calc.go 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "github.com/xuri/efp"
  26. )
  27. // Excel formula errors
  28. const (
  29. formulaErrorDIV = "#DIV/0!"
  30. formulaErrorNAME = "#NAME?"
  31. formulaErrorNA = "#N/A"
  32. formulaErrorNUM = "#NUM!"
  33. formulaErrorVALUE = "#VALUE!"
  34. formulaErrorREF = "#REF!"
  35. formulaErrorNULL = "#NULL"
  36. formulaErrorSPILL = "#SPILL!"
  37. formulaErrorCALC = "#CALC!"
  38. formulaErrorGETTINGDATA = "#GETTING_DATA"
  39. )
  40. // cellRef defines the structure of a cell reference.
  41. type cellRef struct {
  42. Col int
  43. Row int
  44. Sheet string
  45. }
  46. // cellRef defines the structure of a cell range.
  47. type cellRange struct {
  48. From cellRef
  49. To cellRef
  50. }
  51. // formula criteria condition enumeration.
  52. const (
  53. _ byte = iota
  54. criteriaEq
  55. criteriaLe
  56. criteriaGe
  57. criteriaL
  58. criteriaG
  59. criteriaBeg
  60. criteriaEnd
  61. )
  62. // formulaCriteria defined formula criteria parser result.
  63. type formulaCriteria struct {
  64. Type byte
  65. Condition string
  66. }
  67. // ArgType is the type if formula argument type.
  68. type ArgType byte
  69. // Formula argument types enumeration.
  70. const (
  71. ArgUnknown ArgType = iota
  72. ArgString
  73. ArgMatrix
  74. )
  75. // formulaArg is the argument of a formula or function.
  76. type formulaArg struct {
  77. String string
  78. Matrix [][]formulaArg
  79. Type ArgType
  80. }
  81. // formulaFuncs is the type of the formula functions.
  82. type formulaFuncs struct{}
  83. // CalcCellValue provides a function to get calculated cell value. This
  84. // feature is currently in working processing. Array formula, table formula
  85. // and some other formulas are not supported currently.
  86. //
  87. // Supported formulas:
  88. //
  89. // ABS, ACOS, ACOSH, ACOT, ACOTH, ARABIC, ASIN, ASINH, ATAN2, ATANH, BASE,
  90. // CEILING, CEILING.MATH, CEILING.PRECISE, COMBIN, COMBINA, COS, COSH, COT,
  91. // COTH, COUNTA, CSC, CSCH, DECIMAL, DEGREES, EVEN, EXP, FACT, FACTDOUBLE,
  92. // FLOOR, FLOOR.MATH, FLOOR.PRECISE, GCD, INT, ISBLANK, ISERR, ISERROR,
  93. // ISEVEN, ISNA, ISNONTEXT, ISNUMBER, ISO.CEILING, ISODD, LCM, LN, LOG,
  94. // LOG10, MDETERM, MEDIAN, MOD, MROUND, MULTINOMIAL, MUNIT, NA, ODD, PI,
  95. // POWER, PRODUCT, QUOTIENT, RADIANS, RAND, RANDBETWEEN, ROUND, ROUNDDOWN,
  96. // ROUNDUP, SEC, SECH, SIGN, SIN, SINH, SQRT, SQRTPI, SUM, SUMIF, SUMSQ,
  97. // TAN, TANH, TRUNC
  98. //
  99. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  100. var (
  101. formula string
  102. token efp.Token
  103. )
  104. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  105. return
  106. }
  107. ps := efp.ExcelParser()
  108. tokens := ps.Parse(formula)
  109. if tokens == nil {
  110. return
  111. }
  112. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  113. return
  114. }
  115. result = token.TValue
  116. return
  117. }
  118. // getPriority calculate arithmetic operator priority.
  119. func getPriority(token efp.Token) (pri int) {
  120. var priority = map[string]int{
  121. "*": 2,
  122. "/": 2,
  123. "+": 1,
  124. "-": 1,
  125. }
  126. pri, _ = priority[token.TValue]
  127. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  128. pri = 3
  129. }
  130. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  131. pri = 0
  132. }
  133. return
  134. }
  135. // evalInfixExp evaluate syntax analysis by given infix expression after
  136. // lexical analysis. Evaluate an infix expression containing formulas by
  137. // stacks:
  138. //
  139. // opd - Operand
  140. // opt - Operator
  141. // opf - Operation formula
  142. // opfd - Operand of the operation formula
  143. // opft - Operator of the operation formula
  144. //
  145. // Evaluate arguments of the operation formula by list:
  146. //
  147. // args - Arguments of the operation formula
  148. //
  149. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  150. //
  151. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  152. var err error
  153. opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  154. argsList := list.New()
  155. for i := 0; i < len(tokens); i++ {
  156. token := tokens[i]
  157. // out of function stack
  158. if opfStack.Len() == 0 {
  159. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  160. return efp.Token{}, err
  161. }
  162. }
  163. // function start
  164. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  165. opfStack.Push(token)
  166. continue
  167. }
  168. // in function stack, walk 2 token at once
  169. if opfStack.Len() > 0 {
  170. var nextToken efp.Token
  171. if i+1 < len(tokens) {
  172. nextToken = tokens[i+1]
  173. }
  174. // current token is args or range, skip next token, order required: parse reference first
  175. if token.TSubType == efp.TokenSubTypeRange {
  176. if !opftStack.Empty() {
  177. // parse reference: must reference at here
  178. result, err := f.parseReference(sheet, token.TValue)
  179. if err != nil {
  180. return efp.Token{TValue: formulaErrorNAME}, err
  181. }
  182. if result.Type != ArgString {
  183. return efp.Token{}, errors.New(formulaErrorVALUE)
  184. }
  185. opfdStack.Push(efp.Token{
  186. TType: efp.TokenTypeOperand,
  187. TSubType: efp.TokenSubTypeNumber,
  188. TValue: result.String,
  189. })
  190. continue
  191. }
  192. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  193. // parse reference: reference or range at here
  194. result, err := f.parseReference(sheet, token.TValue)
  195. if err != nil {
  196. return efp.Token{TValue: formulaErrorNAME}, err
  197. }
  198. if result.Type == ArgUnknown {
  199. return efp.Token{}, errors.New(formulaErrorVALUE)
  200. }
  201. argsList.PushBack(result)
  202. continue
  203. }
  204. }
  205. // check current token is opft
  206. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  207. return efp.Token{}, err
  208. }
  209. // current token is arg
  210. if token.TType == efp.TokenTypeArgument {
  211. for !opftStack.Empty() {
  212. // calculate trigger
  213. topOpt := opftStack.Peek().(efp.Token)
  214. if err := calculate(opfdStack, topOpt); err != nil {
  215. return efp.Token{}, err
  216. }
  217. opftStack.Pop()
  218. }
  219. if !opfdStack.Empty() {
  220. argsList.PushBack(formulaArg{
  221. String: opfdStack.Pop().(efp.Token).TValue,
  222. Type: ArgString,
  223. })
  224. }
  225. continue
  226. }
  227. // current token is logical
  228. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  229. }
  230. // current token is text
  231. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  232. argsList.PushBack(formulaArg{
  233. String: token.TValue,
  234. Type: ArgString,
  235. })
  236. }
  237. // current token is function stop
  238. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  239. for !opftStack.Empty() {
  240. // calculate trigger
  241. topOpt := opftStack.Peek().(efp.Token)
  242. if err := calculate(opfdStack, topOpt); err != nil {
  243. return efp.Token{}, err
  244. }
  245. opftStack.Pop()
  246. }
  247. // push opfd to args
  248. if opfdStack.Len() > 0 {
  249. argsList.PushBack(formulaArg{
  250. String: opfdStack.Pop().(efp.Token).TValue,
  251. Type: ArgString,
  252. })
  253. }
  254. // call formula function to evaluate
  255. result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  256. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  257. []reflect.Value{reflect.ValueOf(argsList)})
  258. if err != nil {
  259. return efp.Token{}, err
  260. }
  261. argsList.Init()
  262. opfStack.Pop()
  263. if opfStack.Len() > 0 { // still in function stack
  264. opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  265. } else {
  266. opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  267. }
  268. }
  269. }
  270. }
  271. for optStack.Len() != 0 {
  272. topOpt := optStack.Peek().(efp.Token)
  273. if err = calculate(opdStack, topOpt); err != nil {
  274. return efp.Token{}, err
  275. }
  276. optStack.Pop()
  277. }
  278. if opdStack.Len() == 0 {
  279. return efp.Token{}, errors.New("formula not valid")
  280. }
  281. return opdStack.Peek().(efp.Token), err
  282. }
  283. // calcAdd evaluate addition arithmetic operations.
  284. func calcAdd(opdStack *Stack) error {
  285. if opdStack.Len() < 2 {
  286. return errors.New("formula not valid")
  287. }
  288. rOpd := opdStack.Pop().(efp.Token)
  289. lOpd := opdStack.Pop().(efp.Token)
  290. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  291. if err != nil {
  292. return err
  293. }
  294. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  295. if err != nil {
  296. return err
  297. }
  298. result := lOpdVal + rOpdVal
  299. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  300. return nil
  301. }
  302. // calcSubtract evaluate subtraction arithmetic operations.
  303. func calcSubtract(opdStack *Stack) error {
  304. if opdStack.Len() < 2 {
  305. return errors.New("formula not valid")
  306. }
  307. rOpd := opdStack.Pop().(efp.Token)
  308. lOpd := opdStack.Pop().(efp.Token)
  309. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  310. if err != nil {
  311. return err
  312. }
  313. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  314. if err != nil {
  315. return err
  316. }
  317. result := lOpdVal - rOpdVal
  318. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  319. return nil
  320. }
  321. // calcMultiply evaluate multiplication arithmetic operations.
  322. func calcMultiply(opdStack *Stack) error {
  323. if opdStack.Len() < 2 {
  324. return errors.New("formula not valid")
  325. }
  326. rOpd := opdStack.Pop().(efp.Token)
  327. lOpd := opdStack.Pop().(efp.Token)
  328. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  329. if err != nil {
  330. return err
  331. }
  332. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  333. if err != nil {
  334. return err
  335. }
  336. result := lOpdVal * rOpdVal
  337. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  338. return nil
  339. }
  340. // calcDivide evaluate division arithmetic operations.
  341. func calcDivide(opdStack *Stack) error {
  342. if opdStack.Len() < 2 {
  343. return errors.New("formula not valid")
  344. }
  345. rOpd := opdStack.Pop().(efp.Token)
  346. lOpd := opdStack.Pop().(efp.Token)
  347. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  348. if err != nil {
  349. return err
  350. }
  351. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  352. if err != nil {
  353. return err
  354. }
  355. result := lOpdVal / rOpdVal
  356. if rOpdVal == 0 {
  357. return errors.New(formulaErrorDIV)
  358. }
  359. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  360. return nil
  361. }
  362. // calculate evaluate basic arithmetic operations.
