calc.go 179 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. "golang.org/x/text/language"
  30. "golang.org/x/text/message"
  31. )
  32. // Excel formula errors
  33. const (
  34. formulaErrorDIV = "#DIV/0!"
  35. formulaErrorNAME = "#NAME?"
  36. formulaErrorNA = "#N/A"
  37. formulaErrorNUM = "#NUM!"
  38. formulaErrorVALUE = "#VALUE!"
  39. formulaErrorREF = "#REF!"
  40. formulaErrorNULL = "#NULL"
  41. formulaErrorSPILL = "#SPILL!"
  42. formulaErrorCALC = "#CALC!"
  43. formulaErrorGETTINGDATA = "#GETTING_DATA"
  44. )
  45. // Numeric precision correct numeric values as legacy Excel application
  46. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  47. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  48. // has a decimal representation that is an infinite string of ones, Excel
  49. // displays only the leading 15 figures. In the second line, the number one
  50. // is added to the fraction, and again Excel displays only 15 figures.
  51. const numericPrecision = 1000000000000000
  52. // cellRef defines the structure of a cell reference.
  53. type cellRef struct {
  54. Col int
  55. Row int
  56. Sheet string
  57. }
  58. // cellRef defines the structure of a cell range.
  59. type cellRange struct {
  60. From cellRef
  61. To cellRef
  62. }
  63. // formula criteria condition enumeration.
  64. const (
  65. _ byte = iota
  66. criteriaEq
  67. criteriaLe
  68. criteriaGe
  69. criteriaL
  70. criteriaG
  71. criteriaBeg
  72. criteriaEnd
  73. criteriaErr
  74. )
  75. // formulaCriteria defined formula criteria parser result.
  76. type formulaCriteria struct {
  77. Type byte
  78. Condition string
  79. }
  80. // ArgType is the type if formula argument type.
  81. type ArgType byte
  82. // Formula argument types enumeration.
  83. const (
  84. ArgUnknown ArgType = iota
  85. ArgNumber
  86. ArgString
  87. ArgList
  88. ArgMatrix
  89. ArgError
  90. ArgEmpty
  91. )
  92. // formulaArg is the argument of a formula or function.
  93. type formulaArg struct {
  94. SheetName string
  95. Number float64
  96. String string
  97. List []formulaArg
  98. Matrix [][]formulaArg
  99. Boolean bool
  100. Error string
  101. Type ArgType
  102. cellRefs, cellRanges *list.List
  103. }
  104. // Value returns a string data type of the formula argument.
  105. func (fa formulaArg) Value() (value string) {
  106. switch fa.Type {
  107. case ArgNumber:
  108. if fa.Boolean {
  109. if fa.Number == 0 {
  110. return "FALSE"
  111. }
  112. return "TRUE"
  113. }
  114. return fmt.Sprintf("%g", fa.Number)
  115. case ArgString:
  116. return fa.String
  117. case ArgError:
  118. return fa.Error
  119. }
  120. return
  121. }
  122. // ToNumber returns a formula argument with number data type.
  123. func (fa formulaArg) ToNumber() formulaArg {
  124. var n float64
  125. var err error
  126. switch fa.Type {
  127. case ArgString:
  128. n, err = strconv.ParseFloat(fa.String, 64)
  129. if err != nil {
  130. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  131. }
  132. case ArgNumber:
  133. n = fa.Number
  134. }
  135. return newNumberFormulaArg(n)
  136. }
  137. // ToBool returns a formula argument with boolean data type.
  138. func (fa formulaArg) ToBool() formulaArg {
  139. var b bool
  140. var err error
  141. switch fa.Type {
  142. case ArgString:
  143. b, err = strconv.ParseBool(fa.String)
  144. if err != nil {
  145. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  146. }
  147. case ArgNumber:
  148. if fa.Boolean && fa.Number == 1 {
  149. b = true
  150. }
  151. }
  152. return newBoolFormulaArg(b)
  153. }
  154. // ToList returns a formula argument with array data type.
  155. func (fa formulaArg) ToList() []formulaArg {
  156. switch fa.Type {
  157. case ArgMatrix:
  158. list := []formulaArg{}
  159. for _, row := range fa.Matrix {
  160. list = append(list, row...)
  161. }
  162. return list
  163. case ArgList:
  164. return fa.List
  165. case ArgNumber, ArgString, ArgError, ArgUnknown:
  166. return []formulaArg{fa}
  167. }
  168. return nil
  169. }
  170. // formulaFuncs is the type of the formula functions.
  171. type formulaFuncs struct {
  172. f *File
  173. sheet, cell string
  174. }
  175. // tokenPriority defined basic arithmetic operator priority.
  176. var tokenPriority = map[string]int{
  177. "^": 5,
  178. "*": 4,
  179. "/": 4,
  180. "+": 3,
  181. "-": 3,
  182. "=": 2,
  183. "<>": 2,
  184. "<": 2,
  185. "<=": 2,
  186. ">": 2,
  187. ">=": 2,
  188. "&": 1,
  189. }
  190. // CalcCellValue provides a function to get calculated cell value. This
  191. // feature is currently in working processing. Array formula, table formula
  192. // and some other formulas are not supported currently.
  193. //
  194. // Supported formula functions:
  195. //
  196. // ABS
  197. // ACOS
  198. // ACOSH
  199. // ACOT
  200. // ACOTH
  201. // AND
  202. // ARABIC
  203. // ASIN
  204. // ASINH
  205. // ATAN
  206. // ATAN2
  207. // ATANH
  208. // AVERAGE
  209. // AVERAGEA
  210. // BASE
  211. // BIN2DEC
  212. // BIN2HEX
  213. // BIN2OCT
  214. // BITAND
  215. // BITLSHIFT
  216. // BITOR
  217. // BITRSHIFT
  218. // BITXOR
  219. // CEILING
  220. // CEILING.MATH
  221. // CEILING.PRECISE
  222. // CHAR
  223. // CHOOSE
  224. // CLEAN
  225. // CODE
  226. // COLUMN
  227. // COLUMNS
  228. // COMBIN
  229. // COMBINA
  230. // CONCAT
  231. // CONCATENATE
  232. // COS
  233. // COSH
  234. // COT
  235. // COTH
  236. // COUNT
  237. // COUNTA
  238. // COUNTBLANK
  239. // CSC
  240. // CSCH
  241. // DATE
  242. // DATEDIF
  243. // DEC2BIN
  244. // DEC2HEX
  245. // DEC2OCT
  246. // DECIMAL
  247. // DEGREES
  248. // ENCODEURL
  249. // EVEN
  250. // EXACT
  251. // EXP
  252. // FACT
  253. // FACTDOUBLE
  254. // FALSE
  255. // FIND
  256. // FINDB
  257. // FISHER
  258. // FISHERINV
  259. // FIXED
  260. // FLOOR
  261. // FLOOR.MATH
  262. // FLOOR.PRECISE
  263. // GAMMA
  264. // GAMMALN
  265. // GCD
  266. // HARMEAN
  267. // HEX2BIN
  268. // HEX2DEC
  269. // HEX2OCT
  270. // HLOOKUP
  271. // IF
  272. // IFERROR
  273. // INT
  274. // ISBLANK
  275. // ISERR
  276. // ISERROR
  277. // ISEVEN
  278. // ISNA
  279. // ISNONTEXT
  280. // ISNUMBER
  281. // ISODD
  282. // ISTEXT
  283. // ISO.CEILING
  284. // KURT
  285. // LARGE
  286. // LCM
  287. // LEFT
  288. // LEFTB
  289. // LEN
  290. // LENB
  291. // LN
  292. // LOG
  293. // LOG10
  294. // LOOKUP
  295. // LOWER
  296. // MAX
  297. // MDETERM
  298. // MEDIAN
  299. // MID
  300. // MIDB
  301. // MIN
  302. // MINA
  303. // MOD
  304. // MROUND
  305. // MULTINOMIAL
  306. // MUNIT
  307. // NA
  308. // NORM.DIST
  309. // NORMDIST
  310. // NORM.INV
  311. // NORMINV
  312. // NORM.S.DIST
  313. // NORMSDIST
  314. // NORM.S.INV
  315. // NORMSINV
  316. // NOT
  317. // NOW
  318. // OCT2BIN
  319. // OCT2DEC
  320. // OCT2HEX
  321. // ODD
  322. // OR
  323. // PERMUT
  324. // PI
  325. // POWER
  326. // PRODUCT
  327. // PROPER
  328. // QUOTIENT
  329. // RADIANS
  330. // RAND
  331. // RANDBETWEEN
  332. // REPLACE
  333. // REPLACEB
  334. // REPT
  335. // RIGHT
  336. // RIGHTB
  337. // ROMAN
  338. // ROUND
  339. // ROUNDDOWN
  340. // ROUNDUP
  341. // ROW
  342. // ROWS
  343. // SEC
  344. // SECH
  345. // SHEET
  346. // SIGN
  347. // SIN
  348. // SINH
  349. // SMALL
  350. // SQRT
  351. // SQRTPI
  352. // STDEV
  353. // STDEVA
  354. // SUBSTITUTE
  355. // SUM
  356. // SUMIF
  357. // SUMSQ
  358. // TAN
  359. // TANH
  360. // TODAY
  361. // TRIM
  362. // TRUE
  363. // TRUNC
  364. // UNICHAR
  365. // UNICODE
  366. // UPPER
  367. // VLOOKUP
  368. //
  369. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  370. var (
  371. formula string
  372. token efp.Token
  373. )
  374. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  375. return
  376. }
  377. ps := efp.ExcelParser()
  378. tokens := ps.Parse(formula)
  379. if tokens == nil {
  380. return
  381. }
  382. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  383. return
  384. }
  385. result = token.TValue
  386. isNum, precision := isNumeric(result)
  387. if isNum && precision > 15 {
  388. num, _ := roundPrecision(result)
  389. result = strings.ToUpper(num)
  390. }
  391. return
  392. }
  393. // getPriority calculate arithmetic operator priority.
  394. func getPriority(token efp.Token) (pri int) {
  395. pri = tokenPriority[token.TValue]
  396. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  397. pri = 6
  398. }
  399. if isBeginParenthesesToken(token) { // (
  400. pri = 0
  401. }
  402. return
  403. }
  404. // newNumberFormulaArg constructs a number formula argument.
  405. func newNumberFormulaArg(n float64) formulaArg {
  406. if math.IsNaN(n) {
  407. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  408. }
  409. return formulaArg{Type: ArgNumber, Number: n}
  410. }
  411. // newStringFormulaArg constructs a string formula argument.
  412. func newStringFormulaArg(s string) formulaArg {
  413. return formulaArg{Type: ArgString, String: s}
  414. }
  415. // newMatrixFormulaArg constructs a matrix formula argument.
  416. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  417. return formulaArg{Type: ArgMatrix, Matrix: m}
  418. }
  419. // newListFormulaArg create a list formula argument.
  420. func newListFormulaArg(l []formulaArg) formulaArg {
  421. return formulaArg{Type: ArgList, List: l}
  422. }
  423. // newBoolFormulaArg constructs a boolean formula argument.
  424. func newBoolFormulaArg(b bool) formulaArg {
  425. var n float64
  426. if b {
  427. n = 1
  428. }
  429. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  430. }
  431. // newErrorFormulaArg create an error formula argument of a given type with a
  432. // specified error message.
  433. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  434. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  435. }
  436. // newEmptyFormulaArg create an empty formula argument.
  437. func newEmptyFormulaArg() formulaArg {
  438. return formulaArg{Type: ArgEmpty}
  439. }
  440. // evalInfixExp evaluate syntax analysis by given infix expression after
  441. // lexical analysis. Evaluate an infix expression containing formulas by
  442. // stacks:
  443. //
  444. // opd - Operand
  445. // opt - Operator
  446. // opf - Operation formula
  447. // opfd - Operand of the operation formula
  448. // opft - Operator of the operation formula
  449. // args - Arguments list of the operation formula
  450. //
  451. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  452. //
  453. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  454. var err error
  455. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  456. for i := 0; i < len(tokens); i++ {
  457. token := tokens[i]
  458. // out of function stack
  459. if opfStack.Len() == 0 {
  460. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  461. return efp.Token{}, err
  462. }
  463. }
  464. // function start
  465. if isFunctionStartToken(token) {
  466. opfStack.Push(token)
  467. argsStack.Push(list.New().Init())
  468. continue
  469. }
  470. // in function stack, walk 2 token at once
  471. if opfStack.Len() > 0 {
  472. var nextToken efp.Token
  473. if i+1 < len(tokens) {
  474. nextToken = tokens[i+1]
  475. }
  476. // current token is args or range, skip next token, order required: parse reference first
  477. if token.TSubType == efp.TokenSubTypeRange {
  478. if !opftStack.Empty() {
  479. // parse reference: must reference at here
  480. result, err := f.parseReference(sheet, token.TValue)
  481. if err != nil {
  482. return efp.Token{TValue: formulaErrorNAME}, err
  483. }
  484. if result.Type != ArgString {
  485. return efp.Token{}, errors.New(formulaErrorVALUE)
  486. }
  487. opfdStack.Push(efp.Token{
  488. TType: efp.TokenTypeOperand,
  489. TSubType: efp.TokenSubTypeNumber,
  490. TValue: result.String,
  491. })
  492. continue
  493. }
  494. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  495. // parse reference: reference or range at here
  496. result, err := f.parseReference(sheet, token.TValue)
  497. if err != nil {
  498. return efp.Token{TValue: formulaErrorNAME}, err
  499. }
  500. if result.Type == ArgUnknown {
  501. return efp.Token{}, errors.New(formulaErrorVALUE)
  502. }
  503. argsStack.Peek().(*list.List).PushBack(result)
  504. continue
  505. }
  506. }
  507. // check current token is opft
  508. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  509. return efp.Token{}, err
  510. }
  511. // current token is arg
  512. if token.TType == efp.TokenTypeArgument {
  513. for !opftStack.Empty() {
  514. // calculate trigger
  515. topOpt := opftStack.Peek().(efp.Token)
  516. if err := calculate(opfdStack, topOpt); err != nil {
  517. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  518. }
  519. opftStack.Pop()
  520. }
  521. if !opfdStack.Empty() {
  522. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  523. }
  524. continue
  525. }
  526. // current token is logical
  527. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  528. }
  529. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  530. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  531. }
  532. // current token is text
  533. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  534. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  535. }
  536. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  537. return efp.Token{}, err
  538. }
  539. }
  540. }
  541. for optStack.Len() != 0 {
  542. topOpt := optStack.Peek().(efp.Token)
  543. if err = calculate(opdStack, topOpt); err != nil {
  544. return efp.Token{}, err
  545. }
  546. optStack.Pop()
  547. }
  548. if opdStack.Len() == 0 {
  549. return efp.Token{}, errors.New("formula not valid")
  550. }
  551. return opdStack.Peek().(efp.Token), err
  552. }
  553. // evalInfixExpFunc evaluate formula function in the infix expression.
  554. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  555. if !isFunctionStopToken(token) {
  556. return nil
  557. }
  558. // current token is function stop
  559. for !opftStack.Empty() {
  560. // calculate trigger
  561. topOpt := opftStack.Peek().(efp.Token)
  562. if err := calculate(opfdStack, topOpt); err != nil {
  563. return err
  564. }
  565. opftStack.Pop()
  566. }
  567. // push opfd to args
  568. if opfdStack.Len() > 0 {
  569. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  570. }
  571. // call formula function to evaluate
  572. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  573. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  574. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  575. if arg.Type == ArgError && opfStack.Len() == 1 {
  576. return errors.New(arg.Value())
  577. }
  578. argsStack.Pop()
  579. opfStack.Pop()
  580. if opfStack.Len() > 0 { // still in function stack
  581. if nextToken.TType == efp.TokenTypeOperatorInfix {
  582. // mathematics calculate in formula function
  583. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  584. } else {
  585. argsStack.Peek().(*list.List).PushBack(arg)
  586. }
  587. } else {
  588. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  589. }
  590. return nil
  591. }
  592. // calcPow evaluate exponentiation arithmetic operations.
  593. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  594. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  595. if err != nil {
  596. return err
  597. }
  598. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  599. if err != nil {
  600. return err
  601. }
  602. result := math.Pow(lOpdVal, rOpdVal)
  603. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  604. return nil
  605. }
  606. // calcEq evaluate equal arithmetic operations.
  607. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  608. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  609. return nil
  610. }
  611. // calcNEq evaluate not equal arithmetic operations.
  612. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  613. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  614. return nil
  615. }
  616. // calcL evaluate less than arithmetic operations.
  617. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  618. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  619. if err != nil {
  620. return err
  621. }
  622. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  623. if err != nil {
  624. return err
  625. }
  626. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  627. return nil
  628. }
  629. // calcLe evaluate less than or equal arithmetic operations.
  630. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  631. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  632. if err != nil {
  633. return err
  634. }
  635. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  636. if err != nil {
  637. return err
  638. }
  639. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  640. return nil
  641. }
  642. // calcG evaluate greater than or equal arithmetic operations.
  643. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  644. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  645. if err != nil {
  646. return err
  647. }
  648. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  649. if err != nil {
  650. return err
  651. }
  652. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  653. return nil
  654. }
  655. // calcGe evaluate greater than or equal arithmetic operations.
  656. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  657. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  658. if err != nil {
  659. return err
  660. }
  661. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  662. if err != nil {
  663. return err
  664. }
  665. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  666. return nil
  667. }
  668. // calcSplice evaluate splice '&' operations.
  669. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  670. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  671. return nil
  672. }
  673. // calcAdd evaluate addition arithmetic operations.
  674. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  675. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  676. if err != nil {
  677. return err
  678. }
  679. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  680. if err != nil {
  681. return err
  682. }
  683. result := lOpdVal + rOpdVal
  684. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  685. return nil
  686. }
  687. // calcSubtract evaluate subtraction arithmetic operations.
  688. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  689. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  690. if err != nil {
  691. return err
  692. }
  693. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  694. if err != nil {
  695. return err
  696. }
  697. result := lOpdVal - rOpdVal
  698. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  699. return nil
  700. }
  701. // calcMultiply evaluate multiplication arithmetic operations.
  702. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  703. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  704. if err != nil {
  705. return err
  706. }
  707. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  708. if err != nil {
  709. return err
  710. }
  711. result := lOpdVal * rOpdVal
  712. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  713. return nil
  714. }
  715. // calcDiv evaluate division arithmetic operations.
  716. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  717. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  718. if err != nil {
  719. return err
  720. }
  721. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  722. if err != nil {
  723. return err
  724. }
  725. result := lOpdVal / rOpdVal
  726. if rOpdVal == 0 {
  727. return errors.New(formulaErrorDIV)
  728. }
  729. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  730. return nil
  731. }
  732. // calculate evaluate basic arithmetic operations.
  733. func calculate(opdStack *Stack, opt efp.Token) error {
  734. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  735. if opdStack.Len() < 1 {
  736. return errors.New("formula not valid")
  737. }
  738. opd := opdStack.Pop().(efp.Token)
  739. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  740. if err != nil {
  741. return err
  742. }
  743. result := 0 - opdVal
  744. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  745. }
  746. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  747. "^": calcPow,
  748. "*": calcMultiply,
  749. "/": calcDiv,
  750. "+": calcAdd,
  751. "=": calcEq,
  752. "<>": calcNEq,
  753. "<": calcL,
  754. "<=": calcLe,
  755. ">": calcG,
  756. ">=": calcGe,
  757. "&": calcSplice,
  758. }
  759. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  760. if opdStack.Len() < 2 {
  761. return errors.New("formula not valid")
  762. }
  763. rOpd := opdStack.Pop().(efp.Token)
  764. lOpd := opdStack.Pop().(efp.Token)
  765. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  766. return err
  767. }
  768. }
  769. fn, ok := tokenCalcFunc[opt.TValue]
  770. if ok {
  771. if opdStack.Len() < 2 {
  772. return errors.New("formula not valid")
  773. }
  774. rOpd := opdStack.Pop().(efp.Token)
  775. lOpd := opdStack.Pop().(efp.Token)
  776. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  777. return err
  778. }
  779. }
  780. return nil
  781. }
  782. // parseOperatorPrefixToken parse operator prefix token.
  783. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  784. if optStack.Len() == 0 {
  785. optStack.Push(token)
  786. } else {
  787. tokenPriority := getPriority(token)
  788. topOpt := optStack.Peek().(efp.Token)
  789. topOptPriority := getPriority(topOpt)
  790. if tokenPriority > topOptPriority {
  791. optStack.Push(token)
  792. } else {
  793. for tokenPriority <= topOptPriority {
  794. optStack.Pop()
  795. if err = calculate(opdStack, topOpt); err != nil {
  796. return
  797. }
  798. if optStack.Len() > 0 {
  799. topOpt = optStack.Peek().(efp.Token)
  800. topOptPriority = getPriority(topOpt)
  801. continue
  802. }
  803. break
  804. }
  805. optStack.Push(token)
  806. }
  807. }
  808. return
  809. }
  810. // isFunctionStartToken determine if the token is function stop.
