calc.go 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "unicode"
  26. "github.com/xuri/efp"
  27. )
  28. // Excel formula errors
  29. const (
  30. formulaErrorDIV = "#DIV/0!"
  31. formulaErrorNAME = "#NAME?"
  32. formulaErrorNA = "#N/A"
  33. formulaErrorNUM = "#NUM!"
  34. formulaErrorVALUE = "#VALUE!"
  35. formulaErrorREF = "#REF!"
  36. formulaErrorNULL = "#NULL"
  37. formulaErrorSPILL = "#SPILL!"
  38. formulaErrorCALC = "#CALC!"
  39. formulaErrorGETTINGDATA = "#GETTING_DATA"
  40. )
  41. // Numeric precision correct numeric values as legacy Excel application
  42. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  43. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  44. // has a decimal representation that is an infinite string of ones, Excel
  45. // displays only the leading 15 figures. In the second line, the number one
  46. // is added to the fraction, and again Excel displays only 15 figures.
  47. const numericPrecision = 1000000000000000
  48. // cellRef defines the structure of a cell reference.
  49. type cellRef struct {
  50. Col int
  51. Row int
  52. Sheet string
  53. }
  54. // cellRef defines the structure of a cell range.
  55. type cellRange struct {
  56. From cellRef
  57. To cellRef
  58. }
  59. // formula criteria condition enumeration.
  60. const (
  61. _ byte = iota
  62. criteriaEq
  63. criteriaLe
  64. criteriaGe
  65. criteriaL
  66. criteriaG
  67. criteriaBeg
  68. criteriaEnd
  69. )
  70. // formulaCriteria defined formula criteria parser result.
  71. type formulaCriteria struct {
  72. Type byte
  73. Condition string
  74. }
  75. // ArgType is the type if formula argument type.
  76. type ArgType byte
  77. // Formula argument types enumeration.
  78. const (
  79. ArgUnknown ArgType = iota
  80. ArgNumber
  81. ArgString
  82. ArgList
  83. ArgMatrix
  84. ArgError
  85. ArgEmpty
  86. )
  87. // formulaArg is the argument of a formula or function.
  88. type formulaArg struct {
  89. Number float64
  90. String string
  91. List []formulaArg
  92. Matrix [][]formulaArg
  93. Boolean bool
  94. Error string
  95. Type ArgType
  96. }
  97. // Value returns a string data type of the formula argument.
  98. func (fa formulaArg) Value() (value string) {
  99. switch fa.Type {
  100. case ArgNumber:
  101. return fmt.Sprintf("%g", fa.Number)
  102. case ArgString:
  103. return fa.String
  104. case ArgError:
  105. return fa.Error
  106. }
  107. return
  108. }
  109. // formulaFuncs is the type of the formula functions.
  110. type formulaFuncs struct{}
  111. // tokenPriority defined basic arithmetic operator priority.
  112. var tokenPriority = map[string]int{
  113. "^": 5,
  114. "*": 4,
  115. "/": 4,
  116. "+": 3,
  117. "-": 3,
  118. "=": 2,
  119. "<>": 2,
  120. "<": 2,
  121. "<=": 2,
  122. ">": 2,
  123. ">=": 2,
  124. "&": 1,
  125. }
  126. // CalcCellValue provides a function to get calculated cell value. This
  127. // feature is currently in working processing. Array formula, table formula
  128. // and some other formulas are not supported currently.
  129. //
  130. // Supported formulas:
  131. //
  132. // ABS
  133. // ACOS
  134. // ACOSH
  135. // ACOT
  136. // ACOTH
  137. // AND
  138. // ARABIC
  139. // ASIN
  140. // ASINH
  141. // ATAN2
  142. // ATANH
  143. // BASE
  144. // CEILING
  145. // CEILING.MATH
  146. // CEILING.PRECISE
  147. // CHOOSE
  148. // CLEAN
  149. // COMBIN
  150. // COMBINA
  151. // COS
  152. // COSH
  153. // COT
  154. // COTH
  155. // COUNTA
  156. // CSC
  157. // CSCH
  158. // DATE
  159. // DECIMAL
  160. // DEGREES
  161. // EVEN
  162. // EXP
  163. // FACT
  164. // FACTDOUBLE
  165. // FLOOR
  166. // FLOOR.MATH
  167. // FLOOR.PRECISE
  168. // GCD
  169. // IF
  170. // INT
  171. // ISBLANK
  172. // ISERR
  173. // ISERROR
  174. // ISEVEN
  175. // ISNA
  176. // ISNONTEXT
  177. // ISNUMBER
  178. // ISODD
  179. // ISO.CEILING
  180. // LCM
  181. // LEN
  182. // LN
  183. // LOG
  184. // LOG10
  185. // LOWER
  186. // MDETERM
  187. // MEDIAN
  188. // MOD
  189. // MROUND
  190. // MULTINOMIAL
  191. // MUNIT
  192. // NA
  193. // ODD
  194. // OR
  195. // PI
  196. // POWER
  197. // PRODUCT
  198. // PROPER
  199. // QUOTIENT
  200. // RADIANS
  201. // RAND
  202. // RANDBETWEEN
  203. // ROUND
  204. // ROUNDDOWN
  205. // ROUNDUP
  206. // SEC
  207. // SECH
  208. // SIGN
  209. // SIN
  210. // SINH
  211. // SQRT
  212. // SQRTPI
  213. // SUM
  214. // SUMIF
  215. // SUMSQ
  216. // TAN
  217. // TANH
  218. // TRIM
  219. // TRUNC
  220. // UPPER
  221. //
  222. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  223. var (
  224. formula string
  225. token efp.Token
  226. )
  227. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  228. return
  229. }
  230. ps := efp.ExcelParser()
  231. tokens := ps.Parse(formula)
  232. if tokens == nil {
  233. return
  234. }
  235. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  236. return
  237. }
  238. result = token.TValue
  239. isNum, precision := isNumeric(result)
  240. if isNum && precision > 15 {
  241. num, _ := roundPrecision(result)
  242. result = strings.ToUpper(num)
  243. }
  244. return
  245. }
  246. // getPriority calculate arithmetic operator priority.
  247. func getPriority(token efp.Token) (pri int) {
  248. pri, _ = tokenPriority[token.TValue]
  249. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  250. pri = 6
  251. }
  252. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  253. pri = 0
  254. }
  255. return
  256. }
  257. // newNumberFormulaArg constructs a number formula argument.
  258. func newNumberFormulaArg(n float64) formulaArg {
  259. return formulaArg{Type: ArgNumber, Number: n}
  260. }
  261. // newStringFormulaArg constructs a string formula argument.
  262. func newStringFormulaArg(s string) formulaArg {
  263. return formulaArg{Type: ArgString, String: s}
  264. }
  265. // newErrorFormulaArg create an error formula argument of a given type with a specified error message.
  266. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  267. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  268. }
  269. // evalInfixExp evaluate syntax analysis by given infix expression after
  270. // lexical analysis. Evaluate an infix expression containing formulas by
  271. // stacks:
  272. //
  273. // opd - Operand
  274. // opt - Operator
  275. // opf - Operation formula
  276. // opfd - Operand of the operation formula
  277. // opft - Operator of the operation formula
  278. //
  279. // Evaluate arguments of the operation formula by list:
  280. //
  281. // args - Arguments of the operation formula
  282. //
  283. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  284. //
  285. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  286. var err error
  287. opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  288. argsList := list.New()
  289. for i := 0; i < len(tokens); i++ {
  290. token := tokens[i]
  291. // out of function stack
  292. if opfStack.Len() == 0 {
  293. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  294. return efp.Token{}, err
  295. }
  296. }
  297. // function start
  298. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  299. opfStack.Push(token)
  300. continue
  301. }
  302. // in function stack, walk 2 token at once
  303. if opfStack.Len() > 0 {
  304. var nextToken efp.Token
  305. if i+1 < len(tokens) {
  306. nextToken = tokens[i+1]
  307. }
  308. // current token is args or range, skip next token, order required: parse reference first
  309. if token.TSubType == efp.TokenSubTypeRange {
  310. if !opftStack.Empty() {
  311. // parse reference: must reference at here
  312. result, err := f.parseReference(sheet, token.TValue)
  313. if err != nil {
  314. return efp.Token{TValue: formulaErrorNAME}, err
  315. }
  316. if result.Type != ArgString {
  317. return efp.Token{}, errors.New(formulaErrorVALUE)
  318. }
  319. opfdStack.Push(efp.Token{
  320. TType: efp.TokenTypeOperand,
  321. TSubType: efp.TokenSubTypeNumber,
  322. TValue: result.String,
  323. })
  324. continue
  325. }
  326. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  327. // parse reference: reference or range at here
  328. result, err := f.parseReference(sheet, token.TValue)
  329. if err != nil {
  330. return efp.Token{TValue: formulaErrorNAME}, err
  331. }
  332. if result.Type == ArgUnknown {
  333. return efp.Token{}, errors.New(formulaErrorVALUE)
  334. }
  335. argsList.PushBack(result)
  336. continue
  337. }
  338. }
  339. // check current token is opft
  340. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  341. return efp.Token{}, err
  342. }
  343. // current token is arg
  344. if token.TType == efp.TokenTypeArgument {
  345. for !opftStack.Empty() {
  346. // calculate trigger
  347. topOpt := opftStack.Peek().(efp.Token)
  348. if err := calculate(opfdStack, topOpt); err != nil {
  349. return efp.Token{}, err
  350. }
  351. opftStack.Pop()
  352. }
  353. if !opfdStack.Empty() {
  354. argsList.PushBack(formulaArg{
  355. String: opfdStack.Pop().(efp.Token).TValue,
  356. Type: ArgString,
  357. })
  358. }
  359. continue
  360. }
  361. // current token is logical
  362. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  363. }
  364. // current token is text
  365. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  366. argsList.PushBack(formulaArg{
  367. String: token.TValue,
  368. Type: ArgString,
  369. })
  370. }
  371. // current token is function stop
  372. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  373. for !opftStack.Empty() {
  374. // calculate trigger
  375. topOpt := opftStack.Peek().(efp.Token)
  376. if err := calculate(opfdStack, topOpt); err != nil {
  377. return efp.Token{}, err
  378. }
  379. opftStack.Pop()
  380. }
  381. // push opfd to args
  382. if opfdStack.Len() > 0 {
  383. argsList.PushBack(formulaArg{
  384. String: opfdStack.Pop().(efp.Token).TValue,
  385. Type: ArgString,
  386. })
  387. }
  388. // call formula function to evaluate
  389. arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  390. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  391. []reflect.Value{reflect.ValueOf(argsList)})
  392. if arg.Type == ArgError {
  393. return efp.Token{}, errors.New(arg.Value())
  394. }
  395. argsList.Init()
  396. opfStack.Pop()
  397. if opfStack.Len() > 0 { // still in function stack
  398. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  399. } else {
  400. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  401. }
  402. }
  403. }
  404. }
  405. for optStack.Len() != 0 {
  406. topOpt := optStack.Peek().(efp.Token)
  407. if err = calculate(opdStack, topOpt); err != nil {
  408. return efp.Token{}, err
  409. }
  410. optStack.Pop()
  411. }
  412. if opdStack.Len() == 0 {
  413. return efp.Token{}, errors.New("formula not valid")
  414. }
  415. return opdStack.Peek().(efp.Token), err
  416. }
  417. // calcPow evaluate exponentiation arithmetic operations.
