| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978 |
- // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
- // this source code is governed by a BSD-style license that can be found in
- // the LICENSE file.
- //
- // Package excelize providing a set of functions that allow you to write to
- // and read from XLSX / XLSM / XLTM files. Supports reading and writing
- // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
- // complex components by high compatibility, and provided streaming API for
- // generating or reading data from a worksheet with huge amounts of data. This
- // library needs Go version 1.10 or later.
- package excelize
- import (
- "bytes"
- "container/list"
- "errors"
- "fmt"
- "math"
- "math/rand"
- "reflect"
- "regexp"
- "sort"
- "strconv"
- "strings"
- "time"
- "unicode"
- "github.com/xuri/efp"
- )
- // Excel formula errors
- const (
- formulaErrorDIV = "#DIV/0!"
- formulaErrorNAME = "#NAME?"
- formulaErrorNA = "#N/A"
- formulaErrorNUM = "#NUM!"
- formulaErrorVALUE = "#VALUE!"
- formulaErrorREF = "#REF!"
- formulaErrorNULL = "#NULL"
- formulaErrorSPILL = "#SPILL!"
- formulaErrorCALC = "#CALC!"
- formulaErrorGETTINGDATA = "#GETTING_DATA"
- )
- // Numeric precision correct numeric values as legacy Excel application
- // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
- // top figure the fraction 1/9000 in Excel is displayed. Although this number
- // has a decimal representation that is an infinite string of ones, Excel
- // displays only the leading 15 figures. In the second line, the number one
- // is added to the fraction, and again Excel displays only 15 figures.
- const numericPrecision = 1000000000000000
- // cellRef defines the structure of a cell reference.
- type cellRef struct {
- Col int
- Row int
- Sheet string
- }
- // cellRef defines the structure of a cell range.
- type cellRange struct {
- From cellRef
- To cellRef
- }
- // formula criteria condition enumeration.
- const (
- _ byte = iota
- criteriaEq
- criteriaLe
- criteriaGe
- criteriaL
- criteriaG
- criteriaBeg
- criteriaEnd
- criteriaErr
- )
- // formulaCriteria defined formula criteria parser result.
- type formulaCriteria struct {
- Type byte
- Condition string
- }
- // ArgType is the type if formula argument type.
- type ArgType byte
- // Formula argument types enumeration.
- const (
- ArgUnknown ArgType = iota
- ArgNumber
- ArgString
- ArgList
- ArgMatrix
- ArgError
- ArgEmpty
- )
- // formulaArg is the argument of a formula or function.
- type formulaArg struct {
- Number float64
- String string
- List []formulaArg
- Matrix [][]formulaArg
- Boolean bool
- Error string
- Type ArgType
- }
- // Value returns a string data type of the formula argument.
- func (fa formulaArg) Value() (value string) {
- switch fa.Type {
- case ArgNumber:
- if fa.Boolean {
- if fa.Number == 0 {
- return "FALSE"
- }
- return "TRUE"
- }
- return fmt.Sprintf("%g", fa.Number)
- case ArgString:
- return fa.String
- case ArgError:
- return fa.Error
- }
- return
- }
- // ToNumber returns a formula argument with number data type.
- func (fa formulaArg) ToNumber() formulaArg {
- var n float64
- var err error
- switch fa.Type {
- case ArgString:
- n, err = strconv.ParseFloat(fa.String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- case ArgNumber:
- n = fa.Number
- }
- return newNumberFormulaArg(n)
- }
- // ToBool returns a formula argument with boolean data type.
- func (fa formulaArg) ToBool() formulaArg {
- var b bool
- var err error
- switch fa.Type {
- case ArgString:
- b, err = strconv.ParseBool(fa.String)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- case ArgNumber:
- if fa.Boolean && fa.Number == 1 {
- b = true
- }
- }
- return newBoolFormulaArg(b)
- }
- // formulaFuncs is the type of the formula functions.
- type formulaFuncs struct{}
- // tokenPriority defined basic arithmetic operator priority.
- var tokenPriority = map[string]int{
- "^": 5,
- "*": 4,
- "/": 4,
- "+": 3,
- "-": 3,
- "=": 2,
- "<>": 2,
- "<": 2,
- "<=": 2,
- ">": 2,
- ">=": 2,
- "&": 1,
- }
- // CalcCellValue provides a function to get calculated cell value. This
- // feature is currently in working processing. Array formula, table formula
- // and some other formulas are not supported currently.
- //
- // Supported formulas:
- //
- // ABS
- // ACOS
- // ACOSH
- // ACOT
- // ACOTH
- // AND
- // ARABIC
- // ASIN
- // ASINH
- // ATAN2
- // ATANH
- // BASE
- // CEILING
- // CEILING.MATH
- // CEILING.PRECISE
- // CHOOSE
- // CLEAN
- // COMBIN
- // COMBINA
- // COS
- // COSH
- // COT
- // COTH
- // COUNTA
- // CSC
- // CSCH
- // DATE
- // DECIMAL
- // DEGREES
- // EVEN
- // EXP
- // FACT
- // FACTDOUBLE
- // FLOOR
- // FLOOR.MATH
- // FLOOR.PRECISE
- // GCD
- // HLOOKUP
- // IF
- // INT
- // ISBLANK
- // ISERR
- // ISERROR
- // ISEVEN
- // ISNA
- // ISNONTEXT
- // ISNUMBER
- // ISODD
- // ISO.CEILING
- // LCM
- // LEN
- // LN
- // LOG
- // LOG10
- // LOOKUP
- // LOWER
- // MDETERM
- // MEDIAN
- // MOD
- // MROUND
- // MULTINOMIAL
- // MUNIT
- // NA
- // ODD
- // OR
- // PI
- // POWER
- // PRODUCT
- // PROPER
- // QUOTIENT
- // RADIANS
- // RAND
- // RANDBETWEEN
- // ROUND
- // ROUNDDOWN
- // ROUNDUP
- // SEC
- // SECH
- // SIGN
- // SIN
- // SINH
- // SQRT
- // SQRTPI
- // SUM
- // SUMIF
- // SUMSQ
- // TAN
- // TANH
- // TRIM
- // TRUNC
- // UPPER
- // VLOOKUP
- //
- func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
- var (
- formula string
- token efp.Token
- )
- if formula, err = f.GetCellFormula(sheet, cell); err != nil {
- return
- }
- ps := efp.ExcelParser()
- tokens := ps.Parse(formula)
- if tokens == nil {
- return
- }
- if token, err = f.evalInfixExp(sheet, tokens); err != nil {
- return
- }
- result = token.TValue
- isNum, precision := isNumeric(result)
- if isNum && precision > 15 {
- num, _ := roundPrecision(result)
- result = strings.ToUpper(num)
- }
- return
- }
- // getPriority calculate arithmetic operator priority.
- func getPriority(token efp.Token) (pri int) {
- pri, _ = tokenPriority[token.TValue]
- if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
- pri = 6
- }
- if isBeginParenthesesToken(token) { // (
- pri = 0
- }
- return
- }
- // newNumberFormulaArg constructs a number formula argument.
- func newNumberFormulaArg(n float64) formulaArg {
- if math.IsNaN(n) {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return formulaArg{Type: ArgNumber, Number: n}
- }
- // newStringFormulaArg constructs a string formula argument.
- func newStringFormulaArg(s string) formulaArg {
- return formulaArg{Type: ArgString, String: s}
- }
- // newMatrixFormulaArg constructs a matrix formula argument.
- func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
- return formulaArg{Type: ArgMatrix, Matrix: m}
- }
- // newListFormulaArg create a list formula argument.
- func newListFormulaArg(l []formulaArg) formulaArg {
- return formulaArg{Type: ArgList, List: l}
- }
- // newBoolFormulaArg constructs a boolean formula argument.
- func newBoolFormulaArg(b bool) formulaArg {
- var n float64
- if b {
- n = 1
- }
- return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
- }
- // newErrorFormulaArg create an error formula argument of a given type with a
- // specified error message.
- func newErrorFormulaArg(formulaError, msg string) formulaArg {
- return formulaArg{Type: ArgError, String: formulaError, Error: msg}
- }
- // newEmptyFormulaArg create an empty formula argument.
