12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package ssh
- import (
- "bytes"
- "crypto"
- "crypto/dsa"
- "crypto/ecdsa"
- "crypto/elliptic"
- "crypto/md5"
- "crypto/rsa"
- "crypto/sha256"
- "crypto/x509"
- "encoding/asn1"
- "encoding/base64"
- "encoding/hex"
- "encoding/pem"
- "errors"
- "fmt"
- "io"
- "math/big"
- "strings"
- "golang.org/x/crypto/ed25519"
- )
- // These constants represent the algorithm names for key types supported by this
- // package.
- const (
- KeyAlgoRSA = "ssh-rsa"
- KeyAlgoDSA = "ssh-dss"
- KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
- KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
- KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
- KeyAlgoED25519 = "ssh-ed25519"
- )
- // These constants represent non-default signature algorithms that are supported
- // as algorithm parameters to AlgorithmSigner.SignWithAlgorithm methods. See
- // [PROTOCOL.agent] section 4.5.1 and
- // https://tools.ietf.org/html/draft-ietf-curdle-rsa-sha2-10
- const (
- SigAlgoRSA = "ssh-rsa"
- SigAlgoRSASHA2256 = "rsa-sha2-256"
- SigAlgoRSASHA2512 = "rsa-sha2-512"
- )
- // parsePubKey parses a public key of the given algorithm.
- // Use ParsePublicKey for keys with prepended algorithm.
- func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
- switch algo {
- case KeyAlgoRSA:
- return parseRSA(in)
- case KeyAlgoDSA:
- return parseDSA(in)
- case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
- return parseECDSA(in)
- case KeyAlgoED25519:
- return parseED25519(in)
- case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01:
- cert, err := parseCert(in, certToPrivAlgo(algo))
- if err != nil {
- return nil, nil, err
- }
- return cert, nil, nil
- }
- return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
- }
- // parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
- // (see sshd(8) manual page) once the options and key type fields have been
- // removed.
- func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
- in = bytes.TrimSpace(in)
- i := bytes.IndexAny(in, " \t")
- if i == -1 {
- i = len(in)
- }
- base64Key := in[:i]
- key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
- n, err := base64.StdEncoding.Decode(key, base64Key)
- if err != nil {
- return nil, "", err
- }
- key = key[:n]
- out, err = ParsePublicKey(key)
- if err != nil {
- return nil, "", err
- }
- comment = string(bytes.TrimSpace(in[i:]))
- return out, comment, nil
- }
- // ParseKnownHosts parses an entry in the format of the known_hosts file.
- //
- // The known_hosts format is documented in the sshd(8) manual page. This
- // function will parse a single entry from in. On successful return, marker
- // will contain the optional marker value (i.e. "cert-authority" or "revoked")
- // or else be empty, hosts will contain the hosts that this entry matches,
- // pubKey will contain the public key and comment will contain any trailing
- // comment at the end of the line. See the sshd(8) manual page for the various
- // forms that a host string can take.
- //
- // The unparsed remainder of the input will be returned in rest. This function
- // can be called repeatedly to parse multiple entries.
- //
- // If no entries were found in the input then err will be io.EOF. Otherwise a
- // non-nil err value indicates a parse error.
- func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
- for len(in) > 0 {
- end := bytes.IndexByte(in, '\n')
- if end != -1 {
- rest = in[end+1:]
- in = in[:end]
- } else {
- rest = nil
- }
- end = bytes.IndexByte(in, '\r')
- if end != -1 {
- in = in[:end]
- }
- in = bytes.TrimSpace(in)
- if len(in) == 0 || in[0] == '#' {
- in = rest
- continue
- }
- i := bytes.IndexAny(in, " \t")
- if i == -1 {
- in = rest
- continue
- }
- // Strip out the beginning of the known_host key.
- // This is either an optional marker or a (set of) hostname(s).
- keyFields := bytes.Fields(in)
- if len(keyFields) < 3 || len(keyFields) > 5 {
- return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
- }
- // keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
- // list of hosts
- marker := ""
- if keyFields[0][0] == '@' {
- marker = string(keyFields[0][1:])
- keyFields = keyFields[1:]
- }
- hosts := string(keyFields[0])
- // keyFields[1] contains the key type (e.g. “ssh-rsa”).