  418. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  419. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  420. if err != nil {
  421. return err
  422. }
  423. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  424. if err != nil {
  425. return err
  426. }
  427. result := math.Pow(lOpdVal, rOpdVal)
  428. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  429. return nil
  430. }
  431. // calcEq evaluate equal arithmetic operations.
  432. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  433. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  434. return nil
  435. }
  436. // calcNEq evaluate not equal arithmetic operations.
  437. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  438. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  439. return nil
  440. }
  441. // calcL evaluate less than arithmetic operations.
  442. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  443. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  444. if err != nil {
  445. return err
  446. }
  447. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  448. if err != nil {
  449. return err
  450. }
  451. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  452. return nil
  453. }
  454. // calcLe evaluate less than or equal arithmetic operations.
  455. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  456. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  457. if err != nil {
  458. return err
  459. }
  460. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  461. if err != nil {
  462. return err
  463. }
  464. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  465. return nil
  466. }
  467. // calcG evaluate greater than or equal arithmetic operations.
  468. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  469. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  470. if err != nil {
  471. return err
  472. }
  473. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  474. if err != nil {
  475. return err
  476. }
  477. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  478. return nil
  479. }
  480. // calcGe evaluate greater than or equal arithmetic operations.
  481. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  482. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  483. if err != nil {
  484. return err
  485. }
  486. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  487. if err != nil {
  488. return err
  489. }
  490. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  491. return nil
  492. }
  493. // calcSplice evaluate splice '&' operations.
  494. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  495. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  496. return nil
  497. }
  498. // calcAdd evaluate addition arithmetic operations.
  499. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  500. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  501. if err != nil {
  502. return err
  503. }
  504. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  505. if err != nil {
  506. return err
  507. }
  508. result := lOpdVal + rOpdVal
  509. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  510. return nil
  511. }
  512. // calcSubtract evaluate subtraction arithmetic operations.
  513. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  514. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  515. if err != nil {
  516. return err
  517. }
  518. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  519. if err != nil {
  520. return err
  521. }
  522. result := lOpdVal - rOpdVal
  523. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  524. return nil
  525. }
  526. // calcMultiply evaluate multiplication arithmetic operations.
  527. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  528. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  529. if err != nil {
  530. return err
  531. }
  532. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  533. if err != nil {
  534. return err
  535. }
  536. result := lOpdVal * rOpdVal
  537. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  538. return nil
  539. }
  540. // calcDiv evaluate division arithmetic operations.
  541. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  542. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  543. if err != nil {
  544. return err
  545. }
  546. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  547. if err != nil {
  548. return err
  549. }
  550. result := lOpdVal / rOpdVal
  551. if rOpdVal == 0 {
  552. return errors.New(formulaErrorDIV)
  553. }
  554. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  555. return nil
  556. }
  557. // calculate evaluate basic arithmetic operations.
  558. func calculate(opdStack *Stack, opt efp.Token) error {
  559. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  560. if opdStack.Len() < 1 {
  561. return errors.New("formula not valid")
  562. }
  563. opd := opdStack.Pop().(efp.Token)
  564. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  565. if err != nil {
  566. return err
  567. }
  568. result := 0 - opdVal
  569. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  570. }
  571. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  572. "^": calcPow,
  573. "*": calcMultiply,
  574. "/": calcDiv,
  575. "+": calcAdd,
  576. "=": calcEq,
  577. "<>": calcNEq,
  578. "<": calcL,
  579. "<=": calcLe,
  580. ">": calcG,
  581. ">=": calcGe,
  582. "&": calcSplice,
  583. }
  584. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  585. if opdStack.Len() < 2 {
  586. return errors.New("formula not valid")
  587. }
  588. rOpd := opdStack.Pop().(efp.Token)
  589. lOpd := opdStack.Pop().(efp.Token)
  590. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  591. return err
  592. }
  593. }
  594. fn, ok := tokenCalcFunc[opt.TValue]
  595. if ok {
  596. if opdStack.Len() < 2 {
  597. return errors.New("formula not valid")
  598. }
  599. rOpd := opdStack.Pop().(efp.Token)
  600. lOpd := opdStack.Pop().(efp.Token)
  601. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  602. return err
  603. }
  604. }
  605. return nil
  606. }
  607. // parseOperatorPrefixToken parse operator prefix token.
  608. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  609. if optStack.Len() == 0 {
  610. optStack.Push(token)
  611. } else {
  612. tokenPriority := getPriority(token)
  613. topOpt := optStack.Peek().(efp.Token)
  614. topOptPriority := getPriority(topOpt)
  615. if tokenPriority > topOptPriority {
  616. optStack.Push(token)
  617. } else {
  618. for tokenPriority <= topOptPriority {
  619. optStack.Pop()
  620. if err = calculate(opdStack, topOpt); err != nil {
  621. return
  622. }
  623. if optStack.Len() > 0 {
  624. topOpt = optStack.Peek().(efp.Token)
  625. topOptPriority = getPriority(topOpt)
  626. continue
  627. }
  628. break
  629. }
  630. optStack.Push(token)
  631. }
  632. }
  633. return
  634. }
  635. // isOperatorPrefixToken determine if the token is parse operator prefix
  636. // token.
  637. func isOperatorPrefixToken(token efp.Token) bool {
  638. _, ok := tokenPriority[token.TValue]
  639. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || ok {
  640. return true
  641. }
  642. return false
  643. }
  644. // getDefinedNameRefTo convert defined name to reference range.
  645. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  646. for _, definedName := range f.GetDefinedName() {
  647. if definedName.Name == definedNameName {
  648. refTo = definedName.RefersTo
  649. // worksheet scope takes precedence over scope workbook when both definedNames exist
  650. if definedName.Scope == currentSheet {
  651. break
  652. }
  653. }
  654. }
  655. return refTo
  656. }
  657. // parseToken parse basic arithmetic operator priority and evaluate based on
  658. // operators and operands.
  659. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  660. // parse reference: must reference at here
  661. if token.TSubType == efp.TokenSubTypeRange {
  662. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  663. if refTo != "" {
  664. token.TValue = refTo
  665. }
  666. result, err := f.parseReference(sheet, token.TValue)
  667. if err != nil {
  668. return errors.New(formulaErrorNAME)
  669. }
  670. if result.Type != ArgString {
  671. return errors.New(formulaErrorVALUE)
  672. }
  673. token.TValue = result.String
  674. token.TType = efp.TokenTypeOperand
  675. token.TSubType = efp.TokenSubTypeNumber
  676. }
  677. if isOperatorPrefixToken(token) {
  678. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  679. return err
  680. }
  681. }
  682. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  683. optStack.Push(token)
  684. }
  685. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  686. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  687. topOpt := optStack.Peek().(efp.Token)
  688. if err := calculate(opdStack, topOpt); err != nil {
  689. return err
  690. }
  691. optStack.Pop()
  692. }
  693. optStack.Pop()
  694. }
  695. // opd
  696. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  697. opdStack.Push(token)
  698. }
  699. return nil
  700. }
  701. // parseReference parse reference and extract values by given reference
  702. // characters and default sheet name.
  703. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  704. reference = strings.Replace(reference, "$", "", -1)
  705. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  706. for _, ref := range strings.Split(reference, ":") {
  707. tokens := strings.Split(ref, "!")
  708. cr := cellRef{}
  709. if len(tokens) == 2 { // have a worksheet name
  710. cr.Sheet = tokens[0]
  711. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  712. return
  713. }
  714. if refs.Len() > 0 {
  715. e := refs.Back()
  716. cellRefs.PushBack(e.Value.(cellRef))
  717. refs.Remove(e)
  718. }
  719. refs.PushBack(cr)
  720. continue
  721. }
  722. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  723. return
  724. }
  725. e := refs.Back()
  726. if e == nil {
  727. cr.Sheet = sheet
  728. refs.PushBack(cr)
  729. continue
  730. }
  731. cellRanges.PushBack(cellRange{
  732. From: e.Value.(cellRef),
  733. To: cr,
  734. })
  735. refs.Remove(e)
  736. }
  737. if refs.Len() > 0 {
  738. e := refs.Back()
  739. cellRefs.PushBack(e.Value.(cellRef))
  740. refs.Remove(e)
  741. }
  742. arg, err = f.rangeResolver(cellRefs, cellRanges)
  743. return
  744. }
  745. // prepareValueRange prepare value range.
  746. func prepareValueRange(cr cellRange, valueRange []int) {
  747. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  748. valueRange[0] = cr.From.Row
  749. }
  750. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  751. valueRange[2] = cr.From.Col
  752. }
  753. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  754. valueRange[1] = cr.To.Row
  755. }
  756. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  757. valueRange[3] = cr.To.Col
  758. }
  759. }
  760. // prepareValueRef prepare value reference.
  761. func prepareValueRef(cr cellRef, valueRange []int) {
  762. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  763. valueRange[0] = cr.Row
  764. }
  765. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  766. valueRange[2] = cr.Col
  767. }
  768. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  769. valueRange[1] = cr.Row
  770. }
  771. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  772. valueRange[3] = cr.Col
  773. }
  774. }
  775. // rangeResolver extract value as string from given reference and range list.
  776. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  777. // be reference A1:B3.
