calc.go 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "unicode"
  26. "github.com/xuri/efp"
  27. )
  28. // Excel formula errors
  29. const (
  30. formulaErrorDIV = "#DIV/0!"
  31. formulaErrorNAME = "#NAME?"
  32. formulaErrorNA = "#N/A"
  33. formulaErrorNUM = "#NUM!"
  34. formulaErrorVALUE = "#VALUE!"
  35. formulaErrorREF = "#REF!"
  36. formulaErrorNULL = "#NULL"
  37. formulaErrorSPILL = "#SPILL!"
  38. formulaErrorCALC = "#CALC!"
  39. formulaErrorGETTINGDATA = "#GETTING_DATA"
  40. )
  41. // Numeric precision correct numeric values as legacy Excel application
  42. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  43. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  44. // has a decimal representation that is an infinite string of ones, Excel
  45. // displays only the leading 15 figures. In the second line, the number one
  46. // is added to the fraction, and again Excel displays only 15 figures.
  47. const numericPrecision = 1000000000000000
  48. // cellRef defines the structure of a cell reference.
  49. type cellRef struct {
  50. Col int
  51. Row int
  52. Sheet string
  53. }
  54. // cellRef defines the structure of a cell range.
  55. type cellRange struct {
  56. From cellRef
  57. To cellRef
  58. }
  59. // formula criteria condition enumeration.
  60. const (
  61. _ byte = iota
  62. criteriaEq
  63. criteriaLe
  64. criteriaGe
  65. criteriaL
  66. criteriaG
  67. criteriaBeg
  68. criteriaEnd
  69. criteriaErr
  70. )
  71. // formulaCriteria defined formula criteria parser result.
  72. type formulaCriteria struct {
  73. Type byte
  74. Condition string
  75. }
  76. // ArgType is the type if formula argument type.
  77. type ArgType byte
  78. // Formula argument types enumeration.
  79. const (
  80. ArgUnknown ArgType = iota
  81. ArgNumber
  82. ArgString
  83. ArgList
  84. ArgMatrix
  85. ArgError
  86. ArgEmpty
  87. )
  88. // formulaArg is the argument of a formula or function.
  89. type formulaArg struct {
  90. Number float64
  91. String string
  92. List []formulaArg
  93. Matrix [][]formulaArg
  94. Boolean bool
  95. Error string
  96. Type ArgType
  97. }
  98. // Value returns a string data type of the formula argument.
  99. func (fa formulaArg) Value() (value string) {
  100. switch fa.Type {
  101. case ArgNumber:
  102. if fa.Boolean {
  103. if fa.Number == 0 {
  104. return "FALSE"
  105. }
  106. return "TRUE"
  107. }
  108. return fmt.Sprintf("%g", fa.Number)
  109. case ArgString:
  110. return fa.String
  111. case ArgError:
  112. return fa.Error
  113. }
  114. return
  115. }
  116. // ToNumber returns a formula argument with number data type.
  117. func (fa formulaArg) ToNumber() formulaArg {
  118. var n float64
  119. var err error
  120. switch fa.Type {
  121. case ArgString:
  122. n, err = strconv.ParseFloat(fa.String, 64)
  123. if err != nil {
  124. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  125. }
  126. case ArgNumber:
  127. n = fa.Number
  128. }
  129. return newNumberFormulaArg(n)
  130. }
  131. // ToBool returns a formula argument with boolean data type.
  132. func (fa formulaArg) ToBool() formulaArg {
  133. var b bool
  134. var err error
  135. switch fa.Type {
  136. case ArgString:
  137. b, err = strconv.ParseBool(fa.String)
  138. if err != nil {
  139. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  140. }
  141. case ArgNumber:
  142. if fa.Boolean && fa.Number == 1 {
  143. b = true
  144. }
  145. }
  146. return newBoolFormulaArg(b)
  147. }
  148. // formulaFuncs is the type of the formula functions.
  149. type formulaFuncs struct{}
  150. // tokenPriority defined basic arithmetic operator priority.
  151. var tokenPriority = map[string]int{
  152. "^": 5,
  153. "*": 4,
  154. "/": 4,
  155. "+": 3,
  156. "-": 3,
  157. "=": 2,
  158. "<>": 2,
  159. "<": 2,
  160. "<=": 2,
  161. ">": 2,
  162. ">=": 2,
  163. "&": 1,
  164. }
  165. // CalcCellValue provides a function to get calculated cell value. This
  166. // feature is currently in working processing. Array formula, table formula
  167. // and some other formulas are not supported currently.
  168. //
  169. // Supported formulas:
  170. //
  171. // ABS
  172. // ACOS
  173. // ACOSH
  174. // ACOT
  175. // ACOTH
  176. // AND
  177. // ARABIC
  178. // ASIN
  179. // ASINH
  180. // ATAN2
  181. // ATANH
  182. // BASE
  183. // CEILING
  184. // CEILING.MATH
  185. // CEILING.PRECISE
  186. // CHOOSE
  187. // CLEAN
  188. // COMBIN
  189. // COMBINA
  190. // COS
  191. // COSH
  192. // COT
  193. // COTH
  194. // COUNTA
  195. // CSC
  196. // CSCH
  197. // DATE
  198. // DECIMAL
  199. // DEGREES
  200. // EVEN
  201. // EXP
  202. // FACT
  203. // FACTDOUBLE
  204. // FLOOR
  205. // FLOOR.MATH
  206. // FLOOR.PRECISE
  207. // GCD
  208. // HLOOKUP
  209. // IF
  210. // INT
  211. // ISBLANK
  212. // ISERR
  213. // ISERROR
  214. // ISEVEN
  215. // ISNA
  216. // ISNONTEXT
  217. // ISNUMBER
  218. // ISODD
  219. // ISO.CEILING
  220. // LCM
  221. // LEN
  222. // LN
  223. // LOG
  224. // LOG10
  225. // LOOKUP
  226. // LOWER
  227. // MDETERM
  228. // MEDIAN
  229. // MOD
  230. // MROUND
  231. // MULTINOMIAL
  232. // MUNIT
  233. // NA
  234. // ODD
  235. // OR
  236. // PI
  237. // POWER
  238. // PRODUCT
  239. // PROPER
  240. // QUOTIENT
  241. // RADIANS
  242. // RAND
  243. // RANDBETWEEN
  244. // ROUND
  245. // ROUNDDOWN
  246. // ROUNDUP
  247. // SEC
  248. // SECH
  249. // SIGN
  250. // SIN
  251. // SINH
  252. // SQRT
  253. // SQRTPI
  254. // SUM
  255. // SUMIF
  256. // SUMSQ
  257. // TAN
  258. // TANH
  259. // TRIM
  260. // TRUNC
  261. // UPPER
  262. // VLOOKUP
  263. //
  264. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  265. var (
  266. formula string
  267. token efp.Token
  268. )
  269. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  270. return
  271. }
  272. ps := efp.ExcelParser()
  273. tokens := ps.Parse(formula)
  274. if tokens == nil {
  275. return
  276. }
  277. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  278. return
  279. }
  280. result = token.TValue
  281. isNum, precision := isNumeric(result)
  282. if isNum && precision > 15 {
  283. num, _ := roundPrecision(result)
  284. result = strings.ToUpper(num)
  285. }
  286. return
  287. }
  288. // getPriority calculate arithmetic operator priority.
  289. func getPriority(token efp.Token) (pri int) {
  290. pri, _ = tokenPriority[token.TValue]
  291. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  292. pri = 6
  293. }
  294. if isBeginParenthesesToken(token) { // (
  295. pri = 0
  296. }
  297. return
  298. }
  299. // newNumberFormulaArg constructs a number formula argument.
  300. func newNumberFormulaArg(n float64) formulaArg {
  301. if math.IsNaN(n) {
  302. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  303. }
  304. return formulaArg{Type: ArgNumber, Number: n}
  305. }
  306. // newStringFormulaArg constructs a string formula argument.
  307. func newStringFormulaArg(s string) formulaArg {
  308. return formulaArg{Type: ArgString, String: s}
  309. }
  310. // newMatrixFormulaArg constructs a matrix formula argument.
  311. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  312. return formulaArg{Type: ArgMatrix, Matrix: m}
  313. }
  314. // newListFormulaArg create a list formula argument.
  315. func newListFormulaArg(l []formulaArg) formulaArg {
  316. return formulaArg{Type: ArgList, List: l}
  317. }
  318. // newBoolFormulaArg constructs a boolean formula argument.
  319. func newBoolFormulaArg(b bool) formulaArg {
  320. var n float64
  321. if b {
  322. n = 1
  323. }
  324. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  325. }
  326. // newErrorFormulaArg create an error formula argument of a given type with a
  327. // specified error message.
  328. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  329. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  330. }
  331. // newEmptyFormulaArg create an empty formula argument.
  332. func newEmptyFormulaArg() formulaArg {
  333. return formulaArg{Type: ArgEmpty}
  334. }
  335. // evalInfixExp evaluate syntax analysis by given infix expression after
  336. // lexical analysis. Evaluate an infix expression containing formulas by
  337. // stacks:
  338. //
  339. // opd - Operand
  340. // opt - Operator
  341. // opf - Operation formula
  342. // opfd - Operand of the operation formula
  343. // opft - Operator of the operation formula
  344. //
  345. // Evaluate arguments of the operation formula by list:
  346. //
  347. // args - Arguments of the operation formula
  348. //
  349. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  350. //
  351. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  352. var err error
  353. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  354. for i := 0; i < len(tokens); i++ {
  355. token := tokens[i]
  356. // out of function stack
  357. if opfStack.Len() == 0 {
  358. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  359. return efp.Token{}, err
  360. }
  361. }
  362. // function start
  363. if isFunctionStartToken(token) {
  364. opfStack.Push(token)
  365. argsStack.Push(list.New().Init())
  366. continue
  367. }
  368. // in function stack, walk 2 token at once
  369. if opfStack.Len() > 0 {
  370. var nextToken efp.Token
  371. if i+1 < len(tokens) {
  372. nextToken = tokens[i+1]
  373. }
  374. // current token is args or range, skip next token, order required: parse reference first
  375. if token.TSubType == efp.TokenSubTypeRange {
  376. if !opftStack.Empty() {
  377. // parse reference: must reference at here
  378. result, err := f.parseReference(sheet, token.TValue)
  379. if err != nil {
  380. return efp.Token{TValue: formulaErrorNAME}, err
  381. }
  382. if result.Type != ArgString {
  383. return efp.Token{}, errors.New(formulaErrorVALUE)
  384. }
  385. opfdStack.Push(efp.Token{
  386. TType: efp.TokenTypeOperand,
  387. TSubType: efp.TokenSubTypeNumber,
  388. TValue: result.String,
  389. })
  390. continue
  391. }
  392. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  393. // parse reference: reference or range at here
  394. result, err := f.parseReference(sheet, token.TValue)
  395. if err != nil {
  396. return efp.Token{TValue: formulaErrorNAME}, err
  397. }
  398. if result.Type == ArgUnknown {
  399. return efp.Token{}, errors.New(formulaErrorVALUE)
  400. }
  401. argsStack.Peek().(*list.List).PushBack(result)
  402. continue
  403. }
  404. }
  405. // check current token is opft
  406. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  407. return efp.Token{}, err
  408. }
  409. // current token is arg
  410. if token.TType == efp.TokenTypeArgument {
  411. for !opftStack.Empty() {
  412. // calculate trigger
  413. topOpt := opftStack.Peek().(efp.Token)
  414. if err := calculate(opfdStack, topOpt); err != nil {
  415. return efp.Token{}, err
  416. }
  417. opftStack.Pop()
  418. }
  419. if !opfdStack.Empty() {
  420. argsStack.Peek().(*list.List).PushBack(formulaArg{
  421. String: opfdStack.Pop().(efp.Token).TValue,
  422. Type: ArgString,
  423. })
  424. }
  425. continue
  426. }
  427. // current token is logical
  428. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  429. }
  430. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  431. argsStack.Peek().(*list.List).PushBack(formulaArg{
  432. String: token.TValue,
  433. Type: ArgString,
  434. })
  435. }
  436. // current token is text
  437. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  438. argsStack.Peek().(*list.List).PushBack(formulaArg{
  439. String: token.TValue,
  440. Type: ArgString,
  441. })
  442. }
  443. if err = evalInfixExpFunc(token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  444. return efp.Token{}, err
  445. }
  446. }
  447. }
  448. for optStack.Len() != 0 {
  449. topOpt := optStack.Peek().(efp.Token)
  450. if err = calculate(opdStack, topOpt); err != nil {
  451. return efp.Token{}, err
  452. }
  453. optStack.Pop()
  454. }
  455. if opdStack.Len() == 0 {
  456. return efp.Token{}, errors.New("formula not valid")
  457. }
  458. return opdStack.Peek().(efp.Token), err
  459. }
  460. // evalInfixExpFunc evaluate formula function in the infix expression.
