calc.go 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "unicode"
  26. "github.com/xuri/efp"
  27. )
  28. // Excel formula errors
  29. const (
  30. formulaErrorDIV = "#DIV/0!"
  31. formulaErrorNAME = "#NAME?"
  32. formulaErrorNA = "#N/A"
  33. formulaErrorNUM = "#NUM!"
  34. formulaErrorVALUE = "#VALUE!"
  35. formulaErrorREF = "#REF!"
  36. formulaErrorNULL = "#NULL"
  37. formulaErrorSPILL = "#SPILL!"
  38. formulaErrorCALC = "#CALC!"
  39. formulaErrorGETTINGDATA = "#GETTING_DATA"
  40. )
  41. // Numeric precision correct numeric values as legacy Excel application
  42. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  43. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  44. // has a decimal representation that is an infinite string of ones, Excel
  45. // displays only the leading 15 figures. In the second line, the number one
  46. // is added to the fraction, and again Excel displays only 15 figures.
  47. const numericPrecision = 1000000000000000
  48. // cellRef defines the structure of a cell reference.
  49. type cellRef struct {
  50. Col int
  51. Row int
  52. Sheet string
  53. }
  54. // cellRef defines the structure of a cell range.
  55. type cellRange struct {
  56. From cellRef
  57. To cellRef
  58. }
  59. // formula criteria condition enumeration.
  60. const (
  61. _ byte = iota
  62. criteriaEq
  63. criteriaLe
  64. criteriaGe
  65. criteriaL
  66. criteriaG
  67. criteriaBeg
  68. criteriaEnd
  69. )
  70. // formulaCriteria defined formula criteria parser result.
  71. type formulaCriteria struct {
  72. Type byte
  73. Condition string
  74. }
  75. // ArgType is the type if formula argument type.
  76. type ArgType byte
  77. // Formula argument types enumeration.
  78. const (
  79. ArgUnknown ArgType = iota
  80. ArgNumber
  81. ArgString
  82. ArgList
  83. ArgMatrix
  84. ArgError
  85. ArgEmpty
  86. )
  87. // formulaArg is the argument of a formula or function.
  88. type formulaArg struct {
  89. Number float64
  90. String string
  91. List []formulaArg
  92. Matrix [][]formulaArg
  93. Boolean bool
  94. Error string
  95. Type ArgType
  96. }
  97. // Value returns a string data type of the formula argument.
  98. func (fa formulaArg) Value() (value string) {
  99. switch fa.Type {
  100. case ArgNumber:
  101. if fa.Boolean {
  102. if fa.Number == 0 {
  103. return "FALSE"
  104. }
  105. return "TRUE"
  106. }
  107. return fmt.Sprintf("%g", fa.Number)
  108. case ArgString:
  109. return fa.String
  110. case ArgError:
  111. return fa.Error
  112. }
  113. return
  114. }
  115. // ToNumber returns a formula argument with number data type.
  116. func (fa formulaArg) ToNumber() formulaArg {
  117. var n float64
  118. var err error
  119. switch fa.Type {
  120. case ArgString:
  121. n, err = strconv.ParseFloat(fa.String, 64)
  122. if err != nil {
  123. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  124. }
  125. case ArgNumber:
  126. n = fa.Number
  127. }
  128. return newNumberFormulaArg(n)
  129. }
  130. // formulaFuncs is the type of the formula functions.
  131. type formulaFuncs struct{}
  132. // tokenPriority defined basic arithmetic operator priority.
  133. var tokenPriority = map[string]int{
  134. "^": 5,
  135. "*": 4,
  136. "/": 4,
  137. "+": 3,
  138. "-": 3,
  139. "=": 2,
  140. "<>": 2,
  141. "<": 2,
  142. "<=": 2,
  143. ">": 2,
  144. ">=": 2,
  145. "&": 1,
  146. }
  147. // CalcCellValue provides a function to get calculated cell value. This
  148. // feature is currently in working processing. Array formula, table formula
  149. // and some other formulas are not supported currently.
  150. //
  151. // Supported formulas:
  152. //
  153. // ABS
  154. // ACOS
  155. // ACOSH
  156. // ACOT
  157. // ACOTH
  158. // AND
  159. // ARABIC
  160. // ASIN
  161. // ASINH
  162. // ATAN2
  163. // ATANH
  164. // BASE
  165. // CEILING
  166. // CEILING.MATH
  167. // CEILING.PRECISE
  168. // CHOOSE
  169. // CLEAN
  170. // COMBIN
  171. // COMBINA
  172. // COS
  173. // COSH
  174. // COT
  175. // COTH
  176. // COUNTA
  177. // CSC
  178. // CSCH
  179. // DATE
  180. // DECIMAL
  181. // DEGREES
  182. // EVEN
  183. // EXP
  184. // FACT
  185. // FACTDOUBLE
  186. // FLOOR
  187. // FLOOR.MATH
  188. // FLOOR.PRECISE
  189. // GCD
  190. // IF
  191. // INT
  192. // ISBLANK
  193. // ISERR
  194. // ISERROR
  195. // ISEVEN
  196. // ISNA
  197. // ISNONTEXT
  198. // ISNUMBER
  199. // ISODD
  200. // ISO.CEILING
  201. // LCM
  202. // LEN
  203. // LN
  204. // LOG
  205. // LOG10
  206. // LOWER
  207. // MDETERM
  208. // MEDIAN
  209. // MOD
  210. // MROUND
  211. // MULTINOMIAL
  212. // MUNIT
  213. // NA
  214. // ODD
  215. // OR
  216. // PI
  217. // POWER
  218. // PRODUCT
  219. // PROPER
  220. // QUOTIENT
  221. // RADIANS
  222. // RAND
  223. // RANDBETWEEN
  224. // ROUND
  225. // ROUNDDOWN
  226. // ROUNDUP
  227. // SEC
  228. // SECH
  229. // SIGN
  230. // SIN
  231. // SINH
  232. // SQRT
  233. // SQRTPI
  234. // SUM
  235. // SUMIF
  236. // SUMSQ
  237. // TAN
  238. // TANH
  239. // TRIM
  240. // TRUNC
  241. // UPPER
  242. //
  243. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  244. var (
  245. formula string
  246. token efp.Token
  247. )
  248. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  249. return
  250. }
  251. ps := efp.ExcelParser()
  252. tokens := ps.Parse(formula)
  253. if tokens == nil {
  254. return
  255. }
  256. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  257. return
  258. }
  259. result = token.TValue
  260. isNum, precision := isNumeric(result)
  261. if isNum && precision > 15 {
  262. num, _ := roundPrecision(result)
  263. result = strings.ToUpper(num)
  264. }
  265. return
  266. }
  267. // getPriority calculate arithmetic operator priority.