  778. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  779. // value range order: from row, to row, from column, to column
  780. valueRange := []int{0, 0, 0, 0}
  781. var sheet string
  782. // prepare value range
  783. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  784. cr := temp.Value.(cellRange)
  785. if cr.From.Sheet != cr.To.Sheet {
  786. err = errors.New(formulaErrorVALUE)
  787. }
  788. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  789. sortCoordinates(rng)
  790. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  791. prepareValueRange(cr, valueRange)
  792. if cr.From.Sheet != "" {
  793. sheet = cr.From.Sheet
  794. }
  795. }
  796. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  797. cr := temp.Value.(cellRef)
  798. if cr.Sheet != "" {
  799. sheet = cr.Sheet
  800. }
  801. prepareValueRef(cr, valueRange)
  802. }
  803. // extract value from ranges
  804. if cellRanges.Len() > 0 {
  805. arg.Type = ArgMatrix
  806. for row := valueRange[0]; row <= valueRange[1]; row++ {
  807. var matrixRow = []formulaArg{}
  808. for col := valueRange[2]; col <= valueRange[3]; col++ {
  809. var cell, value string
  810. if cell, err = CoordinatesToCellName(col, row); err != nil {
  811. return
  812. }
  813. if value, err = f.GetCellValue(sheet, cell); err != nil {
  814. return
  815. }
  816. matrixRow = append(matrixRow, formulaArg{
  817. String: value,
  818. Type: ArgString,
  819. })
  820. }
  821. arg.Matrix = append(arg.Matrix, matrixRow)
  822. }
  823. return
  824. }
  825. // extract value from references
  826. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  827. cr := temp.Value.(cellRef)
  828. var cell string
  829. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  830. return
  831. }
  832. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  833. return
  834. }
  835. arg.Type = ArgString
  836. }
  837. return
  838. }
  839. // callFuncByName calls the no error or only error return function with
  840. // reflect by given receiver, name and parameters.
  841. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  842. function := reflect.ValueOf(receiver).MethodByName(name)
  843. if function.IsValid() {
  844. rt := function.Call(params)
  845. if len(rt) == 0 {
  846. return
  847. }
  848. arg = rt[0].Interface().(formulaArg)
  849. return
  850. }
  851. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  852. }
  853. // formulaCriteriaParser parse formula criteria.
  854. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  855. fc = &formulaCriteria{}
  856. if exp == "" {
  857. return
  858. }
  859. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  860. fc.Type, fc.Condition = criteriaEq, match[1]
  861. return
  862. }
  863. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  864. fc.Type, fc.Condition = criteriaEq, match[1]
  865. return
  866. }
  867. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  868. fc.Type, fc.Condition = criteriaLe, match[1]
  869. return
  870. }
  871. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  872. fc.Type, fc.Condition = criteriaGe, match[1]
  873. return
  874. }
  875. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  876. fc.Type, fc.Condition = criteriaL, match[1]
  877. return
  878. }
  879. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  880. fc.Type, fc.Condition = criteriaG, match[1]
  881. return
  882. }
  883. if strings.Contains(exp, "*") {
  884. if strings.HasPrefix(exp, "*") {
  885. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  886. }
  887. if strings.HasSuffix(exp, "*") {
  888. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  889. }
  890. return
  891. }
  892. fc.Type, fc.Condition = criteriaEq, exp
  893. return
  894. }
  895. // formulaCriteriaEval evaluate formula criteria expression.
  896. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  897. var value, expected float64
  898. var e error
  899. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  900. if value, err = strconv.ParseFloat(val, 64); err != nil {
  901. return
  902. }
  903. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  904. return
  905. }
  906. return
  907. }
  908. switch criteria.Type {
  909. case criteriaEq:
  910. return val == criteria.Condition, err
  911. case criteriaLe:
  912. value, expected, e = prepareValue(val, criteria.Condition)
  913. return value <= expected && e == nil, err
  914. case criteriaGe:
  915. value, expected, e = prepareValue(val, criteria.Condition)
  916. return value >= expected && e == nil, err
  917. case criteriaL:
  918. value, expected, e = prepareValue(val, criteria.Condition)
  919. return value < expected && e == nil, err
  920. case criteriaG:
  921. value, expected, e = prepareValue(val, criteria.Condition)
  922. return value > expected && e == nil, err
  923. case criteriaBeg:
  924. return strings.HasPrefix(val, criteria.Condition), err
  925. case criteriaEnd:
  926. return strings.HasSuffix(val, criteria.Condition), err
  927. }
  928. return
  929. }
  930. // Math and Trigonometric functions
  931. // ABS function returns the absolute value of any supplied number. The syntax
  932. // of the function is:
  933. //
  934. // ABS(number)
  935. //
  936. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  937. if argsList.Len() != 1 {
  938. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  939. }
  940. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  941. if err != nil {
  942. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  943. }
  944. return newNumberFormulaArg(math.Abs(val))
  945. }
  946. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  947. // number, and returns an angle, in radians, between 0 and π. The syntax of
  948. // the function is:
  949. //
  950. // ACOS(number)
  951. //
  952. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  953. if argsList.Len() != 1 {
  954. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  955. }
  956. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  957. if err != nil {
  958. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  959. }
  960. return newNumberFormulaArg(math.Acos(val))
  961. }
  962. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  963. // of the function is:
  964. //
  965. // ACOSH(number)
  966. //
  967. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  968. if argsList.Len() != 1 {
  969. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  970. }
  971. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  972. if err != nil {
  973. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  974. }
  975. return newNumberFormulaArg(math.Acosh(val))
  976. }
  977. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  978. // given number, and returns an angle, in radians, between 0 and π. The syntax
  979. // of the function is:
  980. //
  981. // ACOT(number)
  982. //
  983. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  984. if argsList.Len() != 1 {
  985. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  986. }
  987. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  988. if err != nil {
  989. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  990. }
  991. return newNumberFormulaArg(math.Pi/2 - math.Atan(val))
  992. }
  993. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  994. // value. The syntax of the function is:
  995. //
  996. // ACOTH(number)
  997. //
  998. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  999. if argsList.Len() != 1 {
  1000. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1001. }
  1002. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1003. if err != nil {
  1004. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1005. }
  1006. return newNumberFormulaArg(math.Atanh(1 / val))
  1007. }
  1008. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1009. // of the function is:
  1010. //
  1011. // ARABIC(text)
  1012. //
  1013. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1014. if argsList.Len() != 1 {
  1015. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1016. }
  1017. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1018. val, last, prefix := 0.0, 0.0, 1.0
  1019. for _, char := range argsList.Front().Value.(formulaArg).String {
  1020. digit := 0.0
  1021. if char == '-' {
  1022. prefix = -1
  1023. continue
  1024. }
  1025. digit, _ = charMap[char]
  1026. val += digit
  1027. switch {
  1028. case last == digit && (last == 5 || last == 50 || last == 500):
  1029. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1030. case 2*last == digit:
  1031. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1032. }
  1033. if last < digit {
  1034. val -= 2 * last
  1035. }
  1036. last = digit
  1037. }
  1038. return newNumberFormulaArg(prefix * val)
  1039. }
  1040. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1041. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1042. // of the function is:
  1043. //
  1044. // ASIN(number)
  1045. //
  1046. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1047. if argsList.Len() != 1 {
  1048. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1049. }
  1050. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1051. if err != nil {
  1052. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1053. }
  1054. return newNumberFormulaArg(math.Asin(val))
  1055. }
  1056. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1057. // The syntax of the function is:
  1058. //
  1059. // ASINH(number)
  1060. //
  1061. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1062. if argsList.Len() != 1 {
  1063. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1064. }
  1065. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1066. if err != nil {
  1067. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1068. }
  1069. return newNumberFormulaArg(math.Asinh(val))
  1070. }
  1071. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1072. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1073. // syntax of the function is:
  1074. //
  1075. // ATAN(number)
  1076. //
  1077. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1078. if argsList.Len() != 1 {
  1079. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1080. }
  1081. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1082. if err != nil {
  1083. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1084. }
  1085. return newNumberFormulaArg(math.Atan(val))
  1086. }
  1087. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1088. // number. The syntax of the function is:
  1089. //
  1090. // ATANH(number)
  1091. //
  1092. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1093. if argsList.Len() != 1 {
  1094. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1095. }
  1096. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1097. if err != nil {
  1098. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1099. }
  1100. return newNumberFormulaArg(math.Atanh(val))
  1101. }
  1102. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1103. // given set of x and y coordinates, and returns an angle, in radians, between
  1104. // -π/2 and +π/2. The syntax of the function is:
  1105. //
  1106. // ATAN2(x_num,y_num)
  1107. //
  1108. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1109. if argsList.Len() != 2 {
  1110. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1111. }
  1112. x, err := strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  1113. if err != nil {
  1114. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1115. }
  1116. y, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1117. if err != nil {
  1118. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1119. }
  1120. return newNumberFormulaArg(math.Atan2(x, y))
  1121. }
  1122. // BASE function converts a number into a supplied base (radix), and returns a
  1123. // text representation of the calculated value. The syntax of the function is:
  1124. //
  1125. // BASE(number,radix,[min_length])
  1126. //
  1127. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1128. if argsList.Len() < 2 {
  1129. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1130. }
  1131. if argsList.Len() > 3 {
  1132. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1133. }
  1134. var number float64
  1135. var radix, minLength int
  1136. var err error
  1137. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1138. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1139. }
  1140. if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  1141. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1142. }
  1143. if radix < 2 || radix > 36 {
  1144. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1145. }
  1146. if argsList.Len() > 2 {
  1147. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1148. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1149. }
  1150. }
  1151. result := strconv.FormatInt(int64(number), radix)
  1152. if len(result) < minLength {
  1153. result = strings.Repeat("0", minLength-len(result)) + result
  1154. }
  1155. return newStringFormulaArg(strings.ToUpper(result))
  1156. }
  1157. // CEILING function rounds a supplied number away from zero, to the nearest
  1158. // multiple of a given number. The syntax of the function is:
  1159. //
  1160. // CEILING(number,significance)
  1161. //
  1162. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1163. if argsList.Len() == 0 {
  1164. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1165. }
  1166. if argsList.Len() > 2 {
  1167. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1168. }
  1169. number, significance, res := 0.0, 1.0, 0.0
  1170. var err error
  1171. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1172. if err != nil {
  1173. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1174. }
  1175. if number < 0 {
  1176. significance = -1
  1177. }
  1178. if argsList.Len() > 1 {
  1179. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1180. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1181. }
  1182. }
  1183. if significance < 0 && number > 0 {
  1184. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1185. }
  1186. if argsList.Len() == 1 {
  1187. return newNumberFormulaArg(math.Ceil(number))
  1188. }
  1189. number, res = math.Modf(number / significance)
  1190. if res > 0 {
  1191. number++
  1192. }
  1193. return newNumberFormulaArg(number * significance)
  1194. }
  1195. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1196. // significance. The syntax of the function is:
  1197. //
  1198. // CEILING.MATH(number,[significance],[mode])
  1199. //
  1200. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1201. if argsList.Len() == 0 {
  1202. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1203. }
  1204. if argsList.Len() > 3 {
  1205. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1206. }
  1207. number, significance, mode := 0.0, 1.0, 1.0
  1208. var err error
  1209. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1210. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1211. }
  1212. if number < 0 {
  1213. significance = -1
  1214. }
  1215. if argsList.Len() > 1 {
  1216. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1217. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1218. }
  1219. }
  1220. if argsList.Len() == 1 {
  1221. return newNumberFormulaArg(math.Ceil(number))
  1222. }
  1223. if argsList.Len() > 2 {
  1224. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1225. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1226. }
  1227. }
  1228. val, res := math.Modf(number / significance)
  1229. if res != 0 {
  1230. if number > 0 {
  1231. val++
  1232. } else if mode < 0 {