  363. func calculate(opdStack *Stack, opt efp.Token) error {
  364. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  365. if opdStack.Len() < 1 {
  366. return errors.New("formula not valid")
  367. }
  368. opd := opdStack.Pop().(efp.Token)
  369. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  370. if err != nil {
  371. return err
  372. }
  373. result := 0 - opdVal
  374. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  375. }
  376. if opt.TValue == "+" {
  377. if err := calcAdd(opdStack); err != nil {
  378. return err
  379. }
  380. }
  381. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  382. if err := calcSubtract(opdStack); err != nil {
  383. return err
  384. }
  385. }
  386. if opt.TValue == "*" {
  387. if err := calcMultiply(opdStack); err != nil {
  388. return err
  389. }
  390. }
  391. if opt.TValue == "/" {
  392. if err := calcDivide(opdStack); err != nil {
  393. return err
  394. }
  395. }
  396. return nil
  397. }
  398. // parseOperatorPrefixToken parse operator prefix token.
  399. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  400. if optStack.Len() == 0 {
  401. optStack.Push(token)
  402. } else {
  403. tokenPriority := getPriority(token)
  404. topOpt := optStack.Peek().(efp.Token)
  405. topOptPriority := getPriority(topOpt)
  406. if tokenPriority > topOptPriority {
  407. optStack.Push(token)
  408. } else {
  409. for tokenPriority <= topOptPriority {
  410. optStack.Pop()
  411. if err = calculate(opdStack, topOpt); err != nil {
  412. return
  413. }
  414. if optStack.Len() > 0 {
  415. topOpt = optStack.Peek().(efp.Token)
  416. topOptPriority = getPriority(topOpt)
  417. continue
  418. }
  419. break
  420. }
  421. optStack.Push(token)
  422. }
  423. }
  424. return
  425. }
  426. // isOperatorPrefixToken determine if the token is parse operator prefix
  427. // token.
  428. func isOperatorPrefixToken(token efp.Token) bool {
  429. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) ||
  430. token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
  431. return true
  432. }
  433. return false
  434. }
  435. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  436. for _, definedName := range f.GetDefinedName() {
  437. if definedName.Name == definedNameName {
  438. refTo = definedName.RefersTo
  439. // worksheet scope takes precedence over scope workbook when both definedNames exist
  440. if definedName.Scope == currentSheet {
  441. break
  442. }
  443. }
  444. }
  445. return refTo
  446. }
  447. // parseToken parse basic arithmetic operator priority and evaluate based on
  448. // operators and operands.
  449. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  450. // parse reference: must reference at here
  451. if token.TSubType == efp.TokenSubTypeRange {
  452. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  453. if refTo != "" {
  454. token.TValue = refTo
  455. }
  456. result, err := f.parseReference(sheet, token.TValue)
  457. if err != nil {
  458. return errors.New(formulaErrorNAME)
  459. }
  460. if result.Type != ArgString {
  461. return errors.New(formulaErrorVALUE)
  462. }
  463. token.TValue = result.String
  464. token.TType = efp.TokenTypeOperand
  465. token.TSubType = efp.TokenSubTypeNumber
  466. }
  467. if isOperatorPrefixToken(token) {
  468. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  469. return err
  470. }
  471. }
  472. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  473. optStack.Push(token)
  474. }
  475. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  476. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  477. topOpt := optStack.Peek().(efp.Token)
  478. if err := calculate(opdStack, topOpt); err != nil {
  479. return err
  480. }
  481. optStack.Pop()
  482. }
  483. optStack.Pop()
  484. }
  485. // opd
  486. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  487. opdStack.Push(token)
  488. }
  489. return nil
  490. }
  491. // parseReference parse reference and extract values by given reference
  492. // characters and default sheet name.
  493. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  494. reference = strings.Replace(reference, "$", "", -1)
  495. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  496. for _, ref := range strings.Split(reference, ":") {
  497. tokens := strings.Split(ref, "!")
  498. cr := cellRef{}
  499. if len(tokens) == 2 { // have a worksheet name
  500. cr.Sheet = tokens[0]
  501. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  502. return
  503. }
  504. if refs.Len() > 0 {
  505. e := refs.Back()
  506. cellRefs.PushBack(e.Value.(cellRef))
  507. refs.Remove(e)
  508. }
  509. refs.PushBack(cr)
  510. continue
  511. }
  512. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  513. return
  514. }
  515. e := refs.Back()
  516. if e == nil {
  517. cr.Sheet = sheet
  518. refs.PushBack(cr)
  519. continue
  520. }
  521. cellRanges.PushBack(cellRange{
  522. From: e.Value.(cellRef),
  523. To: cr,
  524. })
  525. refs.Remove(e)
  526. }
  527. if refs.Len() > 0 {
  528. e := refs.Back()
  529. cellRefs.PushBack(e.Value.(cellRef))
  530. refs.Remove(e)
  531. }
  532. arg, err = f.rangeResolver(cellRefs, cellRanges)
  533. return
  534. }
  535. // prepareValueRange prepare value range.
  536. func prepareValueRange(cr cellRange, valueRange []int) {
  537. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  538. valueRange[0] = cr.From.Row
  539. }
  540. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  541. valueRange[2] = cr.From.Col
  542. }
  543. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  544. valueRange[1] = cr.To.Row
  545. }
  546. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  547. valueRange[3] = cr.To.Col
  548. }
  549. }
  550. // prepareValueRef prepare value reference.
  551. func prepareValueRef(cr cellRef, valueRange []int) {
  552. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  553. valueRange[0] = cr.Row
  554. }
  555. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  556. valueRange[2] = cr.Col
  557. }
  558. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  559. valueRange[1] = cr.Row
  560. }
  561. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  562. valueRange[3] = cr.Col
  563. }
  564. }
  565. // rangeResolver extract value as string from given reference and range list.
  566. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  567. // be reference A1:B3.
  568. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  569. // value range order: from row, to row, from column, to column
  570. valueRange := []int{0, 0, 0, 0}
  571. var sheet string
  572. // prepare value range
  573. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  574. cr := temp.Value.(cellRange)
  575. if cr.From.Sheet != cr.To.Sheet {
  576. err = errors.New(formulaErrorVALUE)
  577. }
  578. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  579. sortCoordinates(rng)
  580. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  581. prepareValueRange(cr, valueRange)
  582. if cr.From.Sheet != "" {
  583. sheet = cr.From.Sheet
  584. }
  585. }
  586. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  587. cr := temp.Value.(cellRef)
  588. if cr.Sheet != "" {
  589. sheet = cr.Sheet
  590. }
  591. prepareValueRef(cr, valueRange)
  592. }
  593. // extract value from ranges
  594. if cellRanges.Len() > 0 {
  595. arg.Type = ArgMatrix
  596. for row := valueRange[0]; row <= valueRange[1]; row++ {
  597. var matrixRow = []formulaArg{}
  598. for col := valueRange[2]; col <= valueRange[3]; col++ {
  599. var cell, value string
  600. if cell, err = CoordinatesToCellName(col, row); err != nil {
  601. return
  602. }
  603. if value, err = f.GetCellValue(sheet, cell); err != nil {
  604. return
  605. }
  606. matrixRow = append(matrixRow, formulaArg{
  607. String: value,
  608. Type: ArgString,
  609. })
  610. }
  611. arg.Matrix = append(arg.Matrix, matrixRow)
  612. }
  613. return
  614. }
  615. // extract value from references
  616. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  617. cr := temp.Value.(cellRef)
  618. var cell string
  619. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  620. return
  621. }
  622. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  623. return
  624. }
  625. arg.Type = ArgString
  626. }
  627. return
  628. }
  629. // callFuncByName calls the no error or only error return function with
  630. // reflect by given receiver, name and parameters.
  631. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
  632. function := reflect.ValueOf(receiver).MethodByName(name)
  633. if function.IsValid() {
  634. rt := function.Call(params)
  635. if len(rt) == 0 {
  636. return
  637. }
  638. if !rt[1].IsNil() {
  639. err = rt[1].Interface().(error)
  640. return
  641. }
  642. result = rt[0].Interface().(string)
  643. return
  644. }
  645. err = fmt.Errorf("not support %s function", name)
  646. return
  647. }
  648. // formulaCriteriaParser parse formula criteria.
  649. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  650. fc = &formulaCriteria{}
  651. if exp == "" {
  652. return
  653. }
  654. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  655. fc.Type, fc.Condition = criteriaEq, match[1]
  656. return
  657. }
  658. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  659. fc.Type, fc.Condition = criteriaEq, match[1]
  660. return
  661. }
  662. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  663. fc.Type, fc.Condition = criteriaLe, match[1]
  664. return
  665. }
  666. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  667. fc.Type, fc.Condition = criteriaGe, match[1]
  668. return
  669. }
  670. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  671. fc.Type, fc.Condition = criteriaL, match[1]
  672. return
  673. }
  674. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  675. fc.Type, fc.Condition = criteriaG, match[1]
  676. return
  677. }
  678. if strings.Contains(exp, "*") {
  679. if strings.HasPrefix(exp, "*") {
  680. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  681. }
  682. if strings.HasSuffix(exp, "*") {
  683. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  684. }
  685. return
  686. }
  687. fc.Type, fc.Condition = criteriaEq, exp
  688. return
  689. }
  690. // formulaCriteriaEval evaluate formula criteria expression.
