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+// you may not use this file except in compliance with the License.
|
|
|
+// You may obtain a copy of the License at
|
|
|
+//
|
|
|
+// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+//
|
|
|
+// Unless required by applicable law or agreed to in writing, software
|
|
|
+// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+// See the License for the specific language governing permissions and
|
|
|
+// limitations under the License.
|
|
|
+
|
|
|
+// Package btree implements in-memory B-Trees of arbitrary degree.
|
|
|
+//
|
|
|
+// btree implements an in-memory B-Tree for use as an ordered data structure.
|
|
|
+// It is not meant for persistent storage solutions.
|
|
|
+//
|
|
|
+// It has a flatter structure than an equivalent red-black or other binary tree,
|
|
|
+// which in some cases yields better memory usage and/or performance.
|
|
|
+// See some discussion on the matter here:
|
|
|
+// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
|
|
|
+// Note, though, that this project is in no way related to the C++ B-Tree
|
|
|
+// implmentation written about there.
|
|
|
+//
|
|
|
+// Within this tree, each node contains a slice of items and a (possibly nil)
|
|
|
+// slice of children. For basic numeric values or raw structs, this can cause
|
|
|
+// efficiency differences when compared to equivalent C++ template code that
|
|
|
+// stores values in arrays within the node:
|
|
|
+// * Due to the overhead of storing values as interfaces (each
|
|
|
+// value needs to be stored as the value itself, then 2 words for the
|
|
|
+// interface pointing to that value and its type), resulting in higher
|
|
|
+// memory use.
|
|
|
+// * Since interfaces can point to values anywhere in memory, values are
|
|
|
+// most likely not stored in contiguous blocks, resulting in a higher
|
|
|
+// number of cache misses.
|
|
|
+// These issues don't tend to matter, though, when working with strings or other
|
|
|
+// heap-allocated structures, since C++-equivalent structures also must store
|
|
|
+// pointers and also distribute their values across the heap.
|
|
|
+//
|
|
|
+// This implementation is designed to be a drop-in replacement to gollrb.LLRB
|
|
|
+// trees, (http://github.com/petar/gollrb), an excellent and probably the most
|
|
|
+// widely used ordered tree implementation in the Go ecosystem currently.
|
|
|
+// Its functions, therefore, exactly mirror those of
|
|
|
+// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
|
|
|
+// support storing multiple equivalent values or backwards iteration.
|
|
|
+package btree
|
|
|
+
|
|
|
+import (
|
|
|
+ "fmt"
|
|
|
+ "io"
|
|
|
+ "sort"
|
|
|
+ "strings"
|
|
|
+)
|
|
|
+
|
|
|
+// Item represents a single object in the tree.
|
|
|
+type Item interface {
|
|
|
+ // Less tests whether the current item is less than the given argument.
|
|
|
+ //
|
|
|
+ // This must provide a strict weak ordering.
|
|
|
+ // If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
|
|
|
+ // hold one of either a or b in the tree).
|
|
|
+ Less(than Item) bool
|
|
|
+}
|
|
|
+
|
|
|
+// ItemIterator allows callers of Ascend* to iterate in-order over portions of
|
|
|
+// the tree. When this function returns false, iteration will stop and the
|
|
|
+// associated Ascend* function will immediately return.
|
|
|
+type ItemIterator func(i Item) bool
|
|
|
+
|
|
|
+// New creates a new B-Tree with the given degree.
|
|
|
+//
|
|
|
+// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
|
|
|
+// and 2-4 children).
|
|
|
+func New(degree int) *BTree {
|
|
|
+ if degree <= 1 {
|
|
|
+ panic("bad degree")
|
|
|
+ }
|
|
|
+ return &BTree{
|
|
|
+ degree: degree,
|
|
|
+ freelist: make([]*node, 0, 32),
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// items stores items in a node.
|
|
|
+type items []Item
|
|
|
+
|
|
|
+// insertAt inserts a value into the given index, pushing all subsequent values
|
|
|
+// forward.