- func newEmptyFormulaArg() formulaArg {
- return formulaArg{Type: ArgEmpty}
- }
- // evalInfixExp evaluate syntax analysis by given infix expression after
- // lexical analysis. Evaluate an infix expression containing formulas by
- // stacks:
- //
- // opd - Operand
- // opt - Operator
- // opf - Operation formula
- // opfd - Operand of the operation formula
- // opft - Operator of the operation formula
- //
- // Evaluate arguments of the operation formula by list:
- //
- // args - Arguments of the operation formula
- //
- // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
- //
- func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
- var err error
- opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
- for i := 0; i < len(tokens); i++ {
- token := tokens[i]
- // out of function stack
- if opfStack.Len() == 0 {
- if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
- return efp.Token{}, err
- }
- }
- // function start
- if isFunctionStartToken(token) {
- opfStack.Push(token)
- argsStack.Push(list.New().Init())
- continue
- }
- // in function stack, walk 2 token at once
- if opfStack.Len() > 0 {
- var nextToken efp.Token
- if i+1 < len(tokens) {
- nextToken = tokens[i+1]
- }
- // current token is args or range, skip next token, order required: parse reference first
- if token.TSubType == efp.TokenSubTypeRange {
- if !opftStack.Empty() {
- // parse reference: must reference at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if result.Type != ArgString {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- opfdStack.Push(efp.Token{
- TType: efp.TokenTypeOperand,
- TSubType: efp.TokenSubTypeNumber,
- TValue: result.String,
- })
- continue
- }
- if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
- // parse reference: reference or range at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if result.Type == ArgUnknown {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- argsStack.Peek().(*list.List).PushBack(result)
- continue
- }
- }
- // check current token is opft
- if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
- return efp.Token{}, err
- }
- // current token is arg
- if token.TType == efp.TokenTypeArgument {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- opftStack.Pop()
- }
- if !opfdStack.Empty() {
- argsStack.Peek().(*list.List).PushBack(formulaArg{
- String: opfdStack.Pop().(efp.Token).TValue,
- Type: ArgString,
- })
- }
- continue
- }
- // current token is logical
- if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
- }
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
- argsStack.Peek().(*list.List).PushBack(formulaArg{
- String: token.TValue,
- Type: ArgString,
- })
- }
- // current token is text
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
- argsStack.Peek().(*list.List).PushBack(formulaArg{
- String: token.TValue,
- Type: ArgString,
- })
- }
- if err = evalInfixExpFunc(token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
- return efp.Token{}, err
- }
- }
- }
- for optStack.Len() != 0 {
- topOpt := optStack.Peek().(efp.Token)
- if err = calculate(opdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- optStack.Pop()
- }
- if opdStack.Len() == 0 {
- return efp.Token{}, errors.New("formula not valid")
- }
- return opdStack.Peek().(efp.Token), err
- }
- // evalInfixExpFunc evaluate formula function in the infix expression.
- func evalInfixExpFunc(token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
- if !isFunctionStopToken(token) {
- return nil
- }
- // current token is function stop
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return err
- }
- opftStack.Pop()
- }
- // push opfd to args
- if opfdStack.Len() > 0 {
- argsStack.Peek().(*list.List).PushBack(formulaArg{
- String: opfdStack.Pop().(efp.Token).TValue,
- Type: ArgString,
- })
- }
- // call formula function to evaluate
- arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
- "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
- []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
- if arg.Type == ArgError {
- return errors.New(arg.Value())
- }
- argsStack.Pop()
- opfStack.Pop()
- if opfStack.Len() > 0 { // still in function stack
- if nextToken.TType == efp.TokenTypeOperatorInfix {
- // mathematics calculate in formula function
- opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- } else {
- argsStack.Peek().(*list.List).PushBack(arg)
- }
- } else {
- opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- return nil
- }
- // calcPow evaluate exponentiation arithmetic operations.
- func calcPow(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := math.Pow(lOpdVal, rOpdVal)
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcEq evaluate equal arithmetic operations.
- func calcEq(rOpd, lOpd string, opdStack *Stack) error {
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcNEq evaluate not equal arithmetic operations.
- func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcL evaluate less than arithmetic operations.
- func calcL(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcLe evaluate less than or equal arithmetic operations.
- func calcLe(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcG evaluate greater than or equal arithmetic operations.
- func calcG(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcGe evaluate greater than or equal arithmetic operations.
- func calcGe(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcSplice evaluate splice '&' operations.
- func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
- opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcAdd evaluate addition arithmetic operations.
- func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal + rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcSubtract evaluate subtraction arithmetic operations.
- func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal - rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcMultiply evaluate multiplication arithmetic operations.
- func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal * rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcDiv evaluate division arithmetic operations.
- func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal / rOpdVal
- if rOpdVal == 0 {
- return errors.New(formulaErrorDIV)
- }
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calculate evaluate basic arithmetic operations.
- func calculate(opdStack *Stack, opt efp.Token) error {
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
- if opdStack.Len() < 1 {
- return errors.New("formula not valid")
- }
- opd := opdStack.Pop().(efp.Token)
- opdVal, err := strconv.ParseFloat(opd.TValue, 64)
- if err != nil {
- return err
- }
- result := 0 - opdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
- "^": calcPow,
- "*": calcMultiply,
- "/": calcDiv,
- "+": calcAdd,
- "=": calcEq,
- "<>": calcNEq,
- "<": calcL,
- "<=": calcLe,
- ">": calcG,
- ">=": calcGe,
- "&": calcSplice,
- }
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
- return err
- }
- }
- fn, ok := tokenCalcFunc[opt.TValue]
- if ok {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
- return err
- }
- }
- return nil
- }
- // parseOperatorPrefixToken parse operator prefix token.
- func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
- if optStack.Len() == 0 {
- optStack.Push(token)
- } else {
- tokenPriority := getPriority(token)
- topOpt := optStack.Peek().(efp.Token)
- topOptPriority := getPriority(topOpt)
- if tokenPriority > topOptPriority {
- optStack.Push(token)
- } else {
- for tokenPriority <= topOptPriority {
- optStack.Pop()
- if err = calculate(opdStack, topOpt); err != nil {
- return
- }
- if optStack.Len() > 0 {
- topOpt = optStack.Peek().(efp.Token)
- topOptPriority = getPriority(topOpt)
- continue
- }
- break
- }
- optStack.Push(token)
- }
- }
- return
- }
- // isFunctionStartToken determine if the token is function stop.
- func isFunctionStartToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
- }
- // isFunctionStopToken determine if the token is function stop.
- func isFunctionStopToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
- }
- // isBeginParenthesesToken determine if the token is begin parentheses: (.
- func isBeginParenthesesToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
- }
- // isEndParenthesesToken determine if the token is end parentheses: ).
- func isEndParenthesesToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
- }
- // isOperatorPrefixToken determine if the token is parse operator prefix
- // token.
- func isOperatorPrefixToken(token efp.Token) bool {
- _, ok := tokenPriority[token.TValue]
- if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || ok {
- return true
- }
- return false
- }
- // getDefinedNameRefTo convert defined name to reference range.
- func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
- for _, definedName := range f.GetDefinedName() {
- if definedName.Name == definedNameName {
- refTo = definedName.RefersTo
- // worksheet scope takes precedence over scope workbook when both definedNames exist
- if definedName.Scope == currentSheet {
- break
- }
- }
- }
- return refTo
- }
- // parseToken parse basic arithmetic operator priority and evaluate based on
- // operators and operands.
- func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
- // parse reference: must reference at here
- if token.TSubType == efp.TokenSubTypeRange {
- refTo := f.getDefinedNameRefTo(token.TValue, sheet)
- if refTo != "" {
- token.TValue = refTo
- }
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return errors.New(formulaErrorNAME)
- }
- if result.Type != ArgString {
- return errors.New(formulaErrorVALUE)
- }
- token.TValue = result.String
- token.TType = efp.TokenTypeOperand
- token.TSubType = efp.TokenSubTypeNumber
- }
- if isOperatorPrefixToken(token) {
- if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
- return err
- }
- }
- if isBeginParenthesesToken(token) { // (
- optStack.Push(token)
- }
- if isEndParenthesesToken(token) { // )
- for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
- topOpt := optStack.Peek().(efp.Token)
- if err := calculate(opdStack, topOpt); err != nil {
- return err
- }
- optStack.Pop()
- }
- optStack.Pop()
- }
- // opd
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
- opdStack.Push(token)
- }
- return nil
- }
- // parseReference parse reference and extract values by given reference
- // characters and default sheet name.
- func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
- reference = strings.Replace(reference, "$", "", -1)
- refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
- for _, ref := range strings.Split(reference, ":") {
- tokens := strings.Split(ref, "!")