  691. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  692. var value, expected float64
  693. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  694. value, _ = strconv.ParseFloat(val, 64)
  695. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  696. return
  697. }
  698. return
  699. }
  700. switch criteria.Type {
  701. case criteriaEq:
  702. return val == criteria.Condition, err
  703. case criteriaLe:
  704. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  705. return
  706. }
  707. return value <= expected, err
  708. case criteriaGe:
  709. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  710. return
  711. }
  712. return value >= expected, err
  713. case criteriaL:
  714. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  715. return
  716. }
  717. return value < expected, err
  718. case criteriaG:
  719. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  720. return
  721. }
  722. return value > expected, err
  723. case criteriaBeg:
  724. return strings.HasPrefix(val, criteria.Condition), err
  725. case criteriaEnd:
  726. return strings.HasSuffix(val, criteria.Condition), err
  727. }
  728. return
  729. }
  730. // Math and Trigonometric functions
  731. // ABS function returns the absolute value of any supplied number. The syntax
  732. // of the function is:
  733. //
  734. // ABS(number)
  735. //
  736. func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
  737. if argsList.Len() != 1 {
  738. err = errors.New("ABS requires 1 numeric argument")
  739. return
  740. }
  741. var val float64
  742. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  743. err = errors.New(formulaErrorVALUE)
  744. return
  745. }
  746. result = fmt.Sprintf("%g", math.Abs(val))
  747. return
  748. }
  749. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  750. // number, and returns an angle, in radians, between 0 and π. The syntax of
  751. // the function is:
  752. //
  753. // ACOS(number)
  754. //
  755. func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
  756. if argsList.Len() != 1 {
  757. err = errors.New("ACOS requires 1 numeric argument")
  758. return
  759. }
  760. var val float64
  761. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  762. err = errors.New(formulaErrorVALUE)
  763. return
  764. }
  765. result = fmt.Sprintf("%g", math.Acos(val))
  766. return
  767. }
  768. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  769. // of the function is:
  770. //
  771. // ACOSH(number)
  772. //
  773. func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
  774. if argsList.Len() != 1 {
  775. err = errors.New("ACOSH requires 1 numeric argument")
  776. return
  777. }
  778. var val float64
  779. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  780. err = errors.New(formulaErrorVALUE)
  781. return
  782. }
  783. result = fmt.Sprintf("%g", math.Acosh(val))
  784. return
  785. }
  786. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  787. // given number, and returns an angle, in radians, between 0 and π. The syntax
  788. // of the function is:
  789. //
  790. // ACOT(number)
  791. //
  792. func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
  793. if argsList.Len() != 1 {
  794. err = errors.New("ACOT requires 1 numeric argument")
  795. return
  796. }
  797. var val float64
  798. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  799. err = errors.New(formulaErrorVALUE)
  800. return
  801. }
  802. result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
  803. return
  804. }
  805. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  806. // value. The syntax of the function is:
  807. //
  808. // ACOTH(number)
  809. //
  810. func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
  811. if argsList.Len() != 1 {
  812. err = errors.New("ACOTH requires 1 numeric argument")
  813. return
  814. }
  815. var val float64
  816. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  817. err = errors.New(formulaErrorVALUE)
  818. return
  819. }
  820. result = fmt.Sprintf("%g", math.Atanh(1/val))
  821. return
  822. }
  823. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  824. // of the function is:
  825. //
  826. // ARABIC(text)
  827. //
  828. func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
  829. if argsList.Len() != 1 {
  830. err = errors.New("ARABIC requires 1 numeric argument")
  831. return
  832. }
  833. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  834. val, last, prefix := 0.0, 0.0, 1.0
  835. for _, char := range argsList.Front().Value.(formulaArg).String {
  836. digit := 0.0
  837. if char == '-' {
  838. prefix = -1
  839. continue
  840. }
  841. digit, _ = charMap[char]
  842. val += digit
  843. switch {
  844. case last == digit && (last == 5 || last == 50 || last == 500):
  845. result = formulaErrorVALUE
  846. return
  847. case 2*last == digit:
  848. result = formulaErrorVALUE
  849. return
  850. }
  851. if last < digit {
  852. val -= 2 * last
  853. }
  854. last = digit
  855. }
  856. result = fmt.Sprintf("%g", prefix*val)
  857. return
  858. }
  859. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  860. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  861. // of the function is:
  862. //
  863. // ASIN(number)
  864. //
  865. func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
  866. if argsList.Len() != 1 {
  867. err = errors.New("ASIN requires 1 numeric argument")
  868. return
  869. }
  870. var val float64
  871. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  872. err = errors.New(formulaErrorVALUE)
  873. return
  874. }
  875. result = fmt.Sprintf("%g", math.Asin(val))
  876. return
  877. }
  878. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  879. // The syntax of the function is:
  880. //
  881. // ASINH(number)
  882. //
  883. func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
  884. if argsList.Len() != 1 {
  885. err = errors.New("ASINH requires 1 numeric argument")
  886. return
  887. }
  888. var val float64
  889. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  890. err = errors.New(formulaErrorVALUE)
  891. return
  892. }
  893. result = fmt.Sprintf("%g", math.Asinh(val))
  894. return
  895. }
  896. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  897. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  898. // syntax of the function is:
  899. //
  900. // ATAN(number)
  901. //
  902. func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
  903. if argsList.Len() != 1 {
  904. err = errors.New("ATAN requires 1 numeric argument")
  905. return
  906. }
  907. var val float64
  908. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  909. err = errors.New(formulaErrorVALUE)
  910. return
  911. }
  912. result = fmt.Sprintf("%g", math.Atan(val))
  913. return
  914. }
  915. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  916. // number. The syntax of the function is:
  917. //
  918. // ATANH(number)
  919. //
  920. func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
  921. if argsList.Len() != 1 {
  922. err = errors.New("ATANH requires 1 numeric argument")
  923. return
  924. }
  925. var val float64
  926. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  927. err = errors.New(formulaErrorVALUE)
  928. return
  929. }
  930. result = fmt.Sprintf("%g", math.Atanh(val))
  931. return
  932. }
  933. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  934. // given set of x and y coordinates, and returns an angle, in radians, between
  935. // -π/2 and +π/2. The syntax of the function is:
  936. //
  937. // ATAN2(x_num,y_num)
  938. //
  939. func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
  940. if argsList.Len() != 2 {
  941. err = errors.New("ATAN2 requires 2 numeric arguments")
  942. return
  943. }
  944. var x, y float64
  945. if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  946. err = errors.New(formulaErrorVALUE)
  947. return
  948. }
  949. if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  950. err = errors.New(formulaErrorVALUE)
  951. return
  952. }
  953. result = fmt.Sprintf("%g", math.Atan2(x, y))
  954. return
  955. }
  956. // BASE function converts a number into a supplied base (radix), and returns a
  957. // text representation of the calculated value. The syntax of the function is:
  958. //
  959. // BASE(number,radix,[min_length])
  960. //
  961. func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
  962. if argsList.Len() < 2 {
  963. err = errors.New("BASE requires at least 2 arguments")
  964. return
  965. }
  966. if argsList.Len() > 3 {
  967. err = errors.New("BASE allows at most 3 arguments")
  968. return
  969. }
  970. var number float64
  971. var radix, minLength int
  972. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  973. err = errors.New(formulaErrorVALUE)
  974. return
  975. }
  976. if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  977. err = errors.New(formulaErrorVALUE)
  978. return
  979. }
  980. if radix < 2 || radix > 36 {
  981. err = errors.New("radix must be an integer >= 2 and <= 36")
  982. return
  983. }
  984. if argsList.Len() > 2 {
  985. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  986. err = errors.New(formulaErrorVALUE)
  987. return
  988. }
  989. }
  990. result = strconv.FormatInt(int64(number), radix)
  991. if len(result) < minLength {
  992. result = strings.Repeat("0", minLength-len(result)) + result
  993. }
  994. result = strings.ToUpper(result)
  995. return
  996. }
  997. // CEILING function rounds a supplied number away from zero, to the nearest
  998. // multiple of a given number. The syntax of the function is:
  999. //
  1000. // CEILING(number,significance)
  1001. //
  1002. func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
  1003. if argsList.Len() == 0 {
  1004. err = errors.New("CEILING requires at least 1 argument")
  1005. return
  1006. }
  1007. if argsList.Len() > 2 {
  1008. err = errors.New("CEILING allows at most 2 arguments")
  1009. return
  1010. }
  1011. number, significance, res := 0.0, 1.0, 0.0
  1012. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1013. err = errors.New(formulaErrorVALUE)
  1014. return
  1015. }
  1016. if number < 0 {
  1017. significance = -1
  1018. }
  1019. if argsList.Len() > 1 {
  1020. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1021. err = errors.New(formulaErrorVALUE)
  1022. return
  1023. }
  1024. }
  1025. if significance < 0 && number > 0 {
  1026. err = errors.New("negative sig to CEILING invalid")
  1027. return
  1028. }
  1029. if argsList.Len() == 1 {
  1030. result = fmt.Sprintf("%g", math.Ceil(number))
  1031. return
  1032. }
  1033. number, res = math.Modf(number / significance)
  1034. if res > 0 {
  1035. number++
  1036. }
  1037. result = fmt.Sprintf("%g", number*significance)
  1038. return
  1039. }
  1040. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1041. // significance. The syntax of the function is:
  1042. //
  1043. // CEILING.MATH(number,[significance],[mode])
  1044. //
  1045. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
  1046. if argsList.Len() == 0 {
  1047. err = errors.New("CEILING.MATH requires at least 1 argument")
  1048. return
  1049. }
  1050. if argsList.Len() > 3 {
  1051. err = errors.New("CEILING.MATH allows at most 3 arguments")
  1052. return
  1053. }
  1054. number, significance, mode := 0.0, 1.0, 1.0
  1055. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1056. err = errors.New(formulaErrorVALUE)
  1057. return
  1058. }
  1059. if number < 0 {
  1060. significance = -1
  1061. }
  1062. if argsList.Len() > 1 {
  1063. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1064. err = errors.New(formulaErrorVALUE)
  1065. return
  1066. }
  1067. }
  1068. if argsList.Len() == 1 {
  1069. result = fmt.Sprintf("%g", math.Ceil(number))
  1070. return
  1071. }
  1072. if argsList.Len() > 2 {
  1073. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1074. err = errors.New(formulaErrorVALUE)
  1075. return
  1076. }
  1077. }
  1078. val, res := math.Modf(number / significance)
  1079. if res != 0 {
  1080. if number > 0 {
  1081. val++
  1082. } else if mode < 0 {
  1083. val--
  1084. }
  1085. }
  1086. result = fmt.Sprintf("%g", val*significance)
  1087. return
  1088. }
  1089. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1090. // number's sign), to the nearest multiple of a given number. The syntax of
  1091. // the function is:
  1092. //
  1093. // CEILING.PRECISE(number,[significance])
  1094. //
  1095. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
  1096. if argsList.Len() == 0 {
  1097. err = errors.New("CEILING.PRECISE requires at least 1 argument")
  1098. return
  1099. }
  1100. if argsList.Len() > 2 {
  1101. err = errors.New("CEILING.PRECISE allows at most 2 arguments")
  1102. return
  1103. }
  1104. number, significance := 0.0, 1.0
  1105. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1106. err = errors.New(formulaErrorVALUE)
  1107. return
  1108. }
  1109. if number < 0 {
  1110. significance = -1
  1111. }
  1112. if argsList.Len() == 1 {
  1113. result = fmt.Sprintf("%g", math.Ceil(number))
  1114. return
  1115. }
  1116. if argsList.Len() > 1 {
  1117. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1118. err = errors.New(formulaErrorVALUE)
  1119. return
  1120. }
  1121. significance = math.Abs(significance)
  1122. if significance == 0 {
  1123. result = "0"
  1124. return
  1125. }
  1126. }
  1127. val, res := math.Modf(number / significance)
  1128. if res != 0 {
  1129. if number > 0 {
  1130. val++
  1131. }
  1132. }
  1133. result = fmt.Sprintf("%g", val*significance)
  1134. return
  1135. }
  1136. // COMBIN function calculates the number of combinations (in any order) of a
  1137. // given number objects from a set. The syntax of the function is:
  1138. //
  1139. // COMBIN(number,number_chosen)
  1140. //
  1141. func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
  1142. if argsList.Len() != 2 {
  1143. err = errors.New("COMBIN requires 2 argument")
  1144. return
  1145. }
  1146. number, chosen, val := 0.0, 0.0, 1.0
