123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // Package bn256 implements a particular bilinear group.
- //
- // Bilinear groups are the basis of many of the new cryptographic protocols
- // that have been proposed over the past decade. They consist of a triplet of
- // groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
- // (where gₓ is a generator of the respective group). That function is called
- // a pairing function.
- //
- // This package specifically implements the Optimal Ate pairing over a 256-bit
- // Barreto-Naehrig curve as described in
- // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
- // with the implementation described in that paper.
- //
- // This package previously claimed to operate at a 128-bit security level.
- // However, recent improvements in attacks mean that is no longer true. See
- // https://moderncrypto.org/mail-archive/curves/2016/000740.html.
- //
- // Deprecated: due to its weakened security, new systems should not rely on this
- // elliptic curve. This package is frozen, and not implemented in constant time.
- // There is a more complete implementation at github.com/cloudflare/bn256, but
- // note that it suffers from the same security issues of the underlying curve.
- package bn256 // import "golang.org/x/crypto/bn256"
- import (
- "crypto/rand"
- "io"
- "math/big"
- )
- // G1 is an abstract cyclic group. The zero value is suitable for use as the
- // output of an operation, but cannot be used as an input.
- type G1 struct {
- p *curvePoint
- }
- // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
- func RandomG1(r io.Reader) (*big.Int, *G1, error) {
- var k *big.Int
- var err error
- for {
- k, err = rand.Int(r, Order)
- if err != nil {
- return nil, nil, err
- }
- if k.Sign() > 0 {
- break
- }
- }
- return k, new(G1).ScalarBaseMult(k), nil
- }
- func (e *G1) String() string {
- if e.p == nil {
- return "bn256.G1" + newCurvePoint(nil).String()
- }
- return "bn256.G1" + e.p.String()
- }
- // ScalarBaseMult sets e to g*k where g is the generator of the group and
- // then returns e.
- func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Mul(curveGen, k, new(bnPool))
- return e
- }
- // ScalarMult sets e to a*k and then returns e.
- func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Mul(a.p, k, new(bnPool))
- return e
- }
- // Add sets e to a+b and then returns e.
- //
- // Warning: this function is not complete, it fails for a equal to b.
- func (e *G1) Add(a, b *G1) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Add(a.p, b.p, new(bnPool))
- return e
- }
- // Neg sets e to -a and then returns e.
- func (e *G1) Neg(a *G1) *G1 {
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.Negative(a.p)
- return e
- }
- // Marshal converts n to a byte slice.
- func (e *G1) Marshal() []byte {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if e.p.IsInfinity() {
- return make([]byte, numBytes*2)
- }
- e.p.MakeAffine(nil)
- xBytes := new(big.Int).Mod(e.p.x, p).Bytes()
- yBytes := new(big.Int).Mod(e.p.y, p).Bytes()
- ret := make([]byte, numBytes*2)
- copy(ret[1*numBytes-len(xBytes):], xBytes)
- copy(ret[2*numBytes-len(yBytes):], yBytes)
- return ret
- }
- // Unmarshal sets e to the result of converting the output of Marshal back into
- // a group element and then returns e.
- func (e *G1) Unmarshal(m []byte) (*G1, bool) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if len(m) != 2*numBytes {
- return nil, false
- }
- if e.p == nil {
- e.p = newCurvePoint(nil)
- }
- e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
- e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
- if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
- // This is the point at infinity.
- e.p.y.SetInt64(1)
- e.p.z.SetInt64(0)
- e.p.t.SetInt64(0)
- } else {
- e.p.z.SetInt64(1)
- e.p.t.SetInt64(1)
- if !e.p.IsOnCurve() {
- return nil, false
- }
- }
- return e, true
- }
- // G2 is an abstract cyclic group. The zero value is suitable for use as the
- // output of an operation, but cannot be used as an input.
- type G2 struct {
- p *twistPoint
- }
- // RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
- func RandomG2(r io.Reader) (*big.Int, *G2, error) {
- var k *big.Int
- var err error
- for {
- k, err = rand.Int(r, Order)
- if err != nil {
- return nil, nil, err
- }
- if k.Sign() > 0 {
- break
- }
- }
- return k, new(G2).ScalarBaseMult(k), nil
- }
- func (e *G2) String() string {
- if e.p == nil {
- return "bn256.G2" + newTwistPoint(nil).String()
- }
- return "bn256.G2" + e.p.String()
- }
- // ScalarBaseMult sets e to g*k where g is the generator of the group and
- // then returns out.
- func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
- e.p.Mul(twistGen, k, new(bnPool))
- return e
- }
- // ScalarMult sets e to a*k and then returns e.
- func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
- e.p.Mul(a.p, k, new(bnPool))
- return e
- }
- // Add sets e to a+b and then returns e.
- //
- // Warning: this function is not complete, it fails for a equal to b.
- func (e *G2) Add(a, b *G2) *G2 {
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
- e.p.Add(a.p, b.p, new(bnPool))
- return e
- }
- // Marshal converts n into a byte slice.