  268. func getPriority(token efp.Token) (pri int) {
  269. pri, _ = tokenPriority[token.TValue]
  270. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  271. pri = 6
  272. }
  273. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  274. pri = 0
  275. }
  276. return
  277. }
  278. // newNumberFormulaArg constructs a number formula argument.
  279. func newNumberFormulaArg(n float64) formulaArg {
  280. if math.IsNaN(n) {
  281. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  282. }
  283. return formulaArg{Type: ArgNumber, Number: n}
  284. }
  285. // newStringFormulaArg constructs a string formula argument.
  286. func newStringFormulaArg(s string) formulaArg {
  287. return formulaArg{Type: ArgString, String: s}
  288. }
  289. // newMatrixFormulaArg constructs a matrix formula argument.
  290. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  291. return formulaArg{Type: ArgMatrix, Matrix: m}
  292. }
  293. // newBoolFormulaArg constructs a boolean formula argument.
  294. func newBoolFormulaArg(b bool) formulaArg {
  295. var n float64
  296. if b {
  297. n = 1
  298. }
  299. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  300. }
  301. // newErrorFormulaArg create an error formula argument of a given type with a specified error message.
  302. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  303. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  304. }
  305. // evalInfixExp evaluate syntax analysis by given infix expression after
  306. // lexical analysis. Evaluate an infix expression containing formulas by
  307. // stacks:
  308. //
  309. // opd - Operand
  310. // opt - Operator
  311. // opf - Operation formula
  312. // opfd - Operand of the operation formula
  313. // opft - Operator of the operation formula
  314. //
  315. // Evaluate arguments of the operation formula by list:
  316. //
  317. // args - Arguments of the operation formula
  318. //
  319. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  320. //
  321. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  322. var err error
  323. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  324. for i := 0; i < len(tokens); i++ {
  325. token := tokens[i]
  326. // out of function stack
  327. if opfStack.Len() == 0 {
  328. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  329. return efp.Token{}, err
  330. }
  331. }
  332. // function start
  333. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  334. opfStack.Push(token)
  335. argsStack.Push(list.New().Init())
  336. continue
  337. }
  338. // in function stack, walk 2 token at once
  339. if opfStack.Len() > 0 {
  340. var nextToken efp.Token
  341. if i+1 < len(tokens) {
  342. nextToken = tokens[i+1]
  343. }
  344. // current token is args or range, skip next token, order required: parse reference first
  345. if token.TSubType == efp.TokenSubTypeRange {
  346. if !opftStack.Empty() {
  347. // parse reference: must reference at here
  348. result, err := f.parseReference(sheet, token.TValue)
  349. if err != nil {
  350. return efp.Token{TValue: formulaErrorNAME}, err
  351. }
  352. if result.Type != ArgString {
  353. return efp.Token{}, errors.New(formulaErrorVALUE)
  354. }
  355. opfdStack.Push(efp.Token{
  356. TType: efp.TokenTypeOperand,
  357. TSubType: efp.TokenSubTypeNumber,
  358. TValue: result.String,
  359. })
  360. continue
  361. }
  362. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  363. // parse reference: reference or range at here
  364. result, err := f.parseReference(sheet, token.TValue)
  365. if err != nil {
  366. return efp.Token{TValue: formulaErrorNAME}, err
  367. }
  368. if result.Type == ArgUnknown {
  369. return efp.Token{}, errors.New(formulaErrorVALUE)
  370. }
  371. argsStack.Peek().(*list.List).PushBack(result)
  372. continue
  373. }
  374. }
  375. // check current token is opft
  376. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  377. return efp.Token{}, err
  378. }
  379. // current token is arg
  380. if token.TType == efp.TokenTypeArgument {
  381. for !opftStack.Empty() {
  382. // calculate trigger
  383. topOpt := opftStack.Peek().(efp.Token)
  384. if err := calculate(opfdStack, topOpt); err != nil {
  385. return efp.Token{}, err
  386. }
  387. opftStack.Pop()
  388. }
  389. if !opfdStack.Empty() {
  390. argsStack.Peek().(*list.List).PushBack(formulaArg{
  391. String: opfdStack.Pop().(efp.Token).TValue,
  392. Type: ArgString,
  393. })
  394. }
  395. continue
  396. }
  397. // current token is logical
  398. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  399. }
  400. // current token is text
  401. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  402. argsStack.Peek().(*list.List).PushBack(formulaArg{
  403. String: token.TValue,
  404. Type: ArgString,
  405. })
  406. }
  407. // current token is function stop
  408. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  409. for !opftStack.Empty() {
  410. // calculate trigger
  411. topOpt := opftStack.Peek().(efp.Token)
  412. if err := calculate(opfdStack, topOpt); err != nil {
  413. return efp.Token{}, err
  414. }
  415. opftStack.Pop()
  416. }
  417. // push opfd to args
  418. if opfdStack.Len() > 0 {
  419. argsStack.Peek().(*list.List).PushBack(formulaArg{
  420. String: opfdStack.Pop().(efp.Token).TValue,
  421. Type: ArgString,
  422. })
  423. }
  424. // call formula function to evaluate
  425. arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  426. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  427. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  428. if arg.Type == ArgError {
  429. return efp.Token{}, errors.New(arg.Value())
  430. }
  431. argsStack.Pop()
  432. opfStack.Pop()
  433. if opfStack.Len() > 0 { // still in function stack
  434. if nextToken.TType == efp.TokenTypeOperatorInfix {
  435. // mathematics calculate in formula function
  436. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  437. } else {
  438. argsStack.Peek().(*list.List).PushBack(arg)
  439. }
  440. } else {
  441. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  442. }
  443. }
  444. }
  445. }
  446. for optStack.Len() != 0 {
  447. topOpt := optStack.Peek().(efp.Token)
  448. if err = calculate(opdStack, topOpt); err != nil {
  449. return efp.Token{}, err
  450. }
  451. optStack.Pop()
  452. }
  453. if opdStack.Len() == 0 {
  454. return efp.Token{}, errors.New("formula not valid")
  455. }
  456. return opdStack.Peek().(efp.Token), err
  457. }
  458. // calcPow evaluate exponentiation arithmetic operations.