- // However, that information is duplicated inside the
- // base64-encoded key and so is ignored here.
- key := bytes.Join(keyFields[2:], []byte(" "))
- if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
- return "", nil, nil, "", nil, err
- }
- return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
- }
- return "", nil, nil, "", nil, io.EOF
- }
- // ParseAuthorizedKeys parses a public key from an authorized_keys
- // file used in OpenSSH according to the sshd(8) manual page.
- func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
- for len(in) > 0 {
- end := bytes.IndexByte(in, '\n')
- if end != -1 {
- rest = in[end+1:]
- in = in[:end]
- } else {
- rest = nil
- }
- end = bytes.IndexByte(in, '\r')
- if end != -1 {
- in = in[:end]
- }
- in = bytes.TrimSpace(in)
- if len(in) == 0 || in[0] == '#' {
- in = rest
- continue
- }
- i := bytes.IndexAny(in, " \t")
- if i == -1 {
- in = rest
- continue
- }
- if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
- return out, comment, options, rest, nil
- }
- // No key type recognised. Maybe there's an options field at
- // the beginning.
- var b byte
- inQuote := false
- var candidateOptions []string
- optionStart := 0
- for i, b = range in {
- isEnd := !inQuote && (b == ' ' || b == '\t')
- if (b == ',' && !inQuote) || isEnd {
- if i-optionStart > 0 {
- candidateOptions = append(candidateOptions, string(in[optionStart:i]))
- }
- optionStart = i + 1
- }
- if isEnd {
- break
- }
- if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
- inQuote = !inQuote
- }
- }
- for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
- i++
- }
- if i == len(in) {
- // Invalid line: unmatched quote
- in = rest
- continue
- }
- in = in[i:]
- i = bytes.IndexAny(in, " \t")
- if i == -1 {
- in = rest
- continue
- }
- if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
- options = candidateOptions
- return out, comment, options, rest, nil
- }
- in = rest
- continue
- }
- return nil, "", nil, nil, errors.New("ssh: no key found")
- }
- // ParsePublicKey parses an SSH public key formatted for use in
- // the SSH wire protocol according to RFC 4253, section 6.6.
- func ParsePublicKey(in []byte) (out PublicKey, err error) {
- algo, in, ok := parseString(in)
- if !ok {
- return nil, errShortRead
- }
- var rest []byte
- out, rest, err = parsePubKey(in, string(algo))
- if len(rest) > 0 {
- return nil, errors.New("ssh: trailing junk in public key")
- }
- return out, err
- }
- // MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
- // authorized_keys file. The return value ends with newline.
- func MarshalAuthorizedKey(key PublicKey) []byte {
- b := &bytes.Buffer{}
- b.WriteString(key.Type())
- b.WriteByte(' ')
- e := base64.NewEncoder(base64.StdEncoding, b)
- e.Write(key.Marshal())
- e.Close()
- b.WriteByte('\n')
- return b.Bytes()
- }
- // PublicKey is an abstraction of different types of public keys.
- type PublicKey interface {
- // Type returns the key's type, e.g. "ssh-rsa".
- Type() string
- // Marshal returns the serialized key data in SSH wire format,
- // with the name prefix. To unmarshal the returned data, use
- // the ParsePublicKey function.
- Marshal() []byte
- // Verify that sig is a signature on the given data using this
- // key. This function will hash the data appropriately first.
- Verify(data []byte, sig *Signature) error
- }
- // CryptoPublicKey, if implemented by a PublicKey,
- // returns the underlying crypto.PublicKey form of the key.
- type CryptoPublicKey interface {
- CryptoPublicKey() crypto.PublicKey
- }
- // A Signer can create signatures that verify against a public key.
- type Signer interface {
- // PublicKey returns an associated PublicKey instance.
- PublicKey() PublicKey
- // Sign returns raw signature for the given data. This method
- // will apply the hash specified for the keytype to the data.
