calc.go 197 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.15 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/cmplx"
  19. "math/rand"
  20. "net/url"
  21. "reflect"
  22. "regexp"
  23. "sort"
  24. "strconv"
  25. "strings"
  26. "time"
  27. "unicode"
  28. "unsafe"
  29. "github.com/xuri/efp"
  30. "golang.org/x/text/language"
  31. "golang.org/x/text/message"
  32. )
  33. // Excel formula errors
  34. const (
  35. formulaErrorDIV = "#DIV/0!"
  36. formulaErrorNAME = "#NAME?"
  37. formulaErrorNA = "#N/A"
  38. formulaErrorNUM = "#NUM!"
  39. formulaErrorVALUE = "#VALUE!"
  40. formulaErrorREF = "#REF!"
  41. formulaErrorNULL = "#NULL"
  42. formulaErrorSPILL = "#SPILL!"
  43. formulaErrorCALC = "#CALC!"
  44. formulaErrorGETTINGDATA = "#GETTING_DATA"
  45. )
  46. // Numeric precision correct numeric values as legacy Excel application
  47. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  48. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  49. // has a decimal representation that is an infinite string of ones, Excel
  50. // displays only the leading 15 figures. In the second line, the number one
  51. // is added to the fraction, and again Excel displays only 15 figures.
  52. const numericPrecision = 1000000000000000
  53. // cellRef defines the structure of a cell reference.
  54. type cellRef struct {
  55. Col int
  56. Row int
  57. Sheet string
  58. }
  59. // cellRef defines the structure of a cell range.
  60. type cellRange struct {
  61. From cellRef
  62. To cellRef
  63. }
  64. // formula criteria condition enumeration.
  65. const (
  66. _ byte = iota
  67. criteriaEq
  68. criteriaLe
  69. criteriaGe
  70. criteriaL
  71. criteriaG
  72. criteriaBeg
  73. criteriaEnd
  74. criteriaErr
  75. )
  76. // formulaCriteria defined formula criteria parser result.
  77. type formulaCriteria struct {
  78. Type byte
  79. Condition string
  80. }
  81. // ArgType is the type if formula argument type.
  82. type ArgType byte
  83. // Formula argument types enumeration.
  84. const (
  85. ArgUnknown ArgType = iota
  86. ArgNumber
  87. ArgString
  88. ArgList
  89. ArgMatrix
  90. ArgError
  91. ArgEmpty
  92. )
  93. // formulaArg is the argument of a formula or function.
  94. type formulaArg struct {
  95. SheetName string
  96. Number float64
  97. String string
  98. List []formulaArg
  99. Matrix [][]formulaArg
  100. Boolean bool
  101. Error string
  102. Type ArgType
  103. cellRefs, cellRanges *list.List
  104. }
  105. // Value returns a string data type of the formula argument.
  106. func (fa formulaArg) Value() (value string) {
  107. switch fa.Type {
  108. case ArgNumber:
  109. if fa.Boolean {
  110. if fa.Number == 0 {
  111. return "FALSE"
  112. }
  113. return "TRUE"
  114. }
  115. return fmt.Sprintf("%g", fa.Number)
  116. case ArgString:
  117. return fa.String
  118. case ArgError:
  119. return fa.Error
  120. }
  121. return
  122. }
  123. // ToNumber returns a formula argument with number data type.
  124. func (fa formulaArg) ToNumber() formulaArg {
  125. var n float64
  126. var err error
  127. switch fa.Type {
  128. case ArgString:
  129. n, err = strconv.ParseFloat(fa.String, 64)
  130. if err != nil {
  131. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  132. }
  133. case ArgNumber:
  134. n = fa.Number
  135. }
  136. return newNumberFormulaArg(n)
  137. }
  138. // ToBool returns a formula argument with boolean data type.
  139. func (fa formulaArg) ToBool() formulaArg {
  140. var b bool
  141. var err error
  142. switch fa.Type {
  143. case ArgString:
  144. b, err = strconv.ParseBool(fa.String)
  145. if err != nil {
  146. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  147. }
  148. case ArgNumber:
  149. if fa.Boolean && fa.Number == 1 {
  150. b = true
  151. }
  152. }
  153. return newBoolFormulaArg(b)
  154. }
  155. // ToList returns a formula argument with array data type.
  156. func (fa formulaArg) ToList() []formulaArg {
  157. switch fa.Type {
  158. case ArgMatrix:
  159. list := []formulaArg{}
  160. for _, row := range fa.Matrix {
  161. list = append(list, row...)
  162. }
  163. return list
  164. case ArgList:
  165. return fa.List
  166. case ArgNumber, ArgString, ArgError, ArgUnknown:
  167. return []formulaArg{fa}
  168. }
  169. return nil
  170. }
  171. // formulaFuncs is the type of the formula functions.
  172. type formulaFuncs struct {
  173. f *File
  174. sheet, cell string
  175. }
  176. // tokenPriority defined basic arithmetic operator priority.
  177. var tokenPriority = map[string]int{
  178. "^": 5,
  179. "*": 4,
  180. "/": 4,
  181. "+": 3,
  182. "-": 3,
  183. "=": 2,
  184. "<>": 2,
  185. "<": 2,
  186. "<=": 2,
  187. ">": 2,
  188. ">=": 2,
  189. "&": 1,
  190. }
  191. // CalcCellValue provides a function to get calculated cell value. This
  192. // feature is currently in working processing. Array formula, table formula
  193. // and some other formulas are not supported currently.
  194. //
  195. // Supported formula functions:
  196. //
  197. // ABS
  198. // ACOS
  199. // ACOSH
  200. // ACOT
  201. // ACOTH
  202. // AND
  203. // ARABIC
  204. // ASIN
  205. // ASINH
  206. // ATAN
  207. // ATAN2
  208. // ATANH
  209. // AVERAGE
  210. // AVERAGEA
  211. // BASE
  212. // BESSELI
  213. // BESSELJ
  214. // BIN2DEC
  215. // BIN2HEX
  216. // BIN2OCT
  217. // BITAND
  218. // BITLSHIFT
  219. // BITOR
  220. // BITRSHIFT
  221. // BITXOR
  222. // CEILING
  223. // CEILING.MATH
  224. // CEILING.PRECISE
  225. // CHAR
  226. // CHOOSE
  227. // CLEAN
  228. // CODE
  229. // COLUMN
  230. // COLUMNS
  231. // COMBIN
  232. // COMBINA
  233. // COMPLEX
  234. // CONCAT
  235. // CONCATENATE
  236. // COS
  237. // COSH
  238. // COT
  239. // COTH
  240. // COUNT
  241. // COUNTA
  242. // COUNTBLANK
  243. // CSC
  244. // CSCH
  245. // DATE
  246. // DATEDIF
  247. // DEC2BIN
  248. // DEC2HEX
  249. // DEC2OCT
  250. // DECIMAL
  251. // DEGREES
  252. // ENCODEURL
  253. // EVEN
  254. // EXACT
  255. // EXP
  256. // FACT
  257. // FACTDOUBLE
  258. // FALSE
  259. // FIND
  260. // FINDB
  261. // FISHER
  262. // FISHERINV
  263. // FIXED
  264. // FLOOR
  265. // FLOOR.MATH
  266. // FLOOR.PRECISE
  267. // GAMMA
  268. // GAMMALN
  269. // GCD
  270. // HARMEAN
  271. // HEX2BIN
  272. // HEX2DEC
  273. // HEX2OCT
  274. // HLOOKUP
  275. // IF
  276. // IFERROR
  277. // IMABS
  278. // IMCOS
  279. // IMCOSH
  280. // IMCOT
  281. // IMCSC
  282. // IMCSCH
  283. // IMEXP
  284. // IMLN
  285. // IMLOG10
  286. // INT
  287. // ISBLANK
  288. // ISERR
  289. // ISERROR
  290. // ISEVEN
  291. // ISNA
  292. // ISNONTEXT
  293. // ISNUMBER
  294. // ISODD
  295. // ISTEXT
  296. // ISO.CEILING
  297. // KURT
  298. // LARGE
  299. // LCM
  300. // LEFT
  301. // LEFTB
  302. // LEN
  303. // LENB
  304. // LN
  305. // LOG
  306. // LOG10
  307. // LOOKUP
  308. // LOWER
  309. // MAX
  310. // MDETERM
  311. // MEDIAN
  312. // MID
  313. // MIDB
  314. // MIN
  315. // MINA
  316. // MOD
  317. // MROUND
  318. // MULTINOMIAL
  319. // MUNIT
  320. // N
  321. // NA
  322. // NORM.DIST
  323. // NORMDIST
  324. // NORM.INV
  325. // NORMINV
  326. // NORM.S.DIST
  327. // NORMSDIST
  328. // NORM.S.INV
  329. // NORMSINV
  330. // NOT
  331. // NOW
  332. // OCT2BIN
  333. // OCT2DEC
  334. // OCT2HEX
  335. // ODD
  336. // OR
  337. // PERCENTILE.INC
  338. // PERCENTILE
  339. // PERMUT
  340. // PERMUTATIONA
  341. // PI
  342. // POISSON.DIST
  343. // POISSON
  344. // POWER
  345. // PRODUCT
  346. // PROPER
  347. // QUARTILE
  348. // QUARTILE.INC
  349. // QUOTIENT
  350. // RADIANS
  351. // RAND
  352. // RANDBETWEEN
  353. // REPLACE
  354. // REPLACEB
  355. // REPT
  356. // RIGHT
  357. // RIGHTB
  358. // ROMAN
  359. // ROUND
  360. // ROUNDDOWN
  361. // ROUNDUP
  362. // ROW
  363. // ROWS
  364. // SEC
  365. // SECH
  366. // SHEET
  367. // SIGN
  368. // SIN
  369. // SINH
  370. // SKEW
  371. // SMALL
  372. // SQRT
  373. // SQRTPI
  374. // STDEV
  375. // STDEV.S
  376. // STDEVA
  377. // SUBSTITUTE
  378. // SUM
  379. // SUMIF
  380. // SUMSQ
  381. // T
  382. // TAN
  383. // TANH
  384. // TODAY
  385. // TRIM
  386. // TRUE
  387. // TRUNC
  388. // UNICHAR
  389. // UNICODE
  390. // UPPER
  391. // VAR.P
  392. // VARP
  393. // VLOOKUP
  394. //
  395. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  396. var (
  397. formula string
  398. token efp.Token
  399. )
  400. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  401. return
  402. }
  403. ps := efp.ExcelParser()
  404. tokens := ps.Parse(formula)
  405. if tokens == nil {
  406. return
  407. }
  408. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  409. return
  410. }
  411. result = token.TValue
  412. isNum, precision := isNumeric(result)
  413. if isNum && precision > 15 {
  414. num, _ := roundPrecision(result)
  415. result = strings.ToUpper(num)
  416. }
  417. return
  418. }
  419. // getPriority calculate arithmetic operator priority.
  420. func getPriority(token efp.Token) (pri int) {
  421. pri = tokenPriority[token.TValue]
  422. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  423. pri = 6
  424. }
  425. if isBeginParenthesesToken(token) { // (
  426. pri = 0
  427. }
  428. return
  429. }
  430. // newNumberFormulaArg constructs a number formula argument.
  431. func newNumberFormulaArg(n float64) formulaArg {
  432. if math.IsNaN(n) {
  433. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  434. }
  435. return formulaArg{Type: ArgNumber, Number: n}
  436. }
  437. // newStringFormulaArg constructs a string formula argument.
  438. func newStringFormulaArg(s string) formulaArg {
  439. return formulaArg{Type: ArgString, String: s}
  440. }
  441. // newMatrixFormulaArg constructs a matrix formula argument.
  442. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  443. return formulaArg{Type: ArgMatrix, Matrix: m}
  444. }
  445. // newListFormulaArg create a list formula argument.
  446. func newListFormulaArg(l []formulaArg) formulaArg {
  447. return formulaArg{Type: ArgList, List: l}
  448. }
  449. // newBoolFormulaArg constructs a boolean formula argument.
  450. func newBoolFormulaArg(b bool) formulaArg {
  451. var n float64
  452. if b {
  453. n = 1
  454. }
  455. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  456. }
  457. // newErrorFormulaArg create an error formula argument of a given type with a
  458. // specified error message.
  459. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  460. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  461. }
  462. // newEmptyFormulaArg create an empty formula argument.
  463. func newEmptyFormulaArg() formulaArg {
  464. return formulaArg{Type: ArgEmpty}
  465. }
  466. // evalInfixExp evaluate syntax analysis by given infix expression after
  467. // lexical analysis. Evaluate an infix expression containing formulas by
  468. // stacks:
  469. //
  470. // opd - Operand
  471. // opt - Operator
  472. // opf - Operation formula
  473. // opfd - Operand of the operation formula
  474. // opft - Operator of the operation formula
  475. // args - Arguments list of the operation formula
  476. //
  477. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  478. //
  479. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  480. var err error
  481. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  482. for i := 0; i < len(tokens); i++ {
  483. token := tokens[i]
  484. // out of function stack
  485. if opfStack.Len() == 0 {
  486. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  487. return efp.Token{}, err
  488. }
  489. }
  490. // function start
  491. if isFunctionStartToken(token) {
  492. opfStack.Push(token)
  493. argsStack.Push(list.New().Init())
  494. continue
  495. }
  496. // in function stack, walk 2 token at once
  497. if opfStack.Len() > 0 {
  498. var nextToken efp.Token
  499. if i+1 < len(tokens) {
  500. nextToken = tokens[i+1]
  501. }
  502. // current token is args or range, skip next token, order required: parse reference first
  503. if token.TSubType == efp.TokenSubTypeRange {
  504. if !opftStack.Empty() {
  505. // parse reference: must reference at here
  506. result, err := f.parseReference(sheet, token.TValue)
  507. if err != nil {
  508. return efp.Token{TValue: formulaErrorNAME}, err
  509. }
  510. if result.Type != ArgString {
  511. return efp.Token{}, errors.New(formulaErrorVALUE)
  512. }
  513. opfdStack.Push(efp.Token{
  514. TType: efp.TokenTypeOperand,
  515. TSubType: efp.TokenSubTypeNumber,
  516. TValue: result.String,
  517. })
  518. continue
  519. }
  520. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  521. // parse reference: reference or range at here
  522. result, err := f.parseReference(sheet, token.TValue)
  523. if err != nil {
  524. return efp.Token{TValue: formulaErrorNAME}, err
  525. }
  526. if result.Type == ArgUnknown {
  527. return efp.Token{}, errors.New(formulaErrorVALUE)
  528. }
  529. argsStack.Peek().(*list.List).PushBack(result)
  530. continue
  531. }
  532. }
  533. // check current token is opft
  534. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  535. return efp.Token{}, err
  536. }
  537. // current token is arg
  538. if token.TType == efp.TokenTypeArgument {
  539. for !opftStack.Empty() {
  540. // calculate trigger
  541. topOpt := opftStack.Peek().(efp.Token)
  542. if err := calculate(opfdStack, topOpt); err != nil {
  543. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  544. }
  545. opftStack.Pop()
  546. }
  547. if !opfdStack.Empty() {
  548. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  549. }
  550. continue
  551. }
  552. // current token is logical
  553. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  554. }
  555. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  556. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  557. }
  558. // current token is text
  559. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  560. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  561. }
  562. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  563. return efp.Token{}, err
  564. }
  565. }
  566. }
  567. for optStack.Len() != 0 {
  568. topOpt := optStack.Peek().(efp.Token)
  569. if err = calculate(opdStack, topOpt); err != nil {
  570. return efp.Token{}, err
  571. }
  572. optStack.Pop()
  573. }
  574. if opdStack.Len() == 0 {
  575. return efp.Token{}, errors.New("formula not valid")
  576. }
  577. return opdStack.Peek().(efp.Token), err
  578. }
  579. // evalInfixExpFunc evaluate formula function in the infix expression.
  580. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  581. if !isFunctionStopToken(token) {
  582. return nil
  583. }
  584. // current token is function stop
  585. for !opftStack.Empty() {
  586. // calculate trigger
  587. topOpt := opftStack.Peek().(efp.Token)
  588. if err := calculate(opfdStack, topOpt); err != nil {
  589. return err
  590. }
  591. opftStack.Pop()
  592. }
  593. // push opfd to args
  594. if opfdStack.Len() > 0 {
  595. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  596. }
  597. // call formula function to evaluate
  598. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  599. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  600. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  601. if arg.Type == ArgError && opfStack.Len() == 1 {
  602. return errors.New(arg.Value())
  603. }
  604. argsStack.Pop()
  605. opfStack.Pop()
  606. if opfStack.Len() > 0 { // still in function stack
  607. if nextToken.TType == efp.TokenTypeOperatorInfix {
  608. // mathematics calculate in formula function
  609. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  610. } else {
  611. argsStack.Peek().(*list.List).PushBack(arg)
  612. }
  613. } else {
  614. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  615. }
  616. return nil
  617. }
  618. // calcPow evaluate exponentiation arithmetic operations.
  619. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  620. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  621. if err != nil {
  622. return err
  623. }
  624. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  625. if err != nil {
  626. return err
  627. }
  628. result := math.Pow(lOpdVal, rOpdVal)
  629. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  630. return nil
  631. }
  632. // calcEq evaluate equal arithmetic operations.
  633. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  634. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  635. return nil
  636. }
  637. // calcNEq evaluate not equal arithmetic operations.
  638. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  639. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  640. return nil
  641. }
  642. // calcL evaluate less than arithmetic operations.
  643. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  644. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  645. if err != nil {
  646. return err
  647. }
  648. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  649. if err != nil {
  650. return err
  651. }
  652. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  653. return nil
  654. }
  655. // calcLe evaluate less than or equal arithmetic operations.
  656. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  657. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  658. if err != nil {
  659. return err
  660. }
  661. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  662. if err != nil {
  663. return err
  664. }
  665. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  666. return nil
  667. }
  668. // calcG evaluate greater than or equal arithmetic operations.
  669. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  670. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  671. if err != nil {
  672. return err
  673. }
  674. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  675. if err != nil {
  676. return err
  677. }
  678. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  679. return nil
  680. }
  681. // calcGe evaluate greater than or equal arithmetic operations.
  682. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  683. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  684. if err != nil {
  685. return err
  686. }
  687. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  688. if err != nil {
  689. return err
  690. }
  691. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  692. return nil
  693. }
  694. // calcSplice evaluate splice '&' operations.
  695. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  696. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  697. return nil
  698. }
  699. // calcAdd evaluate addition arithmetic operations.
  700. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  701. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  702. if err != nil {
  703. return err
  704. }
  705. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  706. if err != nil {
  707. return err
  708. }
  709. result := lOpdVal + rOpdVal
  710. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  711. return nil
  712. }
  713. // calcSubtract evaluate subtraction arithmetic operations.
  714. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  715. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  716. if err != nil {
  717. return err
  718. }
  719. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  720. if err != nil {
  721. return err
  722. }
  723. result := lOpdVal - rOpdVal
  724. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  725. return nil
  726. }
  727. // calcMultiply evaluate multiplication arithmetic operations.
  728. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  729. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  730. if err != nil {
  731. return err
  732. }
  733. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  734. if err != nil {
  735. return err
  736. }
  737. result := lOpdVal * rOpdVal
  738. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  739. return nil
  740. }
  741. // calcDiv evaluate division arithmetic operations.
  742. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  743. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  744. if err != nil {
  745. return err
  746. }
  747. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  748. if err != nil {
  749. return err
  750. }
  751. result := lOpdVal / rOpdVal
  752. if rOpdVal == 0 {
  753. return errors.New(formulaErrorDIV)
  754. }
  755. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  756. return nil
  757. }
  758. // calculate evaluate basic arithmetic operations.
  759. func calculate(opdStack *Stack, opt efp.Token) error {
  760. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  761. if opdStack.Len() < 1 {
  762. return errors.New("formula not valid")
  763. }
  764. opd := opdStack.Pop().(efp.Token)
  765. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  766. if err != nil {
  767. return err
  768. }
  769. result := 0 - opdVal
  770. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  771. }
  772. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  773. "^": calcPow,
  774. "*": calcMultiply,
  775. "/": calcDiv,
  776. "+": calcAdd,
  777. "=": calcEq,
  778. "<>": calcNEq,
  779. "<": calcL,
  780. "<=": calcLe,
  781. ">": calcG,
  782. ">=": calcGe,
  783. "&": calcSplice,
  784. }
  785. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  786. if opdStack.Len() < 2 {
  787. return errors.New("formula not valid")
  788. }
  789. rOpd := opdStack.Pop().(efp.Token)
  790. lOpd := opdStack.Pop().(efp.Token)
  791. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  792. return err
  793. }
  794. }
  795. fn, ok := tokenCalcFunc[opt.TValue]
  796. if ok {
  797. if opdStack.Len() < 2 {
  798. return errors.New("formula not valid")
  799. }
  800. rOpd := opdStack.Pop().(efp.Token)
  801. lOpd := opdStack.Pop().(efp.Token)
  802. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  803. return err
  804. }
  805. }
  806. return nil
  807. }
  808. // parseOperatorPrefixToken parse operator prefix token.
  809. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  810. if optStack.Len() == 0 {
  811. optStack.Push(token)
  812. } else {
  813. tokenPriority := getPriority(token)
  814. topOpt := optStack.Peek().(efp.Token)
  815. topOptPriority := getPriority(topOpt)
  816. if tokenPriority > topOptPriority {
  817. optStack.Push(token)
  818. } else {
  819. for tokenPriority <= topOptPriority {
  820. optStack.Pop()
  821. if err = calculate(opdStack, topOpt); err != nil {
  822. return
  823. }
  824. if optStack.Len() > 0 {
  825. topOpt = optStack.Peek().(efp.Token)
  826. topOptPriority = getPriority(topOpt)
  827. continue
  828. }
  829. break
  830. }
  831. optStack.Push(token)
  832. }
  833. }
  834. return
  835. }
  836. // isFunctionStartToken determine if the token is function stop.
  837. func isFunctionStartToken(token efp.Token) bool {
  838. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  839. }
  840. // isFunctionStopToken determine if the token is function stop.
  841. func isFunctionStopToken(token efp.Token) bool {
  842. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  843. }
  844. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  845. func isBeginParenthesesToken(token efp.Token) bool {
  846. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  847. }
  848. // isEndParenthesesToken determine if the token is end parentheses: ).
  849. func isEndParenthesesToken(token efp.Token) bool {
  850. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  851. }
  852. // isOperatorPrefixToken determine if the token is parse operator prefix
  853. // token.
  854. func isOperatorPrefixToken(token efp.Token) bool {
  855. _, ok := tokenPriority[token.TValue]
  856. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  857. return true
  858. }
  859. return false
  860. }
  861. // getDefinedNameRefTo convert defined name to reference range.
  862. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  863. for _, definedName := range f.GetDefinedName() {
  864. if definedName.Name == definedNameName {
  865. refTo = definedName.RefersTo
  866. // worksheet scope takes precedence over scope workbook when both definedNames exist
  867. if definedName.Scope == currentSheet {
  868. break
  869. }
  870. }
  871. }
  872. return refTo
  873. }
  874. // parseToken parse basic arithmetic operator priority and evaluate based on
  875. // operators and operands.