  459. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  460. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  461. if err != nil {
  462. return err
  463. }
  464. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  465. if err != nil {
  466. return err
  467. }
  468. result := math.Pow(lOpdVal, rOpdVal)
  469. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  470. return nil
  471. }
  472. // calcEq evaluate equal arithmetic operations.
  473. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  474. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  475. return nil
  476. }
  477. // calcNEq evaluate not equal arithmetic operations.
  478. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  479. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  480. return nil
  481. }
  482. // calcL evaluate less than arithmetic operations.
  483. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  484. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  485. if err != nil {
  486. return err
  487. }
  488. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  489. if err != nil {
  490. return err
  491. }
  492. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  493. return nil
  494. }
  495. // calcLe evaluate less than or equal arithmetic operations.
  496. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  497. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  498. if err != nil {
  499. return err
  500. }
  501. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  502. if err != nil {
  503. return err
  504. }
  505. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  506. return nil
  507. }
  508. // calcG evaluate greater than or equal arithmetic operations.
  509. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  510. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  511. if err != nil {
  512. return err
  513. }
  514. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  515. if err != nil {
  516. return err
  517. }
  518. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  519. return nil
  520. }
  521. // calcGe evaluate greater than or equal arithmetic operations.
  522. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  523. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  524. if err != nil {
  525. return err
  526. }
  527. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  528. if err != nil {
  529. return err
  530. }
  531. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  532. return nil
  533. }
  534. // calcSplice evaluate splice '&' operations.
  535. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  536. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  537. return nil
  538. }
  539. // calcAdd evaluate addition arithmetic operations.
  540. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  541. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  542. if err != nil {
  543. return err
  544. }
  545. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  546. if err != nil {
  547. return err
  548. }
  549. result := lOpdVal + rOpdVal
  550. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  551. return nil
  552. }
  553. // calcSubtract evaluate subtraction arithmetic operations.
  554. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  555. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  556. if err != nil {
  557. return err
  558. }
  559. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  560. if err != nil {
  561. return err
  562. }
  563. result := lOpdVal - rOpdVal
  564. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  565. return nil
  566. }
  567. // calcMultiply evaluate multiplication arithmetic operations.
  568. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  569. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  570. if err != nil {
  571. return err
  572. }
  573. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  574. if err != nil {
  575. return err
  576. }
  577. result := lOpdVal * rOpdVal
  578. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  579. return nil
  580. }
  581. // calcDiv evaluate division arithmetic operations.
  582. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  583. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  584. if err != nil {
  585. return err
  586. }
  587. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  588. if err != nil {
  589. return err
  590. }
  591. result := lOpdVal / rOpdVal
  592. if rOpdVal == 0 {
  593. return errors.New(formulaErrorDIV)
  594. }
  595. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  596. return nil
  597. }
  598. // calculate evaluate basic arithmetic operations.
  599. func calculate(opdStack *Stack, opt efp.Token) error {
  600. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  601. if opdStack.Len() < 1 {
  602. return errors.New("formula not valid")
  603. }
  604. opd := opdStack.Pop().(efp.Token)
  605. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  606. if err != nil {
  607. return err
  608. }
  609. result := 0 - opdVal
  610. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  611. }
  612. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  613. "^": calcPow,
  614. "*": calcMultiply,
  615. "/": calcDiv,
  616. "+": calcAdd,
  617. "=": calcEq,
  618. "<>": calcNEq,
  619. "<": calcL,
  620. "<=": calcLe,
  621. ">": calcG,
  622. ">=": calcGe,
  623. "&": calcSplice,
  624. }
  625. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  626. if opdStack.Len() < 2 {
  627. return errors.New("formula not valid")
  628. }
  629. rOpd := opdStack.Pop().(efp.Token)
  630. lOpd := opdStack.Pop().(efp.Token)
  631. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  632. return err
  633. }
  634. }
  635. fn, ok := tokenCalcFunc[opt.TValue]
  636. if ok {
  637. if opdStack.Len() < 2 {
  638. return errors.New("formula not valid")
  639. }
  640. rOpd := opdStack.Pop().(efp.Token)
  641. lOpd := opdStack.Pop().(efp.Token)
  642. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  643. return err
  644. }
  645. }
  646. return nil
  647. }
  648. // parseOperatorPrefixToken parse operator prefix token.