- Sign(rand io.Reader, data []byte) (*Signature, error)
- }
- // A AlgorithmSigner is a Signer that also supports specifying a specific
- // algorithm to use for signing.
- type AlgorithmSigner interface {
- Signer
- // SignWithAlgorithm is like Signer.Sign, but allows specification of a
- // non-default signing algorithm. See the SigAlgo* constants in this
- // package for signature algorithms supported by this package. Callers may
- // pass an empty string for the algorithm in which case the AlgorithmSigner
- // will use its default algorithm.
- SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
- }
- type rsaPublicKey rsa.PublicKey
- func (r *rsaPublicKey) Type() string {
- return "ssh-rsa"
- }
- // parseRSA parses an RSA key according to RFC 4253, section 6.6.
- func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- E *big.Int
- N *big.Int
- Rest []byte `ssh:"rest"`
- }
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
- if w.E.BitLen() > 24 {
- return nil, nil, errors.New("ssh: exponent too large")
- }
- e := w.E.Int64()
- if e < 3 || e&1 == 0 {
- return nil, nil, errors.New("ssh: incorrect exponent")
- }
- var key rsa.PublicKey
- key.E = int(e)
- key.N = w.N
- return (*rsaPublicKey)(&key), w.Rest, nil
- }
- func (r *rsaPublicKey) Marshal() []byte {
- e := new(big.Int).SetInt64(int64(r.E))
- // RSA publickey struct layout should match the struct used by
- // parseRSACert in the x/crypto/ssh/agent package.
- wirekey := struct {
- Name string
- E *big.Int
- N *big.Int
- }{
- KeyAlgoRSA,
- e,
- r.N,
- }
- return Marshal(&wirekey)
- }
- func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
- var hash crypto.Hash
- switch sig.Format {
- case SigAlgoRSA:
- hash = crypto.SHA1
- case SigAlgoRSASHA2256:
- hash = crypto.SHA256
- case SigAlgoRSASHA2512:
- hash = crypto.SHA512
- default:
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
- }
- h := hash.New()
- h.Write(data)
- digest := h.Sum(nil)
- return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, sig.Blob)
- }
- func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
- return (*rsa.PublicKey)(r)
- }
- type dsaPublicKey dsa.PublicKey
- func (k *dsaPublicKey) Type() string {
- return "ssh-dss"
- }
- func checkDSAParams(param *dsa.Parameters) error {
- // SSH specifies FIPS 186-2, which only provided a single size
- // (1024 bits) DSA key. FIPS 186-3 allows for larger key
- // sizes, which would confuse SSH.
- if l := param.P.BitLen(); l != 1024 {
- return fmt.Errorf("ssh: unsupported DSA key size %d", l)
- }
- return nil
- }
- // parseDSA parses an DSA key according to RFC 4253, section 6.6.
- func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- P, Q, G, Y *big.Int
- Rest []byte `ssh:"rest"`
- }
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
- param := dsa.Parameters{
- P: w.P,
- Q: w.Q,
- G: w.G,
- }
- if err := checkDSAParams(¶m); err != nil {
- return nil, nil, err
- }
- key := &dsaPublicKey{
- Parameters: param,
- Y: w.Y,
- }
- return key, w.Rest, nil
- }
- func (k *dsaPublicKey) Marshal() []byte {
- // DSA publickey struct layout should match the struct used by
- // parseDSACert in the x/crypto/ssh/agent package.
- w := struct {
- Name string
- P, Q, G, Y *big.Int
- }{
- k.Type(),
- k.P,
- k.Q,
- k.G,
- k.Y,
- }
- return Marshal(&w)
- }
- func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
- h := crypto.SHA1.New()
- h.Write(data)
- digest := h.Sum(nil)
- // Per RFC 4253, section 6.6,
- // The value for 'dss_signature_blob' is encoded as a string containing
- // r, followed by s (which are 160-bit integers, without lengths or
- // padding, unsigned, and in network byte order).
- // For DSS purposes, sig.Blob should be exactly 40 bytes in length.