  876. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  877. // parse reference: must reference at here
  878. if token.TSubType == efp.TokenSubTypeRange {
  879. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  880. if refTo != "" {
  881. token.TValue = refTo
  882. }
  883. result, err := f.parseReference(sheet, token.TValue)
  884. if err != nil {
  885. return errors.New(formulaErrorNAME)
  886. }
  887. if result.Type != ArgString {
  888. return errors.New(formulaErrorVALUE)
  889. }
  890. token.TValue = result.String
  891. token.TType = efp.TokenTypeOperand
  892. token.TSubType = efp.TokenSubTypeNumber
  893. }
  894. if isOperatorPrefixToken(token) {
  895. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  896. return err
  897. }
  898. }
  899. if isBeginParenthesesToken(token) { // (
  900. optStack.Push(token)
  901. }
  902. if isEndParenthesesToken(token) { // )
  903. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  904. topOpt := optStack.Peek().(efp.Token)
  905. if err := calculate(opdStack, topOpt); err != nil {
  906. return err
  907. }
  908. optStack.Pop()
  909. }
  910. optStack.Pop()
  911. }
  912. // opd
  913. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  914. opdStack.Push(token)
  915. }
  916. return nil
  917. }
  918. // parseReference parse reference and extract values by given reference
  919. // characters and default sheet name.
  920. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  921. reference = strings.Replace(reference, "$", "", -1)
  922. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  923. for _, ref := range strings.Split(reference, ":") {
  924. tokens := strings.Split(ref, "!")
  925. cr := cellRef{}
  926. if len(tokens) == 2 { // have a worksheet name
  927. cr.Sheet = tokens[0]
  928. // cast to cell coordinates
  929. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  930. // cast to column
  931. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  932. // cast to row
  933. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  934. err = newInvalidColumnNameError(tokens[1])
  935. return
  936. }
  937. cr.Col = TotalColumns
  938. }
  939. }
  940. if refs.Len() > 0 {
  941. e := refs.Back()
  942. cellRefs.PushBack(e.Value.(cellRef))
  943. refs.Remove(e)
  944. }
  945. refs.PushBack(cr)
  946. continue
  947. }
  948. // cast to cell coordinates
  949. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  950. // cast to column
  951. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  952. // cast to row
  953. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  954. err = newInvalidColumnNameError(tokens[0])
  955. return
  956. }
  957. cr.Col = TotalColumns
  958. }
  959. cellRanges.PushBack(cellRange{
  960. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  961. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  962. })
  963. cellRefs.Init()
  964. arg, err = f.rangeResolver(cellRefs, cellRanges)
  965. return
  966. }
  967. e := refs.Back()
  968. if e == nil {
  969. cr.Sheet = sheet
  970. refs.PushBack(cr)
  971. continue
  972. }
  973. cellRanges.PushBack(cellRange{
  974. From: e.Value.(cellRef),
  975. To: cr,
  976. })
  977. refs.Remove(e)
  978. }
  979. if refs.Len() > 0 {
  980. e := refs.Back()
  981. cellRefs.PushBack(e.Value.(cellRef))
  982. refs.Remove(e)
  983. }
  984. arg, err = f.rangeResolver(cellRefs, cellRanges)
  985. return
  986. }
  987. // prepareValueRange prepare value range.
  988. func prepareValueRange(cr cellRange, valueRange []int) {
  989. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  990. valueRange[0] = cr.From.Row
  991. }
  992. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  993. valueRange[2] = cr.From.Col
  994. }
  995. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  996. valueRange[1] = cr.To.Row
  997. }
  998. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  999. valueRange[3] = cr.To.Col
  1000. }
  1001. }
  1002. // prepareValueRef prepare value reference.
  1003. func prepareValueRef(cr cellRef, valueRange []int) {
  1004. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  1005. valueRange[0] = cr.Row
  1006. }
  1007. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  1008. valueRange[2] = cr.Col
  1009. }
  1010. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  1011. valueRange[1] = cr.Row
  1012. }
  1013. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1014. valueRange[3] = cr.Col
  1015. }
  1016. }
  1017. // rangeResolver extract value as string from given reference and range list.
  1018. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1019. // be reference A1:B3.
  1020. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1021. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1022. // value range order: from row, to row, from column, to column
  1023. valueRange := []int{0, 0, 0, 0}
  1024. var sheet string
  1025. // prepare value range
  1026. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1027. cr := temp.Value.(cellRange)
  1028. if cr.From.Sheet != cr.To.Sheet {
  1029. err = errors.New(formulaErrorVALUE)
  1030. }
  1031. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1032. _ = sortCoordinates(rng)
  1033. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1034. prepareValueRange(cr, valueRange)
  1035. if cr.From.Sheet != "" {
  1036. sheet = cr.From.Sheet
  1037. }
  1038. }
  1039. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1040. cr := temp.Value.(cellRef)
  1041. if cr.Sheet != "" {
  1042. sheet = cr.Sheet
  1043. }
  1044. prepareValueRef(cr, valueRange)
  1045. }
  1046. // extract value from ranges
  1047. if cellRanges.Len() > 0 {
  1048. arg.Type = ArgMatrix
  1049. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1050. var matrixRow = []formulaArg{}
  1051. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1052. var cell, value string
  1053. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1054. return
  1055. }
  1056. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1057. return
  1058. }
  1059. matrixRow = append(matrixRow, formulaArg{
  1060. String: value,
  1061. Type: ArgString,
  1062. })
  1063. }
  1064. arg.Matrix = append(arg.Matrix, matrixRow)
  1065. }
  1066. return
  1067. }
  1068. // extract value from references
  1069. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1070. cr := temp.Value.(cellRef)
  1071. var cell string
  1072. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1073. return
  1074. }
  1075. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1076. return
  1077. }
  1078. arg.Type = ArgString
  1079. }
  1080. return
  1081. }
  1082. // callFuncByName calls the no error or only error return function with
  1083. // reflect by given receiver, name and parameters.
  1084. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1085. function := reflect.ValueOf(receiver).MethodByName(name)
  1086. if function.IsValid() {
  1087. rt := function.Call(params)
  1088. if len(rt) == 0 {
  1089. return
  1090. }
  1091. arg = rt[0].Interface().(formulaArg)
  1092. return
  1093. }
  1094. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1095. }
  1096. // formulaCriteriaParser parse formula criteria.
  1097. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1098. fc = &formulaCriteria{}
  1099. if exp == "" {
  1100. return
  1101. }
  1102. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1103. fc.Type, fc.Condition = criteriaEq, match[1]
  1104. return
  1105. }
  1106. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1107. fc.Type, fc.Condition = criteriaEq, match[1]
  1108. return
  1109. }
  1110. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1111. fc.Type, fc.Condition = criteriaLe, match[1]
  1112. return
  1113. }
  1114. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1115. fc.Type, fc.Condition = criteriaGe, match[1]
  1116. return
  1117. }
  1118. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1119. fc.Type, fc.Condition = criteriaL, match[1]
  1120. return
  1121. }
  1122. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1123. fc.Type, fc.Condition = criteriaG, match[1]
  1124. return
  1125. }
  1126. if strings.Contains(exp, "*") {
  1127. if strings.HasPrefix(exp, "*") {
  1128. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1129. }
  1130. if strings.HasSuffix(exp, "*") {
  1131. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1132. }
  1133. return
  1134. }
  1135. fc.Type, fc.Condition = criteriaEq, exp
  1136. return
  1137. }
  1138. // formulaCriteriaEval evaluate formula criteria expression.
  1139. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1140. var value, expected float64
  1141. var e error
  1142. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1143. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1144. return
  1145. }
  1146. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1147. return
  1148. }
  1149. return
  1150. }
  1151. switch criteria.Type {
  1152. case criteriaEq:
  1153. return val == criteria.Condition, err
  1154. case criteriaLe:
  1155. value, expected, e = prepareValue(val, criteria.Condition)
  1156. return value <= expected && e == nil, err
  1157. case criteriaGe:
  1158. value, expected, e = prepareValue(val, criteria.Condition)
  1159. return value >= expected && e == nil, err
  1160. case criteriaL:
  1161. value, expected, e = prepareValue(val, criteria.Condition)
  1162. return value < expected && e == nil, err
  1163. case criteriaG:
  1164. value, expected, e = prepareValue(val, criteria.Condition)
  1165. return value > expected && e == nil, err
  1166. case criteriaBeg:
  1167. return strings.HasPrefix(val, criteria.Condition), err
  1168. case criteriaEnd:
  1169. return strings.HasSuffix(val, criteria.Condition), err
  1170. }
  1171. return
  1172. }
  1173. // Engineering Functions
  1174. // BESSELI function the modified Bessel function, which is equivalent to the
  1175. // Bessel function evaluated for purely imaginary arguments. The syntax of
  1176. // the Besseli function is:
  1177. //
  1178. // BESSELI(x,n)
  1179. //
  1180. func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
  1181. if argsList.Len() != 2 {
  1182. return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
  1183. }
  1184. return fn.bassel(argsList, true)
  1185. }
  1186. // BESSELJ function returns the Bessel function, Jn(x), for a specified order
  1187. // and value of x. The syntax of the function is:
  1188. //
  1189. // BESSELJ(x,n)
  1190. //
  1191. func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
  1192. if argsList.Len() != 2 {
  1193. return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
  1194. }
  1195. return fn.bassel(argsList, false)
  1196. }
  1197. // bassel is an implementation of the formula function BESSELI and BESSELJ.
  1198. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
  1199. x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1200. if x.Type != ArgNumber {
  1201. return x
  1202. }
  1203. if n.Type != ArgNumber {
  1204. return n
  1205. }
  1206. max, x1 := 100, x.Number*0.5
  1207. x2 := x1 * x1
  1208. x1 = math.Pow(x1, n.Number)
  1209. n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
  1210. result := x1 / n1
  1211. t := result * 0.9
  1212. for result != t && max != 0 {
  1213. x1 *= x2
  1214. n3++
  1215. n1 *= n3
  1216. n4++
  1217. n2 *= n4
  1218. t = result
  1219. if modfied || add {
  1220. result += (x1 / n1 / n2)
  1221. } else {
  1222. result -= (x1 / n1 / n2)
  1223. }
  1224. max--
  1225. add = !add
  1226. }
  1227. return newNumberFormulaArg(result)
  1228. }
  1229. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1230. // The syntax of the function is:
  1231. //
  1232. // BIN2DEC(number)
  1233. //
  1234. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1235. if argsList.Len() != 1 {
  1236. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1237. }
  1238. token := argsList.Front().Value.(formulaArg)
  1239. number := token.ToNumber()
  1240. if number.Type != ArgNumber {
  1241. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1242. }
  1243. return fn.bin2dec(token.Value())
  1244. }
  1245. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1246. // (Base 16) number. The syntax of the function is:
  1247. //
  1248. // BIN2HEX(number,[places])
  1249. //
  1250. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1251. if argsList.Len() < 1 {
  1252. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1253. }
  1254. if argsList.Len() > 2 {
  1255. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1256. }
  1257. token := argsList.Front().Value.(formulaArg)
  1258. number := token.ToNumber()
  1259. if number.Type != ArgNumber {
  1260. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1261. }
  1262. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1263. if decimal.Type != ArgNumber {
  1264. return decimal
  1265. }
  1266. newList.PushBack(decimal)
  1267. if argsList.Len() == 2 {
  1268. newList.PushBack(argsList.Back().Value.(formulaArg))
  1269. }
  1270. return fn.dec2x("BIN2HEX", newList)
  1271. }
  1272. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1273. // number. The syntax of the function is:
  1274. //
  1275. // BIN2OCT(number,[places])
  1276. //
  1277. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1278. if argsList.Len() < 1 {
  1279. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1280. }
  1281. if argsList.Len() > 2 {
  1282. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1283. }
  1284. token := argsList.Front().Value.(formulaArg)
  1285. number := token.ToNumber()
  1286. if number.Type != ArgNumber {
  1287. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1288. }
  1289. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1290. if decimal.Type != ArgNumber {
  1291. return decimal
  1292. }
  1293. newList.PushBack(decimal)
  1294. if argsList.Len() == 2 {
  1295. newList.PushBack(argsList.Back().Value.(formulaArg))
  1296. }
  1297. return fn.dec2x("BIN2OCT", newList)
  1298. }
  1299. // bin2dec is an implementation of the formula function BIN2DEC.
  1300. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1301. decimal, length := 0.0, len(number)
  1302. for i := length; i > 0; i-- {
  1303. s := string(number[length-i])
  1304. if i == 10 && s == "1" {
  1305. decimal += math.Pow(-2.0, float64(i-1))
  1306. continue
  1307. }
  1308. if s == "1" {
  1309. decimal += math.Pow(2.0, float64(i-1))
  1310. continue
  1311. }
  1312. if s != "0" {
  1313. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1314. }
  1315. }
  1316. return newNumberFormulaArg(decimal)
  1317. }
  1318. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1319. // syntax of the function is:
  1320. //
  1321. // BITAND(number1,number2)
  1322. //
  1323. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1324. return fn.bitwise("BITAND", argsList)
  1325. }
  1326. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1327. // number of bits. The syntax of the function is:
  1328. //
  1329. // BITLSHIFT(number1,shift_amount)
  1330. //
  1331. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1332. return fn.bitwise("BITLSHIFT", argsList)
  1333. }
  1334. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1335. // syntax of the function is:
  1336. //
  1337. // BITOR(number1,number2)
  1338. //
  1339. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1340. return fn.bitwise("BITOR", argsList)
  1341. }
  1342. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1343. // number of bits. The syntax of the function is:
  1344. //
  1345. // BITRSHIFT(number1,shift_amount)
  1346. //
  1347. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1348. return fn.bitwise("BITRSHIFT", argsList)
  1349. }
  1350. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1351. // integers. The syntax of the function is:
  1352. //
  1353. // BITXOR(number1,number2)
  1354. //
  1355. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1356. return fn.bitwise("BITXOR", argsList)
  1357. }
  1358. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1359. // BITOR, BITRSHIFT and BITXOR.
  1360. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1361. if argsList.Len() != 2 {
  1362. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1363. }
  1364. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1365. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1366. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1367. }
  1368. max := math.Pow(2, 48) - 1
  1369. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1370. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1371. }
  1372. bitwiseFuncMap := map[string]func(a, b int) int{
  1373. "BITAND": func(a, b int) int { return a & b },
  1374. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1375. "BITOR": func(a, b int) int { return a | b },
  1376. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1377. "BITXOR": func(a, b int) int { return a ^ b },
  1378. }
  1379. bitwiseFunc := bitwiseFuncMap[name]
  1380. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1381. }
  1382. // COMPLEX function takes two arguments, representing the real and the
  1383. // imaginary coefficients of a complex number, and from these, creates a
  1384. // complex number. The syntax of the function is:
  1385. //
  1386. // COMPLEX(real_num,i_num,[suffix])
  1387. //
  1388. func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
  1389. if argsList.Len() < 2 {
  1390. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
  1391. }
  1392. if argsList.Len() > 3 {
  1393. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
  1394. }
  1395. real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
  1396. if real.Type != ArgNumber {
  1397. return real
  1398. }
  1399. if i.Type != ArgNumber {
  1400. return i
  1401. }
  1402. if argsList.Len() == 3 {
  1403. if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
  1404. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1405. }
  1406. }
  1407. return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))
  1408. }
  1409. // cmplx2str replace complex number string characters.
  1410. func cmplx2str(c, suffix string) string {
  1411. if c == "(0+0i)" || c == "(0-0i)" {
  1412. return "0"
  1413. }
  1414. c = strings.TrimPrefix(c, "(")
  1415. c = strings.TrimPrefix(c, "+0+")
  1416. c = strings.TrimPrefix(c, "-0+")
  1417. c = strings.TrimSuffix(c, ")")
  1418. c = strings.TrimPrefix(c, "0+")
  1419. if strings.HasPrefix(c, "0-") {
  1420. c = "-" + strings.TrimPrefix(c, "0-")
  1421. }
  1422. c = strings.TrimPrefix(c, "0+")
  1423. c = strings.TrimSuffix(c, "+0i")
  1424. c = strings.TrimSuffix(c, "-0i")
  1425. c = strings.NewReplacer("+1i", "i", "-1i", "-i").Replace(c)
  1426. c = strings.Replace(c, "i", suffix, -1)
  1427. return c
  1428. }
  1429. // str2cmplx convert complex number string characters.
  1430. func str2cmplx(c string) string {
  1431. c = strings.Replace(c, "j", "i", -1)
  1432. if c == "i" {
  1433. c = "1i"
  1434. }
  1435. c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)
  1436. return c
  1437. }
  1438. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1439. // The syntax of the function is:
  1440. //
  1441. // DEC2BIN(number,[places])
  1442. //
  1443. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1444. return fn.dec2x("DEC2BIN", argsList)
  1445. }
  1446. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1447. // number. The syntax of the function is:
  1448. //
  1449. // DEC2HEX(number,[places])
  1450. //
  1451. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1452. return fn.dec2x("DEC2HEX", argsList)
  1453. }
  1454. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1455. // The syntax of the function is:
  1456. //
  1457. // DEC2OCT(number,[places])
  1458. //
  1459. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1460. return fn.dec2x("DEC2OCT", argsList)
  1461. }
  1462. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1463. // DEC2OCT.
  1464. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1465. if argsList.Len() < 1 {
  1466. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1467. }
  1468. if argsList.Len() > 2 {
  1469. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1470. }
  1471. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1472. if decimal.Type != ArgNumber {
  1473. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1474. }
  1475. maxLimitMap := map[string]float64{
  1476. "DEC2BIN": 511,
  1477. "HEX2BIN": 511,
  1478. "OCT2BIN": 511,
  1479. "BIN2HEX": 549755813887,
  1480. "DEC2HEX": 549755813887,
  1481. "OCT2HEX": 549755813887,
  1482. "BIN2OCT": 536870911,
  1483. "DEC2OCT": 536870911,
  1484. "HEX2OCT": 536870911,
  1485. }
  1486. minLimitMap := map[string]float64{
  1487. "DEC2BIN": -512,
  1488. "HEX2BIN": -512,
  1489. "OCT2BIN": -512,
  1490. "BIN2HEX": -549755813888,
  1491. "DEC2HEX": -549755813888,
  1492. "OCT2HEX": -549755813888,
  1493. "BIN2OCT": -536870912,
  1494. "DEC2OCT": -536870912,
  1495. "HEX2OCT": -536870912,
  1496. }
  1497. baseMap := map[string]int{
  1498. "DEC2BIN": 2,
  1499. "HEX2BIN": 2,
  1500. "OCT2BIN": 2,
  1501. "BIN2HEX": 16,
  1502. "DEC2HEX": 16,
  1503. "OCT2HEX": 16,
  1504. "BIN2OCT": 8,
  1505. "DEC2OCT": 8,
  1506. "HEX2OCT": 8,
  1507. }
  1508. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1509. base := baseMap[name]
  1510. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1511. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1512. }
  1513. n := int64(decimal.Number)
  1514. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1515. if argsList.Len() == 2 {
  1516. places := argsList.Back().Value.(formulaArg).ToNumber()
  1517. if places.Type != ArgNumber {
  1518. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1519. }
  1520. binaryPlaces := len(binary)
  1521. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1522. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1523. }
  1524. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1525. }
  1526. if decimal.Number < 0 && len(binary) > 10 {
  1527. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1528. }
  1529. return newStringFormulaArg(strings.ToUpper(binary))
  1530. }
  1531. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1532. // (Base 2) number. The syntax of the function is:
  1533. //
  1534. // HEX2BIN(number,[places])
  1535. //
  1536. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1537. if argsList.Len() < 1 {
  1538. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1539. }
  1540. if argsList.Len() > 2 {
  1541. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1542. }
  1543. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1544. if decimal.Type != ArgNumber {
  1545. return decimal
  1546. }
  1547. newList.PushBack(decimal)
  1548. if argsList.Len() == 2 {
  1549. newList.PushBack(argsList.Back().Value.(formulaArg))
  1550. }
  1551. return fn.dec2x("HEX2BIN", newList)
  1552. }
  1553. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1554. // number. The syntax of the function is:
  1555. //
  1556. // HEX2DEC(number)
  1557. //
  1558. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1559. if argsList.Len() != 1 {
  1560. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1561. }
  1562. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1563. }
  1564. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1565. // (Base 8) number. The syntax of the function is:
  1566. //
  1567. // HEX2OCT(number,[places])
  1568. //
  1569. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1570. if argsList.Len() < 1 {
  1571. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1572. }
  1573. if argsList.Len() > 2 {
  1574. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1575. }
  1576. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1577. if decimal.Type != ArgNumber {
  1578. return decimal
  1579. }
  1580. newList.PushBack(decimal)
  1581. if argsList.Len() == 2 {
  1582. newList.PushBack(argsList.Back().Value.(formulaArg))
  1583. }
  1584. return fn.dec2x("HEX2OCT", newList)
  1585. }
  1586. // hex2dec is an implementation of the formula function HEX2DEC.
  1587. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1588. decimal, length := 0.0, len(number)
  1589. for i := length; i > 0; i-- {
  1590. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1591. if err != nil {
  1592. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1593. }
  1594. if i == 10 && string(number[length-i]) == "F" {
  1595. decimal += math.Pow(-16.0, float64(i-1))
  1596. continue
  1597. }
  1598. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1599. }
  1600. return newNumberFormulaArg(decimal)
  1601. }
  1602. // IMABS function returns the absolute value (the modulus) of a complex
  1603. // number. The syntax of the function is:
  1604. //
  1605. // IMABS(inumber)
  1606. //
  1607. func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
  1608. if argsList.Len() != 1 {
  1609. return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
  1610. }
  1611. inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
  1612. if err != nil {
  1613. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1614. }
  1615. return newNumberFormulaArg(cmplx.Abs(inumber))
  1616. }
  1617. // IMCOS function returns the cosine of a supplied complex number. The syntax
  1618. // of the function is:
  1619. //
  1620. // IMCOS(inumber)
  1621. //
  1622. func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
  1623. if argsList.Len() != 1 {
  1624. return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
  1625. }
  1626. inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
  1627. if err != nil {
  1628. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1629. }
  1630. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))
  1631. }
  1632. // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax
  1633. // of the function is:
  1634. //
  1635. // IMCOSH(inumber)
  1636. //
  1637. func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {
  1638. if argsList.Len() != 1 {
  1639. return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")
  1640. }
  1641. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1642. if err != nil {
  1643. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1644. }
  1645. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))
  1646. }
  1647. // IMCOT function returns the cotangent of a supplied complex number. The syntax
  1648. // of the function is:
  1649. //
  1650. // IMCOT(inumber)
  1651. //
  1652. func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {
  1653. if argsList.Len() != 1 {
  1654. return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")
  1655. }
  1656. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1657. if err != nil {
  1658. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1659. }
  1660. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))
  1661. }
  1662. // IMCSC function returns the cosecant of a supplied complex number. The syntax
  1663. // of the function is:
  1664. //
  1665. // IMCSC(inumber)
  1666. //
  1667. func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {
  1668. if argsList.Len() != 1 {
  1669. return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")
  1670. }
  1671. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1672. if err != nil {
  1673. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1674. }
  1675. num := 1 / cmplx.Sin(inumber)
  1676. if cmplx.IsInf(num) {
  1677. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1678. }
  1679. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1680. }
  1681. // IMCSCH function returns the hyperbolic cosecant of a supplied complex
  1682. // number. The syntax of the function is:
  1683. //
  1684. // IMCSCH(inumber)
  1685. //
  1686. func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
  1687. if argsList.Len() != 1 {
  1688. return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")
  1689. }
  1690. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1691. if err != nil {
  1692. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1693. }
  1694. num := 1 / cmplx.Sinh(inumber)
  1695. if cmplx.IsInf(num) {
  1696. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1697. }
  1698. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1699. }
  1700. // IMEXP function returns the exponential of a supplied complex number. The
  1701. // syntax of the function is:
  1702. //
  1703. // IMEXP(inumber)
  1704. //
  1705. func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {
  1706. if argsList.Len() != 1 {
  1707. return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")
  1708. }
  1709. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1710. if err != nil {
  1711. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1712. }
  1713. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))
  1714. }
  1715. // IMLN function returns the natural logarithm of a supplied complex number.