- cr := cellRef{}
- if len(tokens) == 2 { // have a worksheet name
- cr.Sheet = tokens[0]
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
- return
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- refs.PushBack(cr)
- continue
- }
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
- if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
- return
- }
- cellRanges.PushBack(cellRange{
- From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
- To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
- })
- cellRefs.Init()
- arg, err = f.rangeResolver(cellRefs, cellRanges)
- return
- }
- e := refs.Back()
- if e == nil {
- cr.Sheet = sheet
- refs.PushBack(cr)
- continue
- }
- cellRanges.PushBack(cellRange{
- From: e.Value.(cellRef),
- To: cr,
- })
- refs.Remove(e)
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- arg, err = f.rangeResolver(cellRefs, cellRanges)
- return
- }
- // prepareValueRange prepare value range.
- func prepareValueRange(cr cellRange, valueRange []int) {
- if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
- valueRange[0] = cr.From.Row
- }
- if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
- valueRange[2] = cr.From.Col
- }
- if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
- valueRange[1] = cr.To.Row
- }
- if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
- valueRange[3] = cr.To.Col
- }
- }
- // prepareValueRef prepare value reference.
- func prepareValueRef(cr cellRef, valueRange []int) {
- if cr.Row < valueRange[0] || valueRange[0] == 0 {
- valueRange[0] = cr.Row
- }
- if cr.Col < valueRange[2] || valueRange[2] == 0 {
- valueRange[2] = cr.Col
- }
- if cr.Row > valueRange[1] || valueRange[1] == 0 {
- valueRange[1] = cr.Row
- }
- if cr.Col > valueRange[3] || valueRange[3] == 0 {
- valueRange[3] = cr.Col
- }
- }
- // rangeResolver extract value as string from given reference and range list.
- // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
- // be reference A1:B3.
- func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
- // value range order: from row, to row, from column, to column
- valueRange := []int{0, 0, 0, 0}
- var sheet string
- // prepare value range
- for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRange)
- if cr.From.Sheet != cr.To.Sheet {
- err = errors.New(formulaErrorVALUE)
- }
- rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
- sortCoordinates(rng)
- cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
- prepareValueRange(cr, valueRange)
- if cr.From.Sheet != "" {
- sheet = cr.From.Sheet
- }
- }
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- if cr.Sheet != "" {
- sheet = cr.Sheet
- }
- prepareValueRef(cr, valueRange)
- }
- // extract value from ranges
- if cellRanges.Len() > 0 {
- arg.Type = ArgMatrix
- for row := valueRange[0]; row <= valueRange[1]; row++ {
- var matrixRow = []formulaArg{}
- for col := valueRange[2]; col <= valueRange[3]; col++ {
- var cell, value string
- if cell, err = CoordinatesToCellName(col, row); err != nil {
- return
- }
- if value, err = f.GetCellValue(sheet, cell); err != nil {
- return
- }
- matrixRow = append(matrixRow, formulaArg{
- String: value,
- Type: ArgString,
- })
- }
- arg.Matrix = append(arg.Matrix, matrixRow)
- }
- return
- }
- // extract value from references
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- var cell string
- if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
- return
- }
- if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
- return
- }
- arg.Type = ArgString
- }
- return
- }
- // callFuncByName calls the no error or only error return function with
- // reflect by given receiver, name and parameters.
- func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
- function := reflect.ValueOf(receiver).MethodByName(name)
- if function.IsValid() {
- rt := function.Call(params)
- if len(rt) == 0 {
- return
- }
- arg = rt[0].Interface().(formulaArg)
- return
- }
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
- }
- // formulaCriteriaParser parse formula criteria.
- func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
- fc = &formulaCriteria{}
- if exp == "" {
- return
- }
- if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaEq, match[1]
- return
- }
- if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaEq, match[1]
- return
- }
- if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaLe, match[1]
- return
- }
- if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaGe, match[1]
- return
- }
- if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaL, match[1]
- return
- }
- if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaG, match[1]
- return
- }
- if strings.Contains(exp, "*") {
- if strings.HasPrefix(exp, "*") {
- fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
- }
- if strings.HasSuffix(exp, "*") {
- fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
- }
- return
- }
- fc.Type, fc.Condition = criteriaEq, exp
- return
- }
- // formulaCriteriaEval evaluate formula criteria expression.
- func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
- var value, expected float64
- var e error
- var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
- if value, err = strconv.ParseFloat(val, 64); err != nil {
- return
- }
- if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
- return
- }
- return
- }
- switch criteria.Type {
- case criteriaEq:
- return val == criteria.Condition, err
- case criteriaLe:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value <= expected && e == nil, err
- case criteriaGe:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value >= expected && e == nil, err
- case criteriaL:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value < expected && e == nil, err
- case criteriaG:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value > expected && e == nil, err
- case criteriaBeg:
- return strings.HasPrefix(val, criteria.Condition), err
- case criteriaEnd:
- return strings.HasSuffix(val, criteria.Condition), err
- }
- return
- }
- // Math and Trigonometric functions
- // ABS function returns the absolute value of any supplied number. The syntax
- // of the function is:
- //
- // ABS(number)
- //
- func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Abs(arg.Number))
- }
- // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
- // number, and returns an angle, in radians, between 0 and π. The syntax of
- // the function is:
- //
- // ACOS(number)
- //
- func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Acos(arg.Number))
- }
- // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
- // of the function is:
- //
- // ACOSH(number)
- //
- func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Acosh(arg.Number))
- }
- // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
- // given number, and returns an angle, in radians, between 0 and π. The syntax
- // of the function is:
- //
- // ACOT(number)
- //
- func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
- }
- // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
- // value. The syntax of the function is:
- //
- // ACOTH(number)
- //
- func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Atanh(1 / arg.Number))
- }
- // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
- // of the function is:
- //
- // ARABIC(text)
- //
- func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
- }
- charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
- val, last, prefix := 0.0, 0.0, 1.0
- for _, char := range argsList.Front().Value.(formulaArg).String {
- digit := 0.0
- if char == '-' {
- prefix = -1
- continue
- }
- digit, _ = charMap[char]
- val += digit
- switch {
- case last == digit && (last == 5 || last == 50 || last == 500):
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- case 2*last == digit:
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- if last < digit {
- val -= 2 * last
- }
- last = digit
- }
- return newNumberFormulaArg(prefix * val)
- }
- // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
- // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
- // of the function is:
- //
- // ASIN(number)
- //
- func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Asin(arg.Number))
- }
- // ASINH function calculates the inverse hyperbolic sine of a supplied number.