|
|
|
+func (s *items) insertAt(index int, item Item) {
|
|
|
+ *s = append(*s, nil)
|
|
|
+ if index < len(*s) {
|
|
|
+ copy((*s)[index+1:], (*s)[index:])
|
|
|
+ }
|
|
|
+ (*s)[index] = item
|
|
|
+}
|
|
|
+
|
|
|
+// removeAt removes a value at a given index, pulling all subsequent values
|
|
|
+// back.
|
|
|
+func (s *items) removeAt(index int) Item {
|
|
|
+ item := (*s)[index]
|
|
|
+ copy((*s)[index:], (*s)[index+1:])
|
|
|
+ *s = (*s)[:len(*s)-1]
|
|
|
+ return item
|
|
|
+}
|
|
|
+
|
|
|
+// pop removes and returns the last element in the list.
|
|
|
+func (s *items) pop() (out Item) {
|
|
|
+ index := len(*s) - 1
|
|
|
+ out, *s = (*s)[index], (*s)[:index]
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// find returns the index where the given item should be inserted into this
|
|
|
+// list. 'found' is true if the item already exists in the list at the given
|
|
|
+// index.
|
|
|
+func (s items) find(item Item) (index int, found bool) {
|
|
|
+ i := sort.Search(len(s), func(i int) bool {
|
|
|
+ return item.Less(s[i])
|
|
|
+ })
|
|
|
+ if i > 0 && !s[i-1].Less(item) {
|
|
|
+ return i - 1, true
|
|
|
+ }
|
|
|
+ return i, false
|
|
|
+}
|
|
|
+
|
|
|
+// children stores child nodes in a node.
|
|
|
+type children []*node
|
|
|
+
|
|
|
+// insertAt inserts a value into the given index, pushing all subsequent values
|
|
|
+// forward.
|
|
|
+func (s *children) insertAt(index int, n *node) {
|
|
|
+ *s = append(*s, nil)
|
|
|
+ if index < len(*s) {
|
|
|
+ copy((*s)[index+1:], (*s)[index:])
|
|
|
+ }
|
|
|
+ (*s)[index] = n
|
|
|
+}
|
|
|
+
|
|
|
+// removeAt removes a value at a given index, pulling all subsequent values
|
|
|
+// back.
|
|
|
+func (s *children) removeAt(index int) *node {
|
|
|
+ n := (*s)[index]
|
|
|
+ copy((*s)[index:], (*s)[index+1:])
|
|
|
+ *s = (*s)[:len(*s)-1]
|
|
|
+ return n
|
|
|
+}
|
|
|
+
|
|
|
+// pop removes and returns the last element in the list.
|
|
|
+func (s *children) pop() (out *node) {
|
|
|
+ index := len(*s) - 1
|
|
|
+ out, *s = (*s)[index], (*s)[:index]
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// node is an internal node in a tree.
|
|
|
+//
|
|
|
+// It must at all times maintain the invariant that either
|
|
|
+// * len(children) == 0, len(items) unconstrained
|
|
|
+// * len(children) == len(items) + 1
|
|
|
+type node struct {
|
|
|
+ items items
|
|
|
+ children children
|
|
|
+ t *BTree
|
|
|
+}
|
|
|
+
|
|
|
+// split splits the given node at the given index. The current node shrinks,
|
|
|
+// and this function returns the item that existed at that index and a new node
|
|
|
+// containing all items/children after it.
|
|
|
+func (n *node) split(i int) (Item, *node) {
|
|
|
+ item := n.items[i]
|
|
|
+ next := n.t.newNode()
|
|
|
+ next.items = append(next.items, n.items[i+1:]...)
|
|
|
+ n.items = n.items[:i]
|
|
|
+ if len(n.children) > 0 {
|
|
|
+ next.children = append(next.children, n.children[i+1:]...)
|
|
|
+ n.children = n.children[:i+1]
|
|
|
+ }
|
|
|
+ return item, next
|
|
|
+}
|
|
|
+
|
|
|
+// maybeSplitChild checks if a child should be split, and if so splits it.
|
|
|
+// Returns whether or not a split occurred.