  461. func evalInfixExpFunc(token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  462. if !isFunctionStopToken(token) {
  463. return nil
  464. }
  465. // current token is function stop
  466. for !opftStack.Empty() {
  467. // calculate trigger
  468. topOpt := opftStack.Peek().(efp.Token)
  469. if err := calculate(opfdStack, topOpt); err != nil {
  470. return err
  471. }
  472. opftStack.Pop()
  473. }
  474. // push opfd to args
  475. if opfdStack.Len() > 0 {
  476. argsStack.Peek().(*list.List).PushBack(formulaArg{
  477. String: opfdStack.Pop().(efp.Token).TValue,
  478. Type: ArgString,
  479. })
  480. }
  481. // call formula function to evaluate
  482. arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  483. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  484. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  485. if arg.Type == ArgError {
  486. return errors.New(arg.Value())
  487. }
  488. argsStack.Pop()
  489. opfStack.Pop()
  490. if opfStack.Len() > 0 { // still in function stack
  491. if nextToken.TType == efp.TokenTypeOperatorInfix {
  492. // mathematics calculate in formula function
  493. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  494. } else {
  495. argsStack.Peek().(*list.List).PushBack(arg)
  496. }
  497. } else {
  498. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  499. }
  500. return nil
  501. }
  502. // calcPow evaluate exponentiation arithmetic operations.
  503. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  504. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  505. if err != nil {
  506. return err
  507. }
  508. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  509. if err != nil {
  510. return err
  511. }
  512. result := math.Pow(lOpdVal, rOpdVal)
  513. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  514. return nil
  515. }
  516. // calcEq evaluate equal arithmetic operations.
  517. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  518. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  519. return nil
  520. }
  521. // calcNEq evaluate not equal arithmetic operations.
  522. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  523. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  524. return nil
  525. }
  526. // calcL evaluate less than arithmetic operations.
  527. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  528. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  529. if err != nil {
  530. return err
  531. }
  532. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  533. if err != nil {
  534. return err
  535. }
  536. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  537. return nil
  538. }
  539. // calcLe evaluate less than or equal arithmetic operations.
  540. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  541. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  542. if err != nil {
  543. return err
  544. }
  545. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  546. if err != nil {
  547. return err
  548. }
  549. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  550. return nil
  551. }
  552. // calcG evaluate greater than or equal arithmetic operations.
  553. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  554. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  555. if err != nil {
  556. return err
  557. }
  558. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  559. if err != nil {
  560. return err
  561. }
  562. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  563. return nil
  564. }
  565. // calcGe evaluate greater than or equal arithmetic operations.
  566. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  567. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  568. if err != nil {
  569. return err
  570. }
  571. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  572. if err != nil {
  573. return err
  574. }
  575. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  576. return nil
  577. }
  578. // calcSplice evaluate splice '&' operations.
  579. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  580. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  581. return nil
  582. }
  583. // calcAdd evaluate addition arithmetic operations.
  584. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  585. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  586. if err != nil {
  587. return err
  588. }
  589. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  590. if err != nil {
  591. return err
  592. }
  593. result := lOpdVal + rOpdVal
  594. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  595. return nil
  596. }
  597. // calcSubtract evaluate subtraction arithmetic operations.
  598. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  599. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  600. if err != nil {
  601. return err
  602. }
  603. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  604. if err != nil {
  605. return err
  606. }
  607. result := lOpdVal - rOpdVal
  608. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  609. return nil
  610. }
  611. // calcMultiply evaluate multiplication arithmetic operations.
  612. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  613. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  614. if err != nil {
  615. return err
  616. }
  617. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  618. if err != nil {
  619. return err
  620. }
  621. result := lOpdVal * rOpdVal
  622. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  623. return nil
  624. }
  625. // calcDiv evaluate division arithmetic operations.
  626. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  627. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  628. if err != nil {
  629. return err
  630. }
  631. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  632. if err != nil {
  633. return err
  634. }
  635. result := lOpdVal / rOpdVal
  636. if rOpdVal == 0 {
  637. return errors.New(formulaErrorDIV)
  638. }
  639. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  640. return nil
  641. }
  642. // calculate evaluate basic arithmetic operations.
  643. func calculate(opdStack *Stack, opt efp.Token) error {
  644. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  645. if opdStack.Len() < 1 {
  646. return errors.New("formula not valid")
  647. }
  648. opd := opdStack.Pop().(efp.Token)
  649. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  650. if err != nil {
  651. return err
  652. }
  653. result := 0 - opdVal
  654. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  655. }
  656. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  657. "^": calcPow,
  658. "*": calcMultiply,
  659. "/": calcDiv,
  660. "+": calcAdd,
  661. "=": calcEq,
  662. "<>": calcNEq,
  663. "<": calcL,
  664. "<=": calcLe,
  665. ">": calcG,
  666. ">=": calcGe,
  667. "&": calcSplice,
  668. }
  669. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  670. if opdStack.Len() < 2 {
  671. return errors.New("formula not valid")
  672. }
  673. rOpd := opdStack.Pop().(efp.Token)
  674. lOpd := opdStack.Pop().(efp.Token)
  675. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  676. return err
  677. }
  678. }
  679. fn, ok := tokenCalcFunc[opt.TValue]
  680. if ok {
  681. if opdStack.Len() < 2 {
  682. return errors.New("formula not valid")
  683. }
  684. rOpd := opdStack.Pop().(efp.Token)
  685. lOpd := opdStack.Pop().(efp.Token)
  686. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  687. return err
  688. }
  689. }
  690. return nil
  691. }
  692. // parseOperatorPrefixToken parse operator prefix token.
  693. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  694. if optStack.Len() == 0 {
  695. optStack.Push(token)
  696. } else {
  697. tokenPriority := getPriority(token)
  698. topOpt := optStack.Peek().(efp.Token)
  699. topOptPriority := getPriority(topOpt)
  700. if tokenPriority > topOptPriority {
  701. optStack.Push(token)
  702. } else {
  703. for tokenPriority <= topOptPriority {
  704. optStack.Pop()
  705. if err = calculate(opdStack, topOpt); err != nil {
  706. return
  707. }
  708. if optStack.Len() > 0 {
  709. topOpt = optStack.Peek().(efp.Token)
  710. topOptPriority = getPriority(topOpt)
  711. continue
  712. }
  713. break
  714. }
  715. optStack.Push(token)
  716. }
  717. }
  718. return
  719. }
  720. // isFunctionStartToken determine if the token is function stop.
  721. func isFunctionStartToken(token efp.Token) bool {
  722. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  723. }
  724. // isFunctionStopToken determine if the token is function stop.
  725. func isFunctionStopToken(token efp.Token) bool {
  726. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  727. }
  728. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  729. func isBeginParenthesesToken(token efp.Token) bool {
  730. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  731. }
  732. // isEndParenthesesToken determine if the token is end parentheses: ).
  733. func isEndParenthesesToken(token efp.Token) bool {
  734. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  735. }
  736. // isOperatorPrefixToken determine if the token is parse operator prefix
  737. // token.
  738. func isOperatorPrefixToken(token efp.Token) bool {
  739. _, ok := tokenPriority[token.TValue]
  740. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || ok {
  741. return true
  742. }
  743. return false
  744. }
  745. // getDefinedNameRefTo convert defined name to reference range.
  746. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  747. for _, definedName := range f.GetDefinedName() {
  748. if definedName.Name == definedNameName {
  749. refTo = definedName.RefersTo
  750. // worksheet scope takes precedence over scope workbook when both definedNames exist
  751. if definedName.Scope == currentSheet {
  752. break
  753. }
  754. }
  755. }
  756. return refTo
  757. }
  758. // parseToken parse basic arithmetic operator priority and evaluate based on
  759. // operators and operands.
  760. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  761. // parse reference: must reference at here
  762. if token.TSubType == efp.TokenSubTypeRange {
  763. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  764. if refTo != "" {
  765. token.TValue = refTo
  766. }
  767. result, err := f.parseReference(sheet, token.TValue)
  768. if err != nil {
  769. return errors.New(formulaErrorNAME)
  770. }
  771. if result.Type != ArgString {
  772. return errors.New(formulaErrorVALUE)
  773. }
  774. token.TValue = result.String
  775. token.TType = efp.TokenTypeOperand
  776. token.TSubType = efp.TokenSubTypeNumber
  777. }
  778. if isOperatorPrefixToken(token) {
  779. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  780. return err
  781. }
  782. }
  783. if isBeginParenthesesToken(token) { // (
  784. optStack.Push(token)
  785. }
  786. if isEndParenthesesToken(token) { // )
  787. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  788. topOpt := optStack.Peek().(efp.Token)
  789. if err := calculate(opdStack, topOpt); err != nil {
  790. return err
  791. }
  792. optStack.Pop()
  793. }
  794. optStack.Pop()
  795. }
  796. // opd
  797. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  798. opdStack.Push(token)
  799. }
  800. return nil
  801. }
  802. // parseReference parse reference and extract values by given reference
  803. // characters and default sheet name.
  804. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  805. reference = strings.Replace(reference, "$", "", -1)
  806. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  807. for _, ref := range strings.Split(reference, ":") {
  808. tokens := strings.Split(ref, "!")
  809. cr := cellRef{}
  810. if len(tokens) == 2 { // have a worksheet name
  811. cr.Sheet = tokens[0]
  812. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  813. return
  814. }
  815. if refs.Len() > 0 {
  816. e := refs.Back()
  817. cellRefs.PushBack(e.Value.(cellRef))
  818. refs.Remove(e)
  819. }
  820. refs.PushBack(cr)
  821. continue
  822. }
  823. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  824. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  825. return
  826. }
  827. cellRanges.PushBack(cellRange{
  828. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  829. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  830. })
  831. cellRefs.Init()
  832. arg, err = f.rangeResolver(cellRefs, cellRanges)
  833. return
  834. }
  835. e := refs.Back()
  836. if e == nil {
  837. cr.Sheet = sheet
  838. refs.PushBack(cr)
  839. continue
  840. }
  841. cellRanges.PushBack(cellRange{
  842. From: e.Value.(cellRef),
  843. To: cr,
  844. })
  845. refs.Remove(e)
  846. }
  847. if refs.Len() > 0 {
  848. e := refs.Back()
  849. cellRefs.PushBack(e.Value.(cellRef))
  850. refs.Remove(e)
  851. }
  852. arg, err = f.rangeResolver(cellRefs, cellRanges)
  853. return
  854. }
  855. // prepareValueRange prepare value range.
  856. func prepareValueRange(cr cellRange, valueRange []int) {
  857. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  858. valueRange[0] = cr.From.Row
  859. }
  860. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  861. valueRange[2] = cr.From.Col
  862. }
  863. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  864. valueRange[1] = cr.To.Row
  865. }
  866. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  867. valueRange[3] = cr.To.Col
  868. }
  869. }
  870. // prepareValueRef prepare value reference.
  871. func prepareValueRef(cr cellRef, valueRange []int) {
  872. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  873. valueRange[0] = cr.Row
  874. }
  875. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  876. valueRange[2] = cr.Col
  877. }
  878. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  879. valueRange[1] = cr.Row
  880. }
  881. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  882. valueRange[3] = cr.Col
  883. }
  884. }
  885. // rangeResolver extract value as string from given reference and range list.
  886. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  887. // be reference A1:B3.
  888. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  889. // value range order: from row, to row, from column, to column
  890. valueRange := []int{0, 0, 0, 0}
  891. var sheet string
  892. // prepare value range
  893. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  894. cr := temp.Value.(cellRange)
  895. if cr.From.Sheet != cr.To.Sheet {
  896. err = errors.New(formulaErrorVALUE)
  897. }
  898. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  899. sortCoordinates(rng)
  900. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  901. prepareValueRange(cr, valueRange)
  902. if cr.From.Sheet != "" {
  903. sheet = cr.From.Sheet
  904. }
  905. }
  906. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  907. cr := temp.Value.(cellRef)
  908. if cr.Sheet != "" {
  909. sheet = cr.Sheet
  910. }
  911. prepareValueRef(cr, valueRange)
  912. }
  913. // extract value from ranges
  914. if cellRanges.Len() > 0 {
  915. arg.Type = ArgMatrix
  916. for row := valueRange[0]; row <= valueRange[1]; row++ {
  917. var matrixRow = []formulaArg{}
  918. for col := valueRange[2]; col <= valueRange[3]; col++ {
  919. var cell, value string
  920. if cell, err = CoordinatesToCellName(col, row); err != nil {
  921. return
  922. }
  923. if value, err = f.GetCellValue(sheet, cell); err != nil {
  924. return
  925. }
  926. matrixRow = append(matrixRow, formulaArg{
  927. String: value,
  928. Type: ArgString,
  929. })
  930. }
  931. arg.Matrix = append(arg.Matrix, matrixRow)
  932. }
  933. return
  934. }
  935. // extract value from references
  936. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  937. cr := temp.Value.(cellRef)
  938. var cell string
  939. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  940. return
  941. }
  942. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  943. return
  944. }
  945. arg.Type = ArgString
  946. }
  947. return
  948. }
  949. // callFuncByName calls the no error or only error return function with
  950. // reflect by given receiver, name and parameters.
  951. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  952. function := reflect.ValueOf(receiver).MethodByName(name)
  953. if function.IsValid() {
  954. rt := function.Call(params)
  955. if len(rt) == 0 {
  956. return
  957. }
  958. arg = rt[0].Interface().(formulaArg)
  959. return
  960. }
  961. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  962. }
  963. // formulaCriteriaParser parse formula criteria.