  649. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  650. if optStack.Len() == 0 {
  651. optStack.Push(token)
  652. } else {
  653. tokenPriority := getPriority(token)
  654. topOpt := optStack.Peek().(efp.Token)
  655. topOptPriority := getPriority(topOpt)
  656. if tokenPriority > topOptPriority {
  657. optStack.Push(token)
  658. } else {
  659. for tokenPriority <= topOptPriority {
  660. optStack.Pop()
  661. if err = calculate(opdStack, topOpt); err != nil {
  662. return
  663. }
  664. if optStack.Len() > 0 {
  665. topOpt = optStack.Peek().(efp.Token)
  666. topOptPriority = getPriority(topOpt)
  667. continue
  668. }
  669. break
  670. }
  671. optStack.Push(token)
  672. }
  673. }
  674. return
  675. }
  676. // isOperatorPrefixToken determine if the token is parse operator prefix
  677. // token.
  678. func isOperatorPrefixToken(token efp.Token) bool {
  679. _, ok := tokenPriority[token.TValue]
  680. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || ok {
  681. return true
  682. }
  683. return false
  684. }
  685. // getDefinedNameRefTo convert defined name to reference range.
  686. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  687. for _, definedName := range f.GetDefinedName() {
  688. if definedName.Name == definedNameName {
  689. refTo = definedName.RefersTo
  690. // worksheet scope takes precedence over scope workbook when both definedNames exist
  691. if definedName.Scope == currentSheet {
  692. break
  693. }
  694. }
  695. }
  696. return refTo
  697. }
  698. // parseToken parse basic arithmetic operator priority and evaluate based on
  699. // operators and operands.
  700. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  701. // parse reference: must reference at here
  702. if token.TSubType == efp.TokenSubTypeRange {
  703. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  704. if refTo != "" {
  705. token.TValue = refTo
  706. }
  707. result, err := f.parseReference(sheet, token.TValue)
  708. if err != nil {
  709. return errors.New(formulaErrorNAME)
  710. }
  711. if result.Type != ArgString {
  712. return errors.New(formulaErrorVALUE)
  713. }
  714. token.TValue = result.String
  715. token.TType = efp.TokenTypeOperand
  716. token.TSubType = efp.TokenSubTypeNumber
  717. }
  718. if isOperatorPrefixToken(token) {
  719. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  720. return err
  721. }
  722. }
  723. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  724. optStack.Push(token)
  725. }
  726. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  727. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  728. topOpt := optStack.Peek().(efp.Token)
  729. if err := calculate(opdStack, topOpt); err != nil {
  730. return err
  731. }
  732. optStack.Pop()
  733. }
  734. optStack.Pop()
  735. }
  736. // opd
  737. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  738. opdStack.Push(token)
  739. }
  740. return nil
  741. }
  742. // parseReference parse reference and extract values by given reference
  743. // characters and default sheet name.
  744. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  745. reference = strings.Replace(reference, "$", "", -1)
  746. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  747. for _, ref := range strings.Split(reference, ":") {
  748. tokens := strings.Split(ref, "!")
  749. cr := cellRef{}
  750. if len(tokens) == 2 { // have a worksheet name
  751. cr.Sheet = tokens[0]
  752. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  753. return
  754. }
  755. if refs.Len() > 0 {
  756. e := refs.Back()
  757. cellRefs.PushBack(e.Value.(cellRef))
  758. refs.Remove(e)
  759. }
  760. refs.PushBack(cr)
  761. continue
  762. }
  763. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  764. return
  765. }
  766. e := refs.Back()
  767. if e == nil {
  768. cr.Sheet = sheet
  769. refs.PushBack(cr)
  770. continue
  771. }
  772. cellRanges.PushBack(cellRange{
  773. From: e.Value.(cellRef),
  774. To: cr,
  775. })
  776. refs.Remove(e)
  777. }
  778. if refs.Len() > 0 {
  779. e := refs.Back()
  780. cellRefs.PushBack(e.Value.(cellRef))
  781. refs.Remove(e)
  782. }
  783. arg, err = f.rangeResolver(cellRefs, cellRanges)
  784. return
  785. }
  786. // prepareValueRange prepare value range.
  787. func prepareValueRange(cr cellRange, valueRange []int) {
  788. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  789. valueRange[0] = cr.From.Row
  790. }
  791. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  792. valueRange[2] = cr.From.Col
  793. }
  794. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  795. valueRange[1] = cr.To.Row
  796. }
  797. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  798. valueRange[3] = cr.To.Col
  799. }
  800. }
  801. // prepareValueRef prepare value reference.
  802. func prepareValueRef(cr cellRef, valueRange []int) {
  803. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  804. valueRange[0] = cr.Row
  805. }
  806. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  807. valueRange[2] = cr.Col
  808. }
  809. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  810. valueRange[1] = cr.Row
  811. }
  812. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  813. valueRange[3] = cr.Col
  814. }
  815. }
  816. // rangeResolver extract value as string from given reference and range list.
  817. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  818. // be reference A1:B3.
  819. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  820. // value range order: from row, to row, from column, to column
  821. valueRange := []int{0, 0, 0, 0}
  822. var sheet string
  823. // prepare value range
  824. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  825. cr := temp.Value.(cellRange)
  826. if cr.From.Sheet != cr.To.Sheet {
  827. err = errors.New(formulaErrorVALUE)
  828. }
  829. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  830. sortCoordinates(rng)
  831. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  832. prepareValueRange(cr, valueRange)
  833. if cr.From.Sheet != "" {
  834. sheet = cr.From.Sheet
  835. }
  836. }
  837. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  838. cr := temp.Value.(cellRef)
  839. if cr.Sheet != "" {
  840. sheet = cr.Sheet
  841. }
  842. prepareValueRef(cr, valueRange)
  843. }
  844. // extract value from ranges
  845. if cellRanges.Len() > 0 {
  846. arg.Type = ArgMatrix
  847. for row := valueRange[0]; row <= valueRange[1]; row++ {
  848. var matrixRow = []formulaArg{}
  849. for col := valueRange[2]; col <= valueRange[3]; col++ {
  850. var cell, value string
  851. if cell, err = CoordinatesToCellName(col, row); err != nil {
  852. return
  853. }
  854. if value, err = f.GetCellValue(sheet, cell); err != nil {
  855. return
  856. }
  857. matrixRow = append(matrixRow, formulaArg{
  858. String: value,
  859. Type: ArgString,
  860. })
  861. }
  862. arg.Matrix = append(arg.Matrix, matrixRow)
  863. }
  864. return
  865. }
  866. // extract value from references
  867. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  868. cr := temp.Value.(cellRef)
  869. var cell string
  870. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  871. return
  872. }
  873. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  874. return
  875. }
  876. arg.Type = ArgString
  877. }
  878. return
  879. }
  880. // callFuncByName calls the no error or only error return function with
  881. // reflect by given receiver, name and parameters.