  1147. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1148. err = errors.New(formulaErrorVALUE)
  1149. return
  1150. }
  1151. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1152. err = errors.New(formulaErrorVALUE)
  1153. return
  1154. }
  1155. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1156. if chosen > number {
  1157. err = errors.New("COMBIN requires number >= number_chosen")
  1158. return
  1159. }
  1160. if chosen == number || chosen == 0 {
  1161. result = "1"
  1162. return
  1163. }
  1164. for c := float64(1); c <= chosen; c++ {
  1165. val *= (number + 1 - c) / c
  1166. }
  1167. result = fmt.Sprintf("%g", math.Ceil(val))
  1168. return
  1169. }
  1170. // COMBINA function calculates the number of combinations, with repetitions,
  1171. // of a given number objects from a set. The syntax of the function is:
  1172. //
  1173. // COMBINA(number,number_chosen)
  1174. //
  1175. func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
  1176. if argsList.Len() != 2 {
  1177. err = errors.New("COMBINA requires 2 argument")
  1178. return
  1179. }
  1180. var number, chosen float64
  1181. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1182. err = errors.New(formulaErrorVALUE)
  1183. return
  1184. }
  1185. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1186. err = errors.New(formulaErrorVALUE)
  1187. return
  1188. }
  1189. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1190. if number < chosen {
  1191. err = errors.New("COMBINA requires number > number_chosen")
  1192. return
  1193. }
  1194. if number == 0 {
  1195. result = "0"
  1196. return
  1197. }
  1198. args := list.New()
  1199. args.PushBack(formulaArg{
  1200. String: fmt.Sprintf("%g", number+chosen-1),
  1201. Type: ArgString,
  1202. })
  1203. args.PushBack(formulaArg{
  1204. String: fmt.Sprintf("%g", number-1),
  1205. Type: ArgString,
  1206. })
  1207. return fn.COMBIN(args)
  1208. }
  1209. // COS function calculates the cosine of a given angle. The syntax of the
  1210. // function is:
  1211. //
  1212. // COS(number)
  1213. //
  1214. func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
  1215. if argsList.Len() != 1 {
  1216. err = errors.New("COS requires 1 numeric argument")
  1217. return
  1218. }
  1219. var val float64
  1220. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1221. err = errors.New(formulaErrorVALUE)
  1222. return
  1223. }
  1224. result = fmt.Sprintf("%g", math.Cos(val))
  1225. return
  1226. }
  1227. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1228. // The syntax of the function is:
  1229. //
  1230. // COSH(number)
  1231. //
  1232. func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
  1233. if argsList.Len() != 1 {
  1234. err = errors.New("COSH requires 1 numeric argument")
  1235. return
  1236. }
  1237. var val float64
  1238. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1239. err = errors.New(formulaErrorVALUE)
  1240. return
  1241. }
  1242. result = fmt.Sprintf("%g", math.Cosh(val))
  1243. return
  1244. }
  1245. // COT function calculates the cotangent of a given angle. The syntax of the
  1246. // function is:
  1247. //
  1248. // COT(number)
  1249. //
  1250. func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
  1251. if argsList.Len() != 1 {
  1252. err = errors.New("COT requires 1 numeric argument")
  1253. return
  1254. }
  1255. var val float64
  1256. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1257. err = errors.New(formulaErrorVALUE)
  1258. return
  1259. }
  1260. if val == 0 {
  1261. err = errors.New(formulaErrorDIV)
  1262. return
  1263. }
  1264. result = fmt.Sprintf("%g", math.Tan(val))
  1265. return
  1266. }
  1267. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1268. // angle. The syntax of the function is:
  1269. //
  1270. // COTH(number)
  1271. //
  1272. func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
  1273. if argsList.Len() != 1 {
  1274. err = errors.New("COTH requires 1 numeric argument")
  1275. return
  1276. }
  1277. var val float64
  1278. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1279. err = errors.New(formulaErrorVALUE)
  1280. return
  1281. }
  1282. if val == 0 {
  1283. err = errors.New(formulaErrorDIV)
  1284. return
  1285. }
  1286. result = fmt.Sprintf("%g", math.Tanh(val))
  1287. return
  1288. }
  1289. // CSC function calculates the cosecant of a given angle. The syntax of the
  1290. // function is:
  1291. //
  1292. // CSC(number)
  1293. //
  1294. func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
  1295. if argsList.Len() != 1 {
  1296. err = errors.New("CSC requires 1 numeric argument")
  1297. return
  1298. }
  1299. var val float64
  1300. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1301. err = errors.New(formulaErrorVALUE)
  1302. return
  1303. }
  1304. if val == 0 {
  1305. err = errors.New(formulaErrorDIV)
  1306. return
  1307. }
  1308. result = fmt.Sprintf("%g", 1/math.Sin(val))
  1309. return
  1310. }
  1311. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1312. // angle. The syntax of the function is:
  1313. //
  1314. // CSCH(number)
  1315. //
  1316. func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
  1317. if argsList.Len() != 1 {
  1318. err = errors.New("CSCH requires 1 numeric argument")
  1319. return
  1320. }
  1321. var val float64
  1322. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1323. err = errors.New(formulaErrorVALUE)
  1324. return
  1325. }
  1326. if val == 0 {
  1327. err = errors.New(formulaErrorDIV)
  1328. return
  1329. }
  1330. result = fmt.Sprintf("%g", 1/math.Sinh(val))
  1331. return
  1332. }
  1333. // DECIMAL function converts a text representation of a number in a specified
  1334. // base, into a decimal value. The syntax of the function is:
  1335. //
  1336. // DECIMAL(text,radix)
  1337. //
  1338. func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
  1339. if argsList.Len() != 2 {
  1340. err = errors.New("DECIMAL requires 2 numeric arguments")
  1341. return
  1342. }
  1343. var text = argsList.Front().Value.(formulaArg).String
  1344. var radix int
  1345. if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1346. err = errors.New(formulaErrorVALUE)
  1347. return
  1348. }
  1349. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1350. text = text[2:]
  1351. }
  1352. val, err := strconv.ParseInt(text, radix, 64)
  1353. if err != nil {
  1354. err = errors.New(formulaErrorVALUE)
  1355. return
  1356. }
  1357. result = fmt.Sprintf("%g", float64(val))
  1358. return
  1359. }
  1360. // DEGREES function converts radians into degrees. The syntax of the function
  1361. // is:
  1362. //
  1363. // DEGREES(angle)
  1364. //
  1365. func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
  1366. if argsList.Len() != 1 {
  1367. err = errors.New("DEGREES requires 1 numeric argument")
  1368. return
  1369. }
  1370. var val float64
  1371. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1372. err = errors.New(formulaErrorVALUE)
  1373. return
  1374. }
  1375. if val == 0 {
  1376. err = errors.New(formulaErrorDIV)
  1377. return
  1378. }
  1379. result = fmt.Sprintf("%g", 180.0/math.Pi*val)
  1380. return
  1381. }
  1382. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1383. // positive number up and a negative number down), to the next even number.
  1384. // The syntax of the function is:
  1385. //
  1386. // EVEN(number)
  1387. //
  1388. func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
  1389. if argsList.Len() != 1 {
  1390. err = errors.New("EVEN requires 1 numeric argument")
  1391. return
  1392. }
  1393. var number float64
  1394. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1395. err = errors.New(formulaErrorVALUE)
  1396. return
  1397. }
  1398. sign := math.Signbit(number)
  1399. m, frac := math.Modf(number / 2)
  1400. val := m * 2
  1401. if frac != 0 {
  1402. if !sign {
  1403. val += 2
  1404. } else {
  1405. val -= 2
  1406. }
  1407. }
  1408. result = fmt.Sprintf("%g", val)
  1409. return
  1410. }
  1411. // EXP function calculates the value of the mathematical constant e, raised to
  1412. // the power of a given number. The syntax of the function is:
  1413. //
  1414. // EXP(number)
  1415. //
  1416. func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
  1417. if argsList.Len() != 1 {
  1418. err = errors.New("EXP requires 1 numeric argument")
  1419. return
  1420. }
  1421. var number float64
  1422. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1423. err = errors.New(formulaErrorVALUE)
  1424. return
  1425. }
  1426. result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
  1427. return
  1428. }
  1429. // fact returns the factorial of a supplied number.
  1430. func fact(number float64) float64 {
  1431. val := float64(1)
  1432. for i := float64(2); i <= number; i++ {
  1433. val *= i
  1434. }
  1435. return val
  1436. }
  1437. // FACT function returns the factorial of a supplied number. The syntax of the
  1438. // function is:
  1439. //
  1440. // FACT(number)
  1441. //
  1442. func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
  1443. if argsList.Len() != 1 {
  1444. err = errors.New("FACT requires 1 numeric argument")
  1445. return
  1446. }
  1447. var number float64
  1448. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1449. err = errors.New(formulaErrorVALUE)
  1450. return
  1451. }
  1452. if number < 0 {
  1453. err = errors.New(formulaErrorNUM)
  1454. }
  1455. result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
  1456. return
  1457. }
  1458. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1459. // syntax of the function is:
  1460. //
  1461. // FACTDOUBLE(number)
  1462. //
  1463. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
  1464. if argsList.Len() != 1 {
  1465. err = errors.New("FACTDOUBLE requires 1 numeric argument")
  1466. return
  1467. }
  1468. number, val := 0.0, 1.0
  1469. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1470. err = errors.New(formulaErrorVALUE)
  1471. return
  1472. }
  1473. if number < 0 {
  1474. err = errors.New(formulaErrorNUM)
  1475. return
  1476. }
  1477. for i := math.Trunc(number); i > 1; i -= 2 {
  1478. val *= i
  1479. }
  1480. result = strings.ToUpper(fmt.Sprintf("%g", val))
  1481. return
  1482. }
  1483. // FLOOR function rounds a supplied number towards zero to the nearest
  1484. // multiple of a specified significance. The syntax of the function is:
  1485. //
  1486. // FLOOR(number,significance)
  1487. //
  1488. func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
  1489. if argsList.Len() != 2 {
  1490. err = errors.New("FLOOR requires 2 numeric arguments")
  1491. return
  1492. }
  1493. var number, significance float64
  1494. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1495. err = errors.New(formulaErrorVALUE)
  1496. return
  1497. }
  1498. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1499. err = errors.New(formulaErrorVALUE)
  1500. return
  1501. }
  1502. if significance < 0 && number >= 0 {
  1503. err = errors.New(formulaErrorNUM)
  1504. return
  1505. }
  1506. val := number
  1507. val, res := math.Modf(val / significance)
  1508. if res != 0 {
  1509. if number < 0 && res < 0 {
  1510. val--
  1511. }
  1512. }
  1513. result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
  1514. return
  1515. }
  1516. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1517. // significance. The syntax of the function is:
  1518. //
  1519. // FLOOR.MATH(number,[significance],[mode])
  1520. //
  1521. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
  1522. if argsList.Len() == 0 {
  1523. err = errors.New("FLOOR.MATH requires at least 1 argument")
  1524. return
  1525. }
  1526. if argsList.Len() > 3 {
  1527. err = errors.New("FLOOR.MATH allows at most 3 arguments")
  1528. return
  1529. }
  1530. number, significance, mode := 0.0, 1.0, 1.0
  1531. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1532. err = errors.New(formulaErrorVALUE)
  1533. return
  1534. }
  1535. if number < 0 {
  1536. significance = -1
  1537. }
  1538. if argsList.Len() > 1 {
  1539. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1540. err = errors.New(formulaErrorVALUE)
  1541. return
  1542. }
  1543. }
  1544. if argsList.Len() == 1 {
  1545. result = fmt.Sprintf("%g", math.Floor(number))
  1546. return
  1547. }
  1548. if argsList.Len() > 2 {
  1549. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1550. err = errors.New(formulaErrorVALUE)
  1551. return
  1552. }
  1553. }
  1554. val, res := math.Modf(number / significance)
  1555. if res != 0 && number < 0 && mode > 0 {
  1556. val--
  1557. }
  1558. result = fmt.Sprintf("%g", val*significance)
  1559. return
  1560. }
  1561. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1562. // of significance. The syntax of the function is:
  1563. //
  1564. // FLOOR.PRECISE(number,[significance])
  1565. //
  1566. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
  1567. if argsList.Len() == 0 {
  1568. err = errors.New("FLOOR.PRECISE requires at least 1 argument")
  1569. return
  1570. }
  1571. if argsList.Len() > 2 {
  1572. err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
  1573. return
  1574. }
  1575. var number, significance float64
  1576. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1577. err = errors.New(formulaErrorVALUE)
  1578. return
  1579. }
  1580. if number < 0 {
  1581. significance = -1
  1582. }
  1583. if argsList.Len() == 1 {
  1584. result = fmt.Sprintf("%g", math.Floor(number))
  1585. return
  1586. }
  1587. if argsList.Len() > 1 {
  1588. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1589. err = errors.New(formulaErrorVALUE)
  1590. return
  1591. }
  1592. significance = math.Abs(significance)
  1593. if significance == 0 {
  1594. result = "0"
  1595. return
  1596. }
  1597. }
  1598. val, res := math.Modf(number / significance)
  1599. if res != 0 {
  1600. if number < 0 {
  1601. val--
  1602. }
  1603. }
  1604. result = fmt.Sprintf("%g", val*significance)
  1605. return
  1606. }
  1607. // gcd returns the greatest common divisor of two supplied integers.
