|
|
@@ -0,0 +1,289 @@
|
|
|
+// Copyright 2017 The Go Authors. All rights reserved.
|
|
|
+// Use of this source code is governed by a BSD-style
|
|
|
+// license that can be found in the LICENSE file.
|
|
|
+
|
|
|
+//+build !gccgo,!appengine
|
|
|
+
|
|
|
+package sha3
|
|
|
+
|
|
|
+// This file contains code for using the 'compute intermediate
|
|
|
+// message digest' (KIMD) and 'compute last message digest' (KLMD)
|
|
|
+// instructions to compute SHA-3 and SHAKE hashes on IBM Z.
|
|
|
+
|
|
|
+import (
|
|
|
+ "hash"
|
|
|
+)
|
|
|
+
|
|
|
+// codes represent 7-bit KIMD/KLMD function codes as defined in
|
|
|
+// the Principles of Operation.
|
|
|
+type code uint64
|
|
|
+
|
|
|
+const (
|
|
|
+ // function codes for KIMD/KLMD
|
|
|
+ sha3_224 code = 32
|
|
|
+ sha3_256 = 33
|
|
|
+ sha3_384 = 34
|
|
|
+ sha3_512 = 35
|
|
|
+ shake_128 = 36
|
|
|
+ shake_256 = 37
|
|
|
+ nopad = 0x100
|
|
|
+)
|
|
|
+
|
|
|
+// hasMSA6 reports whether the machine supports the SHA-3 and SHAKE function
|
|
|
+// codes, as defined in message-security-assist extension 6.
|
|
|
+func hasMSA6() bool
|
|
|
+
|
|
|
+// hasAsm caches the result of hasMSA6 (which might be expensive to call).
|
|
|
+var hasAsm = hasMSA6()
|
|
|
+
|
|
|
+// kimd is a wrapper for the 'compute intermediate message digest' instruction.
|
|
|
+// src must be a multiple of the rate for the given function code.
|
|
|
+//go:noescape
|
|
|
+func kimd(function code, chain *[200]byte, src []byte)
|
|
|
+
|
|
|
+// klmd is a wrapper for the 'compute last message digest' instruction.
|
|
|
+// src padding is handled by the instruction.
|
|
|
+//go:noescape
|
|
|
+func klmd(function code, chain *[200]byte, dst, src []byte)
|
|
|
+
|
|
|
+type asmState struct {
|
|
|
+ a [200]byte // 1600 bit state
|
|
|
+ buf []byte // care must be taken to ensure cap(buf) is a multiple of rate
|
|
|
+ rate int // equivalent to block size
|
|
|
+ storage [3072]byte // underlying storage for buf
|
|
|
+ outputLen int // output length if fixed, 0 if not
|
|
|
+ function code // KIMD/KLMD function code
|
|
|
+ state spongeDirection // whether the sponge is absorbing or squeezing
|
|
|
+}
|
|
|
+
|
|
|
+func newAsmState(function code) *asmState {
|
|
|
+ var s asmState
|
|
|
+ s.function = function
|
|
|
+ switch function {
|
|
|
+ case sha3_224:
|
|
|
+ s.rate = 144
|
|
|
+ s.outputLen = 28
|
|
|
+ case sha3_256:
|
|
|
+ s.rate = 136
|
|
|
+ s.outputLen = 32
|
|
|
+ case sha3_384:
|
|
|
+ s.rate = 104
|
|
|
+ s.outputLen = 48
|
|
|
+ case sha3_512:
|
|
|
+ s.rate = 72
|
|
|
+ s.outputLen = 64
|
|
|
+ case shake_128:
|
|
|
+ s.rate = 168
|
|
|
+ case shake_256:
|
|
|
+ s.rate = 136
|
|
|
+ default:
|
|
|
+ panic("sha3: unrecognized function code")
|
|
|
+ }
|
|
|
+
|
|
|
+ // limit s.buf size to a multiple of s.rate
|
|
|
+ s.resetBuf()
|
|
|
+ return &s
|
|
|
+}
|
|
|
+
|
|
|
+func (s *asmState) clone() *asmState {
|
|
|
+ c := *s
|
|
|
+ c.buf = c.storage[:len(s.buf):cap(s.buf)]
|
|
|
+ return &c
|
|
|
+}
|
|
|
+
|
|
|
+// copyIntoBuf copies b into buf. It will panic if there is not enough space to
|
|
|
+// store all of b.
