// Copyright 2019+ Klaus Post. All rights reserved. // License information can be found in the LICENSE file. // Based on work by Yann Collet, released under BSD License. package zstd import ( "fmt" "math" "math/bits" "github.com/klauspost/compress/zstd/internal/xxhash" ) const ( tableBits = 15 // Bits used in the table tableSize = 1 << tableBits // Size of the table tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. maxMatchLength = 131074 ) type tableEntry struct { val uint32 offset int32 } type fastBase struct { // cur is the offset at the start of hist cur int32 // maximum offset. Should be at least 2x block size. maxMatchOff int32 hist []byte crc *xxhash.Digest tmp [8]byte blk *blockEnc } type fastEncoder struct { fastBase table [tableSize]tableEntry } // CRC returns the underlying CRC writer. func (e *fastBase) CRC() *xxhash.Digest { return e.crc } // AppendCRC will append the CRC to the destination slice and return it. func (e *fastBase) AppendCRC(dst []byte) []byte { crc := e.crc.Sum(e.tmp[:0]) dst = append(dst, crc[7], crc[6], crc[5], crc[4]) return dst } // WindowSize returns the window size of the encoder, // or a window size small enough to contain the input size, if > 0. func (e *fastBase) WindowSize(size int) int32 { if size > 0 && size < int(e.maxMatchOff) { b := int32(1) << uint(bits.Len(uint(size))) // Keep minimum window. if b < 1024 { b = 1024 } return b } return e.maxMatchOff } // Block returns the current block. func (e *fastBase) Block() *blockEnc { return e.blk } // Encode mimmics functionality in zstd_fast.c func (e *fastEncoder) Encode(blk *blockEnc, src []byte) { const ( inputMargin = 8 minNonLiteralBlockSize = 1 + 1 + inputMargin ) // Protect against e.cur wraparound. for e.cur >= bufferReset { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } e.cur = e.maxMatchOff break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff for i := range e.table[:] { v := e.table[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.table[i].offset = v } e.cur = e.maxMatchOff break } s := e.addBlock(src) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } // Override src src = e.hist sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 2. const stepSize = 2 // TEMPLATE const hashLog = tableBits // seems global, but would be nice to tweak. const kSearchStrength = 8 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debug { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { // t will contain the match offset when we find one. // When existing the search loop, we have already checked 4 bytes. var t int32 // We will not use repeat offsets across blocks. // By not using them for the first 3 matches canRepeat := len(blk.sequences) > 2 for { if debugAsserts && canRepeat && offset1 == 0 { panic("offset0 was 0") } nextHash := hash6(cv, hashLog) nextHash2 := hash6(cv>>8, hashLog) candidate := e.table[nextHash] candidate2 := e.table[nextHash2] repIndex := s - offset1 + 2 e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)} e.table[nextHash2] = tableEntry{offset: s + e.cur + 1, val: uint32(cv >> 8)} if canRepeat && repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>16) { // Consider history as well. var seq seq var length int32 // length = 4 + e.matchlen(s+6, repIndex+4, src) { a := src[s+6:] b := src[repIndex+4:] endI := len(a) & (math.MaxInt32 - 7) length = int32(endI) + 4 for i := 0; i < endI; i += 8 { if diff := load64(a, i) ^ load64(b, i); diff != 0 { length = int32(i+bits.TrailingZeros64(diff)>>3) + 4 break } } } seq.matchLen = uint32(length - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + 2 // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 sMin := s - e.maxMatchOff if sMin < 0 { sMin = 0 } for repIndex > sMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) s += length + 2 nextEmit = s if s >= sLimit { if debug { println("repeat ended", s, length) } break encodeLoop } cv = load6432(src, s) continue } coffset0 := s - (candidate.offset - e.cur) coffset1 := s - (candidate2.offset - e.cur) + 1 if coffset0 < e.maxMatchOff && uint32(cv) == candidate.val { // found a regular match t = candidate.