calc.go 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "strconv"
  21. "strings"
  22. "time"
  23. "github.com/xuri/efp"
  24. )
  25. // Excel formula errors
  26. const (
  27. formulaErrorDIV = "#DIV/0!"
  28. formulaErrorNAME = "#NAME?"
  29. formulaErrorNA = "#N/A"
  30. formulaErrorNUM = "#NUM!"
  31. formulaErrorVALUE = "#VALUE!"
  32. formulaErrorREF = "#REF!"
  33. formulaErrorNULL = "#NULL"
  34. formulaErrorSPILL = "#SPILL!"
  35. formulaErrorCALC = "#CALC!"
  36. formulaErrorGETTINGDATA = "#GETTING_DATA"
  37. )
  38. // cellRef defines the structure of a cell reference.
  39. type cellRef struct {
  40. Col int
  41. Row int
  42. Sheet string
  43. }
  44. // cellRef defines the structure of a cell range.
  45. type cellRange struct {
  46. From cellRef
  47. To cellRef
  48. }
  49. // formulaArg is the argument of a formula or function.
  50. type formulaArg struct {
  51. Value string
  52. Matrix [][]string
  53. }
  54. // formulaFuncs is the type of the formula functions.
  55. type formulaFuncs struct{}
  56. // CalcCellValue provides a function to get calculated cell value. This
  57. // feature is currently in working processing. Array formula, table formula
  58. // and some other formulas are not supported currently.
  59. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  60. var (
  61. formula string
  62. token efp.Token
  63. )
  64. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  65. return
  66. }
  67. ps := efp.ExcelParser()
  68. tokens := ps.Parse(formula)
  69. if tokens == nil {
  70. return
  71. }
  72. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  73. return
  74. }
  75. result = token.TValue
  76. return
  77. }
  78. // getPriority calculate arithmetic operator priority.
  79. func getPriority(token efp.Token) (pri int) {
  80. var priority = map[string]int{
  81. "*": 2,
  82. "/": 2,
  83. "+": 1,
  84. "-": 1,
  85. }
  86. pri, _ = priority[token.TValue]
  87. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  88. pri = 3
  89. }
  90. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  91. pri = 0
  92. }
  93. return
  94. }
  95. // evalInfixExp evaluate syntax analysis by given infix expression after
  96. // lexical analysis. Evaluate an infix expression containing formulas by
  97. // stacks:
  98. //
  99. // opd - Operand
  100. // opt - Operator
  101. // opf - Operation formula
  102. // opfd - Operand of the operation formula
  103. // opft - Operator of the operation formula
  104. //
  105. // Evaluate arguments of the operation formula by list:
  106. //
  107. // args - Arguments of the operation formula
  108. //
  109. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  110. //
  111. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  112. var err error
  113. opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  114. argsList := list.New()
  115. for i := 0; i < len(tokens); i++ {
  116. token := tokens[i]
  117. // out of function stack
  118. if opfStack.Len() == 0 {
  119. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  120. return efp.Token{}, err
  121. }
  122. }
  123. // function start
  124. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  125. opfStack.Push(token)
  126. continue
  127. }
  128. // in function stack, walk 2 token at once
  129. if opfStack.Len() > 0 {
  130. var nextToken efp.Token
  131. if i+1 < len(tokens) {
  132. nextToken = tokens[i+1]
  133. }
  134. // current token is args or range, skip next token, order required: parse reference first
  135. if token.TSubType == efp.TokenSubTypeRange {
  136. if !opftStack.Empty() {
  137. // parse reference: must reference at here
  138. result, _, err := f.parseReference(sheet, token.TValue)
  139. if err != nil {
  140. return efp.Token{TValue: formulaErrorNAME}, err
  141. }
  142. if len(result) != 1 {
  143. return efp.Token{}, errors.New(formulaErrorVALUE)
  144. }
  145. opfdStack.Push(efp.Token{
  146. TType: efp.TokenTypeOperand,
  147. TSubType: efp.TokenSubTypeNumber,
  148. TValue: result[0],
  149. })
  150. continue
  151. }
  152. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  153. // parse reference: reference or range at here
  154. result, matrix, err := f.parseReference(sheet, token.TValue)
  155. if err != nil {
  156. return efp.Token{TValue: formulaErrorNAME}, err
  157. }
  158. for idx, val := range result {
  159. arg := formulaArg{Value: val}
  160. if idx == 0 {
  161. arg.Matrix = matrix
  162. }
  163. argsList.PushBack(arg)
  164. }
  165. if len(result) == 0 {
  166. return efp.Token{}, errors.New(formulaErrorVALUE)
  167. }
  168. continue
  169. }
  170. }
  171. // check current token is opft
  172. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  173. return efp.Token{}, err
  174. }
  175. // current token is arg
  176. if token.TType == efp.TokenTypeArgument {
  177. for !opftStack.Empty() {
  178. // calculate trigger
  179. topOpt := opftStack.Peek().(efp.Token)
  180. if err := calculate(opfdStack, topOpt); err != nil {
  181. return efp.Token{}, err
  182. }
  183. opftStack.Pop()
  184. }
  185. if !opfdStack.Empty() {
  186. argsList.PushBack(formulaArg{
  187. Value: opfdStack.Pop().(efp.Token).TValue,
  188. })
  189. }
  190. continue
  191. }
  192. // current token is logical
  193. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  194. }
  195. // current token is text
  196. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  197. argsList.PushBack(formulaArg{
  198. Value: token.TValue,
  199. })
  200. }
  201. // current token is function stop
  202. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  203. for !opftStack.Empty() {
  204. // calculate trigger
  205. topOpt := opftStack.Peek().(efp.Token)
  206. if err := calculate(opfdStack, topOpt); err != nil {
  207. return efp.Token{}, err
  208. }
  209. opftStack.Pop()
  210. }
  211. // push opfd to args
  212. if opfdStack.Len() > 0 {
  213. argsList.PushBack(formulaArg{
  214. Value: opfdStack.Pop().(efp.Token).TValue,
  215. })
  216. }
  217. // call formula function to evaluate
  218. result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  219. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  220. []reflect.Value{reflect.ValueOf(argsList)})
  221. if err != nil {
  222. return efp.Token{}, err
  223. }
  224. argsList.Init()
  225. opfStack.Pop()
  226. if opfStack.Len() > 0 { // still in function stack
  227. opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  228. } else {
  229. opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  230. }
  231. }
  232. }
  233. }
  234. for optStack.Len() != 0 {
  235. topOpt := optStack.Peek().(efp.Token)
  236. if err = calculate(opdStack, topOpt); err != nil {
  237. return efp.Token{}, err
  238. }
  239. optStack.Pop()
  240. }
  241. if opdStack.Len() == 0 {
  242. return efp.Token{}, errors.New("formula not valid")
  243. }
  244. return opdStack.Peek().(efp.Token), err
  245. }
  246. // calcAdd evaluate addition arithmetic operations.
  247. func calcAdd(opdStack *Stack) error {
  248. if opdStack.Len() < 2 {
  249. return errors.New("formula not valid")
  250. }
  251. rOpd := opdStack.Pop().(efp.Token)
  252. lOpd := opdStack.Pop().(efp.Token)
  253. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  254. if err != nil {
  255. return err
  256. }
  257. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  258. if err != nil {
  259. return err
  260. }
  261. result := lOpdVal + rOpdVal
  262. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  263. return nil
  264. }
  265. // calcAdd evaluate subtraction arithmetic operations.
  266. func calcSubtract(opdStack *Stack) error {
  267. if opdStack.Len() < 2 {
  268. return errors.New("formula not valid")
  269. }
  270. rOpd := opdStack.Pop().(efp.Token)
  271. lOpd := opdStack.Pop().(efp.Token)
  272. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  273. if err != nil {
  274. return err
  275. }
  276. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  277. if err != nil {
  278. return err
  279. }
  280. result := lOpdVal - rOpdVal
  281. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  282. return nil
  283. }
  284. // calcAdd evaluate multiplication arithmetic operations.
  285. func calcMultiply(opdStack *Stack) error {
  286. if opdStack.Len() < 2 {
  287. return errors.New("formula not valid")
  288. }
  289. rOpd := opdStack.Pop().(efp.Token)
  290. lOpd := opdStack.Pop().(efp.Token)
  291. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  292. if err != nil {
  293. return err
  294. }
  295. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  296. if err != nil {
  297. return err
  298. }
  299. result := lOpdVal * rOpdVal
  300. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  301. return nil
  302. }
  303. // calcAdd evaluate division arithmetic operations.
  304. func calcDivide(opdStack *Stack) error {
  305. if opdStack.Len() < 2 {
  306. return errors.New("formula not valid")
  307. }
  308. rOpd := opdStack.Pop().(efp.Token)
  309. lOpd := opdStack.Pop().(efp.Token)
  310. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  311. if err != nil {
  312. return err
  313. }
  314. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  315. if err != nil {
  316. return err
  317. }
  318. result := lOpdVal / rOpdVal
  319. if rOpdVal == 0 {
  320. return errors.New(formulaErrorDIV)
  321. }
  322. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  323. return nil
  324. }
  325. // calculate evaluate basic arithmetic operations.