  1716. // The syntax of the function is:
  1717. //
  1718. // IMLN(inumber)
  1719. //
  1720. func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {
  1721. if argsList.Len() != 1 {
  1722. return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")
  1723. }
  1724. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1725. if err != nil {
  1726. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1727. }
  1728. num := cmplx.Log(inumber)
  1729. if cmplx.IsInf(num) {
  1730. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1731. }
  1732. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1733. }
  1734. // IMLOG10 function returns the common (base 10) logarithm of a supplied
  1735. // complex number. The syntax of the function is:
  1736. //
  1737. // IMLOG10(inumber)
  1738. //
  1739. func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {
  1740. if argsList.Len() != 1 {
  1741. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")
  1742. }
  1743. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1744. if err != nil {
  1745. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1746. }
  1747. num := cmplx.Log10(inumber)
  1748. if cmplx.IsInf(num) {
  1749. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1750. }
  1751. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1752. }
  1753. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1754. // number. The syntax of the function is:
  1755. //
  1756. // OCT2BIN(number,[places])
  1757. //
  1758. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1759. if argsList.Len() < 1 {
  1760. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1761. }
  1762. if argsList.Len() > 2 {
  1763. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1764. }
  1765. token := argsList.Front().Value.(formulaArg)
  1766. number := token.ToNumber()
  1767. if number.Type != ArgNumber {
  1768. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1769. }
  1770. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1771. newList.PushBack(decimal)
  1772. if argsList.Len() == 2 {
  1773. newList.PushBack(argsList.Back().Value.(formulaArg))
  1774. }
  1775. return fn.dec2x("OCT2BIN", newList)
  1776. }
  1777. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1778. // The syntax of the function is:
  1779. //
  1780. // OCT2DEC(number)
  1781. //
  1782. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1783. if argsList.Len() != 1 {
  1784. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1785. }
  1786. token := argsList.Front().Value.(formulaArg)
  1787. number := token.ToNumber()
  1788. if number.Type != ArgNumber {
  1789. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1790. }
  1791. return fn.oct2dec(token.Value())
  1792. }
  1793. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1794. // (Base 16) number. The syntax of the function is:
  1795. //
  1796. // OCT2HEX(number,[places])
  1797. //
  1798. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1799. if argsList.Len() < 1 {
  1800. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1801. }
  1802. if argsList.Len() > 2 {
  1803. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1804. }
  1805. token := argsList.Front().Value.(formulaArg)
  1806. number := token.ToNumber()
  1807. if number.Type != ArgNumber {
  1808. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1809. }
  1810. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1811. newList.PushBack(decimal)
  1812. if argsList.Len() == 2 {
  1813. newList.PushBack(argsList.Back().Value.(formulaArg))
  1814. }
  1815. return fn.dec2x("OCT2HEX", newList)
  1816. }
  1817. // oct2dec is an implementation of the formula function OCT2DEC.
  1818. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1819. decimal, length := 0.0, len(number)
  1820. for i := length; i > 0; i-- {
  1821. num, _ := strconv.Atoi(string(number[length-i]))
  1822. if i == 10 && string(number[length-i]) == "7" {
  1823. decimal += math.Pow(-8.0, float64(i-1))
  1824. continue
  1825. }
  1826. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1827. }
  1828. return newNumberFormulaArg(decimal)
  1829. }
  1830. // Math and Trigonometric Functions
  1831. // ABS function returns the absolute value of any supplied number. The syntax
  1832. // of the function is:
  1833. //
  1834. // ABS(number)
  1835. //
  1836. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1837. if argsList.Len() != 1 {
  1838. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1839. }
  1840. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1841. if arg.Type == ArgError {
  1842. return arg
  1843. }
  1844. return newNumberFormulaArg(math.Abs(arg.Number))
  1845. }
  1846. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1847. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1848. // the function is:
  1849. //
  1850. // ACOS(number)
  1851. //
  1852. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1853. if argsList.Len() != 1 {
  1854. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1855. }
  1856. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1857. if arg.Type == ArgError {
  1858. return arg
  1859. }
  1860. return newNumberFormulaArg(math.Acos(arg.Number))
  1861. }
  1862. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1863. // of the function is:
  1864. //
  1865. // ACOSH(number)
  1866. //
  1867. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1868. if argsList.Len() != 1 {
  1869. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1870. }
  1871. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1872. if arg.Type == ArgError {
  1873. return arg
  1874. }
  1875. return newNumberFormulaArg(math.Acosh(arg.Number))
  1876. }
  1877. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1878. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1879. // of the function is:
  1880. //
  1881. // ACOT(number)
  1882. //
  1883. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1884. if argsList.Len() != 1 {
  1885. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1886. }
  1887. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1888. if arg.Type == ArgError {
  1889. return arg
  1890. }
  1891. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1892. }
  1893. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1894. // value. The syntax of the function is:
  1895. //
  1896. // ACOTH(number)
  1897. //
  1898. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1899. if argsList.Len() != 1 {
  1900. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1901. }
  1902. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1903. if arg.Type == ArgError {
  1904. return arg
  1905. }
  1906. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1907. }
  1908. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1909. // of the function is:
  1910. //
  1911. // ARABIC(text)
  1912. //
  1913. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1914. if argsList.Len() != 1 {
  1915. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1916. }
  1917. text := argsList.Front().Value.(formulaArg).Value()
  1918. if len(text) > 255 {
  1919. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1920. }
  1921. text = strings.ToUpper(text)
  1922. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1923. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1924. for index >= 0 && text[index] == ' ' {
  1925. index--
  1926. }
  1927. for actualStart <= index && text[actualStart] == ' ' {
  1928. actualStart++
  1929. }
  1930. if actualStart <= index && text[actualStart] == '-' {
  1931. isNegative = true
  1932. actualStart++
  1933. }
  1934. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1935. for index >= actualStart {
  1936. startIndex = index
  1937. startChar := text[startIndex]
  1938. index--
  1939. for index >= actualStart && (text[index]|' ') == startChar {
  1940. index--
  1941. }
  1942. currentCharValue = charMap[rune(startChar)]
  1943. currentPartValue = (startIndex - index) * currentCharValue
  1944. if currentCharValue >= prevCharValue {
  1945. number += currentPartValue - subtractNumber
  1946. prevCharValue = currentCharValue
  1947. subtractNumber = 0
  1948. continue
  1949. }
  1950. subtractNumber += currentPartValue
  1951. }
  1952. if subtractNumber != 0 {
  1953. number -= subtractNumber
  1954. }
  1955. if isNegative {
  1956. number = -number
  1957. }
  1958. return newNumberFormulaArg(float64(number))
  1959. }
  1960. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1961. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1962. // of the function is:
  1963. //
  1964. // ASIN(number)
  1965. //
  1966. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1967. if argsList.Len() != 1 {
  1968. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1969. }
  1970. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1971. if arg.Type == ArgError {
  1972. return arg
  1973. }
  1974. return newNumberFormulaArg(math.Asin(arg.Number))
  1975. }
  1976. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1977. // The syntax of the function is:
  1978. //
  1979. // ASINH(number)
  1980. //
  1981. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1982. if argsList.Len() != 1 {
  1983. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1984. }
  1985. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1986. if arg.Type == ArgError {
  1987. return arg
  1988. }
  1989. return newNumberFormulaArg(math.Asinh(arg.Number))
  1990. }
  1991. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1992. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1993. // syntax of the function is:
  1994. //
  1995. // ATAN(number)
  1996. //
  1997. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1998. if argsList.Len() != 1 {
  1999. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  2000. }
  2001. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2002. if arg.Type == ArgError {
  2003. return arg
  2004. }
  2005. return newNumberFormulaArg(math.Atan(arg.Number))
  2006. }
  2007. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  2008. // number. The syntax of the function is:
  2009. //
  2010. // ATANH(number)
  2011. //
  2012. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  2013. if argsList.Len() != 1 {
  2014. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  2015. }
  2016. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2017. if arg.Type == ArgError {
  2018. return arg
  2019. }
  2020. return newNumberFormulaArg(math.Atanh(arg.Number))
  2021. }
  2022. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  2023. // given set of x and y coordinates, and returns an angle, in radians, between
  2024. // -π/2 and +π/2. The syntax of the function is:
  2025. //
  2026. // ATAN2(x_num,y_num)
  2027. //
  2028. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  2029. if argsList.Len() != 2 {
  2030. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  2031. }
  2032. x := argsList.Back().Value.(formulaArg).ToNumber()
  2033. if x.Type == ArgError {
  2034. return x
  2035. }
  2036. y := argsList.Front().Value.(formulaArg).ToNumber()
  2037. if y.Type == ArgError {
  2038. return y
  2039. }
  2040. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  2041. }
  2042. // BASE function converts a number into a supplied base (radix), and returns a
  2043. // text representation of the calculated value. The syntax of the function is:
  2044. //
  2045. // BASE(number,radix,[min_length])
  2046. //
  2047. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  2048. if argsList.Len() < 2 {
  2049. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  2050. }
  2051. if argsList.Len() > 3 {
  2052. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  2053. }
  2054. var minLength int
  2055. var err error
  2056. number := argsList.Front().Value.(formulaArg).ToNumber()
  2057. if number.Type == ArgError {
  2058. return number
  2059. }
  2060. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2061. if radix.Type == ArgError {
  2062. return radix
  2063. }
  2064. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  2065. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  2066. }
  2067. if argsList.Len() > 2 {
  2068. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2069. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2070. }
  2071. }
  2072. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  2073. if len(result) < minLength {
  2074. result = strings.Repeat("0", minLength-len(result)) + result
  2075. }
  2076. return newStringFormulaArg(strings.ToUpper(result))
  2077. }
  2078. // CEILING function rounds a supplied number away from zero, to the nearest
  2079. // multiple of a given number. The syntax of the function is:
  2080. //
  2081. // CEILING(number,significance)
  2082. //
  2083. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  2084. if argsList.Len() == 0 {
  2085. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  2086. }
  2087. if argsList.Len() > 2 {
  2088. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  2089. }
  2090. number, significance, res := 0.0, 1.0, 0.0
  2091. n := argsList.Front().Value.(formulaArg).ToNumber()
  2092. if n.Type == ArgError {
  2093. return n
  2094. }
  2095. number = n.Number
  2096. if number < 0 {
  2097. significance = -1
  2098. }
  2099. if argsList.Len() > 1 {
  2100. s := argsList.Back().Value.(formulaArg).ToNumber()
  2101. if s.Type == ArgError {
  2102. return s
  2103. }
  2104. significance = s.Number
  2105. }
  2106. if significance < 0 && number > 0 {
  2107. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  2108. }
  2109. if argsList.Len() == 1 {
  2110. return newNumberFormulaArg(math.Ceil(number))
  2111. }
  2112. number, res = math.Modf(number / significance)
  2113. if res > 0 {
  2114. number++
  2115. }
  2116. return newNumberFormulaArg(number * significance)
  2117. }
  2118. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  2119. // of significance. The syntax of the function is:
  2120. //
  2121. // CEILING.MATH(number,[significance],[mode])
  2122. //
  2123. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  2124. if argsList.Len() == 0 {
  2125. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  2126. }
  2127. if argsList.Len() > 3 {
  2128. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  2129. }
  2130. number, significance, mode := 0.0, 1.0, 1.0
  2131. n := argsList.Front().Value.(formulaArg).ToNumber()
  2132. if n.Type == ArgError {
  2133. return n
  2134. }
  2135. number = n.Number
  2136. if number < 0 {
  2137. significance = -1
  2138. }
  2139. if argsList.Len() > 1 {
  2140. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2141. if s.Type == ArgError {
  2142. return s
  2143. }
  2144. significance = s.Number
  2145. }
  2146. if argsList.Len() == 1 {
  2147. return newNumberFormulaArg(math.Ceil(number))
  2148. }
  2149. if argsList.Len() > 2 {
  2150. m := argsList.Back().Value.(formulaArg).ToNumber()
  2151. if m.Type == ArgError {
  2152. return m
  2153. }
  2154. mode = m.Number
  2155. }
  2156. val, res := math.Modf(number / significance)
  2157. if res != 0 {
  2158. if number > 0 {
  2159. val++
  2160. } else if mode < 0 {
  2161. val--
  2162. }
  2163. }
  2164. return newNumberFormulaArg(val * significance)
  2165. }
  2166. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  2167. // number's sign), to the nearest multiple of a given number. The syntax of
  2168. // the function is:
  2169. //
  2170. // CEILING.PRECISE(number,[significance])
  2171. //
  2172. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  2173. if argsList.Len() == 0 {
  2174. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  2175. }
  2176. if argsList.Len() > 2 {
  2177. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  2178. }
  2179. number, significance := 0.0, 1.0
  2180. n := argsList.Front().Value.(formulaArg).ToNumber()
  2181. if n.Type == ArgError {
  2182. return n
  2183. }
  2184. number = n.Number
  2185. if number < 0 {
  2186. significance = -1
  2187. }
  2188. if argsList.Len() == 1 {
  2189. return newNumberFormulaArg(math.Ceil(number))
  2190. }
  2191. if argsList.Len() > 1 {
  2192. s := argsList.Back().Value.(formulaArg).ToNumber()
  2193. if s.Type == ArgError {
  2194. return s
  2195. }
  2196. significance = s.Number
  2197. significance = math.Abs(significance)
  2198. if significance == 0 {
  2199. return newNumberFormulaArg(significance)
  2200. }
  2201. }
  2202. val, res := math.Modf(number / significance)
  2203. if res != 0 {
  2204. if number > 0 {
  2205. val++
  2206. }
  2207. }
  2208. return newNumberFormulaArg(val * significance)
  2209. }
  2210. // COMBIN function calculates the number of combinations (in any order) of a
  2211. // given number objects from a set. The syntax of the function is:
  2212. //
  2213. // COMBIN(number,number_chosen)
  2214. //
  2215. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  2216. if argsList.Len() != 2 {
  2217. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  2218. }
  2219. number, chosen, val := 0.0, 0.0, 1.0
  2220. n := argsList.Front().Value.(formulaArg).ToNumber()
  2221. if n.Type == ArgError {
  2222. return n
  2223. }
  2224. number = n.Number
  2225. c := argsList.Back().Value.(formulaArg).ToNumber()
  2226. if c.Type == ArgError {
  2227. return c
  2228. }
  2229. chosen = c.Number
  2230. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2231. if chosen > number {
  2232. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  2233. }
  2234. if chosen == number || chosen == 0 {
  2235. return newNumberFormulaArg(1)
  2236. }
  2237. for c := float64(1); c <= chosen; c++ {
  2238. val *= (number + 1 - c) / c
  2239. }
  2240. return newNumberFormulaArg(math.Ceil(val))
  2241. }
  2242. // COMBINA function calculates the number of combinations, with repetitions,
  2243. // of a given number objects from a set. The syntax of the function is:
  2244. //
  2245. // COMBINA(number,number_chosen)
  2246. //
  2247. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  2248. if argsList.Len() != 2 {
  2249. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  2250. }
  2251. var number, chosen float64
  2252. n := argsList.Front().Value.(formulaArg).ToNumber()
  2253. if n.Type == ArgError {
  2254. return n
  2255. }
  2256. number = n.Number
  2257. c := argsList.Back().Value.(formulaArg).ToNumber()
  2258. if c.Type == ArgError {
  2259. return c
  2260. }
  2261. chosen = c.Number
  2262. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2263. if number < chosen {
  2264. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  2265. }
  2266. if number == 0 {
  2267. return newNumberFormulaArg(number)
  2268. }
  2269. args := list.New()
  2270. args.PushBack(formulaArg{
  2271. String: fmt.Sprintf("%g", number+chosen-1),
  2272. Type: ArgString,
  2273. })
  2274. args.PushBack(formulaArg{
  2275. String: fmt.Sprintf("%g", number-1),
  2276. Type: ArgString,
  2277. })
  2278. return fn.COMBIN(args)
  2279. }
  2280. // COS function calculates the cosine of a given angle. The syntax of the
  2281. // function is:
  2282. //
  2283. // COS(number)
  2284. //
  2285. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2286. if argsList.Len() != 1 {
  2287. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2288. }
  2289. val := argsList.Front().Value.(formulaArg).ToNumber()
  2290. if val.Type == ArgError {
  2291. return val
  2292. }
  2293. return newNumberFormulaArg(math.Cos(val.Number))
  2294. }
  2295. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2296. // The syntax of the function is:
  2297. //
  2298. // COSH(number)
  2299. //
  2300. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2301. if argsList.Len() != 1 {
  2302. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2303. }
  2304. val := argsList.Front().Value.(formulaArg).ToNumber()
  2305. if val.Type == ArgError {
  2306. return val
  2307. }
  2308. return newNumberFormulaArg(math.Cosh(val.Number))
  2309. }
  2310. // COT function calculates the cotangent of a given angle. The syntax of the
  2311. // function is:
  2312. //
  2313. // COT(number)
  2314. //
  2315. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2316. if argsList.Len() != 1 {
  2317. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2318. }
  2319. val := argsList.Front().Value.(formulaArg).ToNumber()
  2320. if val.Type == ArgError {
  2321. return val
  2322. }
  2323. if val.Number == 0 {
  2324. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2325. }
  2326. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2327. }
  2328. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2329. // angle. The syntax of the function is:
  2330. //
  2331. // COTH(number)
  2332. //
  2333. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2334. if argsList.Len() != 1 {
  2335. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2336. }
  2337. val := argsList.Front().Value.(formulaArg).ToNumber()
  2338. if val.Type == ArgError {
  2339. return val
  2340. }
  2341. if val.Number == 0 {
  2342. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2343. }
  2344. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2345. }
  2346. // CSC function calculates the cosecant of a given angle. The syntax of the
  2347. // function is:
  2348. //
  2349. // CSC(number)
  2350. //
  2351. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2352. if argsList.Len() != 1 {
  2353. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2354. }
  2355. val := argsList.Front().Value.(formulaArg).ToNumber()
  2356. if val.Type == ArgError {
  2357. return val
  2358. }
  2359. if val.Number == 0 {
  2360. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2361. }
  2362. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2363. }
  2364. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2365. // angle. The syntax of the function is:
  2366. //
  2367. // CSCH(number)
  2368. //
  2369. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2370. if argsList.Len() != 1 {
  2371. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2372. }
  2373. val := argsList.Front().Value.(formulaArg).ToNumber()
  2374. if val.Type == ArgError {
  2375. return val
  2376. }
  2377. if val.Number == 0 {
  2378. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2379. }
  2380. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2381. }
  2382. // DECIMAL function converts a text representation of a number in a specified
  2383. // base, into a decimal value. The syntax of the function is:
  2384. //
  2385. // DECIMAL(text,radix)
  2386. //
  2387. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2388. if argsList.Len() != 2 {
  2389. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2390. }
  2391. var text = argsList.Front().Value.(formulaArg).String
  2392. var radix int
  2393. var err error
  2394. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2395. if err != nil {
  2396. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2397. }
  2398. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2399. text = text[2:]
  2400. }
  2401. val, err := strconv.ParseInt(text, radix, 64)
  2402. if err != nil {
  2403. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2404. }
  2405. return newNumberFormulaArg(float64(val))
  2406. }
  2407. // DEGREES function converts radians into degrees. The syntax of the function
  2408. // is:
  2409. //
  2410. // DEGREES(angle)
  2411. //
  2412. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2413. if argsList.Len() != 1 {
  2414. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2415. }
  2416. val := argsList.Front().Value.(formulaArg).ToNumber()
  2417. if val.Type == ArgError {
  2418. return val
  2419. }
  2420. if val.Number == 0 {
  2421. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2422. }
  2423. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2424. }
  2425. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2426. // positive number up and a negative number down), to the next even number.
  2427. // The syntax of the function is:
  2428. //
  2429. // EVEN(number)
  2430. //
  2431. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2432. if argsList.Len() != 1 {
  2433. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2434. }
  2435. number := argsList.Front().Value.(formulaArg).ToNumber()
  2436. if number.Type == ArgError {
  2437. return number
  2438. }
  2439. sign := math.Signbit(number.Number)
  2440. m, frac := math.Modf(number.Number / 2)
  2441. val := m * 2
  2442. if frac != 0 {
  2443. if !sign {
  2444. val += 2
  2445. } else {
  2446. val -= 2
  2447. }
  2448. }
  2449. return newNumberFormulaArg(val)
  2450. }
  2451. // EXP function calculates the value of the mathematical constant e, raised to
  2452. // the power of a given number. The syntax of the function is:
  2453. //
  2454. // EXP(number)
  2455. //
  2456. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2457. if argsList.Len() != 1 {
  2458. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2459. }
  2460. number := argsList.Front().Value.(formulaArg).ToNumber()
  2461. if number.Type == ArgError {
  2462. return number
  2463. }
  2464. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2465. }
  2466. // fact returns the factorial of a supplied number.