  964. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  965. fc = &formulaCriteria{}
  966. if exp == "" {
  967. return
  968. }
  969. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  970. fc.Type, fc.Condition = criteriaEq, match[1]
  971. return
  972. }
  973. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  974. fc.Type, fc.Condition = criteriaEq, match[1]
  975. return
  976. }
  977. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  978. fc.Type, fc.Condition = criteriaLe, match[1]
  979. return
  980. }
  981. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  982. fc.Type, fc.Condition = criteriaGe, match[1]
  983. return
  984. }
  985. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  986. fc.Type, fc.Condition = criteriaL, match[1]
  987. return
  988. }
  989. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  990. fc.Type, fc.Condition = criteriaG, match[1]
  991. return
  992. }
  993. if strings.Contains(exp, "*") {
  994. if strings.HasPrefix(exp, "*") {
  995. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  996. }
  997. if strings.HasSuffix(exp, "*") {
  998. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  999. }
  1000. return
  1001. }
  1002. fc.Type, fc.Condition = criteriaEq, exp
  1003. return
  1004. }
  1005. // formulaCriteriaEval evaluate formula criteria expression.
  1006. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1007. var value, expected float64
  1008. var e error
  1009. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1010. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1011. return
  1012. }
  1013. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1014. return
  1015. }
  1016. return
  1017. }
  1018. switch criteria.Type {
  1019. case criteriaEq:
  1020. return val == criteria.Condition, err
  1021. case criteriaLe:
  1022. value, expected, e = prepareValue(val, criteria.Condition)
  1023. return value <= expected && e == nil, err
  1024. case criteriaGe:
  1025. value, expected, e = prepareValue(val, criteria.Condition)
  1026. return value >= expected && e == nil, err
  1027. case criteriaL:
  1028. value, expected, e = prepareValue(val, criteria.Condition)
  1029. return value < expected && e == nil, err
  1030. case criteriaG:
  1031. value, expected, e = prepareValue(val, criteria.Condition)
  1032. return value > expected && e == nil, err
  1033. case criteriaBeg:
  1034. return strings.HasPrefix(val, criteria.Condition), err
  1035. case criteriaEnd:
  1036. return strings.HasSuffix(val, criteria.Condition), err
  1037. }
  1038. return
  1039. }
  1040. // Math and Trigonometric functions
  1041. // ABS function returns the absolute value of any supplied number. The syntax
  1042. // of the function is:
  1043. //
  1044. // ABS(number)
  1045. //
  1046. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1047. if argsList.Len() != 1 {
  1048. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1049. }
  1050. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1051. if arg.Type == ArgError {
  1052. return arg
  1053. }
  1054. return newNumberFormulaArg(math.Abs(arg.Number))
  1055. }
  1056. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1057. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1058. // the function is:
  1059. //
  1060. // ACOS(number)
  1061. //
  1062. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1063. if argsList.Len() != 1 {
  1064. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1065. }
  1066. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1067. if arg.Type == ArgError {
  1068. return arg
  1069. }
  1070. return newNumberFormulaArg(math.Acos(arg.Number))
  1071. }
  1072. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1073. // of the function is:
  1074. //
  1075. // ACOSH(number)
  1076. //
  1077. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1078. if argsList.Len() != 1 {
  1079. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1080. }
  1081. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1082. if arg.Type == ArgError {
  1083. return arg
  1084. }
  1085. return newNumberFormulaArg(math.Acosh(arg.Number))
  1086. }
  1087. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1088. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1089. // of the function is:
  1090. //
  1091. // ACOT(number)
  1092. //
  1093. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1094. if argsList.Len() != 1 {
  1095. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1096. }
  1097. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1098. if arg.Type == ArgError {
  1099. return arg
  1100. }
  1101. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1102. }
  1103. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1104. // value. The syntax of the function is:
  1105. //
  1106. // ACOTH(number)
  1107. //
  1108. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1109. if argsList.Len() != 1 {
  1110. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1111. }
  1112. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1113. if arg.Type == ArgError {
  1114. return arg
  1115. }
  1116. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1117. }
  1118. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1119. // of the function is:
  1120. //
  1121. // ARABIC(text)
  1122. //
  1123. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1124. if argsList.Len() != 1 {
  1125. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1126. }
  1127. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1128. val, last, prefix := 0.0, 0.0, 1.0
  1129. for _, char := range argsList.Front().Value.(formulaArg).String {
  1130. digit := 0.0
  1131. if char == '-' {
  1132. prefix = -1
  1133. continue
  1134. }
  1135. digit, _ = charMap[char]
  1136. val += digit
  1137. switch {
  1138. case last == digit && (last == 5 || last == 50 || last == 500):
  1139. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1140. case 2*last == digit:
  1141. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1142. }
  1143. if last < digit {
  1144. val -= 2 * last
  1145. }
  1146. last = digit
  1147. }
  1148. return newNumberFormulaArg(prefix * val)
  1149. }
  1150. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1151. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1152. // of the function is:
  1153. //
  1154. // ASIN(number)
  1155. //
  1156. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1157. if argsList.Len() != 1 {
  1158. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1159. }
  1160. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1161. if arg.Type == ArgError {
  1162. return arg
  1163. }
  1164. return newNumberFormulaArg(math.Asin(arg.Number))
  1165. }
  1166. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1167. // The syntax of the function is:
  1168. //
  1169. // ASINH(number)
  1170. //
  1171. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1172. if argsList.Len() != 1 {
  1173. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1174. }
  1175. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1176. if arg.Type == ArgError {
  1177. return arg
  1178. }
  1179. return newNumberFormulaArg(math.Asinh(arg.Number))
  1180. }
  1181. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1182. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1183. // syntax of the function is:
  1184. //
  1185. // ATAN(number)
  1186. //
  1187. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1188. if argsList.Len() != 1 {
  1189. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1190. }
  1191. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1192. if arg.Type == ArgError {
  1193. return arg
  1194. }
  1195. return newNumberFormulaArg(math.Atan(arg.Number))
  1196. }
  1197. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1198. // number. The syntax of the function is:
  1199. //
  1200. // ATANH(number)
  1201. //
  1202. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1203. if argsList.Len() != 1 {
  1204. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1205. }
  1206. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1207. if arg.Type == ArgError {
  1208. return arg
  1209. }
  1210. return newNumberFormulaArg(math.Atanh(arg.Number))
  1211. }
  1212. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1213. // given set of x and y coordinates, and returns an angle, in radians, between
  1214. // -π/2 and +π/2. The syntax of the function is:
  1215. //
  1216. // ATAN2(x_num,y_num)
  1217. //
  1218. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1219. if argsList.Len() != 2 {
  1220. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1221. }
  1222. x := argsList.Back().Value.(formulaArg).ToNumber()
  1223. if x.Type == ArgError {
  1224. return x
  1225. }
  1226. y := argsList.Front().Value.(formulaArg).ToNumber()
  1227. if y.Type == ArgError {
  1228. return y
  1229. }
  1230. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1231. }
  1232. // BASE function converts a number into a supplied base (radix), and returns a
  1233. // text representation of the calculated value. The syntax of the function is:
  1234. //
  1235. // BASE(number,radix,[min_length])
  1236. //
  1237. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1238. if argsList.Len() < 2 {
  1239. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1240. }
  1241. if argsList.Len() > 3 {
  1242. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1243. }
  1244. var minLength int
  1245. var err error
  1246. number := argsList.Front().Value.(formulaArg).ToNumber()
  1247. if number.Type == ArgError {
  1248. return number
  1249. }
  1250. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1251. if radix.Type == ArgError {
  1252. return radix
  1253. }
  1254. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1255. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1256. }
  1257. if argsList.Len() > 2 {
  1258. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1259. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1260. }
  1261. }
  1262. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1263. if len(result) < minLength {
  1264. result = strings.Repeat("0", minLength-len(result)) + result
  1265. }
  1266. return newStringFormulaArg(strings.ToUpper(result))
  1267. }
  1268. // CEILING function rounds a supplied number away from zero, to the nearest
  1269. // multiple of a given number. The syntax of the function is:
  1270. //
  1271. // CEILING(number,significance)
  1272. //
  1273. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1274. if argsList.Len() == 0 {
  1275. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1276. }
  1277. if argsList.Len() > 2 {
  1278. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1279. }
  1280. number, significance, res := 0.0, 1.0, 0.0
  1281. n := argsList.Front().Value.(formulaArg).ToNumber()
  1282. if n.Type == ArgError {
  1283. return n
  1284. }
  1285. number = n.Number
  1286. if number < 0 {
  1287. significance = -1
  1288. }
  1289. if argsList.Len() > 1 {
  1290. s := argsList.Back().Value.(formulaArg).ToNumber()
  1291. if s.Type == ArgError {
  1292. return s
  1293. }
  1294. significance = s.Number
  1295. }
  1296. if significance < 0 && number > 0 {
  1297. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1298. }
  1299. if argsList.Len() == 1 {
  1300. return newNumberFormulaArg(math.Ceil(number))
  1301. }
  1302. number, res = math.Modf(number / significance)
  1303. if res > 0 {
  1304. number++
  1305. }
  1306. return newNumberFormulaArg(number * significance)
  1307. }
  1308. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1309. // significance. The syntax of the function is:
  1310. //
  1311. // CEILING.MATH(number,[significance],[mode])
  1312. //
  1313. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1314. if argsList.Len() == 0 {
  1315. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1316. }
  1317. if argsList.Len() > 3 {
  1318. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1319. }
  1320. number, significance, mode := 0.0, 1.0, 1.0
  1321. n := argsList.Front().Value.(formulaArg).ToNumber()
  1322. if n.Type == ArgError {
  1323. return n
  1324. }
  1325. number = n.Number
  1326. if number < 0 {
  1327. significance = -1
  1328. }
  1329. if argsList.Len() > 1 {
  1330. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1331. if s.Type == ArgError {
  1332. return s
  1333. }
  1334. significance = s.Number
  1335. }
  1336. if argsList.Len() == 1 {
  1337. return newNumberFormulaArg(math.Ceil(number))
  1338. }
  1339. if argsList.Len() > 2 {
  1340. m := argsList.Back().Value.(formulaArg).ToNumber()
  1341. if m.Type == ArgError {
  1342. return m
  1343. }
  1344. mode = m.Number
  1345. }
  1346. val, res := math.Modf(number / significance)
  1347. if res != 0 {
  1348. if number > 0 {
  1349. val++
  1350. } else if mode < 0 {
  1351. val--
  1352. }
  1353. }
  1354. return newNumberFormulaArg(val * significance)
  1355. }
  1356. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1357. // number's sign), to the nearest multiple of a given number. The syntax of
  1358. // the function is:
  1359. //
  1360. // CEILING.PRECISE(number,[significance])
  1361. //
  1362. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1363. if argsList.Len() == 0 {
  1364. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1365. }
  1366. if argsList.Len() > 2 {
  1367. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1368. }
  1369. number, significance := 0.0, 1.0
  1370. n := argsList.Front().Value.(formulaArg).ToNumber()
  1371. if n.Type == ArgError {
  1372. return n
  1373. }
  1374. number = n.Number
  1375. if number < 0 {
  1376. significance = -1
  1377. }
  1378. if argsList.Len() == 1 {
  1379. return newNumberFormulaArg(math.Ceil(number))
  1380. }
  1381. if argsList.Len() > 1 {
  1382. s := argsList.Back().Value.(formulaArg).ToNumber()
  1383. if s.Type == ArgError {
  1384. return s
  1385. }
  1386. significance = s.Number
  1387. significance = math.Abs(significance)
  1388. if significance == 0 {
  1389. return newNumberFormulaArg(significance)
  1390. }
  1391. }
  1392. val, res := math.Modf(number / significance)
  1393. if res != 0 {
  1394. if number > 0 {
  1395. val++
  1396. }
  1397. }
  1398. return newNumberFormulaArg(val * significance)
  1399. }
  1400. // COMBIN function calculates the number of combinations (in any order) of a
  1401. // given number objects from a set. The syntax of the function is:
  1402. //
  1403. // COMBIN(number,number_chosen)
  1404. //
  1405. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1406. if argsList.Len() != 2 {
  1407. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1408. }
  1409. number, chosen, val := 0.0, 0.0, 1.0
  1410. n := argsList.Front().Value.(formulaArg).ToNumber()
  1411. if n.Type == ArgError {
  1412. return n
  1413. }
  1414. number = n.Number
  1415. c := argsList.Back().Value.(formulaArg).ToNumber()
  1416. if c.Type == ArgError {
  1417. return c
  1418. }
  1419. chosen = c.Number
  1420. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1421. if chosen > number {
  1422. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1423. }
  1424. if chosen == number || chosen == 0 {
  1425. return newNumberFormulaArg(1)
  1426. }
  1427. for c := float64(1); c <= chosen; c++ {
  1428. val *= (number + 1 - c) / c
  1429. }
  1430. return newNumberFormulaArg(math.Ceil(val))
  1431. }
  1432. // COMBINA function calculates the number of combinations, with repetitions,
  1433. // of a given number objects from a set. The syntax of the function is:
  1434. //
  1435. // COMBINA(number,number_chosen)
  1436. //
  1437. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1438. if argsList.Len() != 2 {
  1439. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1440. }
  1441. var number, chosen float64
  1442. n := argsList.Front().Value.(formulaArg).ToNumber()
  1443. if n.Type == ArgError {
  1444. return n