  326. func calculate(opdStack *Stack, opt efp.Token) error {
  327. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  328. if opdStack.Len() < 1 {
  329. return errors.New("formula not valid")
  330. }
  331. opd := opdStack.Pop().(efp.Token)
  332. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  333. if err != nil {
  334. return err
  335. }
  336. result := 0 - opdVal
  337. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  338. }
  339. if opt.TValue == "+" {
  340. if err := calcAdd(opdStack); err != nil {
  341. return err
  342. }
  343. }
  344. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  345. if err := calcSubtract(opdStack); err != nil {
  346. return err
  347. }
  348. }
  349. if opt.TValue == "*" {
  350. if err := calcMultiply(opdStack); err != nil {
  351. return err
  352. }
  353. }
  354. if opt.TValue == "/" {
  355. if err := calcDivide(opdStack); err != nil {
  356. return err
  357. }
  358. }
  359. return nil
  360. }
  361. // parseOperatorPrefixToken parse operator prefix token.
  362. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  363. if optStack.Len() == 0 {
  364. optStack.Push(token)
  365. } else {
  366. tokenPriority := getPriority(token)
  367. topOpt := optStack.Peek().(efp.Token)
  368. topOptPriority := getPriority(topOpt)
  369. if tokenPriority > topOptPriority {
  370. optStack.Push(token)
  371. } else {
  372. for tokenPriority <= topOptPriority {
  373. optStack.Pop()
  374. if err = calculate(opdStack, topOpt); err != nil {
  375. return
  376. }
  377. if optStack.Len() > 0 {
  378. topOpt = optStack.Peek().(efp.Token)
  379. topOptPriority = getPriority(topOpt)
  380. continue
  381. }
  382. break
  383. }
  384. optStack.Push(token)
  385. }
  386. }
  387. return
  388. }
  389. // isOperatorPrefixToken determine if the token is parse operator prefix
  390. // token.
  391. func isOperatorPrefixToken(token efp.Token) bool {
  392. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) ||
  393. token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
  394. return true
  395. }
  396. return false
  397. }
  398. // parseToken parse basic arithmetic operator priority and evaluate based on
  399. // operators and operands.
  400. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  401. // parse reference: must reference at here
  402. if token.TSubType == efp.TokenSubTypeRange {
  403. result, _, err := f.parseReference(sheet, token.TValue)
  404. if err != nil {
  405. return errors.New(formulaErrorNAME)
  406. }
  407. if len(result) != 1 {
  408. return errors.New(formulaErrorVALUE)
  409. }
  410. token.TValue = result[0]
  411. token.TType = efp.TokenTypeOperand
  412. token.TSubType = efp.TokenSubTypeNumber
  413. }
  414. if isOperatorPrefixToken(token) {
  415. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  416. return err
  417. }
  418. }
  419. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  420. optStack.Push(token)
  421. }
  422. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  423. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  424. topOpt := optStack.Peek().(efp.Token)
  425. if err := calculate(opdStack, topOpt); err != nil {
  426. return err
  427. }
  428. optStack.Pop()
  429. }
  430. optStack.Pop()
  431. }
  432. // opd
  433. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  434. opdStack.Push(token)
  435. }
  436. return nil
  437. }
  438. // parseReference parse reference and extract values by given reference
  439. // characters and default sheet name.
  440. func (f *File) parseReference(sheet, reference string) (result []string, matrix [][]string, err error) {
  441. reference = strings.Replace(reference, "$", "", -1)
  442. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  443. for _, ref := range strings.Split(reference, ":") {
  444. tokens := strings.Split(ref, "!")
  445. cr := cellRef{}
  446. if len(tokens) == 2 { // have a worksheet name
  447. cr.Sheet = tokens[0]
  448. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  449. return
  450. }
  451. if refs.Len() > 0 {
  452. e := refs.Back()
  453. cellRefs.PushBack(e.Value.(cellRef))
  454. refs.Remove(e)
  455. }
  456. refs.PushBack(cr)
  457. continue
  458. }
  459. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  460. return
  461. }
  462. e := refs.Back()
  463. if e == nil {
  464. cr.Sheet = sheet
  465. refs.PushBack(cr)
  466. continue
  467. }
  468. cellRanges.PushBack(cellRange{
  469. From: e.Value.(cellRef),
  470. To: cr,
  471. })
  472. refs.Remove(e)
  473. }
  474. if refs.Len() > 0 {
  475. e := refs.Back()
  476. cellRefs.PushBack(e.Value.(cellRef))
  477. refs.Remove(e)
  478. }
  479. result, matrix, err = f.rangeResolver(cellRefs, cellRanges)
  480. return
  481. }
  482. // prepareValueRange prepare value range.
  483. func prepareValueRange(cr cellRange, valueRange []int) {
  484. if cr.From.Row < valueRange[0] {
  485. valueRange[0] = cr.From.Row
  486. }
  487. if cr.From.Col < valueRange[2] {
  488. valueRange[2] = cr.From.Col
  489. }
  490. if cr.To.Row > valueRange[0] {
  491. valueRange[1] = cr.To.Row
  492. }
  493. if cr.To.Col > valueRange[3] {
  494. valueRange[3] = cr.To.Col
  495. }
  496. }
  497. // prepareValueRef prepare value reference.
  498. func prepareValueRef(cr cellRef, valueRange []int) {
  499. if cr.Row < valueRange[0] {
  500. valueRange[0] = cr.Row
  501. }
  502. if cr.Col < valueRange[2] {
  503. valueRange[2] = cr.Col
  504. }
  505. if cr.Row > valueRange[0] {
  506. valueRange[1] = cr.Row
  507. }
  508. if cr.Col > valueRange[3] {
  509. valueRange[3] = cr.Col
  510. }
  511. }
  512. // rangeResolver extract value as string from given reference and range list.
  513. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  514. // be reference A1:B3.
  515. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, matrix [][]string, err error) {
  516. // value range order: from row, to row, from column, to column
  517. valueRange := []int{1, 1, 1, 1}
  518. var sheet string
  519. filter := map[string]string{}
  520. // prepare value range
  521. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  522. cr := temp.Value.(cellRange)
  523. if cr.From.Sheet != cr.To.Sheet {
  524. err = errors.New(formulaErrorVALUE)
  525. }
  526. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  527. sortCoordinates(rng)
  528. prepareValueRange(cr, valueRange)
  529. if cr.From.Sheet != "" {
  530. sheet = cr.From.Sheet
  531. }
  532. }
  533. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  534. cr := temp.Value.(cellRef)
  535. if cr.Sheet != "" {
  536. sheet = cr.Sheet
  537. }
  538. prepareValueRef(cr, valueRange)
  539. }
  540. // extract value from ranges
  541. if cellRanges.Len() > 0 {
  542. for row := valueRange[0]; row <= valueRange[1]; row++ {
  543. var matrixRow = []string{}
  544. for col := valueRange[2]; col <= valueRange[3]; col++ {
  545. var cell, value string
  546. if cell, err = CoordinatesToCellName(col, row); err != nil {
  547. return
  548. }
  549. if value, err = f.GetCellValue(sheet, cell); err != nil {
  550. return
  551. }
  552. filter[cell] = value
  553. matrixRow = append(matrixRow, value)
  554. result = append(result, value)
  555. }
  556. matrix = append(matrix, matrixRow)
  557. }
  558. return
  559. }
  560. // extract value from references
  561. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  562. cr := temp.Value.(cellRef)
  563. var cell string
  564. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  565. return
  566. }
  567. if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
  568. return
  569. }
  570. }
  571. for _, val := range filter {
  572. result = append(result, val)
  573. }
  574. return
  575. }
  576. // callFuncByName calls the no error or only error return function with
  577. // reflect by given receiver, name and parameters.