  2467. func fact(number float64) float64 {
  2468. val := float64(1)
  2469. for i := float64(2); i <= number; i++ {
  2470. val *= i
  2471. }
  2472. return val
  2473. }
  2474. // FACT function returns the factorial of a supplied number. The syntax of the
  2475. // function is:
  2476. //
  2477. // FACT(number)
  2478. //
  2479. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2480. if argsList.Len() != 1 {
  2481. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2482. }
  2483. number := argsList.Front().Value.(formulaArg).ToNumber()
  2484. if number.Type == ArgError {
  2485. return number
  2486. }
  2487. if number.Number < 0 {
  2488. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2489. }
  2490. return newNumberFormulaArg(fact(number.Number))
  2491. }
  2492. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2493. // syntax of the function is:
  2494. //
  2495. // FACTDOUBLE(number)
  2496. //
  2497. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2498. if argsList.Len() != 1 {
  2499. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2500. }
  2501. val := 1.0
  2502. number := argsList.Front().Value.(formulaArg).ToNumber()
  2503. if number.Type == ArgError {
  2504. return number
  2505. }
  2506. if number.Number < 0 {
  2507. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2508. }
  2509. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2510. val *= i
  2511. }
  2512. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2513. }
  2514. // FLOOR function rounds a supplied number towards zero to the nearest
  2515. // multiple of a specified significance. The syntax of the function is:
  2516. //
  2517. // FLOOR(number,significance)
  2518. //
  2519. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2520. if argsList.Len() != 2 {
  2521. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2522. }
  2523. number := argsList.Front().Value.(formulaArg).ToNumber()
  2524. if number.Type == ArgError {
  2525. return number
  2526. }
  2527. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2528. if significance.Type == ArgError {
  2529. return significance
  2530. }
  2531. if significance.Number < 0 && number.Number >= 0 {
  2532. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2533. }
  2534. val := number.Number
  2535. val, res := math.Modf(val / significance.Number)
  2536. if res != 0 {
  2537. if number.Number < 0 && res < 0 {
  2538. val--
  2539. }
  2540. }
  2541. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2542. }
  2543. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2544. // of significance. The syntax of the function is:
  2545. //
  2546. // FLOOR.MATH(number,[significance],[mode])
  2547. //
  2548. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2549. if argsList.Len() == 0 {
  2550. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2551. }
  2552. if argsList.Len() > 3 {
  2553. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2554. }
  2555. significance, mode := 1.0, 1.0
  2556. number := argsList.Front().Value.(formulaArg).ToNumber()
  2557. if number.Type == ArgError {
  2558. return number
  2559. }
  2560. if number.Number < 0 {
  2561. significance = -1
  2562. }
  2563. if argsList.Len() > 1 {
  2564. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2565. if s.Type == ArgError {
  2566. return s
  2567. }
  2568. significance = s.Number
  2569. }
  2570. if argsList.Len() == 1 {
  2571. return newNumberFormulaArg(math.Floor(number.Number))
  2572. }
  2573. if argsList.Len() > 2 {
  2574. m := argsList.Back().Value.(formulaArg).ToNumber()
  2575. if m.Type == ArgError {
  2576. return m
  2577. }
  2578. mode = m.Number
  2579. }
  2580. val, res := math.Modf(number.Number / significance)
  2581. if res != 0 && number.Number < 0 && mode > 0 {
  2582. val--
  2583. }
  2584. return newNumberFormulaArg(val * significance)
  2585. }
  2586. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2587. // multiple of significance. The syntax of the function is:
  2588. //
  2589. // FLOOR.PRECISE(number,[significance])
  2590. //
  2591. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2592. if argsList.Len() == 0 {
  2593. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2594. }
  2595. if argsList.Len() > 2 {
  2596. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2597. }
  2598. var significance float64
  2599. number := argsList.Front().Value.(formulaArg).ToNumber()
  2600. if number.Type == ArgError {
  2601. return number
  2602. }
  2603. if number.Number < 0 {
  2604. significance = -1
  2605. }
  2606. if argsList.Len() == 1 {
  2607. return newNumberFormulaArg(math.Floor(number.Number))
  2608. }
  2609. if argsList.Len() > 1 {
  2610. s := argsList.Back().Value.(formulaArg).ToNumber()
  2611. if s.Type == ArgError {
  2612. return s
  2613. }
  2614. significance = s.Number
  2615. significance = math.Abs(significance)
  2616. if significance == 0 {
  2617. return newNumberFormulaArg(significance)
  2618. }
  2619. }
  2620. val, res := math.Modf(number.Number / significance)
  2621. if res != 0 {
  2622. if number.Number < 0 {
  2623. val--
  2624. }
  2625. }
  2626. return newNumberFormulaArg(val * significance)
  2627. }
  2628. // gcd returns the greatest common divisor of two supplied integers.
  2629. func gcd(x, y float64) float64 {
  2630. x, y = math.Trunc(x), math.Trunc(y)
  2631. if x == 0 {
  2632. return y
  2633. }
  2634. if y == 0 {
  2635. return x
  2636. }
  2637. for x != y {
  2638. if x > y {
  2639. x = x - y
  2640. } else {
  2641. y = y - x
  2642. }
  2643. }
  2644. return x
  2645. }
  2646. // GCD function returns the greatest common divisor of two or more supplied
  2647. // integers. The syntax of the function is:
  2648. //
  2649. // GCD(number1,[number2],...)
  2650. //
  2651. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2652. if argsList.Len() == 0 {
  2653. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2654. }
  2655. var (
  2656. val float64
  2657. nums = []float64{}
  2658. )
  2659. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2660. token := arg.Value.(formulaArg)
  2661. switch token.Type {
  2662. case ArgString:
  2663. num := token.ToNumber()
  2664. if num.Type == ArgError {
  2665. return num
  2666. }
  2667. val = num.Number
  2668. case ArgNumber:
  2669. val = token.Number
  2670. }
  2671. nums = append(nums, val)
  2672. }
  2673. if nums[0] < 0 {
  2674. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2675. }
  2676. if len(nums) == 1 {
  2677. return newNumberFormulaArg(nums[0])
  2678. }
  2679. cd := nums[0]
  2680. for i := 1; i < len(nums); i++ {
  2681. if nums[i] < 0 {
  2682. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2683. }
  2684. cd = gcd(cd, nums[i])
  2685. }
  2686. return newNumberFormulaArg(cd)
  2687. }
  2688. // INT function truncates a supplied number down to the closest integer. The
  2689. // syntax of the function is:
  2690. //
  2691. // INT(number)
  2692. //
  2693. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2694. if argsList.Len() != 1 {
  2695. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2696. }
  2697. number := argsList.Front().Value.(formulaArg).ToNumber()
  2698. if number.Type == ArgError {
  2699. return number
  2700. }
  2701. val, frac := math.Modf(number.Number)
  2702. if frac < 0 {
  2703. val--
  2704. }
  2705. return newNumberFormulaArg(val)
  2706. }
  2707. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2708. // number's sign), to the nearest multiple of a supplied significance. The
  2709. // syntax of the function is:
  2710. //
  2711. // ISO.CEILING(number,[significance])
  2712. //
  2713. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2714. if argsList.Len() == 0 {
  2715. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2716. }
  2717. if argsList.Len() > 2 {
  2718. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2719. }
  2720. var significance float64
  2721. number := argsList.Front().Value.(formulaArg).ToNumber()
  2722. if number.Type == ArgError {
  2723. return number
  2724. }
  2725. if number.Number < 0 {
  2726. significance = -1
  2727. }
  2728. if argsList.Len() == 1 {
  2729. return newNumberFormulaArg(math.Ceil(number.Number))
  2730. }
  2731. if argsList.Len() > 1 {
  2732. s := argsList.Back().Value.(formulaArg).ToNumber()
  2733. if s.Type == ArgError {
  2734. return s
  2735. }
  2736. significance = s.Number
  2737. significance = math.Abs(significance)
  2738. if significance == 0 {
  2739. return newNumberFormulaArg(significance)
  2740. }
  2741. }
  2742. val, res := math.Modf(number.Number / significance)
  2743. if res != 0 {
  2744. if number.Number > 0 {
  2745. val++
  2746. }
  2747. }
  2748. return newNumberFormulaArg(val * significance)
  2749. }
  2750. // lcm returns the least common multiple of two supplied integers.
  2751. func lcm(a, b float64) float64 {
  2752. a = math.Trunc(a)
  2753. b = math.Trunc(b)
  2754. if a == 0 && b == 0 {
  2755. return 0
  2756. }
  2757. return a * b / gcd(a, b)
  2758. }
  2759. // LCM function returns the least common multiple of two or more supplied
  2760. // integers. The syntax of the function is:
  2761. //
  2762. // LCM(number1,[number2],...)
  2763. //
  2764. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2765. if argsList.Len() == 0 {
  2766. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2767. }
  2768. var (
  2769. val float64
  2770. nums = []float64{}
  2771. err error
  2772. )
  2773. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2774. token := arg.Value.(formulaArg)
  2775. switch token.Type {
  2776. case ArgString:
  2777. if token.String == "" {
  2778. continue
  2779. }
  2780. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2781. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2782. }
  2783. case ArgNumber:
  2784. val = token.Number
  2785. }
  2786. nums = append(nums, val)
  2787. }
  2788. if nums[0] < 0 {
  2789. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2790. }
  2791. if len(nums) == 1 {
  2792. return newNumberFormulaArg(nums[0])
  2793. }
  2794. cm := nums[0]
  2795. for i := 1; i < len(nums); i++ {
  2796. if nums[i] < 0 {
  2797. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2798. }
  2799. cm = lcm(cm, nums[i])
  2800. }
  2801. return newNumberFormulaArg(cm)
  2802. }
  2803. // LN function calculates the natural logarithm of a given number. The syntax
  2804. // of the function is:
  2805. //
  2806. // LN(number)
  2807. //
  2808. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2809. if argsList.Len() != 1 {
  2810. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2811. }
  2812. number := argsList.Front().Value.(formulaArg).ToNumber()
  2813. if number.Type == ArgError {
  2814. return number
  2815. }
  2816. return newNumberFormulaArg(math.Log(number.Number))
  2817. }
  2818. // LOG function calculates the logarithm of a given number, to a supplied
  2819. // base. The syntax of the function is:
  2820. //
  2821. // LOG(number,[base])
  2822. //
  2823. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2824. if argsList.Len() == 0 {
  2825. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2826. }
  2827. if argsList.Len() > 2 {
  2828. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2829. }
  2830. base := 10.0
  2831. number := argsList.Front().Value.(formulaArg).ToNumber()
  2832. if number.Type == ArgError {
  2833. return number
  2834. }
  2835. if argsList.Len() > 1 {
  2836. b := argsList.Back().Value.(formulaArg).ToNumber()
  2837. if b.Type == ArgError {
  2838. return b
  2839. }
  2840. base = b.Number
  2841. }
  2842. if number.Number == 0 {
  2843. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2844. }
  2845. if base == 0 {
  2846. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2847. }
  2848. if base == 1 {
  2849. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2850. }
  2851. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2852. }
  2853. // LOG10 function calculates the base 10 logarithm of a given number. The
  2854. // syntax of the function is:
  2855. //
  2856. // LOG10(number)
  2857. //
  2858. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2859. if argsList.Len() != 1 {
  2860. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2861. }
  2862. number := argsList.Front().Value.(formulaArg).ToNumber()
  2863. if number.Type == ArgError {
  2864. return number
  2865. }
  2866. return newNumberFormulaArg(math.Log10(number.Number))
  2867. }
  2868. // minor function implement a minor of a matrix A is the determinant of some
  2869. // smaller square matrix.
  2870. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2871. ret := [][]float64{}
  2872. for i := range sqMtx {
  2873. if i == 0 {
  2874. continue
  2875. }
  2876. row := []float64{}
  2877. for j := range sqMtx {
  2878. if j == idx {
  2879. continue
  2880. }
  2881. row = append(row, sqMtx[i][j])
  2882. }
  2883. ret = append(ret, row)
  2884. }
  2885. return ret
  2886. }
  2887. // det determinant of the 2x2 matrix.
  2888. func det(sqMtx [][]float64) float64 {
  2889. if len(sqMtx) == 2 {
  2890. m00 := sqMtx[0][0]
  2891. m01 := sqMtx[0][1]
  2892. m10 := sqMtx[1][0]
  2893. m11 := sqMtx[1][1]
  2894. return m00*m11 - m10*m01
  2895. }
  2896. var res, sgn float64 = 0, 1
  2897. for j := range sqMtx {
  2898. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2899. sgn *= -1
  2900. }
  2901. return res
  2902. }
  2903. // MDETERM calculates the determinant of a square matrix. The
  2904. // syntax of the function is:
  2905. //
  2906. // MDETERM(array)
  2907. //
  2908. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2909. var (
  2910. num float64
  2911. numMtx = [][]float64{}
  2912. err error
  2913. strMtx [][]formulaArg
  2914. )
  2915. if argsList.Len() < 1 {
  2916. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2917. }
  2918. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2919. var rows = len(strMtx)
  2920. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2921. if len(row) != rows {
  2922. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2923. }
  2924. numRow := []float64{}
  2925. for _, ele := range row {
  2926. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2927. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2928. }
  2929. numRow = append(numRow, num)
  2930. }
  2931. numMtx = append(numMtx, numRow)
  2932. }
  2933. return newNumberFormulaArg(det(numMtx))
  2934. }
  2935. // MOD function returns the remainder of a division between two supplied
  2936. // numbers. The syntax of the function is:
  2937. //
  2938. // MOD(number,divisor)
  2939. //
  2940. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2941. if argsList.Len() != 2 {
  2942. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2943. }
  2944. number := argsList.Front().Value.(formulaArg).ToNumber()
  2945. if number.Type == ArgError {
  2946. return number
  2947. }
  2948. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2949. if divisor.Type == ArgError {
  2950. return divisor
  2951. }
  2952. if divisor.Number == 0 {
  2953. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2954. }
  2955. trunc, rem := math.Modf(number.Number / divisor.Number)
  2956. if rem < 0 {
  2957. trunc--
  2958. }
  2959. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2960. }
  2961. // MROUND function rounds a supplied number up or down to the nearest multiple
  2962. // of a given number. The syntax of the function is:
  2963. //
  2964. // MROUND(number,multiple)
  2965. //
  2966. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2967. if argsList.Len() != 2 {
  2968. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2969. }
  2970. n := argsList.Front().Value.(formulaArg).ToNumber()
  2971. if n.Type == ArgError {
  2972. return n
  2973. }
  2974. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2975. if multiple.Type == ArgError {
  2976. return multiple
  2977. }
  2978. if multiple.Number == 0 {
  2979. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2980. }
  2981. if multiple.Number < 0 && n.Number > 0 ||
  2982. multiple.Number > 0 && n.Number < 0 {
  2983. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2984. }
  2985. number, res := math.Modf(n.Number / multiple.Number)
  2986. if math.Trunc(res+0.5) > 0 {
  2987. number++
  2988. }
  2989. return newNumberFormulaArg(number * multiple.Number)
  2990. }
  2991. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2992. // supplied values to the product of factorials of those values. The syntax of
  2993. // the function is:
  2994. //
  2995. // MULTINOMIAL(number1,[number2],...)
  2996. //
  2997. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2998. val, num, denom := 0.0, 0.0, 1.0
  2999. var err error
  3000. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3001. token := arg.Value.(formulaArg)
  3002. switch token.Type {
  3003. case ArgString:
  3004. if token.String == "" {
  3005. continue
  3006. }
  3007. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3008. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3009. }
  3010. case ArgNumber:
  3011. val = token.Number
  3012. }
  3013. num += val
  3014. denom *= fact(val)
  3015. }
  3016. return newNumberFormulaArg(fact(num) / denom)
  3017. }
  3018. // MUNIT function returns the unit matrix for a specified dimension. The
  3019. // syntax of the function is:
  3020. //
  3021. // MUNIT(dimension)
  3022. //
  3023. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  3024. if argsList.Len() != 1 {
  3025. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  3026. }
  3027. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  3028. if dimension.Type == ArgError || dimension.Number < 0 {
  3029. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  3030. }
  3031. matrix := make([][]formulaArg, 0, int(dimension.Number))
  3032. for i := 0; i < int(dimension.Number); i++ {
  3033. row := make([]formulaArg, int(dimension.Number))
  3034. for j := 0; j < int(dimension.Number); j++ {
  3035. if i == j {
  3036. row[j] = newNumberFormulaArg(1.0)
  3037. } else {
  3038. row[j] = newNumberFormulaArg(0.0)
  3039. }
  3040. }
  3041. matrix = append(matrix, row)
  3042. }
  3043. return newMatrixFormulaArg(matrix)
  3044. }
  3045. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  3046. // number up and a negative number down), to the next odd number. The syntax
  3047. // of the function is:
  3048. //
  3049. // ODD(number)
  3050. //
  3051. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  3052. if argsList.Len() != 1 {
  3053. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  3054. }
  3055. number := argsList.Back().Value.(formulaArg).ToNumber()
  3056. if number.Type == ArgError {
  3057. return number
  3058. }
  3059. if number.Number == 0 {
  3060. return newNumberFormulaArg(1)
  3061. }
  3062. sign := math.Signbit(number.Number)
  3063. m, frac := math.Modf((number.Number - 1) / 2)
  3064. val := m*2 + 1
  3065. if frac != 0 {
  3066. if !sign {
  3067. val += 2
  3068. } else {
  3069. val -= 2
  3070. }
  3071. }
  3072. return newNumberFormulaArg(val)
  3073. }
  3074. // PI function returns the value of the mathematical constant π (pi), accurate
  3075. // to 15 digits (14 decimal places). The syntax of the function is:
  3076. //
  3077. // PI()
  3078. //
  3079. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  3080. if argsList.Len() != 0 {
  3081. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  3082. }
  3083. return newNumberFormulaArg(math.Pi)
  3084. }
  3085. // POWER function calculates a given number, raised to a supplied power.
  3086. // The syntax of the function is:
  3087. //
  3088. // POWER(number,power)
  3089. //
  3090. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  3091. if argsList.Len() != 2 {
  3092. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  3093. }
  3094. x := argsList.Front().Value.(formulaArg).ToNumber()
  3095. if x.Type == ArgError {
  3096. return x
  3097. }
  3098. y := argsList.Back().Value.(formulaArg).ToNumber()
  3099. if y.Type == ArgError {
  3100. return y
  3101. }
  3102. if x.Number == 0 && y.Number == 0 {
  3103. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3104. }
  3105. if x.Number == 0 && y.Number < 0 {
  3106. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3107. }
  3108. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  3109. }
  3110. // PRODUCT function returns the product (multiplication) of a supplied set of
  3111. // numerical values. The syntax of the function is:
  3112. //
  3113. // PRODUCT(number1,[number2],...)
  3114. //
  3115. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  3116. val, product := 0.0, 1.0
  3117. var err error
  3118. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3119. token := arg.Value.(formulaArg)
  3120. switch token.Type {
  3121. case ArgUnknown:
  3122. continue
  3123. case ArgString:
  3124. if token.String == "" {
  3125. continue
  3126. }
  3127. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3128. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3129. }
  3130. product = product * val
  3131. case ArgNumber:
  3132. product = product * token.Number
  3133. case ArgMatrix:
  3134. for _, row := range token.Matrix {
  3135. for _, value := range row {
  3136. if value.String == "" {
  3137. continue
  3138. }
  3139. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3140. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3141. }
  3142. product = product * val
  3143. }
  3144. }
  3145. }
  3146. }
  3147. return newNumberFormulaArg(product)
  3148. }
  3149. // QUOTIENT function returns the integer portion of a division between two
  3150. // supplied numbers. The syntax of the function is:
  3151. //
  3152. // QUOTIENT(numerator,denominator)
  3153. //
  3154. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  3155. if argsList.Len() != 2 {
  3156. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  3157. }
  3158. x := argsList.Front().Value.(formulaArg).ToNumber()
  3159. if x.Type == ArgError {
  3160. return x
  3161. }
  3162. y := argsList.Back().Value.(formulaArg).ToNumber()
  3163. if y.Type == ArgError {
  3164. return y
  3165. }
  3166. if y.Number == 0 {
  3167. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3168. }
  3169. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  3170. }
  3171. // RADIANS function converts radians into degrees. The syntax of the function is:
  3172. //
  3173. // RADIANS(angle)
  3174. //
  3175. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  3176. if argsList.Len() != 1 {
  3177. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  3178. }
  3179. angle := argsList.Front().Value.(formulaArg).ToNumber()
  3180. if angle.Type == ArgError {
  3181. return angle
  3182. }
  3183. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  3184. }
  3185. // RAND function generates a random real number between 0 and 1. The syntax of
  3186. // the function is:
  3187. //
  3188. // RAND()
  3189. //
  3190. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  3191. if argsList.Len() != 0 {
  3192. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  3193. }
  3194. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  3195. }
  3196. // RANDBETWEEN function generates a random integer between two supplied
  3197. // integers. The syntax of the function is:
  3198. //
  3199. // RANDBETWEEN(bottom,top)
  3200. //
  3201. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  3202. if argsList.Len() != 2 {
  3203. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  3204. }
  3205. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  3206. if bottom.Type == ArgError {
  3207. return bottom
  3208. }
  3209. top := argsList.Back().Value.(formulaArg).ToNumber()
  3210. if top.Type == ArgError {
  3211. return top
  3212. }
  3213. if top.Number < bottom.Number {
  3214. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3215. }
  3216. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  3217. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  3218. }
  3219. // romanNumerals defined a numeral system that originated in ancient Rome and
  3220. // remained the usual way of writing numbers throughout Europe well into the
  3221. // Late Middle Ages.
  3222. type romanNumerals struct {
  3223. n float64
  3224. s string
  3225. }
  3226. var romanTable = [][]romanNumerals{
  3227. {
  3228. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  3229. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3230. },
  3231. {
  3232. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  3233. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3234. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3235. },
  3236. {
  3237. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  3238. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  3239. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3240. },
  3241. {
  3242. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  3243. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  3244. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  3245. {5, "V"}, {4, "IV"}, {1, "I"},
  3246. },
  3247. {
  3248. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  3249. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  3250. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3251. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3252. },
  3253. }
  3254. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  3255. // integer, the function returns a text string depicting the roman numeral
  3256. // form of the number. The syntax of the function is:
  3257. //
  3258. // ROMAN(number,[form])
  3259. //
  3260. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  3261. if argsList.Len() == 0 {
  3262. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  3263. }
  3264. if argsList.Len() > 2 {
  3265. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  3266. }
  3267. var form int
  3268. number := argsList.Front().Value.(formulaArg).ToNumber()
  3269. if number.Type == ArgError {
  3270. return number
  3271. }
  3272. if argsList.Len() > 1 {
  3273. f := argsList.Back().Value.(formulaArg).ToNumber()
  3274. if f.Type == ArgError {
  3275. return f
  3276. }
  3277. form = int(f.Number)
  3278. if form < 0 {
  3279. form = 0
  3280. } else if form > 4 {
  3281. form = 4
  3282. }
  3283. }
  3284. decimalTable := romanTable[0]
  3285. switch form {
  3286. case 1:
  3287. decimalTable = romanTable[1]
  3288. case 2:
  3289. decimalTable = romanTable[2]
  3290. case 3:
  3291. decimalTable = romanTable[3]
  3292. case 4:
  3293. decimalTable = romanTable[4]
  3294. }
  3295. val := math.Trunc(number.Number)
  3296. buf := bytes.Buffer{}
  3297. for _, r := range decimalTable {
  3298. for val >= r.n {
  3299. buf.WriteString(r.s)
  3300. val -= r.n
  3301. }
  3302. }
  3303. return newStringFormulaArg(buf.String())
  3304. }
  3305. type roundMode byte
  3306. const (
  3307. closest roundMode = iota
  3308. down
  3309. up
  3310. )
  3311. // round rounds a supplied number up or down.