- if len(sig.Blob) != 40 {
- return errors.New("ssh: DSA signature parse error")
- }
- r := new(big.Int).SetBytes(sig.Blob[:20])
- s := new(big.Int).SetBytes(sig.Blob[20:])
- if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
- return nil
- }
- return errors.New("ssh: signature did not verify")
- }
- func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
- return (*dsa.PublicKey)(k)
- }
- type dsaPrivateKey struct {
- *dsa.PrivateKey
- }
- func (k *dsaPrivateKey) PublicKey() PublicKey {
- return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
- }
- func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
- return k.SignWithAlgorithm(rand, data, "")
- }
- func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
- if algorithm != "" && algorithm != k.PublicKey().Type() {
- return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
- }
- h := crypto.SHA1.New()
- h.Write(data)
- digest := h.Sum(nil)
- r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
- if err != nil {
- return nil, err
- }
- sig := make([]byte, 40)
- rb := r.Bytes()
- sb := s.Bytes()
- copy(sig[20-len(rb):20], rb)
- copy(sig[40-len(sb):], sb)
- return &Signature{
- Format: k.PublicKey().Type(),
- Blob: sig,
- }, nil
- }
- type ecdsaPublicKey ecdsa.PublicKey
- func (k *ecdsaPublicKey) Type() string {
- return "ecdsa-sha2-" + k.nistID()
- }
- func (k *ecdsaPublicKey) nistID() string {
- switch k.Params().BitSize {
- case 256:
- return "nistp256"
- case 384:
- return "nistp384"
- case 521:
- return "nistp521"
- }
- panic("ssh: unsupported ecdsa key size")
- }
- type ed25519PublicKey ed25519.PublicKey
- func (k ed25519PublicKey) Type() string {
- return KeyAlgoED25519
- }
- func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- KeyBytes []byte
- Rest []byte `ssh:"rest"`
- }
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
- key := ed25519.PublicKey(w.KeyBytes)
- return (ed25519PublicKey)(key), w.Rest, nil
- }
- func (k ed25519PublicKey) Marshal() []byte {
- w := struct {
- Name string
- KeyBytes []byte
- }{
- KeyAlgoED25519,
- []byte(k),
- }
- return Marshal(&w)
- }
- func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
- edKey := (ed25519.PublicKey)(k)
- if ok := ed25519.Verify(edKey, b, sig.Blob); !ok {
- return errors.New("ssh: signature did not verify")
- }
- return nil
- }
- func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
- return ed25519.PublicKey(k)
- }
- func supportedEllipticCurve(curve elliptic.Curve) bool {
- return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
- }
- // ecHash returns the hash to match the given elliptic curve, see RFC
- // 5656, section 6.2.1
- func ecHash(curve elliptic.Curve) crypto.Hash {
- bitSize := curve.Params().BitSize
- switch {
- case bitSize <= 256:
- return crypto.SHA256
- case bitSize <= 384:
- return crypto.SHA384
- }
- return crypto.SHA512
- }
- // parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
- func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
- var w struct {
- Curve string
- KeyBytes []byte
- Rest []byte `ssh:"rest"`
- }
- if err := Unmarshal(in, &w); err != nil {
- return nil, nil, err
- }
- key := new(ecdsa.PublicKey)
- switch w.Curve {
- case "nistp256":
- key.Curve = elliptic.P256()
- case "nistp384":
- key.Curve = elliptic.P384()
- case "nistp521":
- key.Curve = elliptic.P521()
- default:
- return nil, nil, errors.New("ssh: unsupported curve")
- }
- key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
- if key.X == nil || key.Y == nil {
- return nil, nil, errors.New("ssh: invalid curve point")
- }
- return (*ecdsaPublicKey)(key), w.Rest, nil
- }
- func (k *ecdsaPublicKey) Marshal() []byte {
- // See RFC 5656, section 3.1.
- keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
- // ECDSA publickey struct layout should match the struct used by
- // parseECDSACert in the x/crypto/ssh/agent package.