- // The syntax of the function is:
- //
- // ASINH(number)
- //
- func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Asinh(arg.Number))
- }
- // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
- // given number, and returns an angle, in radians, between -π/2 and +π/2. The
- // syntax of the function is:
- //
- // ATAN(number)
- //
- func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Atan(arg.Number))
- }
- // ATANH function calculates the inverse hyperbolic tangent of a supplied
- // number. The syntax of the function is:
- //
- // ATANH(number)
- //
- func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Atanh(arg.Number))
- }
- // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
- // given set of x and y coordinates, and returns an angle, in radians, between
- // -π/2 and +π/2. The syntax of the function is:
- //
- // ATAN2(x_num,y_num)
- //
- func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
- }
- x := argsList.Back().Value.(formulaArg).ToNumber()
- if x.Type == ArgError {
- return x
- }
- y := argsList.Front().Value.(formulaArg).ToNumber()
- if y.Type == ArgError {
- return y
- }
- return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
- }
- // BASE function converts a number into a supplied base (radix), and returns a
- // text representation of the calculated value. The syntax of the function is:
- //
- // BASE(number,radix,[min_length])
- //
- func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
- }
- var minLength int
- var err error
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
- if radix.Type == ArgError {
- return radix
- }
- if int(radix.Number) < 2 || int(radix.Number) > 36 {
- return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
- }
- if argsList.Len() > 2 {
- if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- }
- result := strconv.FormatInt(int64(number.Number), int(radix.Number))
- if len(result) < minLength {
- result = strings.Repeat("0", minLength-len(result)) + result
- }
- return newStringFormulaArg(strings.ToUpper(result))
- }
- // CEILING function rounds a supplied number away from zero, to the nearest
- // multiple of a given number. The syntax of the function is:
- //
- // CEILING(number,significance)
- //
- func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
- }
- number, significance, res := 0.0, 1.0, 0.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- }
- if significance < 0 && number > 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number))
- }
- number, res = math.Modf(number / significance)
- if res > 0 {
- number++
- }
- return newNumberFormulaArg(number * significance)
- }
- // CEILINGMATH function rounds a supplied number up to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // CEILING.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
- }
- number, significance, mode := 0.0, 1.0, 1.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- s := argsList.Front().Next().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number))
- }
- if argsList.Len() > 2 {
- m := argsList.Back().Value.(formulaArg).ToNumber()
- if m.Type == ArgError {
- return m
- }
- mode = m.Number
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- } else if mode < 0 {
- val--
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // CEILINGPRECISE function rounds a supplied number up (regardless of the
- // number's sign), to the nearest multiple of a given number. The syntax of
- // the function is:
- //
- // CEILING.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
- }
- number, significance := 0.0, 1.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number))
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- significance = math.Abs(significance)
- if significance == 0 {
- return newNumberFormulaArg(significance)
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // COMBIN function calculates the number of combinations (in any order) of a
- // given number objects from a set. The syntax of the function is:
- //
- // COMBIN(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
- }
- number, chosen, val := 0.0, 0.0, 1.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- c := argsList.Back().Value.(formulaArg).ToNumber()
- if c.Type == ArgError {
- return c
- }
- chosen = c.Number
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if chosen > number {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
- }
- if chosen == number || chosen == 0 {
- return newNumberFormulaArg(1)
- }
- for c := float64(1); c <= chosen; c++ {
- val *= (number + 1 - c) / c
- }
- return newNumberFormulaArg(math.Ceil(val))
- }
- // COMBINA function calculates the number of combinations, with repetitions,
- // of a given number objects from a set. The syntax of the function is:
- //
- // COMBINA(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
- }
- var number, chosen float64
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- c := argsList.Back().Value.(formulaArg).ToNumber()
- if c.Type == ArgError {
- return c
- }
- chosen = c.Number
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if number < chosen {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
- }
- if number == 0 {
- return newNumberFormulaArg(number)
- }
- args := list.New()
- args.PushBack(formulaArg{
- String: fmt.Sprintf("%g", number+chosen-1),
- Type: ArgString,
- })
- args.PushBack(formulaArg{
- String: fmt.Sprintf("%g", number-1),
- Type: ArgString,
- })
- return fn.COMBIN(args)
- }
- // COS function calculates the cosine of a given angle. The syntax of the
- // function is:
- //
- // COS(number)
- //
- func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- return newNumberFormulaArg(math.Cos(val.Number))
- }
- // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
- // The syntax of the function is:
- //
- // COSH(number)
- //
- func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- return newNumberFormulaArg(math.Cosh(val.Number))
- }
- // COT function calculates the cotangent of a given angle. The syntax of the
- // function is:
- //
- // COT(number)
- //
- func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(1 / math.Tan(val.Number))
- }
- // COTH function calculates the hyperbolic cotangent (coth) of a supplied
- // angle. The syntax of the function is:
- //
- // COTH(number)
- //
- func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
- }
- // CSC function calculates the cosecant of a given angle. The syntax of the
- // function is:
- //
- // CSC(number)
- //
- func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(1 / math.Sin(val.Number))
- }
- // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
- // angle. The syntax of the function is:
- //
- // CSCH(number)
- //
- func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(1 / math.Sinh(val.Number))
- }
- // DECIMAL function converts a text representation of a number in a specified
- // base, into a decimal value. The syntax of the function is:
- //
- // DECIMAL(text,radix)
- //
- func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
- }
- var text = argsList.Front().Value.(formulaArg).String
- var radix int
- var err error
- radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
- text = text[2:]
- }
- val, err := strconv.ParseInt(text, radix, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- return newNumberFormulaArg(float64(val))
- }
- // DEGREES function converts radians into degrees. The syntax of the function
- // is:
- //
- // DEGREES(angle)
- //
- func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(180.0 / math.Pi * val.Number)
- }
- // EVEN function rounds a supplied number away from zero (i.e. rounds a
- // positive number up and a negative number down), to the next even number.
- // The syntax of the function is:
- //
- // EVEN(number)
- //
- func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- sign := math.Signbit(number.Number)
- m, frac := math.Modf(number.Number / 2)
- val := m * 2
- if frac != 0 {
- if !sign {
- val += 2
- } else {
- val -= 2
- }
- }
- return newNumberFormulaArg(val)
- }
- // EXP function calculates the value of the mathematical constant e, raised to
- // the power of a given number. The syntax of the function is:
- //
- // EXP(number)
- //
- func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
- }
- // fact returns the factorial of a supplied number.
- func fact(number float64) float64 {
- val := float64(1)
- for i := float64(2); i <= number; i++ {
- val *= i
- }
- return val
- }
- // FACT function returns the factorial of a supplied number. The syntax of the
- // function is:
- //
- // FACT(number)
- //
- func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
- }
- // FACTDOUBLE function returns the double factorial of a supplied number. The
- // syntax of the function is:
- //
- // FACTDOUBLE(number)
- //
- func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
- }
- val := 1.0
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- for i := math.Trunc(number.Number); i > 1; i -= 2 {
- val *= i
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
- }
- // FLOOR function rounds a supplied number towards zero to the nearest
- // multiple of a specified significance. The syntax of the function is:
- //
- // FLOOR(number,significance)
- //
- func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- significance := argsList.Back().Value.(formulaArg).ToNumber()
- if significance.Type == ArgError {
- return significance
- }
- if significance.Number < 0 && number.Number >= 0 {
- return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
- }
- val := number.Number
- val, res := math.Modf(val / significance.Number)
- if res != 0 {
- if number.Number < 0 && res < 0 {
- val--
- }
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
- }
- // FLOORMATH function rounds a supplied number down to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // FLOOR.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
- }
- significance, mode := 1.0, 1.0
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- s := argsList.Front().Next().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Floor(number.Number))
- }
- if argsList.Len() > 2 {
- m := argsList.Back().Value.(formulaArg).ToNumber()
- if m.Type == ArgError {
- return m
- }
- mode = m.Number
- }
- val, res := math.Modf(number.Number / significance)
- if res != 0 && number.Number < 0 && mode > 0 {
- val--
- }
- return newNumberFormulaArg(val * significance)
- }
- // FLOORPRECISE function rounds a supplied number down to a supplied multiple
- // of significance. The syntax of the function is:
- //
- // FLOOR.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
- }
- var significance float64
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Floor(number.Number))
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- significance = math.Abs(significance)
- if significance == 0 {
- return newNumberFormulaArg(significance)
- }
- }
- val, res := math.Modf(number.Number / significance)
- if res != 0 {
- if number.Number < 0 {
- val--
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // gcd returns the greatest common divisor of two supplied integers.
- func gcd(x, y float64) float64 {
- x, y = math.Trunc(x), math.Trunc(y)
- if x == 0 {
- return y
- }
- if y == 0 {
- return x
- }
- for x != y {
- if x > y {
- x = x - y
- } else {
- y = y - x
- }
- }
- return x
- }
- // GCD function returns the greatest common divisor of two or more supplied
- // integers. The syntax of the function is:
- //
- // GCD(number1,[number2],...)
- //
- func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
- }
- var (
- val float64
- nums = []float64{}
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- break
- case ArgNumber:
- val = token.Number
- break
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
- }
- if len(nums) == 1 {
- return newNumberFormulaArg(nums[0])
- }
- cd := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
- }
- cd = gcd(cd, nums[i])
- }
- return newNumberFormulaArg(cd)
- }
- // INT function truncates a supplied number down to the closest integer. The
- // syntax of the function is:
- //
- // INT(number)
- //
- func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- val, frac := math.Modf(number.Number)
- if frac < 0 {
- val--
- }
- return newNumberFormulaArg(val)
- }
- // ISOCEILING function rounds a supplied number up (regardless of the number's
- // sign), to the nearest multiple of a supplied significance. The syntax of
- // the function is:
- //
- // ISO.CEILING(number,[significance])
- //
- func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
- }
- var significance float64
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number.Number))
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- significance = math.Abs(significance)
- if significance == 0 {
- return newNumberFormulaArg(significance)
- }
- }
- val, res := math.Modf(number.Number / significance)
- if res != 0 {
- if number.Number > 0 {
- val++
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // lcm returns the least common multiple of two supplied integers.
- func lcm(a, b float64) float64 {
- a = math.Trunc(a)
- b = math.Trunc(b)
- if a == 0 && b == 0 {
- return 0
- }
- return a * b / gcd(a, b)
- }
- // LCM function returns the least common multiple of two or more supplied
- // integers. The syntax of the function is:
- //
- // LCM(number1,[number2],...)