  1608. func gcd(x, y float64) float64 {
  1609. x, y = math.Trunc(x), math.Trunc(y)
  1610. if x == 0 {
  1611. return y
  1612. }
  1613. if y == 0 {
  1614. return x
  1615. }
  1616. for x != y {
  1617. if x > y {
  1618. x = x - y
  1619. } else {
  1620. y = y - x
  1621. }
  1622. }
  1623. return x
  1624. }
  1625. // GCD function returns the greatest common divisor of two or more supplied
  1626. // integers. The syntax of the function is:
  1627. //
  1628. // GCD(number1,[number2],...)
  1629. //
  1630. func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
  1631. if argsList.Len() == 0 {
  1632. err = errors.New("GCD requires at least 1 argument")
  1633. return
  1634. }
  1635. var (
  1636. val float64
  1637. nums = []float64{}
  1638. )
  1639. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1640. token := arg.Value.(formulaArg).String
  1641. if token == "" {
  1642. continue
  1643. }
  1644. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1645. err = errors.New(formulaErrorVALUE)
  1646. return
  1647. }
  1648. nums = append(nums, val)
  1649. }
  1650. if nums[0] < 0 {
  1651. err = errors.New("GCD only accepts positive arguments")
  1652. return
  1653. }
  1654. if len(nums) == 1 {
  1655. result = fmt.Sprintf("%g", nums[0])
  1656. return
  1657. }
  1658. cd := nums[0]
  1659. for i := 1; i < len(nums); i++ {
  1660. if nums[i] < 0 {
  1661. err = errors.New("GCD only accepts positive arguments")
  1662. return
  1663. }
  1664. cd = gcd(cd, nums[i])
  1665. }
  1666. result = fmt.Sprintf("%g", cd)
  1667. return
  1668. }
  1669. // INT function truncates a supplied number down to the closest integer. The
  1670. // syntax of the function is:
  1671. //
  1672. // INT(number)
  1673. //
  1674. func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
  1675. if argsList.Len() != 1 {
  1676. err = errors.New("INT requires 1 numeric argument")
  1677. return
  1678. }
  1679. var number float64
  1680. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1681. err = errors.New(formulaErrorVALUE)
  1682. return
  1683. }
  1684. val, frac := math.Modf(number)
  1685. if frac < 0 {
  1686. val--
  1687. }
  1688. result = fmt.Sprintf("%g", val)
  1689. return
  1690. }
  1691. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1692. // sign), to the nearest multiple of a supplied significance. The syntax of
  1693. // the function is:
  1694. //
  1695. // ISO.CEILING(number,[significance])
  1696. //
  1697. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
  1698. if argsList.Len() == 0 {
  1699. err = errors.New("ISO.CEILING requires at least 1 argument")
  1700. return
  1701. }
  1702. if argsList.Len() > 2 {
  1703. err = errors.New("ISO.CEILING allows at most 2 arguments")
  1704. return
  1705. }
  1706. var number, significance float64
  1707. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1708. err = errors.New(formulaErrorVALUE)
  1709. return
  1710. }
  1711. if number < 0 {
  1712. significance = -1
  1713. }
  1714. if argsList.Len() == 1 {
  1715. result = fmt.Sprintf("%g", math.Ceil(number))
  1716. return
  1717. }
  1718. if argsList.Len() > 1 {
  1719. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1720. err = errors.New(formulaErrorVALUE)
  1721. return
  1722. }
  1723. significance = math.Abs(significance)
  1724. if significance == 0 {
  1725. result = "0"
  1726. return
  1727. }
  1728. }
  1729. val, res := math.Modf(number / significance)
  1730. if res != 0 {
  1731. if number > 0 {
  1732. val++
  1733. }
  1734. }
  1735. result = fmt.Sprintf("%g", val*significance)
  1736. return
  1737. }
  1738. // lcm returns the least common multiple of two supplied integers.
  1739. func lcm(a, b float64) float64 {
  1740. a = math.Trunc(a)
  1741. b = math.Trunc(b)
  1742. if a == 0 && b == 0 {
  1743. return 0
  1744. }
  1745. return a * b / gcd(a, b)
  1746. }
  1747. // LCM function returns the least common multiple of two or more supplied
  1748. // integers. The syntax of the function is:
  1749. //
  1750. // LCM(number1,[number2],...)
  1751. //
  1752. func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
  1753. if argsList.Len() == 0 {
  1754. err = errors.New("LCM requires at least 1 argument")
  1755. return
  1756. }
  1757. var (
  1758. val float64
  1759. nums = []float64{}
  1760. )
  1761. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1762. token := arg.Value.(formulaArg).String
  1763. if token == "" {
  1764. continue
  1765. }
  1766. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1767. err = errors.New(formulaErrorVALUE)
  1768. return
  1769. }
  1770. nums = append(nums, val)
  1771. }
  1772. if nums[0] < 0 {
  1773. err = errors.New("LCM only accepts positive arguments")
  1774. return
  1775. }
  1776. if len(nums) == 1 {
  1777. result = fmt.Sprintf("%g", nums[0])
  1778. return
  1779. }
  1780. cm := nums[0]
  1781. for i := 1; i < len(nums); i++ {
  1782. if nums[i] < 0 {
  1783. err = errors.New("LCM only accepts positive arguments")
  1784. return
  1785. }
  1786. cm = lcm(cm, nums[i])
  1787. }
  1788. result = fmt.Sprintf("%g", cm)
  1789. return
  1790. }
  1791. // LN function calculates the natural logarithm of a given number. The syntax
  1792. // of the function is:
  1793. //
  1794. // LN(number)
  1795. //
  1796. func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
  1797. if argsList.Len() != 1 {
  1798. err = errors.New("LN requires 1 numeric argument")
  1799. return
  1800. }
  1801. var number float64
  1802. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1803. err = errors.New(formulaErrorVALUE)
  1804. return
  1805. }
  1806. result = fmt.Sprintf("%g", math.Log(number))
  1807. return
  1808. }
  1809. // LOG function calculates the logarithm of a given number, to a supplied
  1810. // base. The syntax of the function is:
  1811. //
  1812. // LOG(number,[base])
  1813. //
  1814. func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
  1815. if argsList.Len() == 0 {
  1816. err = errors.New("LOG requires at least 1 argument")
  1817. return
  1818. }
  1819. if argsList.Len() > 2 {
  1820. err = errors.New("LOG allows at most 2 arguments")
  1821. return
  1822. }
  1823. number, base := 0.0, 10.0
  1824. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1825. err = errors.New(formulaErrorVALUE)
  1826. return
  1827. }
  1828. if argsList.Len() > 1 {
  1829. if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1830. err = errors.New(formulaErrorVALUE)
  1831. return
  1832. }
  1833. }
  1834. if number == 0 {
  1835. err = errors.New(formulaErrorNUM)
  1836. return
  1837. }
  1838. if base == 0 {
  1839. err = errors.New(formulaErrorNUM)
  1840. return
  1841. }
  1842. if base == 1 {
  1843. err = errors.New(formulaErrorDIV)
  1844. return
  1845. }
  1846. result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
  1847. return
  1848. }
  1849. // LOG10 function calculates the base 10 logarithm of a given number. The
  1850. // syntax of the function is:
  1851. //
  1852. // LOG10(number)
  1853. //
  1854. func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
  1855. if argsList.Len() != 1 {
  1856. err = errors.New("LOG10 requires 1 numeric argument")
  1857. return
  1858. }
  1859. var number float64
  1860. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1861. err = errors.New(formulaErrorVALUE)
  1862. return
  1863. }
  1864. result = fmt.Sprintf("%g", math.Log10(number))
  1865. return
  1866. }
  1867. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1868. ret := [][]float64{}
  1869. for i := range sqMtx {
  1870. if i == 0 {
  1871. continue
  1872. }
  1873. row := []float64{}
  1874. for j := range sqMtx {
  1875. if j == idx {
  1876. continue
  1877. }
  1878. row = append(row, sqMtx[i][j])
  1879. }
  1880. ret = append(ret, row)
  1881. }
  1882. return ret
  1883. }
  1884. // det determinant of the 2x2 matrix.