  1233. val--
  1234. }
  1235. }
  1236. return newNumberFormulaArg(val * significance)
  1237. }
  1238. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1239. // number's sign), to the nearest multiple of a given number. The syntax of
  1240. // the function is:
  1241. //
  1242. // CEILING.PRECISE(number,[significance])
  1243. //
  1244. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1245. if argsList.Len() == 0 {
  1246. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1247. }
  1248. if argsList.Len() > 2 {
  1249. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1250. }
  1251. number, significance := 0.0, 1.0
  1252. var err error
  1253. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1254. if err != nil {
  1255. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1256. }
  1257. if number < 0 {
  1258. significance = -1
  1259. }
  1260. if argsList.Len() == 1 {
  1261. return newNumberFormulaArg(math.Ceil(number))
  1262. }
  1263. if argsList.Len() > 1 {
  1264. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1265. err = errors.New(formulaErrorVALUE)
  1266. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1267. }
  1268. significance = math.Abs(significance)
  1269. if significance == 0 {
  1270. return newStringFormulaArg("0")
  1271. }
  1272. }
  1273. val, res := math.Modf(number / significance)
  1274. if res != 0 {
  1275. if number > 0 {
  1276. val++
  1277. }
  1278. }
  1279. return newNumberFormulaArg(val * significance)
  1280. }
  1281. // COMBIN function calculates the number of combinations (in any order) of a
  1282. // given number objects from a set. The syntax of the function is:
  1283. //
  1284. // COMBIN(number,number_chosen)
  1285. //
  1286. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1287. if argsList.Len() != 2 {
  1288. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1289. }
  1290. number, chosen, val := 0.0, 0.0, 1.0
  1291. var err error
  1292. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1293. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1294. }
  1295. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1296. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1297. }
  1298. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1299. if chosen > number {
  1300. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1301. }
  1302. if chosen == number || chosen == 0 {
  1303. return newStringFormulaArg("1")
  1304. }
  1305. for c := float64(1); c <= chosen; c++ {
  1306. val *= (number + 1 - c) / c
  1307. }
  1308. return newNumberFormulaArg(math.Ceil(val))
  1309. }
  1310. // COMBINA function calculates the number of combinations, with repetitions,
  1311. // of a given number objects from a set. The syntax of the function is:
  1312. //
  1313. // COMBINA(number,number_chosen)
  1314. //
  1315. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1316. if argsList.Len() != 2 {
  1317. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1318. }
  1319. var number, chosen float64
  1320. var err error
  1321. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1322. if err != nil {
  1323. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1324. }
  1325. chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  1326. if err != nil {
  1327. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1328. }
  1329. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1330. if number < chosen {
  1331. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1332. }
  1333. if number == 0 {
  1334. return newStringFormulaArg("0")
  1335. }
  1336. args := list.New()
  1337. args.PushBack(formulaArg{
  1338. String: fmt.Sprintf("%g", number+chosen-1),
  1339. Type: ArgString,
  1340. })
  1341. args.PushBack(formulaArg{
  1342. String: fmt.Sprintf("%g", number-1),
  1343. Type: ArgString,
  1344. })
  1345. return fn.COMBIN(args)
  1346. }
  1347. // COS function calculates the cosine of a given angle. The syntax of the
  1348. // function is:
  1349. //
  1350. // COS(number)
  1351. //
  1352. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1353. if argsList.Len() != 1 {
  1354. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1355. }
  1356. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1357. if err != nil {
  1358. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1359. }
  1360. return newNumberFormulaArg(math.Cos(val))
  1361. }
  1362. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1363. // The syntax of the function is:
  1364. //
  1365. // COSH(number)
  1366. //
  1367. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1368. if argsList.Len() != 1 {
  1369. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1370. }
  1371. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1372. if err != nil {
  1373. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1374. }
  1375. return newNumberFormulaArg(math.Cosh(val))
  1376. }
  1377. // COT function calculates the cotangent of a given angle. The syntax of the
  1378. // function is:
  1379. //
  1380. // COT(number)
  1381. //
  1382. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1383. if argsList.Len() != 1 {
  1384. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1385. }
  1386. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1387. if err != nil {
  1388. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1389. }
  1390. if val == 0 {
  1391. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1392. }
  1393. return newNumberFormulaArg(math.Tan(val))
  1394. }
  1395. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1396. // angle. The syntax of the function is:
  1397. //
  1398. // COTH(number)
  1399. //
  1400. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1401. if argsList.Len() != 1 {
  1402. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1403. }
  1404. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1405. if err != nil {
  1406. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1407. }
  1408. if val == 0 {
  1409. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1410. }
  1411. return newNumberFormulaArg(math.Tanh(val))
  1412. }
  1413. // CSC function calculates the cosecant of a given angle. The syntax of the
  1414. // function is:
  1415. //
  1416. // CSC(number)
  1417. //
  1418. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1419. if argsList.Len() != 1 {
  1420. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1421. }
  1422. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1423. if err != nil {
  1424. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1425. }
  1426. if val == 0 {
  1427. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1428. }
  1429. return newNumberFormulaArg(1 / math.Sin(val))
  1430. }
  1431. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1432. // angle. The syntax of the function is:
  1433. //
  1434. // CSCH(number)
  1435. //
  1436. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1437. if argsList.Len() != 1 {
  1438. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1439. }
  1440. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1441. if err != nil {
  1442. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1443. }
  1444. if val == 0 {
  1445. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1446. }
  1447. return newNumberFormulaArg(1 / math.Sinh(val))
  1448. }
  1449. // DECIMAL function converts a text representation of a number in a specified
  1450. // base, into a decimal value. The syntax of the function is:
  1451. //
  1452. // DECIMAL(text,radix)
  1453. //
  1454. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1455. if argsList.Len() != 2 {
  1456. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1457. }
  1458. var text = argsList.Front().Value.(formulaArg).String
  1459. var radix int
  1460. var err error
  1461. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1462. if err != nil {
  1463. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1464. }
  1465. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1466. text = text[2:]
  1467. }
  1468. val, err := strconv.ParseInt(text, radix, 64)
  1469. if err != nil {
  1470. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1471. }
  1472. return newNumberFormulaArg(float64(val))
  1473. }
  1474. // DEGREES function converts radians into degrees. The syntax of the function
  1475. // is:
  1476. //
  1477. // DEGREES(angle)
  1478. //
  1479. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1480. if argsList.Len() != 1 {
  1481. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1482. }
  1483. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1484. if err != nil {
  1485. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1486. }
  1487. if val == 0 {
  1488. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1489. }
  1490. return newNumberFormulaArg(180.0 / math.Pi * val)
  1491. }
  1492. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1493. // positive number up and a negative number down), to the next even number.
  1494. // The syntax of the function is:
  1495. //
  1496. // EVEN(number)
  1497. //
  1498. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1499. if argsList.Len() != 1 {
  1500. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1501. }
  1502. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1503. if err != nil {
  1504. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1505. }
  1506. sign := math.Signbit(number)
  1507. m, frac := math.Modf(number / 2)
  1508. val := m * 2
  1509. if frac != 0 {
  1510. if !sign {
  1511. val += 2
  1512. } else {
  1513. val -= 2
  1514. }
  1515. }
  1516. return newNumberFormulaArg(val)
  1517. }
  1518. // EXP function calculates the value of the mathematical constant e, raised to
  1519. // the power of a given number. The syntax of the function is:
  1520. //
  1521. // EXP(number)
  1522. //
  1523. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1524. if argsList.Len() != 1 {
  1525. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1526. }
  1527. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1528. if err != nil {
  1529. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1530. }
  1531. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number))))
  1532. }
  1533. // fact returns the factorial of a supplied number.
  1534. func fact(number float64) float64 {
  1535. val := float64(1)
  1536. for i := float64(2); i <= number; i++ {
  1537. val *= i
  1538. }
  1539. return val
  1540. }
  1541. // FACT function returns the factorial of a supplied number. The syntax of the
  1542. // function is:
  1543. //
  1544. // FACT(number)
  1545. //
  1546. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1547. if argsList.Len() != 1 {
  1548. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1549. }
  1550. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1551. if err != nil {
  1552. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1553. }
  1554. if number < 0 {
  1555. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1556. }
  1557. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number))))
  1558. }
  1559. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1560. // syntax of the function is:
  1561. //
  1562. // FACTDOUBLE(number)
  1563. //
  1564. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1565. if argsList.Len() != 1 {
  1566. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1567. }
  1568. val := 1.0
  1569. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1570. if err != nil {
  1571. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1572. }
  1573. if number < 0 {
  1574. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1575. }
  1576. for i := math.Trunc(number); i > 1; i -= 2 {
  1577. val *= i
  1578. }
  1579. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1580. }
  1581. // FLOOR function rounds a supplied number towards zero to the nearest
  1582. // multiple of a specified significance. The syntax of the function is:
  1583. //
  1584. // FLOOR(number,significance)
  1585. //
  1586. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1587. if argsList.Len() != 2 {
  1588. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1589. }
  1590. var number, significance float64
  1591. var err error
  1592. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1593. if err != nil {
  1594. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1595. }
  1596. significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  1597. if err != nil {
  1598. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1599. }
  1600. if significance < 0 && number >= 0 {
  1601. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1602. }
  1603. val := number
  1604. val, res := math.Modf(val / significance)
  1605. if res != 0 {
  1606. if number < 0 && res < 0 {
  1607. val--
  1608. }
  1609. }
  1610. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance)))
  1611. }
  1612. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1613. // significance. The syntax of the function is:
  1614. //
  1615. // FLOOR.MATH(number,[significance],[mode])
  1616. //
  1617. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1618. if argsList.Len() == 0 {
  1619. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1620. }
  1621. if argsList.Len() > 3 {
  1622. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1623. }
  1624. number, significance, mode := 0.0, 1.0, 1.0
  1625. var err error
  1626. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1627. if err != nil {
  1628. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1629. }
  1630. if number < 0 {
  1631. significance = -1
  1632. }
  1633. if argsList.Len() > 1 {
  1634. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1635. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1636. }
  1637. }
  1638. if argsList.Len() == 1 {
  1639. return newNumberFormulaArg(math.Floor(number))
  1640. }
  1641. if argsList.Len() > 2 {
  1642. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1643. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1644. }
  1645. }
  1646. val, res := math.Modf(number / significance)
  1647. if res != 0 && number < 0 && mode > 0 {
  1648. val--
  1649. }
  1650. return newNumberFormulaArg(val * significance)
  1651. }
  1652. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1653. // of significance. The syntax of the function is:
  1654. //
  1655. // FLOOR.PRECISE(number,[significance])
  1656. //
  1657. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1658. if argsList.Len() == 0 {
  1659. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1660. }
  1661. if argsList.Len() > 2 {
  1662. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1663. }
  1664. var number, significance float64
  1665. var err error
  1666. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1667. if err != nil {
  1668. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1669. }
  1670. if number < 0 {
  1671. significance = -1
  1672. }
  1673. if argsList.Len() == 1 {
  1674. return newNumberFormulaArg(math.Floor(number))
  1675. }
  1676. if argsList.Len() > 1 {
  1677. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1678. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1679. }
  1680. significance = math.Abs(significance)
  1681. if significance == 0 {
  1682. return newStringFormulaArg("0")
  1683. }
  1684. }
  1685. val, res := math.Modf(number / significance)
  1686. if res != 0 {
  1687. if number < 0 {
  1688. val--
  1689. }
  1690. }
  1691. return newNumberFormulaArg(val * significance)
  1692. }
  1693. // gcd returns the greatest common divisor of two supplied integers.