|
|
|
+func (n *node) maybeSplitChild(i, maxItems int) bool {
|
|
|
+ if len(n.children[i].items) < maxItems {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ first := n.children[i]
|
|
|
+ item, second := first.split(maxItems / 2)
|
|
|
+ n.items.insertAt(i, item)
|
|
|
+ n.children.insertAt(i+1, second)
|
|
|
+ return true
|
|
|
+}
|
|
|
+
|
|
|
+// insert inserts an item into the subtree rooted at this node, making sure
|
|
|
+// no nodes in the subtree exceed maxItems items. Should an equivalent item be
|
|
|
+// be found/replaced by insert, it will be returned.
|
|
|
+func (n *node) insert(item Item, maxItems int) Item {
|
|
|
+ i, found := n.items.find(item)
|
|
|
+ if found {
|
|
|
+ out := n.items[i]
|
|
|
+ n.items[i] = item
|
|
|
+ return out
|
|
|
+ }
|
|
|
+ if len(n.children) == 0 {
|
|
|
+ n.items.insertAt(i, item)
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+ if n.maybeSplitChild(i, maxItems) {
|
|
|
+ inTree := n.items[i]
|
|
|
+ switch {
|
|
|
+ case item.Less(inTree):
|
|
|
+ // no change, we want first split node
|
|
|
+ case inTree.Less(item):
|
|
|
+ i++ // we want second split node
|
|
|
+ default:
|
|
|
+ out := n.items[i]
|
|
|
+ n.items[i] = item
|
|
|
+ return out
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return n.children[i].insert(item, maxItems)
|
|
|
+}
|
|
|
+
|
|
|
+// get finds the given key in the subtree and returns it.
|
|
|
+func (n *node) get(key Item) Item {
|
|
|
+ i, found := n.items.find(key)
|
|
|
+ if found {
|
|
|
+ return n.items[i]
|
|
|
+ } else if len(n.children) > 0 {
|
|
|
+ return n.children[i].get(key)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// toRemove details what item to remove in a node.remove call.
|
|
|
+type toRemove int
|
|
|
+
|
|
|
+const (
|
|
|
+ removeItem toRemove = iota // removes the given item
|
|
|
+ removeMin // removes smallest item in the subtree
|
|
|
+ removeMax // removes largest item in the subtree
|
|
|
+)
|
|
|
+
|
|
|
+// remove removes an item from the subtree rooted at this node.
|
|
|
+func (n *node) remove(item Item, minItems int, typ toRemove) Item {
|
|
|
+ var i int
|
|
|
+ var found bool
|
|
|
+ switch typ {
|
|
|
+ case removeMax:
|
|
|
+ if len(n.children) == 0 {
|
|
|
+ return n.items.pop()
|
|
|
+ }
|
|
|
+ i = len(n.items)
|
|
|
+ case removeMin:
|
|
|
+ if len(n.children) == 0 {
|
|
|
+ return n.items.removeAt(0)
|
|
|
+ }
|
|
|
+ i = 0
|
|
|
+ case removeItem:
|
|
|
+ i, found = n.items.find(item)
|
|
|
+ if len(n.children) == 0 {
|
|
|
+ if found {
|
|
|
+ return n.items.removeAt(i)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ panic("invalid type")
|
|
|
+ }
|
|
|
+ // If we get to here, we have children.
|
|
|
+ child := n.children[i]
|
|
|
+ if len(child.items) <= minItems {
|
|
|
+ return n.growChildAndRemove(i, item, minItems, typ)
|
|
|
+ }
|
|
|
+ // Either we had enough items to begin with, or we've done some
|
|
|
+ // merging/stealing, because we've got enough now and we're ready to return
|
|
|
+ // stuff.
|
|
|
+ if found {
|
|
|
+ // The item exists at index 'i', and the child we've selected can give us a
|
|
|
+ // predecessor, since if we've gotten here it's got > minItems items in it.
|
|
|
+ out := n.items[i]
|
|
|
+ // We use our special-case 'remove' call with typ=maxItem to pull the
|
|
|
+ // predecessor of item i (the rightmost leaf of our immediate left child)
|
|
|
+ // and set it into where we pulled the item from.