  1885. func det(sqMtx [][]float64) float64 {
  1886. if len(sqMtx) == 2 {
  1887. m00 := sqMtx[0][0]
  1888. m01 := sqMtx[0][1]
  1889. m10 := sqMtx[1][0]
  1890. m11 := sqMtx[1][1]
  1891. return m00*m11 - m10*m01
  1892. }
  1893. var res, sgn float64 = 0, 1
  1894. for j := range sqMtx {
  1895. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  1896. sgn *= -1
  1897. }
  1898. return res
  1899. }
  1900. // MDETERM calculates the determinant of a square matrix. The
  1901. // syntax of the function is:
  1902. //
  1903. // MDETERM(array)
  1904. //
  1905. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
  1906. var num float64
  1907. var numMtx = [][]float64{}
  1908. var strMtx = argsList.Front().Value.(formulaArg).Matrix
  1909. if argsList.Len() < 1 {
  1910. return
  1911. }
  1912. var rows = len(strMtx)
  1913. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  1914. if len(row) != rows {
  1915. err = errors.New(formulaErrorVALUE)
  1916. return
  1917. }
  1918. numRow := []float64{}
  1919. for _, ele := range row {
  1920. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  1921. return
  1922. }
  1923. numRow = append(numRow, num)
  1924. }
  1925. numMtx = append(numMtx, numRow)
  1926. }
  1927. result = fmt.Sprintf("%g", det(numMtx))
  1928. return
  1929. }
  1930. // MOD function returns the remainder of a division between two supplied
  1931. // numbers. The syntax of the function is:
  1932. //
  1933. // MOD(number,divisor)
  1934. //
  1935. func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
  1936. if argsList.Len() != 2 {
  1937. err = errors.New("MOD requires 2 numeric arguments")
  1938. return
  1939. }
  1940. var number, divisor float64
  1941. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1942. err = errors.New(formulaErrorVALUE)
  1943. return
  1944. }
  1945. if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1946. err = errors.New(formulaErrorVALUE)
  1947. return
  1948. }
  1949. if divisor == 0 {
  1950. err = errors.New(formulaErrorDIV)
  1951. return
  1952. }
  1953. trunc, rem := math.Modf(number / divisor)
  1954. if rem < 0 {
  1955. trunc--
  1956. }
  1957. result = fmt.Sprintf("%g", number-divisor*trunc)
  1958. return
  1959. }
  1960. // MROUND function rounds a supplied number up or down to the nearest multiple
  1961. // of a given number. The syntax of the function is:
  1962. //
  1963. // MOD(number,multiple)
  1964. //
  1965. func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
  1966. if argsList.Len() != 2 {
  1967. err = errors.New("MROUND requires 2 numeric arguments")
  1968. return
  1969. }
  1970. var number, multiple float64
  1971. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1972. err = errors.New(formulaErrorVALUE)
  1973. return
  1974. }
  1975. if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1976. err = errors.New(formulaErrorVALUE)
  1977. return
  1978. }
  1979. if multiple == 0 {
  1980. err = errors.New(formulaErrorNUM)
  1981. return
  1982. }
  1983. if multiple < 0 && number > 0 ||
  1984. multiple > 0 && number < 0 {
  1985. err = errors.New(formulaErrorNUM)
  1986. return
  1987. }
  1988. number, res := math.Modf(number / multiple)
  1989. if math.Trunc(res+0.5) > 0 {
  1990. number++
  1991. }
  1992. result = fmt.Sprintf("%g", number*multiple)
  1993. return
  1994. }
  1995. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  1996. // supplied values to the product of factorials of those values. The syntax of
  1997. // the function is:
  1998. //
  1999. // MULTINOMIAL(number1,[number2],...)
  2000. //
  2001. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
  2002. val, num, denom := 0.0, 0.0, 1.0
  2003. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2004. token := arg.Value.(formulaArg)
  2005. if token.String == "" {
  2006. continue
  2007. }
  2008. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2009. err = errors.New(formulaErrorVALUE)
  2010. return
  2011. }
  2012. num += val
  2013. denom *= fact(val)
  2014. }
  2015. result = fmt.Sprintf("%g", fact(num)/denom)
  2016. return
  2017. }
  2018. // MUNIT function returns the unit matrix for a specified dimension. The
  2019. // syntax of the function is:
  2020. //
  2021. // MUNIT(dimension)
  2022. //
  2023. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
  2024. if argsList.Len() != 1 {
  2025. err = errors.New("MUNIT requires 1 numeric argument")
  2026. return
  2027. }
  2028. var dimension int
  2029. if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  2030. err = errors.New(formulaErrorVALUE)
  2031. return
  2032. }
  2033. matrix := make([][]float64, 0, dimension)
  2034. for i := 0; i < dimension; i++ {
  2035. row := make([]float64, dimension)
  2036. for j := 0; j < dimension; j++ {
  2037. if i == j {
  2038. row[j] = float64(1.0)
  2039. } else {
  2040. row[j] = float64(0.0)
  2041. }
  2042. }
  2043. matrix = append(matrix, row)
  2044. }
  2045. return
  2046. }
  2047. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2048. // number up and a negative number down), to the next odd number. The syntax
  2049. // of the function is:
  2050. //
  2051. // ODD(number)
  2052. //
  2053. func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
  2054. if argsList.Len() != 1 {
  2055. err = errors.New("ODD requires 1 numeric argument")
  2056. return
  2057. }
  2058. var number float64
  2059. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2060. err = errors.New(formulaErrorVALUE)
  2061. return
  2062. }
  2063. if number == 0 {
  2064. result = "1"
  2065. return
  2066. }
  2067. sign := math.Signbit(number)
  2068. m, frac := math.Modf((number - 1) / 2)
  2069. val := m*2 + 1
  2070. if frac != 0 {
  2071. if !sign {
  2072. val += 2
  2073. } else {
  2074. val -= 2
  2075. }
  2076. }
  2077. result = fmt.Sprintf("%g", val)
  2078. return
  2079. }
  2080. // PI function returns the value of the mathematical constant π (pi), accurate
  2081. // to 15 digits (14 decimal places). The syntax of the function is:
  2082. //
  2083. // PI()
  2084. //
  2085. func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
  2086. if argsList.Len() != 0 {
  2087. err = errors.New("PI accepts no arguments")
  2088. return
  2089. }
  2090. result = fmt.Sprintf("%g", math.Pi)
  2091. return
  2092. }
  2093. // POWER function calculates a given number, raised to a supplied power.
  2094. // The syntax of the function is:
  2095. //
  2096. // POWER(number,power)
  2097. //
  2098. func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
  2099. if argsList.Len() != 2 {
  2100. err = errors.New("POWER requires 2 numeric arguments")
  2101. return
  2102. }
  2103. var x, y float64
  2104. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2105. err = errors.New(formulaErrorVALUE)
  2106. return
  2107. }
  2108. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2109. err = errors.New(formulaErrorVALUE)
  2110. return
  2111. }
  2112. if x == 0 && y == 0 {
  2113. err = errors.New(formulaErrorNUM)
  2114. return
  2115. }
  2116. if x == 0 && y < 0 {
  2117. err = errors.New(formulaErrorDIV)
  2118. return
  2119. }
  2120. result = fmt.Sprintf("%g", math.Pow(x, y))
  2121. return
  2122. }
  2123. // PRODUCT function returns the product (multiplication) of a supplied set of
  2124. // numerical values. The syntax of the function is:
  2125. //
  2126. // PRODUCT(number1,[number2],...)
  2127. //
  2128. func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
  2129. val, product := 0.0, 1.0
  2130. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2131. token := arg.Value.(formulaArg)
  2132. switch token.Type {
  2133. case ArgUnknown:
  2134. continue
  2135. case ArgString:
  2136. if token.String == "" {
  2137. continue
  2138. }
  2139. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2140. err = errors.New(formulaErrorVALUE)
  2141. return
  2142. }
  2143. product = product * val
  2144. case ArgMatrix:
  2145. for _, row := range token.Matrix {
  2146. for _, value := range row {
  2147. if value.String == "" {
  2148. continue
  2149. }
  2150. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2151. err = errors.New(formulaErrorVALUE)
  2152. return
  2153. }
  2154. product = product * val
  2155. }
  2156. }
  2157. }
  2158. }
  2159. result = fmt.Sprintf("%g", product)
  2160. return
  2161. }
  2162. // QUOTIENT function returns the integer portion of a division between two
  2163. // supplied numbers. The syntax of the function is:
  2164. //
  2165. // QUOTIENT(numerator,denominator)
  2166. //
  2167. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
  2168. if argsList.Len() != 2 {
  2169. err = errors.New("QUOTIENT requires 2 numeric arguments")
  2170. return
  2171. }
  2172. var x, y float64
  2173. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2174. err = errors.New(formulaErrorVALUE)
  2175. return
  2176. }
  2177. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2178. err = errors.New(formulaErrorVALUE)
  2179. return
  2180. }
  2181. if y == 0 {
  2182. err = errors.New(formulaErrorDIV)
  2183. return
  2184. }
  2185. result = fmt.Sprintf("%g", math.Trunc(x/y))
  2186. return
  2187. }
  2188. // RADIANS function converts radians into degrees. The syntax of the function is:
  2189. //
  2190. // RADIANS(angle)
  2191. //
  2192. func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
  2193. if argsList.Len() != 1 {
  2194. err = errors.New("RADIANS requires 1 numeric argument")
  2195. return
  2196. }
  2197. var angle float64
  2198. if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2199. err = errors.New(formulaErrorVALUE)
  2200. return
  2201. }
  2202. result = fmt.Sprintf("%g", math.Pi/180.0*angle)
  2203. return
  2204. }
  2205. // RAND function generates a random real number between 0 and 1. The syntax of
  2206. // the function is:
  2207. //
  2208. // RAND()
  2209. //
  2210. func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
  2211. if argsList.Len() != 0 {
  2212. err = errors.New("RAND accepts no arguments")
  2213. return
  2214. }
  2215. result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2216. return
  2217. }
  2218. // RANDBETWEEN function generates a random integer between two supplied
  2219. // integers. The syntax of the function is:
  2220. //
  2221. // RANDBETWEEN(bottom,top)
  2222. //
  2223. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
  2224. if argsList.Len() != 2 {
  2225. err = errors.New("RANDBETWEEN requires 2 numeric arguments")
  2226. return
  2227. }
  2228. var bottom, top int64
  2229. if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64); err != nil {
  2230. err = errors.New(formulaErrorVALUE)
  2231. return
  2232. }
  2233. if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64); err != nil {
  2234. err = errors.New(formulaErrorVALUE)
  2235. return
  2236. }
  2237. if top < bottom {
  2238. err = errors.New(formulaErrorNUM)
  2239. return
  2240. }
  2241. result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
  2242. return
  2243. }
  2244. // romanNumerals defined a numeral system that originated in ancient Rome and
  2245. // remained the usual way of writing numbers throughout Europe well into the
  2246. // Late Middle Ages.
  2247. type romanNumerals struct {
  2248. n float64
  2249. s string
  2250. }
  2251. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2252. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2253. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2254. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2255. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2256. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2257. // integer, the function returns a text string depicting the roman numeral
  2258. // form of the number. The syntax of the function is:
  2259. //
  2260. // ROMAN(number,[form])
  2261. //
  2262. func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
  2263. if argsList.Len() == 0 {
  2264. err = errors.New("ROMAN requires at least 1 argument")
  2265. return
  2266. }
  2267. if argsList.Len() > 2 {
  2268. err = errors.New("ROMAN allows at most 2 arguments")
  2269. return
  2270. }
  2271. var number float64
  2272. var form int
  2273. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2274. err = errors.New(formulaErrorVALUE)
  2275. return
  2276. }
  2277. if argsList.Len() > 1 {
  2278. if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2279. err = errors.New(formulaErrorVALUE)
  2280. return
  2281. }
  2282. if form < 0 {
  2283. form = 0
  2284. } else if form > 4 {
  2285. form = 4
  2286. }
  2287. }
  2288. decimalTable := romanTable[0]
  2289. switch form {
  2290. case 1:
  2291. decimalTable = romanTable[1]
  2292. case 2:
  2293. decimalTable = romanTable[2]
  2294. case 3:
  2295. decimalTable = romanTable[3]
  2296. case 4:
  2297. decimalTable = romanTable[4]
  2298. }
  2299. val := math.Trunc(number)
  2300. buf := bytes.Buffer{}
  2301. for _, r := range decimalTable {
  2302. for val >= r.n {
  2303. buf.WriteString(r.s)
  2304. val -= r.n
  2305. }
  2306. }
  2307. result = buf.String()
  2308. return
  2309. }
  2310. type roundMode byte
  2311. const (
  2312. closest roundMode = iota
  2313. down
  2314. up
  2315. )
  2316. // round rounds a supplied number up or down.