  1694. func gcd(x, y float64) float64 {
  1695. x, y = math.Trunc(x), math.Trunc(y)
  1696. if x == 0 {
  1697. return y
  1698. }
  1699. if y == 0 {
  1700. return x
  1701. }
  1702. for x != y {
  1703. if x > y {
  1704. x = x - y
  1705. } else {
  1706. y = y - x
  1707. }
  1708. }
  1709. return x
  1710. }
  1711. // GCD function returns the greatest common divisor of two or more supplied
  1712. // integers. The syntax of the function is:
  1713. //
  1714. // GCD(number1,[number2],...)
  1715. //
  1716. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  1717. if argsList.Len() == 0 {
  1718. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  1719. }
  1720. var (
  1721. val float64
  1722. nums = []float64{}
  1723. err error
  1724. )
  1725. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1726. token := arg.Value.(formulaArg).String
  1727. if token == "" {
  1728. continue
  1729. }
  1730. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1731. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1732. }
  1733. nums = append(nums, val)
  1734. }
  1735. if nums[0] < 0 {
  1736. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1737. }
  1738. if len(nums) == 1 {
  1739. return newNumberFormulaArg(nums[0])
  1740. }
  1741. cd := nums[0]
  1742. for i := 1; i < len(nums); i++ {
  1743. if nums[i] < 0 {
  1744. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1745. }
  1746. cd = gcd(cd, nums[i])
  1747. }
  1748. return newNumberFormulaArg(cd)
  1749. }
  1750. // INT function truncates a supplied number down to the closest integer. The
  1751. // syntax of the function is:
  1752. //
  1753. // INT(number)
  1754. //
  1755. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  1756. if argsList.Len() != 1 {
  1757. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  1758. }
  1759. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1760. if err != nil {
  1761. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1762. }
  1763. val, frac := math.Modf(number)
  1764. if frac < 0 {
  1765. val--
  1766. }
  1767. return newNumberFormulaArg(val)
  1768. }
  1769. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1770. // sign), to the nearest multiple of a supplied significance. The syntax of
  1771. // the function is:
  1772. //
  1773. // ISO.CEILING(number,[significance])
  1774. //
  1775. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  1776. if argsList.Len() == 0 {
  1777. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  1778. }
  1779. if argsList.Len() > 2 {
  1780. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  1781. }
  1782. var number, significance float64
  1783. var err error
  1784. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1785. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1786. }
  1787. if number < 0 {
  1788. significance = -1
  1789. }
  1790. if argsList.Len() == 1 {
  1791. return newNumberFormulaArg(math.Ceil(number))
  1792. }
  1793. if argsList.Len() > 1 {
  1794. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1795. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1796. }
  1797. significance = math.Abs(significance)
  1798. if significance == 0 {
  1799. return newStringFormulaArg("0")
  1800. }
  1801. }
  1802. val, res := math.Modf(number / significance)
  1803. if res != 0 {
  1804. if number > 0 {
  1805. val++
  1806. }
  1807. }
  1808. return newNumberFormulaArg(val * significance)
  1809. }
  1810. // lcm returns the least common multiple of two supplied integers.
  1811. func lcm(a, b float64) float64 {
  1812. a = math.Trunc(a)
  1813. b = math.Trunc(b)
  1814. if a == 0 && b == 0 {
  1815. return 0
  1816. }
  1817. return a * b / gcd(a, b)
  1818. }
  1819. // LCM function returns the least common multiple of two or more supplied
  1820. // integers. The syntax of the function is:
  1821. //
  1822. // LCM(number1,[number2],...)
  1823. //
  1824. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  1825. if argsList.Len() == 0 {
  1826. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  1827. }
  1828. var (
  1829. val float64
  1830. nums = []float64{}
  1831. err error
  1832. )
  1833. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1834. token := arg.Value.(formulaArg).String
  1835. if token == "" {
  1836. continue
  1837. }
  1838. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1839. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1840. }
  1841. nums = append(nums, val)
  1842. }
  1843. if nums[0] < 0 {
  1844. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1845. }
  1846. if len(nums) == 1 {
  1847. return newNumberFormulaArg(nums[0])
  1848. }
  1849. cm := nums[0]
  1850. for i := 1; i < len(nums); i++ {
  1851. if nums[i] < 0 {
  1852. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1853. }
  1854. cm = lcm(cm, nums[i])
  1855. }
  1856. return newNumberFormulaArg(cm)
  1857. }
  1858. // LN function calculates the natural logarithm of a given number. The syntax
  1859. // of the function is:
  1860. //
  1861. // LN(number)
  1862. //
  1863. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  1864. if argsList.Len() != 1 {
  1865. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  1866. }
  1867. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1868. if err != nil {
  1869. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1870. }
  1871. return newNumberFormulaArg(math.Log(number))
  1872. }
  1873. // LOG function calculates the logarithm of a given number, to a supplied
  1874. // base. The syntax of the function is:
  1875. //
  1876. // LOG(number,[base])
  1877. //
  1878. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  1879. if argsList.Len() == 0 {
  1880. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  1881. }
  1882. if argsList.Len() > 2 {
  1883. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  1884. }
  1885. number, base := 0.0, 10.0
  1886. var err error
  1887. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1888. if err != nil {
  1889. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1890. }
  1891. if argsList.Len() > 1 {
  1892. if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1893. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1894. }
  1895. }
  1896. if number == 0 {
  1897. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  1898. }
  1899. if base == 0 {
  1900. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  1901. }
  1902. if base == 1 {
  1903. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1904. }
  1905. return newNumberFormulaArg(math.Log(number) / math.Log(base))
  1906. }
  1907. // LOG10 function calculates the base 10 logarithm of a given number. The
  1908. // syntax of the function is:
  1909. //
  1910. // LOG10(number)
  1911. //
  1912. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  1913. if argsList.Len() != 1 {
  1914. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  1915. }
  1916. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  1917. if err != nil {
  1918. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1919. }
  1920. return newNumberFormulaArg(math.Log10(number))
  1921. }
  1922. // minor function implement a minor of a matrix A is the determinant of some
  1923. // smaller square matrix.
  1924. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1925. ret := [][]float64{}
  1926. for i := range sqMtx {
  1927. if i == 0 {
  1928. continue
  1929. }
  1930. row := []float64{}
  1931. for j := range sqMtx {
  1932. if j == idx {
  1933. continue
  1934. }
  1935. row = append(row, sqMtx[i][j])
  1936. }
  1937. ret = append(ret, row)
  1938. }
  1939. return ret
  1940. }
  1941. // det determinant of the 2x2 matrix.
  1942. func det(sqMtx [][]float64) float64 {
  1943. if len(sqMtx) == 2 {
  1944. m00 := sqMtx[0][0]
  1945. m01 := sqMtx[0][1]
  1946. m10 := sqMtx[1][0]
  1947. m11 := sqMtx[1][1]
  1948. return m00*m11 - m10*m01
  1949. }
  1950. var res, sgn float64 = 0, 1
  1951. for j := range sqMtx {
  1952. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  1953. sgn *= -1
  1954. }
  1955. return res
  1956. }
  1957. // MDETERM calculates the determinant of a square matrix. The
  1958. // syntax of the function is:
  1959. //
  1960. // MDETERM(array)
  1961. //
  1962. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  1963. var (
  1964. num float64
  1965. numMtx = [][]float64{}
  1966. err error
  1967. strMtx = argsList.Front().Value.(formulaArg).Matrix
  1968. )
  1969. if argsList.Len() < 1 {
  1970. return
  1971. }
  1972. var rows = len(strMtx)
  1973. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  1974. if len(row) != rows {
  1975. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1976. }
  1977. numRow := []float64{}
  1978. for _, ele := range row {
  1979. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  1980. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1981. }
  1982. numRow = append(numRow, num)
  1983. }
  1984. numMtx = append(numMtx, numRow)
  1985. }
  1986. return newNumberFormulaArg(det(numMtx))
  1987. }
  1988. // MOD function returns the remainder of a division between two supplied
  1989. // numbers. The syntax of the function is:
  1990. //
  1991. // MOD(number,divisor)
  1992. //
  1993. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  1994. if argsList.Len() != 2 {
  1995. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  1996. }
  1997. var number, divisor float64
  1998. var err error
  1999. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2000. if err != nil {
  2001. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2002. }
  2003. divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  2004. if err != nil {
  2005. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2006. }
  2007. if divisor == 0 {
  2008. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2009. }
  2010. trunc, rem := math.Modf(number / divisor)
  2011. if rem < 0 {
  2012. trunc--
  2013. }
  2014. return newNumberFormulaArg(number - divisor*trunc)
  2015. }
  2016. // MROUND function rounds a supplied number up or down to the nearest multiple
  2017. // of a given number. The syntax of the function is:
  2018. //
  2019. // MROUND(number,multiple)
  2020. //
  2021. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2022. if argsList.Len() != 2 {
  2023. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2024. }
  2025. var number, multiple float64
  2026. var err error
  2027. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2028. if err != nil {
  2029. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2030. }
  2031. multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  2032. if err != nil {
  2033. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2034. }
  2035. if multiple == 0 {
  2036. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2037. }
  2038. if multiple < 0 && number > 0 ||
  2039. multiple > 0 && number < 0 {
  2040. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2041. }
  2042. number, res := math.Modf(number / multiple)
  2043. if math.Trunc(res+0.5) > 0 {
  2044. number++
  2045. }
  2046. return newNumberFormulaArg(number * multiple)
  2047. }
  2048. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2049. // supplied values to the product of factorials of those values. The syntax of
  2050. // the function is:
  2051. //
  2052. // MULTINOMIAL(number1,[number2],...)