  3312. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3313. var significance float64
  3314. if digits > 0 {
  3315. significance = math.Pow(1/10.0, digits)
  3316. } else {
  3317. significance = math.Pow(10.0, -digits)
  3318. }
  3319. val, res := math.Modf(number / significance)
  3320. switch mode {
  3321. case closest:
  3322. const eps = 0.499999999
  3323. if res >= eps {
  3324. val++
  3325. } else if res <= -eps {
  3326. val--
  3327. }
  3328. case down:
  3329. case up:
  3330. if res > 0 {
  3331. val++
  3332. } else if res < 0 {
  3333. val--
  3334. }
  3335. }
  3336. return val * significance
  3337. }
  3338. // ROUND function rounds a supplied number up or down, to a specified number
  3339. // of decimal places. The syntax of the function is:
  3340. //
  3341. // ROUND(number,num_digits)
  3342. //
  3343. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3344. if argsList.Len() != 2 {
  3345. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3346. }
  3347. number := argsList.Front().Value.(formulaArg).ToNumber()
  3348. if number.Type == ArgError {
  3349. return number
  3350. }
  3351. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3352. if digits.Type == ArgError {
  3353. return digits
  3354. }
  3355. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3356. }
  3357. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3358. // specified number of decimal places. The syntax of the function is:
  3359. //
  3360. // ROUNDDOWN(number,num_digits)
  3361. //
  3362. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3363. if argsList.Len() != 2 {
  3364. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3365. }
  3366. number := argsList.Front().Value.(formulaArg).ToNumber()
  3367. if number.Type == ArgError {
  3368. return number
  3369. }
  3370. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3371. if digits.Type == ArgError {
  3372. return digits
  3373. }
  3374. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3375. }
  3376. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3377. // specified number of decimal places. The syntax of the function is:
  3378. //
  3379. // ROUNDUP(number,num_digits)
  3380. //
  3381. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3382. if argsList.Len() != 2 {
  3383. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3384. }
  3385. number := argsList.Front().Value.(formulaArg).ToNumber()
  3386. if number.Type == ArgError {
  3387. return number
  3388. }
  3389. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3390. if digits.Type == ArgError {
  3391. return digits
  3392. }
  3393. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3394. }
  3395. // SEC function calculates the secant of a given angle. The syntax of the
  3396. // function is:
  3397. //
  3398. // SEC(number)
  3399. //
  3400. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3401. if argsList.Len() != 1 {
  3402. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3403. }
  3404. number := argsList.Front().Value.(formulaArg).ToNumber()
  3405. if number.Type == ArgError {
  3406. return number
  3407. }
  3408. return newNumberFormulaArg(math.Cos(number.Number))
  3409. }
  3410. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3411. // The syntax of the function is:
  3412. //
  3413. // SECH(number)
  3414. //
  3415. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3416. if argsList.Len() != 1 {
  3417. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3418. }
  3419. number := argsList.Front().Value.(formulaArg).ToNumber()
  3420. if number.Type == ArgError {
  3421. return number
  3422. }
  3423. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3424. }
  3425. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3426. // number. I.e. if the number is positive, the Sign function returns +1, if
  3427. // the number is negative, the function returns -1 and if the number is 0
  3428. // (zero), the function returns 0. The syntax of the function is:
  3429. //
  3430. // SIGN(number)
  3431. //
  3432. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3433. if argsList.Len() != 1 {
  3434. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3435. }
  3436. val := argsList.Front().Value.(formulaArg).ToNumber()
  3437. if val.Type == ArgError {
  3438. return val
  3439. }
  3440. if val.Number < 0 {
  3441. return newNumberFormulaArg(-1)
  3442. }
  3443. if val.Number > 0 {
  3444. return newNumberFormulaArg(1)
  3445. }
  3446. return newNumberFormulaArg(0)
  3447. }
  3448. // SIN function calculates the sine of a given angle. The syntax of the
  3449. // function is:
  3450. //
  3451. // SIN(number)
  3452. //
  3453. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3454. if argsList.Len() != 1 {
  3455. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3456. }
  3457. number := argsList.Front().Value.(formulaArg).ToNumber()
  3458. if number.Type == ArgError {
  3459. return number
  3460. }
  3461. return newNumberFormulaArg(math.Sin(number.Number))
  3462. }
  3463. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3464. // The syntax of the function is:
  3465. //
  3466. // SINH(number)
  3467. //
  3468. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3469. if argsList.Len() != 1 {
  3470. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3471. }
  3472. number := argsList.Front().Value.(formulaArg).ToNumber()
  3473. if number.Type == ArgError {
  3474. return number
  3475. }
  3476. return newNumberFormulaArg(math.Sinh(number.Number))
  3477. }
  3478. // SQRT function calculates the positive square root of a supplied number. The
  3479. // syntax of the function is:
  3480. //
  3481. // SQRT(number)
  3482. //
  3483. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3484. if argsList.Len() != 1 {
  3485. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3486. }
  3487. value := argsList.Front().Value.(formulaArg).ToNumber()
  3488. if value.Type == ArgError {
  3489. return value
  3490. }
  3491. if value.Number < 0 {
  3492. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3493. }
  3494. return newNumberFormulaArg(math.Sqrt(value.Number))
  3495. }
  3496. // SQRTPI function returns the square root of a supplied number multiplied by
  3497. // the mathematical constant, π. The syntax of the function is:
  3498. //
  3499. // SQRTPI(number)
  3500. //
  3501. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3502. if argsList.Len() != 1 {
  3503. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3504. }
  3505. number := argsList.Front().Value.(formulaArg).ToNumber()
  3506. if number.Type == ArgError {
  3507. return number
  3508. }
  3509. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3510. }
  3511. // STDEV function calculates the sample standard deviation of a supplied set
  3512. // of values. The syntax of the function is:
  3513. //
  3514. // STDEV(number1,[number2],...)
  3515. //
  3516. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3517. if argsList.Len() < 1 {
  3518. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3519. }
  3520. return fn.stdev(false, argsList)
  3521. }
  3522. // STDEVdotS function calculates the sample standard deviation of a supplied
  3523. // set of values. The syntax of the function is:
  3524. //
  3525. // STDEV.S(number1,[number2],...)
  3526. //
  3527. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3528. if argsList.Len() < 1 {
  3529. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3530. }
  3531. return fn.stdev(false, argsList)
  3532. }
  3533. // STDEVA function estimates standard deviation based on a sample. The
  3534. // standard deviation is a measure of how widely values are dispersed from
  3535. // the average value (the mean). The syntax of the function is:
  3536. //
  3537. // STDEVA(number1,[number2],...)
  3538. //
  3539. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3540. if argsList.Len() < 1 {
  3541. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3542. }
  3543. return fn.stdev(true, argsList)
  3544. }
  3545. // stdev is an implementation of the formula function STDEV and STDEVA.
  3546. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3547. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3548. if result == -1 {
  3549. result = math.Pow((n.Number - m.Number), 2)
  3550. } else {
  3551. result += math.Pow((n.Number - m.Number), 2)
  3552. }
  3553. count++
  3554. return result, count
  3555. }
  3556. count, result := -1.0, -1.0
  3557. var mean formulaArg
  3558. if stdeva {
  3559. mean = fn.AVERAGEA(argsList)
  3560. } else {
  3561. mean = fn.AVERAGE(argsList)
  3562. }
  3563. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3564. token := arg.Value.(formulaArg)
  3565. switch token.Type {
  3566. case ArgString, ArgNumber:
  3567. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3568. continue
  3569. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3570. num := token.ToBool()
  3571. if num.Type == ArgNumber {
  3572. result, count = pow(result, count, num, mean)
  3573. continue
  3574. }
  3575. } else {
  3576. num := token.ToNumber()
  3577. if num.Type == ArgNumber {
  3578. result, count = pow(result, count, num, mean)
  3579. }
  3580. }
  3581. case ArgList, ArgMatrix:
  3582. for _, row := range token.ToList() {
  3583. if row.Type == ArgNumber || row.Type == ArgString {
  3584. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3585. continue
  3586. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3587. num := row.ToBool()
  3588. if num.Type == ArgNumber {
  3589. result, count = pow(result, count, num, mean)
  3590. continue
  3591. }
  3592. } else {
  3593. num := row.ToNumber()
  3594. if num.Type == ArgNumber {
  3595. result, count = pow(result, count, num, mean)
  3596. }
  3597. }
  3598. }
  3599. }
  3600. }
  3601. }
  3602. if count > 0 && result >= 0 {
  3603. return newNumberFormulaArg(math.Sqrt(result / count))
  3604. }
  3605. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3606. }
  3607. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3608. // the Cumulative Poisson Probability Function for a supplied set of
  3609. // parameters. The syntax of the function is:
  3610. //
  3611. // POISSON.DIST(x,mean,cumulative)
  3612. //
  3613. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3614. if argsList.Len() != 3 {
  3615. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3616. }
  3617. return fn.POISSON(argsList)
  3618. }
  3619. // POISSON function calculates the Poisson Probability Mass Function or the
  3620. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3621. // The syntax of the function is:
  3622. //
  3623. // POISSON(x,mean,cumulative)
  3624. //
  3625. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3626. if argsList.Len() != 3 {
  3627. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3628. }
  3629. var x, mean, cumulative formulaArg
  3630. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3631. return x
  3632. }
  3633. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3634. return mean
  3635. }
  3636. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3637. return cumulative
  3638. }
  3639. if x.Number < 0 || mean.Number <= 0 {
  3640. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3641. }
  3642. if cumulative.Number == 1 {
  3643. summer := 0.0
  3644. floor := math.Floor(x.Number)
  3645. for i := 0; i <= int(floor); i++ {
  3646. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3647. }
  3648. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3649. }
  3650. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3651. }
  3652. // SUM function adds together a supplied set of numbers and returns the sum of
  3653. // these values. The syntax of the function is:
  3654. //
  3655. // SUM(number1,[number2],...)
  3656. //
  3657. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3658. var sum float64
  3659. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3660. token := arg.Value.(formulaArg)
  3661. switch token.Type {
  3662. case ArgUnknown:
  3663. continue
  3664. case ArgString:
  3665. if num := token.ToNumber(); num.Type == ArgNumber {
  3666. sum += num.Number
  3667. }
  3668. case ArgNumber:
  3669. sum += token.Number
  3670. case ArgMatrix:
  3671. for _, row := range token.Matrix {
  3672. for _, value := range row {
  3673. if num := value.ToNumber(); num.Type == ArgNumber {
  3674. sum += num.Number
  3675. }
  3676. }
  3677. }
  3678. }
  3679. }
  3680. return newNumberFormulaArg(sum)
  3681. }
  3682. // SUMIF function finds the values in a supplied array, that satisfy a given
  3683. // criteria, and returns the sum of the corresponding values in a second
  3684. // supplied array. The syntax of the function is:
  3685. //
  3686. // SUMIF(range,criteria,[sum_range])
  3687. //
  3688. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3689. if argsList.Len() < 2 {
  3690. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3691. }
  3692. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3693. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3694. var sumRange [][]formulaArg
  3695. if argsList.Len() == 3 {
  3696. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3697. }
  3698. var sum, val float64
  3699. var err error
  3700. for rowIdx, row := range rangeMtx {
  3701. for colIdx, col := range row {
  3702. var ok bool
  3703. fromVal := col.String
  3704. if col.String == "" {
  3705. continue
  3706. }
  3707. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3708. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3709. }
  3710. if ok {
  3711. if argsList.Len() == 3 {
  3712. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3713. continue
  3714. }
  3715. fromVal = sumRange[rowIdx][colIdx].String
  3716. }
  3717. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3718. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3719. }
  3720. sum += val
  3721. }
  3722. }
  3723. }
  3724. return newNumberFormulaArg(sum)
  3725. }
  3726. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3727. // syntax of the function is:
  3728. //
  3729. // SUMSQ(number1,[number2],...)
  3730. //
  3731. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3732. var val, sq float64
  3733. var err error
  3734. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3735. token := arg.Value.(formulaArg)
  3736. switch token.Type {
  3737. case ArgString:
  3738. if token.String == "" {
  3739. continue
  3740. }
  3741. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3742. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3743. }
  3744. sq += val * val
  3745. case ArgNumber:
  3746. sq += token.Number
  3747. case ArgMatrix:
  3748. for _, row := range token.Matrix {
  3749. for _, value := range row {
  3750. if value.String == "" {
  3751. continue
  3752. }
  3753. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3754. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3755. }
  3756. sq += val * val
  3757. }
  3758. }
  3759. }
  3760. }
  3761. return newNumberFormulaArg(sq)
  3762. }
  3763. // TAN function calculates the tangent of a given angle. The syntax of the
  3764. // function is:
  3765. //
  3766. // TAN(number)
  3767. //
  3768. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3769. if argsList.Len() != 1 {
  3770. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3771. }
  3772. number := argsList.Front().Value.(formulaArg).ToNumber()
  3773. if number.Type == ArgError {
  3774. return number
  3775. }
  3776. return newNumberFormulaArg(math.Tan(number.Number))
  3777. }
  3778. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3779. // number. The syntax of the function is:
  3780. //
  3781. // TANH(number)
  3782. //
  3783. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3784. if argsList.Len() != 1 {
  3785. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3786. }
  3787. number := argsList.Front().Value.(formulaArg).ToNumber()
  3788. if number.Type == ArgError {
  3789. return number
  3790. }
  3791. return newNumberFormulaArg(math.Tanh(number.Number))
  3792. }
  3793. // TRUNC function truncates a supplied number to a specified number of decimal
  3794. // places. The syntax of the function is:
  3795. //
  3796. // TRUNC(number,[number_digits])
  3797. //
  3798. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3799. if argsList.Len() == 0 {
  3800. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3801. }
  3802. var digits, adjust, rtrim float64
  3803. var err error
  3804. number := argsList.Front().Value.(formulaArg).ToNumber()
  3805. if number.Type == ArgError {
  3806. return number
  3807. }
  3808. if argsList.Len() > 1 {
  3809. d := argsList.Back().Value.(formulaArg).ToNumber()
  3810. if d.Type == ArgError {
  3811. return d
  3812. }
  3813. digits = d.Number
  3814. digits = math.Floor(digits)
  3815. }
  3816. adjust = math.Pow(10, digits)
  3817. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3818. if x != 0 {
  3819. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3820. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3821. }
  3822. }
  3823. if (digits > 0) && (rtrim < adjust/10) {
  3824. return newNumberFormulaArg(number.Number)
  3825. }
  3826. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3827. }
  3828. // Statistical Functions
  3829. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3830. // The syntax of the function is:
  3831. //
  3832. // AVERAGE(number1,[number2],...)
  3833. //
  3834. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3835. args := []formulaArg{}
  3836. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3837. args = append(args, arg.Value.(formulaArg))
  3838. }
  3839. count, sum := fn.countSum(false, args)
  3840. if count == 0 {
  3841. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3842. }
  3843. return newNumberFormulaArg(sum / count)
  3844. }
  3845. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3846. // with text cell and zero values. The syntax of the function is:
  3847. //
  3848. // AVERAGEA(number1,[number2],...)
  3849. //
  3850. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3851. args := []formulaArg{}
  3852. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3853. args = append(args, arg.Value.(formulaArg))
  3854. }
  3855. count, sum := fn.countSum(true, args)
  3856. if count == 0 {
  3857. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3858. }
  3859. return newNumberFormulaArg(sum / count)
  3860. }
  3861. // countSum get count and sum for a formula arguments array.
  3862. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3863. for _, arg := range args {
  3864. switch arg.Type {
  3865. case ArgNumber:
  3866. if countText || !arg.Boolean {
  3867. sum += arg.Number
  3868. count++
  3869. }
  3870. case ArgString:
  3871. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3872. continue
  3873. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3874. num := arg.ToBool()
  3875. if num.Type == ArgNumber {
  3876. count++
  3877. sum += num.Number
  3878. continue
  3879. }
  3880. }
  3881. num := arg.ToNumber()
  3882. if countText && num.Type == ArgError && arg.String != "" {
  3883. count++
  3884. }
  3885. if num.Type == ArgNumber {
  3886. sum += num.Number
  3887. count++
  3888. }
  3889. case ArgList, ArgMatrix:
  3890. cnt, summary := fn.countSum(countText, arg.ToList())
  3891. sum += summary
  3892. count += cnt
  3893. }
  3894. }
  3895. return
  3896. }
  3897. // COUNT function returns the count of numeric values in a supplied set of
  3898. // cells or values. This count includes both numbers and dates. The syntax of
  3899. // the function is:
  3900. //
  3901. // COUNT(value1,[value2],...)
  3902. //
  3903. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3904. var count int
  3905. for token := argsList.Front(); token != nil; token = token.Next() {
  3906. arg := token.Value.(formulaArg)
  3907. switch arg.Type {
  3908. case ArgString:
  3909. if arg.ToNumber().Type != ArgError {
  3910. count++
  3911. }
  3912. case ArgNumber:
  3913. count++
  3914. case ArgMatrix:
  3915. for _, row := range arg.Matrix {
  3916. for _, value := range row {
  3917. if value.ToNumber().Type != ArgError {
  3918. count++
  3919. }
  3920. }
  3921. }
  3922. }
  3923. }
  3924. return newNumberFormulaArg(float64(count))
  3925. }
  3926. // COUNTA function returns the number of non-blanks within a supplied set of
  3927. // cells or values. The syntax of the function is:
  3928. //
  3929. // COUNTA(value1,[value2],...)
  3930. //
  3931. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3932. var count int
  3933. for token := argsList.Front(); token != nil; token = token.Next() {
  3934. arg := token.Value.(formulaArg)
  3935. switch arg.Type {
  3936. case ArgString:
  3937. if arg.String != "" {
  3938. count++
  3939. }
  3940. case ArgNumber:
  3941. count++
  3942. case ArgMatrix:
  3943. for _, row := range arg.ToList() {
  3944. switch row.Type {
  3945. case ArgString:
  3946. if row.String != "" {
  3947. count++
  3948. }
  3949. case ArgNumber:
  3950. count++
  3951. }
  3952. }
  3953. }
  3954. }
  3955. return newNumberFormulaArg(float64(count))
  3956. }
  3957. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3958. // The syntax of the function is:
  3959. //
  3960. // COUNTBLANK(range)
  3961. //
  3962. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3963. if argsList.Len() != 1 {
  3964. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3965. }
  3966. var count int
  3967. token := argsList.Front().Value.(formulaArg)
  3968. switch token.Type {
  3969. case ArgString:
  3970. if token.String == "" {
  3971. count++
  3972. }
  3973. case ArgList, ArgMatrix:
  3974. for _, row := range token.ToList() {
  3975. switch row.Type {
  3976. case ArgString:
  3977. if row.String == "" {
  3978. count++
  3979. }
  3980. case ArgEmpty:
  3981. count++
  3982. }
  3983. }
  3984. case ArgEmpty:
  3985. count++
  3986. }
  3987. return newNumberFormulaArg(float64(count))
  3988. }
  3989. // FISHER function calculates the Fisher Transformation for a supplied value.
  3990. // The syntax of the function is:
  3991. //
  3992. // FISHER(x)
  3993. //
  3994. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3995. if argsList.Len() != 1 {
  3996. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3997. }
  3998. token := argsList.Front().Value.(formulaArg)
  3999. switch token.Type {
  4000. case ArgString:
  4001. arg := token.ToNumber()
  4002. if arg.Type == ArgNumber {
  4003. if arg.Number <= -1 || arg.Number >= 1 {
  4004. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4005. }
  4006. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  4007. }
  4008. case ArgNumber:
  4009. if token.Number <= -1 || token.Number >= 1 {
  4010. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4011. }
  4012. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  4013. }
  4014. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4015. }
  4016. // FISHERINV function calculates the inverse of the Fisher Transformation and
  4017. // returns a value between -1 and +1. The syntax of the function is:
  4018. //
  4019. // FISHERINV(y)
  4020. //
  4021. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  4022. if argsList.Len() != 1 {
  4023. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4024. }
  4025. token := argsList.Front().Value.(formulaArg)
  4026. switch token.Type {
  4027. case ArgString:
  4028. arg := token.ToNumber()
  4029. if arg.Type == ArgNumber {
  4030. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  4031. }
  4032. case ArgNumber:
  4033. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  4034. }
  4035. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4036. }
  4037. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  4038. // specified number, n. The syntax of the function is:
  4039. //
  4040. // GAMMA(number)
  4041. //
  4042. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  4043. if argsList.Len() != 1 {
  4044. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4045. }
  4046. token := argsList.Front().Value.(formulaArg)
  4047. switch token.Type {
  4048. case ArgString:
  4049. arg := token.ToNumber()
  4050. if arg.Type == ArgNumber {
  4051. if arg.Number <= 0 {
  4052. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4053. }
  4054. return newNumberFormulaArg(math.Gamma(arg.Number))
  4055. }
  4056. case ArgNumber:
  4057. if token.Number <= 0 {
  4058. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4059. }
  4060. return newNumberFormulaArg(math.Gamma(token.Number))
  4061. }
  4062. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4063. }
  4064. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  4065. // (n). The syntax of the function is:
  4066. //
  4067. // GAMMALN(x)
  4068. //
  4069. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  4070. if argsList.Len() != 1 {
  4071. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4072. }
  4073. token := argsList.Front().Value.(formulaArg)
  4074. switch token.Type {
  4075. case ArgString:
  4076. arg := token.ToNumber()
  4077. if arg.Type == ArgNumber {
  4078. if arg.Number <= 0 {
  4079. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4080. }
  4081. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  4082. }
  4083. case ArgNumber:
  4084. if token.Number <= 0 {
  4085. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4086. }
  4087. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  4088. }
  4089. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4090. }
  4091. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  4092. // The syntax of the function is:
  4093. //
  4094. // HARMEAN(number1,[number2],...)
  4095. //
  4096. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  4097. if argsList.Len() < 1 {
  4098. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  4099. }
  4100. if min := fn.MIN(argsList); min.Number < 0 {
  4101. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4102. }
  4103. number, val, cnt := 0.0, 0.0, 0.0
  4104. for token := argsList.Front(); token != nil; token = token.Next() {
  4105. arg := token.Value.(formulaArg)
  4106. switch arg.Type {
  4107. case ArgString:
  4108. num := arg.ToNumber()
  4109. if num.Type != ArgNumber {
  4110. continue
  4111. }
  4112. number = num.Number
  4113. case ArgNumber:
  4114. number = arg.Number
  4115. }
  4116. if number <= 0 {
  4117. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4118. }
  4119. val += (1 / number)
  4120. cnt++
  4121. }
  4122. return newNumberFormulaArg(1 / (val / cnt))
  4123. }
  4124. // KURT function calculates the kurtosis of a supplied set of values. The
  4125. // syntax of the function is:
  4126. //
  4127. // KURT(number1,[number2],...)