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } break } if coffset1 < e.maxMatchOff && uint32(cv>>8) == candidate2.val { // found a regular match t = candidate2.offset - e.cur s++ if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugAsserts && t < 0 { panic("t<0") } break } s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // A 4-byte match has been found. We'll later see if more than 4 bytes. offset2 = offset1 offset1 = s - t if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && canRepeat && int(offset1) > len(src) { panic("invalid offset") } // Extend the 4-byte match as long as possible. //l := e.matchlen(s+4, t+4, src) + 4 var l int32 { a := src[s+4:] b := src[t+4:] endI := len(a) & (math.MaxInt32 - 7) l = int32(endI) + 4 for i := 0; i < endI; i += 8 { if diff := load64(a, i) ^ load64(b, i); diff != 0 { l = int32(i+bits.TrailingZeros64(diff)>>3) + 4 break } } } // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { s-- t-- l++ } // Write our sequence. var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } // Don't use repeat offsets seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } cv = load6432(src, s) // Check offset 2 if o2 := s - offset2; canRepeat && load3232(src, o2) == uint32(cv) { // We have at least 4 byte match. // No need to check backwards. We come straight from a match //l := 4 + e.matchlen(s+4, o2+4, src) var l int32 { a := src[s+4:] b := src[o2+4:] endI := len(a) & (math.MaxInt32 - 7) l = int32(endI) + 4 for i := 0; i < endI; i += 8 { if diff := load64(a, i) ^ load64(b, i); diff != 0 { l = int32(i+bits.TrailingZeros64(diff)>>3) + 4 break } } } // Store this, since we have it. nextHash := hash6(cv, hashLog) e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)} seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { break encodeLoop } // Prepare next loop. cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } blk.recentOffsets[0] = uint32(offset1) blk.recentOffsets[1] = uint32(offset2) if debug { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } } // EncodeNoHist will encode a block with no history and no following blocks. // Most notable difference is that src will not be copied for history and // we do not need to check for max match length. func (e *fastEncoder) EncodeNoHist(blk *blockEnc, src []byte) { const ( inputMargin = 8 minNonLiteralBlockSize = 1 + 1 + inputMargin ) if debug { if len(src) > maxBlockSize { panic("src too big") } } // Protect against e.cur wraparound. if e.cur >= bufferReset { for i := range e.table[:] { e.table[i] = tableEntry{} } e.cur = e.maxMatchOff } s := int32(0) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 2. const stepSize = 2 // TEMPLATE const hashLog = tableBits // seems global, but would be nice to tweak. const kSearchStrength = 8 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debug { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { // t will contain the match offset when we find one. // When existing the search loop, we have already checked 4 bytes. var t int32 // We will not use repeat offsets across blocks. // By not using them for the first 3 matches for { nextHash := hash6(cv, hashLog) nextHash2 := hash6(cv>>8, hashLog) candidate := e.table[nextHash] candidate2 := e.table[nextHash2] repIndex := s - offset1 + 2 e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)} e.table[nextHash2] = tableEntry{offset: s + e.cur + 1, val: uint32(cv >> 8)} if len(blk.sequences) > 2 && load3232(src, repIndex) == uint32(cv>>16) { // Consider history as well. var seq seq // length := 4 + e.matchlen(s+6, repIndex+4, src) // length := 4 + int32(matchLen(src[s+6:], src[repIndex+4:])) var length int32 { a := src[s+6:] b := src[repIndex+4:] endI := len(a) & (math.MaxInt32 - 7) length = int32(endI) + 4 for i := 0; i < endI; i += 8 { if diff := load64(a, i) ^ load64(b, i); diff != 0 { length = int32(i+bits.TrailingZeros64(diff)>>3) + 4 break } } } seq.matchLen = uint32(length - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + 2 // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 sMin := s - e.maxMatchOff if sMin < 0 { sMin = 0 } for repIndex > sMin && start > startLimit && src[repIndex-1] == src[start-1] { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) s += length + 2 nextEmit = s if s >= sLimit { if debug { println("repeat ended", s, length) } break encodeLoop } cv = load6432(src, s) continue } coffset0 := s - (candidate.offset - e.cur) coffset1 := s - (candidate2.offset - e.cur) + 1 if coffset0 < e.maxMatchOff && uint32(cv) == candidate.val { // found a regular match t = candidate.