  811. func isFunctionStartToken(token efp.Token) bool {
  812. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  813. }
  814. // isFunctionStopToken determine if the token is function stop.
  815. func isFunctionStopToken(token efp.Token) bool {
  816. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  817. }
  818. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  819. func isBeginParenthesesToken(token efp.Token) bool {
  820. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  821. }
  822. // isEndParenthesesToken determine if the token is end parentheses: ).
  823. func isEndParenthesesToken(token efp.Token) bool {
  824. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  825. }
  826. // isOperatorPrefixToken determine if the token is parse operator prefix
  827. // token.
  828. func isOperatorPrefixToken(token efp.Token) bool {
  829. _, ok := tokenPriority[token.TValue]
  830. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  831. return true
  832. }
  833. return false
  834. }
  835. // getDefinedNameRefTo convert defined name to reference range.
  836. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  837. for _, definedName := range f.GetDefinedName() {
  838. if definedName.Name == definedNameName {
  839. refTo = definedName.RefersTo
  840. // worksheet scope takes precedence over scope workbook when both definedNames exist
  841. if definedName.Scope == currentSheet {
  842. break
  843. }
  844. }
  845. }
  846. return refTo
  847. }
  848. // parseToken parse basic arithmetic operator priority and evaluate based on
  849. // operators and operands.
  850. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  851. // parse reference: must reference at here
  852. if token.TSubType == efp.TokenSubTypeRange {
  853. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  854. if refTo != "" {
  855. token.TValue = refTo
  856. }
  857. result, err := f.parseReference(sheet, token.TValue)
  858. if err != nil {
  859. return errors.New(formulaErrorNAME)
  860. }
  861. if result.Type != ArgString {
  862. return errors.New(formulaErrorVALUE)
  863. }
  864. token.TValue = result.String
  865. token.TType = efp.TokenTypeOperand
  866. token.TSubType = efp.TokenSubTypeNumber
  867. }
  868. if isOperatorPrefixToken(token) {
  869. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  870. return err
  871. }
  872. }
  873. if isBeginParenthesesToken(token) { // (
  874. optStack.Push(token)
  875. }
  876. if isEndParenthesesToken(token) { // )
  877. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  878. topOpt := optStack.Peek().(efp.Token)
  879. if err := calculate(opdStack, topOpt); err != nil {
  880. return err
  881. }
  882. optStack.Pop()
  883. }
  884. optStack.Pop()
  885. }
  886. // opd
  887. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  888. opdStack.Push(token)
  889. }
  890. return nil
  891. }
  892. // parseReference parse reference and extract values by given reference
  893. // characters and default sheet name.
  894. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  895. reference = strings.Replace(reference, "$", "", -1)
  896. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  897. for _, ref := range strings.Split(reference, ":") {
  898. tokens := strings.Split(ref, "!")
  899. cr := cellRef{}
  900. if len(tokens) == 2 { // have a worksheet name
  901. cr.Sheet = tokens[0]
  902. // cast to cell coordinates
  903. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  904. // cast to column
  905. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  906. // cast to row
  907. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  908. err = newInvalidColumnNameError(tokens[1])
  909. return
  910. }
  911. cr.Col = TotalColumns
  912. }
  913. }
  914. if refs.Len() > 0 {
  915. e := refs.Back()
  916. cellRefs.PushBack(e.Value.(cellRef))
  917. refs.Remove(e)
  918. }
  919. refs.PushBack(cr)
  920. continue
  921. }
  922. // cast to cell coordinates
  923. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  924. // cast to column
  925. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  926. // cast to row
  927. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  928. err = newInvalidColumnNameError(tokens[0])
  929. return
  930. }
  931. cr.Col = TotalColumns
  932. }
  933. cellRanges.PushBack(cellRange{
  934. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  935. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  936. })
  937. cellRefs.Init()
  938. arg, err = f.rangeResolver(cellRefs, cellRanges)
  939. return
  940. }
  941. e := refs.Back()
  942. if e == nil {
  943. cr.Sheet = sheet
  944. refs.PushBack(cr)
  945. continue
  946. }
  947. cellRanges.PushBack(cellRange{
  948. From: e.Value.(cellRef),
  949. To: cr,
  950. })
  951. refs.Remove(e)
  952. }
  953. if refs.Len() > 0 {
  954. e := refs.Back()
  955. cellRefs.PushBack(e.Value.(cellRef))
  956. refs.Remove(e)
  957. }
  958. arg, err = f.rangeResolver(cellRefs, cellRanges)
  959. return
  960. }
  961. // prepareValueRange prepare value range.
  962. func prepareValueRange(cr cellRange, valueRange []int) {
  963. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  964. valueRange[0] = cr.From.Row
  965. }
  966. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  967. valueRange[2] = cr.From.Col
  968. }
  969. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  970. valueRange[1] = cr.To.Row
  971. }
  972. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  973. valueRange[3] = cr.To.Col
  974. }
  975. }
  976. // prepareValueRef prepare value reference.
  977. func prepareValueRef(cr cellRef, valueRange []int) {
  978. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  979. valueRange[0] = cr.Row
  980. }
  981. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  982. valueRange[2] = cr.Col
  983. }
  984. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  985. valueRange[1] = cr.Row
  986. }
  987. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  988. valueRange[3] = cr.Col
  989. }
  990. }
  991. // rangeResolver extract value as string from given reference and range list.
  992. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  993. // be reference A1:B3.
  994. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  995. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  996. // value range order: from row, to row, from column, to column
  997. valueRange := []int{0, 0, 0, 0}
  998. var sheet string
  999. // prepare value range
  1000. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1001. cr := temp.Value.(cellRange)
  1002. if cr.From.Sheet != cr.To.Sheet {
  1003. err = errors.New(formulaErrorVALUE)
  1004. }
  1005. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1006. _ = sortCoordinates(rng)
  1007. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1008. prepareValueRange(cr, valueRange)
  1009. if cr.From.Sheet != "" {
  1010. sheet = cr.From.Sheet
  1011. }
  1012. }
  1013. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1014. cr := temp.Value.(cellRef)
  1015. if cr.Sheet != "" {
  1016. sheet = cr.Sheet
  1017. }
  1018. prepareValueRef(cr, valueRange)
  1019. }
  1020. // extract value from ranges
  1021. if cellRanges.Len() > 0 {
  1022. arg.Type = ArgMatrix
  1023. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1024. var matrixRow = []formulaArg{}
  1025. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1026. var cell, value string
  1027. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1028. return
  1029. }
  1030. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1031. return
  1032. }
  1033. matrixRow = append(matrixRow, formulaArg{
  1034. String: value,
  1035. Type: ArgString,
  1036. })
  1037. }
  1038. arg.Matrix = append(arg.Matrix, matrixRow)
  1039. }
  1040. return
  1041. }
  1042. // extract value from references
  1043. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1044. cr := temp.Value.(cellRef)
  1045. var cell string
  1046. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1047. return
  1048. }
  1049. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1050. return
  1051. }
  1052. arg.Type = ArgString
  1053. }
  1054. return
  1055. }
  1056. // callFuncByName calls the no error or only error return function with
  1057. // reflect by given receiver, name and parameters.
  1058. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1059. function := reflect.ValueOf(receiver).MethodByName(name)
  1060. if function.IsValid() {
  1061. rt := function.Call(params)
  1062. if len(rt) == 0 {
  1063. return
  1064. }
  1065. arg = rt[0].Interface().(formulaArg)
  1066. return
  1067. }
  1068. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1069. }
  1070. // formulaCriteriaParser parse formula criteria.
  1071. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1072. fc = &formulaCriteria{}
  1073. if exp == "" {
  1074. return
  1075. }
  1076. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1077. fc.Type, fc.Condition = criteriaEq, match[1]
  1078. return
  1079. }
  1080. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1081. fc.Type, fc.Condition = criteriaEq, match[1]
  1082. return
  1083. }
  1084. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1085. fc.Type, fc.Condition = criteriaLe, match[1]
  1086. return
  1087. }
  1088. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1089. fc.Type, fc.Condition = criteriaGe, match[1]
  1090. return
  1091. }
  1092. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1093. fc.Type, fc.Condition = criteriaL, match[1]
  1094. return
  1095. }
  1096. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1097. fc.Type, fc.Condition = criteriaG, match[1]
  1098. return
  1099. }
  1100. if strings.Contains(exp, "*") {
  1101. if strings.HasPrefix(exp, "*") {
  1102. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1103. }
  1104. if strings.HasSuffix(exp, "*") {
  1105. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1106. }
  1107. return
  1108. }
  1109. fc.Type, fc.Condition = criteriaEq, exp
  1110. return
  1111. }
  1112. // formulaCriteriaEval evaluate formula criteria expression.
  1113. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1114. var value, expected float64
  1115. var e error
  1116. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1117. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1118. return
  1119. }
  1120. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1121. return
  1122. }
  1123. return
  1124. }
  1125. switch criteria.Type {
  1126. case criteriaEq:
  1127. return val == criteria.Condition, err
  1128. case criteriaLe:
  1129. value, expected, e = prepareValue(val, criteria.Condition)
  1130. return value <= expected && e == nil, err
  1131. case criteriaGe:
  1132. value, expected, e = prepareValue(val, criteria.Condition)
  1133. return value >= expected && e == nil, err
  1134. case criteriaL:
  1135. value, expected, e = prepareValue(val, criteria.Condition)
  1136. return value < expected && e == nil, err
  1137. case criteriaG:
  1138. value, expected, e = prepareValue(val, criteria.Condition)
  1139. return value > expected && e == nil, err
  1140. case criteriaBeg:
  1141. return strings.HasPrefix(val, criteria.Condition), err
  1142. case criteriaEnd:
  1143. return strings.HasSuffix(val, criteria.Condition), err
  1144. }
  1145. return
  1146. }
  1147. // Engineering Functions
  1148. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1149. // The syntax of the function is:
  1150. //
  1151. // BIN2DEC(number)
  1152. //
  1153. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1154. if argsList.Len() != 1 {
  1155. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1156. }
  1157. token := argsList.Front().Value.(formulaArg)
  1158. number := token.ToNumber()
  1159. if number.Type != ArgNumber {
  1160. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1161. }
  1162. return fn.bin2dec(token.Value())
  1163. }
  1164. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1165. // (Base 16) number. The syntax of the function is:
  1166. //
  1167. // BIN2HEX(number,[places])
  1168. //
  1169. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1170. if argsList.Len() < 1 {
  1171. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1172. }
  1173. if argsList.Len() > 2 {
  1174. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1175. }
  1176. token := argsList.Front().Value.(formulaArg)
  1177. number := token.ToNumber()
  1178. if number.Type != ArgNumber {
  1179. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1180. }
  1181. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1182. if decimal.Type != ArgNumber {
  1183. return decimal
  1184. }
  1185. newList.PushBack(decimal)
  1186. if argsList.Len() == 2 {
  1187. newList.PushBack(argsList.Back().Value.(formulaArg))
  1188. }
  1189. return fn.dec2x("BIN2HEX", newList)
  1190. }
  1191. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1192. // number. The syntax of the function is:
  1193. //
  1194. // BIN2OCT(number,[places])
  1195. //
  1196. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1197. if argsList.Len() < 1 {
  1198. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1199. }
  1200. if argsList.Len() > 2 {
  1201. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1202. }
  1203. token := argsList.Front().Value.(formulaArg)
  1204. number := token.ToNumber()
  1205. if number.Type != ArgNumber {
  1206. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1207. }
  1208. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1209. if decimal.Type != ArgNumber {
  1210. return decimal
  1211. }
  1212. newList.PushBack(decimal)
  1213. if argsList.Len() == 2 {
  1214. newList.PushBack(argsList.Back().Value.(formulaArg))
  1215. }
  1216. return fn.dec2x("BIN2OCT", newList)
  1217. }
  1218. // bin2dec is an implementation of the formula function BIN2DEC.
  1219. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1220. decimal, length := 0.0, len(number)
  1221. for i := length; i > 0; i-- {
  1222. s := string(number[length-i])
  1223. if 10 == i && s == "1" {
  1224. decimal += math.Pow(-2.0, float64(i-1))
  1225. continue
  1226. }
  1227. if s == "1" {
  1228. decimal += math.Pow(2.0, float64(i-1))
  1229. continue
  1230. }
  1231. if s != "0" {
  1232. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1233. }
  1234. }
  1235. return newNumberFormulaArg(decimal)
  1236. }
  1237. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1238. // syntax of the function is:
  1239. //
  1240. // BITAND(number1,number2)
  1241. //
  1242. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1243. return fn.bitwise("BITAND", argsList)
  1244. }
  1245. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1246. // number of bits. The syntax of the function is:
  1247. //
  1248. // BITLSHIFT(number1,shift_amount)
  1249. //
  1250. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1251. return fn.bitwise("BITLSHIFT", argsList)
  1252. }
  1253. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1254. // syntax of the function is:
  1255. //
  1256. // BITOR(number1,number2)
  1257. //
  1258. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1259. return fn.bitwise("BITOR", argsList)
  1260. }
  1261. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1262. // number of bits. The syntax of the function is:
  1263. //
  1264. // BITRSHIFT(number1,shift_amount)
  1265. //
  1266. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1267. return fn.bitwise("BITRSHIFT", argsList)
  1268. }
  1269. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1270. // integers. The syntax of the function is:
  1271. //
  1272. // BITXOR(number1,number2)
  1273. //
  1274. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1275. return fn.bitwise("BITXOR", argsList)
  1276. }
  1277. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1278. // BITOR, BITRSHIFT and BITXOR.
  1279. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1280. if argsList.Len() != 2 {
  1281. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1282. }
  1283. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1284. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1285. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1286. }
  1287. max := math.Pow(2, 48) - 1
  1288. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1289. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1290. }
  1291. bitwiseFuncMap := map[string]func(a, b int) int{
  1292. "BITAND": func(a, b int) int { return a & b },
  1293. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1294. "BITOR": func(a, b int) int { return a | b },
  1295. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1296. "BITXOR": func(a, b int) int { return a ^ b },
  1297. }
  1298. bitwiseFunc := bitwiseFuncMap[name]
  1299. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1300. }
  1301. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1302. // The syntax of the function is:
  1303. //
  1304. // DEC2BIN(number,[places])
  1305. //
  1306. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1307. return fn.dec2x("DEC2BIN", argsList)
  1308. }
  1309. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1310. // number. The syntax of the function is:
  1311. //
  1312. // DEC2HEX(number,[places])
  1313. //
  1314. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1315. return fn.dec2x("DEC2HEX", argsList)
  1316. }
  1317. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1318. // The syntax of the function is:
  1319. //
  1320. // DEC2OCT(number,[places])
  1321. //
  1322. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1323. return fn.dec2x("DEC2OCT", argsList)
  1324. }
  1325. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1326. // DEC2OCT.
  1327. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1328. if argsList.Len() < 1 {
  1329. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1330. }
  1331. if argsList.Len() > 2 {
  1332. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1333. }
  1334. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1335. if decimal.Type != ArgNumber {
  1336. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1337. }
  1338. maxLimitMap := map[string]float64{
  1339. "DEC2BIN": 511,
  1340. "HEX2BIN": 511,
  1341. "OCT2BIN": 511,
  1342. "BIN2HEX": 549755813887,
  1343. "DEC2HEX": 549755813887,
  1344. "OCT2HEX": 549755813887,
  1345. "BIN2OCT": 536870911,
  1346. "DEC2OCT": 536870911,
  1347. "HEX2OCT": 536870911,
  1348. }
  1349. minLimitMap := map[string]float64{
  1350. "DEC2BIN": -512,
  1351. "HEX2BIN": -512,
  1352. "OCT2BIN": -512,
  1353. "BIN2HEX": -549755813888,
  1354. "DEC2HEX": -549755813888,
  1355. "OCT2HEX": -549755813888,
  1356. "BIN2OCT": -536870912,
  1357. "DEC2OCT": -536870912,
  1358. "HEX2OCT": -536870912,
  1359. }
  1360. baseMap := map[string]int{
  1361. "DEC2BIN": 2,
  1362. "HEX2BIN": 2,
  1363. "OCT2BIN": 2,
  1364. "BIN2HEX": 16,
  1365. "DEC2HEX": 16,
  1366. "OCT2HEX": 16,
  1367. "BIN2OCT": 8,
  1368. "DEC2OCT": 8,
  1369. "HEX2OCT": 8,
  1370. }
  1371. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1372. base := baseMap[name]
  1373. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1374. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1375. }
  1376. n := int64(decimal.Number)
  1377. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1378. if argsList.Len() == 2 {
  1379. places := argsList.Back().Value.(formulaArg).ToNumber()
  1380. if places.Type != ArgNumber {
  1381. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1382. }
  1383. binaryPlaces := len(binary)
  1384. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1385. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1386. }
  1387. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1388. }
  1389. if decimal.Number < 0 && len(binary) > 10 {
  1390. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1391. }
  1392. return newStringFormulaArg(strings.ToUpper(binary))
  1393. }
  1394. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1395. // (Base 2) number. The syntax of the function is:
  1396. //
  1397. // HEX2BIN(number,[places])
  1398. //
  1399. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1400. if argsList.Len() < 1 {
  1401. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1402. }
  1403. if argsList.Len() > 2 {
  1404. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1405. }
  1406. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1407. if decimal.Type != ArgNumber {
  1408. return decimal
  1409. }
  1410. newList.PushBack(decimal)
  1411. if argsList.Len() == 2 {
  1412. newList.PushBack(argsList.Back().Value.(formulaArg))
  1413. }
  1414. return fn.dec2x("HEX2BIN", newList)
  1415. }
  1416. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1417. // number. The syntax of the function is:
  1418. //
  1419. // HEX2DEC(number)
  1420. //
  1421. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1422. if argsList.Len() != 1 {
  1423. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1424. }
  1425. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1426. }
  1427. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1428. // (Base 8) number. The syntax of the function is:
  1429. //
  1430. // HEX2OCT(number,[places])
  1431. //
  1432. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1433. if argsList.Len() < 1 {
  1434. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1435. }
  1436. if argsList.Len() > 2 {
  1437. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1438. }
  1439. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1440. if decimal.Type != ArgNumber {
  1441. return decimal
  1442. }
  1443. newList.PushBack(decimal)
  1444. if argsList.Len() == 2 {
  1445. newList.PushBack(argsList.Back().Value.(formulaArg))
  1446. }
  1447. return fn.dec2x("HEX2OCT", newList)
  1448. }
  1449. // hex2dec is an implementation of the formula function HEX2DEC.
  1450. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1451. decimal, length := 0.0, len(number)
  1452. for i := length; i > 0; i-- {
  1453. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1454. if err != nil {
  1455. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1456. }
  1457. if 10 == i && string(number[length-i]) == "F" {
  1458. decimal += math.Pow(-16.0, float64(i-1))
  1459. continue
  1460. }
  1461. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1462. }
  1463. return newNumberFormulaArg(decimal)
  1464. }
  1465. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1466. // number. The syntax of the function is:
  1467. //
  1468. // OCT2BIN(number,[places])
  1469. //
  1470. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1471. if argsList.Len() < 1 {
  1472. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1473. }
  1474. if argsList.Len() > 2 {
  1475. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1476. }
  1477. token := argsList.Front().Value.(formulaArg)
  1478. number := token.ToNumber()
  1479. if number.Type != ArgNumber {
  1480. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1481. }
  1482. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1483. newList.PushBack(decimal)
  1484. if argsList.Len() == 2 {
  1485. newList.PushBack(argsList.Back().Value.(formulaArg))
  1486. }
  1487. return fn.dec2x("OCT2BIN", newList)
  1488. }
  1489. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1490. // The syntax of the function is:
  1491. //
  1492. // OCT2DEC(number)
  1493. //
  1494. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1495. if argsList.Len() != 1 {
  1496. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1497. }
  1498. token := argsList.Front().Value.(formulaArg)
  1499. number := token.ToNumber()
  1500. if number.Type != ArgNumber {
  1501. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1502. }
  1503. return fn.oct2dec(token.Value())
  1504. }
  1505. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1506. // (Base 16) number. The syntax of the function is:
  1507. //
  1508. // OCT2HEX(number,[places])
  1509. //
  1510. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1511. if argsList.Len() < 1 {
  1512. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1513. }
  1514. if argsList.Len() > 2 {
  1515. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1516. }
  1517. token := argsList.Front().Value.(formulaArg)
  1518. number := token.ToNumber()
  1519. if number.Type != ArgNumber {
  1520. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1521. }
  1522. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1523. newList.PushBack(decimal)
  1524. if argsList.Len() == 2 {
  1525. newList.PushBack(argsList.Back().Value.(formulaArg))
  1526. }
  1527. return fn.dec2x("OCT2HEX", newList)
  1528. }
  1529. // oct2dec is an implementation of the formula function OCT2DEC.