|
|
|
+ n.items[i] = child.remove(nil, minItems, removeMax)
|
|
|
+ return out
|
|
|
+ }
|
|
|
+ // Final recursive call. Once we're here, we know that the item isn't in this
|
|
|
+ // node and that the child is big enough to remove from.
|
|
|
+ return child.remove(item, minItems, typ)
|
|
|
+}
|
|
|
+
|
|
|
+// growChildAndRemove grows child 'i' to make sure it's possible to remove an
|
|
|
+// item from it while keeping it at minItems, then calls remove to actually
|
|
|
+// remove it.
|
|
|
+//
|
|
|
+// Most documentation says we have to do two sets of special casing:
|
|
|
+// 1) item is in this node
|
|
|
+// 2) item is in child
|
|
|
+// In both cases, we need to handle the two subcases:
|
|
|
+// A) node has enough values that it can spare one
|
|
|
+// B) node doesn't have enough values
|
|
|
+// For the latter, we have to check:
|
|
|
+// a) left sibling has node to spare
|
|
|
+// b) right sibling has node to spare
|
|
|
+// c) we must merge
|
|
|
+// To simplify our code here, we handle cases #1 and #2 the same:
|
|
|
+// If a node doesn't have enough items, we make sure it does (using a,b,c).
|
|
|
+// We then simply redo our remove call, and the second time (regardless of
|
|
|
+// whether we're in case 1 or 2), we'll have enough items and can guarantee
|
|
|
+// that we hit case A.
|
|
|
+func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
|
|
|
+ child := n.children[i]
|
|
|
+ if i > 0 && len(n.children[i-1].items) > minItems {
|
|
|
+ // Steal from left child
|
|
|
+ stealFrom := n.children[i-1]
|
|
|
+ stolenItem := stealFrom.items.pop()
|
|
|
+ child.items.insertAt(0, n.items[i-1])
|
|
|
+ n.items[i-1] = stolenItem
|
|
|
+ if len(stealFrom.children) > 0 {
|
|
|
+ child.children.insertAt(0, stealFrom.children.pop())
|
|
|
+ }
|
|
|
+ } else if i < len(n.items) && len(n.children[i+1].items) > minItems {
|
|
|
+ // steal from right child
|
|
|
+ stealFrom := n.children[i+1]
|
|
|
+ stolenItem := stealFrom.items.removeAt(0)
|
|
|
+ child.items = append(child.items, n.items[i])
|
|
|
+ n.items[i] = stolenItem
|
|
|
+ if len(stealFrom.children) > 0 {
|
|
|
+ child.children = append(child.children, stealFrom.children.removeAt(0))
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if i >= len(n.items) {
|
|
|
+ i--
|
|
|
+ child = n.children[i]
|
|
|
+ }
|
|
|
+ // merge with right child
|
|
|
+ mergeItem := n.items.removeAt(i)
|
|
|
+ mergeChild := n.children.removeAt(i + 1)
|
|
|
+ child.items = append(child.items, mergeItem)
|
|
|
+ child.items = append(child.items, mergeChild.items...)
|
|
|
+ child.children = append(child.children, mergeChild.children...)
|
|
|
+ n.t.freeNode(mergeChild)
|
|
|
+ }
|
|
|
+ return n.remove(item, minItems, typ)
|
|
|
+}
|
|
|
+
|
|
|
+// iterate provides a simple method for iterating over elements in the tree.
|
|
|
+// It could probably use some work to be extra-efficient (it calls from() a
|
|
|
+// little more than it should), but it works pretty well for now.
|
|
|
+//
|
|
|
+// It requires that 'from' and 'to' both return true for values we should hit
|
|
|
+// with the iterator. It should also be the case that 'from' returns true for
|
|
|
+// values less than or equal to values 'to' returns true for, and 'to'
|
|
|
+// returns true for values greater than or equal to those that 'from'
|
|
|
+// does.