- //
- func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
- }
- var (
- val float64
- nums = []float64{}
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- break
- case ArgNumber:
- val = token.Number
- break
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
- }
- if len(nums) == 1 {
- return newNumberFormulaArg(nums[0])
- }
- cm := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
- }
- cm = lcm(cm, nums[i])
- }
- return newNumberFormulaArg(cm)
- }
- // LN function calculates the natural logarithm of a given number. The syntax
- // of the function is:
- //
- // LN(number)
- //
- func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Log(number.Number))
- }
- // LOG function calculates the logarithm of a given number, to a supplied
- // base. The syntax of the function is:
- //
- // LOG(number,[base])
- //
- func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
- }
- base := 10.0
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if argsList.Len() > 1 {
- b := argsList.Back().Value.(formulaArg).ToNumber()
- if b.Type == ArgError {
- return b
- }
- base = b.Number
- }
- if number.Number == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
- }
- if base == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
- }
- if base == 1 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
- }
- // LOG10 function calculates the base 10 logarithm of a given number. The
- // syntax of the function is:
- //
- // LOG10(number)
- //
- func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Log10(number.Number))
- }
- // minor function implement a minor of a matrix A is the determinant of some
- // smaller square matrix.
- func minor(sqMtx [][]float64, idx int) [][]float64 {
- ret := [][]float64{}
- for i := range sqMtx {
- if i == 0 {
- continue
- }
- row := []float64{}
- for j := range sqMtx {
- if j == idx {
- continue
- }
- row = append(row, sqMtx[i][j])
- }
- ret = append(ret, row)
- }
- return ret
- }
- // det determinant of the 2x2 matrix.
- func det(sqMtx [][]float64) float64 {
- if len(sqMtx) == 2 {
- m00 := sqMtx[0][0]
- m01 := sqMtx[0][1]
- m10 := sqMtx[1][0]
- m11 := sqMtx[1][1]
- return m00*m11 - m10*m01
- }
- var res, sgn float64 = 0, 1
- for j := range sqMtx {
- res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
- sgn *= -1
- }
- return res
- }
- // MDETERM calculates the determinant of a square matrix. The
- // syntax of the function is:
- //
- // MDETERM(array)
- //
- func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
- var (
- num float64
- numMtx = [][]float64{}
- err error
- strMtx [][]formulaArg
- )
- if argsList.Len() < 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
- }
- strMtx = argsList.Front().Value.(formulaArg).Matrix
- var rows = len(strMtx)
- for _, row := range argsList.Front().Value.(formulaArg).Matrix {
- if len(row) != rows {
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- numRow := []float64{}
- for _, ele := range row {
- if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- numRow = append(numRow, num)
- }
- numMtx = append(numMtx, numRow)
- }
- return newNumberFormulaArg(det(numMtx))
- }
- // MOD function returns the remainder of a division between two supplied
- // numbers. The syntax of the function is:
- //
- // MOD(number,divisor)
- //
- func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- divisor := argsList.Back().Value.(formulaArg).ToNumber()
- if divisor.Type == ArgError {
- return divisor
- }
- if divisor.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
- }
- trunc, rem := math.Modf(number.Number / divisor.Number)
- if rem < 0 {
- trunc--
- }
- return newNumberFormulaArg(number.Number - divisor.Number*trunc)
- }
- // MROUND function rounds a supplied number up or down to the nearest multiple
- // of a given number. The syntax of the function is:
- //
- // MROUND(number,multiple)
- //
- func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
- }
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- multiple := argsList.Back().Value.(formulaArg).ToNumber()
- if multiple.Type == ArgError {
- return multiple
- }
- if multiple.Number == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- if multiple.Number < 0 && n.Number > 0 ||
- multiple.Number > 0 && n.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- number, res := math.Modf(n.Number / multiple.Number)
- if math.Trunc(res+0.5) > 0 {
- number++
- }
- return newNumberFormulaArg(number * multiple.Number)
- }
- // MULTINOMIAL function calculates the ratio of the factorial of a sum of
- // supplied values to the product of factorials of those values. The syntax of
- // the function is:
- //
- // MULTINOMIAL(number1,[number2],...)
- //
- func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
- val, num, denom := 0.0, 0.0, 1.0
- var err error
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- break
- case ArgNumber:
- val = token.Number
- break
- }
- num += val
- denom *= fact(val)
- }
- return newNumberFormulaArg(fact(num) / denom)
- }
- // MUNIT function returns the unit matrix for a specified dimension. The
- // syntax of the function is:
- //
- // MUNIT(dimension)
- //
- func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
- }
- dimension := argsList.Back().Value.(formulaArg).ToNumber()
- if dimension.Type == ArgError || dimension.Number < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
- }
- matrix := make([][]formulaArg, 0, int(dimension.Number))
- for i := 0; i < int(dimension.Number); i++ {
- row := make([]formulaArg, int(dimension.Number))
- for j := 0; j < int(dimension.Number); j++ {
- if i == j {
- row[j] = newNumberFormulaArg(1.0)
- } else {
- row[j] = newNumberFormulaArg(0.0)
- }
- }
- matrix = append(matrix, row)
- }
- return newMatrixFormulaArg(matrix)
- }
- // ODD function ounds a supplied number away from zero (i.e. rounds a positive
- // number up and a negative number down), to the next odd number. The syntax
- // of the function is:
- //
- // ODD(number)
- //
- func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
- }
- number := argsList.Back().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number == 0 {
- return newNumberFormulaArg(1)
- }
- sign := math.Signbit(number.Number)
- m, frac := math.Modf((number.Number - 1) / 2)
- val := m*2 + 1
- if frac != 0 {
- if !sign {
- val += 2
- } else {
- val -= 2
- }
- }
- return newNumberFormulaArg(val)
- }
- // PI function returns the value of the mathematical constant π (pi), accurate
- // to 15 digits (14 decimal places). The syntax of the function is:
- //
- // PI()
- //
- func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
- }
- return newNumberFormulaArg(math.Pi)
- }
- // POWER function calculates a given number, raised to a supplied power.
- // The syntax of the function is:
- //
- // POWER(number,power)
- //
- func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
- }
- x := argsList.Front().Value.(formulaArg).ToNumber()
- if x.Type == ArgError {
- return x
- }
- y := argsList.Back().Value.(formulaArg).ToNumber()
- if y.Type == ArgError {
- return y
- }
- if x.Number == 0 && y.Number == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- if x.Number == 0 && y.Number < 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(math.Pow(x.Number, y.Number))
- }
- // PRODUCT function returns the product (multiplication) of a supplied set of
- // numerical values. The syntax of the function is:
- //
- // PRODUCT(number1,[number2],...)
- //
- func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
- val, product := 0.0, 1.0
- var err error
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- product = product * val
- break
- case ArgNumber:
- product = product * token.Number
- break
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- product = product * val
- }
- }
- }
- }
- return newNumberFormulaArg(product)
- }
- // QUOTIENT function returns the integer portion of a division between two
- // supplied numbers. The syntax of the function is:
- //
- // QUOTIENT(numerator,denominator)
- //
- func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
- }
- x := argsList.Front().Value.(formulaArg).ToNumber()
- if x.Type == ArgError {
- return x
- }
- y := argsList.Back().Value.(formulaArg).ToNumber()
- if y.Type == ArgError {
- return y
- }
- if y.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
- }
- // RADIANS function converts radians into degrees. The syntax of the function is:
- //
- // RADIANS(angle)
- //
- func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
- }
- angle := argsList.Front().Value.(formulaArg).ToNumber()
- if angle.Type == ArgError {
- return angle
- }
- return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
- }
- // RAND function generates a random real number between 0 and 1. The syntax of
- // the function is:
- //
- // RAND()
- //
- func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
- }
- return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
- }
- // RANDBETWEEN function generates a random integer between two supplied
- // integers. The syntax of the function is:
- //
- // RANDBETWEEN(bottom,top)
- //
- func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
- }
- bottom := argsList.Front().Value.(formulaArg).ToNumber()
- if bottom.Type == ArgError {
- return bottom
- }
- top := argsList.Back().Value.(formulaArg).ToNumber()
- if top.Type == ArgError {
- return top
- }
- if top.Number < bottom.Number {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
- }
- // romanNumerals defined a numeral system that originated in ancient Rome and
- // remained the usual way of writing numbers throughout Europe well into the
- // Late Middle Ages.
- type romanNumerals struct {
- n float64
- s string
- }
- var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
- // ROMAN function converts an arabic number to Roman. I.e. for a supplied
- // integer, the function returns a text string depicting the roman numeral
- // form of the number. The syntax of the function is:
- //
- // ROMAN(number,[form])
- //
- func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
- }
- var form int
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if argsList.Len() > 1 {
- f := argsList.Back().Value.(formulaArg).ToNumber()
- if f.Type == ArgError {
- return f
- }
- form = int(f.Number)
- if form < 0 {
- form = 0
- } else if form > 4 {
- form = 4
- }
- }
- decimalTable := romanTable[0]
- switch form {
- case 1:
- decimalTable = romanTable[1]
- case 2:
- decimalTable = romanTable[2]
- case 3:
- decimalTable = romanTable[3]
- case 4:
- decimalTable = romanTable[4]
- }
- val := math.Trunc(number.Number)
- buf := bytes.Buffer{}
- for _, r := range decimalTable {
- for val >= r.n {
- buf.WriteString(r.s)
- val -= r.n
- }
- }
- return newStringFormulaArg(buf.String())
- }
- type roundMode byte
- const (
- closest roundMode = iota
- down
- up
- )
- // round rounds a supplied number up or down.