  4128. //
  4129. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  4130. if argsList.Len() < 1 {
  4131. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  4132. }
  4133. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  4134. if stdev.Number > 0 {
  4135. count, summer := 0.0, 0.0
  4136. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4137. token := arg.Value.(formulaArg)
  4138. switch token.Type {
  4139. case ArgString, ArgNumber:
  4140. num := token.ToNumber()
  4141. if num.Type == ArgError {
  4142. continue
  4143. }
  4144. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4145. count++
  4146. case ArgList, ArgMatrix:
  4147. for _, row := range token.ToList() {
  4148. if row.Type == ArgNumber || row.Type == ArgString {
  4149. num := row.ToNumber()
  4150. if num.Type == ArgError {
  4151. continue
  4152. }
  4153. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4154. count++
  4155. }
  4156. }
  4157. }
  4158. }
  4159. if count > 3 {
  4160. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  4161. }
  4162. }
  4163. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4164. }
  4165. // NORMdotDIST function calculates the Normal Probability Density Function or
  4166. // the Cumulative Normal Distribution. Function for a supplied set of
  4167. // parameters. The syntax of the function is:
  4168. //
  4169. // NORM.DIST(x,mean,standard_dev,cumulative)
  4170. //
  4171. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  4172. if argsList.Len() != 4 {
  4173. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  4174. }
  4175. return fn.NORMDIST(argsList)
  4176. }
  4177. // NORMDIST function calculates the Normal Probability Density Function or the
  4178. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  4179. // The syntax of the function is:
  4180. //
  4181. // NORMDIST(x,mean,standard_dev,cumulative)
  4182. //
  4183. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  4184. if argsList.Len() != 4 {
  4185. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  4186. }
  4187. var x, mean, stdDev, cumulative formulaArg
  4188. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  4189. return x
  4190. }
  4191. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4192. return mean
  4193. }
  4194. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4195. return stdDev
  4196. }
  4197. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  4198. return cumulative
  4199. }
  4200. if stdDev.Number < 0 {
  4201. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4202. }
  4203. if cumulative.Number == 1 {
  4204. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  4205. }
  4206. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  4207. }
  4208. // NORMdotINV function calculates the inverse of the Cumulative Normal
  4209. // Distribution Function for a supplied value of x, and a supplied
  4210. // distribution mean & standard deviation. The syntax of the function is:
  4211. //
  4212. // NORM.INV(probability,mean,standard_dev)
  4213. //
  4214. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  4215. if argsList.Len() != 3 {
  4216. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  4217. }
  4218. return fn.NORMINV(argsList)
  4219. }
  4220. // NORMINV function calculates the inverse of the Cumulative Normal
  4221. // Distribution Function for a supplied value of x, and a supplied
  4222. // distribution mean & standard deviation. The syntax of the function is:
  4223. //
  4224. // NORMINV(probability,mean,standard_dev)
  4225. //
  4226. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  4227. if argsList.Len() != 3 {
  4228. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  4229. }
  4230. var prob, mean, stdDev formulaArg
  4231. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  4232. return prob
  4233. }
  4234. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4235. return mean
  4236. }
  4237. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4238. return stdDev
  4239. }
  4240. if prob.Number < 0 || prob.Number > 1 {
  4241. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4242. }
  4243. if stdDev.Number < 0 {
  4244. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4245. }
  4246. inv, err := norminv(prob.Number)
  4247. if err != nil {
  4248. return newErrorFormulaArg(err.Error(), err.Error())
  4249. }
  4250. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  4251. }
  4252. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  4253. // Distribution Function for a supplied value. The syntax of the function
  4254. // is:
  4255. //
  4256. // NORM.S.DIST(z)
  4257. //
  4258. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  4259. if argsList.Len() != 2 {
  4260. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  4261. }
  4262. args := list.New().Init()
  4263. args.PushBack(argsList.Front().Value.(formulaArg))
  4264. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4265. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4266. args.PushBack(argsList.Back().Value.(formulaArg))
  4267. return fn.NORMDIST(args)
  4268. }
  4269. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  4270. // Function for a supplied value. The syntax of the function is:
  4271. //
  4272. // NORMSDIST(z)
  4273. //
  4274. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4275. if argsList.Len() != 1 {
  4276. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4277. }
  4278. args := list.New().Init()
  4279. args.PushBack(argsList.Front().Value.(formulaArg))
  4280. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4281. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4282. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4283. return fn.NORMDIST(args)
  4284. }
  4285. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4286. // Distribution Function for a supplied probability value. The syntax of the
  4287. // function is:
  4288. //
  4289. // NORMSINV(probability)
  4290. //
  4291. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4292. if argsList.Len() != 1 {
  4293. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4294. }
  4295. args := list.New().Init()
  4296. args.PushBack(argsList.Front().Value.(formulaArg))
  4297. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4298. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4299. return fn.NORMINV(args)
  4300. }
  4301. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4302. // Cumulative Distribution Function for a supplied probability value. The
  4303. // syntax of the function is:
  4304. //
  4305. // NORM.S.INV(probability)
  4306. //
  4307. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4308. if argsList.Len() != 1 {
  4309. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4310. }
  4311. args := list.New().Init()
  4312. args.PushBack(argsList.Front().Value.(formulaArg))
  4313. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4314. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4315. return fn.NORMINV(args)
  4316. }
  4317. // norminv returns the inverse of the normal cumulative distribution for the
  4318. // specified value.
  4319. func norminv(p float64) (float64, error) {
  4320. a := map[int]float64{
  4321. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4322. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4323. }
  4324. b := map[int]float64{
  4325. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4326. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4327. }
  4328. c := map[int]float64{
  4329. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4330. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4331. }
  4332. d := map[int]float64{
  4333. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4334. 4: 3.754408661907416e+00,
  4335. }
  4336. pLow := 0.02425 // Use lower region approx. below this
  4337. pHigh := 1 - pLow // Use upper region approx. above this
  4338. if 0 < p && p < pLow {
  4339. // Rational approximation for lower region.
  4340. q := math.Sqrt(-2 * math.Log(p))
  4341. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4342. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4343. } else if pLow <= p && p <= pHigh {
  4344. // Rational approximation for central region.
  4345. q := p - 0.5
  4346. r := q * q
  4347. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4348. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4349. } else if pHigh < p && p < 1 {
  4350. // Rational approximation for upper region.
  4351. q := math.Sqrt(-2 * math.Log(1-p))
  4352. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4353. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4354. }
  4355. return 0, errors.New(formulaErrorNUM)
  4356. }
  4357. // kth is an implementation of the formula function LARGE and SMALL.
  4358. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4359. if argsList.Len() != 2 {
  4360. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4361. }
  4362. array := argsList.Front().Value.(formulaArg).ToList()
  4363. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4364. if kArg.Type != ArgNumber {
  4365. return kArg
  4366. }
  4367. k := int(kArg.Number)
  4368. if k < 1 {
  4369. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4370. }
  4371. data := []float64{}
  4372. for _, arg := range array {
  4373. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4374. data = append(data, numArg.Number)
  4375. }
  4376. }
  4377. if len(data) < k {
  4378. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4379. }
  4380. sort.Float64s(data)
  4381. if name == "LARGE" {
  4382. return newNumberFormulaArg(data[len(data)-k])
  4383. }
  4384. return newNumberFormulaArg(data[k-1])
  4385. }
  4386. // LARGE function returns the k'th largest value from an array of numeric
  4387. // values. The syntax of the function is:
  4388. //
  4389. // LARGE(array,k)
  4390. //
  4391. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4392. return fn.kth("LARGE", argsList)
  4393. }
  4394. // MAX function returns the largest value from a supplied set of numeric
  4395. // values. The syntax of the function is:
  4396. //
  4397. // MAX(number1,[number2],...)
  4398. //
  4399. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4400. if argsList.Len() == 0 {
  4401. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4402. }
  4403. return fn.max(false, argsList)
  4404. }
  4405. // MAXA function returns the largest value from a supplied set of numeric
  4406. // values, while counting text and the logical value FALSE as the value 0 and
  4407. // counting the logical value TRUE as the value 1. The syntax of the function
  4408. // is:
  4409. //
  4410. // MAXA(number1,[number2],...)
  4411. //
  4412. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4413. if argsList.Len() == 0 {
  4414. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4415. }
  4416. return fn.max(true, argsList)
  4417. }
  4418. // max is an implementation of the formula function MAX and MAXA.
  4419. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4420. max := -math.MaxFloat64
  4421. for token := argsList.Front(); token != nil; token = token.Next() {
  4422. arg := token.Value.(formulaArg)
  4423. switch arg.Type {
  4424. case ArgString:
  4425. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4426. continue
  4427. } else {
  4428. num := arg.ToBool()
  4429. if num.Type == ArgNumber && num.Number > max {
  4430. max = num.Number
  4431. continue
  4432. }
  4433. }
  4434. num := arg.ToNumber()
  4435. if num.Type != ArgError && num.Number > max {
  4436. max = num.Number
  4437. }
  4438. case ArgNumber:
  4439. if arg.Number > max {
  4440. max = arg.Number
  4441. }
  4442. case ArgList, ArgMatrix:
  4443. for _, row := range arg.ToList() {
  4444. switch row.Type {
  4445. case ArgString:
  4446. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4447. continue
  4448. } else {
  4449. num := row.ToBool()
  4450. if num.Type == ArgNumber && num.Number > max {
  4451. max = num.Number
  4452. continue
  4453. }
  4454. }
  4455. num := row.ToNumber()
  4456. if num.Type != ArgError && num.Number > max {
  4457. max = num.Number
  4458. }
  4459. case ArgNumber:
  4460. if row.Number > max {
  4461. max = row.Number
  4462. }
  4463. }
  4464. }
  4465. case ArgError:
  4466. return arg
  4467. }
  4468. }
  4469. if max == -math.MaxFloat64 {
  4470. max = 0
  4471. }
  4472. return newNumberFormulaArg(max)
  4473. }
  4474. // MEDIAN function returns the statistical median (the middle value) of a list
  4475. // of supplied numbers. The syntax of the function is:
  4476. //
  4477. // MEDIAN(number1,[number2],...)
  4478. //
  4479. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4480. if argsList.Len() == 0 {
  4481. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4482. }
  4483. var values = []float64{}
  4484. var median, digits float64
  4485. var err error
  4486. for token := argsList.Front(); token != nil; token = token.Next() {
  4487. arg := token.Value.(formulaArg)
  4488. switch arg.Type {
  4489. case ArgString:
  4490. num := arg.ToNumber()
  4491. if num.Type == ArgError {
  4492. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4493. }
  4494. values = append(values, num.Number)
  4495. case ArgNumber:
  4496. values = append(values, arg.Number)
  4497. case ArgMatrix:
  4498. for _, row := range arg.Matrix {
  4499. for _, value := range row {
  4500. if value.String == "" {
  4501. continue
  4502. }
  4503. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4504. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4505. }
  4506. values = append(values, digits)
  4507. }
  4508. }
  4509. }
  4510. }
  4511. sort.Float64s(values)
  4512. if len(values)%2 == 0 {
  4513. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4514. } else {
  4515. median = values[len(values)/2]
  4516. }
  4517. return newNumberFormulaArg(median)
  4518. }
  4519. // MIN function returns the smallest value from a supplied set of numeric
  4520. // values. The syntax of the function is:
  4521. //
  4522. // MIN(number1,[number2],...)
  4523. //
  4524. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4525. if argsList.Len() == 0 {
  4526. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4527. }
  4528. return fn.min(false, argsList)
  4529. }
  4530. // MINA function returns the smallest value from a supplied set of numeric
  4531. // values, while counting text and the logical value FALSE as the value 0 and
  4532. // counting the logical value TRUE as the value 1. The syntax of the function
  4533. // is:
  4534. //
  4535. // MINA(number1,[number2],...)
  4536. //
  4537. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4538. if argsList.Len() == 0 {
  4539. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4540. }
  4541. return fn.min(true, argsList)
  4542. }
  4543. // min is an implementation of the formula function MIN and MINA.
  4544. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4545. min := math.MaxFloat64
  4546. for token := argsList.Front(); token != nil; token = token.Next() {
  4547. arg := token.Value.(formulaArg)
  4548. switch arg.Type {
  4549. case ArgString:
  4550. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4551. continue
  4552. } else {
  4553. num := arg.ToBool()
  4554. if num.Type == ArgNumber && num.Number < min {
  4555. min = num.Number
  4556. continue
  4557. }
  4558. }
  4559. num := arg.ToNumber()
  4560. if num.Type != ArgError && num.Number < min {
  4561. min = num.Number
  4562. }
  4563. case ArgNumber:
  4564. if arg.Number < min {
  4565. min = arg.Number
  4566. }
  4567. case ArgList, ArgMatrix:
  4568. for _, row := range arg.ToList() {
  4569. switch row.Type {
  4570. case ArgString:
  4571. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4572. continue
  4573. } else {
  4574. num := row.ToBool()
  4575. if num.Type == ArgNumber && num.Number < min {
  4576. min = num.Number
  4577. continue
  4578. }
  4579. }
  4580. num := row.ToNumber()
  4581. if num.Type != ArgError && num.Number < min {
  4582. min = num.Number
  4583. }
  4584. case ArgNumber:
  4585. if row.Number < min {
  4586. min = row.Number
  4587. }
  4588. }
  4589. }
  4590. case ArgError:
  4591. return arg
  4592. }
  4593. }
  4594. if min == math.MaxFloat64 {
  4595. min = 0
  4596. }
  4597. return newNumberFormulaArg(min)
  4598. }
  4599. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4600. // which k% of the data values fall) for a supplied range of values and a
  4601. // supplied k. The syntax of the function is:
  4602. //
  4603. // PERCENTILE.INC(array,k)
  4604. //
  4605. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4606. if argsList.Len() != 2 {
  4607. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4608. }
  4609. return fn.PERCENTILE(argsList)
  4610. }
  4611. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4612. // k% of the data values fall) for a supplied range of values and a supplied
  4613. // k. The syntax of the function is:
  4614. //
  4615. // PERCENTILE(array,k)
  4616. //
  4617. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4618. if argsList.Len() != 2 {
  4619. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4620. }
  4621. array := argsList.Front().Value.(formulaArg).ToList()
  4622. k := argsList.Back().Value.(formulaArg).ToNumber()
  4623. if k.Type != ArgNumber {
  4624. return k
  4625. }
  4626. if k.Number < 0 || k.Number > 1 {
  4627. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4628. }
  4629. numbers := []float64{}
  4630. for _, arg := range array {
  4631. if arg.Type == ArgError {
  4632. return arg
  4633. }
  4634. num := arg.ToNumber()
  4635. if num.Type == ArgNumber {
  4636. numbers = append(numbers, num.Number)
  4637. }
  4638. }
  4639. cnt := len(numbers)
  4640. sort.Float64s(numbers)
  4641. idx := k.Number * (float64(cnt) - 1)
  4642. base := math.Floor(idx)
  4643. if idx == base {
  4644. return newNumberFormulaArg(numbers[int(idx)])
  4645. }
  4646. next := base + 1
  4647. proportion := idx - base
  4648. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4649. }
  4650. // PERMUT function calculates the number of permutations of a specified number
  4651. // of objects from a set of objects. The syntax of the function is:
  4652. //
  4653. // PERMUT(number,number_chosen)
  4654. //
  4655. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4656. if argsList.Len() != 2 {
  4657. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4658. }
  4659. number := argsList.Front().Value.(formulaArg).ToNumber()
  4660. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4661. if number.Type != ArgNumber {
  4662. return number
  4663. }
  4664. if chosen.Type != ArgNumber {
  4665. return chosen
  4666. }
  4667. if number.Number < chosen.Number {
  4668. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4669. }
  4670. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4671. }
  4672. // PERMUTATIONA function calculates the number of permutations, with
  4673. // repetitions, of a specified number of objects from a set. The syntax of
  4674. // the function is:
  4675. //
  4676. // PERMUTATIONA(number,number_chosen)
  4677. //
  4678. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4679. if argsList.Len() < 1 {
  4680. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4681. }
  4682. number := argsList.Front().Value.(formulaArg).ToNumber()
  4683. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4684. if number.Type != ArgNumber {
  4685. return number
  4686. }
  4687. if chosen.Type != ArgNumber {
  4688. return chosen
  4689. }
  4690. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4691. if num < 0 || numChosen < 0 {
  4692. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4693. }
  4694. return newNumberFormulaArg(math.Pow(num, numChosen))
  4695. }
  4696. // QUARTILE function returns a requested quartile of a supplied range of
  4697. // values. The syntax of the function is:
  4698. //
  4699. // QUARTILE(array,quart)
  4700. //
  4701. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  4702. if argsList.Len() != 2 {
  4703. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  4704. }
  4705. quart := argsList.Back().Value.(formulaArg).ToNumber()
  4706. if quart.Type != ArgNumber {
  4707. return quart
  4708. }
  4709. if quart.Number < 0 || quart.Number > 4 {
  4710. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  4711. }
  4712. args := list.New().Init()
  4713. args.PushBack(argsList.Front().Value.(formulaArg))
  4714. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  4715. return fn.PERCENTILE(args)
  4716. }
  4717. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  4718. // values. The syntax of the function is:
  4719. //
  4720. // QUARTILE.INC(array,quart)
  4721. //
  4722. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  4723. if argsList.Len() != 2 {
  4724. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  4725. }
  4726. return fn.QUARTILE(argsList)
  4727. }
  4728. // SKEW function calculates the skewness of the distribution of a supplied set
  4729. // of values. The syntax of the function is:
  4730. //
  4731. // SKEW(number1,[number2],...)
  4732. //
  4733. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4734. if argsList.Len() < 1 {
  4735. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4736. }
  4737. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4738. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4739. token := arg.Value.(formulaArg)
  4740. switch token.Type {
  4741. case ArgNumber, ArgString:
  4742. num := token.ToNumber()
  4743. if num.Type == ArgError {
  4744. return num
  4745. }
  4746. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4747. count++
  4748. case ArgList, ArgMatrix:
  4749. for _, row := range token.ToList() {
  4750. numArg := row.ToNumber()
  4751. if numArg.Type != ArgNumber {
  4752. continue
  4753. }
  4754. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4755. count++
  4756. }
  4757. }
  4758. }
  4759. if count > 2 {
  4760. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  4761. }
  4762. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4763. }
  4764. // SMALL function returns the k'th smallest value from an array of numeric
  4765. // values. The syntax of the function is:
  4766. //
  4767. // SMALL(array,k)
  4768. //
  4769. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4770. return fn.kth("SMALL", argsList)
  4771. }
  4772. // VARP function returns the Variance of a given set of values. The syntax of
  4773. // the function is:
  4774. //
  4775. // VARP(number1,[number2],...)
  4776. //
  4777. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  4778. if argsList.Len() < 1 {
  4779. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  4780. }
  4781. summerA, summerB, count := 0.0, 0.0, 0.0
  4782. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4783. for _, token := range arg.Value.(formulaArg).ToList() {
  4784. if num := token.ToNumber(); num.Type == ArgNumber {
  4785. summerA += (num.Number * num.Number)
  4786. summerB += num.Number
  4787. count++
  4788. }
  4789. }
  4790. }
  4791. if count > 0 {
  4792. summerA *= count
  4793. summerB *= summerB
  4794. return newNumberFormulaArg((summerA - summerB) / (count * count))
  4795. }
  4796. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4797. }
  4798. // VARdotP function returns the Variance of a given set of values. The syntax
  4799. // of the function is:
  4800. //
  4801. // VAR.P(number1,[number2],...)
