123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package flate
- // Sort sorts data.
- // It makes one call to data.Len to determine n, and O(n*log(n)) calls to
- // data.Less and data.Swap. The sort is not guaranteed to be stable.
- func sortByLiteral(data []literalNode) {
- n := len(data)
- quickSort(data, 0, n, maxDepth(n))
- }
- func quickSort(data []literalNode, a, b, maxDepth int) {
- for b-a > 12 { // Use ShellSort for slices <= 12 elements
- if maxDepth == 0 {
- heapSort(data, a, b)
- return
- }
- maxDepth--
- mlo, mhi := doPivot(data, a, b)
- // Avoiding recursion on the larger subproblem guarantees
- // a stack depth of at most lg(b-a).
- if mlo-a < b-mhi {
- quickSort(data, a, mlo, maxDepth)
- a = mhi // i.e., quickSort(data, mhi, b)
- } else {
- quickSort(data, mhi, b, maxDepth)
- b = mlo // i.e., quickSort(data, a, mlo)
- }
- }
- if b-a > 1 {
- // Do ShellSort pass with gap 6
- // It could be written in this simplified form cause b-a <= 12
- for i := a + 6; i < b; i++ {
- if data[i].literal < data[i-6].literal {
- data[i], data[i-6] = data[i-6], data[i]
- }
- }
- insertionSort(data, a, b)
- }
- }
- func heapSort(data []literalNode, a, b int) {
- first := a
- lo := 0
- hi := b - a
- // Build heap with greatest element at top.
- for i := (hi - 1) / 2; i >= 0; i-- {
- siftDown(data, i, hi, first)
- }
- // Pop elements, largest first, into end of data.
- for i := hi - 1; i >= 0; i-- {
- data[first], data[first+i] = data[first+i], data[first]
- siftDown(data, lo, i, first)
- }
- }
- // siftDown implements the heap property on data[lo, hi).
- // first is an offset into the array where the root of the heap lies.
- func siftDown(data []literalNode, lo, hi, first int) {
- root := lo
- for {
- child := 2*root + 1
- if child >= hi {
- break
- }
- if child+1 < hi && data[first+child].literal < data[first+child+1].literal {
- child++
- }
- if data[first+root].literal > data[first+child].literal {
- return
- }
- data[first+root], data[first+child] = data[first+child], data[first+root]
- root = child
- }
- }
- func doPivot(data []literalNode, lo, hi int) (midlo, midhi int) {
- m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
- if hi-lo > 40 {
- // Tukey's ``Ninther,'' median of three medians of three.
- s := (hi - lo) / 8
- medianOfThree(data, lo, lo+s, lo+2*s)
- medianOfThree(data, m, m-s, m+s)
- medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
- }
- medianOfThree(data, lo, m, hi-1)
- // Invariants are:
- // data[lo] = pivot (set up by ChoosePivot)
- // data[lo < i < a] < pivot
- // data[a <= i < b] <= pivot
- // data[b <= i < c] unexamined
- // data[c <= i < hi-1] > pivot
- // data[hi-1] >= pivot
- pivot := lo
- a, c := lo+1, hi-1
- for ; a < c && data[a].literal < data[pivot].literal; a++ {
- }
- b := a
- for {
- for ; b < c && data[pivot].literal > data[b].literal; b++ { // data[b] <= pivot
- }
- for ; b < c && data[pivot].literal < data[c-1].literal; c-- { // data[c-1] > pivot
- }
- if b >= c {
- break
- }
- // data[b] > pivot; data[c-1] <= pivot
- data[b], data[c-1] = data[c-1], data[b]
- b++
- c--
- }
- // If hi-c<3 then there are duplicates (by property of median of nine).
- // Let's be a bit more conservative, and set border to 5.
- protect := hi-c < 5
- if !protect && hi-c < (hi-lo)/4 {
- // Lets test some points for equality to pivot
- dups := 0
- if data[pivot].literal > data[hi-1].literal { // data[hi-1] = pivot
- data[c], data[hi-1] = data[hi-1], data[c]
- c++
- dups++
- }
- if data[b-1].literal > data[pivot].literal { // data[b-1] = pivot
- b--
- dups++
- }
- // m-lo = (hi-lo)/2 > 6
- // b-lo > (hi-lo)*3/4-1 > 8
- // ==> m < b ==> data[m] <= pivot
- if data[m].literal > data[pivot].literal { // data[m] = pivot
- data[m], data[b-1] = data[b-1], data[m]
- b--
- dups++
- }
- // if at least 2 points are equal to pivot, assume skewed distribution
- protect = dups > 1
- }
- if protect {
- // Protect against a lot of duplicates
- // Add invariant:
- // data[a <= i < b] unexamined
- // data[b <= i < c] = pivot
- for {
- for ; a < b && data[b-1].literal > data[pivot].literal; b-- { // data[b] == pivot
- }
- for ; a < b && data[a].literal < data[pivot].literal; a++ { // data[a] < pivot
- }
- if a >= b {
- break
- }
- // data[a] == pivot; data[b-1] < pivot
- data[a], data[b-1] = data[b-1], data[a]
- a++
- b--
- }
- }
- // Swap pivot into middle
- data[pivot], data[b-1] = data[b-1], data[pivot]
- return b - 1, c
- }
- // Insertion sort
- func insertionSort(data []literalNode, a, b int) {
- for i := a + 1; i < b; i++ {
- for j := i; j > a && data[j].literal < data[j-1].literal; j-- {
- data[j], data[j-1] = data[j-1], data[j]
- }
- }
- }
- // maxDepth returns a threshold at which quicksort should switch
- // to heapsort. It returns 2*ceil(lg(n+1)).
- func maxDepth(n int) int {
- var depth int
- for i := n; i > 0; i >>= 1 {
- depth++
- }
- return depth * 2
- }
- // medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
- func medianOfThree(data []literalNode, m1, m0, m2 int) {
- // sort 3 elements
- if data[m1].literal < data[m0].literal {
- data[m1], data[m0] = data[m0], data[m1]
- }
- // data[m0] <= data[m1]
- if data[m2].literal < data[m1].literal {
- data[m2], data[m1] = data[m1], data[m2]
- // data[m0] <= data[m2] && data[m1] < data[m2]
- if data[m1].literal < data[m0].literal {
- data[m1], data[m0] = data[m0], data[m1]
- }
- }
- // now data[m0] <= data[m1] <= data[m2]
- }
|