  882. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  883. function := reflect.ValueOf(receiver).MethodByName(name)
  884. if function.IsValid() {
  885. rt := function.Call(params)
  886. if len(rt) == 0 {
  887. return
  888. }
  889. arg = rt[0].Interface().(formulaArg)
  890. return
  891. }
  892. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  893. }
  894. // formulaCriteriaParser parse formula criteria.
  895. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  896. fc = &formulaCriteria{}
  897. if exp == "" {
  898. return
  899. }
  900. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  901. fc.Type, fc.Condition = criteriaEq, match[1]
  902. return
  903. }
  904. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  905. fc.Type, fc.Condition = criteriaEq, match[1]
  906. return
  907. }
  908. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  909. fc.Type, fc.Condition = criteriaLe, match[1]
  910. return
  911. }
  912. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  913. fc.Type, fc.Condition = criteriaGe, match[1]
  914. return
  915. }
  916. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  917. fc.Type, fc.Condition = criteriaL, match[1]
  918. return
  919. }
  920. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  921. fc.Type, fc.Condition = criteriaG, match[1]
  922. return
  923. }
  924. if strings.Contains(exp, "*") {
  925. if strings.HasPrefix(exp, "*") {
  926. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  927. }
  928. if strings.HasSuffix(exp, "*") {
  929. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  930. }
  931. return
  932. }
  933. fc.Type, fc.Condition = criteriaEq, exp
  934. return
  935. }
  936. // formulaCriteriaEval evaluate formula criteria expression.
  937. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  938. var value, expected float64
  939. var e error
  940. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  941. if value, err = strconv.ParseFloat(val, 64); err != nil {
  942. return
  943. }
  944. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  945. return
  946. }
  947. return
  948. }
  949. switch criteria.Type {
  950. case criteriaEq:
  951. return val == criteria.Condition, err
  952. case criteriaLe:
  953. value, expected, e = prepareValue(val, criteria.Condition)
  954. return value <= expected && e == nil, err
  955. case criteriaGe:
  956. value, expected, e = prepareValue(val, criteria.Condition)
  957. return value >= expected && e == nil, err
  958. case criteriaL:
  959. value, expected, e = prepareValue(val, criteria.Condition)
  960. return value < expected && e == nil, err
  961. case criteriaG:
  962. value, expected, e = prepareValue(val, criteria.Condition)
  963. return value > expected && e == nil, err
  964. case criteriaBeg:
  965. return strings.HasPrefix(val, criteria.Condition), err
  966. case criteriaEnd:
  967. return strings.HasSuffix(val, criteria.Condition), err
  968. }
  969. return
  970. }
  971. // Math and Trigonometric functions
  972. // ABS function returns the absolute value of any supplied number. The syntax
  973. // of the function is:
  974. //
  975. // ABS(number)
  976. //
  977. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  978. if argsList.Len() != 1 {
  979. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  980. }
  981. arg := argsList.Front().Value.(formulaArg).ToNumber()
  982. if arg.Type == ArgError {
  983. return arg
  984. }
  985. return newNumberFormulaArg(math.Abs(arg.Number))
  986. }
  987. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  988. // number, and returns an angle, in radians, between 0 and π. The syntax of
  989. // the function is:
  990. //
  991. // ACOS(number)
  992. //
  993. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  994. if argsList.Len() != 1 {
  995. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  996. }
  997. arg := argsList.Front().Value.(formulaArg).ToNumber()
  998. if arg.Type == ArgError {
  999. return arg
  1000. }
  1001. return newNumberFormulaArg(math.Acos(arg.Number))
  1002. }
  1003. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1004. // of the function is:
  1005. //
  1006. // ACOSH(number)
  1007. //
  1008. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1009. if argsList.Len() != 1 {
  1010. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1011. }
  1012. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1013. if arg.Type == ArgError {
  1014. return arg
  1015. }
  1016. return newNumberFormulaArg(math.Acosh(arg.Number))
  1017. }
  1018. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1019. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1020. // of the function is:
  1021. //
  1022. // ACOT(number)
  1023. //
  1024. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1025. if argsList.Len() != 1 {
  1026. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1027. }
  1028. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1029. if arg.Type == ArgError {
  1030. return arg
  1031. }
  1032. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1033. }
  1034. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1035. // value. The syntax of the function is:
  1036. //
  1037. // ACOTH(number)
  1038. //
  1039. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1040. if argsList.Len() != 1 {
  1041. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1042. }
  1043. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1044. if arg.Type == ArgError {
  1045. return arg
  1046. }
  1047. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1048. }
  1049. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1050. // of the function is:
  1051. //
  1052. // ARABIC(text)
  1053. //
  1054. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1055. if argsList.Len() != 1 {
  1056. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1057. }
  1058. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1059. val, last, prefix := 0.0, 0.0, 1.0
  1060. for _, char := range argsList.Front().Value.(formulaArg).String {
  1061. digit := 0.0
  1062. if char == '-' {
  1063. prefix = -1
  1064. continue
  1065. }
  1066. digit, _ = charMap[char]
  1067. val += digit
  1068. switch {
  1069. case last == digit && (last == 5 || last == 50 || last == 500):
  1070. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1071. case 2*last == digit:
  1072. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1073. }
  1074. if last < digit {
  1075. val -= 2 * last
  1076. }
  1077. last = digit
  1078. }
  1079. return newNumberFormulaArg(prefix * val)
  1080. }