  1530. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1531. decimal, length := 0.0, len(number)
  1532. for i := length; i > 0; i-- {
  1533. num, _ := strconv.Atoi(string(number[length-i]))
  1534. if 10 == i && string(number[length-i]) == "7" {
  1535. decimal += math.Pow(-8.0, float64(i-1))
  1536. continue
  1537. }
  1538. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1539. }
  1540. return newNumberFormulaArg(decimal)
  1541. }
  1542. // Math and Trigonometric Functions
  1543. // ABS function returns the absolute value of any supplied number. The syntax
  1544. // of the function is:
  1545. //
  1546. // ABS(number)
  1547. //
  1548. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1549. if argsList.Len() != 1 {
  1550. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1551. }
  1552. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1553. if arg.Type == ArgError {
  1554. return arg
  1555. }
  1556. return newNumberFormulaArg(math.Abs(arg.Number))
  1557. }
  1558. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1559. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1560. // the function is:
  1561. //
  1562. // ACOS(number)
  1563. //
  1564. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1565. if argsList.Len() != 1 {
  1566. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1567. }
  1568. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1569. if arg.Type == ArgError {
  1570. return arg
  1571. }
  1572. return newNumberFormulaArg(math.Acos(arg.Number))
  1573. }
  1574. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1575. // of the function is:
  1576. //
  1577. // ACOSH(number)
  1578. //
  1579. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1580. if argsList.Len() != 1 {
  1581. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1582. }
  1583. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1584. if arg.Type == ArgError {
  1585. return arg
  1586. }
  1587. return newNumberFormulaArg(math.Acosh(arg.Number))
  1588. }
  1589. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1590. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1591. // of the function is:
  1592. //
  1593. // ACOT(number)
  1594. //
  1595. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1596. if argsList.Len() != 1 {
  1597. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1598. }
  1599. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1600. if arg.Type == ArgError {
  1601. return arg
  1602. }
  1603. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1604. }
  1605. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1606. // value. The syntax of the function is:
  1607. //
  1608. // ACOTH(number)
  1609. //
  1610. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1611. if argsList.Len() != 1 {
  1612. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1613. }
  1614. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1615. if arg.Type == ArgError {
  1616. return arg
  1617. }
  1618. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1619. }
  1620. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1621. // of the function is:
  1622. //
  1623. // ARABIC(text)
  1624. //
  1625. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1626. if argsList.Len() != 1 {
  1627. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1628. }
  1629. text := argsList.Front().Value.(formulaArg).Value()
  1630. if len(text) > 255 {
  1631. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1632. }
  1633. text = strings.ToUpper(text)
  1634. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1635. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1636. for index >= 0 && text[index] == ' ' {
  1637. index--
  1638. }
  1639. for actualStart <= index && text[actualStart] == ' ' {
  1640. actualStart++
  1641. }
  1642. if actualStart <= index && text[actualStart] == '-' {
  1643. isNegative = true
  1644. actualStart++
  1645. }
  1646. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1647. for index >= actualStart {
  1648. startIndex = index
  1649. startChar := text[startIndex]
  1650. index--
  1651. for index >= actualStart && (text[index]|' ') == startChar {
  1652. index--
  1653. }
  1654. currentCharValue = charMap[rune(startChar)]
  1655. currentPartValue = (startIndex - index) * currentCharValue
  1656. if currentCharValue >= prevCharValue {
  1657. number += currentPartValue - subtractNumber
  1658. prevCharValue = currentCharValue
  1659. subtractNumber = 0
  1660. continue
  1661. }
  1662. subtractNumber += currentPartValue
  1663. }
  1664. if subtractNumber != 0 {
  1665. number -= subtractNumber
  1666. }
  1667. if isNegative {
  1668. number = -number
  1669. }
  1670. return newNumberFormulaArg(float64(number))
  1671. }
  1672. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1673. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1674. // of the function is:
  1675. //
  1676. // ASIN(number)
  1677. //
  1678. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1679. if argsList.Len() != 1 {
  1680. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1681. }
  1682. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1683. if arg.Type == ArgError {
  1684. return arg
  1685. }
  1686. return newNumberFormulaArg(math.Asin(arg.Number))
  1687. }
  1688. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1689. // The syntax of the function is:
  1690. //
  1691. // ASINH(number)
  1692. //
  1693. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1694. if argsList.Len() != 1 {
  1695. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1696. }
  1697. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1698. if arg.Type == ArgError {
  1699. return arg
  1700. }
  1701. return newNumberFormulaArg(math.Asinh(arg.Number))
  1702. }
  1703. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1704. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1705. // syntax of the function is:
  1706. //
  1707. // ATAN(number)
  1708. //
  1709. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1710. if argsList.Len() != 1 {
  1711. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1712. }
  1713. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1714. if arg.Type == ArgError {
  1715. return arg
  1716. }
  1717. return newNumberFormulaArg(math.Atan(arg.Number))
  1718. }
  1719. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1720. // number. The syntax of the function is:
  1721. //
  1722. // ATANH(number)
  1723. //
  1724. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1725. if argsList.Len() != 1 {
  1726. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1727. }
  1728. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1729. if arg.Type == ArgError {
  1730. return arg
  1731. }
  1732. return newNumberFormulaArg(math.Atanh(arg.Number))
  1733. }
  1734. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1735. // given set of x and y coordinates, and returns an angle, in radians, between
  1736. // -π/2 and +π/2. The syntax of the function is:
  1737. //
  1738. // ATAN2(x_num,y_num)
  1739. //
  1740. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1741. if argsList.Len() != 2 {
  1742. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1743. }
  1744. x := argsList.Back().Value.(formulaArg).ToNumber()
  1745. if x.Type == ArgError {
  1746. return x
  1747. }
  1748. y := argsList.Front().Value.(formulaArg).ToNumber()
  1749. if y.Type == ArgError {
  1750. return y
  1751. }
  1752. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1753. }
  1754. // BASE function converts a number into a supplied base (radix), and returns a
  1755. // text representation of the calculated value. The syntax of the function is:
  1756. //
  1757. // BASE(number,radix,[min_length])
  1758. //
  1759. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1760. if argsList.Len() < 2 {
  1761. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1762. }
  1763. if argsList.Len() > 3 {
  1764. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1765. }
  1766. var minLength int
  1767. var err error
  1768. number := argsList.Front().Value.(formulaArg).ToNumber()
  1769. if number.Type == ArgError {
  1770. return number
  1771. }
  1772. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1773. if radix.Type == ArgError {
  1774. return radix
  1775. }
  1776. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1777. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1778. }
  1779. if argsList.Len() > 2 {
  1780. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1781. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1782. }
  1783. }
  1784. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1785. if len(result) < minLength {
  1786. result = strings.Repeat("0", minLength-len(result)) + result
  1787. }
  1788. return newStringFormulaArg(strings.ToUpper(result))
  1789. }
  1790. // CEILING function rounds a supplied number away from zero, to the nearest
  1791. // multiple of a given number. The syntax of the function is:
  1792. //
  1793. // CEILING(number,significance)
  1794. //
  1795. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1796. if argsList.Len() == 0 {
  1797. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1798. }
  1799. if argsList.Len() > 2 {
  1800. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1801. }
  1802. number, significance, res := 0.0, 1.0, 0.0
  1803. n := argsList.Front().Value.(formulaArg).ToNumber()
  1804. if n.Type == ArgError {
  1805. return n
  1806. }
  1807. number = n.Number
  1808. if number < 0 {
  1809. significance = -1
  1810. }
  1811. if argsList.Len() > 1 {
  1812. s := argsList.Back().Value.(formulaArg).ToNumber()
  1813. if s.Type == ArgError {
  1814. return s
  1815. }
  1816. significance = s.Number
  1817. }
  1818. if significance < 0 && number > 0 {
  1819. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1820. }
  1821. if argsList.Len() == 1 {
  1822. return newNumberFormulaArg(math.Ceil(number))
  1823. }
  1824. number, res = math.Modf(number / significance)
  1825. if res > 0 {
  1826. number++
  1827. }
  1828. return newNumberFormulaArg(number * significance)
  1829. }
  1830. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  1831. // of significance. The syntax of the function is:
  1832. //
  1833. // CEILING.MATH(number,[significance],[mode])
  1834. //
  1835. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  1836. if argsList.Len() == 0 {
  1837. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1838. }
  1839. if argsList.Len() > 3 {
  1840. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1841. }
  1842. number, significance, mode := 0.0, 1.0, 1.0
  1843. n := argsList.Front().Value.(formulaArg).ToNumber()
  1844. if n.Type == ArgError {
  1845. return n
  1846. }
  1847. number = n.Number
  1848. if number < 0 {
  1849. significance = -1
  1850. }
  1851. if argsList.Len() > 1 {
  1852. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1853. if s.Type == ArgError {
  1854. return s
  1855. }
  1856. significance = s.Number
  1857. }
  1858. if argsList.Len() == 1 {
  1859. return newNumberFormulaArg(math.Ceil(number))
  1860. }
  1861. if argsList.Len() > 2 {
  1862. m := argsList.Back().Value.(formulaArg).ToNumber()
  1863. if m.Type == ArgError {
  1864. return m
  1865. }
  1866. mode = m.Number
  1867. }
  1868. val, res := math.Modf(number / significance)
  1869. if res != 0 {
  1870. if number > 0 {
  1871. val++
  1872. } else if mode < 0 {
  1873. val--
  1874. }
  1875. }
  1876. return newNumberFormulaArg(val * significance)
  1877. }
  1878. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  1879. // number's sign), to the nearest multiple of a given number. The syntax of
  1880. // the function is:
  1881. //
  1882. // CEILING.PRECISE(number,[significance])
  1883. //
  1884. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  1885. if argsList.Len() == 0 {
  1886. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1887. }
  1888. if argsList.Len() > 2 {
  1889. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1890. }
  1891. number, significance := 0.0, 1.0
  1892. n := argsList.Front().Value.(formulaArg).ToNumber()
  1893. if n.Type == ArgError {
  1894. return n
  1895. }
  1896. number = n.Number
  1897. if number < 0 {
  1898. significance = -1
  1899. }
  1900. if argsList.Len() == 1 {
  1901. return newNumberFormulaArg(math.Ceil(number))
  1902. }
  1903. if argsList.Len() > 1 {
  1904. s := argsList.Back().Value.(formulaArg).ToNumber()
  1905. if s.Type == ArgError {
  1906. return s
  1907. }
  1908. significance = s.Number
  1909. significance = math.Abs(significance)
  1910. if significance == 0 {
  1911. return newNumberFormulaArg(significance)
  1912. }
  1913. }
  1914. val, res := math.Modf(number / significance)
  1915. if res != 0 {
  1916. if number > 0 {
  1917. val++
  1918. }
  1919. }
  1920. return newNumberFormulaArg(val * significance)
  1921. }
  1922. // COMBIN function calculates the number of combinations (in any order) of a
  1923. // given number objects from a set. The syntax of the function is:
  1924. //
  1925. // COMBIN(number,number_chosen)
  1926. //
  1927. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1928. if argsList.Len() != 2 {
  1929. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1930. }
  1931. number, chosen, val := 0.0, 0.0, 1.0
  1932. n := argsList.Front().Value.(formulaArg).ToNumber()
  1933. if n.Type == ArgError {
  1934. return n
  1935. }
  1936. number = n.Number
  1937. c := argsList.Back().Value.(formulaArg).ToNumber()
  1938. if c.Type == ArgError {
  1939. return c
  1940. }
  1941. chosen = c.Number
  1942. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1943. if chosen > number {
  1944. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1945. }
  1946. if chosen == number || chosen == 0 {
  1947. return newNumberFormulaArg(1)
  1948. }
  1949. for c := float64(1); c <= chosen; c++ {
  1950. val *= (number + 1 - c) / c
  1951. }
  1952. return newNumberFormulaArg(math.Ceil(val))
  1953. }
  1954. // COMBINA function calculates the number of combinations, with repetitions,
  1955. // of a given number objects from a set. The syntax of the function is:
  1956. //
  1957. // COMBINA(number,number_chosen)
  1958. //
  1959. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1960. if argsList.Len() != 2 {
  1961. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1962. }
  1963. var number, chosen float64
  1964. n := argsList.Front().Value.(formulaArg).ToNumber()
  1965. if n.Type == ArgError {
  1966. return n
  1967. }
  1968. number = n.Number
  1969. c := argsList.Back().Value.(formulaArg).ToNumber()
  1970. if c.Type == ArgError {
  1971. return c
  1972. }
  1973. chosen = c.Number
  1974. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1975. if number < chosen {
  1976. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1977. }
  1978. if number == 0 {
  1979. return newNumberFormulaArg(number)
  1980. }
  1981. args := list.New()
  1982. args.PushBack(formulaArg{
  1983. String: fmt.Sprintf("%g", number+chosen-1),
  1984. Type: ArgString,
  1985. })
  1986. args.PushBack(formulaArg{
  1987. String: fmt.Sprintf("%g", number-1),
  1988. Type: ArgString,
  1989. })
  1990. return fn.COMBIN(args)
  1991. }
  1992. // COS function calculates the cosine of a given angle. The syntax of the
  1993. // function is:
  1994. //
  1995. // COS(number)
  1996. //
  1997. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1998. if argsList.Len() != 1 {
  1999. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2000. }
  2001. val := argsList.Front().Value.(formulaArg).ToNumber()
  2002. if val.Type == ArgError {
  2003. return val
  2004. }
  2005. return newNumberFormulaArg(math.Cos(val.Number))
  2006. }
  2007. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2008. // The syntax of the function is:
  2009. //
  2010. // COSH(number)
  2011. //
  2012. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2013. if argsList.Len() != 1 {
  2014. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2015. }
  2016. val := argsList.Front().Value.(formulaArg).ToNumber()
  2017. if val.Type == ArgError {
  2018. return val
  2019. }
  2020. return newNumberFormulaArg(math.Cosh(val.Number))
  2021. }
  2022. // COT function calculates the cotangent of a given angle. The syntax of the
  2023. // function is:
  2024. //
  2025. // COT(number)
  2026. //
  2027. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2028. if argsList.Len() != 1 {
  2029. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2030. }
  2031. val := argsList.Front().Value.(formulaArg).ToNumber()
  2032. if val.Type == ArgError {
  2033. return val
  2034. }
  2035. if val.Number == 0 {
  2036. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2037. }
  2038. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2039. }
  2040. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2041. // angle. The syntax of the function is:
  2042. //
  2043. // COTH(number)
  2044. //
  2045. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2046. if argsList.Len() != 1 {
  2047. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2048. }
  2049. val := argsList.Front().Value.(formulaArg).ToNumber()
  2050. if val.Type == ArgError {
  2051. return val
  2052. }
  2053. if val.Number == 0 {
  2054. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2055. }
  2056. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2057. }
  2058. // CSC function calculates the cosecant of a given angle. The syntax of the
  2059. // function is:
  2060. //
  2061. // CSC(number)
  2062. //
  2063. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2064. if argsList.Len() != 1 {
  2065. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2066. }
  2067. val := argsList.Front().Value.(formulaArg).ToNumber()
  2068. if val.Type == ArgError {
  2069. return val
  2070. }
  2071. if val.Number == 0 {
  2072. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2073. }
  2074. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2075. }
  2076. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2077. // angle. The syntax of the function is:
  2078. //
  2079. // CSCH(number)
  2080. //
  2081. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2082. if argsList.Len() != 1 {
  2083. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2084. }
  2085. val := argsList.Front().Value.(formulaArg).ToNumber()
  2086. if val.Type == ArgError {
  2087. return val
  2088. }
  2089. if val.Number == 0 {
  2090. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2091. }
  2092. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2093. }
  2094. // DECIMAL function converts a text representation of a number in a specified
  2095. // base, into a decimal value. The syntax of the function is:
  2096. //
  2097. // DECIMAL(text,radix)
  2098. //
  2099. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2100. if argsList.Len() != 2 {
  2101. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2102. }
  2103. var text = argsList.Front().Value.(formulaArg).String
  2104. var radix int
  2105. var err error
  2106. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2107. if err != nil {
  2108. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2109. }
  2110. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2111. text = text[2:]
  2112. }
  2113. val, err := strconv.ParseInt(text, radix, 64)
  2114. if err != nil {
  2115. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2116. }
  2117. return newNumberFormulaArg(float64(val))
  2118. }
  2119. // DEGREES function converts radians into degrees. The syntax of the function
  2120. // is:
  2121. //
  2122. // DEGREES(angle)
  2123. //
  2124. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2125. if argsList.Len() != 1 {
  2126. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2127. }
  2128. val := argsList.Front().Value.(formulaArg).ToNumber()
  2129. if val.Type == ArgError {
  2130. return val
  2131. }
  2132. if val.Number == 0 {
  2133. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2134. }
  2135. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2136. }
  2137. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2138. // positive number up and a negative number down), to the next even number.
  2139. // The syntax of the function is:
  2140. //
  2141. // EVEN(number)
  2142. //
  2143. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2144. if argsList.Len() != 1 {
  2145. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2146. }
  2147. number := argsList.Front().Value.(formulaArg).ToNumber()
  2148. if number.Type == ArgError {
  2149. return number
  2150. }
  2151. sign := math.Signbit(number.Number)
  2152. m, frac := math.Modf(number.Number / 2)
  2153. val := m * 2
  2154. if frac != 0 {
  2155. if !sign {
  2156. val += 2
  2157. } else {
  2158. val -= 2
  2159. }
  2160. }
  2161. return newNumberFormulaArg(val)
  2162. }
  2163. // EXP function calculates the value of the mathematical constant e, raised to
  2164. // the power of a given number. The syntax of the function is:
  2165. //
  2166. // EXP(number)
  2167. //
  2168. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2169. if argsList.Len() != 1 {
  2170. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2171. }
  2172. number := argsList.Front().Value.(formulaArg).ToNumber()
  2173. if number.Type == ArgError {
  2174. return number
  2175. }
  2176. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2177. }
  2178. // fact returns the factorial of a supplied number.
  2179. func fact(number float64) float64 {
  2180. val := float64(1)
  2181. for i := float64(2); i <= number; i++ {
  2182. val *= i
  2183. }
  2184. return val
  2185. }
  2186. // FACT function returns the factorial of a supplied number. The syntax of the
  2187. // function is:
  2188. //
  2189. // FACT(number)
  2190. //
  2191. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2192. if argsList.Len() != 1 {
  2193. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2194. }
  2195. number := argsList.Front().Value.(formulaArg).ToNumber()
  2196. if number.Type == ArgError {
  2197. return number
  2198. }
  2199. if number.Number < 0 {
  2200. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2201. }
  2202. return newNumberFormulaArg(fact(number.Number))
  2203. }
  2204. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2205. // syntax of the function is:
  2206. //
  2207. // FACTDOUBLE(number)
  2208. //
  2209. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2210. if argsList.Len() != 1 {
  2211. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2212. }
  2213. val := 1.0
  2214. number := argsList.Front().Value.(formulaArg).ToNumber()
  2215. if number.Type == ArgError {
  2216. return number
  2217. }
  2218. if number.Number < 0 {
  2219. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2220. }
  2221. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2222. val *= i
  2223. }
  2224. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2225. }
  2226. // FLOOR function rounds a supplied number towards zero to the nearest
  2227. // multiple of a specified significance. The syntax of the function is:
  2228. //
  2229. // FLOOR(number,significance)
  2230. //
  2231. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2232. if argsList.Len() != 2 {
  2233. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2234. }
  2235. number := argsList.Front().Value.(formulaArg).ToNumber()
  2236. if number.Type == ArgError {
  2237. return number
  2238. }
  2239. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2240. if significance.Type == ArgError {
  2241. return significance
  2242. }
  2243. if significance.Number < 0 && number.Number >= 0 {
  2244. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2245. }
  2246. val := number.Number
  2247. val, res := math.Modf(val / significance.Number)
  2248. if res != 0 {
  2249. if number.Number < 0 && res < 0 {
  2250. val--
  2251. }
  2252. }
  2253. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2254. }
  2255. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2256. // of significance. The syntax of the function is:
  2257. //
  2258. // FLOOR.MATH(number,[significance],[mode])
  2259. //
  2260. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2261. if argsList.Len() == 0 {
  2262. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2263. }
  2264. if argsList.Len() > 3 {
  2265. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2266. }
  2267. significance, mode := 1.0, 1.0
  2268. number := argsList.Front().Value.(formulaArg).ToNumber()
  2269. if number.Type == ArgError {
  2270. return number
  2271. }
  2272. if number.Number < 0 {
  2273. significance = -1
  2274. }
  2275. if argsList.Len() > 1 {
  2276. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2277. if s.Type == ArgError {
  2278. return s
  2279. }
  2280. significance = s.Number
  2281. }
  2282. if argsList.Len() == 1 {
  2283. return newNumberFormulaArg(math.Floor(number.Number))
  2284. }
  2285. if argsList.Len() > 2 {
  2286. m := argsList.Back().Value.(formulaArg).ToNumber()
  2287. if m.Type == ArgError {
  2288. return m
  2289. }
  2290. mode = m.Number
  2291. }
  2292. val, res := math.Modf(number.Number / significance)
  2293. if res != 0 && number.Number < 0 && mode > 0 {
  2294. val--
  2295. }
  2296. return newNumberFormulaArg(val * significance)
  2297. }
  2298. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2299. // multiple of significance. The syntax of the function is:
  2300. //
  2301. // FLOOR.PRECISE(number,[significance])
  2302. //
  2303. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2304. if argsList.Len() == 0 {
  2305. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2306. }
  2307. if argsList.Len() > 2 {
  2308. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2309. }
  2310. var significance float64
  2311. number := argsList.Front().Value.(formulaArg).ToNumber()
  2312. if number.Type == ArgError {
  2313. return number
  2314. }
  2315. if number.Number < 0 {
  2316. significance = -1
  2317. }
  2318. if argsList.Len() == 1 {
  2319. return newNumberFormulaArg(math.Floor(number.Number))
  2320. }
  2321. if argsList.Len() > 1 {
  2322. s := argsList.Back().Value.(formulaArg).ToNumber()
  2323. if s.Type == ArgError {
  2324. return s
  2325. }
  2326. significance = s.Number
  2327. significance = math.Abs(significance)
  2328. if significance == 0 {
  2329. return newNumberFormulaArg(significance)
  2330. }
  2331. }
  2332. val, res := math.Modf(number.Number / significance)
  2333. if res != 0 {
  2334. if number.Number < 0 {
  2335. val--
  2336. }
  2337. }
  2338. return newNumberFormulaArg(val * significance)
  2339. }
  2340. // gcd returns the greatest common divisor of two supplied integers.