  2317. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2318. var significance float64
  2319. if digits > 0 {
  2320. significance = math.Pow(1/10.0, digits)
  2321. } else {
  2322. significance = math.Pow(10.0, -digits)
  2323. }
  2324. val, res := math.Modf(number / significance)
  2325. switch mode {
  2326. case closest:
  2327. const eps = 0.499999999
  2328. if res >= eps {
  2329. val++
  2330. } else if res <= -eps {
  2331. val--
  2332. }
  2333. case down:
  2334. case up:
  2335. if res > 0 {
  2336. val++
  2337. } else if res < 0 {
  2338. val--
  2339. }
  2340. }
  2341. return val * significance
  2342. }
  2343. // ROUND function rounds a supplied number up or down, to a specified number
  2344. // of decimal places. The syntax of the function is:
  2345. //
  2346. // ROUND(number,num_digits)
  2347. //
  2348. func (fn *formulaFuncs) ROUND(argsList *list.List) (result string, err error) {
  2349. if argsList.Len() != 2 {
  2350. err = errors.New("ROUND requires 2 numeric arguments")
  2351. return
  2352. }
  2353. var number, digits float64
  2354. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2355. err = errors.New(formulaErrorVALUE)
  2356. return
  2357. }
  2358. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2359. err = errors.New(formulaErrorVALUE)
  2360. return
  2361. }
  2362. result = fmt.Sprintf("%g", fn.round(number, digits, closest))
  2363. return
  2364. }
  2365. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2366. // specified number of decimal places. The syntax of the function is:
  2367. //
  2368. // ROUNDDOWN(number,num_digits)
  2369. //
  2370. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) (result string, err error) {
  2371. if argsList.Len() != 2 {
  2372. err = errors.New("ROUNDDOWN requires 2 numeric arguments")
  2373. return
  2374. }
  2375. var number, digits float64
  2376. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2377. err = errors.New(formulaErrorVALUE)
  2378. return
  2379. }
  2380. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2381. err = errors.New(formulaErrorVALUE)
  2382. return
  2383. }
  2384. result = fmt.Sprintf("%g", fn.round(number, digits, down))
  2385. return
  2386. }
  2387. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2388. // specified number of decimal places. The syntax of the function is:
  2389. //
  2390. // ROUNDUP(number,num_digits)
  2391. //
  2392. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) (result string, err error) {
  2393. if argsList.Len() != 2 {
  2394. err = errors.New("ROUNDUP requires 2 numeric arguments")
  2395. return
  2396. }
  2397. var number, digits float64
  2398. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2399. err = errors.New(formulaErrorVALUE)
  2400. return
  2401. }
  2402. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2403. err = errors.New(formulaErrorVALUE)
  2404. return
  2405. }
  2406. result = fmt.Sprintf("%g", fn.round(number, digits, up))
  2407. return
  2408. }
  2409. // SEC function calculates the secant of a given angle. The syntax of the
  2410. // function is:
  2411. //
  2412. // SEC(number)
  2413. //
  2414. func (fn *formulaFuncs) SEC(argsList *list.List) (result string, err error) {
  2415. if argsList.Len() != 1 {
  2416. err = errors.New("SEC requires 1 numeric argument")
  2417. return
  2418. }
  2419. var number float64
  2420. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2421. err = errors.New(formulaErrorVALUE)
  2422. return
  2423. }
  2424. result = fmt.Sprintf("%g", math.Cos(number))
  2425. return
  2426. }
  2427. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2428. // The syntax of the function is:
  2429. //
  2430. // SECH(number)
  2431. //
  2432. func (fn *formulaFuncs) SECH(argsList *list.List) (result string, err error) {
  2433. if argsList.Len() != 1 {
  2434. err = errors.New("SECH requires 1 numeric argument")
  2435. return
  2436. }
  2437. var number float64
  2438. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2439. err = errors.New(formulaErrorVALUE)
  2440. return
  2441. }
  2442. result = fmt.Sprintf("%g", 1/math.Cosh(number))
  2443. return
  2444. }
  2445. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2446. // number. I.e. if the number is positive, the Sign function returns +1, if
  2447. // the number is negative, the function returns -1 and if the number is 0
  2448. // (zero), the function returns 0. The syntax of the function is:
  2449. //
  2450. // SIGN(number)
  2451. //
  2452. func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
  2453. if argsList.Len() != 1 {
  2454. err = errors.New("SIGN requires 1 numeric argument")
  2455. return
  2456. }
  2457. var val float64
  2458. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2459. err = errors.New(formulaErrorVALUE)
  2460. return
  2461. }
  2462. if val < 0 {
  2463. result = "-1"
  2464. return
  2465. }
  2466. if val > 0 {
  2467. result = "1"
  2468. return
  2469. }
  2470. result = "0"
  2471. return
  2472. }
  2473. // SIN function calculates the sine of a given angle. The syntax of the
  2474. // function is:
  2475. //
  2476. // SIN(number)
  2477. //
  2478. func (fn *formulaFuncs) SIN(argsList *list.List) (result string, err error) {
  2479. if argsList.Len() != 1 {
  2480. err = errors.New("SIN requires 1 numeric argument")
  2481. return
  2482. }
  2483. var number float64
  2484. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2485. err = errors.New(formulaErrorVALUE)
  2486. return
  2487. }
  2488. result = fmt.Sprintf("%g", math.Sin(number))
  2489. return
  2490. }
  2491. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2492. // The syntax of the function is:
  2493. //
  2494. // SINH(number)
  2495. //
  2496. func (fn *formulaFuncs) SINH(argsList *list.List) (result string, err error) {
  2497. if argsList.Len() != 1 {
  2498. err = errors.New("SINH requires 1 numeric argument")
  2499. return
  2500. }
  2501. var number float64
  2502. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2503. err = errors.New(formulaErrorVALUE)
  2504. return
  2505. }
  2506. result = fmt.Sprintf("%g", math.Sinh(number))
  2507. return
  2508. }
  2509. // SQRT function calculates the positive square root of a supplied number. The
  2510. // syntax of the function is:
  2511. //
  2512. // SQRT(number)
  2513. //
  2514. func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
  2515. if argsList.Len() != 1 {
  2516. err = errors.New("SQRT requires 1 numeric argument")
  2517. return
  2518. }
  2519. var res float64
  2520. var value = argsList.Front().Value.(formulaArg).String
  2521. if value == "" {
  2522. result = "0"
  2523. return
  2524. }
  2525. if res, err = strconv.ParseFloat(value, 64); err != nil {
  2526. err = errors.New(formulaErrorVALUE)
  2527. return
  2528. }
  2529. if res < 0 {
  2530. err = errors.New(formulaErrorNUM)
  2531. return
  2532. }
  2533. result = fmt.Sprintf("%g", math.Sqrt(res))
  2534. return
  2535. }
  2536. // SQRTPI function returns the square root of a supplied number multiplied by
  2537. // the mathematical constant, π. The syntax of the function is:
  2538. //
  2539. // SQRTPI(number)
  2540. //
  2541. func (fn *formulaFuncs) SQRTPI(argsList *list.List) (result string, err error) {
  2542. if argsList.Len() != 1 {
  2543. err = errors.New("SQRTPI requires 1 numeric argument")
  2544. return
  2545. }
  2546. var number float64
  2547. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2548. err = errors.New(formulaErrorVALUE)
  2549. return
  2550. }
  2551. result = fmt.Sprintf("%g", math.Sqrt(number*math.Pi))
  2552. return
  2553. }
  2554. // SUM function adds together a supplied set of numbers and returns the sum of
  2555. // these values. The syntax of the function is:
  2556. //
  2557. // SUM(number1,[number2],...)
  2558. //
  2559. func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
  2560. var val, sum float64
  2561. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2562. token := arg.Value.(formulaArg)
  2563. switch token.Type {
  2564. case ArgUnknown:
  2565. continue
  2566. case ArgString:
  2567. if token.String == "" {
  2568. continue
  2569. }
  2570. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2571. err = errors.New(formulaErrorVALUE)
  2572. return
  2573. }
  2574. sum += val
  2575. case ArgMatrix:
  2576. for _, row := range token.Matrix {
  2577. for _, value := range row {
  2578. if value.String == "" {
  2579. continue
  2580. }
  2581. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2582. err = errors.New(formulaErrorVALUE)
  2583. return
  2584. }
  2585. sum += val
  2586. }
  2587. }
  2588. }
  2589. }
  2590. result = fmt.Sprintf("%g", sum)
  2591. return
  2592. }
  2593. // SUMIF function finds the values in a supplied array, that satisfy a given
  2594. // criteria, and returns the sum of the corresponding values in a second
  2595. // supplied array. The syntax of the function is:
  2596. //
  2597. // SUMIF(range,criteria,[sum_range])
  2598. //
  2599. func (fn *formulaFuncs) SUMIF(argsList *list.List) (result string, err error) {
  2600. if argsList.Len() < 2 {
  2601. err = errors.New("SUMIF requires at least 2 argument")
  2602. return
  2603. }
  2604. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2605. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2606. var sumRange [][]formulaArg
  2607. if argsList.Len() == 3 {
  2608. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2609. }
  2610. var sum, val float64
  2611. for rowIdx, row := range rangeMtx {
  2612. for colIdx, col := range row {
  2613. var ok bool
  2614. fromVal := col.String
  2615. if col.String == "" {
  2616. continue
  2617. }
  2618. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2619. return
  2620. }
  2621. if ok {
  2622. if argsList.Len() == 3 {
  2623. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2624. continue
  2625. }
  2626. fromVal = sumRange[rowIdx][colIdx].String
  2627. }
  2628. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2629. err = errors.New(formulaErrorVALUE)
  2630. return
  2631. }
  2632. sum += val
  2633. }
  2634. }
  2635. }
  2636. result = fmt.Sprintf("%g", sum)
  2637. return
  2638. }
  2639. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2640. // syntax of the function is:
  2641. //
  2642. // SUMSQ(number1,[number2],...)