  1445. }
  1446. number = n.Number
  1447. c := argsList.Back().Value.(formulaArg).ToNumber()
  1448. if c.Type == ArgError {
  1449. return c
  1450. }
  1451. chosen = c.Number
  1452. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1453. if number < chosen {
  1454. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1455. }
  1456. if number == 0 {
  1457. return newNumberFormulaArg(number)
  1458. }
  1459. args := list.New()
  1460. args.PushBack(formulaArg{
  1461. String: fmt.Sprintf("%g", number+chosen-1),
  1462. Type: ArgString,
  1463. })
  1464. args.PushBack(formulaArg{
  1465. String: fmt.Sprintf("%g", number-1),
  1466. Type: ArgString,
  1467. })
  1468. return fn.COMBIN(args)
  1469. }
  1470. // COS function calculates the cosine of a given angle. The syntax of the
  1471. // function is:
  1472. //
  1473. // COS(number)
  1474. //
  1475. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1476. if argsList.Len() != 1 {
  1477. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1478. }
  1479. val := argsList.Front().Value.(formulaArg).ToNumber()
  1480. if val.Type == ArgError {
  1481. return val
  1482. }
  1483. return newNumberFormulaArg(math.Cos(val.Number))
  1484. }
  1485. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1486. // The syntax of the function is:
  1487. //
  1488. // COSH(number)
  1489. //
  1490. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1491. if argsList.Len() != 1 {
  1492. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1493. }
  1494. val := argsList.Front().Value.(formulaArg).ToNumber()
  1495. if val.Type == ArgError {
  1496. return val
  1497. }
  1498. return newNumberFormulaArg(math.Cosh(val.Number))
  1499. }
  1500. // COT function calculates the cotangent of a given angle. The syntax of the
  1501. // function is:
  1502. //
  1503. // COT(number)
  1504. //
  1505. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1506. if argsList.Len() != 1 {
  1507. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1508. }
  1509. val := argsList.Front().Value.(formulaArg).ToNumber()
  1510. if val.Type == ArgError {
  1511. return val
  1512. }
  1513. if val.Number == 0 {
  1514. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1515. }
  1516. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1517. }
  1518. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1519. // angle. The syntax of the function is:
  1520. //
  1521. // COTH(number)
  1522. //
  1523. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1524. if argsList.Len() != 1 {
  1525. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1526. }
  1527. val := argsList.Front().Value.(formulaArg).ToNumber()
  1528. if val.Type == ArgError {
  1529. return val
  1530. }
  1531. if val.Number == 0 {
  1532. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1533. }
  1534. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1535. }
  1536. // CSC function calculates the cosecant of a given angle. The syntax of the
  1537. // function is:
  1538. //
  1539. // CSC(number)
  1540. //
  1541. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1542. if argsList.Len() != 1 {
  1543. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1544. }
  1545. val := argsList.Front().Value.(formulaArg).ToNumber()
  1546. if val.Type == ArgError {
  1547. return val
  1548. }
  1549. if val.Number == 0 {
  1550. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1551. }
  1552. return newNumberFormulaArg(1 / math.Sin(val.Number))
  1553. }
  1554. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1555. // angle. The syntax of the function is:
  1556. //
  1557. // CSCH(number)
  1558. //
  1559. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1560. if argsList.Len() != 1 {
  1561. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1562. }
  1563. val := argsList.Front().Value.(formulaArg).ToNumber()
  1564. if val.Type == ArgError {
  1565. return val
  1566. }
  1567. if val.Number == 0 {
  1568. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1569. }
  1570. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  1571. }
  1572. // DECIMAL function converts a text representation of a number in a specified
  1573. // base, into a decimal value. The syntax of the function is:
  1574. //
  1575. // DECIMAL(text,radix)
  1576. //
  1577. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1578. if argsList.Len() != 2 {
  1579. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1580. }
  1581. var text = argsList.Front().Value.(formulaArg).String
  1582. var radix int
  1583. var err error
  1584. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1585. if err != nil {
  1586. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1587. }
  1588. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1589. text = text[2:]
  1590. }
  1591. val, err := strconv.ParseInt(text, radix, 64)
  1592. if err != nil {
  1593. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1594. }
  1595. return newNumberFormulaArg(float64(val))
  1596. }
  1597. // DEGREES function converts radians into degrees. The syntax of the function
  1598. // is:
  1599. //
  1600. // DEGREES(angle)
  1601. //
  1602. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1603. if argsList.Len() != 1 {
  1604. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1605. }
  1606. val := argsList.Front().Value.(formulaArg).ToNumber()
  1607. if val.Type == ArgError {
  1608. return val
  1609. }
  1610. if val.Number == 0 {
  1611. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1612. }
  1613. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  1614. }
  1615. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1616. // positive number up and a negative number down), to the next even number.
  1617. // The syntax of the function is:
  1618. //
  1619. // EVEN(number)
  1620. //
  1621. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1622. if argsList.Len() != 1 {
  1623. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1624. }
  1625. number := argsList.Front().Value.(formulaArg).ToNumber()
  1626. if number.Type == ArgError {
  1627. return number
  1628. }
  1629. sign := math.Signbit(number.Number)
  1630. m, frac := math.Modf(number.Number / 2)
  1631. val := m * 2
  1632. if frac != 0 {
  1633. if !sign {
  1634. val += 2
  1635. } else {
  1636. val -= 2
  1637. }
  1638. }
  1639. return newNumberFormulaArg(val)
  1640. }
  1641. // EXP function calculates the value of the mathematical constant e, raised to
  1642. // the power of a given number. The syntax of the function is:
  1643. //
  1644. // EXP(number)
  1645. //
  1646. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1647. if argsList.Len() != 1 {
  1648. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1649. }
  1650. number := argsList.Front().Value.(formulaArg).ToNumber()
  1651. if number.Type == ArgError {
  1652. return number
  1653. }
  1654. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  1655. }
  1656. // fact returns the factorial of a supplied number.
  1657. func fact(number float64) float64 {
  1658. val := float64(1)
  1659. for i := float64(2); i <= number; i++ {
  1660. val *= i
  1661. }
  1662. return val
  1663. }
  1664. // FACT function returns the factorial of a supplied number. The syntax of the
  1665. // function is:
  1666. //
  1667. // FACT(number)
  1668. //
  1669. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1670. if argsList.Len() != 1 {
  1671. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1672. }
  1673. number := argsList.Front().Value.(formulaArg).ToNumber()
  1674. if number.Type == ArgError {
  1675. return number
  1676. }
  1677. if number.Number < 0 {
  1678. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1679. }
  1680. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
  1681. }
  1682. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1683. // syntax of the function is:
  1684. //
  1685. // FACTDOUBLE(number)
  1686. //
  1687. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1688. if argsList.Len() != 1 {
  1689. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1690. }
  1691. val := 1.0
  1692. number := argsList.Front().Value.(formulaArg).ToNumber()
  1693. if number.Type == ArgError {
  1694. return number
  1695. }
  1696. if number.Number < 0 {
  1697. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1698. }
  1699. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  1700. val *= i
  1701. }
  1702. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1703. }
  1704. // FLOOR function rounds a supplied number towards zero to the nearest
  1705. // multiple of a specified significance. The syntax of the function is:
  1706. //
  1707. // FLOOR(number,significance)
  1708. //
  1709. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1710. if argsList.Len() != 2 {
  1711. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1712. }
  1713. number := argsList.Front().Value.(formulaArg).ToNumber()
  1714. if number.Type == ArgError {
  1715. return number
  1716. }
  1717. significance := argsList.Back().Value.(formulaArg).ToNumber()
  1718. if significance.Type == ArgError {
  1719. return significance
  1720. }
  1721. if significance.Number < 0 && number.Number >= 0 {
  1722. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1723. }
  1724. val := number.Number
  1725. val, res := math.Modf(val / significance.Number)
  1726. if res != 0 {
  1727. if number.Number < 0 && res < 0 {
  1728. val--
  1729. }
  1730. }
  1731. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  1732. }
  1733. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1734. // significance. The syntax of the function is:
  1735. //
  1736. // FLOOR.MATH(number,[significance],[mode])
  1737. //
  1738. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1739. if argsList.Len() == 0 {
  1740. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1741. }
  1742. if argsList.Len() > 3 {
  1743. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1744. }
  1745. significance, mode := 1.0, 1.0
  1746. number := argsList.Front().Value.(formulaArg).ToNumber()
  1747. if number.Type == ArgError {
  1748. return number
  1749. }
  1750. if number.Number < 0 {
  1751. significance = -1
  1752. }
  1753. if argsList.Len() > 1 {
  1754. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1755. if s.Type == ArgError {
  1756. return s
  1757. }
  1758. significance = s.Number
  1759. }
  1760. if argsList.Len() == 1 {
  1761. return newNumberFormulaArg(math.Floor(number.Number))
  1762. }
  1763. if argsList.Len() > 2 {
  1764. m := argsList.Back().Value.(formulaArg).ToNumber()
  1765. if m.Type == ArgError {
  1766. return m
  1767. }
  1768. mode = m.Number
  1769. }
  1770. val, res := math.Modf(number.Number / significance)
  1771. if res != 0 && number.Number < 0 && mode > 0 {
  1772. val--
  1773. }
  1774. return newNumberFormulaArg(val * significance)
  1775. }
  1776. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1777. // of significance. The syntax of the function is:
  1778. //
  1779. // FLOOR.PRECISE(number,[significance])
  1780. //
  1781. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1782. if argsList.Len() == 0 {
  1783. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1784. }
  1785. if argsList.Len() > 2 {
  1786. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1787. }
  1788. var significance float64
  1789. number := argsList.Front().Value.(formulaArg).ToNumber()
  1790. if number.Type == ArgError {
  1791. return number
  1792. }
  1793. if number.Number < 0 {
  1794. significance = -1
  1795. }
  1796. if argsList.Len() == 1 {
  1797. return newNumberFormulaArg(math.Floor(number.Number))
  1798. }
  1799. if argsList.Len() > 1 {
  1800. s := argsList.Back().Value.(formulaArg).ToNumber()
  1801. if s.Type == ArgError {
  1802. return s
  1803. }
  1804. significance = s.Number
  1805. significance = math.Abs(significance)
  1806. if significance == 0 {
  1807. return newNumberFormulaArg(significance)
  1808. }
  1809. }
  1810. val, res := math.Modf(number.Number / significance)
  1811. if res != 0 {
  1812. if number.Number < 0 {
  1813. val--
  1814. }
  1815. }
  1816. return newNumberFormulaArg(val * significance)
  1817. }
  1818. // gcd returns the greatest common divisor of two supplied integers.
  1819. func gcd(x, y float64) float64 {
  1820. x, y = math.Trunc(x), math.Trunc(y)
  1821. if x == 0 {
  1822. return y
  1823. }
  1824. if y == 0 {
  1825. return x
  1826. }
  1827. for x != y {
  1828. if x > y {
  1829. x = x - y
  1830. } else {
  1831. y = y - x
  1832. }
  1833. }
  1834. return x
  1835. }
  1836. // GCD function returns the greatest common divisor of two or more supplied
  1837. // integers. The syntax of the function is:
  1838. //
  1839. // GCD(number1,[number2],...)
  1840. //
  1841. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  1842. if argsList.Len() == 0 {
  1843. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  1844. }
  1845. var (
  1846. val float64
  1847. nums = []float64{}
  1848. err error
  1849. )
  1850. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1851. token := arg.Value.(formulaArg)
  1852. switch token.Type {
  1853. case ArgString:
  1854. if token.String == "" {
  1855. continue
  1856. }
  1857. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1858. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1859. }
  1860. break
  1861. case ArgNumber:
  1862. val = token.Number
  1863. break
  1864. }
  1865. nums = append(nums, val)
  1866. }
  1867. if nums[0] < 0 {
  1868. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1869. }
  1870. if len(nums) == 1 {
  1871. return newNumberFormulaArg(nums[0])
  1872. }
  1873. cd := nums[0]
  1874. for i := 1; i < len(nums); i++ {
  1875. if nums[i] < 0 {
  1876. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1877. }
  1878. cd = gcd(cd, nums[i])
  1879. }
  1880. return newNumberFormulaArg(cd)
  1881. }
  1882. // INT function truncates a supplied number down to the closest integer. The
  1883. // syntax of the function is:
  1884. //
  1885. // INT(number)
  1886. //
  1887. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  1888. if argsList.Len() != 1 {
  1889. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  1890. }
  1891. number := argsList.Front().Value.(formulaArg).ToNumber()
  1892. if number.Type == ArgError {
  1893. return number
  1894. }
  1895. val, frac := math.Modf(number.Number)
  1896. if frac < 0 {
  1897. val--
  1898. }
  1899. return newNumberFormulaArg(val)
  1900. }
  1901. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1902. // sign), to the nearest multiple of a supplied significance. The syntax of
  1903. // the function is:
  1904. //
  1905. // ISO.CEILING(number,[significance])
  1906. //
  1907. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  1908. if argsList.Len() == 0 {
  1909. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  1910. }
  1911. if argsList.Len() > 2 {
  1912. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  1913. }
  1914. var significance float64
  1915. number := argsList.Front().Value.(formulaArg).ToNumber()
  1916. if number.Type == ArgError {
  1917. return number
  1918. }
  1919. if number.Number < 0 {
  1920. significance = -1
  1921. }
  1922. if argsList.Len() == 1 {
  1923. return newNumberFormulaArg(math.Ceil(number.Number))
  1924. }
  1925. if argsList.Len() > 1 {
  1926. s := argsList.Back().Value.(formulaArg).ToNumber()
  1927. if s.Type == ArgError {
  1928. return s
  1929. }
  1930. significance = s.Number
  1931. significance = math.Abs(significance)
  1932. if significance == 0 {
  1933. return newNumberFormulaArg(significance)
  1934. }
  1935. }
  1936. val, res := math.Modf(number.Number / significance)
  1937. if res != 0 {
  1938. if number.Number > 0 {
  1939. val++
  1940. }
  1941. }
  1942. return newNumberFormulaArg(val * significance)
  1943. }
  1944. // lcm returns the least common multiple of two supplied integers.