  1081. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1082. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1083. // of the function is:
  1084. //
  1085. // ASIN(number)
  1086. //
  1087. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1088. if argsList.Len() != 1 {
  1089. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1090. }
  1091. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1092. if arg.Type == ArgError {
  1093. return arg
  1094. }
  1095. return newNumberFormulaArg(math.Asin(arg.Number))
  1096. }
  1097. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1098. // The syntax of the function is:
  1099. //
  1100. // ASINH(number)
  1101. //
  1102. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1103. if argsList.Len() != 1 {
  1104. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1105. }
  1106. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1107. if arg.Type == ArgError {
  1108. return arg
  1109. }
  1110. return newNumberFormulaArg(math.Asinh(arg.Number))
  1111. }
  1112. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1113. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1114. // syntax of the function is:
  1115. //
  1116. // ATAN(number)
  1117. //
  1118. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1119. if argsList.Len() != 1 {
  1120. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1121. }
  1122. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1123. if arg.Type == ArgError {
  1124. return arg
  1125. }
  1126. return newNumberFormulaArg(math.Atan(arg.Number))
  1127. }
  1128. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1129. // number. The syntax of the function is:
  1130. //
  1131. // ATANH(number)
  1132. //
  1133. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1134. if argsList.Len() != 1 {
  1135. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1136. }
  1137. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1138. if arg.Type == ArgError {
  1139. return arg
  1140. }
  1141. return newNumberFormulaArg(math.Atanh(arg.Number))
  1142. }
  1143. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1144. // given set of x and y coordinates, and returns an angle, in radians, between
  1145. // -π/2 and +π/2. The syntax of the function is:
  1146. //
  1147. // ATAN2(x_num,y_num)
  1148. //
  1149. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1150. if argsList.Len() != 2 {
  1151. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1152. }
  1153. x := argsList.Back().Value.(formulaArg).ToNumber()
  1154. if x.Type == ArgError {
  1155. return x
  1156. }
  1157. y := argsList.Front().Value.(formulaArg).ToNumber()
  1158. if y.Type == ArgError {
  1159. return y
  1160. }
  1161. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1162. }
  1163. // BASE function converts a number into a supplied base (radix), and returns a
  1164. // text representation of the calculated value. The syntax of the function is:
  1165. //
  1166. // BASE(number,radix,[min_length])
  1167. //
  1168. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1169. if argsList.Len() < 2 {
  1170. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1171. }
  1172. if argsList.Len() > 3 {
  1173. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1174. }
  1175. var minLength int
  1176. var err error
  1177. number := argsList.Front().Value.(formulaArg).ToNumber()
  1178. if number.Type == ArgError {
  1179. return number
  1180. }
  1181. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1182. if radix.Type == ArgError {
  1183. return radix
  1184. }
  1185. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1186. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1187. }
  1188. if argsList.Len() > 2 {
  1189. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1190. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1191. }
  1192. }
  1193. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1194. if len(result) < minLength {
  1195. result = strings.Repeat("0", minLength-len(result)) + result
  1196. }
  1197. return newStringFormulaArg(strings.ToUpper(result))
  1198. }
  1199. // CEILING function rounds a supplied number away from zero, to the nearest
  1200. // multiple of a given number. The syntax of the function is:
  1201. //
  1202. // CEILING(number,significance)
  1203. //
  1204. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1205. if argsList.Len() == 0 {
  1206. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1207. }
  1208. if argsList.Len() > 2 {
  1209. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1210. }
  1211. number, significance, res := 0.0, 1.0, 0.0
  1212. n := argsList.Front().Value.(formulaArg).ToNumber()
  1213. if n.Type == ArgError {
  1214. return n
  1215. }
  1216. number = n.Number
  1217. if number < 0 {
  1218. significance = -1
  1219. }
  1220. if argsList.Len() > 1 {
  1221. s := argsList.Back().Value.(formulaArg).ToNumber()
  1222. if s.Type == ArgError {
  1223. return s
  1224. }
  1225. significance = s.Number
  1226. }
  1227. if significance < 0 && number > 0 {
  1228. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1229. }
  1230. if argsList.Len() == 1 {
  1231. return newNumberFormulaArg(math.Ceil(number))
  1232. }
  1233. number, res = math.Modf(number / significance)
  1234. if res > 0 {
  1235. number++
  1236. }
  1237. return newNumberFormulaArg(number * significance)
  1238. }
  1239. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1240. // significance. The syntax of the function is:
  1241. //
  1242. // CEILING.MATH(number,[significance],[mode])
  1243. //
  1244. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1245. if argsList.Len() == 0 {
  1246. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1247. }
  1248. if argsList.Len() > 3 {
  1249. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1250. }
  1251. number, significance, mode := 0.0, 1.0, 1.0
  1252. n := argsList.Front().Value.(formulaArg).ToNumber()
  1253. if n.Type == ArgError {
  1254. return n
  1255. }
  1256. number = n.Number
  1257. if number < 0 {
  1258. significance = -1
  1259. }
  1260. if argsList.Len() > 1 {
  1261. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1262. if s.Type == ArgError {
  1263. return s
  1264. }
  1265. significance = s.Number
  1266. }
  1267. if argsList.Len() == 1 {
  1268. return newNumberFormulaArg(math.Ceil(number))
  1269. }
  1270. if argsList.Len() > 2 {
  1271. m := argsList.Back().Value.(formulaArg).ToNumber()
  1272. if m.Type == ArgError {
  1273. return m
  1274. }
  1275. mode = m.Number
  1276. }
  1277. val, res := math.Modf(number / significance)
  1278. if res != 0 {
  1279. if number > 0 {
  1280. val++
  1281. } else if mode < 0 {