|
|
|
+func (s *asmState) copyIntoBuf(b []byte) {
|
|
|
+ bufLen := len(s.buf)
|
|
|
+ s.buf = s.buf[:len(s.buf)+len(b)]
|
|
|
+ copy(s.buf[bufLen:], b)
|
|
|
+}
|
|
|
+
|
|
|
+// resetBuf points buf at storage, sets the length to 0 and sets cap to be a
|
|
|
+// multiple of the rate.
|
|
|
+func (s *asmState) resetBuf() {
|
|
|
+ max := (cap(s.storage) / s.rate) * s.rate
|
|
|
+ s.buf = s.storage[:0:max]
|
|
|
+}
|
|
|
+
|
|
|
+// Write (via the embedded io.Writer interface) adds more data to the running hash.
|
|
|
+// It never returns an error.
|
|
|
+func (s *asmState) Write(b []byte) (int, error) {
|
|
|
+ if s.state != spongeAbsorbing {
|
|
|
+ panic("sha3: write to sponge after read")
|
|
|
+ }
|
|
|
+ length := len(b)
|
|
|
+ for len(b) > 0 {
|
|
|
+ if len(s.buf) == 0 && len(b) >= cap(s.buf) {
|
|
|
+ // Hash the data directly and push any remaining bytes
|
|
|
+ // into the buffer.
|
|
|
+ remainder := len(s.buf) % s.rate
|
|
|
+ kimd(s.function, &s.a, b[:len(b)-remainder])
|
|
|
+ if remainder != 0 {
|
|
|
+ s.copyIntoBuf(b[len(b)-remainder:])
|
|
|
+ }
|
|
|
+ return length, nil
|
|
|
+ }
|
|
|
+
|
|
|
+ if len(s.buf) == cap(s.buf) {
|
|
|
+ // flush the buffer
|
|
|
+ kimd(s.function, &s.a, s.buf)
|
|
|
+ s.buf = s.buf[:0]
|
|
|
+ }
|
|
|
+
|
|
|
+ // copy as much as we can into the buffer
|
|
|
+ n := len(b)
|
|
|
+ if len(b) > cap(s.buf)-len(s.buf) {
|
|
|
+ n = cap(s.buf) - len(s.buf)
|
|
|
+ }
|
|
|
+ s.copyIntoBuf(b[:n])
|
|
|
+ b = b[n:]
|
|
|
+ }
|
|
|
+ return length, nil
|
|
|
+}
|
|
|
+
|
|
|
+// Read squeezes an arbitrary number of bytes from the sponge.
|
|
|
+func (s *asmState) Read(out []byte) (n int, err error) {
|
|
|
+ n = len(out)
|
|
|
+
|
|
|
+ // need to pad if we were absorbing
|
|
|
+ if s.state == spongeAbsorbing {
|
|
|
+ s.state = spongeSqueezing
|
|
|
+
|
|
|
+ // write hash directly into out if possible
|
|
|
+ if len(out)%s.rate == 0 {
|
|
|
+ klmd(s.function, &s.a, out, s.buf) // len(out) may be 0
|
|
|
+ s.buf = s.buf[:0]
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ // write hash into buffer
|
|
|
+ max := cap(s.buf)
|
|
|
+ if max > len(out) {
|
|
|
+ max = (len(out)/s.rate)*s.rate + s.rate
|
|
|
+ }
|
|
|
+ klmd(s.function, &s.a, s.buf[:max], s.buf)
|
|
|
+ s.buf = s.buf[:max]
|
|
|
+ }
|
|
|
+
|
|
|
+ for len(out) > 0 {
|
|
|
+ // flush the buffer
|
|
|
+ if len(s.buf) != 0 {
|
|
|
+ c := copy(out, s.buf)
|
|
|
+ out = out[c:]
|
|
|
+ s.buf = s.buf[c:]
|
|
|
+ continue
|
|
|
+ }
|
|
|
+
|
|
|
+ // write hash directly into out if possible
|
|
|
+ if len(out)%s.rate == 0 {
|
|
|
+ klmd(s.function|nopad, &s.a, out, nil)
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ // write hash into buffer
|
|
|
+ s.resetBuf()
|
|
|
+ if cap(s.buf) > len(out) {
|
|
|
+ s.buf = s.buf[:(len(out)/s.rate)*s.rate+s.rate]
|
|
|
+ }
|
|
|
+ klmd(s.function|nopad, &s.a, s.buf, nil)
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// Sum appends the current hash to b and returns the resulting slice.