  2053. //
  2054. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2055. val, num, denom := 0.0, 0.0, 1.0
  2056. var err error
  2057. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2058. token := arg.Value.(formulaArg)
  2059. if token.String == "" {
  2060. continue
  2061. }
  2062. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2063. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2064. }
  2065. num += val
  2066. denom *= fact(val)
  2067. }
  2068. return newNumberFormulaArg(fact(num) / denom)
  2069. }
  2070. // MUNIT function returns the unit matrix for a specified dimension. The
  2071. // syntax of the function is:
  2072. //
  2073. // MUNIT(dimension)
  2074. //
  2075. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2076. if argsList.Len() != 1 {
  2077. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2078. }
  2079. dimension, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  2080. if err != nil {
  2081. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2082. }
  2083. matrix := make([][]float64, 0, dimension)
  2084. for i := 0; i < dimension; i++ {
  2085. row := make([]float64, dimension)
  2086. for j := 0; j < dimension; j++ {
  2087. if i == j {
  2088. row[j] = float64(1.0)
  2089. } else {
  2090. row[j] = float64(0.0)
  2091. }
  2092. }
  2093. matrix = append(matrix, row)
  2094. }
  2095. return
  2096. }
  2097. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2098. // number up and a negative number down), to the next odd number. The syntax
  2099. // of the function is:
  2100. //
  2101. // ODD(number)
  2102. //
  2103. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2104. if argsList.Len() != 1 {
  2105. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2106. }
  2107. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2108. if err != nil {
  2109. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2110. }
  2111. if number == 0 {
  2112. return newStringFormulaArg("1")
  2113. }
  2114. sign := math.Signbit(number)
  2115. m, frac := math.Modf((number - 1) / 2)
  2116. val := m*2 + 1
  2117. if frac != 0 {
  2118. if !sign {
  2119. val += 2
  2120. } else {
  2121. val -= 2
  2122. }
  2123. }
  2124. return newNumberFormulaArg(val)
  2125. }
  2126. // PI function returns the value of the mathematical constant π (pi), accurate
  2127. // to 15 digits (14 decimal places). The syntax of the function is:
  2128. //
  2129. // PI()
  2130. //
  2131. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2132. if argsList.Len() != 0 {
  2133. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2134. }
  2135. return newNumberFormulaArg(math.Pi)
  2136. }
  2137. // POWER function calculates a given number, raised to a supplied power.
  2138. // The syntax of the function is:
  2139. //
  2140. // POWER(number,power)
  2141. //
  2142. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2143. if argsList.Len() != 2 {
  2144. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2145. }
  2146. var x, y float64
  2147. var err error
  2148. x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2149. if err != nil {
  2150. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2151. }
  2152. y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  2153. if err != nil {
  2154. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2155. }
  2156. if x == 0 && y == 0 {
  2157. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2158. }
  2159. if x == 0 && y < 0 {
  2160. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2161. }
  2162. return newNumberFormulaArg(math.Pow(x, y))
  2163. }
  2164. // PRODUCT function returns the product (multiplication) of a supplied set of
  2165. // numerical values. The syntax of the function is:
  2166. //
  2167. // PRODUCT(number1,[number2],...)
  2168. //
  2169. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2170. val, product := 0.0, 1.0
  2171. var err error
  2172. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2173. token := arg.Value.(formulaArg)
  2174. switch token.Type {
  2175. case ArgUnknown:
  2176. continue
  2177. case ArgString:
  2178. if token.String == "" {
  2179. continue
  2180. }
  2181. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2182. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2183. }
  2184. product = product * val
  2185. case ArgMatrix:
  2186. for _, row := range token.Matrix {
  2187. for _, value := range row {
  2188. if value.String == "" {
  2189. continue
  2190. }
  2191. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2192. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2193. }
  2194. product = product * val
  2195. }
  2196. }
  2197. }
  2198. }
  2199. return newNumberFormulaArg(product)
  2200. }
  2201. // QUOTIENT function returns the integer portion of a division between two
  2202. // supplied numbers. The syntax of the function is:
  2203. //
  2204. // QUOTIENT(numerator,denominator)
  2205. //
  2206. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2207. if argsList.Len() != 2 {
  2208. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2209. }
  2210. var x, y float64
  2211. var err error
  2212. x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2213. if err != nil {
  2214. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2215. }
  2216. y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  2217. if err != nil {
  2218. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2219. }
  2220. if y == 0 {
  2221. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2222. }
  2223. return newNumberFormulaArg(math.Trunc(x / y))
  2224. }
  2225. // RADIANS function converts radians into degrees. The syntax of the function is:
  2226. //
  2227. // RADIANS(angle)
  2228. //
  2229. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2230. if argsList.Len() != 1 {
  2231. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2232. }
  2233. angle, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2234. if err != nil {
  2235. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2236. }
  2237. return newNumberFormulaArg(math.Pi / 180.0 * angle)
  2238. }
  2239. // RAND function generates a random real number between 0 and 1. The syntax of
  2240. // the function is:
  2241. //
  2242. // RAND()
  2243. //
  2244. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2245. if argsList.Len() != 0 {
  2246. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2247. }
  2248. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2249. }
  2250. // RANDBETWEEN function generates a random integer between two supplied
  2251. // integers. The syntax of the function is:
  2252. //
  2253. // RANDBETWEEN(bottom,top)
  2254. //
  2255. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2256. if argsList.Len() != 2 {
  2257. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2258. }
  2259. var bottom, top int64
  2260. var err error
  2261. bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64)
  2262. if err != nil {
  2263. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2264. }
  2265. top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64)
  2266. if err != nil {
  2267. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2268. }
  2269. if top < bottom {
  2270. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2271. }
  2272. return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1) + bottom))
  2273. }
  2274. // romanNumerals defined a numeral system that originated in ancient Rome and
  2275. // remained the usual way of writing numbers throughout Europe well into the
  2276. // Late Middle Ages.
  2277. type romanNumerals struct {
  2278. n float64
  2279. s string
  2280. }
  2281. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2282. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2283. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2284. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2285. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2286. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2287. // integer, the function returns a text string depicting the roman numeral
  2288. // form of the number. The syntax of the function is:
  2289. //
  2290. // ROMAN(number,[form])
  2291. //
  2292. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2293. if argsList.Len() == 0 {
  2294. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2295. }
  2296. if argsList.Len() > 2 {
  2297. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2298. }
  2299. var number float64
  2300. var form int
  2301. var err error
  2302. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2303. if err != nil {
  2304. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2305. }
  2306. if argsList.Len() > 1 {
  2307. if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2308. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2309. }
  2310. if form < 0 {
  2311. form = 0
  2312. } else if form > 4 {
  2313. form = 4
  2314. }
  2315. }
  2316. decimalTable := romanTable[0]
  2317. switch form {
  2318. case 1:
  2319. decimalTable = romanTable[1]
  2320. case 2:
  2321. decimalTable = romanTable[2]
  2322. case 3:
  2323. decimalTable = romanTable[3]
  2324. case 4:
  2325. decimalTable = romanTable[4]
  2326. }
  2327. val := math.Trunc(number)
  2328. buf := bytes.Buffer{}
  2329. for _, r := range decimalTable {
  2330. for val >= r.n {
  2331. buf.WriteString(r.s)
  2332. val -= r.n
  2333. }
  2334. }
  2335. return newStringFormulaArg(buf.String())
  2336. }
  2337. type roundMode byte
  2338. const (
  2339. closest roundMode = iota
  2340. down
  2341. up
  2342. )
  2343. // round rounds a supplied number up or down.
  2344. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2345. var significance float64
  2346. if digits > 0 {
  2347. significance = math.Pow(1/10.0, digits)
  2348. } else {
  2349. significance = math.Pow(10.0, -digits)
  2350. }
  2351. val, res := math.Modf(number / significance)
  2352. switch mode {
  2353. case closest:
  2354. const eps = 0.499999999
  2355. if res >= eps {
  2356. val++
  2357. } else if res <= -eps {
  2358. val--
  2359. }
  2360. case down:
  2361. case up:
  2362. if res > 0 {
  2363. val++
  2364. } else if res < 0 {
  2365. val--
  2366. }
  2367. }
  2368. return val * significance
  2369. }
  2370. // ROUND function rounds a supplied number up or down, to a specified number
  2371. // of decimal places. The syntax of the function is:
  2372. //
  2373. // ROUND(number,num_digits)
  2374. //
  2375. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2376. if argsList.Len() != 2 {
  2377. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2378. }
  2379. var number, digits float64
  2380. var err error
  2381. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2382. if err != nil {
  2383. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2384. }
  2385. digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  2386. if err != nil {
  2387. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2388. }
  2389. return newNumberFormulaArg(fn.round(number, digits, closest))
  2390. }
  2391. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2392. // specified number of decimal places. The syntax of the function is:
  2393. //
  2394. // ROUNDDOWN(number,num_digits)
  2395. //
  2396. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2397. if argsList.Len() != 2 {
  2398. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2399. }
  2400. var number, digits float64
  2401. var err error
  2402. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2403. if err != nil {
  2404. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2405. }
  2406. digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  2407. if err != nil {
  2408. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2409. }
  2410. return newNumberFormulaArg(fn.round(number, digits, down))
  2411. }
  2412. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2413. // specified number of decimal places. The syntax of the function is:
  2414. //
  2415. // ROUNDUP(number,num_digits)
  2416. //
  2417. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2418. if argsList.Len() != 2 {
  2419. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2420. }
  2421. var number, digits float64
  2422. var err error
  2423. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2424. if err != nil {
  2425. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2426. }
  2427. digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64)
  2428. if err != nil {
  2429. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2430. }
  2431. return newNumberFormulaArg(fn.round(number, digits, up))
  2432. }
  2433. // SEC function calculates the secant of a given angle. The syntax of the
  2434. // function is:
  2435. //
  2436. // SEC(number)
  2437. //
  2438. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2439. if argsList.Len() != 1 {
  2440. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2441. }
  2442. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2443. if err != nil {
  2444. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2445. }
  2446. return newNumberFormulaArg(math.Cos(number))
  2447. }
  2448. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2449. // The syntax of the function is:
  2450. //
  2451. // SECH(number)
  2452. //
  2453. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2454. if argsList.Len() != 1 {
  2455. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2456. }
  2457. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2458. if err != nil {
  2459. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2460. }
  2461. return newNumberFormulaArg(1 / math.Cosh(number))
  2462. }
  2463. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2464. // number. I.e. if the number is positive, the Sign function returns +1, if
  2465. // the number is negative, the function returns -1 and if the number is 0
  2466. // (zero), the function returns 0. The syntax of the function is:
  2467. //
  2468. // SIGN(number)
  2469. //
  2470. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2471. if argsList.Len() != 1 {
  2472. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2473. }
  2474. val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2475. if err != nil {
  2476. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2477. }
  2478. if val < 0 {
  2479. return newStringFormulaArg("-1")
  2480. }
  2481. if val > 0 {
  2482. return newStringFormulaArg("1")
  2483. }
  2484. return newStringFormulaArg("0")
  2485. }
  2486. // SIN function calculates the sine of a given angle. The syntax of the
  2487. // function is:
  2488. //
  2489. // SIN(number)
  2490. //
  2491. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2492. if argsList.Len() != 1 {
  2493. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2494. }
  2495. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2496. if err != nil {
  2497. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2498. }
  2499. return newNumberFormulaArg(math.Sin(number))
  2500. }
  2501. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2502. // The syntax of the function is:
  2503. //
  2504. // SINH(number)
  2505. //
  2506. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2507. if argsList.Len() != 1 {
  2508. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2509. }
  2510. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2511. if err != nil {
  2512. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2513. }
  2514. return newNumberFormulaArg(math.Sinh(number))
  2515. }
  2516. // SQRT function calculates the positive square root of a supplied number. The
  2517. // syntax of the function is:
  2518. //
  2519. // SQRT(number)
  2520. //
  2521. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2522. if argsList.Len() != 1 {
  2523. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2524. }
  2525. var res float64
  2526. var value = argsList.Front().Value.(formulaArg).String
  2527. if value == "" {
  2528. return newStringFormulaArg("0")
  2529. }
  2530. res, err := strconv.ParseFloat(value, 64)
  2531. if err != nil {
  2532. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2533. }
  2534. if res < 0 {
  2535. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2536. }
  2537. return newNumberFormulaArg(math.Sqrt(res))
  2538. }
  2539. // SQRTPI function returns the square root of a supplied number multiplied by
  2540. // the mathematical constant, π. The syntax of the function is:
  2541. //
  2542. // SQRTPI(number)
  2543. //
  2544. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2545. if argsList.Len() != 1 {
  2546. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2547. }
  2548. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2549. if err != nil {
  2550. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2551. }
  2552. return newNumberFormulaArg(math.Sqrt(number * math.Pi))
  2553. }
  2554. // SUM function adds together a supplied set of numbers and returns the sum of
  2555. // these values. The syntax of the function is:
  2556. //
  2557. // SUM(number1,[number2],...)