  578. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
  579. function := reflect.ValueOf(receiver).MethodByName(name)
  580. if function.IsValid() {
  581. rt := function.Call(params)
  582. if len(rt) == 0 {
  583. return
  584. }
  585. if !rt[1].IsNil() {
  586. err = rt[1].Interface().(error)
  587. return
  588. }
  589. result = rt[0].Interface().(string)
  590. return
  591. }
  592. err = fmt.Errorf("not support %s function", name)
  593. return
  594. }
  595. // Math and Trigonometric functions
  596. // ABS function returns the absolute value of any supplied number. The syntax
  597. // of the function is:
  598. //
  599. // ABS(number)
  600. //
  601. func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
  602. if argsList.Len() != 1 {
  603. err = errors.New("ABS requires 1 numeric argument")
  604. return
  605. }
  606. var val float64
  607. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  608. err = errors.New(formulaErrorVALUE)
  609. return
  610. }
  611. result = fmt.Sprintf("%g", math.Abs(val))
  612. return
  613. }
  614. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  615. // number, and returns an angle, in radians, between 0 and π. The syntax of
  616. // the function is:
  617. //
  618. // ACOS(number)
  619. //
  620. func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
  621. if argsList.Len() != 1 {
  622. err = errors.New("ACOS requires 1 numeric argument")
  623. return
  624. }
  625. var val float64
  626. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  627. err = errors.New(formulaErrorVALUE)
  628. return
  629. }
  630. result = fmt.Sprintf("%g", math.Acos(val))
  631. return
  632. }
  633. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  634. // of the function is:
  635. //
  636. // ACOSH(number)
  637. //
  638. func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
  639. if argsList.Len() != 1 {
  640. err = errors.New("ACOSH requires 1 numeric argument")
  641. return
  642. }
  643. var val float64
  644. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  645. err = errors.New(formulaErrorVALUE)
  646. return
  647. }
  648. result = fmt.Sprintf("%g", math.Acosh(val))
  649. return
  650. }
  651. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  652. // given number, and returns an angle, in radians, between 0 and π. The syntax
  653. // of the function is:
  654. //
  655. // ACOT(number)
  656. //
  657. func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
  658. if argsList.Len() != 1 {
  659. err = errors.New("ACOT requires 1 numeric argument")
  660. return
  661. }
  662. var val float64
  663. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  664. err = errors.New(formulaErrorVALUE)
  665. return
  666. }
  667. result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
  668. return
  669. }
  670. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  671. // value. The syntax of the function is:
  672. //
  673. // ACOTH(number)
  674. //
  675. func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
  676. if argsList.Len() != 1 {
  677. err = errors.New("ACOTH requires 1 numeric argument")
  678. return
  679. }
  680. var val float64
  681. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  682. err = errors.New(formulaErrorVALUE)
  683. return
  684. }
  685. result = fmt.Sprintf("%g", math.Atanh(1/val))
  686. return
  687. }
  688. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  689. // of the function is:
  690. //
  691. // ARABIC(text)
  692. //
  693. func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
  694. if argsList.Len() != 1 {
  695. err = errors.New("ARABIC requires 1 numeric argument")
  696. return
  697. }
  698. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  699. val, last, prefix := 0.0, 0.0, 1.0
  700. for _, char := range argsList.Front().Value.(formulaArg).Value {
  701. digit := 0.0
  702. if char == '-' {
  703. prefix = -1
  704. continue
  705. }
  706. digit, _ = charMap[char]
  707. val += digit
  708. switch {
  709. case last == digit && (last == 5 || last == 50 || last == 500):
  710. result = formulaErrorVALUE
  711. return
  712. case 2*last == digit:
  713. result = formulaErrorVALUE
  714. return
  715. }
  716. if last < digit {
  717. val -= 2 * last
  718. }
  719. last = digit
  720. }
  721. result = fmt.Sprintf("%g", prefix*val)
  722. return
  723. }
  724. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  725. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  726. // of the function is:
  727. //
  728. // ASIN(number)
  729. //
  730. func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
  731. if argsList.Len() != 1 {
  732. err = errors.New("ASIN requires 1 numeric argument")
  733. return
  734. }
  735. var val float64
  736. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  737. err = errors.New(formulaErrorVALUE)
  738. return
  739. }
  740. result = fmt.Sprintf("%g", math.Asin(val))
  741. return
  742. }
  743. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  744. // The syntax of the function is:
  745. //
  746. // ASINH(number)
  747. //
  748. func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
  749. if argsList.Len() != 1 {
  750. err = errors.New("ASINH requires 1 numeric argument")
  751. return
  752. }
  753. var val float64
  754. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  755. err = errors.New(formulaErrorVALUE)
  756. return
  757. }
  758. result = fmt.Sprintf("%g", math.Asinh(val))
  759. return
  760. }
  761. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  762. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  763. // syntax of the function is:
  764. //
  765. // ATAN(number)
  766. //
  767. func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
  768. if argsList.Len() != 1 {
  769. err = errors.New("ATAN requires 1 numeric argument")
  770. return
  771. }
  772. var val float64
  773. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  774. err = errors.New(formulaErrorVALUE)
  775. return
  776. }
  777. result = fmt.Sprintf("%g", math.Atan(val))
  778. return
  779. }
  780. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  781. // number. The syntax of the function is:
  782. //
  783. // ATANH(number)
  784. //
  785. func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
  786. if argsList.Len() != 1 {
  787. err = errors.New("ATANH requires 1 numeric argument")
  788. return
  789. }
  790. var val float64
  791. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  792. err = errors.New(formulaErrorVALUE)
  793. return
  794. }
  795. result = fmt.Sprintf("%g", math.Atanh(val))
  796. return
  797. }
  798. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  799. // given set of x and y coordinates, and returns an angle, in radians, between
  800. // -π/2 and +π/2. The syntax of the function is:
  801. //
  802. // ATAN2(x_num,y_num)
  803. //
  804. func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
  805. if argsList.Len() != 2 {
  806. err = errors.New("ATAN2 requires 2 numeric arguments")
  807. return
  808. }
  809. var x, y float64
  810. if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  811. err = errors.New(formulaErrorVALUE)
  812. return
  813. }
  814. if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  815. err = errors.New(formulaErrorVALUE)
  816. return
  817. }
  818. result = fmt.Sprintf("%g", math.Atan2(x, y))
  819. return
  820. }
  821. // BASE function converts a number into a supplied base (radix), and returns a
  822. // text representation of the calculated value. The syntax of the function is:
  823. //
  824. // BASE(number,radix,[min_length])
  825. //
  826. func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
  827. if argsList.Len() < 2 {
  828. err = errors.New("BASE requires at least 2 arguments")
  829. return
  830. }
  831. if argsList.Len() > 3 {
  832. err = errors.New("BASE allows at most 3 arguments")
  833. return
  834. }
  835. var number float64
  836. var radix, minLength int
  837. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  838. err = errors.New(formulaErrorVALUE)
  839. return
  840. }
  841. if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).Value); err != nil {
  842. err = errors.New(formulaErrorVALUE)
  843. return
  844. }
  845. if radix < 2 || radix > 36 {
  846. err = errors.New("radix must be an integer >= 2 and <= 36")
  847. return
  848. }
  849. if argsList.Len() > 2 {
  850. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
  851. err = errors.New(formulaErrorVALUE)
  852. return
  853. }
  854. }
  855. result = strconv.FormatInt(int64(number), radix)
  856. if len(result) < minLength {
  857. result = strings.Repeat("0", minLength-len(result)) + result
  858. }
  859. result = strings.ToUpper(result)
  860. return
  861. }
  862. // CEILING function rounds a supplied number away from zero, to the nearest
  863. // multiple of a given number. The syntax of the function is:
  864. //
  865. // CEILING(number,significance)
  866. //
  867. func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
  868. if argsList.Len() == 0 {
  869. err = errors.New("CEILING requires at least 1 argument")
  870. return
  871. }
  872. if argsList.Len() > 2 {
  873. err = errors.New("CEILING allows at most 2 arguments")
  874. return
  875. }
  876. number, significance, res := 0.0, 1.0, 0.0
  877. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  878. err = errors.New(formulaErrorVALUE)
  879. return
  880. }
  881. if number < 0 {
  882. significance = -1
  883. }
  884. if argsList.Len() > 1 {
  885. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  886. err = errors.New(formulaErrorVALUE)
  887. return
  888. }
  889. }
  890. if significance < 0 && number > 0 {
  891. err = errors.New("negative sig to CEILING invalid")
  892. return
  893. }
  894. if argsList.Len() == 1 {
  895. result = fmt.Sprintf("%g", math.Ceil(number))
  896. return
  897. }
  898. number, res = math.Modf(number / significance)
  899. if res > 0 {
  900. number++
  901. }
  902. result = fmt.Sprintf("%g", number*significance)
  903. return
  904. }
  905. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  906. // significance. The syntax of the function is:
  907. //
  908. // CEILING.MATH(number,[significance],[mode])
  909. //
  910. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
  911. if argsList.Len() == 0 {
  912. err = errors.New("CEILING.MATH requires at least 1 argument")
  913. return
  914. }
  915. if argsList.Len() > 3 {
  916. err = errors.New("CEILING.MATH allows at most 3 arguments")
  917. return
  918. }
  919. number, significance, mode := 0.0, 1.0, 1.0
  920. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  921. err = errors.New(formulaErrorVALUE)
  922. return
  923. }
  924. if number < 0 {
  925. significance = -1
  926. }
  927. if argsList.Len() > 1 {
  928. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
  929. err = errors.New(formulaErrorVALUE)
  930. return
  931. }