- func (n *G2) Marshal() []byte {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if n.p.IsInfinity() {
- return make([]byte, numBytes*4)
- }
- n.p.MakeAffine(nil)
- xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes()
- xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes()
- yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes()
- yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()
- ret := make([]byte, numBytes*4)
- copy(ret[1*numBytes-len(xxBytes):], xxBytes)
- copy(ret[2*numBytes-len(xyBytes):], xyBytes)
- copy(ret[3*numBytes-len(yxBytes):], yxBytes)
- copy(ret[4*numBytes-len(yyBytes):], yyBytes)
- return ret
- }
- // Unmarshal sets e to the result of converting the output of Marshal back into
- // a group element and then returns e.
- func (e *G2) Unmarshal(m []byte) (*G2, bool) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if len(m) != 4*numBytes {
- return nil, false
- }
- if e.p == nil {
- e.p = newTwistPoint(nil)
- }
- e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
- e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
- e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
- e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
- if e.p.x.x.Sign() == 0 &&
- e.p.x.y.Sign() == 0 &&
- e.p.y.x.Sign() == 0 &&
- e.p.y.y.Sign() == 0 {
- // This is the point at infinity.
- e.p.y.SetOne()
- e.p.z.SetZero()
- e.p.t.SetZero()
- } else {
- e.p.z.SetOne()
- e.p.t.SetOne()
- if !e.p.IsOnCurve() {
- return nil, false
- }
- }
- return e, true
- }
- // GT is an abstract cyclic group. The zero value is suitable for use as the
- // output of an operation, but cannot be used as an input.
- type GT struct {
- p *gfP12
- }
- func (e *GT) String() string {
- if e.p == nil {
- return "bn256.GT" + newGFp12(nil).String()
- }
- return "bn256.GT" + e.p.String()
- }
- // ScalarMult sets e to a*k and then returns e.
- func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
- if e.p == nil {
- e.p = newGFp12(nil)
- }
- e.p.Exp(a.p, k, new(bnPool))
- return e
- }
- // Add sets e to a+b and then returns e.
- func (e *GT) Add(a, b *GT) *GT {
- if e.p == nil {
- e.p = newGFp12(nil)
- }
- e.p.Mul(a.p, b.p, new(bnPool))
- return e
- }
- // Neg sets e to -a and then returns e.
- func (e *GT) Neg(a *GT) *GT {
- if e.p == nil {
- e.p = newGFp12(nil)
- }
- e.p.Invert(a.p, new(bnPool))
- return e
- }
- // Marshal converts n into a byte slice.
- func (n *GT) Marshal() []byte {
- n.p.Minimal()
- xxxBytes := n.p.x.x.x.Bytes()
- xxyBytes := n.p.x.x.y.Bytes()
- xyxBytes := n.p.x.y.x.Bytes()
- xyyBytes := n.p.x.y.y.Bytes()
- xzxBytes := n.p.x.z.x.Bytes()
- xzyBytes := n.p.x.z.y.Bytes()
- yxxBytes := n.p.y.x.x.Bytes()
- yxyBytes := n.p.y.x.y.Bytes()
- yyxBytes := n.p.y.y.x.Bytes()
- yyyBytes := n.p.y.y.y.Bytes()
- yzxBytes := n.p.y.z.x.Bytes()
- yzyBytes := n.p.y.z.y.Bytes()
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- ret := make([]byte, numBytes*12)
- copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
- copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
- copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
- copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
- copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
- copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
- copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
- copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
- copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
- copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
- copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
- copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
- return ret
- }
- // Unmarshal sets e to the result of converting the output of Marshal back into
- // a group element and then returns e.
- func (e *GT) Unmarshal(m []byte) (*GT, bool) {
- // Each value is a 256-bit number.
- const numBytes = 256 / 8
- if len(m) != 12*numBytes {
- return nil, false
- }
- if e.p == nil {
- e.p = newGFp12(nil)
- }
- e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
- e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
- e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
- e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
- e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
- e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
- e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
- e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
- e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
- e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
- e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
- e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
- return e, true
- }
- // Pair calculates an Optimal Ate pairing.
- func Pair(g1 *G1, g2 *G2) *GT {
- return >{optimalAte(g2.p, g1.p, new(bnPool))}
- }
- // bnPool implements a tiny cache of *big.Int objects that's used to reduce the
- // number of allocations made during processing.
- type bnPool struct {
- bns []*big.Int
- count int
- }
- func (pool *bnPool) Get() *big.Int {
- if pool == nil {
- return new(big.Int)
- }
- pool.count++
- l := len(pool.bns)
- if l == 0 {
- return new(big.Int)
- }
- bn := pool.bns[l-1]
- pool.bns = pool.bns[:l-1]
- return bn
- }
- func (pool *bnPool) Put(bn *big.Int) {
- if pool == nil {
- return
- }
- pool.bns = append(pool.bns, bn)
- pool.count--
- }
- func (pool *bnPool) Count() int {
- return pool.count
- }
|