  1945. func lcm(a, b float64) float64 {
  1946. a = math.Trunc(a)
  1947. b = math.Trunc(b)
  1948. if a == 0 && b == 0 {
  1949. return 0
  1950. }
  1951. return a * b / gcd(a, b)
  1952. }
  1953. // LCM function returns the least common multiple of two or more supplied
  1954. // integers. The syntax of the function is:
  1955. //
  1956. // LCM(number1,[number2],...)
  1957. //
  1958. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  1959. if argsList.Len() == 0 {
  1960. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  1961. }
  1962. var (
  1963. val float64
  1964. nums = []float64{}
  1965. err error
  1966. )
  1967. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1968. token := arg.Value.(formulaArg)
  1969. switch token.Type {
  1970. case ArgString:
  1971. if token.String == "" {
  1972. continue
  1973. }
  1974. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1975. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1976. }
  1977. break
  1978. case ArgNumber:
  1979. val = token.Number
  1980. break
  1981. }
  1982. nums = append(nums, val)
  1983. }
  1984. if nums[0] < 0 {
  1985. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1986. }
  1987. if len(nums) == 1 {
  1988. return newNumberFormulaArg(nums[0])
  1989. }
  1990. cm := nums[0]
  1991. for i := 1; i < len(nums); i++ {
  1992. if nums[i] < 0 {
  1993. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1994. }
  1995. cm = lcm(cm, nums[i])
  1996. }
  1997. return newNumberFormulaArg(cm)
  1998. }
  1999. // LN function calculates the natural logarithm of a given number. The syntax
  2000. // of the function is:
  2001. //
  2002. // LN(number)
  2003. //
  2004. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2005. if argsList.Len() != 1 {
  2006. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2007. }
  2008. number := argsList.Front().Value.(formulaArg).ToNumber()
  2009. if number.Type == ArgError {
  2010. return number
  2011. }
  2012. return newNumberFormulaArg(math.Log(number.Number))
  2013. }
  2014. // LOG function calculates the logarithm of a given number, to a supplied
  2015. // base. The syntax of the function is:
  2016. //
  2017. // LOG(number,[base])
  2018. //
  2019. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2020. if argsList.Len() == 0 {
  2021. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2022. }
  2023. if argsList.Len() > 2 {
  2024. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2025. }
  2026. base := 10.0
  2027. number := argsList.Front().Value.(formulaArg).ToNumber()
  2028. if number.Type == ArgError {
  2029. return number
  2030. }
  2031. if argsList.Len() > 1 {
  2032. b := argsList.Back().Value.(formulaArg).ToNumber()
  2033. if b.Type == ArgError {
  2034. return b
  2035. }
  2036. base = b.Number
  2037. }
  2038. if number.Number == 0 {
  2039. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2040. }
  2041. if base == 0 {
  2042. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2043. }
  2044. if base == 1 {
  2045. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2046. }
  2047. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2048. }
  2049. // LOG10 function calculates the base 10 logarithm of a given number. The
  2050. // syntax of the function is:
  2051. //
  2052. // LOG10(number)
  2053. //
  2054. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2055. if argsList.Len() != 1 {
  2056. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2057. }
  2058. number := argsList.Front().Value.(formulaArg).ToNumber()
  2059. if number.Type == ArgError {
  2060. return number
  2061. }
  2062. return newNumberFormulaArg(math.Log10(number.Number))
  2063. }
  2064. // minor function implement a minor of a matrix A is the determinant of some
  2065. // smaller square matrix.
  2066. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2067. ret := [][]float64{}
  2068. for i := range sqMtx {
  2069. if i == 0 {
  2070. continue
  2071. }
  2072. row := []float64{}
  2073. for j := range sqMtx {
  2074. if j == idx {
  2075. continue
  2076. }
  2077. row = append(row, sqMtx[i][j])
  2078. }
  2079. ret = append(ret, row)
  2080. }
  2081. return ret
  2082. }
  2083. // det determinant of the 2x2 matrix.
  2084. func det(sqMtx [][]float64) float64 {
  2085. if len(sqMtx) == 2 {
  2086. m00 := sqMtx[0][0]
  2087. m01 := sqMtx[0][1]
  2088. m10 := sqMtx[1][0]
  2089. m11 := sqMtx[1][1]
  2090. return m00*m11 - m10*m01
  2091. }
  2092. var res, sgn float64 = 0, 1
  2093. for j := range sqMtx {
  2094. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2095. sgn *= -1
  2096. }
  2097. return res
  2098. }
  2099. // MDETERM calculates the determinant of a square matrix. The
  2100. // syntax of the function is:
  2101. //
  2102. // MDETERM(array)
  2103. //
  2104. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2105. var (
  2106. num float64
  2107. numMtx = [][]float64{}
  2108. err error
  2109. strMtx [][]formulaArg
  2110. )
  2111. if argsList.Len() < 1 {
  2112. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2113. }
  2114. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2115. var rows = len(strMtx)
  2116. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2117. if len(row) != rows {
  2118. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2119. }
  2120. numRow := []float64{}
  2121. for _, ele := range row {
  2122. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2123. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2124. }
  2125. numRow = append(numRow, num)
  2126. }
  2127. numMtx = append(numMtx, numRow)
  2128. }
  2129. return newNumberFormulaArg(det(numMtx))
  2130. }
  2131. // MOD function returns the remainder of a division between two supplied
  2132. // numbers. The syntax of the function is:
  2133. //
  2134. // MOD(number,divisor)
  2135. //
  2136. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2137. if argsList.Len() != 2 {
  2138. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2139. }
  2140. number := argsList.Front().Value.(formulaArg).ToNumber()
  2141. if number.Type == ArgError {
  2142. return number
  2143. }
  2144. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2145. if divisor.Type == ArgError {
  2146. return divisor
  2147. }
  2148. if divisor.Number == 0 {
  2149. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2150. }
  2151. trunc, rem := math.Modf(number.Number / divisor.Number)
  2152. if rem < 0 {
  2153. trunc--
  2154. }
  2155. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2156. }
  2157. // MROUND function rounds a supplied number up or down to the nearest multiple
  2158. // of a given number. The syntax of the function is:
  2159. //
  2160. // MROUND(number,multiple)
  2161. //
  2162. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2163. if argsList.Len() != 2 {
  2164. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2165. }
  2166. n := argsList.Front().Value.(formulaArg).ToNumber()
  2167. if n.Type == ArgError {
  2168. return n
  2169. }
  2170. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2171. if multiple.Type == ArgError {
  2172. return multiple
  2173. }
  2174. if multiple.Number == 0 {
  2175. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2176. }
  2177. if multiple.Number < 0 && n.Number > 0 ||
  2178. multiple.Number > 0 && n.Number < 0 {
  2179. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2180. }
  2181. number, res := math.Modf(n.Number / multiple.Number)
  2182. if math.Trunc(res+0.5) > 0 {
  2183. number++
  2184. }
  2185. return newNumberFormulaArg(number * multiple.Number)
  2186. }
  2187. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2188. // supplied values to the product of factorials of those values. The syntax of
  2189. // the function is:
  2190. //
  2191. // MULTINOMIAL(number1,[number2],...)
  2192. //
  2193. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2194. val, num, denom := 0.0, 0.0, 1.0
  2195. var err error
  2196. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2197. token := arg.Value.(formulaArg)
  2198. switch token.Type {
  2199. case ArgString:
  2200. if token.String == "" {
  2201. continue
  2202. }
  2203. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2204. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2205. }
  2206. break
  2207. case ArgNumber:
  2208. val = token.Number
  2209. break
  2210. }
  2211. num += val
  2212. denom *= fact(val)
  2213. }
  2214. return newNumberFormulaArg(fact(num) / denom)
  2215. }
  2216. // MUNIT function returns the unit matrix for a specified dimension. The
  2217. // syntax of the function is:
  2218. //
  2219. // MUNIT(dimension)
  2220. //
  2221. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2222. if argsList.Len() != 1 {
  2223. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2224. }
  2225. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2226. if dimension.Type == ArgError || dimension.Number < 0 {
  2227. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2228. }
  2229. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2230. for i := 0; i < int(dimension.Number); i++ {
  2231. row := make([]formulaArg, int(dimension.Number))
  2232. for j := 0; j < int(dimension.Number); j++ {
  2233. if i == j {
  2234. row[j] = newNumberFormulaArg(1.0)
  2235. } else {
  2236. row[j] = newNumberFormulaArg(0.0)
  2237. }
  2238. }
  2239. matrix = append(matrix, row)
  2240. }
  2241. return newMatrixFormulaArg(matrix)
  2242. }
  2243. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2244. // number up and a negative number down), to the next odd number. The syntax
  2245. // of the function is:
  2246. //
  2247. // ODD(number)
  2248. //
  2249. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2250. if argsList.Len() != 1 {
  2251. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2252. }
  2253. number := argsList.Back().Value.(formulaArg).ToNumber()
  2254. if number.Type == ArgError {
  2255. return number
  2256. }
  2257. if number.Number == 0 {
  2258. return newNumberFormulaArg(1)
  2259. }
  2260. sign := math.Signbit(number.Number)
  2261. m, frac := math.Modf((number.Number - 1) / 2)
  2262. val := m*2 + 1
  2263. if frac != 0 {
  2264. if !sign {
  2265. val += 2
  2266. } else {
  2267. val -= 2
  2268. }
  2269. }
  2270. return newNumberFormulaArg(val)
  2271. }
  2272. // PI function returns the value of the mathematical constant π (pi), accurate
  2273. // to 15 digits (14 decimal places). The syntax of the function is:
  2274. //
  2275. // PI()
  2276. //
  2277. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2278. if argsList.Len() != 0 {
  2279. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2280. }
  2281. return newNumberFormulaArg(math.Pi)
  2282. }
  2283. // POWER function calculates a given number, raised to a supplied power.
  2284. // The syntax of the function is:
  2285. //
  2286. // POWER(number,power)
  2287. //
  2288. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2289. if argsList.Len() != 2 {
  2290. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2291. }
  2292. x := argsList.Front().Value.(formulaArg).ToNumber()
  2293. if x.Type == ArgError {
  2294. return x
  2295. }
  2296. y := argsList.Back().Value.(formulaArg).ToNumber()
  2297. if y.Type == ArgError {
  2298. return y
  2299. }
  2300. if x.Number == 0 && y.Number == 0 {
  2301. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2302. }
  2303. if x.Number == 0 && y.Number < 0 {
  2304. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2305. }
  2306. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2307. }
  2308. // PRODUCT function returns the product (multiplication) of a supplied set of
  2309. // numerical values. The syntax of the function is:
  2310. //
  2311. // PRODUCT(number1,[number2],...)
  2312. //
  2313. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2314. val, product := 0.0, 1.0
  2315. var err error
  2316. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2317. token := arg.Value.(formulaArg)
  2318. switch token.Type {
  2319. case ArgUnknown:
  2320. continue
  2321. case ArgString:
  2322. if token.String == "" {
  2323. continue
  2324. }
  2325. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2326. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2327. }
  2328. product = product * val
  2329. break
  2330. case ArgNumber:
  2331. product = product * token.Number
  2332. break
  2333. case ArgMatrix:
  2334. for _, row := range token.Matrix {
  2335. for _, value := range row {
  2336. if value.String == "" {
  2337. continue
  2338. }
  2339. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2340. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2341. }
  2342. product = product * val
  2343. }
  2344. }
  2345. }
  2346. }
  2347. return newNumberFormulaArg(product)
  2348. }
  2349. // QUOTIENT function returns the integer portion of a division between two
  2350. // supplied numbers. The syntax of the function is:
  2351. //
  2352. // QUOTIENT(numerator,denominator)
  2353. //
  2354. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2355. if argsList.Len() != 2 {
  2356. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2357. }
  2358. x := argsList.Front().Value.(formulaArg).ToNumber()
  2359. if x.Type == ArgError {
  2360. return x
  2361. }
  2362. y := argsList.Back().Value.(formulaArg).ToNumber()
  2363. if y.Type == ArgError {
  2364. return y
  2365. }
  2366. if y.Number == 0 {
  2367. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2368. }
  2369. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2370. }
  2371. // RADIANS function converts radians into degrees. The syntax of the function is:
  2372. //
  2373. // RADIANS(angle)
  2374. //
  2375. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2376. if argsList.Len() != 1 {
  2377. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2378. }
  2379. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2380. if angle.Type == ArgError {
  2381. return angle
  2382. }
  2383. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2384. }
  2385. // RAND function generates a random real number between 0 and 1. The syntax of
  2386. // the function is:
  2387. //
  2388. // RAND()
  2389. //
  2390. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2391. if argsList.Len() != 0 {
  2392. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2393. }
  2394. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2395. }
  2396. // RANDBETWEEN function generates a random integer between two supplied
  2397. // integers. The syntax of the function is:
  2398. //
  2399. // RANDBETWEEN(bottom,top)
  2400. //
  2401. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2402. if argsList.Len() != 2 {
  2403. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2404. }
  2405. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2406. if bottom.Type == ArgError {
  2407. return bottom
  2408. }
  2409. top := argsList.Back().Value.(formulaArg).ToNumber()
  2410. if top.Type == ArgError {
  2411. return top
  2412. }
  2413. if top.Number < bottom.Number {
  2414. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2415. }
  2416. return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
  2417. }
  2418. // romanNumerals defined a numeral system that originated in ancient Rome and
  2419. // remained the usual way of writing numbers throughout Europe well into the
  2420. // Late Middle Ages.