  4802. //
  4803. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  4804. if argsList.Len() < 1 {
  4805. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  4806. }
  4807. return fn.VARP(argsList)
  4808. }
  4809. // Information Functions
  4810. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4811. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4812. // function is:
  4813. //
  4814. // ISBLANK(value)
  4815. //
  4816. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4817. if argsList.Len() != 1 {
  4818. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4819. }
  4820. token := argsList.Front().Value.(formulaArg)
  4821. result := "FALSE"
  4822. switch token.Type {
  4823. case ArgUnknown:
  4824. result = "TRUE"
  4825. case ArgString:
  4826. if token.String == "" {
  4827. result = "TRUE"
  4828. }
  4829. }
  4830. return newStringFormulaArg(result)
  4831. }
  4832. // ISERR function tests if an initial supplied expression (or value) returns
  4833. // any Excel Error, except the #N/A error. If so, the function returns the
  4834. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4835. // error, the ISERR function returns FALSE. The syntax of the function is:
  4836. //
  4837. // ISERR(value)
  4838. //
  4839. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4840. if argsList.Len() != 1 {
  4841. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4842. }
  4843. token := argsList.Front().Value.(formulaArg)
  4844. result := "FALSE"
  4845. if token.Type == ArgError {
  4846. for _, errType := range []string{
  4847. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4848. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4849. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4850. } {
  4851. if errType == token.String {
  4852. result = "TRUE"
  4853. }
  4854. }
  4855. }
  4856. return newStringFormulaArg(result)
  4857. }
  4858. // ISERROR function tests if an initial supplied expression (or value) returns
  4859. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4860. // function returns FALSE. The syntax of the function is:
  4861. //
  4862. // ISERROR(value)
  4863. //
  4864. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4865. if argsList.Len() != 1 {
  4866. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4867. }
  4868. token := argsList.Front().Value.(formulaArg)
  4869. result := "FALSE"
  4870. if token.Type == ArgError {
  4871. for _, errType := range []string{
  4872. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4873. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4874. formulaErrorCALC, formulaErrorGETTINGDATA,
  4875. } {
  4876. if errType == token.String {
  4877. result = "TRUE"
  4878. }
  4879. }
  4880. }
  4881. return newStringFormulaArg(result)
  4882. }
  4883. // ISEVEN function tests if a supplied number (or numeric expression)
  4884. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4885. // function returns FALSE. The syntax of the function is:
  4886. //
  4887. // ISEVEN(value)
  4888. //
  4889. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4890. if argsList.Len() != 1 {
  4891. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4892. }
  4893. var (
  4894. token = argsList.Front().Value.(formulaArg)
  4895. result = "FALSE"
  4896. numeric int
  4897. err error
  4898. )
  4899. if token.Type == ArgString {
  4900. if numeric, err = strconv.Atoi(token.String); err != nil {
  4901. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4902. }
  4903. if numeric == numeric/2*2 {
  4904. return newStringFormulaArg("TRUE")
  4905. }
  4906. }
  4907. return newStringFormulaArg(result)
  4908. }
  4909. // ISNA function tests if an initial supplied expression (or value) returns
  4910. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4911. // returns FALSE. The syntax of the function is:
  4912. //
  4913. // ISNA(value)
  4914. //
  4915. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4916. if argsList.Len() != 1 {
  4917. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4918. }
  4919. token := argsList.Front().Value.(formulaArg)
  4920. result := "FALSE"
  4921. if token.Type == ArgError && token.String == formulaErrorNA {
  4922. result = "TRUE"
  4923. }
  4924. return newStringFormulaArg(result)
  4925. }
  4926. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4927. // function returns TRUE; If the supplied value is text, the function returns
  4928. // FALSE. The syntax of the function is:
  4929. //
  4930. // ISNONTEXT(value)
  4931. //
  4932. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4933. if argsList.Len() != 1 {
  4934. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4935. }
  4936. token := argsList.Front().Value.(formulaArg)
  4937. result := "TRUE"
  4938. if token.Type == ArgString && token.String != "" {
  4939. result = "FALSE"
  4940. }
  4941. return newStringFormulaArg(result)
  4942. }
  4943. // ISNUMBER function function tests if a supplied value is a number. If so,
  4944. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4945. // function is:
  4946. //
  4947. // ISNUMBER(value)
  4948. //
  4949. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4950. if argsList.Len() != 1 {
  4951. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4952. }
  4953. token, result := argsList.Front().Value.(formulaArg), false
  4954. if token.Type == ArgString && token.String != "" {
  4955. if _, err := strconv.Atoi(token.String); err == nil {
  4956. result = true
  4957. }
  4958. }
  4959. return newBoolFormulaArg(result)
  4960. }
  4961. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4962. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4963. // FALSE. The syntax of the function is:
  4964. //
  4965. // ISODD(value)
  4966. //
  4967. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4968. if argsList.Len() != 1 {
  4969. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4970. }
  4971. var (
  4972. token = argsList.Front().Value.(formulaArg)
  4973. result = "FALSE"
  4974. numeric int
  4975. err error
  4976. )
  4977. if token.Type == ArgString {
  4978. if numeric, err = strconv.Atoi(token.String); err != nil {
  4979. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4980. }
  4981. if numeric != numeric/2*2 {
  4982. return newStringFormulaArg("TRUE")
  4983. }
  4984. }
  4985. return newStringFormulaArg(result)
  4986. }
  4987. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4988. // Otherwise, the function returns FALSE. The syntax of the function is:
  4989. //
  4990. // ISTEXT(value)
  4991. //
  4992. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4993. if argsList.Len() != 1 {
  4994. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4995. }
  4996. token := argsList.Front().Value.(formulaArg)
  4997. if token.ToNumber().Type != ArgError {
  4998. return newBoolFormulaArg(false)
  4999. }
  5000. return newBoolFormulaArg(token.Type == ArgString)
  5001. }
  5002. // N function converts data into a numeric value. The syntax of the function
  5003. // is:
  5004. //
  5005. // N(value)
  5006. //
  5007. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  5008. if argsList.Len() != 1 {
  5009. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  5010. }
  5011. token, num := argsList.Front().Value.(formulaArg), 0.0
  5012. if token.Type == ArgError {
  5013. return token
  5014. }
  5015. if arg := token.ToNumber(); arg.Type == ArgNumber {
  5016. num = arg.Number
  5017. }
  5018. if token.Value() == "TRUE" {
  5019. num = 1
  5020. }
  5021. return newNumberFormulaArg(num)
  5022. }
  5023. // NA function returns the Excel #N/A error. This error message has the
  5024. // meaning 'value not available' and is produced when an Excel Formula is
  5025. // unable to find a value that it needs. The syntax of the function is:
  5026. //
  5027. // NA()
  5028. //
  5029. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  5030. if argsList.Len() != 0 {
  5031. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  5032. }
  5033. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  5034. }
  5035. // SHEET function returns the Sheet number for a specified reference. The
  5036. // syntax of the function is:
  5037. //
  5038. // SHEET()
  5039. //
  5040. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  5041. if argsList.Len() != 0 {
  5042. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  5043. }
  5044. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  5045. }
  5046. // T function tests if a supplied value is text and if so, returns the
  5047. // supplied text; Otherwise, the function returns an empty text string. The
  5048. // syntax of the function is:
  5049. //
  5050. // T(value)
  5051. //
  5052. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  5053. if argsList.Len() != 1 {
  5054. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  5055. }
  5056. token := argsList.Front().Value.(formulaArg)
  5057. if token.Type == ArgError {
  5058. return token
  5059. }
  5060. if token.Type == ArgNumber {
  5061. return newStringFormulaArg("")
  5062. }
  5063. return newStringFormulaArg(token.Value())
  5064. }
  5065. // Logical Functions
  5066. // AND function tests a number of supplied conditions and returns TRUE or
  5067. // FALSE. The syntax of the function is:
  5068. //
  5069. // AND(logical_test1,[logical_test2],...)
  5070. //
  5071. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  5072. if argsList.Len() == 0 {
  5073. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  5074. }
  5075. if argsList.Len() > 30 {
  5076. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  5077. }
  5078. var (
  5079. and = true
  5080. val float64
  5081. err error
  5082. )
  5083. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5084. token := arg.Value.(formulaArg)
  5085. switch token.Type {
  5086. case ArgUnknown:
  5087. continue
  5088. case ArgString:
  5089. if token.String == "TRUE" {
  5090. continue
  5091. }
  5092. if token.String == "FALSE" {
  5093. return newStringFormulaArg(token.String)
  5094. }
  5095. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5096. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5097. }
  5098. and = and && (val != 0)
  5099. case ArgMatrix:
  5100. // TODO
  5101. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5102. }
  5103. }
  5104. return newBoolFormulaArg(and)
  5105. }
  5106. // FALSE function function returns the logical value FALSE. The syntax of the
  5107. // function is:
  5108. //
  5109. // FALSE()
  5110. //
  5111. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  5112. if argsList.Len() != 0 {
  5113. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  5114. }
  5115. return newBoolFormulaArg(false)
  5116. }
  5117. // IFERROR function receives two values (or expressions) and tests if the
  5118. // first of these evaluates to an error. The syntax of the function is:
  5119. //
  5120. // IFERROR(value,value_if_error)
  5121. //
  5122. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  5123. if argsList.Len() != 2 {
  5124. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  5125. }
  5126. value := argsList.Front().Value.(formulaArg)
  5127. if value.Type != ArgError {
  5128. if value.Type == ArgEmpty {
  5129. return newNumberFormulaArg(0)
  5130. }
  5131. return value
  5132. }
  5133. return argsList.Back().Value.(formulaArg)
  5134. }
  5135. // NOT function returns the opposite to a supplied logical value. The syntax
  5136. // of the function is:
  5137. //
  5138. // NOT(logical)
  5139. //
  5140. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  5141. if argsList.Len() != 1 {
  5142. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  5143. }
  5144. token := argsList.Front().Value.(formulaArg)
  5145. switch token.Type {
  5146. case ArgString, ArgList:
  5147. if strings.ToUpper(token.String) == "TRUE" {
  5148. return newBoolFormulaArg(false)
  5149. }
  5150. if strings.ToUpper(token.String) == "FALSE" {
  5151. return newBoolFormulaArg(true)
  5152. }
  5153. case ArgNumber:
  5154. return newBoolFormulaArg(!(token.Number != 0))
  5155. case ArgError:
  5156. return token
  5157. }
  5158. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  5159. }
  5160. // OR function tests a number of supplied conditions and returns either TRUE
  5161. // or FALSE. The syntax of the function is:
  5162. //
  5163. // OR(logical_test1,[logical_test2],...)
  5164. //
  5165. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  5166. if argsList.Len() == 0 {
  5167. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  5168. }
  5169. if argsList.Len() > 30 {
  5170. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  5171. }
  5172. var (
  5173. or bool
  5174. val float64
  5175. err error
  5176. )
  5177. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5178. token := arg.Value.(formulaArg)
  5179. switch token.Type {
  5180. case ArgUnknown:
  5181. continue
  5182. case ArgString:
  5183. if token.String == "FALSE" {
  5184. continue
  5185. }
  5186. if token.String == "TRUE" {
  5187. or = true
  5188. continue
  5189. }
  5190. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5191. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5192. }
  5193. or = val != 0
  5194. case ArgMatrix:
  5195. // TODO
  5196. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5197. }
  5198. }
  5199. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  5200. }
  5201. // TRUE function returns the logical value TRUE. The syntax of the function
  5202. // is:
  5203. //
  5204. // TRUE()
  5205. //
  5206. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  5207. if argsList.Len() != 0 {
  5208. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  5209. }
  5210. return newBoolFormulaArg(true)
  5211. }
  5212. // Date and Time Functions
  5213. // DATE returns a date, from a user-supplied year, month and day. The syntax
  5214. // of the function is:
  5215. //
  5216. // DATE(year,month,day)
  5217. //
  5218. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  5219. if argsList.Len() != 3 {
  5220. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5221. }
  5222. year := argsList.Front().Value.(formulaArg).ToNumber()
  5223. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5224. day := argsList.Back().Value.(formulaArg).ToNumber()
  5225. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  5226. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5227. }
  5228. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  5229. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  5230. }
  5231. // DATEDIF function calculates the number of days, months, or years between
  5232. // two dates. The syntax of the function is:
  5233. //
  5234. // DATEDIF(start_date,end_date,unit)
  5235. //
  5236. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  5237. if argsList.Len() != 3 {
  5238. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  5239. }
  5240. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  5241. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  5242. return startArg
  5243. }
  5244. if startArg.Number > endArg.Number {
  5245. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  5246. }
  5247. if startArg.Number == endArg.Number {
  5248. return newNumberFormulaArg(0)
  5249. }
  5250. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  5251. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  5252. sy, smm, sd := startDate.Date()
  5253. ey, emm, ed := endDate.Date()
  5254. sm, em, diff := int(smm), int(emm), 0.0
  5255. switch unit {
  5256. case "d":
  5257. return newNumberFormulaArg(endArg.Number - startArg.Number)
  5258. case "y":
  5259. diff = float64(ey - sy)
  5260. if em < sm || (em == sm && ed < sd) {
  5261. diff--
  5262. }
  5263. case "m":
  5264. ydiff := ey - sy
  5265. mdiff := em - sm
  5266. if ed < sd {
  5267. mdiff--
  5268. }
  5269. if mdiff < 0 {
  5270. ydiff--
  5271. mdiff += 12
  5272. }
  5273. diff = float64(ydiff*12 + mdiff)
  5274. case "md":
  5275. smMD := em
  5276. if ed < sd {
  5277. smMD--
  5278. }
  5279. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5280. case "ym":
  5281. diff = float64(em - sm)
  5282. if ed < sd {
  5283. diff--
  5284. }
  5285. if diff < 0 {
  5286. diff += 12
  5287. }
  5288. case "yd":
  5289. syYD := sy
  5290. if em < sm || (em == sm && ed < sd) {
  5291. syYD++
  5292. }
  5293. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5294. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5295. diff = s - e
  5296. default:
  5297. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5298. }
  5299. return newNumberFormulaArg(diff)
  5300. }
  5301. // NOW function returns the current date and time. The function receives no
  5302. // arguments and therefore. The syntax of the function is:
  5303. //
  5304. // NOW()
  5305. //
  5306. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5307. if argsList.Len() != 0 {
  5308. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5309. }
  5310. now := time.Now()
  5311. _, offset := now.Zone()
  5312. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5313. }
  5314. // TODAY function returns the current date. The function has no arguments and
  5315. // therefore. The syntax of the function is:
  5316. //
  5317. // TODAY()
  5318. //
  5319. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5320. if argsList.Len() != 0 {
  5321. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5322. }
  5323. now := time.Now()
  5324. _, offset := now.Zone()
  5325. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5326. }
  5327. // makeDate return date as a Unix time, the number of seconds elapsed since
  5328. // January 1, 1970 UTC.
  5329. func makeDate(y int, m time.Month, d int) int64 {
  5330. if y == 1900 && int(m) <= 2 {
  5331. d--
  5332. }
  5333. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5334. return date.Unix()
  5335. }
  5336. // daysBetween return time interval of the given start timestamp and end
  5337. // timestamp.
  5338. func daysBetween(startDate, endDate int64) float64 {
  5339. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5340. }
  5341. // Text Functions
  5342. // CHAR function returns the character relating to a supplied character set
  5343. // number (from 1 to 255). syntax of the function is:
  5344. //
  5345. // CHAR(number)
  5346. //
  5347. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5348. if argsList.Len() != 1 {
  5349. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5350. }
  5351. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5352. if arg.Type != ArgNumber {
  5353. return arg
  5354. }
  5355. num := int(arg.Number)
  5356. if num < 0 || num > 255 {
  5357. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5358. }
  5359. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5360. }
  5361. // CLEAN removes all non-printable characters from a supplied text string. The
  5362. // syntax of the function is:
  5363. //
  5364. // CLEAN(text)
  5365. //
  5366. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5367. if argsList.Len() != 1 {
  5368. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5369. }
  5370. b := bytes.Buffer{}
  5371. for _, c := range argsList.Front().Value.(formulaArg).String {
  5372. if c > 31 {
  5373. b.WriteRune(c)
  5374. }
  5375. }
  5376. return newStringFormulaArg(b.String())
  5377. }
  5378. // CODE function converts the first character of a supplied text string into
  5379. // the associated numeric character set code used by your computer. The
  5380. // syntax of the function is:
  5381. //
  5382. // CODE(text)
  5383. //
  5384. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5385. return fn.code("CODE", argsList)
  5386. }
  5387. // code is an implementation of the formula function CODE and UNICODE.
  5388. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5389. if argsList.Len() != 1 {
  5390. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5391. }
  5392. text := argsList.Front().Value.(formulaArg).Value()
  5393. if len(text) == 0 {
  5394. if name == "CODE" {
  5395. return newNumberFormulaArg(0)
  5396. }
  5397. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5398. }
  5399. return newNumberFormulaArg(float64(text[0]))
  5400. }
  5401. // CONCAT function joins together a series of supplied text strings into one
  5402. // combined text string.
  5403. //
  5404. // CONCAT(text1,[text2],...)
  5405. //
  5406. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5407. return fn.concat("CONCAT", argsList)
  5408. }
  5409. // CONCATENATE function joins together a series of supplied text strings into
  5410. // one combined text string.
  5411. //
  5412. // CONCATENATE(text1,[text2],...)
  5413. //
  5414. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5415. return fn.concat("CONCATENATE", argsList)
  5416. }
  5417. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5418. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5419. buf := bytes.Buffer{}
  5420. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5421. token := arg.Value.(formulaArg)
  5422. switch token.Type {
  5423. case ArgString:
  5424. buf.WriteString(token.String)
  5425. case ArgNumber:
  5426. if token.Boolean {
  5427. if token.Number == 0 {
  5428. buf.WriteString("FALSE")
  5429. } else {
  5430. buf.WriteString("TRUE")
  5431. }
  5432. } else {
  5433. buf.WriteString(token.Value())
  5434. }
  5435. default:
  5436. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5437. }
  5438. }
  5439. return newStringFormulaArg(buf.String())
  5440. }
  5441. // EXACT function tests if two supplied text strings or values are exactly
  5442. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5443. // function is case-sensitive. The syntax of the function is:
  5444. //
  5445. // EXACT(text1,text2)
  5446. //
  5447. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5448. if argsList.Len() != 2 {
  5449. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5450. }
  5451. text1 := argsList.Front().Value.(formulaArg).Value()
  5452. text2 := argsList.Back().Value.(formulaArg).Value()
  5453. return newBoolFormulaArg(text1 == text2)
  5454. }
  5455. // FIXED function rounds a supplied number to a specified number of decimal
  5456. // places and then converts this into text. The syntax of the function is:
  5457. //
  5458. // FIXED(number,[decimals],[no_commas])
  5459. //
  5460. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5461. if argsList.Len() < 1 {
  5462. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5463. }
  5464. if argsList.Len() > 3 {
  5465. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5466. }
  5467. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5468. if numArg.Type != ArgNumber {
  5469. return numArg
  5470. }
  5471. precision, decimals, noCommas := 0, 0, false
  5472. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5473. if argsList.Len() == 1 && len(s) == 2 {
  5474. precision = len(s[1])
  5475. decimals = len(s[1])
  5476. }
  5477. if argsList.Len() >= 2 {
  5478. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5479. if decimalsArg.Type != ArgNumber {
  5480. return decimalsArg
  5481. }
  5482. decimals = int(decimalsArg.Number)
  5483. }
  5484. if argsList.Len() == 3 {
  5485. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5486. if noCommasArg.Type == ArgError {
  5487. return noCommasArg
  5488. }
  5489. noCommas = noCommasArg.Boolean
  5490. }
  5491. n := math.Pow(10, float64(decimals))
  5492. r := numArg.Number * n
  5493. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5494. if decimals > 0 {
  5495. precision = decimals
  5496. }
  5497. if noCommas {
  5498. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5499. }
  5500. p := message.NewPrinter(language.English)
  5501. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5502. }
  5503. // FIND function returns the position of a specified character or sub-string
  5504. // within a supplied text string. The function is case-sensitive. The syntax
  5505. // of the function is:
  5506. //
  5507. // FIND(find_text,within_text,[start_num])
  5508. //
  5509. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5510. return fn.find("FIND", argsList)
  5511. }
  5512. // FINDB counts each double-byte character as 2 when you have enabled the
  5513. // editing of a language that supports DBCS and then set it as the default
  5514. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5515. // function is:
  5516. //
  5517. // FINDB(find_text,within_text,[start_num])
  5518. //
  5519. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5520. return fn.find("FINDB", argsList)
  5521. }
  5522. // find is an implementation of the formula function FIND and FINDB.
  5523. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5524. if argsList.Len() < 2 {
  5525. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5526. }
  5527. if argsList.Len() > 3 {
  5528. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5529. }
  5530. findText := argsList.Front().Value.(formulaArg).Value()
  5531. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5532. startNum, result := 1, 1
  5533. if argsList.Len() == 3 {
  5534. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5535. if numArg.Type != ArgNumber {
  5536. return numArg
  5537. }
  5538. if numArg.Number < 0 {
  5539. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5540. }
  5541. startNum = int(numArg.Number)
  5542. }
  5543. if findText == "" {
  5544. return newNumberFormulaArg(float64(startNum))
  5545. }
  5546. for idx := range withinText {
  5547. if result < startNum {
  5548. result++
  5549. }
  5550. if strings.Index(withinText[idx:], findText) == 0 {
  5551. return newNumberFormulaArg(float64(result))
  5552. }
  5553. result++
  5554. }
  5555. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5556. }
  5557. // LEFT function returns a specified number of characters from the start of a
  5558. // supplied text string. The syntax of the function is:
  5559. //
  5560. // LEFT(text,[num_chars])
  5561. //
  5562. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5563. return fn.leftRight("LEFT", argsList)
  5564. }
  5565. // LEFTB returns the first character or characters in a text string, based on
  5566. // the number of bytes you specify. The syntax of the function is:
  5567. //
  5568. // LEFTB(text,[num_bytes])
  5569. //
  5570. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5571. return fn.leftRight("LEFTB", argsList)
  5572. }
  5573. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5574. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5575. // (Traditional), and Korean.
  5576. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5577. if argsList.Len() < 1 {
  5578. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5579. }
  5580. if argsList.Len() > 2 {
  5581. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5582. }
  5583. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5584. if argsList.Len() == 2 {
  5585. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5586. if numArg.Type != ArgNumber {
  5587. return numArg
  5588. }
  5589. if numArg.Number < 0 {
  5590. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5591. }
  5592. numChars = int(numArg.Number)
  5593. }
  5594. if len(text) > numChars {
  5595. if name == "LEFT" || name == "LEFTB" {
  5596. return newStringFormulaArg(text[:numChars])
  5597. }
  5598. return newStringFormulaArg(text[len(text)-numChars:])
  5599. }
  5600. return newStringFormulaArg(text)
  5601. }
  5602. // LEN returns the length of a supplied text string. The syntax of the
  5603. // function is:
  5604. //
  5605. // LEN(text)
  5606. //
  5607. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5608. if argsList.Len() != 1 {
  5609. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5610. }
  5611. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5612. }
  5613. // LENB returns the number of bytes used to represent the characters in a text
  5614. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5615. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5616. // 1 byte per character. The syntax of the function is:
  5617. //
  5618. // LENB(text)
  5619. //
  5620. // TODO: the languages that support DBCS include Japanese, Chinese
  5621. // (Simplified), Chinese (Traditional), and Korean.
  5622. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5623. if argsList.Len() != 1 {
  5624. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5625. }
  5626. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5627. }
  5628. // LOWER converts all characters in a supplied text string to lower case. The
  5629. // syntax of the function is:
  5630. //
  5631. // LOWER(text)
  5632. //
  5633. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5634. if argsList.Len() != 1 {
  5635. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5636. }
  5637. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5638. }
  5639. // MID function returns a specified number of characters from the middle of a
  5640. // supplied text string. The syntax of the function is:
  5641. //
  5642. // MID(text,start_num,num_chars)
  5643. //
  5644. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5645. return fn.mid("MID", argsList)
  5646. }
  5647. // MIDB returns a specific number of characters from a text string, starting
  5648. // at the position you specify, based on the number of bytes you specify. The
  5649. // syntax of the function is:
  5650. //
  5651. // MID(text,start_num,num_chars)
  5652. //
  5653. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5654. return fn.mid("MIDB", argsList)
  5655. }
  5656. // mid is an implementation of the formula function MID and MIDB. TODO:
  5657. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5658. // (Traditional), and Korean.
  5659. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5660. if argsList.Len() != 3 {
  5661. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5662. }
  5663. text := argsList.Front().Value.(formulaArg).Value()
  5664. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5665. if startNumArg.Type != ArgNumber {
  5666. return startNumArg
  5667. }
  5668. if numCharsArg.Type != ArgNumber {
  5669. return numCharsArg
  5670. }
  5671. startNum := int(startNumArg.Number)
  5672. if startNum < 0 {
  5673. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5674. }
  5675. textLen := len(text)
  5676. if startNum > textLen {
  5677. return newStringFormulaArg("")
  5678. }
  5679. startNum--
  5680. endNum := startNum + int(numCharsArg.Number)
  5681. if endNum > textLen+1 {
  5682. return newStringFormulaArg(text[startNum:])
  5683. }
  5684. return newStringFormulaArg(text[startNum:endNum])
  5685. }
  5686. // PROPER converts all characters in a supplied text string to proper case
  5687. // (i.e. all letters that do not immediately follow another letter are set to
  5688. // upper case and all other characters are lower case). The syntax of the
  5689. // function is:
  5690. //
  5691. // PROPER(text)
  5692. //
  5693. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5694. if argsList.Len() != 1 {
  5695. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5696. }
  5697. buf := bytes.Buffer{}
  5698. isLetter := false
  5699. for _, char := range argsList.Front().Value.(formulaArg).String {
  5700. if !isLetter && unicode.IsLetter(char) {
  5701. buf.WriteRune(unicode.ToUpper(char))
  5702. } else {
  5703. buf.WriteRune(unicode.ToLower(char))
  5704. }
  5705. isLetter = unicode.IsLetter(char)
  5706. }
  5707. return newStringFormulaArg(buf.String())
  5708. }
  5709. // REPLACE function replaces all or part of a text string with another string.
  5710. // The syntax of the function is:
  5711. //
  5712. // REPLACE(old_text,start_num,num_chars,new_text)
  5713. //
  5714. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5715. return fn.replace("REPLACE", argsList)
  5716. }
  5717. // REPLACEB replaces part of a text string, based on the number of bytes you
  5718. // specify, with a different text string.
  5719. //
  5720. // REPLACEB(old_text,start_num,num_chars,new_text)
  5721. //
  5722. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5723. return fn.replace("REPLACEB", argsList)
  5724. }
  5725. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5726. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5727. // (Traditional), and Korean.