  932. }
  933. if argsList.Len() == 1 {
  934. result = fmt.Sprintf("%g", math.Ceil(number))
  935. return
  936. }
  937. if argsList.Len() > 2 {
  938. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  939. err = errors.New(formulaErrorVALUE)
  940. return
  941. }
  942. }
  943. val, res := math.Modf(number / significance)
  944. if res != 0 {
  945. if number > 0 {
  946. val++
  947. } else if mode < 0 {
  948. val--
  949. }
  950. }
  951. result = fmt.Sprintf("%g", val*significance)
  952. return
  953. }
  954. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  955. // number's sign), to the nearest multiple of a given number. The syntax of
  956. // the function is:
  957. //
  958. // CEILING.PRECISE(number,[significance])
  959. //
  960. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
  961. if argsList.Len() == 0 {
  962. err = errors.New("CEILING.PRECISE requires at least 1 argument")
  963. return
  964. }
  965. if argsList.Len() > 2 {
  966. err = errors.New("CEILING.PRECISE allows at most 2 arguments")
  967. return
  968. }
  969. number, significance := 0.0, 1.0
  970. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  971. err = errors.New(formulaErrorVALUE)
  972. return
  973. }
  974. if number < 0 {
  975. significance = -1
  976. }
  977. if argsList.Len() == 1 {
  978. result = fmt.Sprintf("%g", math.Ceil(number))
  979. return
  980. }
  981. if argsList.Len() > 1 {
  982. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  983. err = errors.New(formulaErrorVALUE)
  984. return
  985. }
  986. significance = math.Abs(significance)
  987. if significance == 0 {
  988. result = "0"
  989. return
  990. }
  991. }
  992. val, res := math.Modf(number / significance)
  993. if res != 0 {
  994. if number > 0 {
  995. val++
  996. }
  997. }
  998. result = fmt.Sprintf("%g", val*significance)
  999. return
  1000. }
  1001. // COMBIN function calculates the number of combinations (in any order) of a
  1002. // given number objects from a set. The syntax of the function is:
  1003. //
  1004. // COMBIN(number,number_chosen)
  1005. //
  1006. func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
  1007. if argsList.Len() != 2 {
  1008. err = errors.New("COMBIN requires 2 argument")
  1009. return
  1010. }
  1011. number, chosen, val := 0.0, 0.0, 1.0
  1012. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1013. err = errors.New(formulaErrorVALUE)
  1014. return
  1015. }
  1016. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1017. err = errors.New(formulaErrorVALUE)
  1018. return
  1019. }
  1020. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1021. if chosen > number {
  1022. err = errors.New("COMBIN requires number >= number_chosen")
  1023. return
  1024. }
  1025. if chosen == number || chosen == 0 {
  1026. result = "1"
  1027. return
  1028. }
  1029. for c := float64(1); c <= chosen; c++ {
  1030. val *= (number + 1 - c) / c
  1031. }
  1032. result = fmt.Sprintf("%g", math.Ceil(val))
  1033. return
  1034. }
  1035. // COMBINA function calculates the number of combinations, with repetitions,
  1036. // of a given number objects from a set. The syntax of the function is:
  1037. //
  1038. // COMBINA(number,number_chosen)
  1039. //
  1040. func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
  1041. if argsList.Len() != 2 {
  1042. err = errors.New("COMBINA requires 2 argument")
  1043. return
  1044. }
  1045. var number, chosen float64
  1046. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1047. err = errors.New(formulaErrorVALUE)
  1048. return
  1049. }
  1050. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1051. err = errors.New(formulaErrorVALUE)
  1052. return
  1053. }
  1054. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1055. if number < chosen {
  1056. err = errors.New("COMBINA requires number > number_chosen")
  1057. return
  1058. }
  1059. if number == 0 {
  1060. result = "0"
  1061. return
  1062. }
  1063. args := list.New()
  1064. args.PushBack(formulaArg{
  1065. Value: fmt.Sprintf("%g", number+chosen-1),
  1066. })
  1067. args.PushBack(formulaArg{
  1068. Value: fmt.Sprintf("%g", number-1),
  1069. })
  1070. return fn.COMBIN(args)
  1071. }
  1072. // COS function calculates the cosine of a given angle. The syntax of the
  1073. // function is:
  1074. //
  1075. // COS(number)
  1076. //
  1077. func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
  1078. if argsList.Len() != 1 {
  1079. err = errors.New("COS requires 1 numeric argument")
  1080. return
  1081. }
  1082. var val float64
  1083. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1084. err = errors.New(formulaErrorVALUE)
  1085. return
  1086. }
  1087. result = fmt.Sprintf("%g", math.Cos(val))
  1088. return
  1089. }
  1090. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1091. // The syntax of the function is:
  1092. //
  1093. // COSH(number)
  1094. //
  1095. func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
  1096. if argsList.Len() != 1 {
  1097. err = errors.New("COSH requires 1 numeric argument")
  1098. return
  1099. }
  1100. var val float64
  1101. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1102. err = errors.New(formulaErrorVALUE)
  1103. return
  1104. }
  1105. result = fmt.Sprintf("%g", math.Cosh(val))
  1106. return
  1107. }
  1108. // COT function calculates the cotangent of a given angle. The syntax of the
  1109. // function is:
  1110. //
  1111. // COT(number)
  1112. //
  1113. func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
  1114. if argsList.Len() != 1 {
  1115. err = errors.New("COT requires 1 numeric argument")
  1116. return
  1117. }
  1118. var val float64
  1119. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1120. err = errors.New(formulaErrorVALUE)
  1121. return
  1122. }
  1123. if val == 0 {
  1124. err = errors.New(formulaErrorDIV)
  1125. return
  1126. }
  1127. result = fmt.Sprintf("%g", math.Tan(val))
  1128. return
  1129. }
  1130. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1131. // angle. The syntax of the function is:
  1132. //
  1133. // COTH(number)
  1134. //
  1135. func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
  1136. if argsList.Len() != 1 {
  1137. err = errors.New("COTH requires 1 numeric argument")
  1138. return
  1139. }
  1140. var val float64
  1141. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1142. err = errors.New(formulaErrorVALUE)
  1143. return
  1144. }
  1145. if val == 0 {
  1146. err = errors.New(formulaErrorDIV)
  1147. return
  1148. }
  1149. result = fmt.Sprintf("%g", math.Tanh(val))
  1150. return
  1151. }
  1152. // CSC function calculates the cosecant of a given angle. The syntax of the
  1153. // function is:
  1154. //
  1155. // CSC(number)
  1156. //
  1157. func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
  1158. if argsList.Len() != 1 {
  1159. err = errors.New("CSC requires 1 numeric argument")
  1160. return
  1161. }
  1162. var val float64
  1163. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1164. err = errors.New(formulaErrorVALUE)
  1165. return
  1166. }
  1167. if val == 0 {
  1168. err = errors.New(formulaErrorDIV)
  1169. return
  1170. }
  1171. result = fmt.Sprintf("%g", 1/math.Sin(val))
  1172. return
  1173. }
  1174. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1175. // angle. The syntax of the function is:
  1176. //
  1177. // CSCH(number)
  1178. //
  1179. func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
  1180. if argsList.Len() != 1 {
  1181. err = errors.New("CSCH requires 1 numeric argument")
  1182. return
  1183. }
  1184. var val float64
  1185. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1186. err = errors.New(formulaErrorVALUE)
  1187. return
  1188. }
  1189. if val == 0 {
  1190. err = errors.New(formulaErrorDIV)
  1191. return
  1192. }
  1193. result = fmt.Sprintf("%g", 1/math.Sinh(val))
  1194. return
  1195. }
  1196. // DECIMAL function converts a text representation of a number in a specified
  1197. // base, into a decimal value. The syntax of the function is:
  1198. //
  1199. // DECIMAL(text,radix)
  1200. //
  1201. func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
  1202. if argsList.Len() != 2 {
  1203. err = errors.New("DECIMAL requires 2 numeric arguments")
  1204. return
  1205. }
  1206. var text = argsList.Front().Value.(formulaArg).Value
  1207. var radix int
  1208. if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
  1209. err = errors.New(formulaErrorVALUE)
  1210. return
  1211. }
  1212. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1213. text = text[2:]
  1214. }
  1215. val, err := strconv.ParseInt(text, radix, 64)
  1216. if err != nil {
  1217. err = errors.New(formulaErrorVALUE)
  1218. return
  1219. }
  1220. result = fmt.Sprintf("%g", float64(val))
  1221. return
  1222. }
  1223. // DEGREES function converts radians into degrees. The syntax of the function
  1224. // is:
  1225. //
  1226. // DEGREES(angle)
  1227. //
  1228. func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
  1229. if argsList.Len() != 1 {
  1230. err = errors.New("DEGREES requires 1 numeric argument")
  1231. return
  1232. }
  1233. var val float64
  1234. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1235. err = errors.New(formulaErrorVALUE)
  1236. return
  1237. }
  1238. if val == 0 {
  1239. err = errors.New(formulaErrorDIV)
  1240. return
  1241. }
  1242. result = fmt.Sprintf("%g", 180.0/math.Pi*val)
  1243. return
  1244. }
  1245. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1246. // positive number up and a negative number down), to the next even number.
  1247. // The syntax of the function is:
  1248. //
  1249. // EVEN(number)
  1250. //
  1251. func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
  1252. if argsList.Len() != 1 {
  1253. err = errors.New("EVEN requires 1 numeric argument")
  1254. return
  1255. }
  1256. var number float64
  1257. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1258. err = errors.New(formulaErrorVALUE)
  1259. return
  1260. }
  1261. sign := math.Signbit(number)
  1262. m, frac := math.Modf(number / 2)
  1263. val := m * 2
  1264. if frac != 0 {
  1265. if !sign {
  1266. val += 2
  1267. } else {
  1268. val -= 2
  1269. }
  1270. }
  1271. result = fmt.Sprintf("%g", val)
  1272. return
  1273. }
  1274. // EXP function calculates the value of the mathematical constant e, raised to
  1275. // the power of a given number. The syntax of the function is:
  1276. //
  1277. // EXP(number)
  1278. //
  1279. func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
  1280. if argsList.Len() != 1 {
  1281. err = errors.New("EXP requires 1 numeric argument")
  1282. return
  1283. }
  1284. var number float64
  1285. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1286. err = errors.New(formulaErrorVALUE)
  1287. return
  1288. }
  1289. result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
  1290. return
  1291. }
  1292. // fact returns the factorial of a supplied number.