  2421. type romanNumerals struct {
  2422. n float64
  2423. s string
  2424. }
  2425. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2426. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2427. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2428. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2429. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2430. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2431. // integer, the function returns a text string depicting the roman numeral
  2432. // form of the number. The syntax of the function is:
  2433. //
  2434. // ROMAN(number,[form])
  2435. //
  2436. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2437. if argsList.Len() == 0 {
  2438. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2439. }
  2440. if argsList.Len() > 2 {
  2441. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2442. }
  2443. var form int
  2444. number := argsList.Front().Value.(formulaArg).ToNumber()
  2445. if number.Type == ArgError {
  2446. return number
  2447. }
  2448. if argsList.Len() > 1 {
  2449. f := argsList.Back().Value.(formulaArg).ToNumber()
  2450. if f.Type == ArgError {
  2451. return f
  2452. }
  2453. form = int(f.Number)
  2454. if form < 0 {
  2455. form = 0
  2456. } else if form > 4 {
  2457. form = 4
  2458. }
  2459. }
  2460. decimalTable := romanTable[0]
  2461. switch form {
  2462. case 1:
  2463. decimalTable = romanTable[1]
  2464. case 2:
  2465. decimalTable = romanTable[2]
  2466. case 3:
  2467. decimalTable = romanTable[3]
  2468. case 4:
  2469. decimalTable = romanTable[4]
  2470. }
  2471. val := math.Trunc(number.Number)
  2472. buf := bytes.Buffer{}
  2473. for _, r := range decimalTable {
  2474. for val >= r.n {
  2475. buf.WriteString(r.s)
  2476. val -= r.n
  2477. }
  2478. }
  2479. return newStringFormulaArg(buf.String())
  2480. }
  2481. type roundMode byte
  2482. const (
  2483. closest roundMode = iota
  2484. down
  2485. up
  2486. )
  2487. // round rounds a supplied number up or down.
  2488. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2489. var significance float64
  2490. if digits > 0 {
  2491. significance = math.Pow(1/10.0, digits)
  2492. } else {
  2493. significance = math.Pow(10.0, -digits)
  2494. }
  2495. val, res := math.Modf(number / significance)
  2496. switch mode {
  2497. case closest:
  2498. const eps = 0.499999999
  2499. if res >= eps {
  2500. val++
  2501. } else if res <= -eps {
  2502. val--
  2503. }
  2504. case down:
  2505. case up:
  2506. if res > 0 {
  2507. val++
  2508. } else if res < 0 {
  2509. val--
  2510. }
  2511. }
  2512. return val * significance
  2513. }
  2514. // ROUND function rounds a supplied number up or down, to a specified number
  2515. // of decimal places. The syntax of the function is:
  2516. //
  2517. // ROUND(number,num_digits)
  2518. //
  2519. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2520. if argsList.Len() != 2 {
  2521. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2522. }
  2523. number := argsList.Front().Value.(formulaArg).ToNumber()
  2524. if number.Type == ArgError {
  2525. return number
  2526. }
  2527. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2528. if digits.Type == ArgError {
  2529. return digits
  2530. }
  2531. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2532. }
  2533. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2534. // specified number of decimal places. The syntax of the function is:
  2535. //
  2536. // ROUNDDOWN(number,num_digits)
  2537. //
  2538. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2539. if argsList.Len() != 2 {
  2540. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2541. }
  2542. number := argsList.Front().Value.(formulaArg).ToNumber()
  2543. if number.Type == ArgError {
  2544. return number
  2545. }
  2546. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2547. if digits.Type == ArgError {
  2548. return digits
  2549. }
  2550. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  2551. }
  2552. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2553. // specified number of decimal places. The syntax of the function is:
  2554. //
  2555. // ROUNDUP(number,num_digits)
  2556. //
  2557. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2558. if argsList.Len() != 2 {
  2559. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2560. }
  2561. number := argsList.Front().Value.(formulaArg).ToNumber()
  2562. if number.Type == ArgError {
  2563. return number
  2564. }
  2565. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2566. if digits.Type == ArgError {
  2567. return digits
  2568. }
  2569. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  2570. }
  2571. // SEC function calculates the secant of a given angle. The syntax of the
  2572. // function is:
  2573. //
  2574. // SEC(number)
  2575. //
  2576. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2577. if argsList.Len() != 1 {
  2578. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2579. }
  2580. number := argsList.Front().Value.(formulaArg).ToNumber()
  2581. if number.Type == ArgError {
  2582. return number
  2583. }
  2584. return newNumberFormulaArg(math.Cos(number.Number))
  2585. }
  2586. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2587. // The syntax of the function is:
  2588. //
  2589. // SECH(number)
  2590. //
  2591. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2592. if argsList.Len() != 1 {
  2593. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2594. }
  2595. number := argsList.Front().Value.(formulaArg).ToNumber()
  2596. if number.Type == ArgError {
  2597. return number
  2598. }
  2599. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  2600. }
  2601. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2602. // number. I.e. if the number is positive, the Sign function returns +1, if
  2603. // the number is negative, the function returns -1 and if the number is 0
  2604. // (zero), the function returns 0. The syntax of the function is:
  2605. //
  2606. // SIGN(number)
  2607. //
  2608. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2609. if argsList.Len() != 1 {
  2610. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2611. }
  2612. val := argsList.Front().Value.(formulaArg).ToNumber()
  2613. if val.Type == ArgError {
  2614. return val
  2615. }
  2616. if val.Number < 0 {
  2617. return newNumberFormulaArg(-1)
  2618. }
  2619. if val.Number > 0 {
  2620. return newNumberFormulaArg(1)
  2621. }
  2622. return newNumberFormulaArg(0)
  2623. }
  2624. // SIN function calculates the sine of a given angle. The syntax of the
  2625. // function is:
  2626. //
  2627. // SIN(number)
  2628. //
  2629. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2630. if argsList.Len() != 1 {
  2631. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2632. }
  2633. number := argsList.Front().Value.(formulaArg).ToNumber()
  2634. if number.Type == ArgError {
  2635. return number
  2636. }
  2637. return newNumberFormulaArg(math.Sin(number.Number))
  2638. }
  2639. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2640. // The syntax of the function is:
  2641. //
  2642. // SINH(number)
  2643. //
  2644. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2645. if argsList.Len() != 1 {
  2646. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2647. }
  2648. number := argsList.Front().Value.(formulaArg).ToNumber()
  2649. if number.Type == ArgError {
  2650. return number
  2651. }
  2652. return newNumberFormulaArg(math.Sinh(number.Number))
  2653. }
  2654. // SQRT function calculates the positive square root of a supplied number. The
  2655. // syntax of the function is:
  2656. //
  2657. // SQRT(number)
  2658. //
  2659. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2660. if argsList.Len() != 1 {
  2661. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2662. }
  2663. value := argsList.Front().Value.(formulaArg).ToNumber()
  2664. if value.Type == ArgError {
  2665. return value
  2666. }
  2667. if value.Number < 0 {
  2668. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2669. }
  2670. return newNumberFormulaArg(math.Sqrt(value.Number))
  2671. }
  2672. // SQRTPI function returns the square root of a supplied number multiplied by
  2673. // the mathematical constant, π. The syntax of the function is:
  2674. //
  2675. // SQRTPI(number)
  2676. //
  2677. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2678. if argsList.Len() != 1 {
  2679. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2680. }
  2681. number := argsList.Front().Value.(formulaArg).ToNumber()
  2682. if number.Type == ArgError {
  2683. return number
  2684. }
  2685. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  2686. }
  2687. // SUM function adds together a supplied set of numbers and returns the sum of
  2688. // these values. The syntax of the function is:
  2689. //
  2690. // SUM(number1,[number2],...)
  2691. //
  2692. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2693. var (
  2694. val, sum float64
  2695. err error
  2696. )
  2697. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2698. token := arg.Value.(formulaArg)
  2699. switch token.Type {
  2700. case ArgUnknown:
  2701. continue
  2702. case ArgString:
  2703. if token.String == "" {
  2704. continue
  2705. }
  2706. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2707. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2708. }
  2709. sum += val
  2710. case ArgNumber:
  2711. sum += token.Number
  2712. case ArgMatrix:
  2713. for _, row := range token.Matrix {
  2714. for _, value := range row {
  2715. if value.String == "" {
  2716. continue
  2717. }
  2718. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2719. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2720. }
  2721. sum += val
  2722. }
  2723. }
  2724. }
  2725. }
  2726. return newNumberFormulaArg(sum)
  2727. }
  2728. // SUMIF function finds the values in a supplied array, that satisfy a given
  2729. // criteria, and returns the sum of the corresponding values in a second
  2730. // supplied array. The syntax of the function is:
  2731. //
  2732. // SUMIF(range,criteria,[sum_range])
  2733. //
  2734. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  2735. if argsList.Len() < 2 {
  2736. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  2737. }
  2738. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2739. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2740. var sumRange [][]formulaArg
  2741. if argsList.Len() == 3 {
  2742. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2743. }
  2744. var sum, val float64
  2745. var err error
  2746. for rowIdx, row := range rangeMtx {
  2747. for colIdx, col := range row {
  2748. var ok bool
  2749. fromVal := col.String
  2750. if col.String == "" {
  2751. continue
  2752. }
  2753. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2754. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2755. }
  2756. if ok {
  2757. if argsList.Len() == 3 {
  2758. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2759. continue
  2760. }
  2761. fromVal = sumRange[rowIdx][colIdx].String
  2762. }
  2763. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2764. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2765. }
  2766. sum += val
  2767. }
  2768. }
  2769. }
  2770. return newNumberFormulaArg(sum)
  2771. }
  2772. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2773. // syntax of the function is:
  2774. //
  2775. // SUMSQ(number1,[number2],...)
  2776. //
  2777. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  2778. var val, sq float64
  2779. var err error
  2780. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2781. token := arg.Value.(formulaArg)
  2782. switch token.Type {
  2783. case ArgString:
  2784. if token.String == "" {
  2785. continue
  2786. }
  2787. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2788. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2789. }
  2790. sq += val * val
  2791. break
  2792. case ArgNumber:
  2793. sq += token.Number
  2794. break
  2795. case ArgMatrix:
  2796. for _, row := range token.Matrix {
  2797. for _, value := range row {
  2798. if value.String == "" {
  2799. continue
  2800. }
  2801. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2802. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2803. }
  2804. sq += val * val
  2805. }
  2806. }
  2807. }
  2808. }
  2809. return newNumberFormulaArg(sq)
  2810. }
  2811. // TAN function calculates the tangent of a given angle. The syntax of the
  2812. // function is:
  2813. //
  2814. // TAN(number)
  2815. //
  2816. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  2817. if argsList.Len() != 1 {
  2818. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  2819. }
  2820. number := argsList.Front().Value.(formulaArg).ToNumber()
  2821. if number.Type == ArgError {
  2822. return number
  2823. }
  2824. return newNumberFormulaArg(math.Tan(number.Number))
  2825. }
  2826. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2827. // number. The syntax of the function is:
  2828. //
  2829. // TANH(number)
  2830. //
  2831. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  2832. if argsList.Len() != 1 {
  2833. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  2834. }
  2835. number := argsList.Front().Value.(formulaArg).ToNumber()
  2836. if number.Type == ArgError {
  2837. return number
  2838. }
  2839. return newNumberFormulaArg(math.Tanh(number.Number))
  2840. }
  2841. // TRUNC function truncates a supplied number to a specified number of decimal
  2842. // places. The syntax of the function is:
  2843. //
  2844. // TRUNC(number,[number_digits])
  2845. //
  2846. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  2847. if argsList.Len() == 0 {
  2848. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  2849. }
  2850. var digits, adjust, rtrim float64
  2851. var err error
  2852. number := argsList.Front().Value.(formulaArg).ToNumber()
  2853. if number.Type == ArgError {
  2854. return number
  2855. }
  2856. if argsList.Len() > 1 {
  2857. d := argsList.Back().Value.(formulaArg).ToNumber()
  2858. if d.Type == ArgError {
  2859. return d
  2860. }
  2861. digits = d.Number
  2862. digits = math.Floor(digits)
  2863. }
  2864. adjust = math.Pow(10, digits)
  2865. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  2866. if x != 0 {
  2867. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2868. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2869. }
  2870. }
  2871. if (digits > 0) && (rtrim < adjust/10) {
  2872. return newNumberFormulaArg(number.Number)
  2873. }
  2874. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  2875. }
  2876. // Statistical functions
  2877. // COUNTA function returns the number of non-blanks within a supplied set of
  2878. // cells or values. The syntax of the function is:
  2879. //
  2880. // COUNTA(value1,[value2],...)