  5728. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5729. if argsList.Len() != 4 {
  5730. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5731. }
  5732. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5733. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5734. if startNumArg.Type != ArgNumber {
  5735. return startNumArg
  5736. }
  5737. if numCharsArg.Type != ArgNumber {
  5738. return numCharsArg
  5739. }
  5740. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5741. if startIdx > oldTextLen {
  5742. startIdx = oldTextLen + 1
  5743. }
  5744. endIdx := startIdx + int(numCharsArg.Number)
  5745. if endIdx > oldTextLen {
  5746. endIdx = oldTextLen + 1
  5747. }
  5748. if startIdx < 1 || endIdx < 1 {
  5749. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5750. }
  5751. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5752. return newStringFormulaArg(result)
  5753. }
  5754. // REPT function returns a supplied text string, repeated a specified number
  5755. // of times. The syntax of the function is:
  5756. //
  5757. // REPT(text,number_times)
  5758. //
  5759. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5760. if argsList.Len() != 2 {
  5761. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5762. }
  5763. text := argsList.Front().Value.(formulaArg)
  5764. if text.Type != ArgString {
  5765. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5766. }
  5767. times := argsList.Back().Value.(formulaArg).ToNumber()
  5768. if times.Type != ArgNumber {
  5769. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5770. }
  5771. if times.Number < 0 {
  5772. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5773. }
  5774. if times.Number == 0 {
  5775. return newStringFormulaArg("")
  5776. }
  5777. buf := bytes.Buffer{}
  5778. for i := 0; i < int(times.Number); i++ {
  5779. buf.WriteString(text.String)
  5780. }
  5781. return newStringFormulaArg(buf.String())
  5782. }
  5783. // RIGHT function returns a specified number of characters from the end of a
  5784. // supplied text string. The syntax of the function is:
  5785. //
  5786. // RIGHT(text,[num_chars])
  5787. //
  5788. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5789. return fn.leftRight("RIGHT", argsList)
  5790. }
  5791. // RIGHTB returns the last character or characters in a text string, based on
  5792. // the number of bytes you specify. The syntax of the function is:
  5793. //
  5794. // RIGHTB(text,[num_bytes])
  5795. //
  5796. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5797. return fn.leftRight("RIGHTB", argsList)
  5798. }
  5799. // SUBSTITUTE function replaces one or more instances of a given text string,
  5800. // within an original text string. The syntax of the function is:
  5801. //
  5802. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5803. //
  5804. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5805. if argsList.Len() != 3 && argsList.Len() != 4 {
  5806. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5807. }
  5808. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5809. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5810. if argsList.Len() == 3 {
  5811. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5812. }
  5813. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5814. if instanceNumArg.Type != ArgNumber {
  5815. return instanceNumArg
  5816. }
  5817. instanceNum = int(instanceNumArg.Number)
  5818. if instanceNum < 1 {
  5819. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5820. }
  5821. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5822. for {
  5823. count--
  5824. index := strings.Index(str, oldText.Value())
  5825. if index == -1 {
  5826. pos = -1
  5827. break
  5828. } else {
  5829. pos = index + chars
  5830. if count == 0 {
  5831. break
  5832. }
  5833. idx := oldTextLen + index
  5834. chars += idx
  5835. str = str[idx:]
  5836. }
  5837. }
  5838. if pos == -1 {
  5839. return newStringFormulaArg(text.Value())
  5840. }
  5841. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5842. return newStringFormulaArg(pre + newText.Value() + post)
  5843. }
  5844. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5845. // words or characters) from a supplied text string. The syntax of the
  5846. // function is:
  5847. //
  5848. // TRIM(text)
  5849. //
  5850. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5851. if argsList.Len() != 1 {
  5852. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5853. }
  5854. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5855. }
  5856. // UNICHAR returns the Unicode character that is referenced by the given
  5857. // numeric value. The syntax of the function is:
  5858. //
  5859. // UNICHAR(number)
  5860. //
  5861. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5862. if argsList.Len() != 1 {
  5863. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5864. }
  5865. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5866. if numArg.Type != ArgNumber {
  5867. return numArg
  5868. }
  5869. if numArg.Number <= 0 || numArg.Number > 55295 {
  5870. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5871. }
  5872. return newStringFormulaArg(string(rune(numArg.Number)))
  5873. }
  5874. // UNICODE function returns the code point for the first character of a
  5875. // supplied text string. The syntax of the function is:
  5876. //
  5877. // UNICODE(text)
  5878. //
  5879. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5880. return fn.code("UNICODE", argsList)
  5881. }
  5882. // UPPER converts all characters in a supplied text string to upper case. The
  5883. // syntax of the function is:
  5884. //
  5885. // UPPER(text)
  5886. //
  5887. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5888. if argsList.Len() != 1 {
  5889. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5890. }
  5891. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5892. }
  5893. // Conditional Functions
  5894. // IF function tests a supplied condition and returns one result if the
  5895. // condition evaluates to TRUE, and another result if the condition evaluates
  5896. // to FALSE. The syntax of the function is:
  5897. //
  5898. // IF(logical_test,value_if_true,value_if_false)
  5899. //
  5900. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5901. if argsList.Len() == 0 {
  5902. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5903. }
  5904. if argsList.Len() > 3 {
  5905. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5906. }
  5907. token := argsList.Front().Value.(formulaArg)
  5908. var (
  5909. cond bool
  5910. err error
  5911. result string
  5912. )
  5913. switch token.Type {
  5914. case ArgString:
  5915. if cond, err = strconv.ParseBool(token.String); err != nil {
  5916. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5917. }
  5918. if argsList.Len() == 1 {
  5919. return newBoolFormulaArg(cond)
  5920. }
  5921. if cond {
  5922. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5923. }
  5924. if argsList.Len() == 3 {
  5925. result = argsList.Back().Value.(formulaArg).String
  5926. }
  5927. }
  5928. return newStringFormulaArg(result)
  5929. }
  5930. // Lookup and Reference Functions
  5931. // CHOOSE function returns a value from an array, that corresponds to a
  5932. // supplied index number (position). The syntax of the function is:
  5933. //
  5934. // CHOOSE(index_num,value1,[value2],...)
  5935. //
  5936. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5937. if argsList.Len() < 2 {
  5938. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5939. }
  5940. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5941. if err != nil {
  5942. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5943. }
  5944. if argsList.Len() <= idx {
  5945. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5946. }
  5947. arg := argsList.Front()
  5948. for i := 0; i < idx; i++ {
  5949. arg = arg.Next()
  5950. }
  5951. var result formulaArg
  5952. switch arg.Value.(formulaArg).Type {
  5953. case ArgString:
  5954. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5955. case ArgMatrix:
  5956. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5957. }
  5958. return result
  5959. }
  5960. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5961. // string.
  5962. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5963. for len(pattern) > 0 {
  5964. switch pattern[0] {
  5965. default:
  5966. if len(str) == 0 || str[0] != pattern[0] {
  5967. return false
  5968. }
  5969. case '?':
  5970. if len(str) == 0 && !simple {
  5971. return false
  5972. }
  5973. case '*':
  5974. return deepMatchRune(str, pattern[1:], simple) ||
  5975. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5976. }
  5977. str = str[1:]
  5978. pattern = pattern[1:]
  5979. }
  5980. return len(str) == 0 && len(pattern) == 0
  5981. }
  5982. // matchPattern finds whether the text matches or satisfies the pattern
  5983. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5984. func matchPattern(pattern, name string) (matched bool) {
  5985. if pattern == "" {
  5986. return name == pattern
  5987. }
  5988. if pattern == "*" {
  5989. return true
  5990. }
  5991. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5992. for _, r := range name {
  5993. rname = append(rname, r)
  5994. }
  5995. for _, r := range pattern {
  5996. rpattern = append(rpattern, r)
  5997. }
  5998. simple := false // Does extended wildcard '*' and '?' match.
  5999. return deepMatchRune(rname, rpattern, simple)
  6000. }
  6001. // compareFormulaArg compares the left-hand sides and the right-hand sides
  6002. // formula arguments by given conditions such as case sensitive, if exact
  6003. // match, and make compare result as formula criteria condition type.
  6004. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6005. if lhs.Type != rhs.Type {
  6006. return criteriaErr
  6007. }
  6008. switch lhs.Type {
  6009. case ArgNumber:
  6010. if lhs.Number == rhs.Number {
  6011. return criteriaEq
  6012. }
  6013. if lhs.Number < rhs.Number {
  6014. return criteriaL
  6015. }
  6016. return criteriaG
  6017. case ArgString:
  6018. ls, rs := lhs.String, rhs.String
  6019. if !caseSensitive {
  6020. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  6021. }
  6022. if exactMatch {
  6023. match := matchPattern(rs, ls)
  6024. if match {
  6025. return criteriaEq
  6026. }
  6027. return criteriaG
  6028. }
  6029. switch strings.Compare(ls, rs) {
  6030. case 1:
  6031. return criteriaG
  6032. case -1:
  6033. return criteriaL
  6034. case 0:
  6035. return criteriaEq
  6036. }
  6037. return criteriaErr
  6038. case ArgEmpty:
  6039. return criteriaEq
  6040. case ArgList:
  6041. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  6042. case ArgMatrix:
  6043. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  6044. }
  6045. return criteriaErr
  6046. }
  6047. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  6048. // list type formula arguments.
  6049. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6050. if len(lhs.List) < len(rhs.List) {
  6051. return criteriaL
  6052. }
  6053. if len(lhs.List) > len(rhs.List) {
  6054. return criteriaG
  6055. }
  6056. for arg := range lhs.List {
  6057. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  6058. if criteria != criteriaEq {
  6059. return criteria
  6060. }
  6061. }
  6062. return criteriaEq
  6063. }
  6064. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  6065. // matrix type formula arguments.
  6066. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6067. if len(lhs.Matrix) < len(rhs.Matrix) {
  6068. return criteriaL
  6069. }
  6070. if len(lhs.Matrix) > len(rhs.Matrix) {
  6071. return criteriaG
  6072. }
  6073. for i := range lhs.Matrix {
  6074. left := lhs.Matrix[i]
  6075. right := lhs.Matrix[i]
  6076. if len(left) < len(right) {
  6077. return criteriaL
  6078. }
  6079. if len(left) > len(right) {
  6080. return criteriaG
  6081. }
  6082. for arg := range left {
  6083. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  6084. if criteria != criteriaEq {
  6085. return criteria
  6086. }
  6087. }
  6088. }
  6089. return criteriaEq
  6090. }
  6091. // COLUMN function returns the first column number within a supplied reference
  6092. // or the number of the current column. The syntax of the function is:
  6093. //
  6094. // COLUMN([reference])
  6095. //
  6096. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  6097. if argsList.Len() > 1 {
  6098. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  6099. }
  6100. if argsList.Len() == 1 {
  6101. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6102. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  6103. }
  6104. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6105. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  6106. }
  6107. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6108. }
  6109. col, _, _ := CellNameToCoordinates(fn.cell)
  6110. return newNumberFormulaArg(float64(col))
  6111. }
  6112. // COLUMNS function receives an Excel range and returns the number of columns
  6113. // that are contained within the range. The syntax of the function is:
  6114. //
  6115. // COLUMNS(array)
  6116. //
  6117. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  6118. if argsList.Len() != 1 {
  6119. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  6120. }
  6121. var min, max int
  6122. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6123. crs := argsList.Front().Value.(formulaArg).cellRanges
  6124. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6125. if min == 0 {
  6126. min = cr.Value.(cellRange).From.Col
  6127. }
  6128. if min > cr.Value.(cellRange).From.Col {
  6129. min = cr.Value.(cellRange).From.Col
  6130. }
  6131. if min > cr.Value.(cellRange).To.Col {
  6132. min = cr.Value.(cellRange).To.Col
  6133. }
  6134. if max < cr.Value.(cellRange).To.Col {
  6135. max = cr.Value.(cellRange).To.Col
  6136. }
  6137. if max < cr.Value.(cellRange).From.Col {
  6138. max = cr.Value.(cellRange).From.Col
  6139. }
  6140. }
  6141. }
  6142. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6143. cr := argsList.Front().Value.(formulaArg).cellRefs
  6144. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6145. if min == 0 {
  6146. min = refs.Value.(cellRef).Col
  6147. }
  6148. if min > refs.Value.(cellRef).Col {
  6149. min = refs.Value.(cellRef).Col
  6150. }
  6151. if max < refs.Value.(cellRef).Col {
  6152. max = refs.Value.(cellRef).Col
  6153. }
  6154. }
  6155. }
  6156. if max == TotalColumns {
  6157. return newNumberFormulaArg(float64(TotalColumns))
  6158. }
  6159. result := max - min + 1
  6160. if max == min {
  6161. if min == 0 {
  6162. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6163. }
  6164. return newNumberFormulaArg(float64(1))
  6165. }
  6166. return newNumberFormulaArg(float64(result))
  6167. }
  6168. // HLOOKUP function 'looks up' a given value in the top row of a data array
  6169. // (or table), and returns the corresponding value from another row of the
  6170. // array. The syntax of the function is:
  6171. //
  6172. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  6173. //
  6174. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  6175. if argsList.Len() < 3 {
  6176. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  6177. }
  6178. if argsList.Len() > 4 {
  6179. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  6180. }
  6181. lookupValue := argsList.Front().Value.(formulaArg)
  6182. tableArray := argsList.Front().Next().Value.(formulaArg)
  6183. if tableArray.Type != ArgMatrix {
  6184. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  6185. }
  6186. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6187. if rowArg.Type != ArgNumber {
  6188. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  6189. }
  6190. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  6191. if argsList.Len() == 4 {
  6192. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6193. if rangeLookup.Type == ArgError {
  6194. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6195. }
  6196. if rangeLookup.Number == 0 {
  6197. exactMatch = true
  6198. }
  6199. }
  6200. row := tableArray.Matrix[0]
  6201. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6202. start:
  6203. for idx, mtx := range row {
  6204. lhs := mtx
  6205. switch lookupValue.Type {
  6206. case ArgNumber:
  6207. if !lookupValue.Boolean {
  6208. lhs = mtx.ToNumber()
  6209. if lhs.Type == ArgError {
  6210. lhs = mtx
  6211. }
  6212. }
  6213. case ArgMatrix:
  6214. lhs = tableArray
  6215. }
  6216. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6217. matchIdx = idx
  6218. wasExact = true
  6219. break start
  6220. }
  6221. }
  6222. } else {
  6223. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  6224. }
  6225. if matchIdx == -1 {
  6226. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6227. }
  6228. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  6229. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  6230. }
  6231. row = tableArray.Matrix[rowIdx]
  6232. if wasExact || !exactMatch {
  6233. return row[matchIdx]
  6234. }
  6235. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6236. }
  6237. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  6238. // data array (or table), and returns the corresponding value from another
  6239. // column of the array. The syntax of the function is:
  6240. //
  6241. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  6242. //
  6243. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  6244. if argsList.Len() < 3 {
  6245. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  6246. }
  6247. if argsList.Len() > 4 {
  6248. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  6249. }
  6250. lookupValue := argsList.Front().Value.(formulaArg)
  6251. tableArray := argsList.Front().Next().Value.(formulaArg)
  6252. if tableArray.Type != ArgMatrix {
  6253. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  6254. }
  6255. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6256. if colIdx.Type != ArgNumber {
  6257. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  6258. }
  6259. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  6260. if argsList.Len() == 4 {
  6261. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6262. if rangeLookup.Type == ArgError {
  6263. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6264. }
  6265. if rangeLookup.Number == 0 {
  6266. exactMatch = true
  6267. }
  6268. }
  6269. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6270. start:
  6271. for idx, mtx := range tableArray.Matrix {
  6272. lhs := mtx[0]
  6273. switch lookupValue.Type {
  6274. case ArgNumber:
  6275. if !lookupValue.Boolean {
  6276. lhs = mtx[0].ToNumber()
  6277. if lhs.Type == ArgError {
  6278. lhs = mtx[0]
  6279. }
  6280. }
  6281. case ArgMatrix:
  6282. lhs = tableArray
  6283. }
  6284. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6285. matchIdx = idx
  6286. wasExact = true
  6287. break start
  6288. }
  6289. }
  6290. } else {
  6291. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6292. }
  6293. if matchIdx == -1 {
  6294. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6295. }
  6296. mtx := tableArray.Matrix[matchIdx]
  6297. if col < 0 || col >= len(mtx) {
  6298. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6299. }
  6300. if wasExact || !exactMatch {
  6301. return mtx[col]
  6302. }
  6303. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6304. }
  6305. // vlookupBinarySearch finds the position of a target value when range lookup
  6306. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6307. // return wrong result.
  6308. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6309. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6310. for low <= high {
  6311. var mid int = low + (high-low)/2
  6312. mtx := tableArray.Matrix[mid]
  6313. lhs := mtx[0]
  6314. switch lookupValue.Type {
  6315. case ArgNumber:
  6316. if !lookupValue.Boolean {
  6317. lhs = mtx[0].ToNumber()
  6318. if lhs.Type == ArgError {
  6319. lhs = mtx[0]
  6320. }
  6321. }
  6322. case ArgMatrix:
  6323. lhs = tableArray
  6324. }
  6325. result := compareFormulaArg(lhs, lookupValue, false, false)
  6326. if result == criteriaEq {
  6327. matchIdx, wasExact = mid, true
  6328. return
  6329. } else if result == criteriaG {
  6330. high = mid - 1
  6331. } else if result == criteriaL {
  6332. matchIdx, low = mid, mid+1
  6333. if lhs.Value() != "" {
  6334. lastMatchIdx = matchIdx
  6335. }
  6336. } else {
  6337. return -1, false
  6338. }
  6339. }
  6340. matchIdx, wasExact = lastMatchIdx, true
  6341. return
  6342. }
  6343. // vlookupBinarySearch finds the position of a target value when range lookup
  6344. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6345. // return wrong result.
  6346. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6347. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6348. for low <= high {
  6349. var mid int = low + (high-low)/2
  6350. mtx := row[mid]
  6351. result := compareFormulaArg(mtx, lookupValue, false, false)
  6352. if result == criteriaEq {
  6353. matchIdx, wasExact = mid, true
  6354. return
  6355. } else if result == criteriaG {
  6356. high = mid - 1
  6357. } else if result == criteriaL {
  6358. low, lastMatchIdx = mid+1, mid
  6359. } else {
  6360. return -1, false
  6361. }
  6362. }
  6363. matchIdx, wasExact = lastMatchIdx, true
  6364. return
  6365. }
  6366. // LOOKUP function performs an approximate match lookup in a one-column or
  6367. // one-row range, and returns the corresponding value from another one-column
  6368. // or one-row range. The syntax of the function is:
  6369. //
  6370. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6371. //
  6372. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6373. if argsList.Len() < 2 {
  6374. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6375. }
  6376. if argsList.Len() > 3 {
  6377. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6378. }
  6379. lookupValue := argsList.Front().Value.(formulaArg)
  6380. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6381. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6382. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6383. }
  6384. cols, matchIdx := lookupCol(lookupVector), -1
  6385. for idx, col := range cols {
  6386. lhs := lookupValue
  6387. switch col.Type {
  6388. case ArgNumber:
  6389. lhs = lhs.ToNumber()
  6390. if !col.Boolean {
  6391. if lhs.Type == ArgError {
  6392. lhs = lookupValue
  6393. }
  6394. }
  6395. }
  6396. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6397. matchIdx = idx
  6398. break
  6399. }
  6400. }
  6401. column := cols
  6402. if argsList.Len() == 3 {
  6403. column = lookupCol(argsList.Back().Value.(formulaArg))
  6404. }
  6405. if matchIdx < 0 || matchIdx >= len(column) {
  6406. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6407. }
  6408. return column[matchIdx]
  6409. }
  6410. // lookupCol extract columns for LOOKUP.
  6411. func lookupCol(arr formulaArg) []formulaArg {
  6412. col := arr.List
  6413. if arr.Type == ArgMatrix {
  6414. col = nil
  6415. for _, r := range arr.Matrix {
  6416. if len(r) > 0 {
  6417. col = append(col, r[0])
  6418. continue
  6419. }
  6420. col = append(col, newEmptyFormulaArg())
  6421. }
  6422. }
  6423. return col
  6424. }
  6425. // ROW function returns the first row number within a supplied reference or
  6426. // the number of the current row. The syntax of the function is:
  6427. //
  6428. // ROW([reference])
  6429. //
  6430. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6431. if argsList.Len() > 1 {
  6432. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6433. }
  6434. if argsList.Len() == 1 {
  6435. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6436. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6437. }
  6438. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6439. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6440. }
  6441. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6442. }
  6443. _, row, _ := CellNameToCoordinates(fn.cell)
  6444. return newNumberFormulaArg(float64(row))
  6445. }
  6446. // ROWS function takes an Excel range and returns the number of rows that are
  6447. // contained within the range. The syntax of the function is:
  6448. //
  6449. // ROWS(array)
  6450. //
  6451. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6452. if argsList.Len() != 1 {
  6453. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6454. }
  6455. var min, max int
  6456. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6457. crs := argsList.Front().Value.(formulaArg).cellRanges
  6458. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6459. if min == 0 {
  6460. min = cr.Value.(cellRange).From.Row
  6461. }
  6462. if min > cr.Value.(cellRange).From.Row {
  6463. min = cr.Value.(cellRange).From.Row
  6464. }
  6465. if min > cr.Value.(cellRange).To.Row {
  6466. min = cr.Value.(cellRange).To.Row
  6467. }
  6468. if max < cr.Value.(cellRange).To.Row {
  6469. max = cr.Value.(cellRange).To.Row
  6470. }
  6471. if max < cr.Value.(cellRange).From.Row {
  6472. max = cr.Value.(cellRange).From.Row
  6473. }
  6474. }
  6475. }
  6476. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6477. cr := argsList.Front().Value.(formulaArg).cellRefs
  6478. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6479. if min == 0 {
  6480. min = refs.Value.(cellRef).Row
  6481. }
  6482. if min > refs.Value.(cellRef).Row {
  6483. min = refs.Value.(cellRef).Row
  6484. }
  6485. if max < refs.Value.(cellRef).Row {
  6486. max = refs.Value.(cellRef).Row
  6487. }
  6488. }
  6489. }
  6490. if max == TotalRows {
  6491. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6492. }
  6493. result := max - min + 1
  6494. if max == min {
  6495. if min == 0 {
  6496. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6497. }
  6498. return newNumberFormulaArg(float64(1))
  6499. }
  6500. return newStringFormulaArg(strconv.Itoa(result))
  6501. }
  6502. // Web Functions
  6503. // ENCODEURL function returns a URL-encoded string, replacing certain
  6504. // non-alphanumeric characters with the percentage symbol (%) and a
  6505. // hexadecimal number. The syntax of the function is:
  6506. //
  6507. // ENCODEURL(url)
  6508. //
  6509. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6510. if argsList.Len() != 1 {
  6511. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6512. }
  6513. token := argsList.Front().Value.(formulaArg).Value()
  6514. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6515. }