  2341. func gcd(x, y float64) float64 {
  2342. x, y = math.Trunc(x), math.Trunc(y)
  2343. if x == 0 {
  2344. return y
  2345. }
  2346. if y == 0 {
  2347. return x
  2348. }
  2349. for x != y {
  2350. if x > y {
  2351. x = x - y
  2352. } else {
  2353. y = y - x
  2354. }
  2355. }
  2356. return x
  2357. }
  2358. // GCD function returns the greatest common divisor of two or more supplied
  2359. // integers. The syntax of the function is:
  2360. //
  2361. // GCD(number1,[number2],...)
  2362. //
  2363. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2364. if argsList.Len() == 0 {
  2365. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2366. }
  2367. var (
  2368. val float64
  2369. nums = []float64{}
  2370. )
  2371. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2372. token := arg.Value.(formulaArg)
  2373. switch token.Type {
  2374. case ArgString:
  2375. num := token.ToNumber()
  2376. if num.Type == ArgError {
  2377. return num
  2378. }
  2379. val = num.Number
  2380. case ArgNumber:
  2381. val = token.Number
  2382. }
  2383. nums = append(nums, val)
  2384. }
  2385. if nums[0] < 0 {
  2386. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2387. }
  2388. if len(nums) == 1 {
  2389. return newNumberFormulaArg(nums[0])
  2390. }
  2391. cd := nums[0]
  2392. for i := 1; i < len(nums); i++ {
  2393. if nums[i] < 0 {
  2394. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2395. }
  2396. cd = gcd(cd, nums[i])
  2397. }
  2398. return newNumberFormulaArg(cd)
  2399. }
  2400. // INT function truncates a supplied number down to the closest integer. The
  2401. // syntax of the function is:
  2402. //
  2403. // INT(number)
  2404. //
  2405. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2406. if argsList.Len() != 1 {
  2407. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2408. }
  2409. number := argsList.Front().Value.(formulaArg).ToNumber()
  2410. if number.Type == ArgError {
  2411. return number
  2412. }
  2413. val, frac := math.Modf(number.Number)
  2414. if frac < 0 {
  2415. val--
  2416. }
  2417. return newNumberFormulaArg(val)
  2418. }
  2419. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2420. // number's sign), to the nearest multiple of a supplied significance. The
  2421. // syntax of the function is:
  2422. //
  2423. // ISO.CEILING(number,[significance])
  2424. //
  2425. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2426. if argsList.Len() == 0 {
  2427. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2428. }
  2429. if argsList.Len() > 2 {
  2430. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2431. }
  2432. var significance float64
  2433. number := argsList.Front().Value.(formulaArg).ToNumber()
  2434. if number.Type == ArgError {
  2435. return number
  2436. }
  2437. if number.Number < 0 {
  2438. significance = -1
  2439. }
  2440. if argsList.Len() == 1 {
  2441. return newNumberFormulaArg(math.Ceil(number.Number))
  2442. }
  2443. if argsList.Len() > 1 {
  2444. s := argsList.Back().Value.(formulaArg).ToNumber()
  2445. if s.Type == ArgError {
  2446. return s
  2447. }
  2448. significance = s.Number
  2449. significance = math.Abs(significance)
  2450. if significance == 0 {
  2451. return newNumberFormulaArg(significance)
  2452. }
  2453. }
  2454. val, res := math.Modf(number.Number / significance)
  2455. if res != 0 {
  2456. if number.Number > 0 {
  2457. val++
  2458. }
  2459. }
  2460. return newNumberFormulaArg(val * significance)
  2461. }
  2462. // lcm returns the least common multiple of two supplied integers.
  2463. func lcm(a, b float64) float64 {
  2464. a = math.Trunc(a)
  2465. b = math.Trunc(b)
  2466. if a == 0 && b == 0 {
  2467. return 0
  2468. }
  2469. return a * b / gcd(a, b)
  2470. }
  2471. // LCM function returns the least common multiple of two or more supplied
  2472. // integers. The syntax of the function is:
  2473. //
  2474. // LCM(number1,[number2],...)
  2475. //
  2476. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2477. if argsList.Len() == 0 {
  2478. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2479. }
  2480. var (
  2481. val float64
  2482. nums = []float64{}
  2483. err error
  2484. )
  2485. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2486. token := arg.Value.(formulaArg)
  2487. switch token.Type {
  2488. case ArgString:
  2489. if token.String == "" {
  2490. continue
  2491. }
  2492. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2493. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2494. }
  2495. case ArgNumber:
  2496. val = token.Number
  2497. }
  2498. nums = append(nums, val)
  2499. }
  2500. if nums[0] < 0 {
  2501. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2502. }
  2503. if len(nums) == 1 {
  2504. return newNumberFormulaArg(nums[0])
  2505. }
  2506. cm := nums[0]
  2507. for i := 1; i < len(nums); i++ {
  2508. if nums[i] < 0 {
  2509. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2510. }
  2511. cm = lcm(cm, nums[i])
  2512. }
  2513. return newNumberFormulaArg(cm)
  2514. }
  2515. // LN function calculates the natural logarithm of a given number. The syntax
  2516. // of the function is:
  2517. //
  2518. // LN(number)
  2519. //
  2520. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2521. if argsList.Len() != 1 {
  2522. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2523. }
  2524. number := argsList.Front().Value.(formulaArg).ToNumber()
  2525. if number.Type == ArgError {
  2526. return number
  2527. }
  2528. return newNumberFormulaArg(math.Log(number.Number))
  2529. }
  2530. // LOG function calculates the logarithm of a given number, to a supplied
  2531. // base. The syntax of the function is:
  2532. //
  2533. // LOG(number,[base])
  2534. //
  2535. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2536. if argsList.Len() == 0 {
  2537. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2538. }
  2539. if argsList.Len() > 2 {
  2540. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2541. }
  2542. base := 10.0
  2543. number := argsList.Front().Value.(formulaArg).ToNumber()
  2544. if number.Type == ArgError {
  2545. return number
  2546. }
  2547. if argsList.Len() > 1 {
  2548. b := argsList.Back().Value.(formulaArg).ToNumber()
  2549. if b.Type == ArgError {
  2550. return b
  2551. }
  2552. base = b.Number
  2553. }
  2554. if number.Number == 0 {
  2555. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2556. }
  2557. if base == 0 {
  2558. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2559. }
  2560. if base == 1 {
  2561. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2562. }
  2563. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2564. }
  2565. // LOG10 function calculates the base 10 logarithm of a given number. The
  2566. // syntax of the function is:
  2567. //
  2568. // LOG10(number)
  2569. //
  2570. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2571. if argsList.Len() != 1 {
  2572. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2573. }
  2574. number := argsList.Front().Value.(formulaArg).ToNumber()
  2575. if number.Type == ArgError {
  2576. return number
  2577. }
  2578. return newNumberFormulaArg(math.Log10(number.Number))
  2579. }
  2580. // minor function implement a minor of a matrix A is the determinant of some
  2581. // smaller square matrix.
  2582. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2583. ret := [][]float64{}
  2584. for i := range sqMtx {
  2585. if i == 0 {
  2586. continue
  2587. }
  2588. row := []float64{}
  2589. for j := range sqMtx {
  2590. if j == idx {
  2591. continue
  2592. }
  2593. row = append(row, sqMtx[i][j])
  2594. }
  2595. ret = append(ret, row)
  2596. }
  2597. return ret
  2598. }
  2599. // det determinant of the 2x2 matrix.
  2600. func det(sqMtx [][]float64) float64 {
  2601. if len(sqMtx) == 2 {
  2602. m00 := sqMtx[0][0]
  2603. m01 := sqMtx[0][1]
  2604. m10 := sqMtx[1][0]
  2605. m11 := sqMtx[1][1]
  2606. return m00*m11 - m10*m01
  2607. }
  2608. var res, sgn float64 = 0, 1
  2609. for j := range sqMtx {
  2610. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2611. sgn *= -1
  2612. }
  2613. return res
  2614. }
  2615. // MDETERM calculates the determinant of a square matrix. The
  2616. // syntax of the function is:
  2617. //
  2618. // MDETERM(array)
  2619. //
  2620. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2621. var (
  2622. num float64
  2623. numMtx = [][]float64{}
  2624. err error
  2625. strMtx [][]formulaArg
  2626. )
  2627. if argsList.Len() < 1 {
  2628. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2629. }
  2630. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2631. var rows = len(strMtx)
  2632. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2633. if len(row) != rows {
  2634. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2635. }
  2636. numRow := []float64{}
  2637. for _, ele := range row {
  2638. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2639. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2640. }
  2641. numRow = append(numRow, num)
  2642. }
  2643. numMtx = append(numMtx, numRow)
  2644. }
  2645. return newNumberFormulaArg(det(numMtx))
  2646. }
  2647. // MOD function returns the remainder of a division between two supplied
  2648. // numbers. The syntax of the function is:
  2649. //
  2650. // MOD(number,divisor)
  2651. //
  2652. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2653. if argsList.Len() != 2 {
  2654. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2655. }
  2656. number := argsList.Front().Value.(formulaArg).ToNumber()
  2657. if number.Type == ArgError {
  2658. return number
  2659. }
  2660. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2661. if divisor.Type == ArgError {
  2662. return divisor
  2663. }
  2664. if divisor.Number == 0 {
  2665. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2666. }
  2667. trunc, rem := math.Modf(number.Number / divisor.Number)
  2668. if rem < 0 {
  2669. trunc--
  2670. }
  2671. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2672. }
  2673. // MROUND function rounds a supplied number up or down to the nearest multiple
  2674. // of a given number. The syntax of the function is:
  2675. //
  2676. // MROUND(number,multiple)
  2677. //
  2678. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2679. if argsList.Len() != 2 {
  2680. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2681. }
  2682. n := argsList.Front().Value.(formulaArg).ToNumber()
  2683. if n.Type == ArgError {
  2684. return n
  2685. }
  2686. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2687. if multiple.Type == ArgError {
  2688. return multiple
  2689. }
  2690. if multiple.Number == 0 {
  2691. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2692. }
  2693. if multiple.Number < 0 && n.Number > 0 ||
  2694. multiple.Number > 0 && n.Number < 0 {
  2695. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2696. }
  2697. number, res := math.Modf(n.Number / multiple.Number)
  2698. if math.Trunc(res+0.5) > 0 {
  2699. number++
  2700. }
  2701. return newNumberFormulaArg(number * multiple.Number)
  2702. }
  2703. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2704. // supplied values to the product of factorials of those values. The syntax of
  2705. // the function is:
  2706. //
  2707. // MULTINOMIAL(number1,[number2],...)
  2708. //
  2709. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2710. val, num, denom := 0.0, 0.0, 1.0
  2711. var err error
  2712. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2713. token := arg.Value.(formulaArg)
  2714. switch token.Type {
  2715. case ArgString:
  2716. if token.String == "" {
  2717. continue
  2718. }
  2719. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2720. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2721. }
  2722. case ArgNumber:
  2723. val = token.Number
  2724. }
  2725. num += val
  2726. denom *= fact(val)
  2727. }
  2728. return newNumberFormulaArg(fact(num) / denom)
  2729. }
  2730. // MUNIT function returns the unit matrix for a specified dimension. The
  2731. // syntax of the function is:
  2732. //
  2733. // MUNIT(dimension)
  2734. //
  2735. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2736. if argsList.Len() != 1 {
  2737. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2738. }
  2739. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2740. if dimension.Type == ArgError || dimension.Number < 0 {
  2741. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2742. }
  2743. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2744. for i := 0; i < int(dimension.Number); i++ {
  2745. row := make([]formulaArg, int(dimension.Number))
  2746. for j := 0; j < int(dimension.Number); j++ {
  2747. if i == j {
  2748. row[j] = newNumberFormulaArg(1.0)
  2749. } else {
  2750. row[j] = newNumberFormulaArg(0.0)
  2751. }
  2752. }
  2753. matrix = append(matrix, row)
  2754. }
  2755. return newMatrixFormulaArg(matrix)
  2756. }
  2757. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2758. // number up and a negative number down), to the next odd number. The syntax
  2759. // of the function is:
  2760. //
  2761. // ODD(number)
  2762. //
  2763. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2764. if argsList.Len() != 1 {
  2765. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2766. }
  2767. number := argsList.Back().Value.(formulaArg).ToNumber()
  2768. if number.Type == ArgError {
  2769. return number
  2770. }
  2771. if number.Number == 0 {
  2772. return newNumberFormulaArg(1)
  2773. }
  2774. sign := math.Signbit(number.Number)
  2775. m, frac := math.Modf((number.Number - 1) / 2)
  2776. val := m*2 + 1
  2777. if frac != 0 {
  2778. if !sign {
  2779. val += 2
  2780. } else {
  2781. val -= 2
  2782. }
  2783. }
  2784. return newNumberFormulaArg(val)
  2785. }
  2786. // PI function returns the value of the mathematical constant π (pi), accurate
  2787. // to 15 digits (14 decimal places). The syntax of the function is:
  2788. //
  2789. // PI()
  2790. //
  2791. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2792. if argsList.Len() != 0 {
  2793. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2794. }
  2795. return newNumberFormulaArg(math.Pi)
  2796. }
  2797. // POWER function calculates a given number, raised to a supplied power.
  2798. // The syntax of the function is:
  2799. //
  2800. // POWER(number,power)
  2801. //
  2802. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2803. if argsList.Len() != 2 {
  2804. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2805. }
  2806. x := argsList.Front().Value.(formulaArg).ToNumber()
  2807. if x.Type == ArgError {
  2808. return x
  2809. }
  2810. y := argsList.Back().Value.(formulaArg).ToNumber()
  2811. if y.Type == ArgError {
  2812. return y
  2813. }
  2814. if x.Number == 0 && y.Number == 0 {
  2815. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2816. }
  2817. if x.Number == 0 && y.Number < 0 {
  2818. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2819. }
  2820. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2821. }
  2822. // PRODUCT function returns the product (multiplication) of a supplied set of
  2823. // numerical values. The syntax of the function is:
  2824. //
  2825. // PRODUCT(number1,[number2],...)
  2826. //
  2827. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2828. val, product := 0.0, 1.0
  2829. var err error
  2830. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2831. token := arg.Value.(formulaArg)
  2832. switch token.Type {
  2833. case ArgUnknown:
  2834. continue
  2835. case ArgString:
  2836. if token.String == "" {
  2837. continue
  2838. }
  2839. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2840. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2841. }
  2842. product = product * val
  2843. case ArgNumber:
  2844. product = product * token.Number
  2845. case ArgMatrix:
  2846. for _, row := range token.Matrix {
  2847. for _, value := range row {
  2848. if value.String == "" {
  2849. continue
  2850. }
  2851. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2852. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2853. }
  2854. product = product * val
  2855. }
  2856. }
  2857. }
  2858. }
  2859. return newNumberFormulaArg(product)
  2860. }
  2861. // QUOTIENT function returns the integer portion of a division between two
  2862. // supplied numbers. The syntax of the function is:
  2863. //
  2864. // QUOTIENT(numerator,denominator)
  2865. //
  2866. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2867. if argsList.Len() != 2 {
  2868. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2869. }
  2870. x := argsList.Front().Value.(formulaArg).ToNumber()
  2871. if x.Type == ArgError {
  2872. return x
  2873. }
  2874. y := argsList.Back().Value.(formulaArg).ToNumber()
  2875. if y.Type == ArgError {
  2876. return y
  2877. }
  2878. if y.Number == 0 {
  2879. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2880. }
  2881. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2882. }
  2883. // RADIANS function converts radians into degrees. The syntax of the function is:
  2884. //
  2885. // RADIANS(angle)
  2886. //
  2887. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2888. if argsList.Len() != 1 {
  2889. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2890. }
  2891. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2892. if angle.Type == ArgError {
  2893. return angle
  2894. }
  2895. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2896. }
  2897. // RAND function generates a random real number between 0 and 1. The syntax of
  2898. // the function is:
  2899. //
  2900. // RAND()
  2901. //
  2902. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2903. if argsList.Len() != 0 {
  2904. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2905. }
  2906. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2907. }
  2908. // RANDBETWEEN function generates a random integer between two supplied
  2909. // integers. The syntax of the function is:
  2910. //
  2911. // RANDBETWEEN(bottom,top)
  2912. //
  2913. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2914. if argsList.Len() != 2 {
  2915. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2916. }
  2917. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2918. if bottom.Type == ArgError {
  2919. return bottom
  2920. }
  2921. top := argsList.Back().Value.(formulaArg).ToNumber()
  2922. if top.Type == ArgError {
  2923. return top
  2924. }
  2925. if top.Number < bottom.Number {
  2926. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2927. }
  2928. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2929. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2930. }
  2931. // romanNumerals defined a numeral system that originated in ancient Rome and
  2932. // remained the usual way of writing numbers throughout Europe well into the
  2933. // Late Middle Ages.
  2934. type romanNumerals struct {
  2935. n float64
  2936. s string
  2937. }
  2938. var romanTable = [][]romanNumerals{
  2939. {
  2940. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2941. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2942. },
  2943. {
  2944. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2945. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2946. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2947. },
  2948. {
  2949. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2950. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2951. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2952. },
  2953. {
  2954. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2955. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2956. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2957. {5, "V"}, {4, "IV"}, {1, "I"},
  2958. },
  2959. {
  2960. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2961. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2962. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2963. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2964. },
  2965. }
  2966. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2967. // integer, the function returns a text string depicting the roman numeral
  2968. // form of the number. The syntax of the function is:
  2969. //
  2970. // ROMAN(number,[form])
  2971. //
  2972. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2973. if argsList.Len() == 0 {
  2974. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2975. }
  2976. if argsList.Len() > 2 {
  2977. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2978. }
  2979. var form int
  2980. number := argsList.Front().Value.(formulaArg).ToNumber()
  2981. if number.Type == ArgError {
  2982. return number
  2983. }
  2984. if argsList.Len() > 1 {
  2985. f := argsList.Back().Value.(formulaArg).ToNumber()
  2986. if f.Type == ArgError {
  2987. return f
  2988. }
  2989. form = int(f.Number)
  2990. if form < 0 {
  2991. form = 0
  2992. } else if form > 4 {
  2993. form = 4
  2994. }
  2995. }
  2996. decimalTable := romanTable[0]
  2997. switch form {
  2998. case 1:
  2999. decimalTable = romanTable[1]
  3000. case 2:
  3001. decimalTable = romanTable[2]
  3002. case 3:
  3003. decimalTable = romanTable[3]
  3004. case 4:
  3005. decimalTable = romanTable[4]
  3006. }
  3007. val := math.Trunc(number.Number)
  3008. buf := bytes.Buffer{}
  3009. for _, r := range decimalTable {
  3010. for val >= r.n {
  3011. buf.WriteString(r.s)
  3012. val -= r.n
  3013. }
  3014. }
  3015. return newStringFormulaArg(buf.String())
  3016. }
  3017. type roundMode byte
  3018. const (
  3019. closest roundMode = iota
  3020. down
  3021. up
  3022. )
  3023. // round rounds a supplied number up or down.