  1293. func fact(number float64) float64 {
  1294. val := float64(1)
  1295. for i := float64(2); i <= number; i++ {
  1296. val *= i
  1297. }
  1298. return val
  1299. }
  1300. // FACT function returns the factorial of a supplied number. The syntax of the
  1301. // function is:
  1302. //
  1303. // FACT(number)
  1304. //
  1305. func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
  1306. if argsList.Len() != 1 {
  1307. err = errors.New("FACT requires 1 numeric argument")
  1308. return
  1309. }
  1310. var number float64
  1311. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1312. err = errors.New(formulaErrorVALUE)
  1313. return
  1314. }
  1315. if number < 0 {
  1316. err = errors.New(formulaErrorNUM)
  1317. }
  1318. result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
  1319. return
  1320. }
  1321. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1322. // syntax of the function is:
  1323. //
  1324. // FACTDOUBLE(number)
  1325. //
  1326. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
  1327. if argsList.Len() != 1 {
  1328. err = errors.New("FACTDOUBLE requires 1 numeric argument")
  1329. return
  1330. }
  1331. number, val := 0.0, 1.0
  1332. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1333. err = errors.New(formulaErrorVALUE)
  1334. return
  1335. }
  1336. if number < 0 {
  1337. err = errors.New(formulaErrorNUM)
  1338. return
  1339. }
  1340. for i := math.Trunc(number); i > 1; i -= 2 {
  1341. val *= i
  1342. }
  1343. result = strings.ToUpper(fmt.Sprintf("%g", val))
  1344. return
  1345. }
  1346. // FLOOR function rounds a supplied number towards zero to the nearest
  1347. // multiple of a specified significance. The syntax of the function is:
  1348. //
  1349. // FLOOR(number,significance)
  1350. //
  1351. func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
  1352. if argsList.Len() != 2 {
  1353. err = errors.New("FLOOR requires 2 numeric arguments")
  1354. return
  1355. }
  1356. var number, significance float64
  1357. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1358. err = errors.New(formulaErrorVALUE)
  1359. return
  1360. }
  1361. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1362. err = errors.New(formulaErrorVALUE)
  1363. return
  1364. }
  1365. if significance < 0 && number >= 0 {
  1366. err = errors.New(formulaErrorNUM)
  1367. return
  1368. }
  1369. val := number
  1370. val, res := math.Modf(val / significance)
  1371. if res != 0 {
  1372. if number < 0 && res < 0 {
  1373. val--
  1374. }
  1375. }
  1376. result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
  1377. return
  1378. }
  1379. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1380. // significance. The syntax of the function is:
  1381. //
  1382. // FLOOR.MATH(number,[significance],[mode])
  1383. //
  1384. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
  1385. if argsList.Len() == 0 {
  1386. err = errors.New("FLOOR.MATH requires at least 1 argument")
  1387. return
  1388. }
  1389. if argsList.Len() > 3 {
  1390. err = errors.New("FLOOR.MATH allows at most 3 arguments")
  1391. return
  1392. }
  1393. number, significance, mode := 0.0, 1.0, 1.0
  1394. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1395. err = errors.New(formulaErrorVALUE)
  1396. return
  1397. }
  1398. if number < 0 {
  1399. significance = -1
  1400. }
  1401. if argsList.Len() > 1 {
  1402. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).Value, 64); err != nil {
  1403. err = errors.New(formulaErrorVALUE)
  1404. return
  1405. }
  1406. }
  1407. if argsList.Len() == 1 {
  1408. result = fmt.Sprintf("%g", math.Floor(number))
  1409. return
  1410. }
  1411. if argsList.Len() > 2 {
  1412. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1413. err = errors.New(formulaErrorVALUE)
  1414. return
  1415. }
  1416. }
  1417. val, res := math.Modf(number / significance)
  1418. if res != 0 && number < 0 && mode > 0 {
  1419. val--
  1420. }
  1421. result = fmt.Sprintf("%g", val*significance)
  1422. return
  1423. }
  1424. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1425. // of significance. The syntax of the function is:
  1426. //
  1427. // FLOOR.PRECISE(number,[significance])
  1428. //
  1429. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
  1430. if argsList.Len() == 0 {
  1431. err = errors.New("FLOOR.PRECISE requires at least 1 argument")
  1432. return
  1433. }
  1434. if argsList.Len() > 2 {
  1435. err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
  1436. return
  1437. }
  1438. var number, significance float64
  1439. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1440. err = errors.New(formulaErrorVALUE)
  1441. return
  1442. }
  1443. if number < 0 {
  1444. significance = -1
  1445. }
  1446. if argsList.Len() == 1 {
  1447. result = fmt.Sprintf("%g", math.Floor(number))
  1448. return
  1449. }
  1450. if argsList.Len() > 1 {
  1451. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1452. err = errors.New(formulaErrorVALUE)
  1453. return
  1454. }
  1455. significance = math.Abs(significance)
  1456. if significance == 0 {
  1457. result = "0"
  1458. return
  1459. }
  1460. }
  1461. val, res := math.Modf(number / significance)
  1462. if res != 0 {
  1463. if number < 0 {
  1464. val--
  1465. }
  1466. }
  1467. result = fmt.Sprintf("%g", val*significance)
  1468. return
  1469. }
  1470. // gcd returns the greatest common divisor of two supplied integers.
  1471. func gcd(x, y float64) float64 {
  1472. x, y = math.Trunc(x), math.Trunc(y)
  1473. if x == 0 {
  1474. return y
  1475. }
  1476. if y == 0 {
  1477. return x
  1478. }
  1479. for x != y {
  1480. if x > y {
  1481. x = x - y
  1482. } else {
  1483. y = y - x
  1484. }
  1485. }
  1486. return x
  1487. }
  1488. // GCD function returns the greatest common divisor of two or more supplied
  1489. // integers. The syntax of the function is:
  1490. //
  1491. // GCD(number1,[number2],...)
  1492. //
  1493. func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
  1494. if argsList.Len() == 0 {
  1495. err = errors.New("GCD requires at least 1 argument")
  1496. return
  1497. }
  1498. var (
  1499. val float64
  1500. nums = []float64{}
  1501. )
  1502. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1503. token := arg.Value.(formulaArg).Value
  1504. if token == "" {
  1505. continue
  1506. }
  1507. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1508. err = errors.New(formulaErrorVALUE)
  1509. return
  1510. }
  1511. nums = append(nums, val)
  1512. }
  1513. if nums[0] < 0 {
  1514. err = errors.New("GCD only accepts positive arguments")
  1515. return
  1516. }
  1517. if len(nums) == 1 {
  1518. result = fmt.Sprintf("%g", nums[0])
  1519. return
  1520. }
  1521. cd := nums[0]
  1522. for i := 1; i < len(nums); i++ {
  1523. if nums[i] < 0 {
  1524. err = errors.New("GCD only accepts positive arguments")
  1525. return
  1526. }
  1527. cd = gcd(cd, nums[i])
  1528. }
  1529. result = fmt.Sprintf("%g", cd)
  1530. return
  1531. }
  1532. // INT function truncates a supplied number down to the closest integer. The
  1533. // syntax of the function is:
  1534. //
  1535. // INT(number)
  1536. //
  1537. func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
  1538. if argsList.Len() != 1 {
  1539. err = errors.New("INT requires 1 numeric argument")
  1540. return
  1541. }
  1542. var number float64
  1543. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1544. err = errors.New(formulaErrorVALUE)
  1545. return
  1546. }
  1547. val, frac := math.Modf(number)
  1548. if frac < 0 {
  1549. val--
  1550. }
  1551. result = fmt.Sprintf("%g", val)
  1552. return
  1553. }
  1554. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1555. // sign), to the nearest multiple of a supplied significance. The syntax of
  1556. // the function is:
  1557. //
  1558. // ISO.CEILING(number,[significance])
  1559. //
  1560. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
  1561. if argsList.Len() == 0 {
  1562. err = errors.New("ISO.CEILING requires at least 1 argument")
  1563. return
  1564. }
  1565. if argsList.Len() > 2 {
  1566. err = errors.New("ISO.CEILING allows at most 2 arguments")
  1567. return
  1568. }
  1569. var number, significance float64
  1570. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1571. err = errors.New(formulaErrorVALUE)
  1572. return
  1573. }
  1574. if number < 0 {
  1575. significance = -1
  1576. }
  1577. if argsList.Len() == 1 {
  1578. result = fmt.Sprintf("%g", math.Ceil(number))
  1579. return
  1580. }
  1581. if argsList.Len() > 1 {
  1582. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1583. err = errors.New(formulaErrorVALUE)
  1584. return
  1585. }
  1586. significance = math.Abs(significance)
  1587. if significance == 0 {
  1588. result = "0"
  1589. return
  1590. }
  1591. }
  1592. val, res := math.Modf(number / significance)
  1593. if res != 0 {
  1594. if number > 0 {
  1595. val++
  1596. }
  1597. }
  1598. result = fmt.Sprintf("%g", val*significance)
  1599. return
  1600. }
  1601. // lcm returns the least common multiple of two supplied integers.
  1602. func lcm(a, b float64) float64 {
  1603. a = math.Trunc(a)
  1604. b = math.Trunc(b)
  1605. if a == 0 && b == 0 {
  1606. return 0
  1607. }
  1608. return a * b / gcd(a, b)
  1609. }
  1610. // LCM function returns the least common multiple of two or more supplied
  1611. // integers. The syntax of the function is:
  1612. //
  1613. // LCM(number1,[number2],...)