- func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
- var significance float64
- if digits > 0 {
- significance = math.Pow(1/10.0, digits)
- } else {
- significance = math.Pow(10.0, -digits)
- }
- val, res := math.Modf(number / significance)
- switch mode {
- case closest:
- const eps = 0.499999999
- if res >= eps {
- val++
- } else if res <= -eps {
- val--
- }
- case down:
- case up:
- if res > 0 {
- val++
- } else if res < 0 {
- val--
- }
- }
- return val * significance
- }
- // ROUND function rounds a supplied number up or down, to a specified number
- // of decimal places. The syntax of the function is:
- //
- // ROUND(number,num_digits)
- //
- func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- digits := argsList.Back().Value.(formulaArg).ToNumber()
- if digits.Type == ArgError {
- return digits
- }
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
- }
- // ROUNDDOWN function rounds a supplied number down towards zero, to a
- // specified number of decimal places. The syntax of the function is:
- //
- // ROUNDDOWN(number,num_digits)
- //
- func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- digits := argsList.Back().Value.(formulaArg).ToNumber()
- if digits.Type == ArgError {
- return digits
- }
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
- }
- // ROUNDUP function rounds a supplied number up, away from zero, to a
- // specified number of decimal places. The syntax of the function is:
- //
- // ROUNDUP(number,num_digits)
- //
- func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- digits := argsList.Back().Value.(formulaArg).ToNumber()
- if digits.Type == ArgError {
- return digits
- }
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
- }
- // SEC function calculates the secant of a given angle. The syntax of the
- // function is:
- //
- // SEC(number)
- //
- func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Cos(number.Number))
- }
- // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
- // The syntax of the function is:
- //
- // SECH(number)
- //
- func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(1 / math.Cosh(number.Number))
- }
- // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
- // number. I.e. if the number is positive, the Sign function returns +1, if
- // the number is negative, the function returns -1 and if the number is 0
- // (zero), the function returns 0. The syntax of the function is:
- //
- // SIGN(number)
- //
- func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number < 0 {
- return newNumberFormulaArg(-1)
- }
- if val.Number > 0 {
- return newNumberFormulaArg(1)
- }
- return newNumberFormulaArg(0)
- }
- // SIN function calculates the sine of a given angle. The syntax of the
- // function is:
- //
- // SIN(number)
- //
- func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Sin(number.Number))
- }
- // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
- // The syntax of the function is:
- //
- // SINH(number)
- //
- func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Sinh(number.Number))
- }
- // SQRT function calculates the positive square root of a supplied number. The
- // syntax of the function is:
- //
- // SQRT(number)
- //
- func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
- }
- value := argsList.Front().Value.(formulaArg).ToNumber()
- if value.Type == ArgError {
- return value
- }
- if value.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return newNumberFormulaArg(math.Sqrt(value.Number))
- }
- // SQRTPI function returns the square root of a supplied number multiplied by
- // the mathematical constant, π. The syntax of the function is:
- //
- // SQRTPI(number)
- //
- func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
- }
- // SUM function adds together a supplied set of numbers and returns the sum of
- // these values. The syntax of the function is:
- //
- // SUM(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
- var (
- val, sum float64
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sum += val
- case ArgNumber:
- sum += token.Number
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sum += val
- }
- }
- }
- }
- return newNumberFormulaArg(sum)
- }
- // SUMIF function finds the values in a supplied array, that satisfy a given
- // criteria, and returns the sum of the corresponding values in a second
- // supplied array. The syntax of the function is:
- //
- // SUMIF(range,criteria,[sum_range])
- //
- func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
- }
- var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
- var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
- var sumRange [][]formulaArg
- if argsList.Len() == 3 {
- sumRange = argsList.Back().Value.(formulaArg).Matrix
- }
- var sum, val float64
- var err error
- for rowIdx, row := range rangeMtx {
- for colIdx, col := range row {
- var ok bool
- fromVal := col.String
- if col.String == "" {
- continue
- }
- if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if ok {
- if argsList.Len() == 3 {
- if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
- continue
- }
- fromVal = sumRange[rowIdx][colIdx].String
- }
- if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sum += val
- }
- }
- }
- return newNumberFormulaArg(sum)
- }
- // SUMSQ function returns the sum of squares of a supplied set of values. The
- // syntax of the function is:
- //
- // SUMSQ(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
- var val, sq float64
- var err error
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sq += val * val
- break
- case ArgNumber:
- sq += token.Number
- break
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sq += val * val
- }
- }
- }
- }
- return newNumberFormulaArg(sq)
- }
- // TAN function calculates the tangent of a given angle. The syntax of the
- // function is:
- //
- // TAN(number)
- //
- func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Tan(number.Number))
- }
- // TANH function calculates the hyperbolic tangent (tanh) of a supplied
- // number. The syntax of the function is:
- //
- // TANH(number)
- //
- func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Tanh(number.Number))
- }
- // TRUNC function truncates a supplied number to a specified number of decimal
- // places. The syntax of the function is:
- //
- // TRUNC(number,[number_digits])
- //
- func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
- }
- var digits, adjust, rtrim float64
- var err error
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if argsList.Len() > 1 {
- d := argsList.Back().Value.(formulaArg).ToNumber()
- if d.Type == ArgError {
- return d
- }
- digits = d.Number
- digits = math.Floor(digits)
- }
- adjust = math.Pow(10, digits)
- x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
- if x != 0 {
- if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- }
- if (digits > 0) && (rtrim < adjust/10) {
- return newNumberFormulaArg(number.Number)
- }
- return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
- }
- // Statistical functions
- // COUNTA function returns the number of non-blanks within a supplied set of
- // cells or values. The syntax of the function is:
- //
- // COUNTA(value1,[value2],...)
- //
- func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
- var count int
- for token := argsList.Front(); token != nil; token = token.Next() {
- arg := token.Value.(formulaArg)
- switch arg.Type {
- case ArgString:
- if arg.String != "" {
- count++
- }
- case ArgMatrix:
- for _, row := range arg.Matrix {
- for _, value := range row {
- if value.String != "" {
- count++
- }
- }
- }
- }
- }
- return newStringFormulaArg(fmt.Sprintf("%d", count))
- }
- // MEDIAN function returns the statistical median (the middle value) of a list
- // of supplied numbers. The syntax of the function is:
- //
- // MEDIAN(number1,[number2],...)