- w := struct {
- Name string
- ID string
- Key []byte
- }{
- k.Type(),
- k.nistID(),
- keyBytes,
- }
- return Marshal(&w)
- }
- func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
- if sig.Format != k.Type() {
- return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
- }
- h := ecHash(k.Curve).New()
- h.Write(data)
- digest := h.Sum(nil)
- // Per RFC 5656, section 3.1.2,
- // The ecdsa_signature_blob value has the following specific encoding:
- // mpint r
- // mpint s
- var ecSig struct {
- R *big.Int
- S *big.Int
- }
- if err := Unmarshal(sig.Blob, &ecSig); err != nil {
- return err
- }
- if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
- return nil
- }
- return errors.New("ssh: signature did not verify")
- }
- func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
- return (*ecdsa.PublicKey)(k)
- }
- // NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
- // *ecdsa.PrivateKey or any other crypto.Signer and returns a
- // corresponding Signer instance. ECDSA keys must use P-256, P-384 or
- // P-521. DSA keys must use parameter size L1024N160.
- func NewSignerFromKey(key interface{}) (Signer, error) {
- switch key := key.(type) {
- case crypto.Signer:
- return NewSignerFromSigner(key)
- case *dsa.PrivateKey:
- return newDSAPrivateKey(key)
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
- }
- }
- func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
- if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
- return nil, err
- }
- return &dsaPrivateKey{key}, nil
- }
- type wrappedSigner struct {
- signer crypto.Signer
- pubKey PublicKey
- }
- // NewSignerFromSigner takes any crypto.Signer implementation and
- // returns a corresponding Signer interface. This can be used, for
- // example, with keys kept in hardware modules.
- func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
- pubKey, err := NewPublicKey(signer.Public())
- if err != nil {
- return nil, err
- }
- return &wrappedSigner{signer, pubKey}, nil
- }
- func (s *wrappedSigner) PublicKey() PublicKey {
- return s.pubKey
- }
- func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
- return s.SignWithAlgorithm(rand, data, "")
- }
- func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
- var hashFunc crypto.Hash
- if _, ok := s.pubKey.(*rsaPublicKey); ok {
- // RSA keys support a few hash functions determined by the requested signature algorithm
- switch algorithm {
- case "", SigAlgoRSA:
- algorithm = SigAlgoRSA
- hashFunc = crypto.SHA1
- case SigAlgoRSASHA2256:
- hashFunc = crypto.SHA256
- case SigAlgoRSASHA2512:
- hashFunc = crypto.SHA512
- default:
- return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
- }
- } else {
- // The only supported algorithm for all other key types is the same as the type of the key
- if algorithm == "" {
- algorithm = s.pubKey.Type()
- } else if algorithm != s.pubKey.Type() {
- return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
- }
- switch key := s.pubKey.(type) {
- case *dsaPublicKey:
- hashFunc = crypto.SHA1
- case *ecdsaPublicKey:
- hashFunc = ecHash(key.Curve)
- case ed25519PublicKey:
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
- }
- }
- var digest []byte
- if hashFunc != 0 {
- h := hashFunc.New()
- h.Write(data)
- digest = h.Sum(nil)
- } else {
- digest = data
- }
- signature, err := s.signer.Sign(rand, digest, hashFunc)
- if err != nil {
- return nil, err
- }
- // crypto.Signer.Sign is expected to return an ASN.1-encoded signature
- // for ECDSA and DSA, but that's not the encoding expected by SSH, so
- // re-encode.
- switch s.pubKey.(type) {
- case *ecdsaPublicKey, *dsaPublicKey:
- type asn1Signature struct {
- R, S *big.Int
- }
- asn1Sig := new(asn1Signature)
- _, err := asn1.Unmarshal(signature, asn1Sig)
- if err != nil {
- return nil, err
- }
- switch s.pubKey.(type) {
- case *ecdsaPublicKey:
- signature = Marshal(asn1Sig)
- case *dsaPublicKey:
- signature = make([]byte, 40)
- r := asn1Sig.R.Bytes()
- s := asn1Sig.S.Bytes()
- copy(signature[20-len(r):20], r)
- copy(signature[40-len(s):40], s)
- }
- }
- return &Signature{
- Format: algorithm,
- Blob: signature,
- }, nil
- }
- // NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
- // or ed25519.PublicKey returns a corresponding PublicKey instance.