|
|
|
+// It does not change the underlying hash state.
|
|
|
+func (s *asmState) Sum(b []byte) []byte {
|
|
|
+ if s.outputLen == 0 {
|
|
|
+ panic("sha3: cannot call Sum on SHAKE functions")
|
|
|
+ }
|
|
|
+
|
|
|
+ // Copy the state to preserve the original.
|
|
|
+ a := s.a
|
|
|
+
|
|
|
+ // Hash the buffer. Note that we don't clear it because we
|
|
|
+ // aren't updating the state.
|
|
|
+ klmd(s.function, &a, nil, s.buf)
|
|
|
+ return append(b, a[:s.outputLen]...)
|
|
|
+}
|
|
|
+
|
|
|
+// Reset resets the Hash to its initial state.
|
|
|
+func (s *asmState) Reset() {
|
|
|
+ for i := range s.a {
|
|
|
+ s.a[i] = 0
|
|
|
+ }
|
|
|
+ s.resetBuf()
|
|
|
+ s.state = spongeAbsorbing
|
|
|
+}
|
|
|
+
|
|
|
+// Size returns the number of bytes Sum will return.
|
|
|
+func (s *asmState) Size() int {
|
|
|
+ return s.outputLen
|
|
|
+}
|
|
|
+
|
|
|
+// BlockSize returns the hash's underlying block size.
|
|
|
+// The Write method must be able to accept any amount
|
|
|
+// of data, but it may operate more efficiently if all writes
|
|
|
+// are a multiple of the block size.
|
|
|
+func (s *asmState) BlockSize() int {
|
|
|
+ return s.rate
|
|
|
+}
|
|
|
+
|
|
|
+// Clone returns a copy of the ShakeHash in its current state.
|
|
|
+func (s *asmState) Clone() ShakeHash {
|
|
|
+ return s.clone()
|
|
|
+}
|
|
|
+
|
|
|
+// new224Asm returns an assembly implementation of SHA3-224 if available,
|
|
|
+// otherwise it returns nil.
|
|
|
+func new224Asm() hash.Hash {
|
|
|
+ if hasAsm {
|
|
|
+ return newAsmState(sha3_224)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// new256Asm returns an assembly implementation of SHA3-256 if available,
|
|
|
+// otherwise it returns nil.
|
|
|
+func new256Asm() hash.Hash {
|
|
|
+ if hasAsm {
|
|
|
+ return newAsmState(sha3_256)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// new384Asm returns an assembly implementation of SHA3-384 if available,
|
|
|
+// otherwise it returns nil.
|
|
|
+func new384Asm() hash.Hash {
|
|
|
+ if hasAsm {
|
|
|
+ return newAsmState(sha3_384)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// new512Asm returns an assembly implementation of SHA3-512 if available,
|
|
|
+// otherwise it returns nil.
|
|
|
+func new512Asm() hash.Hash {
|
|
|
+ if hasAsm {
|
|
|
+ return newAsmState(sha3_512)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// newShake128Asm returns an assembly implementation of SHAKE-128 if available,
|
|
|
+// otherwise it returns nil.
|
|
|
+func newShake128Asm() ShakeHash {
|
|
|
+ if hasAsm {
|
|
|
+ return newAsmState(shake_128)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|
|
|
+
|
|
|
+// newShake256Asm returns an assembly implementation of SHAKE-256 if available,
|
|
|
+// otherwise it returns nil.
|
|
|
+func newShake256Asm() ShakeHash {
|
|
|
+ if hasAsm {
|
|
|
+ return newAsmState(shake_256)
|
|
|
+ }
|
|
|
+ return nil
|
|
|
+}
|