- //
- func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
- }
- var values = []float64{}
- var median, digits float64
- var err error
- for token := argsList.Front(); token != nil; token = token.Next() {
- arg := token.Value.(formulaArg)
- switch arg.Type {
- case ArgString:
- if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- values = append(values, digits)
- break
- case ArgNumber:
- values = append(values, arg.Number)
- break
- case ArgMatrix:
- for _, row := range arg.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- values = append(values, digits)
- }
- }
- }
- }
- sort.Float64s(values)
- if len(values)%2 == 0 {
- median = (values[len(values)/2-1] + values[len(values)/2]) / 2
- } else {
- median = values[len(values)/2]
- }
- return newNumberFormulaArg(median)
- }
- // Information functions
- // ISBLANK function tests if a specified cell is blank (empty) and if so,
- // returns TRUE; Otherwise the function returns FALSE. The syntax of the
- // function is:
- //
- // ISBLANK(value)
- //
- func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- switch token.Type {
- case ArgUnknown:
- result = "TRUE"
- case ArgString:
- if token.String == "" {
- result = "TRUE"
- }
- }
- return newStringFormulaArg(result)
- }
- // ISERR function tests if an initial supplied expression (or value) returns
- // any Excel Error, except the #N/A error. If so, the function returns the
- // logical value TRUE; If the supplied value is not an error or is the #N/A
- // error, the ISERR function returns FALSE. The syntax of the function is:
- //
- // ISERR(value)
- //
- func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- if token.Type == ArgString {
- for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
- if errType == token.String {
- result = "TRUE"
- }
- }
- }
- return newStringFormulaArg(result)
- }
- // ISERROR function tests if an initial supplied expression (or value) returns
- // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
- // function returns FALSE. The syntax of the function is:
- //
- // ISERROR(value)
- //
- func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- if token.Type == ArgString {
- for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
- if errType == token.String {
- result = "TRUE"
- }
- }
- }
- return newStringFormulaArg(result)
- }
- // ISEVEN function tests if a supplied number (or numeric expression)
- // evaluates to an even number, and if so, returns TRUE; Otherwise, the
- // function returns FALSE. The syntax of the function is:
- //
- // ISEVEN(value)
- //
- func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
- }
- var (
- token = argsList.Front().Value.(formulaArg)
- result = "FALSE"
- numeric int
- err error
- )
- if token.Type == ArgString {
- if numeric, err = strconv.Atoi(token.String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if numeric == numeric/2*2 {
- return newStringFormulaArg("TRUE")
- }
- }
- return newStringFormulaArg(result)
- }
- // ISNA function tests if an initial supplied expression (or value) returns
- // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
- // returns FALSE. The syntax of the function is:
- //
- // ISNA(value)
- //
- func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- if token.Type == ArgString && token.String == formulaErrorNA {
- result = "TRUE"
- }
- return newStringFormulaArg(result)
- }
- // ISNONTEXT function function tests if a supplied value is text. If not, the
- // function returns TRUE; If the supplied value is text, the function returns
- // FALSE. The syntax of the function is:
- //
- // ISNONTEXT(value)
- //
- func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "TRUE"
- if token.Type == ArgString && token.String != "" {
- result = "FALSE"
- }
- return newStringFormulaArg(result)
- }
- // ISNUMBER function function tests if a supplied value is a number. If so,
- // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
- // function is:
- //
- // ISNUMBER(value)
- //
- func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
- }
- token, result := argsList.Front().Value.(formulaArg), false
- if token.Type == ArgString && token.String != "" {
- if _, err := strconv.Atoi(token.String); err == nil {
- result = true
- }
- }
- return newBoolFormulaArg(result)
- }
- // ISODD function tests if a supplied number (or numeric expression) evaluates
- // to an odd number, and if so, returns TRUE; Otherwise, the function returns
- // FALSE. The syntax of the function is:
- //
- // ISODD(value)
- //
- func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
- }
- var (
- token = argsList.Front().Value.(formulaArg)
- result = "FALSE"
- numeric int
- err error
- )
- if token.Type == ArgString {
- if numeric, err = strconv.Atoi(token.String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if numeric != numeric/2*2 {
- return newStringFormulaArg("TRUE")
- }
- }
- return newStringFormulaArg(result)
- }
- // NA function returns the Excel #N/A error. This error message has the
- // meaning 'value not available' and is produced when an Excel Formula is
- // unable to find a value that it needs. The syntax of the function is:
- //
- // NA()
- //
- func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
- }
- return newStringFormulaArg(formulaErrorNA)
- }
- // Logical Functions
- // AND function tests a number of supplied conditions and returns TRUE or
- // FALSE. The syntax of the function is:
- //
- // AND(logical_test1,[logical_test2],...)
- //
- func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
- }
- if argsList.Len() > 30 {
- return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
- }
- var (
- and = true
- val float64
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "TRUE" {
- continue
- }
- if token.String == "FALSE" {
- return newStringFormulaArg(token.String)
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- and = and && (val != 0)
- case ArgMatrix:
- // TODO
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- }
- return newBoolFormulaArg(and)
- }
- // OR function tests a number of supplied conditions and returns either TRUE
- // or FALSE. The syntax of the function is:
- //
- // OR(logical_test1,[logical_test2],...)
- //
- func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
- }
- if argsList.Len() > 30 {
- return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
- }
- var (
- or bool
- val float64
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "FALSE" {
- continue
- }
- if token.String == "TRUE" {
- or = true
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- or = val != 0
- case ArgMatrix:
- // TODO
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- }
- return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
- }
- // Date and Time Functions
- // DATE returns a date, from a user-supplied year, month and day. The syntax
- // of the function is:
- //
- // DATE(year,month,day)
- //
- func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
- if argsList.Len() != 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- var year, month, day int
- var err error
- if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- d := makeDate(year, time.Month(month), day)
- return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
- }
- // makeDate return date as a Unix time, the number of seconds elapsed since
- // January 1, 1970 UTC.
- func makeDate(y int, m time.Month, d int) int64 {
- if y == 1900 && int(m) <= 2 {
- d--
- }
- date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
- return date.Unix()
- }
- // daysBetween return time interval of the given start timestamp and end
- // timestamp.
- func daysBetween(startDate, endDate int64) float64 {
- return float64(int(0.5 + float64((endDate-startDate)/86400)))
- }
- // Text Functions
- // CLEAN removes all non-printable characters from a supplied text string. The
- // syntax of the function is:
- //
- // CLEAN(text)
- //
- func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
- }
- b := bytes.Buffer{}
- for _, c := range argsList.Front().Value.(formulaArg).String {
- if c > 31 {
- b.WriteRune(c)
- }
- }
- return newStringFormulaArg(b.String())
- }
- // LEN returns the length of a supplied text string. The syntax of the
- // function is:
- //
- // LEN(text)
- //
- func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
- }
- return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
- }
- // TRIM removes extra spaces (i.e. all spaces except for single spaces between
- // words or characters) from a supplied text string. The syntax of the
- // function is:
- //
- // TRIM(text)
- //
- func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
- }
- return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
- }
- // LOWER converts all characters in a supplied text string to lower case. The
- // syntax of the function is:
- //
- // LOWER(text)
- //
- func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
- }
- return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
- }
- // PROPER converts all characters in a supplied text string to proper case
- // (i.e. all letters that do not immediately follow another letter are set to
- // upper case and all other characters are lower case). The syntax of the
- // function is:
- //
- // PROPER(text)
- //
- func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
- }
- buf := bytes.Buffer{}
- isLetter := false
- for _, char := range argsList.Front().Value.(formulaArg).String {
- if !isLetter && unicode.IsLetter(char) {
- buf.WriteRune(unicode.ToUpper(char))
- } else {
- buf.WriteRune(unicode.ToLower(char))
- }
- isLetter = unicode.IsLetter(char)
- }
- return newStringFormulaArg(buf.String())
- }
- // UPPER converts all characters in a supplied text string to upper case. The
- // syntax of the function is:
- //
- // UPPER(text)
- //
- func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
- }
- return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
- }
- // Conditional Functions
- // IF function tests a supplied condition and returns one result if the
- // condition evaluates to TRUE, and another result if the condition evaluates
- // to FALSE. The syntax of the function is:
- //
- // IF(logical_test,value_if_true,value_if_false)
- //
- func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
- }
- token := argsList.Front().Value.(formulaArg)
- var (
- cond bool
- err error
- result string
- )
- switch token.Type {
- case ArgString:
- if cond, err = strconv.ParseBool(token.String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if argsList.Len() == 1 {
- return newBoolFormulaArg(cond)
- }
- if cond {
- return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
- }
- if argsList.Len() == 3 {
- result = argsList.Back().Value.(formulaArg).String
- }
- }
- return newStringFormulaArg(result)
- }
- // Excel Lookup and Reference Functions
- // CHOOSE function returns a value from an array, that corresponds to a
- // supplied index number (position). The syntax of the function is:
- //
- // CHOOSE(index_num,value1,[value2],...)
- //
- func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
- }
- idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
- }
- if argsList.Len() <= idx {
- return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
- }
- arg := argsList.Front()
- for i := 0; i < idx; i++ {
- arg = arg.Next()
- }
- var result formulaArg
- switch arg.Value.(formulaArg).Type {
- case ArgString:
- result = newStringFormulaArg(arg.Value.(formulaArg).String)
- case ArgMatrix:
- result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
- }
- return result
- }
- // deepMatchRune finds whether the text deep matches/satisfies the pattern
- // string.
- func deepMatchRune(str, pattern []rune, simple bool) bool {
- for len(pattern) > 0 {
- switch pattern[0] {
- default:
- if len(str) == 0 || str[0] != pattern[0] {
- return false
- }
- case '?':
- if len(str) == 0 && !simple {
- return false
- }
- case '*':
- return deepMatchRune(str, pattern[1:], simple) ||
- (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
- }
- str = str[1:]
- pattern = pattern[1:]
- }
- return len(str) == 0 && len(pattern) == 0
- }
- // matchPattern finds whether the text matches or satisfies the pattern
- // string. The pattern supports '*' and '?' wildcards in the pattern string.
- func matchPattern(pattern, name string) (matched bool) {
- if pattern == "" {
- return name == pattern
- }
- if pattern == "*" {
- return true
- }
- rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
- for _, r := range name {
- rname = append(rname, r)
- }
- for _, r := range pattern {
- rpattern = append(rpattern, r)
- }
- simple := false // Does extended wildcard '*' and '?' match.