- // ECDSA keys must use P-256, P-384 or P-521.
- func NewPublicKey(key interface{}) (PublicKey, error) {
- switch key := key.(type) {
- case *rsa.PublicKey:
- return (*rsaPublicKey)(key), nil
- case *ecdsa.PublicKey:
- if !supportedEllipticCurve(key.Curve) {
- return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
- }
- return (*ecdsaPublicKey)(key), nil
- case *dsa.PublicKey:
- return (*dsaPublicKey)(key), nil
- case ed25519.PublicKey:
- return (ed25519PublicKey)(key), nil
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %T", key)
- }
- }
- // ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
- // the same keys as ParseRawPrivateKey.
- func ParsePrivateKey(pemBytes []byte) (Signer, error) {
- key, err := ParseRawPrivateKey(pemBytes)
- if err != nil {
- return nil, err
- }
- return NewSignerFromKey(key)
- }
- // ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
- // key and passphrase. It supports the same keys as
- // ParseRawPrivateKeyWithPassphrase.
- func ParsePrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (Signer, error) {
- key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase)
- if err != nil {
- return nil, err
- }
- return NewSignerFromKey(key)
- }
- // encryptedBlock tells whether a private key is
- // encrypted by examining its Proc-Type header
- // for a mention of ENCRYPTED
- // according to RFC 1421 Section 4.6.1.1.
- func encryptedBlock(block *pem.Block) bool {
- return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
- }
- // ParseRawPrivateKey returns a private key from a PEM encoded private key. It
- // supports RSA (PKCS#1), PKCS#8, DSA (OpenSSL), and ECDSA private keys.
- func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
- block, _ := pem.Decode(pemBytes)
- if block == nil {
- return nil, errors.New("ssh: no key found")
- }
- if encryptedBlock(block) {
- return nil, errors.New("ssh: cannot decode encrypted private keys")
- }
- switch block.Type {
- case "RSA PRIVATE KEY":
- return x509.ParsePKCS1PrivateKey(block.Bytes)
- // RFC5208 - https://tools.ietf.org/html/rfc5208
- case "PRIVATE KEY":
- return x509.ParsePKCS8PrivateKey(block.Bytes)
- case "EC PRIVATE KEY":
- return x509.ParseECPrivateKey(block.Bytes)
- case "DSA PRIVATE KEY":
- return ParseDSAPrivateKey(block.Bytes)
- case "OPENSSH PRIVATE KEY":
- return parseOpenSSHPrivateKey(block.Bytes)
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
- }
- }
- // ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
- // passphrase from a PEM encoded private key. If wrong passphrase, return
- // x509.IncorrectPasswordError.
- func ParseRawPrivateKeyWithPassphrase(pemBytes, passPhrase []byte) (interface{}, error) {
- block, _ := pem.Decode(pemBytes)
- if block == nil {
- return nil, errors.New("ssh: no key found")
- }
- buf := block.Bytes
- if encryptedBlock(block) {
- if x509.IsEncryptedPEMBlock(block) {
- var err error
- buf, err = x509.DecryptPEMBlock(block, passPhrase)
- if err != nil {
- if err == x509.IncorrectPasswordError {
- return nil, err
- }
- return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
- }
- }
- }
- switch block.Type {
- case "RSA PRIVATE KEY":
- return x509.ParsePKCS1PrivateKey(buf)
- case "EC PRIVATE KEY":
- return x509.ParseECPrivateKey(buf)
- case "DSA PRIVATE KEY":
- return ParseDSAPrivateKey(buf)
- case "OPENSSH PRIVATE KEY":
- return parseOpenSSHPrivateKey(buf)
- default:
- return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
- }
- }
- // ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
- // specified by the OpenSSL DSA man page.