|
|
|
+func (n *node) iterate(from, to func(Item) bool, iter ItemIterator) bool {
|
|
|
+ for i, item := range n.items {
|
|
|
+ if !from(item) {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ if len(n.children) > 0 && !n.children[i].iterate(from, to, iter) {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ if !to(item) {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ if !iter(item) {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if len(n.children) > 0 {
|
|
|
+ return n.children[len(n.children)-1].iterate(from, to, iter)
|
|
|
+ }
|
|
|
+ return true
|
|
|
+}
|
|
|
+
|
|
|
+// Used for testing/debugging purposes.
|
|
|
+func (n *node) print(w io.Writer, level int) {
|
|
|
+ fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
|
|
|
+ for _, c := range n.children {
|
|
|
+ c.print(w, level+1)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// BTree is an implementation of a B-Tree.
|
|
|
+//
|
|
|
+// BTree stores Item instances in an ordered structure, allowing easy insertion,
|
|
|
+// removal, and iteration.
|
|
|
+//
|
|
|
+// Write operations are not safe for concurrent mutation by multiple
|
|
|
+// goroutines, but Read operations are.
|
|
|
+type BTree struct {
|
|
|
+ degree int
|
|
|
+ length int
|
|
|
+ root *node
|
|
|
+ freelist []*node
|
|
|
+}
|
|
|
+
|
|
|
+// maxItems returns the max number of items to allow per node.
|
|
|
+func (t *BTree) maxItems() int {
|
|
|
+ return t.degree*2 - 1
|
|
|
+}
|
|
|
+
|
|
|
+// minItems returns the min number of items to allow per node (ignored for the
|
|
|
+// root node).
|
|
|
+func (t *BTree) minItems() int {
|
|
|
+ return t.degree - 1
|
|
|
+}
|
|
|
+
|
|
|
+func (t *BTree) newNode() (n *node) {
|
|
|
+ index := len(t.freelist) - 1
|
|
|
+ if index < 0 {
|
|
|
+ return &node{t: t}
|
|
|
+ }
|
|
|
+ t.freelist, n = t.freelist[:index], t.freelist[index]
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+func (t *BTree) freeNode(n *node) {
|
|
|
+ if len(t.freelist) < cap(t.freelist) {
|
|
|
+ for i := range n.items {
|
|
|
+ n.items[i] = nil // clear to allow GC
|
|
|
+ }
|
|
|
+ n.items = n.items[:0]
|
|
|
+ for i := range n.children {
|
|
|
+ n.children[i] = nil // clear to allow GC
|
|
|
+ }
|
|
|
+ n.children = n.children[:0]
|
|
|
+ t.freelist = append(t.freelist, n)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// ReplaceOrInsert adds the given item to the tree. If an item in the tree
|
|
|
+// already equals the given one, it is removed from the tree and returned.
|
|
|
+// Otherwise, nil is returned.
|
|
|
+//
|
|
|
+// nil cannot be added to the tree (will panic).
|
|
|
+func (t *BTree) ReplaceOrInsert(item Item) Item {
|
|
|
+ if item == nil {
|
|
|
+ panic("nil item being added to BTree")
|
|
|
+ }
|
|
|
+ if t.root == nil {
|
|
|
+ t.root = t.newNode()
|
|
|
+ t.root.items = append(t.root.items, item)
|
|
|
+ t.length++
|
|
|
+ return nil
|
|
|
+ } else if len(t.root.items) >= t.maxItems() {
|
|
|
+ item2, second := t.root.split(t.maxItems() / 2)
|
|
|
+ oldroot := t.root
|
|
|
+ t.root = t.newNode()
|
|
|
+ t.root.items = append(t.root.items, item2)
|
|
|
+ t.root.children = append(t.root.children, oldroot, second)
|
|
|
+ }
|
|
|
+ out := t.root.insert(item, t.maxItems())
|
|
|
+ if out == nil {
|
|
|
+ t.length++
|
|
|
+ }
|
|
|
+ return out
|
|
|
+}
|
|
|
+
|
|
|
+// Delete removes an item equal to the passed in item from the tree, returning
|
|
|
+// it. If no such item exists, returns nil.
|
|
|
+func (t *BTree) Delete(item Item) Item {
|
|
|
+ return t.deleteItem(item, removeItem)
|
|
|
+}
|
|
|
+
|
|
|
+// DeleteMin removes the smallest item in the tree and returns it.