  2558. //
  2559. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2560. var (
  2561. val, sum float64
  2562. err error
  2563. )
  2564. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2565. token := arg.Value.(formulaArg)
  2566. switch token.Type {
  2567. case ArgUnknown:
  2568. continue
  2569. case ArgString:
  2570. if token.String == "" {
  2571. continue
  2572. }
  2573. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2574. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2575. }
  2576. sum += val
  2577. case ArgMatrix:
  2578. for _, row := range token.Matrix {
  2579. for _, value := range row {
  2580. if value.String == "" {
  2581. continue
  2582. }
  2583. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2584. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2585. }
  2586. sum += val
  2587. }
  2588. }
  2589. }
  2590. }
  2591. return newNumberFormulaArg(sum)
  2592. }
  2593. // SUMIF function finds the values in a supplied array, that satisfy a given
  2594. // criteria, and returns the sum of the corresponding values in a second
  2595. // supplied array. The syntax of the function is:
  2596. //
  2597. // SUMIF(range,criteria,[sum_range])
  2598. //
  2599. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  2600. if argsList.Len() < 2 {
  2601. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  2602. }
  2603. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2604. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2605. var sumRange [][]formulaArg
  2606. if argsList.Len() == 3 {
  2607. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2608. }
  2609. var sum, val float64
  2610. var err error
  2611. for rowIdx, row := range rangeMtx {
  2612. for colIdx, col := range row {
  2613. var ok bool
  2614. fromVal := col.String
  2615. if col.String == "" {
  2616. continue
  2617. }
  2618. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2619. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2620. }
  2621. if ok {
  2622. if argsList.Len() == 3 {
  2623. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2624. continue
  2625. }
  2626. fromVal = sumRange[rowIdx][colIdx].String
  2627. }
  2628. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2629. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2630. }
  2631. sum += val
  2632. }
  2633. }
  2634. }
  2635. return newNumberFormulaArg(sum)
  2636. }
  2637. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2638. // syntax of the function is:
  2639. //
  2640. // SUMSQ(number1,[number2],...)
  2641. //
  2642. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  2643. var val, sq float64
  2644. var err error
  2645. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2646. token := arg.Value.(formulaArg)
  2647. switch token.Type {
  2648. case ArgString:
  2649. if token.String == "" {
  2650. continue
  2651. }
  2652. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2653. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2654. }
  2655. sq += val * val
  2656. case ArgMatrix:
  2657. for _, row := range token.Matrix {
  2658. for _, value := range row {
  2659. if value.String == "" {
  2660. continue
  2661. }
  2662. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2663. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2664. }
  2665. sq += val * val
  2666. }
  2667. }
  2668. }
  2669. }
  2670. return newNumberFormulaArg(sq)
  2671. }
  2672. // TAN function calculates the tangent of a given angle. The syntax of the
  2673. // function is:
  2674. //
  2675. // TAN(number)
  2676. //
  2677. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  2678. if argsList.Len() != 1 {
  2679. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  2680. }
  2681. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2682. if err != nil {
  2683. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2684. }
  2685. return newNumberFormulaArg(math.Tan(number))
  2686. }
  2687. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2688. // number. The syntax of the function is:
  2689. //
  2690. // TANH(number)
  2691. //
  2692. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  2693. if argsList.Len() != 1 {
  2694. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  2695. }
  2696. number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2697. if err != nil {
  2698. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2699. }
  2700. return newNumberFormulaArg(math.Tanh(number))
  2701. }
  2702. // TRUNC function truncates a supplied number to a specified number of decimal
  2703. // places. The syntax of the function is:
  2704. //
  2705. // TRUNC(number,[number_digits])
  2706. //
  2707. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  2708. if argsList.Len() == 0 {
  2709. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  2710. }
  2711. var number, digits, adjust, rtrim float64
  2712. var err error
  2713. number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
  2714. if err != nil {
  2715. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2716. }
  2717. if argsList.Len() > 1 {
  2718. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2719. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2720. }
  2721. digits = math.Floor(digits)
  2722. }
  2723. adjust = math.Pow(10, digits)
  2724. x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
  2725. if x != 0 {
  2726. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2727. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2728. }
  2729. }
  2730. if (digits > 0) && (rtrim < adjust/10) {
  2731. return newNumberFormulaArg(number)
  2732. }
  2733. return newNumberFormulaArg(float64(int(number*adjust)) / adjust)
  2734. }
  2735. // Statistical functions
  2736. // COUNTA function returns the number of non-blanks within a supplied set of
  2737. // cells or values. The syntax of the function is:
  2738. //
  2739. // COUNTA(value1,[value2],...)
  2740. //
  2741. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  2742. var count int
  2743. for token := argsList.Front(); token != nil; token = token.Next() {
  2744. arg := token.Value.(formulaArg)
  2745. switch arg.Type {
  2746. case ArgString:
  2747. if arg.String != "" {
  2748. count++
  2749. }
  2750. case ArgMatrix:
  2751. for _, row := range arg.Matrix {
  2752. for _, value := range row {
  2753. if value.String != "" {
  2754. count++
  2755. }
  2756. }
  2757. }
  2758. }
  2759. }
  2760. return newStringFormulaArg(fmt.Sprintf("%d", count))
  2761. }
  2762. // MEDIAN function returns the statistical median (the middle value) of a list
  2763. // of supplied numbers. The syntax of the function is:
  2764. //
  2765. // MEDIAN(number1,[number2],...)