  1614. //
  1615. func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
  1616. if argsList.Len() == 0 {
  1617. err = errors.New("LCM requires at least 1 argument")
  1618. return
  1619. }
  1620. var (
  1621. val float64
  1622. nums = []float64{}
  1623. )
  1624. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1625. token := arg.Value.(formulaArg).Value
  1626. if token == "" {
  1627. continue
  1628. }
  1629. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1630. err = errors.New(formulaErrorVALUE)
  1631. return
  1632. }
  1633. nums = append(nums, val)
  1634. }
  1635. if nums[0] < 0 {
  1636. err = errors.New("LCM only accepts positive arguments")
  1637. return
  1638. }
  1639. if len(nums) == 1 {
  1640. result = fmt.Sprintf("%g", nums[0])
  1641. return
  1642. }
  1643. cm := nums[0]
  1644. for i := 1; i < len(nums); i++ {
  1645. if nums[i] < 0 {
  1646. err = errors.New("LCM only accepts positive arguments")
  1647. return
  1648. }
  1649. cm = lcm(cm, nums[i])
  1650. }
  1651. result = fmt.Sprintf("%g", cm)
  1652. return
  1653. }
  1654. // LN function calculates the natural logarithm of a given number. The syntax
  1655. // of the function is:
  1656. //
  1657. // LN(number)
  1658. //
  1659. func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
  1660. if argsList.Len() != 1 {
  1661. err = errors.New("LN requires 1 numeric argument")
  1662. return
  1663. }
  1664. var number float64
  1665. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1666. err = errors.New(formulaErrorVALUE)
  1667. return
  1668. }
  1669. result = fmt.Sprintf("%g", math.Log(number))
  1670. return
  1671. }
  1672. // LOG function calculates the logarithm of a given number, to a supplied
  1673. // base. The syntax of the function is:
  1674. //
  1675. // LOG(number,[base])
  1676. //
  1677. func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
  1678. if argsList.Len() == 0 {
  1679. err = errors.New("LOG requires at least 1 argument")
  1680. return
  1681. }
  1682. if argsList.Len() > 2 {
  1683. err = errors.New("LOG allows at most 2 arguments")
  1684. return
  1685. }
  1686. number, base := 0.0, 10.0
  1687. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1688. err = errors.New(formulaErrorVALUE)
  1689. return
  1690. }
  1691. if argsList.Len() > 1 {
  1692. if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1693. err = errors.New(formulaErrorVALUE)
  1694. return
  1695. }
  1696. }
  1697. if number == 0 {
  1698. err = errors.New(formulaErrorNUM)
  1699. return
  1700. }
  1701. if base == 0 {
  1702. err = errors.New(formulaErrorNUM)
  1703. return
  1704. }
  1705. if base == 1 {
  1706. err = errors.New(formulaErrorDIV)
  1707. return
  1708. }
  1709. result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
  1710. return
  1711. }
  1712. // LOG10 function calculates the base 10 logarithm of a given number. The
  1713. // syntax of the function is:
  1714. //
  1715. // LOG10(number)
  1716. //
  1717. func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
  1718. if argsList.Len() != 1 {
  1719. err = errors.New("LOG10 requires 1 numeric argument")
  1720. return
  1721. }
  1722. var number float64
  1723. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1724. err = errors.New(formulaErrorVALUE)
  1725. return
  1726. }
  1727. result = fmt.Sprintf("%g", math.Log10(number))
  1728. return
  1729. }
  1730. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1731. ret := [][]float64{}
  1732. for i := range sqMtx {
  1733. if i == 0 {
  1734. continue
  1735. }
  1736. row := []float64{}
  1737. for j := range sqMtx {
  1738. if j == idx {
  1739. continue
  1740. }
  1741. row = append(row, sqMtx[i][j])
  1742. }
  1743. ret = append(ret, row)
  1744. }
  1745. return ret
  1746. }
  1747. // det determinant of the 2x2 matrix.
  1748. func det(sqMtx [][]float64) float64 {
  1749. if len(sqMtx) == 2 {
  1750. m00 := sqMtx[0][0]
  1751. m01 := sqMtx[0][1]
  1752. m10 := sqMtx[1][0]
  1753. m11 := sqMtx[1][1]
  1754. return m00*m11 - m10*m01
  1755. }
  1756. var res, sgn float64 = 0, 1
  1757. for j := range sqMtx {
  1758. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  1759. sgn *= -1
  1760. }
  1761. return res
  1762. }
  1763. // MDETERM calculates the determinant of a square matrix. The
  1764. // syntax of the function is:
  1765. //
  1766. // MDETERM(array)
  1767. //
  1768. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
  1769. var num float64
  1770. var numMtx = [][]float64{}
  1771. var strMtx = argsList.Front().Value.(formulaArg).Matrix
  1772. if argsList.Len() < 1 {
  1773. return
  1774. }
  1775. var rows = len(strMtx)
  1776. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  1777. if len(row) != rows {
  1778. err = errors.New(formulaErrorVALUE)
  1779. return
  1780. }
  1781. numRow := []float64{}
  1782. for _, ele := range row {
  1783. if num, err = strconv.ParseFloat(ele, 64); err != nil {
  1784. return
  1785. }
  1786. numRow = append(numRow, num)
  1787. }
  1788. numMtx = append(numMtx, numRow)
  1789. }
  1790. result = fmt.Sprintf("%g", det(numMtx))
  1791. return
  1792. }
  1793. // MOD function returns the remainder of a division between two supplied
  1794. // numbers. The syntax of the function is:
  1795. //
  1796. // MOD(number,divisor)
  1797. //
  1798. func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
  1799. if argsList.Len() != 2 {
  1800. err = errors.New("MOD requires 2 numeric arguments")
  1801. return
  1802. }
  1803. var number, divisor float64
  1804. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1805. err = errors.New(formulaErrorVALUE)
  1806. return
  1807. }
  1808. if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1809. err = errors.New(formulaErrorVALUE)
  1810. return
  1811. }
  1812. if divisor == 0 {
  1813. err = errors.New(formulaErrorDIV)
  1814. return
  1815. }
  1816. trunc, rem := math.Modf(number / divisor)
  1817. if rem < 0 {
  1818. trunc--
  1819. }
  1820. result = fmt.Sprintf("%g", number-divisor*trunc)
  1821. return
  1822. }
  1823. // MROUND function rounds a supplied number up or down to the nearest multiple
  1824. // of a given number. The syntax of the function is:
  1825. //
  1826. // MOD(number,multiple)
  1827. //
  1828. func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
  1829. if argsList.Len() != 2 {
  1830. err = errors.New("MROUND requires 2 numeric arguments")
  1831. return
  1832. }
  1833. var number, multiple float64
  1834. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1835. err = errors.New(formulaErrorVALUE)
  1836. return
  1837. }
  1838. if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1839. err = errors.New(formulaErrorVALUE)
  1840. return
  1841. }
  1842. if multiple == 0 {
  1843. err = errors.New(formulaErrorNUM)
  1844. return
  1845. }
  1846. if multiple < 0 && number > 0 ||
  1847. multiple > 0 && number < 0 {
  1848. err = errors.New(formulaErrorNUM)
  1849. return
  1850. }
  1851. number, res := math.Modf(number / multiple)
  1852. if math.Trunc(res+0.5) > 0 {
  1853. number++
  1854. }
  1855. result = fmt.Sprintf("%g", number*multiple)
  1856. return
  1857. }
  1858. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  1859. // supplied values to the product of factorials of those values. The syntax of
  1860. // the function is:
  1861. //
  1862. // MULTINOMIAL(number1,[number2],...)
  1863. //
  1864. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
  1865. val, num, denom := 0.0, 0.0, 1.0
  1866. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1867. token := arg.Value.(formulaArg)
  1868. if token.Value == "" {
  1869. continue
  1870. }
  1871. if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
  1872. err = errors.New(formulaErrorVALUE)
  1873. return
  1874. }
  1875. num += val
  1876. denom *= fact(val)
  1877. }
  1878. result = fmt.Sprintf("%g", fact(num)/denom)
  1879. return
  1880. }
  1881. // MUNIT function returns the unit matrix for a specified dimension. The
  1882. // syntax of the function is:
  1883. //
  1884. // MUNIT(dimension)
  1885. //
  1886. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
  1887. if argsList.Len() != 1 {
  1888. err = errors.New("MUNIT requires 1 numeric argument")
  1889. return
  1890. }
  1891. var dimension int
  1892. if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).Value); err != nil {
  1893. err = errors.New(formulaErrorVALUE)
  1894. return
  1895. }
  1896. matrix := make([][]float64, 0, dimension)
  1897. for i := 0; i < dimension; i++ {
  1898. row := make([]float64, dimension)
  1899. for j := 0; j < dimension; j++ {
  1900. if i == j {
  1901. row[j] = float64(1.0)
  1902. } else {
  1903. row[j] = float64(0.0)
  1904. }
  1905. }
  1906. matrix = append(matrix, row)
  1907. }
  1908. return
  1909. }
  1910. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  1911. // number up and a negative number down), to the next odd number. The syntax
  1912. // of the function is:
  1913. //
  1914. // ODD(number)
  1915. //
  1916. func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
  1917. if argsList.Len() != 1 {
  1918. err = errors.New("ODD requires 1 numeric argument")
  1919. return
  1920. }
  1921. var number float64
  1922. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1923. err = errors.New(formulaErrorVALUE)
  1924. return
  1925. }
  1926. if number == 0 {
  1927. result = "1"
  1928. return
  1929. }
  1930. sign := math.Signbit(number)
  1931. m, frac := math.Modf((number - 1) / 2)
  1932. val := m*2 + 1
  1933. if frac != 0 {
  1934. if !sign {
  1935. val += 2
  1936. } else {
  1937. val -= 2
  1938. }
  1939. }
  1940. result = fmt.Sprintf("%g", val)
  1941. return
  1942. }
  1943. // PI function returns the value of the mathematical constant π (pi), accurate
  1944. // to 15 digits (14 decimal places). The syntax of the function is:
  1945. //
  1946. // PI()
  1947. //
  1948. func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
  1949. if argsList.Len() != 0 {
  1950. err = errors.New("PI accepts no arguments")
  1951. return
  1952. }
  1953. result = fmt.Sprintf("%g", math.Pi)
  1954. return
  1955. }
  1956. // POWER function calculates a given number, raised to a supplied power.