- func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
- var k struct {
- Version int
- P *big.Int
- Q *big.Int
- G *big.Int
- Pub *big.Int
- Priv *big.Int
- }
- rest, err := asn1.Unmarshal(der, &k)
- if err != nil {
- return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
- }
- if len(rest) > 0 {
- return nil, errors.New("ssh: garbage after DSA key")
- }
- return &dsa.PrivateKey{
- PublicKey: dsa.PublicKey{
- Parameters: dsa.Parameters{
- P: k.P,
- Q: k.Q,
- G: k.G,
- },
- Y: k.Pub,
- },
- X: k.Priv,
- }, nil
- }
- // Implemented based on the documentation at
- // https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key
- func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
- const magic = "openssh-key-v1\x00"
- if len(key) < len(magic) || string(key[:len(magic)]) != magic {
- return nil, errors.New("ssh: invalid openssh private key format")
- }
- remaining := key[len(magic):]
- var w struct {
- CipherName string
- KdfName string
- KdfOpts string
- NumKeys uint32
- PubKey []byte
- PrivKeyBlock []byte
- }
- if err := Unmarshal(remaining, &w); err != nil {
- return nil, err
- }
- if w.KdfName != "none" || w.CipherName != "none" {
- return nil, errors.New("ssh: cannot decode encrypted private keys")
- }
- pk1 := struct {
- Check1 uint32
- Check2 uint32
- Keytype string
- Rest []byte `ssh:"rest"`
- }{}
- if err := Unmarshal(w.PrivKeyBlock, &pk1); err != nil {
- return nil, err
- }
- if pk1.Check1 != pk1.Check2 {
- return nil, errors.New("ssh: checkint mismatch")
- }
- // we only handle ed25519 and rsa keys currently
- switch pk1.Keytype {
- case KeyAlgoRSA:
- // https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
- key := struct {
- N *big.Int
- E *big.Int
- D *big.Int
- Iqmp *big.Int
- P *big.Int
- Q *big.Int
- Comment string
- Pad []byte `ssh:"rest"`
- }{}
- if err := Unmarshal(pk1.Rest, &key); err != nil {
- return nil, err
- }
- for i, b := range key.Pad {
- if int(b) != i+1 {
- return nil, errors.New("ssh: padding not as expected")
- }
- }
- pk := &rsa.PrivateKey{
- PublicKey: rsa.PublicKey{
- N: key.N,
- E: int(key.E.Int64()),
- },
- D: key.D,
- Primes: []*big.Int{key.P, key.Q},
- }
- if err := pk.Validate(); err != nil {
- return nil, err
- }
- pk.Precompute()
- return pk, nil
- case KeyAlgoED25519:
- key := struct {
- Pub []byte
- Priv []byte
- Comment string
- Pad []byte `ssh:"rest"`
- }{}
- if err := Unmarshal(pk1.Rest, &key); err != nil {
- return nil, err
- }
- if len(key.Priv) != ed25519.PrivateKeySize {
- return nil, errors.New("ssh: private key unexpected length")
- }
- for i, b := range key.Pad {
- if int(b) != i+1 {
- return nil, errors.New("ssh: padding not as expected")
- }
- }
- pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
- copy(pk, key.Priv)
- return &pk, nil
- default:
- return nil, errors.New("ssh: unhandled key type")
- }
- }
- // FingerprintLegacyMD5 returns the user presentation of the key's
- // fingerprint as described by RFC 4716 section 4.
- func FingerprintLegacyMD5(pubKey PublicKey) string {
- md5sum := md5.Sum(pubKey.Marshal())
- hexarray := make([]string, len(md5sum))
- for i, c := range md5sum {
- hexarray[i] = hex.EncodeToString([]byte{c})
- }
- return strings.Join(hexarray, ":")
- }
- // FingerprintSHA256 returns the user presentation of the key's
- // fingerprint as unpadded base64 encoded sha256 hash.
- // This format was introduced from OpenSSH 6.8.
- // https://www.openssh.com/txt/release-6.8
- // https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
- func FingerprintSHA256(pubKey PublicKey) string {
- sha256sum := sha256.Sum256(pubKey.Marshal())
- hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
- return "SHA256:" + hash
- }
|