  3024. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3025. var significance float64
  3026. if digits > 0 {
  3027. significance = math.Pow(1/10.0, digits)
  3028. } else {
  3029. significance = math.Pow(10.0, -digits)
  3030. }
  3031. val, res := math.Modf(number / significance)
  3032. switch mode {
  3033. case closest:
  3034. const eps = 0.499999999
  3035. if res >= eps {
  3036. val++
  3037. } else if res <= -eps {
  3038. val--
  3039. }
  3040. case down:
  3041. case up:
  3042. if res > 0 {
  3043. val++
  3044. } else if res < 0 {
  3045. val--
  3046. }
  3047. }
  3048. return val * significance
  3049. }
  3050. // ROUND function rounds a supplied number up or down, to a specified number
  3051. // of decimal places. The syntax of the function is:
  3052. //
  3053. // ROUND(number,num_digits)
  3054. //
  3055. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3056. if argsList.Len() != 2 {
  3057. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3058. }
  3059. number := argsList.Front().Value.(formulaArg).ToNumber()
  3060. if number.Type == ArgError {
  3061. return number
  3062. }
  3063. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3064. if digits.Type == ArgError {
  3065. return digits
  3066. }
  3067. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3068. }
  3069. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3070. // specified number of decimal places. The syntax of the function is:
  3071. //
  3072. // ROUNDDOWN(number,num_digits)
  3073. //
  3074. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3075. if argsList.Len() != 2 {
  3076. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3077. }
  3078. number := argsList.Front().Value.(formulaArg).ToNumber()
  3079. if number.Type == ArgError {
  3080. return number
  3081. }
  3082. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3083. if digits.Type == ArgError {
  3084. return digits
  3085. }
  3086. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3087. }
  3088. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3089. // specified number of decimal places. The syntax of the function is:
  3090. //
  3091. // ROUNDUP(number,num_digits)
  3092. //
  3093. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3094. if argsList.Len() != 2 {
  3095. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3096. }
  3097. number := argsList.Front().Value.(formulaArg).ToNumber()
  3098. if number.Type == ArgError {
  3099. return number
  3100. }
  3101. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3102. if digits.Type == ArgError {
  3103. return digits
  3104. }
  3105. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3106. }
  3107. // SEC function calculates the secant of a given angle. The syntax of the
  3108. // function is:
  3109. //
  3110. // SEC(number)
  3111. //
  3112. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3113. if argsList.Len() != 1 {
  3114. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3115. }
  3116. number := argsList.Front().Value.(formulaArg).ToNumber()
  3117. if number.Type == ArgError {
  3118. return number
  3119. }
  3120. return newNumberFormulaArg(math.Cos(number.Number))
  3121. }
  3122. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3123. // The syntax of the function is:
  3124. //
  3125. // SECH(number)
  3126. //
  3127. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3128. if argsList.Len() != 1 {
  3129. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3130. }
  3131. number := argsList.Front().Value.(formulaArg).ToNumber()
  3132. if number.Type == ArgError {
  3133. return number
  3134. }
  3135. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3136. }
  3137. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3138. // number. I.e. if the number is positive, the Sign function returns +1, if
  3139. // the number is negative, the function returns -1 and if the number is 0
  3140. // (zero), the function returns 0. The syntax of the function is:
  3141. //
  3142. // SIGN(number)
  3143. //
  3144. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3145. if argsList.Len() != 1 {
  3146. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3147. }
  3148. val := argsList.Front().Value.(formulaArg).ToNumber()
  3149. if val.Type == ArgError {
  3150. return val
  3151. }
  3152. if val.Number < 0 {
  3153. return newNumberFormulaArg(-1)
  3154. }
  3155. if val.Number > 0 {
  3156. return newNumberFormulaArg(1)
  3157. }
  3158. return newNumberFormulaArg(0)
  3159. }
  3160. // SIN function calculates the sine of a given angle. The syntax of the
  3161. // function is:
  3162. //
  3163. // SIN(number)
  3164. //
  3165. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3166. if argsList.Len() != 1 {
  3167. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3168. }
  3169. number := argsList.Front().Value.(formulaArg).ToNumber()
  3170. if number.Type == ArgError {
  3171. return number
  3172. }
  3173. return newNumberFormulaArg(math.Sin(number.Number))
  3174. }
  3175. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3176. // The syntax of the function is:
  3177. //
  3178. // SINH(number)
  3179. //
  3180. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3181. if argsList.Len() != 1 {
  3182. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3183. }
  3184. number := argsList.Front().Value.(formulaArg).ToNumber()
  3185. if number.Type == ArgError {
  3186. return number
  3187. }
  3188. return newNumberFormulaArg(math.Sinh(number.Number))
  3189. }
  3190. // SQRT function calculates the positive square root of a supplied number. The
  3191. // syntax of the function is:
  3192. //
  3193. // SQRT(number)
  3194. //
  3195. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3196. if argsList.Len() != 1 {
  3197. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3198. }
  3199. value := argsList.Front().Value.(formulaArg).ToNumber()
  3200. if value.Type == ArgError {
  3201. return value
  3202. }
  3203. if value.Number < 0 {
  3204. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3205. }
  3206. return newNumberFormulaArg(math.Sqrt(value.Number))
  3207. }
  3208. // SQRTPI function returns the square root of a supplied number multiplied by
  3209. // the mathematical constant, π. The syntax of the function is:
  3210. //
  3211. // SQRTPI(number)
  3212. //
  3213. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3214. if argsList.Len() != 1 {
  3215. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3216. }
  3217. number := argsList.Front().Value.(formulaArg).ToNumber()
  3218. if number.Type == ArgError {
  3219. return number
  3220. }
  3221. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3222. }
  3223. // STDEV function calculates the sample standard deviation of a supplied set
  3224. // of values. The syntax of the function is:
  3225. //
  3226. // STDEV(number1,[number2],...)
  3227. //
  3228. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3229. if argsList.Len() < 1 {
  3230. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3231. }
  3232. return fn.stdev(false, argsList)
  3233. }
  3234. // STDEVA function estimates standard deviation based on a sample. The
  3235. // standard deviation is a measure of how widely values are dispersed from
  3236. // the average value (the mean). The syntax of the function is:
  3237. //
  3238. // STDEVA(number1,[number2],...)
  3239. //
  3240. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3241. if argsList.Len() < 1 {
  3242. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3243. }
  3244. return fn.stdev(true, argsList)
  3245. }
  3246. // stdev is an implementation of the formula function STDEV and STDEVA.
  3247. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3248. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3249. if result == -1 {
  3250. result = math.Pow((n.Number - m.Number), 2)
  3251. } else {
  3252. result += math.Pow((n.Number - m.Number), 2)
  3253. }
  3254. count++
  3255. return result, count
  3256. }
  3257. count, result := -1.0, -1.0
  3258. var mean formulaArg
  3259. if stdeva {
  3260. mean = fn.AVERAGEA(argsList)
  3261. } else {
  3262. mean = fn.AVERAGE(argsList)
  3263. }
  3264. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3265. token := arg.Value.(formulaArg)
  3266. switch token.Type {
  3267. case ArgString, ArgNumber:
  3268. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3269. continue
  3270. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3271. num := token.ToBool()
  3272. if num.Type == ArgNumber {
  3273. result, count = pow(result, count, num, mean)
  3274. continue
  3275. }
  3276. } else {
  3277. num := token.ToNumber()
  3278. if num.Type == ArgNumber {
  3279. result, count = pow(result, count, num, mean)
  3280. }
  3281. }
  3282. case ArgList, ArgMatrix:
  3283. for _, row := range token.ToList() {
  3284. if row.Type == ArgNumber || row.Type == ArgString {
  3285. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3286. continue
  3287. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3288. num := row.ToBool()
  3289. if num.Type == ArgNumber {
  3290. result, count = pow(result, count, num, mean)
  3291. continue
  3292. }
  3293. } else {
  3294. num := row.ToNumber()
  3295. if num.Type == ArgNumber {
  3296. result, count = pow(result, count, num, mean)
  3297. }
  3298. }
  3299. }
  3300. }
  3301. }
  3302. }
  3303. if count > 0 && result >= 0 {
  3304. return newNumberFormulaArg(math.Sqrt(result / count))
  3305. }
  3306. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3307. }
  3308. // SUM function adds together a supplied set of numbers and returns the sum of
  3309. // these values. The syntax of the function is:
  3310. //
  3311. // SUM(number1,[number2],...)
  3312. //
  3313. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3314. var sum float64
  3315. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3316. token := arg.Value.(formulaArg)
  3317. switch token.Type {
  3318. case ArgUnknown:
  3319. continue
  3320. case ArgString:
  3321. if num := token.ToNumber(); num.Type == ArgNumber {
  3322. sum += num.Number
  3323. }
  3324. case ArgNumber:
  3325. sum += token.Number
  3326. case ArgMatrix:
  3327. for _, row := range token.Matrix {
  3328. for _, value := range row {
  3329. if num := value.ToNumber(); num.Type == ArgNumber {
  3330. sum += num.Number
  3331. }
  3332. }
  3333. }
  3334. }
  3335. }
  3336. return newNumberFormulaArg(sum)
  3337. }
  3338. // SUMIF function finds the values in a supplied array, that satisfy a given
  3339. // criteria, and returns the sum of the corresponding values in a second
  3340. // supplied array. The syntax of the function is:
  3341. //
  3342. // SUMIF(range,criteria,[sum_range])
  3343. //
  3344. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3345. if argsList.Len() < 2 {
  3346. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3347. }
  3348. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3349. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3350. var sumRange [][]formulaArg
  3351. if argsList.Len() == 3 {
  3352. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3353. }
  3354. var sum, val float64
  3355. var err error
  3356. for rowIdx, row := range rangeMtx {
  3357. for colIdx, col := range row {
  3358. var ok bool
  3359. fromVal := col.String
  3360. if col.String == "" {
  3361. continue
  3362. }
  3363. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3364. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3365. }
  3366. if ok {
  3367. if argsList.Len() == 3 {
  3368. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3369. continue
  3370. }
  3371. fromVal = sumRange[rowIdx][colIdx].String
  3372. }
  3373. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3374. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3375. }
  3376. sum += val
  3377. }
  3378. }
  3379. }
  3380. return newNumberFormulaArg(sum)
  3381. }
  3382. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3383. // syntax of the function is:
  3384. //
  3385. // SUMSQ(number1,[number2],...)
  3386. //
  3387. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3388. var val, sq float64
  3389. var err error
  3390. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3391. token := arg.Value.(formulaArg)
  3392. switch token.Type {
  3393. case ArgString:
  3394. if token.String == "" {
  3395. continue
  3396. }
  3397. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3398. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3399. }
  3400. sq += val * val
  3401. case ArgNumber:
  3402. sq += token.Number
  3403. case ArgMatrix:
  3404. for _, row := range token.Matrix {
  3405. for _, value := range row {
  3406. if value.String == "" {
  3407. continue
  3408. }
  3409. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3410. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3411. }
  3412. sq += val * val
  3413. }
  3414. }
  3415. }
  3416. }
  3417. return newNumberFormulaArg(sq)
  3418. }
  3419. // TAN function calculates the tangent of a given angle. The syntax of the
  3420. // function is:
  3421. //
  3422. // TAN(number)
  3423. //
  3424. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3425. if argsList.Len() != 1 {
  3426. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3427. }
  3428. number := argsList.Front().Value.(formulaArg).ToNumber()
  3429. if number.Type == ArgError {
  3430. return number
  3431. }
  3432. return newNumberFormulaArg(math.Tan(number.Number))
  3433. }
  3434. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3435. // number. The syntax of the function is:
  3436. //
  3437. // TANH(number)
  3438. //
  3439. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3440. if argsList.Len() != 1 {
  3441. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3442. }
  3443. number := argsList.Front().Value.(formulaArg).ToNumber()
  3444. if number.Type == ArgError {
  3445. return number
  3446. }
  3447. return newNumberFormulaArg(math.Tanh(number.Number))
  3448. }
  3449. // TRUNC function truncates a supplied number to a specified number of decimal
  3450. // places. The syntax of the function is:
  3451. //
  3452. // TRUNC(number,[number_digits])
  3453. //
  3454. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3455. if argsList.Len() == 0 {
  3456. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3457. }
  3458. var digits, adjust, rtrim float64
  3459. var err error
  3460. number := argsList.Front().Value.(formulaArg).ToNumber()
  3461. if number.Type == ArgError {
  3462. return number
  3463. }
  3464. if argsList.Len() > 1 {
  3465. d := argsList.Back().Value.(formulaArg).ToNumber()
  3466. if d.Type == ArgError {
  3467. return d
  3468. }
  3469. digits = d.Number
  3470. digits = math.Floor(digits)
  3471. }
  3472. adjust = math.Pow(10, digits)
  3473. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3474. if x != 0 {
  3475. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3476. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3477. }
  3478. }
  3479. if (digits > 0) && (rtrim < adjust/10) {
  3480. return newNumberFormulaArg(number.Number)
  3481. }
  3482. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3483. }
  3484. // Statistical Functions
  3485. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3486. // The syntax of the function is:
  3487. //
  3488. // AVERAGE(number1,[number2],...)
  3489. //
  3490. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3491. args := []formulaArg{}
  3492. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3493. args = append(args, arg.Value.(formulaArg))
  3494. }
  3495. count, sum := fn.countSum(false, args)
  3496. if count == 0 {
  3497. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3498. }
  3499. return newNumberFormulaArg(sum / count)
  3500. }
  3501. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3502. // with text cell and zero values. The syntax of the function is:
  3503. //
  3504. // AVERAGEA(number1,[number2],...)
  3505. //
  3506. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3507. args := []formulaArg{}
  3508. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3509. args = append(args, arg.Value.(formulaArg))
  3510. }
  3511. count, sum := fn.countSum(true, args)
  3512. if count == 0 {
  3513. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3514. }
  3515. return newNumberFormulaArg(sum / count)
  3516. }
  3517. // countSum get count and sum for a formula arguments array.
  3518. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3519. for _, arg := range args {
  3520. switch arg.Type {
  3521. case ArgNumber:
  3522. if countText || !arg.Boolean {
  3523. sum += arg.Number
  3524. count++
  3525. }
  3526. case ArgString:
  3527. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3528. continue
  3529. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3530. num := arg.ToBool()
  3531. if num.Type == ArgNumber {
  3532. count++
  3533. sum += num.Number
  3534. continue
  3535. }
  3536. }
  3537. num := arg.ToNumber()
  3538. if countText && num.Type == ArgError && arg.String != "" {
  3539. count++
  3540. }
  3541. if num.Type == ArgNumber {
  3542. sum += num.Number
  3543. count++
  3544. }
  3545. case ArgList, ArgMatrix:
  3546. cnt, summary := fn.countSum(countText, arg.ToList())
  3547. sum += summary
  3548. count += cnt
  3549. }
  3550. }
  3551. return
  3552. }
  3553. // COUNT function returns the count of numeric values in a supplied set of
  3554. // cells or values. This count includes both numbers and dates. The syntax of
  3555. // the function is:
  3556. //
  3557. // COUNT(value1,[value2],...)
  3558. //
  3559. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3560. var count int
  3561. for token := argsList.Front(); token != nil; token = token.Next() {
  3562. arg := token.Value.(formulaArg)
  3563. switch arg.Type {
  3564. case ArgString:
  3565. if arg.ToNumber().Type != ArgError {
  3566. count++
  3567. }
  3568. case ArgNumber:
  3569. count++
  3570. case ArgMatrix:
  3571. for _, row := range arg.Matrix {
  3572. for _, value := range row {
  3573. if value.ToNumber().Type != ArgError {
  3574. count++
  3575. }
  3576. }
  3577. }
  3578. }
  3579. }
  3580. return newNumberFormulaArg(float64(count))
  3581. }
  3582. // COUNTA function returns the number of non-blanks within a supplied set of
  3583. // cells or values. The syntax of the function is:
  3584. //
  3585. // COUNTA(value1,[value2],...)
  3586. //
  3587. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3588. var count int
  3589. for token := argsList.Front(); token != nil; token = token.Next() {
  3590. arg := token.Value.(formulaArg)
  3591. switch arg.Type {
  3592. case ArgString:
  3593. if arg.String != "" {
  3594. count++
  3595. }
  3596. case ArgNumber:
  3597. count++
  3598. case ArgMatrix:
  3599. for _, row := range arg.ToList() {
  3600. switch row.Type {
  3601. case ArgString:
  3602. if row.String != "" {
  3603. count++
  3604. }
  3605. case ArgNumber:
  3606. count++
  3607. }
  3608. }
  3609. }
  3610. }
  3611. return newNumberFormulaArg(float64(count))
  3612. }
  3613. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3614. // The syntax of the function is:
  3615. //
  3616. // COUNTBLANK(range)
  3617. //
  3618. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3619. if argsList.Len() != 1 {
  3620. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3621. }
  3622. var count int
  3623. token := argsList.Front().Value.(formulaArg)
  3624. switch token.Type {
  3625. case ArgString:
  3626. if token.String == "" {
  3627. count++
  3628. }
  3629. case ArgList, ArgMatrix:
  3630. for _, row := range token.ToList() {
  3631. switch row.Type {
  3632. case ArgString:
  3633. if row.String == "" {
  3634. count++
  3635. }
  3636. case ArgEmpty:
  3637. count++
  3638. }
  3639. }
  3640. case ArgEmpty:
  3641. count++
  3642. }
  3643. return newNumberFormulaArg(float64(count))
  3644. }
  3645. // FISHER function calculates the Fisher Transformation for a supplied value.
  3646. // The syntax of the function is:
  3647. //
  3648. // FISHER(x)
  3649. //
  3650. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3651. if argsList.Len() != 1 {
  3652. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3653. }
  3654. token := argsList.Front().Value.(formulaArg)
  3655. switch token.Type {
  3656. case ArgString:
  3657. arg := token.ToNumber()
  3658. if arg.Type == ArgNumber {
  3659. if arg.Number <= -1 || arg.Number >= 1 {
  3660. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3661. }
  3662. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3663. }
  3664. case ArgNumber:
  3665. if token.Number <= -1 || token.Number >= 1 {
  3666. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3667. }
  3668. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3669. }
  3670. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3671. }
  3672. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3673. // returns a value between -1 and +1. The syntax of the function is:
  3674. //
  3675. // FISHERINV(y)
  3676. //
  3677. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3678. if argsList.Len() != 1 {
  3679. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3680. }
  3681. token := argsList.Front().Value.(formulaArg)
  3682. switch token.Type {
  3683. case ArgString:
  3684. arg := token.ToNumber()
  3685. if arg.Type == ArgNumber {
  3686. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3687. }
  3688. case ArgNumber:
  3689. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3690. }
  3691. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3692. }
  3693. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3694. // specified number, n. The syntax of the function is:
  3695. //
  3696. // GAMMA(number)
  3697. //
  3698. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3699. if argsList.Len() != 1 {
  3700. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3701. }
  3702. token := argsList.Front().Value.(formulaArg)
  3703. switch token.Type {
  3704. case ArgString:
  3705. arg := token.ToNumber()
  3706. if arg.Type == ArgNumber {
  3707. if arg.Number <= 0 {
  3708. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3709. }
  3710. return newNumberFormulaArg(math.Gamma(arg.Number))
  3711. }
  3712. case ArgNumber:
  3713. if token.Number <= 0 {
  3714. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3715. }
  3716. return newNumberFormulaArg(math.Gamma(token.Number))
  3717. }
  3718. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3719. }
  3720. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3721. // (n). The syntax of the function is:
  3722. //
  3723. // GAMMALN(x)
  3724. //
  3725. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3726. if argsList.Len() != 1 {
  3727. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3728. }
  3729. token := argsList.Front().Value.(formulaArg)
  3730. switch token.Type {
  3731. case ArgString:
  3732. arg := token.ToNumber()
  3733. if arg.Type == ArgNumber {
  3734. if arg.Number <= 0 {
  3735. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3736. }
  3737. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3738. }
  3739. case ArgNumber:
  3740. if token.Number <= 0 {
  3741. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3742. }
  3743. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3744. }
  3745. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3746. }
  3747. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  3748. // The syntax of the function is:
  3749. //
  3750. // HARMEAN(number1,[number2],...)
  3751. //
  3752. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  3753. if argsList.Len() < 1 {
  3754. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  3755. }
  3756. if min := fn.MIN(argsList); min.Number < 0 {
  3757. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3758. }
  3759. number, val, cnt := 0.0, 0.0, 0.0
  3760. for token := argsList.Front(); token != nil; token = token.Next() {
  3761. arg := token.Value.(formulaArg)
  3762. switch arg.Type {
  3763. case ArgString:
  3764. num := arg.ToNumber()
  3765. if num.Type != ArgNumber {
  3766. continue
  3767. }
  3768. number = num.Number
  3769. case ArgNumber:
  3770. number = arg.Number
  3771. }
  3772. if number <= 0 {
  3773. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3774. }
  3775. val += (1 / number)
  3776. cnt++
  3777. }
  3778. return newNumberFormulaArg(1 / (val / cnt))
  3779. }
  3780. // KURT function calculates the kurtosis of a supplied set of values. The
  3781. // syntax of the function is:
  3782. //
  3783. // KURT(number1,[number2],...)