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } break } if coffset1 < e.maxMatchOff && uint32(cv>>8) == candidate2.val { // found a regular match t = candidate2.offset - e.cur s++ if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugAsserts && t < 0 { panic("t<0") } break } s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // A 4-byte match has been found. We'll later see if more than 4 bytes. offset2 = offset1 offset1 = s - t if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } // Extend the 4-byte match as long as possible. //l := e.matchlenNoHist(s+4, t+4, src) + 4 // l := int32(matchLen(src[s+4:], src[t+4:])) + 4 var l int32 { a := src[s+4:] b := src[t+4:] endI := len(a) & (math.MaxInt32 - 7) l = int32(endI) + 4 for i := 0; i < endI; i += 8 { if diff := load64(a, i) ^ load64(b, i); diff != 0 { l = int32(i+bits.TrailingZeros64(diff)>>3) + 4 break } } } // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] { s-- t-- l++ } // Write our sequence. var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } // Don't use repeat offsets seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } cv = load6432(src, s) // Check offset 2 if o2 := s - offset2; len(blk.sequences) > 2 && load3232(src, o2) == uint32(cv) { // We have at least 4 byte match. // No need to check backwards. We come straight from a match //l := 4 + e.matchlenNoHist(s+4, o2+4, src) // l := 4 + int32(matchLen(src[s+4:], src[o2+4:])) var l int32 { a := src[s+4:] b := src[o2+4:] endI := len(a) & (math.MaxInt32 - 7) l = int32(endI) + 4 for i := 0; i < endI; i += 8 { if diff := load64(a, i) ^ load64(b, i); diff != 0 { l = int32(i+bits.TrailingZeros64(diff)>>3) + 4 break } } } // Store this, since we have it. nextHash := hash6(cv, hashLog) e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)} seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { break encodeLoop } // Prepare next loop. cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } if debug { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } } func (e *fastBase) addBlock(src []byte) int32 { if debugAsserts && e.cur > bufferReset { panic(fmt.Sprintf("ecur (%d) > buffer reset (%d)", e.cur, bufferReset)) } // check if we have space already if len(e.hist)+len(src) > cap(e.hist) { if cap(e.hist) == 0 { l := e.maxMatchOff * 2 // Make it at least 1MB. if l < 1<<20 { l = 1 << 20 } e.hist = make([]byte, 0, l) } else { if cap(e.hist) < int(e.maxMatchOff*2) { panic("unexpected buffer size") } // Move down offset := int32(len(e.hist)) - e.maxMatchOff copy(e.hist[0:e.maxMatchOff], e.hist[offset:]) e.cur += offset e.hist = e.hist[:e.maxMatchOff] } } s := int32(len(e.hist)) e.hist = append(e.hist, src...) return s } // useBlock will replace the block with the provided one, // but transfer recent offsets from the previous. func (e *fastBase) UseBlock(enc *blockEnc) { enc.reset(e.blk) e.blk = enc } func (e *fastBase) matchlenNoHist(s, t int32, src []byte) int32 { // Extend the match to be as long as possible. return int32(matchLen(src[s:], src[t:])) } func (e *fastBase) matchlen(s, t int32, src []byte) int32 { if debugAsserts { if s < 0 { err := fmt.Sprintf("s (%d) < 0", s) panic(err) } if t < 0 { err := fmt.Sprintf("s (%d) < 0", s) panic(err) } if s-t > e.maxMatchOff { err := fmt.Sprintf("s (%d) - t (%d) > maxMatchOff (%d)", s, t, e.maxMatchOff) panic(err) } if len(src)-int(s) > maxCompressedBlockSize { panic(fmt.Sprintf("len(src)-s (%d) > maxCompressedBlockSize (%d)", len(src)-int(s), maxCompressedBlockSize)) } } // Extend the match to be as long as possible. return int32(matchLen(src[s:], src[t:])) } // Reset the encoding table. func (e *fastBase) Reset() { if e.blk == nil { e.blk = &blockEnc{} e.blk.init() } else { e.blk.reset(nil) } e.blk.initNewEncode() if e.crc == nil { e.crc = xxhash.New() } else { e.crc.Reset() } if cap(e.hist) < int(e.maxMatchOff*2) { l := e.maxMatchOff * 2 // Make it at least 1MB. if l < 1<<20 { l = 1 << 20 } e.hist = make([]byte, 0, l) } // We offset current position so everything will be out of reach. // If above reset line, history will be purged. if e.cur < bufferReset { e.cur += e.maxMatchOff + int32(len(e.hist)) } e.hist = e.hist[:0] }