|
|
|
+// If no such item exists, returns nil.
|
|
|
+func (t *BTree) DeleteMin() Item {
|
|
|
+ return t.deleteItem(nil, removeMin)
|
|
|
+}
|
|
|
+
|
|
|
+// DeleteMax removes the largest item in the tree and returns it.
|
|
|
+// If no such item exists, returns nil.
|
|
|
+func (t *BTree) DeleteMax() Item {
|
|
|
+ return t.deleteItem(nil, removeMax)
|
|
|
+}
|
|
|
+
|
|
|
+func (t *BTree) deleteItem(item Item, typ toRemove) Item {
|
|
|
+ if t.root == nil || len(t.root.items) == 0 {
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+ out := t.root.remove(item, t.minItems(), typ)
|
|
|
+ if len(t.root.items) == 0 && len(t.root.children) > 0 {
|
|
|
+ oldroot := t.root
|
|
|
+ t.root = t.root.children[0]
|
|
|
+ t.freeNode(oldroot)
|
|
|
+ }
|
|
|
+ if out != nil {
|
|
|
+ t.length--
|
|
|
+ }
|
|
|
+ return out
|
|
|
+}
|
|
|
+
|
|
|
+// AscendRange calls the iterator for every value in the tree within the range
|
|
|
+// [greaterOrEqual, lessThan), until iterator returns false.
|
|
|
+func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
|
|
|
+ if t.root == nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ t.root.iterate(
|
|
|
+ func(a Item) bool { return !a.Less(greaterOrEqual) },
|
|
|
+ func(a Item) bool { return a.Less(lessThan) },
|
|
|
+ iterator)
|
|
|
+}
|
|
|
+
|
|
|
+// AscendLessThan calls the iterator for every value in the tree within the range
|
|
|
+// [first, pivot), until iterator returns false.
|
|
|
+func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
|
|
|
+ if t.root == nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ t.root.iterate(
|
|
|
+ func(a Item) bool { return true },
|
|
|
+ func(a Item) bool { return a.Less(pivot) },
|
|
|
+ iterator)
|
|
|
+}
|
|
|
+
|
|
|
+// AscendGreaterOrEqual calls the iterator for every value in the tree within
|
|
|
+// the range [pivot, last], until iterator returns false.
|
|
|
+func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
|
|
|
+ if t.root == nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ t.root.iterate(
|
|
|
+ func(a Item) bool { return !a.Less(pivot) },
|
|
|
+ func(a Item) bool { return true },
|
|
|
+ iterator)
|
|
|
+}
|
|
|
+
|
|
|
+// Ascend calls the iterator for every value in the tree within the range
|
|
|
+// [first, last], until iterator returns false.
|
|
|
+func (t *BTree) Ascend(iterator ItemIterator) {
|
|
|
+ if t.root == nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ t.root.iterate(
|
|
|
+ func(a Item) bool { return true },
|
|
|
+ func(a Item) bool { return true },
|
|
|
+ iterator)
|
|
|
+}
|
|
|
+
|
|
|
+// Get looks for the key item in the tree, returning it. It returns nil if
|
|
|
+// unable to find that item.
|
|
|
+func (t *BTree) Get(key Item) Item {
|
|
|
+ if t.root == nil {
|
|
|
+ return nil
|
|
|
+ }
|
|
|
+ return t.root.get(key)
|
|
|
+}
|
|
|
+
|
|
|
+// Has returns true if the given key is in the tree.
|
|
|
+func (t *BTree) Has(key Item) bool {
|
|
|
+ return t.Get(key) != nil
|
|
|
+}
|
|
|
+
|
|
|
+// Len returns the number of items currently in the tree.
|
|
|
+func (t *BTree) Len() int {
|
|
|
+ return t.length
|
|
|
+}
|
|
|
+
|
|
|
+// Int implements the Item interface for integers.
|
|
|
+type Int int
|
|
|
+
|
|
|
+// Less returns true if int(a) < int(b).
|
|
|
+func (a Int) Less(b Item) bool {
|
|
|
+ return a < b.(Int)
|
|
|
+}
|