  3784. //
  3785. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3786. if argsList.Len() < 1 {
  3787. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3788. }
  3789. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3790. if stdev.Number > 0 {
  3791. count, summer := 0.0, 0.0
  3792. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3793. token := arg.Value.(formulaArg)
  3794. switch token.Type {
  3795. case ArgString, ArgNumber:
  3796. num := token.ToNumber()
  3797. if num.Type == ArgError {
  3798. continue
  3799. }
  3800. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3801. count++
  3802. case ArgList, ArgMatrix:
  3803. for _, row := range token.ToList() {
  3804. if row.Type == ArgNumber || row.Type == ArgString {
  3805. num := row.ToNumber()
  3806. if num.Type == ArgError {
  3807. continue
  3808. }
  3809. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3810. count++
  3811. }
  3812. }
  3813. }
  3814. }
  3815. if count > 3 {
  3816. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3817. }
  3818. }
  3819. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3820. }
  3821. // NORMdotDIST function calculates the Normal Probability Density Function or
  3822. // the Cumulative Normal Distribution. Function for a supplied set of
  3823. // parameters. The syntax of the function is:
  3824. //
  3825. // NORM.DIST(x,mean,standard_dev,cumulative)
  3826. //
  3827. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  3828. if argsList.Len() != 4 {
  3829. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  3830. }
  3831. return fn.NORMDIST(argsList)
  3832. }
  3833. // NORMDIST function calculates the Normal Probability Density Function or the
  3834. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  3835. // The syntax of the function is:
  3836. //
  3837. // NORMDIST(x,mean,standard_dev,cumulative)
  3838. //
  3839. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  3840. if argsList.Len() != 4 {
  3841. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  3842. }
  3843. var x, mean, stdDev, cumulative formulaArg
  3844. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3845. return x
  3846. }
  3847. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3848. return mean
  3849. }
  3850. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3851. return stdDev
  3852. }
  3853. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3854. return cumulative
  3855. }
  3856. if stdDev.Number < 0 {
  3857. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3858. }
  3859. if cumulative.Number == 1 {
  3860. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  3861. }
  3862. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  3863. }
  3864. // NORMdotINV function calculates the inverse of the Cumulative Normal
  3865. // Distribution Function for a supplied value of x, and a supplied
  3866. // distribution mean & standard deviation. The syntax of the function is:
  3867. //
  3868. // NORM.INV(probability,mean,standard_dev)
  3869. //
  3870. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  3871. if argsList.Len() != 3 {
  3872. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  3873. }
  3874. return fn.NORMINV(argsList)
  3875. }
  3876. // NORMINV function calculates the inverse of the Cumulative Normal
  3877. // Distribution Function for a supplied value of x, and a supplied
  3878. // distribution mean & standard deviation. The syntax of the function is:
  3879. //
  3880. // NORMINV(probability,mean,standard_dev)
  3881. //
  3882. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  3883. if argsList.Len() != 3 {
  3884. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  3885. }
  3886. var prob, mean, stdDev formulaArg
  3887. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  3888. return prob
  3889. }
  3890. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3891. return mean
  3892. }
  3893. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3894. return stdDev
  3895. }
  3896. if prob.Number < 0 || prob.Number > 1 {
  3897. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3898. }
  3899. if stdDev.Number < 0 {
  3900. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3901. }
  3902. inv, err := norminv(prob.Number)
  3903. if err != nil {
  3904. return newErrorFormulaArg(err.Error(), err.Error())
  3905. }
  3906. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  3907. }
  3908. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  3909. // Distribution Function for a supplied value. The syntax of the function
  3910. // is:
  3911. //
  3912. // NORM.S.DIST(z)
  3913. //
  3914. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  3915. if argsList.Len() != 2 {
  3916. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  3917. }
  3918. args := list.New().Init()
  3919. args.PushBack(argsList.Front().Value.(formulaArg))
  3920. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3921. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  3922. args.PushBack(argsList.Back().Value.(formulaArg))
  3923. return fn.NORMDIST(args)
  3924. }
  3925. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  3926. // Function for a supplied value. The syntax of the function is:
  3927. //
  3928. // NORMSDIST(z)
  3929. //
  3930. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  3931. if argsList.Len() != 1 {
  3932. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  3933. }
  3934. args := list.New().Init()
  3935. args.PushBack(argsList.Front().Value.(formulaArg))
  3936. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3937. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  3938. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  3939. return fn.NORMDIST(args)
  3940. }
  3941. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  3942. // Distribution Function for a supplied probability value. The syntax of the
  3943. // function is:
  3944. //
  3945. // NORMSINV(probability)
  3946. //
  3947. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  3948. if argsList.Len() != 1 {
  3949. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  3950. }
  3951. args := list.New().Init()
  3952. args.PushBack(argsList.Front().Value.(formulaArg))
  3953. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3954. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  3955. return fn.NORMINV(args)
  3956. }
  3957. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  3958. // Cumulative Distribution Function for a supplied probability value. The
  3959. // syntax of the function is:
  3960. //
  3961. // NORM.S.INV(probability)
  3962. //
  3963. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  3964. if argsList.Len() != 1 {
  3965. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  3966. }
  3967. args := list.New().Init()
  3968. args.PushBack(argsList.Front().Value.(formulaArg))
  3969. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3970. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  3971. return fn.NORMINV(args)
  3972. }
  3973. // norminv returns the inverse of the normal cumulative distribution for the
  3974. // specified value.
  3975. func norminv(p float64) (float64, error) {
  3976. a := map[int]float64{
  3977. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  3978. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  3979. }
  3980. b := map[int]float64{
  3981. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  3982. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  3983. }
  3984. c := map[int]float64{
  3985. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  3986. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  3987. }
  3988. d := map[int]float64{
  3989. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  3990. 4: 3.754408661907416e+00,
  3991. }
  3992. pLow := 0.02425 // Use lower region approx. below this
  3993. pHigh := 1 - pLow // Use upper region approx. above this
  3994. if 0 < p && p < pLow {
  3995. // Rational approximation for lower region.
  3996. q := math.Sqrt(-2 * math.Log(p))
  3997. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  3998. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  3999. } else if pLow <= p && p <= pHigh {
  4000. // Rational approximation for central region.
  4001. q := p - 0.5
  4002. r := q * q
  4003. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4004. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4005. } else if pHigh < p && p < 1 {
  4006. // Rational approximation for upper region.
  4007. q := math.Sqrt(-2 * math.Log(1-p))
  4008. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4009. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4010. }
  4011. return 0, errors.New(formulaErrorNUM)
  4012. }
  4013. // kth is an implementation of the formula function LARGE and SMALL.
  4014. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4015. if argsList.Len() != 2 {
  4016. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4017. }
  4018. array := argsList.Front().Value.(formulaArg).ToList()
  4019. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4020. if kArg.Type != ArgNumber {
  4021. return kArg
  4022. }
  4023. k := int(kArg.Number)
  4024. if k < 1 {
  4025. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4026. }
  4027. data := []float64{}
  4028. for _, arg := range array {
  4029. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4030. data = append(data, numArg.Number)
  4031. }
  4032. }
  4033. if len(data) < k {
  4034. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4035. }
  4036. sort.Float64s(data)
  4037. if name == "LARGE" {
  4038. return newNumberFormulaArg(data[len(data)-k])
  4039. }
  4040. return newNumberFormulaArg(data[k-1])
  4041. }
  4042. // LARGE function returns the k'th largest value from an array of numeric
  4043. // values. The syntax of the function is:
  4044. //
  4045. // LARGE(array,k)
  4046. //
  4047. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4048. return fn.kth("LARGE", argsList)
  4049. }
  4050. // MAX function returns the largest value from a supplied set of numeric
  4051. // values. The syntax of the function is:
  4052. //
  4053. // MAX(number1,[number2],...)
  4054. //
  4055. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4056. if argsList.Len() == 0 {
  4057. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4058. }
  4059. return fn.max(false, argsList)
  4060. }
  4061. // MAXA function returns the largest value from a supplied set of numeric
  4062. // values, while counting text and the logical value FALSE as the value 0 and
  4063. // counting the logical value TRUE as the value 1. The syntax of the function
  4064. // is:
  4065. //
  4066. // MAXA(number1,[number2],...)
  4067. //
  4068. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4069. if argsList.Len() == 0 {
  4070. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4071. }
  4072. return fn.max(true, argsList)
  4073. }
  4074. // max is an implementation of the formula function MAX and MAXA.
  4075. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4076. max := -math.MaxFloat64
  4077. for token := argsList.Front(); token != nil; token = token.Next() {
  4078. arg := token.Value.(formulaArg)
  4079. switch arg.Type {
  4080. case ArgString:
  4081. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4082. continue
  4083. } else {
  4084. num := arg.ToBool()
  4085. if num.Type == ArgNumber && num.Number > max {
  4086. max = num.Number
  4087. continue
  4088. }
  4089. }
  4090. num := arg.ToNumber()
  4091. if num.Type != ArgError && num.Number > max {
  4092. max = num.Number
  4093. }
  4094. case ArgNumber:
  4095. if arg.Number > max {
  4096. max = arg.Number
  4097. }
  4098. case ArgList, ArgMatrix:
  4099. for _, row := range arg.ToList() {
  4100. switch row.Type {
  4101. case ArgString:
  4102. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4103. continue
  4104. } else {
  4105. num := row.ToBool()
  4106. if num.Type == ArgNumber && num.Number > max {
  4107. max = num.Number
  4108. continue
  4109. }
  4110. }
  4111. num := row.ToNumber()
  4112. if num.Type != ArgError && num.Number > max {
  4113. max = num.Number
  4114. }
  4115. case ArgNumber:
  4116. if row.Number > max {
  4117. max = row.Number
  4118. }
  4119. }
  4120. }
  4121. case ArgError:
  4122. return arg
  4123. }
  4124. }
  4125. if max == -math.MaxFloat64 {
  4126. max = 0
  4127. }
  4128. return newNumberFormulaArg(max)
  4129. }
  4130. // MEDIAN function returns the statistical median (the middle value) of a list
  4131. // of supplied numbers. The syntax of the function is:
  4132. //
  4133. // MEDIAN(number1,[number2],...)
  4134. //
  4135. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4136. if argsList.Len() == 0 {
  4137. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4138. }
  4139. var values = []float64{}
  4140. var median, digits float64
  4141. var err error
  4142. for token := argsList.Front(); token != nil; token = token.Next() {
  4143. arg := token.Value.(formulaArg)
  4144. switch arg.Type {
  4145. case ArgString:
  4146. num := arg.ToNumber()
  4147. if num.Type == ArgError {
  4148. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4149. }
  4150. values = append(values, num.Number)
  4151. case ArgNumber:
  4152. values = append(values, arg.Number)
  4153. case ArgMatrix:
  4154. for _, row := range arg.Matrix {
  4155. for _, value := range row {
  4156. if value.String == "" {
  4157. continue
  4158. }
  4159. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4160. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4161. }
  4162. values = append(values, digits)
  4163. }
  4164. }
  4165. }
  4166. }
  4167. sort.Float64s(values)
  4168. if len(values)%2 == 0 {
  4169. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4170. } else {
  4171. median = values[len(values)/2]
  4172. }
  4173. return newNumberFormulaArg(median)
  4174. }
  4175. // MIN function returns the smallest value from a supplied set of numeric
  4176. // values. The syntax of the function is:
  4177. //
  4178. // MIN(number1,[number2],...)
  4179. //
  4180. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4181. if argsList.Len() == 0 {
  4182. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4183. }
  4184. return fn.min(false, argsList)
  4185. }
  4186. // MINA function returns the smallest value from a supplied set of numeric
  4187. // values, while counting text and the logical value FALSE as the value 0 and
  4188. // counting the logical value TRUE as the value 1. The syntax of the function
  4189. // is:
  4190. //
  4191. // MINA(number1,[number2],...)
  4192. //
  4193. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4194. if argsList.Len() == 0 {
  4195. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4196. }
  4197. return fn.min(true, argsList)
  4198. }
  4199. // min is an implementation of the formula function MIN and MINA.
  4200. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4201. min := math.MaxFloat64
  4202. for token := argsList.Front(); token != nil; token = token.Next() {
  4203. arg := token.Value.(formulaArg)
  4204. switch arg.Type {
  4205. case ArgString:
  4206. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4207. continue
  4208. } else {
  4209. num := arg.ToBool()
  4210. if num.Type == ArgNumber && num.Number < min {
  4211. min = num.Number
  4212. continue
  4213. }
  4214. }
  4215. num := arg.ToNumber()
  4216. if num.Type != ArgError && num.Number < min {
  4217. min = num.Number
  4218. }
  4219. case ArgNumber:
  4220. if arg.Number < min {
  4221. min = arg.Number
  4222. }
  4223. case ArgList, ArgMatrix:
  4224. for _, row := range arg.ToList() {
  4225. switch row.Type {
  4226. case ArgString:
  4227. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4228. continue
  4229. } else {
  4230. num := row.ToBool()
  4231. if num.Type == ArgNumber && num.Number < min {
  4232. min = num.Number
  4233. continue
  4234. }
  4235. }
  4236. num := row.ToNumber()
  4237. if num.Type != ArgError && num.Number < min {
  4238. min = num.Number
  4239. }
  4240. case ArgNumber:
  4241. if row.Number < min {
  4242. min = row.Number
  4243. }
  4244. }
  4245. }
  4246. case ArgError:
  4247. return arg
  4248. }
  4249. }
  4250. if min == math.MaxFloat64 {
  4251. min = 0
  4252. }
  4253. return newNumberFormulaArg(min)
  4254. }
  4255. // PERMUT function calculates the number of permutations of a specified number
  4256. // of objects from a set of objects. The syntax of the function is:
  4257. //
  4258. // PERMUT(number,number_chosen)
  4259. //
  4260. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4261. if argsList.Len() != 2 {
  4262. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4263. }
  4264. number := argsList.Front().Value.(formulaArg).ToNumber()
  4265. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4266. if number.Type != ArgNumber {
  4267. return number
  4268. }
  4269. if chosen.Type != ArgNumber {
  4270. return chosen
  4271. }
  4272. if number.Number < chosen.Number {
  4273. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4274. }
  4275. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4276. }
  4277. // SMALL function returns the k'th smallest value from an array of numeric
  4278. // values. The syntax of the function is:
  4279. //
  4280. // SMALL(array,k)
  4281. //
  4282. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4283. return fn.kth("SMALL", argsList)
  4284. }
  4285. // Information Functions
  4286. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4287. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4288. // function is:
  4289. //
  4290. // ISBLANK(value)
  4291. //
  4292. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4293. if argsList.Len() != 1 {
  4294. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4295. }
  4296. token := argsList.Front().Value.(formulaArg)
  4297. result := "FALSE"
  4298. switch token.Type {
  4299. case ArgUnknown:
  4300. result = "TRUE"
  4301. case ArgString:
  4302. if token.String == "" {
  4303. result = "TRUE"
  4304. }
  4305. }
  4306. return newStringFormulaArg(result)
  4307. }
  4308. // ISERR function tests if an initial supplied expression (or value) returns
  4309. // any Excel Error, except the #N/A error. If so, the function returns the
  4310. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4311. // error, the ISERR function returns FALSE. The syntax of the function is:
  4312. //
  4313. // ISERR(value)
  4314. //
  4315. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4316. if argsList.Len() != 1 {
  4317. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4318. }
  4319. token := argsList.Front().Value.(formulaArg)
  4320. result := "FALSE"
  4321. if token.Type == ArgError {
  4322. for _, errType := range []string{
  4323. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4324. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4325. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4326. } {
  4327. if errType == token.String {
  4328. result = "TRUE"
  4329. }
  4330. }
  4331. }
  4332. return newStringFormulaArg(result)
  4333. }
  4334. // ISERROR function tests if an initial supplied expression (or value) returns
  4335. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4336. // function returns FALSE. The syntax of the function is:
  4337. //
  4338. // ISERROR(value)
  4339. //
  4340. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4341. if argsList.Len() != 1 {
  4342. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4343. }
  4344. token := argsList.Front().Value.(formulaArg)
  4345. result := "FALSE"
  4346. if token.Type == ArgError {
  4347. for _, errType := range []string{
  4348. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4349. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4350. formulaErrorCALC, formulaErrorGETTINGDATA,
  4351. } {
  4352. if errType == token.String {
  4353. result = "TRUE"
  4354. }
  4355. }
  4356. }
  4357. return newStringFormulaArg(result)
  4358. }
  4359. // ISEVEN function tests if a supplied number (or numeric expression)
  4360. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4361. // function returns FALSE. The syntax of the function is:
  4362. //
  4363. // ISEVEN(value)
  4364. //
  4365. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4366. if argsList.Len() != 1 {
  4367. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4368. }
  4369. var (
  4370. token = argsList.Front().Value.(formulaArg)
  4371. result = "FALSE"
  4372. numeric int
  4373. err error
  4374. )
  4375. if token.Type == ArgString {
  4376. if numeric, err = strconv.Atoi(token.String); err != nil {
  4377. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4378. }
  4379. if numeric == numeric/2*2 {
  4380. return newStringFormulaArg("TRUE")
  4381. }
  4382. }
  4383. return newStringFormulaArg(result)
  4384. }
  4385. // ISNA function tests if an initial supplied expression (or value) returns
  4386. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4387. // returns FALSE. The syntax of the function is:
  4388. //
  4389. // ISNA(value)
  4390. //
  4391. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4392. if argsList.Len() != 1 {
  4393. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4394. }
  4395. token := argsList.Front().Value.(formulaArg)
  4396. result := "FALSE"
  4397. if token.Type == ArgError && token.String == formulaErrorNA {
  4398. result = "TRUE"
  4399. }
  4400. return newStringFormulaArg(result)
  4401. }
  4402. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4403. // function returns TRUE; If the supplied value is text, the function returns
  4404. // FALSE. The syntax of the function is:
  4405. //
  4406. // ISNONTEXT(value)
  4407. //
  4408. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4409. if argsList.Len() != 1 {
  4410. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4411. }
  4412. token := argsList.Front().Value.(formulaArg)
  4413. result := "TRUE"
  4414. if token.Type == ArgString && token.String != "" {
  4415. result = "FALSE"
  4416. }
  4417. return newStringFormulaArg(result)
  4418. }
  4419. // ISNUMBER function function tests if a supplied value is a number. If so,
  4420. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4421. // function is:
  4422. //
  4423. // ISNUMBER(value)
  4424. //
  4425. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4426. if argsList.Len() != 1 {
  4427. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4428. }
  4429. token, result := argsList.Front().Value.(formulaArg), false
  4430. if token.Type == ArgString && token.String != "" {
  4431. if _, err := strconv.Atoi(token.String); err == nil {
  4432. result = true
  4433. }
  4434. }
  4435. return newBoolFormulaArg(result)
  4436. }
  4437. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4438. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4439. // FALSE. The syntax of the function is:
  4440. //
  4441. // ISODD(value)
  4442. //
  4443. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4444. if argsList.Len() != 1 {
  4445. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4446. }
  4447. var (
  4448. token = argsList.Front().Value.(formulaArg)
  4449. result = "FALSE"
  4450. numeric int
  4451. err error
  4452. )
  4453. if token.Type == ArgString {
  4454. if numeric, err = strconv.Atoi(token.String); err != nil {
  4455. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4456. }
  4457. if numeric != numeric/2*2 {
  4458. return newStringFormulaArg("TRUE")
  4459. }
  4460. }
  4461. return newStringFormulaArg(result)
  4462. }
  4463. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4464. // Otherwise, the function returns FALSE. The syntax of the function is:
  4465. //
  4466. // ISTEXT(value)
  4467. //
  4468. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4469. if argsList.Len() != 1 {
  4470. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4471. }
  4472. token := argsList.Front().Value.(formulaArg)
  4473. if token.ToNumber().Type != ArgError {
  4474. return newBoolFormulaArg(false)
  4475. }
  4476. return newBoolFormulaArg(token.Type == ArgString)
  4477. }
  4478. // NA function returns the Excel #N/A error. This error message has the
  4479. // meaning 'value not available' and is produced when an Excel Formula is
  4480. // unable to find a value that it needs. The syntax of the function is:
  4481. //
  4482. // NA()
  4483. //
  4484. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4485. if argsList.Len() != 0 {
  4486. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4487. }
  4488. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4489. }
  4490. // SHEET function returns the Sheet number for a specified reference. The
  4491. // syntax of the function is:
  4492. //
  4493. // SHEET()
  4494. //
  4495. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4496. if argsList.Len() != 0 {
  4497. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4498. }
  4499. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4500. }
  4501. // Logical Functions
  4502. // AND function tests a number of supplied conditions and returns TRUE or
  4503. // FALSE. The syntax of the function is:
  4504. //
  4505. // AND(logical_test1,[logical_test2],...)