  2881. //
  2882. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  2883. var count int
  2884. for token := argsList.Front(); token != nil; token = token.Next() {
  2885. arg := token.Value.(formulaArg)
  2886. switch arg.Type {
  2887. case ArgString:
  2888. if arg.String != "" {
  2889. count++
  2890. }
  2891. case ArgMatrix:
  2892. for _, row := range arg.Matrix {
  2893. for _, value := range row {
  2894. if value.String != "" {
  2895. count++
  2896. }
  2897. }
  2898. }
  2899. }
  2900. }
  2901. return newStringFormulaArg(fmt.Sprintf("%d", count))
  2902. }
  2903. // MEDIAN function returns the statistical median (the middle value) of a list
  2904. // of supplied numbers. The syntax of the function is:
  2905. //
  2906. // MEDIAN(number1,[number2],...)
  2907. //
  2908. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  2909. if argsList.Len() == 0 {
  2910. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  2911. }
  2912. var values = []float64{}
  2913. var median, digits float64
  2914. var err error
  2915. for token := argsList.Front(); token != nil; token = token.Next() {
  2916. arg := token.Value.(formulaArg)
  2917. switch arg.Type {
  2918. case ArgString:
  2919. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2920. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2921. }
  2922. values = append(values, digits)
  2923. break
  2924. case ArgNumber:
  2925. values = append(values, arg.Number)
  2926. break
  2927. case ArgMatrix:
  2928. for _, row := range arg.Matrix {
  2929. for _, value := range row {
  2930. if value.String == "" {
  2931. continue
  2932. }
  2933. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2934. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2935. }
  2936. values = append(values, digits)
  2937. }
  2938. }
  2939. }
  2940. }
  2941. sort.Float64s(values)
  2942. if len(values)%2 == 0 {
  2943. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2944. } else {
  2945. median = values[len(values)/2]
  2946. }
  2947. return newNumberFormulaArg(median)
  2948. }
  2949. // Information functions
  2950. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2951. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2952. // function is:
  2953. //
  2954. // ISBLANK(value)
  2955. //
  2956. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  2957. if argsList.Len() != 1 {
  2958. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  2959. }
  2960. token := argsList.Front().Value.(formulaArg)
  2961. result := "FALSE"
  2962. switch token.Type {
  2963. case ArgUnknown:
  2964. result = "TRUE"
  2965. case ArgString:
  2966. if token.String == "" {
  2967. result = "TRUE"
  2968. }
  2969. }
  2970. return newStringFormulaArg(result)
  2971. }
  2972. // ISERR function tests if an initial supplied expression (or value) returns
  2973. // any Excel Error, except the #N/A error. If so, the function returns the
  2974. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2975. // error, the ISERR function returns FALSE. The syntax of the function is:
  2976. //
  2977. // ISERR(value)
  2978. //
  2979. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  2980. if argsList.Len() != 1 {
  2981. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  2982. }
  2983. token := argsList.Front().Value.(formulaArg)
  2984. result := "FALSE"
  2985. if token.Type == ArgString {
  2986. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2987. if errType == token.String {
  2988. result = "TRUE"
  2989. }
  2990. }
  2991. }
  2992. return newStringFormulaArg(result)
  2993. }
  2994. // ISERROR function tests if an initial supplied expression (or value) returns
  2995. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2996. // function returns FALSE. The syntax of the function is:
  2997. //
  2998. // ISERROR(value)
  2999. //
  3000. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  3001. if argsList.Len() != 1 {
  3002. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  3003. }
  3004. token := argsList.Front().Value.(formulaArg)
  3005. result := "FALSE"
  3006. if token.Type == ArgString {
  3007. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  3008. if errType == token.String {
  3009. result = "TRUE"
  3010. }
  3011. }
  3012. }
  3013. return newStringFormulaArg(result)
  3014. }
  3015. // ISEVEN function tests if a supplied number (or numeric expression)
  3016. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  3017. // function returns FALSE. The syntax of the function is:
  3018. //
  3019. // ISEVEN(value)
  3020. //
  3021. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  3022. if argsList.Len() != 1 {
  3023. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  3024. }
  3025. var (
  3026. token = argsList.Front().Value.(formulaArg)
  3027. result = "FALSE"
  3028. numeric int
  3029. err error
  3030. )
  3031. if token.Type == ArgString {
  3032. if numeric, err = strconv.Atoi(token.String); err != nil {
  3033. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3034. }
  3035. if numeric == numeric/2*2 {
  3036. return newStringFormulaArg("TRUE")
  3037. }
  3038. }
  3039. return newStringFormulaArg(result)
  3040. }
  3041. // ISNA function tests if an initial supplied expression (or value) returns
  3042. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  3043. // returns FALSE. The syntax of the function is:
  3044. //
  3045. // ISNA(value)
  3046. //
  3047. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  3048. if argsList.Len() != 1 {
  3049. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  3050. }
  3051. token := argsList.Front().Value.(formulaArg)
  3052. result := "FALSE"
  3053. if token.Type == ArgString && token.String == formulaErrorNA {
  3054. result = "TRUE"
  3055. }
  3056. return newStringFormulaArg(result)
  3057. }
  3058. // ISNONTEXT function function tests if a supplied value is text. If not, the
  3059. // function returns TRUE; If the supplied value is text, the function returns
  3060. // FALSE. The syntax of the function is:
  3061. //
  3062. // ISNONTEXT(value)
  3063. //
  3064. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  3065. if argsList.Len() != 1 {
  3066. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  3067. }
  3068. token := argsList.Front().Value.(formulaArg)
  3069. result := "TRUE"
  3070. if token.Type == ArgString && token.String != "" {
  3071. result = "FALSE"
  3072. }
  3073. return newStringFormulaArg(result)
  3074. }
  3075. // ISNUMBER function function tests if a supplied value is a number. If so,
  3076. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3077. // function is:
  3078. //
  3079. // ISNUMBER(value)
  3080. //
  3081. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  3082. if argsList.Len() != 1 {
  3083. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  3084. }
  3085. token, result := argsList.Front().Value.(formulaArg), false
  3086. if token.Type == ArgString && token.String != "" {
  3087. if _, err := strconv.Atoi(token.String); err == nil {
  3088. result = true
  3089. }
  3090. }
  3091. return newBoolFormulaArg(result)
  3092. }
  3093. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3094. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3095. // FALSE. The syntax of the function is:
  3096. //
  3097. // ISODD(value)
  3098. //
  3099. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  3100. if argsList.Len() != 1 {
  3101. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  3102. }
  3103. var (
  3104. token = argsList.Front().Value.(formulaArg)
  3105. result = "FALSE"
  3106. numeric int
  3107. err error
  3108. )
  3109. if token.Type == ArgString {
  3110. if numeric, err = strconv.Atoi(token.String); err != nil {
  3111. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3112. }
  3113. if numeric != numeric/2*2 {
  3114. return newStringFormulaArg("TRUE")
  3115. }
  3116. }
  3117. return newStringFormulaArg(result)
  3118. }
  3119. // NA function returns the Excel #N/A error. This error message has the
  3120. // meaning 'value not available' and is produced when an Excel Formula is
  3121. // unable to find a value that it needs. The syntax of the function is:
  3122. //
  3123. // NA()
  3124. //
  3125. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  3126. if argsList.Len() != 0 {
  3127. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  3128. }
  3129. return newStringFormulaArg(formulaErrorNA)
  3130. }
  3131. // Logical Functions
  3132. // AND function tests a number of supplied conditions and returns TRUE or
  3133. // FALSE. The syntax of the function is:
  3134. //
  3135. // AND(logical_test1,[logical_test2],...)
  3136. //
  3137. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  3138. if argsList.Len() == 0 {
  3139. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  3140. }
  3141. if argsList.Len() > 30 {
  3142. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  3143. }
  3144. var (
  3145. and = true
  3146. val float64
  3147. err error
  3148. )
  3149. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3150. token := arg.Value.(formulaArg)
  3151. switch token.Type {
  3152. case ArgUnknown:
  3153. continue
  3154. case ArgString:
  3155. if token.String == "TRUE" {
  3156. continue
  3157. }
  3158. if token.String == "FALSE" {
  3159. return newStringFormulaArg(token.String)
  3160. }
  3161. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3162. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3163. }
  3164. and = and && (val != 0)
  3165. case ArgMatrix:
  3166. // TODO
  3167. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3168. }
  3169. }
  3170. return newBoolFormulaArg(and)
  3171. }
  3172. // OR function tests a number of supplied conditions and returns either TRUE
  3173. // or FALSE. The syntax of the function is:
  3174. //
  3175. // OR(logical_test1,[logical_test2],...)
  3176. //
  3177. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3178. if argsList.Len() == 0 {
  3179. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3180. }
  3181. if argsList.Len() > 30 {
  3182. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  3183. }
  3184. var (
  3185. or bool
  3186. val float64
  3187. err error
  3188. )
  3189. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3190. token := arg.Value.(formulaArg)
  3191. switch token.Type {
  3192. case ArgUnknown:
  3193. continue
  3194. case ArgString:
  3195. if token.String == "FALSE" {
  3196. continue
  3197. }
  3198. if token.String == "TRUE" {
  3199. or = true
  3200. continue
  3201. }
  3202. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3203. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3204. }
  3205. or = val != 0
  3206. case ArgMatrix:
  3207. // TODO
  3208. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3209. }
  3210. }
  3211. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  3212. }
  3213. // Date and Time Functions
  3214. // DATE returns a date, from a user-supplied year, month and day. The syntax
  3215. // of the function is:
  3216. //
  3217. // DATE(year,month,day)
  3218. //
  3219. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  3220. if argsList.Len() != 3 {
  3221. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3222. }
  3223. var year, month, day int
  3224. var err error
  3225. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3226. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3227. }
  3228. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  3229. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3230. }
  3231. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  3232. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3233. }
  3234. d := makeDate(year, time.Month(month), day)
  3235. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  3236. }
  3237. // makeDate return date as a Unix time, the number of seconds elapsed since
  3238. // January 1, 1970 UTC.
  3239. func makeDate(y int, m time.Month, d int) int64 {
  3240. if y == 1900 && int(m) <= 2 {
  3241. d--
  3242. }
  3243. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  3244. return date.Unix()
  3245. }
  3246. // daysBetween return time interval of the given start timestamp and end
  3247. // timestamp.
  3248. func daysBetween(startDate, endDate int64) float64 {
  3249. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  3250. }
  3251. // Text Functions
  3252. // CLEAN removes all non-printable characters from a supplied text string. The
  3253. // syntax of the function is:
  3254. //
  3255. // CLEAN(text)
  3256. //
  3257. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  3258. if argsList.Len() != 1 {
  3259. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  3260. }
  3261. b := bytes.Buffer{}
  3262. for _, c := range argsList.Front().Value.(formulaArg).String {
  3263. if c > 31 {
  3264. b.WriteRune(c)
  3265. }
  3266. }
  3267. return newStringFormulaArg(b.String())
  3268. }
  3269. // LEN returns the length of a supplied text string. The syntax of the
  3270. // function is:
  3271. //
  3272. // LEN(text)
  3273. //
  3274. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  3275. if argsList.Len() != 1 {
  3276. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  3277. }
  3278. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  3279. }
  3280. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  3281. // words or characters) from a supplied text string. The syntax of the
  3282. // function is:
  3283. //
  3284. // TRIM(text)
  3285. //
  3286. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  3287. if argsList.Len() != 1 {
  3288. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  3289. }
  3290. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  3291. }
  3292. // LOWER converts all characters in a supplied text string to lower case. The
  3293. // syntax of the function is:
  3294. //
  3295. // LOWER(text)
  3296. //
  3297. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  3298. if argsList.Len() != 1 {
  3299. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  3300. }
  3301. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  3302. }
  3303. // PROPER converts all characters in a supplied text string to proper case
  3304. // (i.e. all letters that do not immediately follow another letter are set to
  3305. // upper case and all other characters are lower case). The syntax of the
  3306. // function is:
  3307. //
  3308. // PROPER(text)
  3309. //
  3310. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  3311. if argsList.Len() != 1 {
  3312. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  3313. }
  3314. buf := bytes.Buffer{}
  3315. isLetter := false
  3316. for _, char := range argsList.Front().Value.(formulaArg).String {
  3317. if !isLetter && unicode.IsLetter(char) {
  3318. buf.WriteRune(unicode.ToUpper(char))
  3319. } else {
  3320. buf.WriteRune(unicode.ToLower(char))
  3321. }
  3322. isLetter = unicode.IsLetter(char)
  3323. }
  3324. return newStringFormulaArg(buf.String())
  3325. }
  3326. // UPPER converts all characters in a supplied text string to upper case. The
  3327. // syntax of the function is:
  3328. //
  3329. // UPPER(text)
  3330. //
  3331. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  3332. if argsList.Len() != 1 {
  3333. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  3334. }
  3335. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  3336. }
  3337. // Conditional Functions
  3338. // IF function tests a supplied condition and returns one result if the
  3339. // condition evaluates to TRUE, and another result if the condition evaluates
  3340. // to FALSE. The syntax of the function is:
  3341. //
  3342. // IF(logical_test,value_if_true,value_if_false)
  3343. //
  3344. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  3345. if argsList.Len() == 0 {
  3346. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  3347. }
  3348. if argsList.Len() > 3 {
  3349. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  3350. }
  3351. token := argsList.Front().Value.(formulaArg)
  3352. var (
  3353. cond bool
  3354. err error
  3355. result string
  3356. )
  3357. switch token.Type {
  3358. case ArgString:
  3359. if cond, err = strconv.ParseBool(token.String); err != nil {
  3360. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3361. }
  3362. if argsList.Len() == 1 {
  3363. return newBoolFormulaArg(cond)
  3364. }
  3365. if cond {
  3366. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  3367. }
  3368. if argsList.Len() == 3 {
  3369. result = argsList.Back().Value.(formulaArg).String
  3370. }
  3371. }
  3372. return newStringFormulaArg(result)
  3373. }
  3374. // Excel Lookup and Reference Functions
  3375. // CHOOSE function returns a value from an array, that corresponds to a
  3376. // supplied index number (position). The syntax of the function is:
  3377. //
  3378. // CHOOSE(index_num,value1,[value2],...)