  1957. // The syntax of the function is:
  1958. //
  1959. // POWER(number,power)
  1960. //
  1961. func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
  1962. if argsList.Len() != 2 {
  1963. err = errors.New("POWER requires 2 numeric arguments")
  1964. return
  1965. }
  1966. var x, y float64
  1967. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  1968. err = errors.New(formulaErrorVALUE)
  1969. return
  1970. }
  1971. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  1972. err = errors.New(formulaErrorVALUE)
  1973. return
  1974. }
  1975. if x == 0 && y == 0 {
  1976. err = errors.New(formulaErrorNUM)
  1977. return
  1978. }
  1979. if x == 0 && y < 0 {
  1980. err = errors.New(formulaErrorDIV)
  1981. return
  1982. }
  1983. result = fmt.Sprintf("%g", math.Pow(x, y))
  1984. return
  1985. }
  1986. // PRODUCT function returns the product (multiplication) of a supplied set of
  1987. // numerical values. The syntax of the function is:
  1988. //
  1989. // PRODUCT(number1,[number2],...)
  1990. //
  1991. func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
  1992. val, product := 0.0, 1.0
  1993. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1994. token := arg.Value.(formulaArg)
  1995. if token.Value == "" {
  1996. continue
  1997. }
  1998. if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
  1999. err = errors.New(formulaErrorVALUE)
  2000. return
  2001. }
  2002. product = product * val
  2003. }
  2004. result = fmt.Sprintf("%g", product)
  2005. return
  2006. }
  2007. // QUOTIENT function returns the integer portion of a division between two
  2008. // supplied numbers. The syntax of the function is:
  2009. //
  2010. // QUOTIENT(numerator,denominator)
  2011. //
  2012. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
  2013. if argsList.Len() != 2 {
  2014. err = errors.New("QUOTIENT requires 2 numeric arguments")
  2015. return
  2016. }
  2017. var x, y float64
  2018. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2019. err = errors.New(formulaErrorVALUE)
  2020. return
  2021. }
  2022. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  2023. err = errors.New(formulaErrorVALUE)
  2024. return
  2025. }
  2026. if y == 0 {
  2027. err = errors.New(formulaErrorDIV)
  2028. return
  2029. }
  2030. result = fmt.Sprintf("%g", math.Trunc(x/y))
  2031. return
  2032. }
  2033. // RADIANS function converts radians into degrees. The syntax of the function is:
  2034. //
  2035. // RADIANS(angle)
  2036. //
  2037. func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
  2038. if argsList.Len() != 1 {
  2039. err = errors.New("RADIANS requires 1 numeric argument")
  2040. return
  2041. }
  2042. var angle float64
  2043. if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2044. err = errors.New(formulaErrorVALUE)
  2045. return
  2046. }
  2047. result = fmt.Sprintf("%g", math.Pi/180.0*angle)
  2048. return
  2049. }
  2050. // RAND function generates a random real number between 0 and 1. The syntax of
  2051. // the function is:
  2052. //
  2053. // RAND()
  2054. //
  2055. func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
  2056. if argsList.Len() != 0 {
  2057. err = errors.New("RAND accepts no arguments")
  2058. return
  2059. }
  2060. result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2061. return
  2062. }
  2063. // RANDBETWEEN function generates a random integer between two supplied
  2064. // integers. The syntax of the function is:
  2065. //
  2066. // RANDBETWEEN(bottom,top)
  2067. //
  2068. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
  2069. if argsList.Len() != 2 {
  2070. err = errors.New("RANDBETWEEN requires 2 numeric arguments")
  2071. return
  2072. }
  2073. var bottom, top int64
  2074. if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).Value, 10, 64); err != nil {
  2075. err = errors.New(formulaErrorVALUE)
  2076. return
  2077. }
  2078. if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).Value, 10, 64); err != nil {
  2079. err = errors.New(formulaErrorVALUE)
  2080. return
  2081. }
  2082. if top < bottom {
  2083. err = errors.New(formulaErrorNUM)
  2084. return
  2085. }
  2086. result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
  2087. return
  2088. }
  2089. // romanNumerals defined a numeral system that originated in ancient Rome and
  2090. // remained the usual way of writing numbers throughout Europe well into the
  2091. // Late Middle Ages.
  2092. type romanNumerals struct {
  2093. n float64
  2094. s string
  2095. }
  2096. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2097. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2098. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2099. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2100. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2101. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2102. // integer, the function returns a text string depicting the roman numeral
  2103. // form of the number. The syntax of the function is:
  2104. //
  2105. // ROMAN(number,[form])
  2106. //
  2107. func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
  2108. if argsList.Len() == 0 {
  2109. err = errors.New("ROMAN requires at least 1 argument")
  2110. return
  2111. }
  2112. if argsList.Len() > 2 {
  2113. err = errors.New("ROMAN allows at most 2 arguments")
  2114. return
  2115. }
  2116. var number float64
  2117. var form int
  2118. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2119. err = errors.New(formulaErrorVALUE)
  2120. return
  2121. }
  2122. if argsList.Len() > 1 {
  2123. if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).Value); err != nil {
  2124. err = errors.New(formulaErrorVALUE)
  2125. return
  2126. }
  2127. if form < 0 {
  2128. form = 0
  2129. } else if form > 4 {
  2130. form = 4
  2131. }
  2132. }
  2133. decimalTable := romanTable[0]
  2134. switch form {
  2135. case 1:
  2136. decimalTable = romanTable[1]
  2137. case 2:
  2138. decimalTable = romanTable[2]
  2139. case 3:
  2140. decimalTable = romanTable[3]
  2141. case 4:
  2142. decimalTable = romanTable[4]
  2143. }
  2144. val := math.Trunc(number)
  2145. buf := bytes.Buffer{}
  2146. for _, r := range decimalTable {
  2147. for val >= r.n {
  2148. buf.WriteString(r.s)
  2149. val -= r.n
  2150. }
  2151. }
  2152. result = buf.String()
  2153. return
  2154. }
  2155. type roundMode byte
  2156. const (
  2157. closest roundMode = iota
  2158. down
  2159. up
  2160. )
  2161. // round rounds a supplied number up or down.