  2766. //
  2767. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  2768. if argsList.Len() == 0 {
  2769. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  2770. }
  2771. var values = []float64{}
  2772. var median, digits float64
  2773. var err error
  2774. for token := argsList.Front(); token != nil; token = token.Next() {
  2775. arg := token.Value.(formulaArg)
  2776. switch arg.Type {
  2777. case ArgString:
  2778. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2779. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2780. }
  2781. values = append(values, digits)
  2782. case ArgMatrix:
  2783. for _, row := range arg.Matrix {
  2784. for _, value := range row {
  2785. if value.String == "" {
  2786. continue
  2787. }
  2788. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2789. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2790. }
  2791. values = append(values, digits)
  2792. }
  2793. }
  2794. }
  2795. }
  2796. sort.Float64s(values)
  2797. if len(values)%2 == 0 {
  2798. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2799. } else {
  2800. median = values[len(values)/2]
  2801. }
  2802. return newNumberFormulaArg(median)
  2803. }
  2804. // Information functions
  2805. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2806. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2807. // function is:
  2808. //
  2809. // ISBLANK(value)
  2810. //
  2811. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  2812. if argsList.Len() != 1 {
  2813. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  2814. }
  2815. token := argsList.Front().Value.(formulaArg)
  2816. result := "FALSE"
  2817. switch token.Type {
  2818. case ArgUnknown:
  2819. result = "TRUE"
  2820. case ArgString:
  2821. if token.String == "" {
  2822. result = "TRUE"
  2823. }
  2824. }
  2825. return newStringFormulaArg(result)
  2826. }
  2827. // ISERR function tests if an initial supplied expression (or value) returns
  2828. // any Excel Error, except the #N/A error. If so, the function returns the
  2829. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2830. // error, the ISERR function returns FALSE. The syntax of the function is:
  2831. //
  2832. // ISERR(value)
  2833. //
  2834. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  2835. if argsList.Len() != 1 {
  2836. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  2837. }
  2838. token := argsList.Front().Value.(formulaArg)
  2839. result := "FALSE"
  2840. if token.Type == ArgString {
  2841. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2842. if errType == token.String {
  2843. result = "TRUE"
  2844. }
  2845. }
  2846. }
  2847. return newStringFormulaArg(result)
  2848. }
  2849. // ISERROR function tests if an initial supplied expression (or value) returns
  2850. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2851. // function returns FALSE. The syntax of the function is:
  2852. //
  2853. // ISERROR(value)
  2854. //
  2855. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  2856. if argsList.Len() != 1 {
  2857. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  2858. }
  2859. token := argsList.Front().Value.(formulaArg)
  2860. result := "FALSE"
  2861. if token.Type == ArgString {
  2862. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2863. if errType == token.String {
  2864. result = "TRUE"
  2865. }
  2866. }
  2867. }
  2868. return newStringFormulaArg(result)
  2869. }
  2870. // ISEVEN function tests if a supplied number (or numeric expression)
  2871. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  2872. // function returns FALSE. The syntax of the function is:
  2873. //
  2874. // ISEVEN(value)
  2875. //
  2876. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  2877. if argsList.Len() != 1 {
  2878. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  2879. }
  2880. var (
  2881. token = argsList.Front().Value.(formulaArg)
  2882. result = "FALSE"
  2883. numeric int
  2884. err error
  2885. )
  2886. if token.Type == ArgString {
  2887. if numeric, err = strconv.Atoi(token.String); err != nil {
  2888. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2889. }
  2890. if numeric == numeric/2*2 {
  2891. return newStringFormulaArg("TRUE")
  2892. }
  2893. }
  2894. return newStringFormulaArg(result)
  2895. }
  2896. // ISNA function tests if an initial supplied expression (or value) returns
  2897. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  2898. // returns FALSE. The syntax of the function is:
  2899. //
  2900. // ISNA(value)
  2901. //
  2902. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  2903. if argsList.Len() != 1 {
  2904. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  2905. }
  2906. token := argsList.Front().Value.(formulaArg)
  2907. result := "FALSE"
  2908. if token.Type == ArgString && token.String == formulaErrorNA {
  2909. result = "TRUE"
  2910. }
  2911. return newStringFormulaArg(result)
  2912. }
  2913. // ISNONTEXT function function tests if a supplied value is text. If not, the
  2914. // function returns TRUE; If the supplied value is text, the function returns
  2915. // FALSE. The syntax of the function is:
  2916. //
  2917. // ISNONTEXT(value)
  2918. //
  2919. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  2920. if argsList.Len() != 1 {
  2921. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  2922. }
  2923. token := argsList.Front().Value.(formulaArg)
  2924. result := "TRUE"
  2925. if token.Type == ArgString && token.String != "" {
  2926. result = "FALSE"
  2927. }
  2928. return newStringFormulaArg(result)
  2929. }
  2930. // ISNUMBER function function tests if a supplied value is a number. If so,
  2931. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  2932. // function is:
  2933. //
  2934. // ISNUMBER(value)
  2935. //
  2936. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  2937. if argsList.Len() != 1 {
  2938. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  2939. }
  2940. token := argsList.Front().Value.(formulaArg)
  2941. result := "FALSE"
  2942. if token.Type == ArgString && token.String != "" {
  2943. if _, err := strconv.Atoi(token.String); err == nil {
  2944. result = "TRUE"
  2945. }
  2946. }
  2947. return newStringFormulaArg(result)
  2948. }
  2949. // ISODD function tests if a supplied number (or numeric expression) evaluates
  2950. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  2951. // FALSE. The syntax of the function is:
  2952. //
  2953. // ISODD(value)
  2954. //
  2955. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  2956. if argsList.Len() != 1 {
  2957. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  2958. }
  2959. var (
  2960. token = argsList.Front().Value.(formulaArg)
  2961. result = "FALSE"
  2962. numeric int
  2963. err error
  2964. )
  2965. if token.Type == ArgString {
  2966. if numeric, err = strconv.Atoi(token.String); err != nil {
  2967. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2968. }
  2969. if numeric != numeric/2*2 {
  2970. return newStringFormulaArg("TRUE")
  2971. }
  2972. }
  2973. return newStringFormulaArg(result)
  2974. }
  2975. // NA function returns the Excel #N/A error. This error message has the
  2976. // meaning 'value not available' and is produced when an Excel Formula is
  2977. // unable to find a value that it needs. The syntax of the function is:
  2978. //
  2979. // NA()
  2980. //
  2981. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  2982. if argsList.Len() != 0 {
  2983. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  2984. }
  2985. return newStringFormulaArg(formulaErrorNA)
  2986. }
  2987. // Logical Functions
  2988. // AND function tests a number of supplied conditions and returns TRUE or
  2989. // FALSE. The syntax of the function is:
  2990. //
  2991. // AND(logical_test1,[logical_test2],...)
  2992. //
  2993. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  2994. if argsList.Len() == 0 {
  2995. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  2996. }
  2997. if argsList.Len() > 30 {
  2998. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  2999. }
  3000. var (
  3001. and = true
  3002. val float64
  3003. err error
  3004. )
  3005. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3006. token := arg.Value.(formulaArg)
  3007. switch token.Type {
  3008. case ArgUnknown:
  3009. continue
  3010. case ArgString:
  3011. if token.String == "TRUE" {
  3012. continue
  3013. }
  3014. if token.String == "FALSE" {
  3015. return newStringFormulaArg(token.String)
  3016. }
  3017. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3018. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3019. }
  3020. and = and && (val != 0)
  3021. case ArgMatrix:
  3022. // TODO
  3023. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3024. }
  3025. }
  3026. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(and)))
  3027. }
  3028. // OR function tests a number of supplied conditions and returns either TRUE
  3029. // or FALSE. The syntax of the function is:
  3030. //
  3031. // OR(logical_test1,[logical_test2],...)
  3032. //
  3033. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3034. if argsList.Len() == 0 {
  3035. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3036. }
  3037. if argsList.Len() > 30 {
  3038. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  3039. }
  3040. var (
  3041. or bool
  3042. val float64
  3043. err error
  3044. )
  3045. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3046. token := arg.Value.(formulaArg)
  3047. switch token.Type {
  3048. case ArgUnknown:
  3049. continue
  3050. case ArgString:
  3051. if token.String == "FALSE" {
  3052. continue
  3053. }
  3054. if token.String == "TRUE" {
  3055. or = true
  3056. continue
  3057. }
  3058. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3059. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3060. }
  3061. or = val != 0
  3062. case ArgMatrix:
  3063. // TODO
  3064. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3065. }
  3066. }
  3067. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  3068. }
  3069. // Date and Time Functions
  3070. // DATE returns a date, from a user-supplied year, month and day. The syntax
  3071. // of the function is:
  3072. //
  3073. // DATE(year,month,day)
  3074. //
  3075. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  3076. if argsList.Len() != 3 {
  3077. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3078. }
  3079. var year, month, day int
  3080. var err error
  3081. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3082. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3083. }
  3084. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  3085. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3086. }
  3087. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  3088. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3089. }
  3090. d := makeDate(year, time.Month(month), day)
  3091. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  3092. }
  3093. // makeDate return date as a Unix time, the number of seconds elapsed since
  3094. // January 1, 1970 UTC.
  3095. func makeDate(y int, m time.Month, d int) int64 {
  3096. if y == 1900 && int(m) <= 2 {
  3097. d--
  3098. }
  3099. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  3100. return date.Unix()
  3101. }
  3102. // daysBetween return time interval of the given start timestamp and end
  3103. // timestamp.
  3104. func daysBetween(startDate, endDate int64) float64 {
  3105. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  3106. }
  3107. // Text Functions
  3108. // CLEAN removes all non-printable characters from a supplied text string. The
  3109. // syntax of the function is:
  3110. //
  3111. // CLEAN(text)
  3112. //
  3113. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  3114. if argsList.Len() != 1 {
  3115. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  3116. }
  3117. b := bytes.Buffer{}
  3118. for _, c := range argsList.Front().Value.(formulaArg).String {
  3119. if c > 31 {
  3120. b.WriteRune(c)
  3121. }
  3122. }
  3123. return newStringFormulaArg(b.String())
  3124. }
  3125. // LEN returns the length of a supplied text string. The syntax of the
  3126. // function is:
  3127. //
  3128. // LEN(text)
  3129. //
  3130. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  3131. if argsList.Len() != 1 {
  3132. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  3133. }
  3134. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  3135. }
  3136. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  3137. // words or characters) from a supplied text string. The syntax of the
  3138. // function is:
  3139. //
  3140. // TRIM(text)
  3141. //
  3142. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  3143. if argsList.Len() != 1 {
  3144. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  3145. }
  3146. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  3147. }
  3148. // LOWER converts all characters in a supplied text string to lower case. The
  3149. // syntax of the function is:
  3150. //
  3151. // LOWER(text)
  3152. //
  3153. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  3154. if argsList.Len() != 1 {
  3155. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  3156. }
  3157. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  3158. }
  3159. // PROPER converts all characters in a supplied text string to proper case
  3160. // (i.e. all letters that do not immediately follow another letter are set to
  3161. // upper case and all other characters are lower case). The syntax of the
  3162. // function is:
  3163. //
  3164. // PROPER(text)
  3165. //
  3166. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  3167. if argsList.Len() != 1 {
  3168. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  3169. }
  3170. buf := bytes.Buffer{}
  3171. isLetter := false
  3172. for _, char := range argsList.Front().Value.(formulaArg).String {
  3173. if !isLetter && unicode.IsLetter(char) {
  3174. buf.WriteRune(unicode.ToUpper(char))
  3175. } else {
  3176. buf.WriteRune(unicode.ToLower(char))
  3177. }
  3178. isLetter = unicode.IsLetter(char)
  3179. }
  3180. return newStringFormulaArg(buf.String())
  3181. }
  3182. // UPPER converts all characters in a supplied text string to upper case. The
  3183. // syntax of the function is:
  3184. //
  3185. // UPPER(text)
  3186. //
  3187. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  3188. if argsList.Len() != 1 {
  3189. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  3190. }
  3191. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  3192. }
  3193. // Conditional Functions
  3194. // IF function tests a supplied condition and returns one result if the
  3195. // condition evaluates to TRUE, and another result if the condition evaluates
  3196. // to FALSE. The syntax of the function is:
  3197. //
  3198. // IF(logical_test,value_if_true,value_if_false)
  3199. //
  3200. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  3201. if argsList.Len() == 0 {
  3202. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  3203. }
  3204. if argsList.Len() > 3 {
  3205. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  3206. }
  3207. token := argsList.Front().Value.(formulaArg)
  3208. var (
  3209. cond bool
  3210. err error
  3211. result string
  3212. )
  3213. switch token.Type {
  3214. case ArgString:
  3215. if cond, err = strconv.ParseBool(token.String); err != nil {
  3216. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3217. }
  3218. if argsList.Len() == 1 {
  3219. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(cond)))
  3220. }
  3221. if cond {
  3222. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  3223. }
  3224. if argsList.Len() == 3 {
  3225. result = argsList.Back().Value.(formulaArg).String
  3226. }
  3227. }
  3228. return newStringFormulaArg(result)
  3229. }
  3230. // Excel Lookup and Reference Functions
  3231. // CHOOSE function returns a value from an array, that corresponds to a
  3232. // supplied index number (position). The syntax of the function is:
  3233. //
  3234. // CHOOSE(index_num,value1,[value2],...)
  3235. //
  3236. // TODO: resolve range choose.
  3237. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  3238. if argsList.Len() < 2 {
  3239. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  3240. }
  3241. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  3242. if err != nil {
  3243. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  3244. }
  3245. if argsList.Len() <= idx {
  3246. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  3247. }
  3248. arg := argsList.Front()
  3249. for i := 0; i < idx; i++ {
  3250. arg = arg.Next()
  3251. }
  3252. return newStringFormulaArg(arg.Value.(formulaArg).String)
  3253. }