  3379. //
  3380. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  3381. if argsList.Len() < 2 {
  3382. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  3383. }
  3384. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  3385. if err != nil {
  3386. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  3387. }
  3388. if argsList.Len() <= idx {
  3389. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  3390. }
  3391. arg := argsList.Front()
  3392. for i := 0; i < idx; i++ {
  3393. arg = arg.Next()
  3394. }
  3395. var result formulaArg
  3396. switch arg.Value.(formulaArg).Type {
  3397. case ArgString:
  3398. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  3399. case ArgMatrix:
  3400. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  3401. }
  3402. return result
  3403. }
  3404. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  3405. // string.
  3406. func deepMatchRune(str, pattern []rune, simple bool) bool {
  3407. for len(pattern) > 0 {
  3408. switch pattern[0] {
  3409. default:
  3410. if len(str) == 0 || str[0] != pattern[0] {
  3411. return false
  3412. }
  3413. case '?':
  3414. if len(str) == 0 && !simple {
  3415. return false
  3416. }
  3417. case '*':
  3418. return deepMatchRune(str, pattern[1:], simple) ||
  3419. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  3420. }
  3421. str = str[1:]
  3422. pattern = pattern[1:]
  3423. }
  3424. return len(str) == 0 && len(pattern) == 0
  3425. }
  3426. // matchPattern finds whether the text matches or satisfies the pattern
  3427. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  3428. func matchPattern(pattern, name string) (matched bool) {
  3429. if pattern == "" {
  3430. return name == pattern
  3431. }
  3432. if pattern == "*" {
  3433. return true
  3434. }
  3435. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  3436. for _, r := range name {
  3437. rname = append(rname, r)
  3438. }
  3439. for _, r := range pattern {
  3440. rpattern = append(rpattern, r)
  3441. }
  3442. simple := false // Does extended wildcard '*' and '?' match.
  3443. return deepMatchRune(rname, rpattern, simple)
  3444. }
  3445. // compareFormulaArg compares the left-hand sides and the right-hand sides
  3446. // formula arguments by given conditions such as case sensitive, if exact
  3447. // match, and make compare result as formula criteria condition type.
  3448. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  3449. if lhs.Type != rhs.Type {
  3450. return criteriaErr
  3451. }
  3452. switch lhs.Type {
  3453. case ArgNumber:
  3454. if lhs.Number == rhs.Number {
  3455. return criteriaEq
  3456. }
  3457. if lhs.Number < rhs.Number {
  3458. return criteriaL
  3459. }
  3460. return criteriaG
  3461. case ArgString:
  3462. ls, rs := lhs.String, rhs.String
  3463. if !caseSensitive {
  3464. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  3465. }
  3466. if exactMatch {
  3467. match := matchPattern(rs, ls)
  3468. if match {
  3469. return criteriaEq
  3470. }
  3471. return criteriaG
  3472. }
  3473. switch strings.Compare(ls, rs) {
  3474. case 1:
  3475. return criteriaG
  3476. case -1:
  3477. return criteriaL
  3478. case 0:
  3479. return criteriaEq
  3480. }
  3481. return criteriaErr
  3482. case ArgEmpty:
  3483. return criteriaEq
  3484. case ArgList:
  3485. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  3486. case ArgMatrix:
  3487. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  3488. }
  3489. return criteriaErr
  3490. }
  3491. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  3492. // list type formula arguments.
  3493. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  3494. if len(lhs.List) < len(rhs.List) {
  3495. return criteriaL
  3496. }
  3497. if len(lhs.List) > len(rhs.List) {
  3498. return criteriaG
  3499. }
  3500. for arg := range lhs.List {
  3501. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  3502. if criteria != criteriaEq {
  3503. return criteria
  3504. }
  3505. }
  3506. return criteriaEq
  3507. }
  3508. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  3509. // matrix type formula arguments.
  3510. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  3511. if len(lhs.Matrix) < len(rhs.Matrix) {
  3512. return criteriaL
  3513. }
  3514. if len(lhs.Matrix) > len(rhs.Matrix) {
  3515. return criteriaG
  3516. }
  3517. for i := range lhs.Matrix {
  3518. left := lhs.Matrix[i]
  3519. right := lhs.Matrix[i]
  3520. if len(left) < len(right) {
  3521. return criteriaL
  3522. }
  3523. if len(left) > len(right) {
  3524. return criteriaG
  3525. }
  3526. for arg := range left {
  3527. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  3528. if criteria != criteriaEq {
  3529. return criteria
  3530. }
  3531. }
  3532. }
  3533. return criteriaEq
  3534. }
  3535. // HLOOKUP function 'looks up' a given value in the top row of a data array
  3536. // (or table), and returns the corresponding value from another row of the
  3537. // array. The syntax of the function is:
  3538. //
  3539. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  3540. //
  3541. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  3542. if argsList.Len() < 3 {
  3543. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  3544. }
  3545. if argsList.Len() > 4 {
  3546. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  3547. }
  3548. lookupValue := argsList.Front().Value.(formulaArg)
  3549. tableArray := argsList.Front().Next().Value.(formulaArg)
  3550. if tableArray.Type != ArgMatrix {
  3551. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  3552. }
  3553. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  3554. if rowArg.Type != ArgNumber {
  3555. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  3556. }
  3557. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  3558. if argsList.Len() == 4 {
  3559. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  3560. if rangeLookup.Type == ArgError {
  3561. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  3562. }
  3563. if rangeLookup.Number == 0 {
  3564. exactMatch = true
  3565. }
  3566. }
  3567. row := tableArray.Matrix[0]
  3568. if exactMatch || len(tableArray.Matrix) == TotalRows {
  3569. start:
  3570. for idx, mtx := range row {
  3571. lhs := mtx
  3572. switch lookupValue.Type {
  3573. case ArgNumber:
  3574. if !lookupValue.Boolean {
  3575. lhs = mtx.ToNumber()
  3576. if lhs.Type == ArgError {
  3577. lhs = mtx
  3578. }
  3579. }
  3580. case ArgMatrix:
  3581. lhs = tableArray
  3582. }
  3583. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  3584. matchIdx = idx
  3585. wasExact = true
  3586. break start
  3587. }
  3588. }
  3589. } else {
  3590. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  3591. }
  3592. if matchIdx == -1 {
  3593. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  3594. }
  3595. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  3596. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  3597. }
  3598. row = tableArray.Matrix[rowIdx]
  3599. if wasExact || !exactMatch {
  3600. return row[matchIdx]
  3601. }
  3602. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  3603. }
  3604. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  3605. // data array (or table), and returns the corresponding value from another
  3606. // column of the array. The syntax of the function is:
  3607. //
  3608. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  3609. //
  3610. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  3611. if argsList.Len() < 3 {
  3612. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  3613. }
  3614. if argsList.Len() > 4 {
  3615. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  3616. }
  3617. lookupValue := argsList.Front().Value.(formulaArg)
  3618. tableArray := argsList.Front().Next().Value.(formulaArg)
  3619. if tableArray.Type != ArgMatrix {
  3620. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  3621. }
  3622. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  3623. if colIdx.Type != ArgNumber {
  3624. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  3625. }
  3626. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  3627. if argsList.Len() == 4 {
  3628. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  3629. if rangeLookup.Type == ArgError {
  3630. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  3631. }
  3632. if rangeLookup.Number == 0 {
  3633. exactMatch = true
  3634. }
  3635. }
  3636. if exactMatch || len(tableArray.Matrix) == TotalRows {
  3637. start:
  3638. for idx, mtx := range tableArray.Matrix {
  3639. lhs := mtx[0]
  3640. switch lookupValue.Type {
  3641. case ArgNumber:
  3642. if !lookupValue.Boolean {
  3643. lhs = mtx[0].ToNumber()
  3644. if lhs.Type == ArgError {
  3645. lhs = mtx[0]
  3646. }
  3647. }
  3648. case ArgMatrix:
  3649. lhs = tableArray
  3650. }
  3651. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  3652. matchIdx = idx
  3653. wasExact = true
  3654. break start
  3655. }
  3656. }
  3657. } else {
  3658. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  3659. }
  3660. if matchIdx == -1 {
  3661. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  3662. }
  3663. mtx := tableArray.Matrix[matchIdx]
  3664. if col < 0 || col >= len(mtx) {
  3665. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  3666. }
  3667. if wasExact || !exactMatch {
  3668. return mtx[col]
  3669. }
  3670. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  3671. }
  3672. // vlookupBinarySearch finds the position of a target value when range lookup
  3673. // is TRUE, if the data of table array can't guarantee be sorted, it will
  3674. // return wrong result.
  3675. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  3676. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  3677. for low <= high {
  3678. var mid int = low + (high-low)/2
  3679. mtx := tableArray.Matrix[mid]
  3680. lhs := mtx[0]
  3681. switch lookupValue.Type {
  3682. case ArgNumber:
  3683. if !lookupValue.Boolean {
  3684. lhs = mtx[0].ToNumber()
  3685. if lhs.Type == ArgError {
  3686. lhs = mtx[0]
  3687. }
  3688. }
  3689. case ArgMatrix:
  3690. lhs = tableArray
  3691. }
  3692. result := compareFormulaArg(lhs, lookupValue, false, false)
  3693. if result == criteriaEq {
  3694. matchIdx, wasExact = mid, true
  3695. return
  3696. } else if result == criteriaG {
  3697. high = mid - 1
  3698. } else if result == criteriaL {
  3699. matchIdx, low = mid, mid+1
  3700. if lhs.Value() != "" {
  3701. lastMatchIdx = matchIdx
  3702. }
  3703. } else {
  3704. return -1, false
  3705. }
  3706. }
  3707. matchIdx, wasExact = lastMatchIdx, true
  3708. return
  3709. }
  3710. // vlookupBinarySearch finds the position of a target value when range lookup
  3711. // is TRUE, if the data of table array can't guarantee be sorted, it will
  3712. // return wrong result.
  3713. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  3714. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  3715. for low <= high {
  3716. var mid int = low + (high-low)/2
  3717. mtx := row[mid]
  3718. result := compareFormulaArg(mtx, lookupValue, false, false)
  3719. if result == criteriaEq {
  3720. matchIdx, wasExact = mid, true
  3721. return
  3722. } else if result == criteriaG {
  3723. high = mid - 1
  3724. } else if result == criteriaL {
  3725. low, lastMatchIdx = mid+1, mid
  3726. } else {
  3727. return -1, false
  3728. }
  3729. }
  3730. matchIdx, wasExact = lastMatchIdx, true
  3731. return
  3732. }
  3733. // LOOKUP function performs an approximate match lookup in a one-column or
  3734. // one-row range, and returns the corresponding value from another one-column
  3735. // or one-row range. The syntax of the function is:
  3736. //
  3737. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  3738. //
  3739. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  3740. if argsList.Len() < 2 {
  3741. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  3742. }
  3743. if argsList.Len() > 3 {
  3744. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  3745. }
  3746. lookupValue := argsList.Front().Value.(formulaArg)
  3747. lookupVector := argsList.Front().Next().Value.(formulaArg)
  3748. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  3749. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  3750. }
  3751. cols, matchIdx := lookupCol(lookupVector), -1
  3752. for idx, col := range cols {
  3753. lhs := lookupValue
  3754. switch col.Type {
  3755. case ArgNumber:
  3756. lhs = lhs.ToNumber()
  3757. if !col.Boolean {
  3758. if lhs.Type == ArgError {
  3759. lhs = lookupValue
  3760. }
  3761. }
  3762. }
  3763. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  3764. matchIdx = idx
  3765. break
  3766. }
  3767. }
  3768. column := cols
  3769. if argsList.Len() == 3 {
  3770. column = lookupCol(argsList.Back().Value.(formulaArg))
  3771. }
  3772. if matchIdx < 0 || matchIdx >= len(column) {
  3773. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  3774. }
  3775. return column[matchIdx]
  3776. }
  3777. // lookupCol extract columns for LOOKUP.
  3778. func lookupCol(arr formulaArg) []formulaArg {
  3779. col := arr.List
  3780. if arr.Type == ArgMatrix {
  3781. col = nil
  3782. for _, r := range arr.Matrix {
  3783. if len(r) > 0 {
  3784. col = append(col, r[0])
  3785. continue
  3786. }
  3787. col = append(col, newEmptyFormulaArg())
  3788. }
  3789. }
  3790. return col
  3791. }