  2643. //
  2644. func (fn *formulaFuncs) SUMSQ(argsList *list.List) (result string, err error) {
  2645. var val, sq float64
  2646. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2647. token := arg.Value.(formulaArg)
  2648. switch token.Type {
  2649. case ArgString:
  2650. if token.String == "" {
  2651. continue
  2652. }
  2653. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2654. err = errors.New(formulaErrorVALUE)
  2655. return
  2656. }
  2657. sq += val * val
  2658. case ArgMatrix:
  2659. for _, row := range token.Matrix {
  2660. for _, value := range row {
  2661. if value.String == "" {
  2662. continue
  2663. }
  2664. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2665. err = errors.New(formulaErrorVALUE)
  2666. return
  2667. }
  2668. sq += val * val
  2669. }
  2670. }
  2671. }
  2672. }
  2673. result = fmt.Sprintf("%g", sq)
  2674. return
  2675. }
  2676. // TAN function calculates the tangent of a given angle. The syntax of the
  2677. // function is:
  2678. //
  2679. // TAN(number)
  2680. //
  2681. func (fn *formulaFuncs) TAN(argsList *list.List) (result string, err error) {
  2682. if argsList.Len() != 1 {
  2683. err = errors.New("TAN requires 1 numeric argument")
  2684. return
  2685. }
  2686. var number float64
  2687. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2688. err = errors.New(formulaErrorVALUE)
  2689. return
  2690. }
  2691. result = fmt.Sprintf("%g", math.Tan(number))
  2692. return
  2693. }
  2694. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2695. // number. The syntax of the function is:
  2696. //
  2697. // TANH(number)
  2698. //
  2699. func (fn *formulaFuncs) TANH(argsList *list.List) (result string, err error) {
  2700. if argsList.Len() != 1 {
  2701. err = errors.New("TANH requires 1 numeric argument")
  2702. return
  2703. }
  2704. var number float64
  2705. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2706. err = errors.New(formulaErrorVALUE)
  2707. return
  2708. }
  2709. result = fmt.Sprintf("%g", math.Tanh(number))
  2710. return
  2711. }
  2712. // TRUNC function truncates a supplied number to a specified number of decimal
  2713. // places. The syntax of the function is:
  2714. //
  2715. // TRUNC(number,[number_digits])
  2716. //
  2717. func (fn *formulaFuncs) TRUNC(argsList *list.List) (result string, err error) {
  2718. if argsList.Len() == 0 {
  2719. err = errors.New("TRUNC requires at least 1 argument")
  2720. return
  2721. }
  2722. var number, digits, adjust, rtrim float64
  2723. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2724. err = errors.New(formulaErrorVALUE)
  2725. return
  2726. }
  2727. if argsList.Len() > 1 {
  2728. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2729. err = errors.New(formulaErrorVALUE)
  2730. return
  2731. }
  2732. digits = math.Floor(digits)
  2733. }
  2734. adjust = math.Pow(10, digits)
  2735. x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
  2736. if x != 0 {
  2737. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2738. return
  2739. }
  2740. }
  2741. if (digits > 0) && (rtrim < adjust/10) {
  2742. result = fmt.Sprintf("%g", number)
  2743. return
  2744. }
  2745. result = fmt.Sprintf("%g", float64(int(number*adjust))/adjust)
  2746. return
  2747. }
  2748. // Statistical functions
  2749. // COUNTA function returns the number of non-blanks within a supplied set of
  2750. // cells or values. The syntax of the function is:
  2751. //
  2752. // COUNTA(value1,[value2],...)
  2753. //
  2754. func (fn *formulaFuncs) COUNTA(argsList *list.List) (result string, err error) {
  2755. var count int
  2756. for token := argsList.Front(); token != nil; token = token.Next() {
  2757. arg := token.Value.(formulaArg)
  2758. switch arg.Type {
  2759. case ArgString:
  2760. if arg.String != "" {
  2761. count++
  2762. }
  2763. case ArgMatrix:
  2764. for _, row := range arg.Matrix {
  2765. for _, value := range row {
  2766. if value.String != "" {
  2767. count++
  2768. }
  2769. }
  2770. }
  2771. }
  2772. }
  2773. result = fmt.Sprintf("%d", count)
  2774. return
  2775. }
  2776. // MEDIAN function returns the statistical median (the middle value) of a list
  2777. // of supplied numbers. The syntax of the function is:
  2778. //
  2779. // MEDIAN(number1,[number2],...)
  2780. //
  2781. func (fn *formulaFuncs) MEDIAN(argsList *list.List) (result string, err error) {
  2782. if argsList.Len() == 0 {
  2783. err = errors.New("MEDIAN requires at least 1 argument")
  2784. return
  2785. }
  2786. values := []float64{}
  2787. var median, digits float64
  2788. for token := argsList.Front(); token != nil; token = token.Next() {
  2789. arg := token.Value.(formulaArg)
  2790. switch arg.Type {
  2791. case ArgString:
  2792. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2793. err = errors.New(formulaErrorVALUE)
  2794. return
  2795. }
  2796. values = append(values, digits)
  2797. case ArgMatrix:
  2798. for _, row := range arg.Matrix {
  2799. for _, value := range row {
  2800. if value.String == "" {
  2801. continue
  2802. }
  2803. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2804. err = errors.New(formulaErrorVALUE)
  2805. return
  2806. }
  2807. values = append(values, digits)
  2808. }
  2809. }
  2810. }
  2811. }
  2812. sort.Float64s(values)
  2813. if len(values)%2 == 0 {
  2814. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2815. } else {
  2816. median = values[len(values)/2]
  2817. }
  2818. result = fmt.Sprintf("%g", median)
  2819. return
  2820. }
  2821. // Information functions
  2822. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2823. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2824. // function is:
  2825. //
  2826. // ISBLANK(value)
  2827. //
  2828. func (fn *formulaFuncs) ISBLANK(argsList *list.List) (result string, err error) {
  2829. if argsList.Len() != 1 {
  2830. err = errors.New("ISBLANK requires 1 argument")
  2831. return
  2832. }
  2833. token := argsList.Front().Value.(formulaArg)
  2834. result = "FALSE"
  2835. switch token.Type {
  2836. case ArgUnknown:
  2837. result = "TRUE"
  2838. case ArgString:
  2839. if token.String == "" {
  2840. result = "TRUE"
  2841. }
  2842. }
  2843. return
  2844. }
  2845. // ISERR function tests if an initial supplied expression (or value) returns
  2846. // any Excel Error, except the #N/A error. If so, the function returns the
  2847. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2848. // error, the ISERR function returns FALSE. The syntax of the function is:
  2849. //
  2850. // ISERR(value)
  2851. //
  2852. func (fn *formulaFuncs) ISERR(argsList *list.List) (result string, err error) {
  2853. if argsList.Len() != 1 {
  2854. err = errors.New("ISERR requires 1 argument")
  2855. return
  2856. }
  2857. token := argsList.Front().Value.(formulaArg)
  2858. result = "FALSE"
  2859. if token.Type == ArgString {
  2860. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2861. if errType == token.String {
  2862. result = "TRUE"
  2863. }
  2864. }
  2865. }
  2866. return
  2867. }
  2868. // ISERROR function tests if an initial supplied expression (or value) returns
  2869. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2870. // function returns FALSE. The syntax of the function is:
  2871. //
  2872. // ISERROR(value)
  2873. //
  2874. func (fn *formulaFuncs) ISERROR(argsList *list.List) (result string, err error) {
  2875. if argsList.Len() != 1 {
  2876. err = errors.New("ISERROR requires 1 argument")
  2877. return
  2878. }
  2879. token := argsList.Front().Value.(formulaArg)
  2880. result = "FALSE"
  2881. if token.Type == ArgString {
  2882. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2883. if errType == token.String {
  2884. result = "TRUE"
  2885. }
  2886. }
  2887. }
  2888. return
  2889. }
  2890. // ISEVEN function tests if a supplied number (or numeric expression)
  2891. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  2892. // function returns FALSE. The syntax of the function is:
  2893. //
  2894. // ISEVEN(value)
  2895. //
  2896. func (fn *formulaFuncs) ISEVEN(argsList *list.List) (result string, err error) {
  2897. if argsList.Len() != 1 {
  2898. err = errors.New("ISEVEN requires 1 argument")
  2899. return
  2900. }
  2901. token := argsList.Front().Value.(formulaArg)
  2902. result = "FALSE"
  2903. var numeric int
  2904. if token.Type == ArgString {
  2905. if numeric, err = strconv.Atoi(token.String); err != nil {
  2906. err = errors.New(formulaErrorVALUE)
  2907. return
  2908. }
  2909. if numeric == numeric/2*2 {
  2910. result = "TRUE"
  2911. return
  2912. }
  2913. }
  2914. return
  2915. }
  2916. // ISNA function tests if an initial supplied expression (or value) returns
  2917. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  2918. // returns FALSE. The syntax of the function is:
  2919. //
  2920. // ISNA(value)
  2921. //
  2922. func (fn *formulaFuncs) ISNA(argsList *list.List) (result string, err error) {
  2923. if argsList.Len() != 1 {
  2924. err = errors.New("ISNA requires 1 argument")
  2925. return
  2926. }
  2927. token := argsList.Front().Value.(formulaArg)
  2928. result = "FALSE"
  2929. if token.Type == ArgString && token.String == formulaErrorNA {
  2930. result = "TRUE"
  2931. }
  2932. return
  2933. }
  2934. // ISNONTEXT function function tests if a supplied value is text. If not, the
  2935. // function returns TRUE; If the supplied value is text, the function returns
  2936. // FALSE. The syntax of the function is:
  2937. //
  2938. // ISNONTEXT(value)
  2939. //
  2940. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) (result string, err error) {
  2941. if argsList.Len() != 1 {
  2942. err = errors.New("ISNONTEXT requires 1 argument")
  2943. return
  2944. }
  2945. token := argsList.Front().Value.(formulaArg)
  2946. result = "TRUE"
  2947. if token.Type == ArgString && token.String != "" {
  2948. result = "FALSE"
  2949. }
  2950. return
  2951. }
  2952. // ISNUMBER function function tests if a supplied value is a number. If so,
  2953. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  2954. // function is:
  2955. //
  2956. // ISNUMBER(value)
  2957. //
  2958. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) (result string, err error) {
  2959. if argsList.Len() != 1 {
  2960. err = errors.New("ISNUMBER requires 1 argument")
  2961. return
  2962. }
  2963. token := argsList.Front().Value.(formulaArg)
  2964. result = "FALSE"
  2965. if token.Type == ArgString && token.String != "" {
  2966. if _, err = strconv.Atoi(token.String); err == nil {
  2967. result = "TRUE"
  2968. }
  2969. err = nil
  2970. }
  2971. return
  2972. }
  2973. // ISODD function tests if a supplied number (or numeric expression) evaluates
  2974. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  2975. // FALSE. The syntax of the function is:
  2976. //
  2977. // ISODD(value)
  2978. //
  2979. func (fn *formulaFuncs) ISODD(argsList *list.List) (result string, err error) {
  2980. if argsList.Len() != 1 {
  2981. err = errors.New("ISODD requires 1 argument")
  2982. return
  2983. }
  2984. token := argsList.Front().Value.(formulaArg)
  2985. result = "FALSE"
  2986. var numeric int
  2987. if token.Type == ArgString {
  2988. if numeric, err = strconv.Atoi(token.String); err != nil {
  2989. err = errors.New(formulaErrorVALUE)
  2990. return
  2991. }
  2992. if numeric != numeric/2*2 {
  2993. result = "TRUE"
  2994. return
  2995. }
  2996. }
  2997. return
  2998. }
  2999. // NA function returns the Excel #N/A error. This error message has the
  3000. // meaning 'value not available' and is produced when an Excel Formula is
  3001. // unable to find a value that it needs. The syntax of the function is:
  3002. //
  3003. // NA()
  3004. //
  3005. func (fn *formulaFuncs) NA(argsList *list.List) (result string, err error) {
  3006. if argsList.Len() != 0 {
  3007. err = errors.New("NA accepts no arguments")
  3008. return
  3009. }
  3010. result = formulaErrorNA
  3011. return
  3012. }