  4506. //
  4507. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4508. if argsList.Len() == 0 {
  4509. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4510. }
  4511. if argsList.Len() > 30 {
  4512. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4513. }
  4514. var (
  4515. and = true
  4516. val float64
  4517. err error
  4518. )
  4519. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4520. token := arg.Value.(formulaArg)
  4521. switch token.Type {
  4522. case ArgUnknown:
  4523. continue
  4524. case ArgString:
  4525. if token.String == "TRUE" {
  4526. continue
  4527. }
  4528. if token.String == "FALSE" {
  4529. return newStringFormulaArg(token.String)
  4530. }
  4531. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4532. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4533. }
  4534. and = and && (val != 0)
  4535. case ArgMatrix:
  4536. // TODO
  4537. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4538. }
  4539. }
  4540. return newBoolFormulaArg(and)
  4541. }
  4542. // FALSE function function returns the logical value FALSE. The syntax of the
  4543. // function is:
  4544. //
  4545. // FALSE()
  4546. //
  4547. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4548. if argsList.Len() != 0 {
  4549. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4550. }
  4551. return newBoolFormulaArg(false)
  4552. }
  4553. // IFERROR function receives two values (or expressions) and tests if the
  4554. // first of these evaluates to an error. The syntax of the function is:
  4555. //
  4556. // IFERROR(value,value_if_error)
  4557. //
  4558. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4559. if argsList.Len() != 2 {
  4560. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4561. }
  4562. value := argsList.Front().Value.(formulaArg)
  4563. if value.Type != ArgError {
  4564. if value.Type == ArgEmpty {
  4565. return newNumberFormulaArg(0)
  4566. }
  4567. return value
  4568. }
  4569. return argsList.Back().Value.(formulaArg)
  4570. }
  4571. // NOT function returns the opposite to a supplied logical value. The syntax
  4572. // of the function is:
  4573. //
  4574. // NOT(logical)
  4575. //
  4576. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4577. if argsList.Len() != 1 {
  4578. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4579. }
  4580. token := argsList.Front().Value.(formulaArg)
  4581. switch token.Type {
  4582. case ArgString, ArgList:
  4583. if strings.ToUpper(token.String) == "TRUE" {
  4584. return newBoolFormulaArg(false)
  4585. }
  4586. if strings.ToUpper(token.String) == "FALSE" {
  4587. return newBoolFormulaArg(true)
  4588. }
  4589. case ArgNumber:
  4590. return newBoolFormulaArg(!(token.Number != 0))
  4591. case ArgError:
  4592. return token
  4593. }
  4594. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4595. }
  4596. // OR function tests a number of supplied conditions and returns either TRUE
  4597. // or FALSE. The syntax of the function is:
  4598. //
  4599. // OR(logical_test1,[logical_test2],...)
  4600. //
  4601. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4602. if argsList.Len() == 0 {
  4603. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4604. }
  4605. if argsList.Len() > 30 {
  4606. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4607. }
  4608. var (
  4609. or bool
  4610. val float64
  4611. err error
  4612. )
  4613. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4614. token := arg.Value.(formulaArg)
  4615. switch token.Type {
  4616. case ArgUnknown:
  4617. continue
  4618. case ArgString:
  4619. if token.String == "FALSE" {
  4620. continue
  4621. }
  4622. if token.String == "TRUE" {
  4623. or = true
  4624. continue
  4625. }
  4626. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4627. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4628. }
  4629. or = val != 0
  4630. case ArgMatrix:
  4631. // TODO
  4632. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4633. }
  4634. }
  4635. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4636. }
  4637. // TRUE function returns the logical value TRUE. The syntax of the function
  4638. // is:
  4639. //
  4640. // TRUE()
  4641. //
  4642. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4643. if argsList.Len() != 0 {
  4644. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4645. }
  4646. return newBoolFormulaArg(true)
  4647. }
  4648. // Date and Time Functions
  4649. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4650. // of the function is:
  4651. //
  4652. // DATE(year,month,day)
  4653. //
  4654. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4655. if argsList.Len() != 3 {
  4656. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4657. }
  4658. year := argsList.Front().Value.(formulaArg).ToNumber()
  4659. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  4660. day := argsList.Back().Value.(formulaArg).ToNumber()
  4661. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  4662. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4663. }
  4664. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  4665. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4666. }
  4667. // DATEDIF function calculates the number of days, months, or years between
  4668. // two dates. The syntax of the function is:
  4669. //
  4670. // DATEDIF(start_date,end_date,unit)
  4671. //
  4672. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  4673. if argsList.Len() != 3 {
  4674. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  4675. }
  4676. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  4677. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  4678. return startArg
  4679. }
  4680. if startArg.Number > endArg.Number {
  4681. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  4682. }
  4683. if startArg.Number == endArg.Number {
  4684. return newNumberFormulaArg(0)
  4685. }
  4686. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  4687. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  4688. sy, smm, sd := startDate.Date()
  4689. ey, emm, ed := endDate.Date()
  4690. sm, em, diff := int(smm), int(emm), 0.0
  4691. switch unit {
  4692. case "d":
  4693. return newNumberFormulaArg(endArg.Number - startArg.Number)
  4694. case "y":
  4695. diff = float64(ey - sy)
  4696. if em < sm || (em == sm && ed < sd) {
  4697. diff--
  4698. }
  4699. case "m":
  4700. ydiff := ey - sy
  4701. mdiff := em - sm
  4702. if ed < sd {
  4703. mdiff--
  4704. }
  4705. if mdiff < 0 {
  4706. ydiff--
  4707. mdiff += 12
  4708. }
  4709. diff = float64(ydiff*12 + mdiff)
  4710. case "md":
  4711. smMD := em
  4712. if ed < sd {
  4713. smMD--
  4714. }
  4715. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  4716. case "ym":
  4717. diff = float64(em - sm)
  4718. if ed < sd {
  4719. diff--
  4720. }
  4721. if diff < 0 {
  4722. diff += 12
  4723. }
  4724. case "yd":
  4725. syYD := sy
  4726. if em < sm || (em == sm && ed < sd) {
  4727. syYD++
  4728. }
  4729. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  4730. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  4731. diff = s - e
  4732. default:
  4733. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  4734. }
  4735. return newNumberFormulaArg(diff)
  4736. }
  4737. // NOW function returns the current date and time. The function receives no
  4738. // arguments and therefore. The syntax of the function is:
  4739. //
  4740. // NOW()
  4741. //
  4742. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  4743. if argsList.Len() != 0 {
  4744. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  4745. }
  4746. now := time.Now()
  4747. _, offset := now.Zone()
  4748. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  4749. }
  4750. // TODAY function returns the current date. The function has no arguments and
  4751. // therefore. The syntax of the function is:
  4752. //
  4753. // TODAY()
  4754. //
  4755. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  4756. if argsList.Len() != 0 {
  4757. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  4758. }
  4759. now := time.Now()
  4760. _, offset := now.Zone()
  4761. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  4762. }
  4763. // makeDate return date as a Unix time, the number of seconds elapsed since
  4764. // January 1, 1970 UTC.
  4765. func makeDate(y int, m time.Month, d int) int64 {
  4766. if y == 1900 && int(m) <= 2 {
  4767. d--
  4768. }
  4769. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4770. return date.Unix()
  4771. }
  4772. // daysBetween return time interval of the given start timestamp and end
  4773. // timestamp.
  4774. func daysBetween(startDate, endDate int64) float64 {
  4775. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4776. }
  4777. // Text Functions
  4778. // CHAR function returns the character relating to a supplied character set
  4779. // number (from 1 to 255). syntax of the function is:
  4780. //
  4781. // CHAR(number)
  4782. //
  4783. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  4784. if argsList.Len() != 1 {
  4785. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  4786. }
  4787. arg := argsList.Front().Value.(formulaArg).ToNumber()
  4788. if arg.Type != ArgNumber {
  4789. return arg
  4790. }
  4791. num := int(arg.Number)
  4792. if num < 0 || num > 255 {
  4793. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4794. }
  4795. return newStringFormulaArg(fmt.Sprintf("%c", num))
  4796. }
  4797. // CLEAN removes all non-printable characters from a supplied text string. The
  4798. // syntax of the function is:
  4799. //
  4800. // CLEAN(text)
  4801. //
  4802. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4803. if argsList.Len() != 1 {
  4804. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4805. }
  4806. b := bytes.Buffer{}
  4807. for _, c := range argsList.Front().Value.(formulaArg).String {
  4808. if c > 31 {
  4809. b.WriteRune(c)
  4810. }
  4811. }
  4812. return newStringFormulaArg(b.String())
  4813. }
  4814. // CODE function converts the first character of a supplied text string into
  4815. // the associated numeric character set code used by your computer. The
  4816. // syntax of the function is:
  4817. //
  4818. // CODE(text)
  4819. //
  4820. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  4821. return fn.code("CODE", argsList)
  4822. }
  4823. // code is an implementation of the formula function CODE and UNICODE.
  4824. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  4825. if argsList.Len() != 1 {
  4826. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  4827. }
  4828. text := argsList.Front().Value.(formulaArg).Value()
  4829. if len(text) == 0 {
  4830. if name == "CODE" {
  4831. return newNumberFormulaArg(0)
  4832. }
  4833. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4834. }
  4835. return newNumberFormulaArg(float64(text[0]))
  4836. }
  4837. // CONCAT function joins together a series of supplied text strings into one
  4838. // combined text string.
  4839. //
  4840. // CONCAT(text1,[text2],...)
  4841. //
  4842. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4843. return fn.concat("CONCAT", argsList)
  4844. }
  4845. // CONCATENATE function joins together a series of supplied text strings into
  4846. // one combined text string.
  4847. //
  4848. // CONCATENATE(text1,[text2],...)
  4849. //
  4850. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4851. return fn.concat("CONCATENATE", argsList)
  4852. }
  4853. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4854. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4855. buf := bytes.Buffer{}
  4856. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4857. token := arg.Value.(formulaArg)
  4858. switch token.Type {
  4859. case ArgString:
  4860. buf.WriteString(token.String)
  4861. case ArgNumber:
  4862. if token.Boolean {
  4863. if token.Number == 0 {
  4864. buf.WriteString("FALSE")
  4865. } else {
  4866. buf.WriteString("TRUE")
  4867. }
  4868. } else {
  4869. buf.WriteString(token.Value())
  4870. }
  4871. default:
  4872. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4873. }
  4874. }
  4875. return newStringFormulaArg(buf.String())
  4876. }
  4877. // EXACT function tests if two supplied text strings or values are exactly
  4878. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4879. // function is case-sensitive. The syntax of the function is:
  4880. //
  4881. // EXACT(text1,text2)
  4882. //
  4883. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4884. if argsList.Len() != 2 {
  4885. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4886. }
  4887. text1 := argsList.Front().Value.(formulaArg).Value()
  4888. text2 := argsList.Back().Value.(formulaArg).Value()
  4889. return newBoolFormulaArg(text1 == text2)
  4890. }
  4891. // FIXED function rounds a supplied number to a specified number of decimal
  4892. // places and then converts this into text. The syntax of the function is:
  4893. //
  4894. // FIXED(number,[decimals],[no_commas])
  4895. //
  4896. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  4897. if argsList.Len() < 1 {
  4898. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  4899. }
  4900. if argsList.Len() > 3 {
  4901. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  4902. }
  4903. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  4904. if numArg.Type != ArgNumber {
  4905. return numArg
  4906. }
  4907. precision, decimals, noCommas := 0, 0, false
  4908. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  4909. if argsList.Len() == 1 && len(s) == 2 {
  4910. precision = len(s[1])
  4911. decimals = len(s[1])
  4912. }
  4913. if argsList.Len() >= 2 {
  4914. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  4915. if decimalsArg.Type != ArgNumber {
  4916. return decimalsArg
  4917. }
  4918. decimals = int(decimalsArg.Number)
  4919. }
  4920. if argsList.Len() == 3 {
  4921. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  4922. if noCommasArg.Type == ArgError {
  4923. return noCommasArg
  4924. }
  4925. noCommas = noCommasArg.Boolean
  4926. }
  4927. n := math.Pow(10, float64(decimals))
  4928. r := numArg.Number * n
  4929. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  4930. if decimals > 0 {
  4931. precision = decimals
  4932. }
  4933. if noCommas {
  4934. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  4935. }
  4936. p := message.NewPrinter(language.English)
  4937. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  4938. }
  4939. // FIND function returns the position of a specified character or sub-string
  4940. // within a supplied text string. The function is case-sensitive. The syntax
  4941. // of the function is:
  4942. //
  4943. // FIND(find_text,within_text,[start_num])
  4944. //
  4945. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  4946. return fn.find("FIND", argsList)
  4947. }
  4948. // FINDB counts each double-byte character as 2 when you have enabled the
  4949. // editing of a language that supports DBCS and then set it as the default
  4950. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  4951. // function is:
  4952. //
  4953. // FINDB(find_text,within_text,[start_num])
  4954. //
  4955. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  4956. return fn.find("FINDB", argsList)
  4957. }
  4958. // find is an implementation of the formula function FIND and FINDB.
  4959. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  4960. if argsList.Len() < 2 {
  4961. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  4962. }
  4963. if argsList.Len() > 3 {
  4964. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  4965. }
  4966. findText := argsList.Front().Value.(formulaArg).Value()
  4967. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  4968. startNum, result := 1, 1
  4969. if argsList.Len() == 3 {
  4970. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4971. if numArg.Type != ArgNumber {
  4972. return numArg
  4973. }
  4974. if numArg.Number < 0 {
  4975. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4976. }
  4977. startNum = int(numArg.Number)
  4978. }
  4979. if findText == "" {
  4980. return newNumberFormulaArg(float64(startNum))
  4981. }
  4982. for idx := range withinText {
  4983. if result < startNum {
  4984. result++
  4985. }
  4986. if strings.Index(withinText[idx:], findText) == 0 {
  4987. return newNumberFormulaArg(float64(result))
  4988. }
  4989. result++
  4990. }
  4991. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4992. }
  4993. // LEFT function returns a specified number of characters from the start of a
  4994. // supplied text string. The syntax of the function is:
  4995. //
  4996. // LEFT(text,[num_chars])
  4997. //
  4998. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  4999. return fn.leftRight("LEFT", argsList)
  5000. }
  5001. // LEFTB returns the first character or characters in a text string, based on
  5002. // the number of bytes you specify. The syntax of the function is:
  5003. //
  5004. // LEFTB(text,[num_bytes])
  5005. //
  5006. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5007. return fn.leftRight("LEFTB", argsList)
  5008. }
  5009. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5010. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5011. // (Traditional), and Korean.
  5012. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5013. if argsList.Len() < 1 {
  5014. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5015. }
  5016. if argsList.Len() > 2 {
  5017. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5018. }
  5019. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5020. if argsList.Len() == 2 {
  5021. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5022. if numArg.Type != ArgNumber {
  5023. return numArg
  5024. }
  5025. if numArg.Number < 0 {
  5026. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5027. }
  5028. numChars = int(numArg.Number)
  5029. }
  5030. if len(text) > numChars {
  5031. if name == "LEFT" || name == "LEFTB" {
  5032. return newStringFormulaArg(text[:numChars])
  5033. }
  5034. return newStringFormulaArg(text[len(text)-numChars:])
  5035. }
  5036. return newStringFormulaArg(text)
  5037. }
  5038. // LEN returns the length of a supplied text string. The syntax of the
  5039. // function is:
  5040. //
  5041. // LEN(text)
  5042. //
  5043. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5044. if argsList.Len() != 1 {
  5045. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5046. }
  5047. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5048. }
  5049. // LENB returns the number of bytes used to represent the characters in a text
  5050. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5051. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5052. // 1 byte per character. The syntax of the function is:
  5053. //
  5054. // LENB(text)
  5055. //
  5056. // TODO: the languages that support DBCS include Japanese, Chinese
  5057. // (Simplified), Chinese (Traditional), and Korean.
  5058. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5059. if argsList.Len() != 1 {
  5060. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5061. }
  5062. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5063. }
  5064. // LOWER converts all characters in a supplied text string to lower case. The
  5065. // syntax of the function is:
  5066. //
  5067. // LOWER(text)
  5068. //
  5069. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5070. if argsList.Len() != 1 {
  5071. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5072. }
  5073. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5074. }
  5075. // MID function returns a specified number of characters from the middle of a
  5076. // supplied text string. The syntax of the function is:
  5077. //
  5078. // MID(text,start_num,num_chars)
  5079. //
  5080. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5081. return fn.mid("MID", argsList)
  5082. }
  5083. // MIDB returns a specific number of characters from a text string, starting
  5084. // at the position you specify, based on the number of bytes you specify. The
  5085. // syntax of the function is:
  5086. //
  5087. // MID(text,start_num,num_chars)
  5088. //
  5089. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5090. return fn.mid("MIDB", argsList)
  5091. }
  5092. // mid is an implementation of the formula function MID and MIDB. TODO:
  5093. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5094. // (Traditional), and Korean.
  5095. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5096. if argsList.Len() != 3 {
  5097. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5098. }
  5099. text := argsList.Front().Value.(formulaArg).Value()
  5100. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5101. if startNumArg.Type != ArgNumber {
  5102. return startNumArg
  5103. }
  5104. if numCharsArg.Type != ArgNumber {
  5105. return numCharsArg
  5106. }
  5107. startNum := int(startNumArg.Number)
  5108. if startNum < 0 {
  5109. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5110. }
  5111. textLen := len(text)
  5112. if startNum > textLen {
  5113. return newStringFormulaArg("")
  5114. }
  5115. startNum--
  5116. endNum := startNum + int(numCharsArg.Number)
  5117. if endNum > textLen+1 {
  5118. return newStringFormulaArg(text[startNum:])
  5119. }
  5120. return newStringFormulaArg(text[startNum:endNum])
  5121. }
  5122. // PROPER converts all characters in a supplied text string to proper case
  5123. // (i.e. all letters that do not immediately follow another letter are set to
  5124. // upper case and all other characters are lower case). The syntax of the
  5125. // function is:
  5126. //
  5127. // PROPER(text)
  5128. //
  5129. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5130. if argsList.Len() != 1 {
  5131. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5132. }
  5133. buf := bytes.Buffer{}
  5134. isLetter := false
  5135. for _, char := range argsList.Front().Value.(formulaArg).String {
  5136. if !isLetter && unicode.IsLetter(char) {
  5137. buf.WriteRune(unicode.ToUpper(char))
  5138. } else {
  5139. buf.WriteRune(unicode.ToLower(char))
  5140. }
  5141. isLetter = unicode.IsLetter(char)
  5142. }
  5143. return newStringFormulaArg(buf.String())
  5144. }
  5145. // REPLACE function replaces all or part of a text string with another string.
  5146. // The syntax of the function is:
  5147. //
  5148. // REPLACE(old_text,start_num,num_chars,new_text)
  5149. //
  5150. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5151. return fn.replace("REPLACE", argsList)
  5152. }
  5153. // REPLACEB replaces part of a text string, based on the number of bytes you
  5154. // specify, with a different text string.
  5155. //
  5156. // REPLACEB(old_text,start_num,num_chars,new_text)
  5157. //
  5158. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5159. return fn.replace("REPLACEB", argsList)
  5160. }
  5161. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5162. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5163. // (Traditional), and Korean.