  2162. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2163. var significance float64
  2164. if digits > 0 {
  2165. significance = math.Pow(1/10.0, digits)
  2166. } else {
  2167. significance = math.Pow(10.0, -digits)
  2168. }
  2169. val, res := math.Modf(number / significance)
  2170. switch mode {
  2171. case closest:
  2172. const eps = 0.499999999
  2173. if res >= eps {
  2174. val++
  2175. } else if res <= -eps {
  2176. val--
  2177. }
  2178. case down:
  2179. case up:
  2180. if res > 0 {
  2181. val++
  2182. } else if res < 0 {
  2183. val--
  2184. }
  2185. }
  2186. return val * significance
  2187. }
  2188. // ROUND function rounds a supplied number up or down, to a specified number
  2189. // of decimal places. The syntax of the function is:
  2190. //
  2191. // ROUND(number,num_digits)
  2192. //
  2193. func (fn *formulaFuncs) ROUND(argsList *list.List) (result string, err error) {
  2194. if argsList.Len() != 2 {
  2195. err = errors.New("ROUND requires 2 numeric arguments")
  2196. return
  2197. }
  2198. var number, digits float64
  2199. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2200. err = errors.New(formulaErrorVALUE)
  2201. return
  2202. }
  2203. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  2204. err = errors.New(formulaErrorVALUE)
  2205. return
  2206. }
  2207. result = fmt.Sprintf("%g", fn.round(number, digits, closest))
  2208. return
  2209. }
  2210. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2211. // specified number of decimal places. The syntax of the function is:
  2212. //
  2213. // ROUNDDOWN(number,num_digits)
  2214. //
  2215. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) (result string, err error) {
  2216. if argsList.Len() != 2 {
  2217. err = errors.New("ROUNDDOWN requires 2 numeric arguments")
  2218. return
  2219. }
  2220. var number, digits float64
  2221. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2222. err = errors.New(formulaErrorVALUE)
  2223. return
  2224. }
  2225. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  2226. err = errors.New(formulaErrorVALUE)
  2227. return
  2228. }
  2229. result = fmt.Sprintf("%g", fn.round(number, digits, down))
  2230. return
  2231. }
  2232. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2233. // specified number of decimal places. The syntax of the function is:
  2234. //
  2235. // ROUNDUP(number,num_digits)
  2236. //
  2237. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) (result string, err error) {
  2238. if argsList.Len() != 2 {
  2239. err = errors.New("ROUNDUP requires 2 numeric arguments")
  2240. return
  2241. }
  2242. var number, digits float64
  2243. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2244. err = errors.New(formulaErrorVALUE)
  2245. return
  2246. }
  2247. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  2248. err = errors.New(formulaErrorVALUE)
  2249. return
  2250. }
  2251. result = fmt.Sprintf("%g", fn.round(number, digits, up))
  2252. return
  2253. }
  2254. // SEC function calculates the secant of a given angle. The syntax of the
  2255. // function is:
  2256. //
  2257. // SEC(number)
  2258. //
  2259. func (fn *formulaFuncs) SEC(argsList *list.List) (result string, err error) {
  2260. if argsList.Len() != 1 {
  2261. err = errors.New("SEC requires 1 numeric argument")
  2262. return
  2263. }
  2264. var number float64
  2265. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2266. err = errors.New(formulaErrorVALUE)
  2267. return
  2268. }
  2269. result = fmt.Sprintf("%g", math.Cos(number))
  2270. return
  2271. }
  2272. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2273. // The syntax of the function is:
  2274. //
  2275. // SECH(number)
  2276. //
  2277. func (fn *formulaFuncs) SECH(argsList *list.List) (result string, err error) {
  2278. if argsList.Len() != 1 {
  2279. err = errors.New("SECH requires 1 numeric argument")
  2280. return
  2281. }
  2282. var number float64
  2283. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2284. err = errors.New(formulaErrorVALUE)
  2285. return
  2286. }
  2287. result = fmt.Sprintf("%g", 1/math.Cosh(number))
  2288. return
  2289. }
  2290. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2291. // number. I.e. if the number is positive, the Sign function returns +1, if
  2292. // the number is negative, the function returns -1 and if the number is 0
  2293. // (zero), the function returns 0. The syntax of the function is:
  2294. //
  2295. // SIGN(number)
  2296. //
  2297. func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
  2298. if argsList.Len() != 1 {
  2299. err = errors.New("SIGN requires 1 numeric argument")
  2300. return
  2301. }
  2302. var val float64
  2303. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2304. err = errors.New(formulaErrorVALUE)
  2305. return
  2306. }
  2307. if val < 0 {
  2308. result = "-1"
  2309. return
  2310. }
  2311. if val > 0 {
  2312. result = "1"
  2313. return
  2314. }
  2315. result = "0"
  2316. return
  2317. }
  2318. // SIN function calculates the sine of a given angle. The syntax of the
  2319. // function is:
  2320. //
  2321. // SIN(number)
  2322. //
  2323. func (fn *formulaFuncs) SIN(argsList *list.List) (result string, err error) {
  2324. if argsList.Len() != 1 {
  2325. err = errors.New("SIN requires 1 numeric argument")
  2326. return
  2327. }
  2328. var number float64
  2329. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2330. err = errors.New(formulaErrorVALUE)
  2331. return
  2332. }
  2333. result = fmt.Sprintf("%g", math.Sin(number))
  2334. return
  2335. }
  2336. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2337. // The syntax of the function is:
  2338. //
  2339. // SINH(number)
  2340. //
  2341. func (fn *formulaFuncs) SINH(argsList *list.List) (result string, err error) {
  2342. if argsList.Len() != 1 {
  2343. err = errors.New("SINH requires 1 numeric argument")
  2344. return
  2345. }
  2346. var number float64
  2347. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2348. err = errors.New(formulaErrorVALUE)
  2349. return
  2350. }
  2351. result = fmt.Sprintf("%g", math.Sinh(number))
  2352. return
  2353. }
  2354. // SQRT function calculates the positive square root of a supplied number. The
  2355. // syntax of the function is:
  2356. //
  2357. // SQRT(number)
  2358. //
  2359. func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
  2360. if argsList.Len() != 1 {
  2361. err = errors.New("SQRT requires 1 numeric argument")
  2362. return
  2363. }
  2364. var res float64
  2365. var value = argsList.Front().Value.(formulaArg).Value
  2366. if value == "" {
  2367. result = "0"
  2368. return
  2369. }
  2370. if res, err = strconv.ParseFloat(value, 64); err != nil {
  2371. err = errors.New(formulaErrorVALUE)
  2372. return
  2373. }
  2374. if res < 0 {
  2375. err = errors.New(formulaErrorNUM)
  2376. return
  2377. }
  2378. result = fmt.Sprintf("%g", math.Sqrt(res))
  2379. return
  2380. }
  2381. // SQRTPI function returns the square root of a supplied number multiplied by
  2382. // the mathematical constant, π. The syntax of the function is:
  2383. //
  2384. // SQRTPI(number)
  2385. //
  2386. func (fn *formulaFuncs) SQRTPI(argsList *list.List) (result string, err error) {
  2387. if argsList.Len() != 1 {
  2388. err = errors.New("SQRTPI requires 1 numeric argument")
  2389. return
  2390. }
  2391. var number float64
  2392. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2393. err = errors.New(formulaErrorVALUE)
  2394. return
  2395. }
  2396. result = fmt.Sprintf("%g", math.Sqrt(number*math.Pi))
  2397. return
  2398. }
  2399. // SUM function adds together a supplied set of numbers and returns the sum of
  2400. // these values. The syntax of the function is:
  2401. //
  2402. // SUM(number1,[number2],...)
  2403. //
  2404. func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
  2405. var val, sum float64
  2406. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2407. token := arg.Value.(formulaArg)
  2408. if token.Value == "" {
  2409. continue
  2410. }
  2411. if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
  2412. err = errors.New(formulaErrorVALUE)
  2413. return
  2414. }
  2415. sum += val
  2416. }
  2417. result = fmt.Sprintf("%g", sum)
  2418. return
  2419. }
  2420. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2421. // syntax of the function is:
  2422. //
  2423. // SUMSQ(number1,[number2],...)
  2424. //
  2425. func (fn *formulaFuncs) SUMSQ(argsList *list.List) (result string, err error) {
  2426. var val, sq float64
  2427. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2428. token := arg.Value.(formulaArg)
  2429. if token.Value == "" {
  2430. continue
  2431. }
  2432. if val, err = strconv.ParseFloat(token.Value, 64); err != nil {
  2433. err = errors.New(formulaErrorVALUE)
  2434. return
  2435. }
  2436. sq += val * val
  2437. }
  2438. result = fmt.Sprintf("%g", sq)
  2439. return
  2440. }
  2441. // TAN function calculates the tangent of a given angle. The syntax of the
  2442. // function is:
  2443. //
  2444. // TAN(number)
  2445. //
  2446. func (fn *formulaFuncs) TAN(argsList *list.List) (result string, err error) {
  2447. if argsList.Len() != 1 {
  2448. err = errors.New("TAN requires 1 numeric argument")
  2449. return
  2450. }
  2451. var number float64
  2452. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2453. err = errors.New(formulaErrorVALUE)
  2454. return
  2455. }
  2456. result = fmt.Sprintf("%g", math.Tan(number))
  2457. return
  2458. }
  2459. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2460. // number. The syntax of the function is:
  2461. //
  2462. // TANH(number)
  2463. //
  2464. func (fn *formulaFuncs) TANH(argsList *list.List) (result string, err error) {
  2465. if argsList.Len() != 1 {
  2466. err = errors.New("TANH requires 1 numeric argument")
  2467. return
  2468. }
  2469. var number float64
  2470. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2471. err = errors.New(formulaErrorVALUE)
  2472. return
  2473. }
  2474. result = fmt.Sprintf("%g", math.Tanh(number))
  2475. return
  2476. }
  2477. // TRUNC function truncates a supplied number to a specified number of decimal
  2478. // places. The syntax of the function is:
  2479. //
  2480. // TRUNC(number,[number_digits])
  2481. //
  2482. func (fn *formulaFuncs) TRUNC(argsList *list.List) (result string, err error) {
  2483. if argsList.Len() == 0 {
  2484. err = errors.New("TRUNC requires at least 1 argument")
  2485. return
  2486. }
  2487. var number, digits, adjust, rtrim float64
  2488. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).Value, 64); err != nil {
  2489. err = errors.New(formulaErrorVALUE)
  2490. return
  2491. }
  2492. if argsList.Len() > 1 {
  2493. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).Value, 64); err != nil {
  2494. err = errors.New(formulaErrorVALUE)
  2495. return
  2496. }
  2497. digits = math.Floor(digits)
  2498. }
  2499. adjust = math.Pow(10, digits)
  2500. x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
  2501. if x != 0 {
  2502. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2503. return
  2504. }
  2505. }
  2506. if (digits > 0) && (rtrim < adjust/10) {
  2507. result = fmt.Sprintf("%g", number)
  2508. return
  2509. }
  2510. result = fmt.Sprintf("%g", float64(int(number*adjust))/adjust)
  2511. return
  2512. }
  2513. // Statistical functions