- return deepMatchRune(rname, rpattern, simple)
- }
- // compareFormulaArg compares the left-hand sides and the right-hand sides
- // formula arguments by given conditions such as case sensitive, if exact
- // match, and make compare result as formula criteria condition type.
- func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
- if lhs.Type != rhs.Type {
- return criteriaErr
- }
- switch lhs.Type {
- case ArgNumber:
- if lhs.Number == rhs.Number {
- return criteriaEq
- }
- if lhs.Number < rhs.Number {
- return criteriaL
- }
- return criteriaG
- case ArgString:
- ls, rs := lhs.String, rhs.String
- if !caseSensitive {
- ls, rs = strings.ToLower(ls), strings.ToLower(rs)
- }
- if exactMatch {
- match := matchPattern(rs, ls)
- if match {
- return criteriaEq
- }
- return criteriaG
- }
- switch strings.Compare(ls, rs) {
- case 1:
- return criteriaG
- case -1:
- return criteriaL
- case 0:
- return criteriaEq
- }
- return criteriaErr
- case ArgEmpty:
- return criteriaEq
- case ArgList:
- return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
- case ArgMatrix:
- return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
- }
- return criteriaErr
- }
- // compareFormulaArgList compares the left-hand sides and the right-hand sides
- // list type formula arguments.
- func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
- if len(lhs.List) < len(rhs.List) {
- return criteriaL
- }
- if len(lhs.List) > len(rhs.List) {
- return criteriaG
- }
- for arg := range lhs.List {
- criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
- if criteria != criteriaEq {
- return criteria
- }
- }
- return criteriaEq
- }
- // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
- // matrix type formula arguments.
- func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
- if len(lhs.Matrix) < len(rhs.Matrix) {
- return criteriaL
- }
- if len(lhs.Matrix) > len(rhs.Matrix) {
- return criteriaG
- }
- for i := range lhs.Matrix {
- left := lhs.Matrix[i]
- right := lhs.Matrix[i]
- if len(left) < len(right) {
- return criteriaL
- }
- if len(left) > len(right) {
- return criteriaG
- }
- for arg := range left {
- criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
- if criteria != criteriaEq {
- return criteria
- }
- }
- }
- return criteriaEq
- }
- // HLOOKUP function 'looks up' a given value in the top row of a data array
- // (or table), and returns the corresponding value from another row of the
- // array. The syntax of the function is:
- //
- // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
- //
- func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
- if argsList.Len() < 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
- }
- if argsList.Len() > 4 {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
- }
- lookupValue := argsList.Front().Value.(formulaArg)
- tableArray := argsList.Front().Next().Value.(formulaArg)
- if tableArray.Type != ArgMatrix {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
- }
- rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
- if rowArg.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
- }
- rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
- if argsList.Len() == 4 {
- rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
- if rangeLookup.Type == ArgError {
- return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
- }
- if rangeLookup.Number == 0 {
- exactMatch = true
- }
- }
- row := tableArray.Matrix[0]
- if exactMatch || len(tableArray.Matrix) == TotalRows {
- start:
- for idx, mtx := range row {
- lhs := mtx
- switch lookupValue.Type {
- case ArgNumber:
- if !lookupValue.Boolean {
- lhs = mtx.ToNumber()
- if lhs.Type == ArgError {
- lhs = mtx
- }
- }
- case ArgMatrix:
- lhs = tableArray
- }
- if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
- matchIdx = idx
- wasExact = true
- break start
- }
- }
- } else {
- matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
- }
- if matchIdx == -1 {
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
- }
- if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
- }
- row = tableArray.Matrix[rowIdx]
- if wasExact || !exactMatch {
- return row[matchIdx]
- }
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
- }
- // VLOOKUP function 'looks up' a given value in the left-hand column of a
- // data array (or table), and returns the corresponding value from another
- // column of the array. The syntax of the function is:
- //
- // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
- //
- func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
- if argsList.Len() < 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
- }
- if argsList.Len() > 4 {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
- }
- lookupValue := argsList.Front().Value.(formulaArg)
- tableArray := argsList.Front().Next().Value.(formulaArg)
- if tableArray.Type != ArgMatrix {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
- }
- colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
- if colIdx.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
- }
- col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
- if argsList.Len() == 4 {
- rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
- if rangeLookup.Type == ArgError {
- return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
- }
- if rangeLookup.Number == 0 {
- exactMatch = true
- }
- }
- if exactMatch || len(tableArray.Matrix) == TotalRows {
- start:
- for idx, mtx := range tableArray.Matrix {
- lhs := mtx[0]
- switch lookupValue.Type {
- case ArgNumber:
- if !lookupValue.Boolean {
- lhs = mtx[0].ToNumber()
- if lhs.Type == ArgError {
- lhs = mtx[0]
- }
- }
- case ArgMatrix:
- lhs = tableArray
- }
- if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
- matchIdx = idx
- wasExact = true
- break start
- }
- }
- } else {
- matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
- }
- if matchIdx == -1 {
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
- }
- mtx := tableArray.Matrix[matchIdx]
- if col < 0 || col >= len(mtx) {
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
- }
- if wasExact || !exactMatch {
- return mtx[col]
- }
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
- }
- // vlookupBinarySearch finds the position of a target value when range lookup
- // is TRUE, if the data of table array can't guarantee be sorted, it will
- // return wrong result.
- func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
- var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
- for low <= high {
- var mid int = low + (high-low)/2
- mtx := tableArray.Matrix[mid]
- lhs := mtx[0]
- switch lookupValue.Type {
- case ArgNumber:
- if !lookupValue.Boolean {
- lhs = mtx[0].ToNumber()
- if lhs.Type == ArgError {
- lhs = mtx[0]
- }
- }
- case ArgMatrix:
- lhs = tableArray
- }
- result := compareFormulaArg(lhs, lookupValue, false, false)
- if result == criteriaEq {
- matchIdx, wasExact = mid, true
- return
- } else if result == criteriaG {
- high = mid - 1
- } else if result == criteriaL {
- matchIdx, low = mid, mid+1
- if lhs.Value() != "" {
- lastMatchIdx = matchIdx
- }
- } else {
- return -1, false
- }
- }
- matchIdx, wasExact = lastMatchIdx, true
- return
- }
- // vlookupBinarySearch finds the position of a target value when range lookup
- // is TRUE, if the data of table array can't guarantee be sorted, it will
- // return wrong result.
- func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
- var low, high, lastMatchIdx int = 0, len(row) - 1, -1
- for low <= high {
- var mid int = low + (high-low)/2
- mtx := row[mid]
- result := compareFormulaArg(mtx, lookupValue, false, false)
- if result == criteriaEq {
- matchIdx, wasExact = mid, true
- return
- } else if result == criteriaG {
- high = mid - 1
- } else if result == criteriaL {
- low, lastMatchIdx = mid+1, mid
- } else {
- return -1, false
- }
- }
- matchIdx, wasExact = lastMatchIdx, true
- return
- }
- // LOOKUP function performs an approximate match lookup in a one-column or
- // one-row range, and returns the corresponding value from another one-column
- // or one-row range. The syntax of the function is:
- //
- // LOOKUP(lookup_value,lookup_vector,[result_vector])
- //
- func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
- }
- lookupValue := argsList.Front().Value.(formulaArg)
- lookupVector := argsList.Front().Next().Value.(formulaArg)
- if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
- }
- cols, matchIdx := lookupCol(lookupVector), -1
- for idx, col := range cols {
- lhs := lookupValue
- switch col.Type {
- case ArgNumber:
- lhs = lhs.ToNumber()
- if !col.Boolean {
- if lhs.Type == ArgError {
- lhs = lookupValue
- }
- }
- }
- if compareFormulaArg(lhs, col, false, false) == criteriaEq {
- matchIdx = idx
- break
- }
- }
- column := cols
- if argsList.Len() == 3 {
- column = lookupCol(argsList.Back().Value.(formulaArg))
- }
- if matchIdx < 0 || matchIdx >= len(column) {
- return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
- }
- return column[matchIdx]
- }
- // lookupCol extract columns for LOOKUP.
- func lookupCol(arr formulaArg) []formulaArg {
- col := arr.List
- if arr.Type == ArgMatrix {
- col = nil
- for _, r := range arr.Matrix {
- if len(r) > 0 {
- col = append(col, r[0])
- continue
- }
- col = append(col, newEmptyFormulaArg())
- }
- }
- return col
- }
|