  5164. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5165. if argsList.Len() != 4 {
  5166. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5167. }
  5168. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5169. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5170. if startNumArg.Type != ArgNumber {
  5171. return startNumArg
  5172. }
  5173. if numCharsArg.Type != ArgNumber {
  5174. return numCharsArg
  5175. }
  5176. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5177. if startIdx > oldTextLen {
  5178. startIdx = oldTextLen + 1
  5179. }
  5180. endIdx := startIdx + int(numCharsArg.Number)
  5181. if endIdx > oldTextLen {
  5182. endIdx = oldTextLen + 1
  5183. }
  5184. if startIdx < 1 || endIdx < 1 {
  5185. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5186. }
  5187. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5188. return newStringFormulaArg(result)
  5189. }
  5190. // REPT function returns a supplied text string, repeated a specified number
  5191. // of times. The syntax of the function is:
  5192. //
  5193. // REPT(text,number_times)
  5194. //
  5195. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5196. if argsList.Len() != 2 {
  5197. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5198. }
  5199. text := argsList.Front().Value.(formulaArg)
  5200. if text.Type != ArgString {
  5201. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5202. }
  5203. times := argsList.Back().Value.(formulaArg).ToNumber()
  5204. if times.Type != ArgNumber {
  5205. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5206. }
  5207. if times.Number < 0 {
  5208. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5209. }
  5210. if times.Number == 0 {
  5211. return newStringFormulaArg("")
  5212. }
  5213. buf := bytes.Buffer{}
  5214. for i := 0; i < int(times.Number); i++ {
  5215. buf.WriteString(text.String)
  5216. }
  5217. return newStringFormulaArg(buf.String())
  5218. }
  5219. // RIGHT function returns a specified number of characters from the end of a
  5220. // supplied text string. The syntax of the function is:
  5221. //
  5222. // RIGHT(text,[num_chars])
  5223. //
  5224. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5225. return fn.leftRight("RIGHT", argsList)
  5226. }
  5227. // RIGHTB returns the last character or characters in a text string, based on
  5228. // the number of bytes you specify. The syntax of the function is:
  5229. //
  5230. // RIGHTB(text,[num_bytes])
  5231. //
  5232. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5233. return fn.leftRight("RIGHTB", argsList)
  5234. }
  5235. // SUBSTITUTE function replaces one or more instances of a given text string,
  5236. // within an original text string. The syntax of the function is:
  5237. //
  5238. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5239. //
  5240. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5241. if argsList.Len() != 3 && argsList.Len() != 4 {
  5242. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5243. }
  5244. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5245. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5246. if argsList.Len() == 3 {
  5247. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5248. }
  5249. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5250. if instanceNumArg.Type != ArgNumber {
  5251. return instanceNumArg
  5252. }
  5253. instanceNum = int(instanceNumArg.Number)
  5254. if instanceNum < 1 {
  5255. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5256. }
  5257. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5258. for {
  5259. count--
  5260. index := strings.Index(str, oldText.Value())
  5261. if index == -1 {
  5262. pos = -1
  5263. break
  5264. } else {
  5265. pos = index + chars
  5266. if count == 0 {
  5267. break
  5268. }
  5269. idx := oldTextLen + index
  5270. chars += idx
  5271. str = str[idx:]
  5272. }
  5273. }
  5274. if pos == -1 {
  5275. return newStringFormulaArg(text.Value())
  5276. }
  5277. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5278. return newStringFormulaArg(pre + newText.Value() + post)
  5279. }
  5280. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5281. // words or characters) from a supplied text string. The syntax of the
  5282. // function is:
  5283. //
  5284. // TRIM(text)
  5285. //
  5286. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5287. if argsList.Len() != 1 {
  5288. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5289. }
  5290. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5291. }
  5292. // UNICHAR returns the Unicode character that is referenced by the given
  5293. // numeric value. The syntax of the function is:
  5294. //
  5295. // UNICHAR(number)
  5296. //
  5297. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5298. if argsList.Len() != 1 {
  5299. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5300. }
  5301. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5302. if numArg.Type != ArgNumber {
  5303. return numArg
  5304. }
  5305. if numArg.Number <= 0 || numArg.Number > 55295 {
  5306. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5307. }
  5308. return newStringFormulaArg(string(rune(numArg.Number)))
  5309. }
  5310. // UNICODE function returns the code point for the first character of a
  5311. // supplied text string. The syntax of the function is:
  5312. //
  5313. // UNICODE(text)
  5314. //
  5315. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5316. return fn.code("UNICODE", argsList)
  5317. }
  5318. // UPPER converts all characters in a supplied text string to upper case. The
  5319. // syntax of the function is:
  5320. //
  5321. // UPPER(text)
  5322. //
  5323. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5324. if argsList.Len() != 1 {
  5325. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5326. }
  5327. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5328. }
  5329. // Conditional Functions
  5330. // IF function tests a supplied condition and returns one result if the
  5331. // condition evaluates to TRUE, and another result if the condition evaluates
  5332. // to FALSE. The syntax of the function is:
  5333. //
  5334. // IF(logical_test,value_if_true,value_if_false)
  5335. //
  5336. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5337. if argsList.Len() == 0 {
  5338. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5339. }
  5340. if argsList.Len() > 3 {
  5341. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5342. }
  5343. token := argsList.Front().Value.(formulaArg)
  5344. var (
  5345. cond bool
  5346. err error
  5347. result string
  5348. )
  5349. switch token.Type {
  5350. case ArgString:
  5351. if cond, err = strconv.ParseBool(token.String); err != nil {
  5352. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5353. }
  5354. if argsList.Len() == 1 {
  5355. return newBoolFormulaArg(cond)
  5356. }
  5357. if cond {
  5358. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5359. }
  5360. if argsList.Len() == 3 {
  5361. result = argsList.Back().Value.(formulaArg).String
  5362. }
  5363. }
  5364. return newStringFormulaArg(result)
  5365. }
  5366. // Lookup and Reference Functions
  5367. // CHOOSE function returns a value from an array, that corresponds to a
  5368. // supplied index number (position). The syntax of the function is:
  5369. //
  5370. // CHOOSE(index_num,value1,[value2],...)
  5371. //
  5372. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5373. if argsList.Len() < 2 {
  5374. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5375. }
  5376. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5377. if err != nil {
  5378. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5379. }
  5380. if argsList.Len() <= idx {
  5381. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5382. }
  5383. arg := argsList.Front()
  5384. for i := 0; i < idx; i++ {
  5385. arg = arg.Next()
  5386. }
  5387. var result formulaArg
  5388. switch arg.Value.(formulaArg).Type {
  5389. case ArgString:
  5390. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5391. case ArgMatrix:
  5392. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5393. }
  5394. return result
  5395. }
  5396. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5397. // string.
  5398. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5399. for len(pattern) > 0 {
  5400. switch pattern[0] {
  5401. default:
  5402. if len(str) == 0 || str[0] != pattern[0] {
  5403. return false
  5404. }
  5405. case '?':
  5406. if len(str) == 0 && !simple {
  5407. return false
  5408. }
  5409. case '*':
  5410. return deepMatchRune(str, pattern[1:], simple) ||
  5411. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5412. }
  5413. str = str[1:]
  5414. pattern = pattern[1:]
  5415. }
  5416. return len(str) == 0 && len(pattern) == 0
  5417. }
  5418. // matchPattern finds whether the text matches or satisfies the pattern
  5419. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5420. func matchPattern(pattern, name string) (matched bool) {
  5421. if pattern == "" {
  5422. return name == pattern
  5423. }
  5424. if pattern == "*" {
  5425. return true
  5426. }
  5427. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5428. for _, r := range name {
  5429. rname = append(rname, r)
  5430. }
  5431. for _, r := range pattern {
  5432. rpattern = append(rpattern, r)
  5433. }
  5434. simple := false // Does extended wildcard '*' and '?' match.
  5435. return deepMatchRune(rname, rpattern, simple)
  5436. }
  5437. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5438. // formula arguments by given conditions such as case sensitive, if exact
  5439. // match, and make compare result as formula criteria condition type.
  5440. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5441. if lhs.Type != rhs.Type {
  5442. return criteriaErr
  5443. }
  5444. switch lhs.Type {
  5445. case ArgNumber:
  5446. if lhs.Number == rhs.Number {
  5447. return criteriaEq
  5448. }
  5449. if lhs.Number < rhs.Number {
  5450. return criteriaL
  5451. }
  5452. return criteriaG
  5453. case ArgString:
  5454. ls, rs := lhs.String, rhs.String
  5455. if !caseSensitive {
  5456. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5457. }
  5458. if exactMatch {
  5459. match := matchPattern(rs, ls)
  5460. if match {
  5461. return criteriaEq
  5462. }
  5463. return criteriaG
  5464. }
  5465. switch strings.Compare(ls, rs) {
  5466. case 1:
  5467. return criteriaG
  5468. case -1:
  5469. return criteriaL
  5470. case 0:
  5471. return criteriaEq
  5472. }
  5473. return criteriaErr
  5474. case ArgEmpty:
  5475. return criteriaEq
  5476. case ArgList:
  5477. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5478. case ArgMatrix:
  5479. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5480. }
  5481. return criteriaErr
  5482. }
  5483. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5484. // list type formula arguments.
  5485. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5486. if len(lhs.List) < len(rhs.List) {
  5487. return criteriaL
  5488. }
  5489. if len(lhs.List) > len(rhs.List) {
  5490. return criteriaG
  5491. }
  5492. for arg := range lhs.List {
  5493. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5494. if criteria != criteriaEq {
  5495. return criteria
  5496. }
  5497. }
  5498. return criteriaEq
  5499. }
  5500. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5501. // matrix type formula arguments.
  5502. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5503. if len(lhs.Matrix) < len(rhs.Matrix) {
  5504. return criteriaL
  5505. }
  5506. if len(lhs.Matrix) > len(rhs.Matrix) {
  5507. return criteriaG
  5508. }
  5509. for i := range lhs.Matrix {
  5510. left := lhs.Matrix[i]
  5511. right := lhs.Matrix[i]
  5512. if len(left) < len(right) {
  5513. return criteriaL
  5514. }
  5515. if len(left) > len(right) {
  5516. return criteriaG
  5517. }
  5518. for arg := range left {
  5519. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5520. if criteria != criteriaEq {
  5521. return criteria
  5522. }
  5523. }
  5524. }
  5525. return criteriaEq
  5526. }
  5527. // COLUMN function returns the first column number within a supplied reference
  5528. // or the number of the current column. The syntax of the function is:
  5529. //
  5530. // COLUMN([reference])
  5531. //
  5532. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5533. if argsList.Len() > 1 {
  5534. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5535. }
  5536. if argsList.Len() == 1 {
  5537. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5538. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5539. }
  5540. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5541. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5542. }
  5543. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5544. }
  5545. col, _, _ := CellNameToCoordinates(fn.cell)
  5546. return newNumberFormulaArg(float64(col))
  5547. }
  5548. // COLUMNS function receives an Excel range and returns the number of columns
  5549. // that are contained within the range. The syntax of the function is:
  5550. //
  5551. // COLUMNS(array)
  5552. //
  5553. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5554. if argsList.Len() != 1 {
  5555. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5556. }
  5557. var min, max int
  5558. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5559. crs := argsList.Front().Value.(formulaArg).cellRanges
  5560. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5561. if min == 0 {
  5562. min = cr.Value.(cellRange).From.Col
  5563. }
  5564. if min > cr.Value.(cellRange).From.Col {
  5565. min = cr.Value.(cellRange).From.Col
  5566. }
  5567. if min > cr.Value.(cellRange).To.Col {
  5568. min = cr.Value.(cellRange).To.Col
  5569. }
  5570. if max < cr.Value.(cellRange).To.Col {
  5571. max = cr.Value.(cellRange).To.Col
  5572. }
  5573. if max < cr.Value.(cellRange).From.Col {
  5574. max = cr.Value.(cellRange).From.Col
  5575. }
  5576. }
  5577. }
  5578. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5579. cr := argsList.Front().Value.(formulaArg).cellRefs
  5580. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5581. if min == 0 {
  5582. min = refs.Value.(cellRef).Col
  5583. }
  5584. if min > refs.Value.(cellRef).Col {
  5585. min = refs.Value.(cellRef).Col
  5586. }
  5587. if max < refs.Value.(cellRef).Col {
  5588. max = refs.Value.(cellRef).Col
  5589. }
  5590. }
  5591. }
  5592. if max == TotalColumns {
  5593. return newNumberFormulaArg(float64(TotalColumns))
  5594. }
  5595. result := max - min + 1
  5596. if max == min {
  5597. if min == 0 {
  5598. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5599. }
  5600. return newNumberFormulaArg(float64(1))
  5601. }
  5602. return newNumberFormulaArg(float64(result))
  5603. }
  5604. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5605. // (or table), and returns the corresponding value from another row of the
  5606. // array. The syntax of the function is:
  5607. //
  5608. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5609. //
  5610. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5611. if argsList.Len() < 3 {
  5612. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5613. }
  5614. if argsList.Len() > 4 {
  5615. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5616. }
  5617. lookupValue := argsList.Front().Value.(formulaArg)
  5618. tableArray := argsList.Front().Next().Value.(formulaArg)
  5619. if tableArray.Type != ArgMatrix {
  5620. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5621. }
  5622. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5623. if rowArg.Type != ArgNumber {
  5624. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5625. }
  5626. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5627. if argsList.Len() == 4 {
  5628. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5629. if rangeLookup.Type == ArgError {
  5630. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5631. }
  5632. if rangeLookup.Number == 0 {
  5633. exactMatch = true
  5634. }
  5635. }
  5636. row := tableArray.Matrix[0]
  5637. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5638. start:
  5639. for idx, mtx := range row {
  5640. lhs := mtx
  5641. switch lookupValue.Type {
  5642. case ArgNumber:
  5643. if !lookupValue.Boolean {
  5644. lhs = mtx.ToNumber()
  5645. if lhs.Type == ArgError {
  5646. lhs = mtx
  5647. }
  5648. }
  5649. case ArgMatrix:
  5650. lhs = tableArray
  5651. }
  5652. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5653. matchIdx = idx
  5654. wasExact = true
  5655. break start
  5656. }
  5657. }
  5658. } else {
  5659. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  5660. }
  5661. if matchIdx == -1 {
  5662. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5663. }
  5664. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  5665. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  5666. }
  5667. row = tableArray.Matrix[rowIdx]
  5668. if wasExact || !exactMatch {
  5669. return row[matchIdx]
  5670. }
  5671. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5672. }
  5673. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  5674. // data array (or table), and returns the corresponding value from another
  5675. // column of the array. The syntax of the function is:
  5676. //
  5677. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  5678. //
  5679. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  5680. if argsList.Len() < 3 {
  5681. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  5682. }
  5683. if argsList.Len() > 4 {
  5684. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  5685. }
  5686. lookupValue := argsList.Front().Value.(formulaArg)
  5687. tableArray := argsList.Front().Next().Value.(formulaArg)
  5688. if tableArray.Type != ArgMatrix {
  5689. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  5690. }
  5691. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5692. if colIdx.Type != ArgNumber {
  5693. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  5694. }
  5695. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  5696. if argsList.Len() == 4 {
  5697. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5698. if rangeLookup.Type == ArgError {
  5699. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5700. }
  5701. if rangeLookup.Number == 0 {
  5702. exactMatch = true
  5703. }
  5704. }
  5705. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5706. start:
  5707. for idx, mtx := range tableArray.Matrix {
  5708. lhs := mtx[0]
  5709. switch lookupValue.Type {
  5710. case ArgNumber:
  5711. if !lookupValue.Boolean {
  5712. lhs = mtx[0].ToNumber()
  5713. if lhs.Type == ArgError {
  5714. lhs = mtx[0]
  5715. }
  5716. }
  5717. case ArgMatrix:
  5718. lhs = tableArray
  5719. }
  5720. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5721. matchIdx = idx
  5722. wasExact = true
  5723. break start
  5724. }
  5725. }
  5726. } else {
  5727. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  5728. }
  5729. if matchIdx == -1 {
  5730. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5731. }
  5732. mtx := tableArray.Matrix[matchIdx]
  5733. if col < 0 || col >= len(mtx) {
  5734. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  5735. }
  5736. if wasExact || !exactMatch {
  5737. return mtx[col]
  5738. }
  5739. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5740. }
  5741. // vlookupBinarySearch finds the position of a target value when range lookup
  5742. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5743. // return wrong result.
  5744. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5745. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  5746. for low <= high {
  5747. var mid int = low + (high-low)/2
  5748. mtx := tableArray.Matrix[mid]
  5749. lhs := mtx[0]
  5750. switch lookupValue.Type {
  5751. case ArgNumber:
  5752. if !lookupValue.Boolean {
  5753. lhs = mtx[0].ToNumber()
  5754. if lhs.Type == ArgError {
  5755. lhs = mtx[0]
  5756. }
  5757. }
  5758. case ArgMatrix:
  5759. lhs = tableArray
  5760. }
  5761. result := compareFormulaArg(lhs, lookupValue, false, false)
  5762. if result == criteriaEq {
  5763. matchIdx, wasExact = mid, true
  5764. return
  5765. } else if result == criteriaG {
  5766. high = mid - 1
  5767. } else if result == criteriaL {
  5768. matchIdx, low = mid, mid+1
  5769. if lhs.Value() != "" {
  5770. lastMatchIdx = matchIdx
  5771. }
  5772. } else {
  5773. return -1, false
  5774. }
  5775. }
  5776. matchIdx, wasExact = lastMatchIdx, true
  5777. return
  5778. }
  5779. // vlookupBinarySearch finds the position of a target value when range lookup
  5780. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5781. // return wrong result.
  5782. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5783. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  5784. for low <= high {
  5785. var mid int = low + (high-low)/2
  5786. mtx := row[mid]
  5787. result := compareFormulaArg(mtx, lookupValue, false, false)
  5788. if result == criteriaEq {
  5789. matchIdx, wasExact = mid, true
  5790. return
  5791. } else if result == criteriaG {
  5792. high = mid - 1
  5793. } else if result == criteriaL {
  5794. low, lastMatchIdx = mid+1, mid
  5795. } else {
  5796. return -1, false
  5797. }
  5798. }
  5799. matchIdx, wasExact = lastMatchIdx, true
  5800. return
  5801. }
  5802. // LOOKUP function performs an approximate match lookup in a one-column or
  5803. // one-row range, and returns the corresponding value from another one-column
  5804. // or one-row range. The syntax of the function is:
  5805. //
  5806. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  5807. //
  5808. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  5809. if argsList.Len() < 2 {
  5810. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  5811. }
  5812. if argsList.Len() > 3 {
  5813. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  5814. }
  5815. lookupValue := argsList.Front().Value.(formulaArg)
  5816. lookupVector := argsList.Front().Next().Value.(formulaArg)
  5817. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  5818. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  5819. }
  5820. cols, matchIdx := lookupCol(lookupVector), -1
  5821. for idx, col := range cols {
  5822. lhs := lookupValue
  5823. switch col.Type {
  5824. case ArgNumber:
  5825. lhs = lhs.ToNumber()
  5826. if !col.Boolean {
  5827. if lhs.Type == ArgError {
  5828. lhs = lookupValue
  5829. }
  5830. }
  5831. }
  5832. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  5833. matchIdx = idx
  5834. break
  5835. }
  5836. }
  5837. column := cols
  5838. if argsList.Len() == 3 {
  5839. column = lookupCol(argsList.Back().Value.(formulaArg))
  5840. }
  5841. if matchIdx < 0 || matchIdx >= len(column) {
  5842. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  5843. }
  5844. return column[matchIdx]
  5845. }
  5846. // lookupCol extract columns for LOOKUP.
  5847. func lookupCol(arr formulaArg) []formulaArg {
  5848. col := arr.List
  5849. if arr.Type == ArgMatrix {
  5850. col = nil
  5851. for _, r := range arr.Matrix {
  5852. if len(r) > 0 {
  5853. col = append(col, r[0])
  5854. continue
  5855. }
  5856. col = append(col, newEmptyFormulaArg())
  5857. }
  5858. }
  5859. return col
  5860. }
  5861. // ROW function returns the first row number within a supplied reference or
  5862. // the number of the current row. The syntax of the function is:
  5863. //
  5864. // ROW([reference])
  5865. //
  5866. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  5867. if argsList.Len() > 1 {
  5868. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  5869. }
  5870. if argsList.Len() == 1 {
  5871. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5872. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  5873. }
  5874. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5875. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  5876. }
  5877. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5878. }
  5879. _, row, _ := CellNameToCoordinates(fn.cell)
  5880. return newNumberFormulaArg(float64(row))
  5881. }
  5882. // ROWS function takes an Excel range and returns the number of rows that are
  5883. // contained within the range. The syntax of the function is:
  5884. //
  5885. // ROWS(array)
  5886. //
  5887. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  5888. if argsList.Len() != 1 {
  5889. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  5890. }
  5891. var min, max int
  5892. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5893. crs := argsList.Front().Value.(formulaArg).cellRanges
  5894. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5895. if min == 0 {
  5896. min = cr.Value.(cellRange).From.Row
  5897. }
  5898. if min > cr.Value.(cellRange).From.Row {
  5899. min = cr.Value.(cellRange).From.Row
  5900. }
  5901. if min > cr.Value.(cellRange).To.Row {
  5902. min = cr.Value.(cellRange).To.Row
  5903. }
  5904. if max < cr.Value.(cellRange).To.Row {
  5905. max = cr.Value.(cellRange).To.Row
  5906. }
  5907. if max < cr.Value.(cellRange).From.Row {
  5908. max = cr.Value.(cellRange).From.Row
  5909. }
  5910. }
  5911. }
  5912. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5913. cr := argsList.Front().Value.(formulaArg).cellRefs
  5914. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5915. if min == 0 {
  5916. min = refs.Value.(cellRef).Row
  5917. }
  5918. if min > refs.Value.(cellRef).Row {
  5919. min = refs.Value.(cellRef).Row
  5920. }
  5921. if max < refs.Value.(cellRef).Row {
  5922. max = refs.Value.(cellRef).Row
  5923. }
  5924. }
  5925. }
  5926. if max == TotalRows {
  5927. return newStringFormulaArg(strconv.Itoa(TotalRows))
  5928. }
  5929. result := max - min + 1
  5930. if max == min {
  5931. if min == 0 {
  5932. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5933. }
  5934. return newNumberFormulaArg(float64(1))
  5935. }
  5936. return newStringFormulaArg(strconv.Itoa(result))
  5937. }
  5938. // Web Functions
  5939. // ENCODEURL function returns a URL-encoded string, replacing certain
  5940. // non-alphanumeric characters with the percentage symbol (%) and a
  5941. // hexadecimal number. The syntax of the function is:
  5942. //
  5943. // ENCODEURL(url)
  5944. //
  5945. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  5946. if argsList.Len() != 1 {
  5947. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  5948. }
  5949. token := argsList.Front().Value.(formulaArg).Value()
  5950. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  5951. }