  1282. val--
  1283. }
  1284. }
  1285. return newNumberFormulaArg(val * significance)
  1286. }
  1287. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1288. // number's sign), to the nearest multiple of a given number. The syntax of
  1289. // the function is:
  1290. //
  1291. // CEILING.PRECISE(number,[significance])
  1292. //
  1293. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1294. if argsList.Len() == 0 {
  1295. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1296. }
  1297. if argsList.Len() > 2 {
  1298. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1299. }
  1300. number, significance := 0.0, 1.0
  1301. n := argsList.Front().Value.(formulaArg).ToNumber()
  1302. if n.Type == ArgError {
  1303. return n
  1304. }
  1305. number = n.Number
  1306. if number < 0 {
  1307. significance = -1
  1308. }
  1309. if argsList.Len() == 1 {
  1310. return newNumberFormulaArg(math.Ceil(number))
  1311. }
  1312. if argsList.Len() > 1 {
  1313. s := argsList.Back().Value.(formulaArg).ToNumber()
  1314. if s.Type == ArgError {
  1315. return s
  1316. }
  1317. significance = s.Number
  1318. significance = math.Abs(significance)
  1319. if significance == 0 {
  1320. return newNumberFormulaArg(significance)
  1321. }
  1322. }
  1323. val, res := math.Modf(number / significance)
  1324. if res != 0 {
  1325. if number > 0 {
  1326. val++
  1327. }
  1328. }
  1329. return newNumberFormulaArg(val * significance)
  1330. }
  1331. // COMBIN function calculates the number of combinations (in any order) of a
  1332. // given number objects from a set. The syntax of the function is:
  1333. //
  1334. // COMBIN(number,number_chosen)
  1335. //
  1336. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1337. if argsList.Len() != 2 {
  1338. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1339. }
  1340. number, chosen, val := 0.0, 0.0, 1.0
  1341. n := argsList.Front().Value.(formulaArg).ToNumber()
  1342. if n.Type == ArgError {
  1343. return n
  1344. }
  1345. number = n.Number
  1346. c := argsList.Back().Value.(formulaArg).ToNumber()
  1347. if c.Type == ArgError {
  1348. return c
  1349. }
  1350. chosen = c.Number
  1351. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1352. if chosen > number {
  1353. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1354. }
  1355. if chosen == number || chosen == 0 {
  1356. return newNumberFormulaArg(1)
  1357. }
  1358. for c := float64(1); c <= chosen; c++ {
  1359. val *= (number + 1 - c) / c
  1360. }
  1361. return newNumberFormulaArg(math.Ceil(val))
  1362. }
  1363. // COMBINA function calculates the number of combinations, with repetitions,
  1364. // of a given number objects from a set. The syntax of the function is:
  1365. //
  1366. // COMBINA(number,number_chosen)
  1367. //
  1368. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1369. if argsList.Len() != 2 {
  1370. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1371. }
  1372. var number, chosen float64
  1373. n := argsList.Front().Value.(formulaArg).ToNumber()
  1374. if n.Type == ArgError {
  1375. return n
  1376. }
  1377. number = n.Number
  1378. c := argsList.Back().Value.(formulaArg).ToNumber()
  1379. if c.Type == ArgError {
  1380. return c
  1381. }
  1382. chosen = c.Number
  1383. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1384. if number < chosen {
  1385. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1386. }
  1387. if number == 0 {
  1388. return newNumberFormulaArg(number)
  1389. }
  1390. args := list.New()
  1391. args.PushBack(formulaArg{
  1392. String: fmt.Sprintf("%g", number+chosen-1),
  1393. Type: ArgString,
  1394. })
  1395. args.PushBack(formulaArg{
  1396. String: fmt.Sprintf("%g", number-1),
  1397. Type: ArgString,
  1398. })
  1399. return fn.COMBIN(args)
  1400. }
  1401. // COS function calculates the cosine of a given angle. The syntax of the
  1402. // function is:
  1403. //
  1404. // COS(number)
  1405. //
  1406. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1407. if argsList.Len() != 1 {
  1408. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1409. }
  1410. val := argsList.Front().Value.(formulaArg).ToNumber()
  1411. if val.Type == ArgError {
  1412. return val
  1413. }
  1414. return newNumberFormulaArg(math.Cos(val.Number))
  1415. }
  1416. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1417. // The syntax of the function is:
  1418. //
  1419. // COSH(number)
  1420. //
  1421. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1422. if argsList.Len() != 1 {
  1423. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1424. }
  1425. val := argsList.Front().Value.(formulaArg).ToNumber()
  1426. if val.Type == ArgError {
  1427. return val
  1428. }
  1429. return newNumberFormulaArg(math.Cosh(val.Number))
  1430. }
  1431. // COT function calculates the cotangent of a given angle. The syntax of the
  1432. // function is:
  1433. //
  1434. // COT(number)
  1435. //
  1436. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1437. if argsList.Len() != 1 {
  1438. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1439. }
  1440. val := argsList.Front().Value.(formulaArg).ToNumber()
  1441. if val.Type == ArgError {
  1442. return val
  1443. }
  1444. if val.Number == 0 {
  1445. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1446. }
  1447. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1448. }
  1449. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1450. // angle. The syntax of the function is:
  1451. //
  1452. // COTH(number)
  1453. //
  1454. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1455. if argsList.Len() != 1 {
  1456. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1457. }
  1458. val := argsList.Front().Value.(formulaArg).ToNumber()
  1459. if val.Type == ArgError {
  1460. return val
  1461. }
  1462. if val.Number == 0 {
  1463. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1464. }
  1465. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1466. }
  1467. // CSC function calculates the cosecant of a given angle. The syntax of the
  1468. // function is:
  1469. //
  1470. // CSC(number)
  1471. //
  1472. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1473. if argsList.Len() != 1 {
  1474. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1475. }
  1476. val := argsList.Front().Value.(formulaArg).ToNumber()
  1477. if val.Type == ArgError {
  1478. return val
  1479. }
  1480. if val.Number == 0 {
  1481. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1482. }
  1483. return newNumberFormulaArg(1 / math.Sin(val.Number))
  1484. }
  1485. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1486. // angle. The syntax of the function is:
  1487. //
  1488. // CSCH(number)
  1489. //
  1490. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1491. if argsList.Len() != 1 {
  1492. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1493. }
  1494. val := argsList.Front().Value.(formulaArg).ToNumber()
  1495. if val.Type == ArgError {
  1496. return val
  1497. }
  1498. if val.Number == 0 {
  1499. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1500. }
  1501. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  1502. }
  1503. // DECIMAL function converts a text representation of a number in a specified
  1504. // base, into a decimal value. The syntax of the function is:
  1505. //
  1506. // DECIMAL(text,radix)
  1507. //
  1508. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1509. if argsList.Len() != 2 {
  1510. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1511. }
  1512. var text = argsList.Front().Value.(formulaArg).String
  1513. var radix int
  1514. var err error
  1515. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1516. if err != nil {
  1517. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1518. }
  1519. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1520. text = text[2:]
  1521. }
  1522. val, err := strconv.ParseInt(text, radix, 64)
  1523. if err != nil {
  1524. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1525. }
  1526. return newNumberFormulaArg(float64(val))
  1527. }
  1528. // DEGREES function converts radians into degrees. The syntax of the function
  1529. // is:
  1530. //
  1531. // DEGREES(angle)
  1532. //
  1533. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1534. if argsList.Len() != 1 {
  1535. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1536. }
  1537. val := argsList.Front().Value.(formulaArg).ToNumber()
  1538. if val.Type == ArgError {
  1539. return val
  1540. }
  1541. if val.Number == 0 {
  1542. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1543. }
  1544. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  1545. }
  1546. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1547. // positive number up and a negative number down), to the next even number.
  1548. // The syntax of the function is:
  1549. //
  1550. // EVEN(number)
  1551. //
  1552. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1553. if argsList.Len() != 1 {
  1554. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1555. }
  1556. number := argsList.Front().Value.(formulaArg).ToNumber()
  1557. if number.Type == ArgError {
  1558. return number
  1559. }
  1560. sign := math.Signbit(number.Number)
  1561. m, frac := math.Modf(number.Number / 2)
  1562. val := m * 2
  1563. if frac != 0 {
  1564. if !sign {
  1565. val += 2
  1566. } else {
  1567. val -= 2
  1568. }
  1569. }
  1570. return newNumberFormulaArg(val)
  1571. }
  1572. // EXP function calculates the value of the mathematical constant e, raised to
  1573. // the power of a given number. The syntax of the function is:
  1574. //
  1575. // EXP(number)
  1576. //
  1577. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1578. if argsList.Len() != 1 {
  1579. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1580. }
  1581. number := argsList.Front().Value.(formulaArg).ToNumber()
  1582. if number.Type == ArgError {
  1583. return number
  1584. }
  1585. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  1586. }
  1587. // fact returns the factorial of a supplied number.
  1588. func fact(number float64) float64 {
  1589. val := float64(1)
  1590. for i := float64(2); i <= number; i++ {
  1591. val *= i
  1592. }
  1593. return val
  1594. }
  1595. // FACT function returns the factorial of a supplied number. The syntax of the
  1596. // function is:
  1597. //
  1598. // FACT(number)
  1599. //
  1600. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1601. if argsList.Len() != 1 {
  1602. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1603. }
  1604. number := argsList.Front().Value.(formulaArg).ToNumber()
  1605. if number.Type == ArgError {
  1606. return number
  1607. }
  1608. if number.Number < 0 {
  1609. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1610. }
  1611. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
  1612. }
  1613. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1614. // syntax of the function is:
  1615. //
  1616. // FACTDOUBLE(number)
  1617. //
  1618. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1619. if argsList.Len() != 1 {
  1620. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1621. }
  1622. val := 1.0
  1623. number := argsList.Front().Value.(formulaArg).ToNumber()
  1624. if number.Type == ArgError {
  1625. return number
  1626. }
  1627. if number.Number < 0 {
  1628. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1629. }
  1630. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  1631. val *= i
  1632. }
  1633. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1634. }
  1635. // FLOOR function rounds a supplied number towards zero to the nearest
  1636. // multiple of a specified significance. The syntax of the function is:
  1637. //
  1638. // FLOOR(number,significance)
  1639. //
  1640. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1641. if argsList.Len() != 2 {
  1642. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1643. }
  1644. number := argsList.Front().Value.(formulaArg).ToNumber()
  1645. if number.Type == ArgError {
  1646. return number
  1647. }
  1648. significance := argsList.Back().Value.(formulaArg).ToNumber()
  1649. if significance.Type == ArgError {
  1650. return significance
  1651. }
  1652. if significance.Number < 0 && number.Number >= 0 {
  1653. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1654. }
  1655. val := number.Number
  1656. val, res := math.Modf(val / significance.Number)
  1657. if res != 0 {
  1658. if number.Number < 0 && res < 0 {
  1659. val--
  1660. }
  1661. }
  1662. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  1663. }
  1664. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1665. // significance. The syntax of the function is:
  1666. //
  1667. // FLOOR.MATH(number,[significance],[mode])
  1668. //
  1669. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1670. if argsList.Len() == 0 {
  1671. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1672. }
  1673. if argsList.Len() > 3 {
  1674. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1675. }
  1676. significance, mode := 1.0, 1.0
  1677. number := argsList.Front().Value.(formulaArg).ToNumber()
  1678. if number.Type == ArgError {
  1679. return number
  1680. }
  1681. if number.Number < 0 {
  1682. significance = -1
  1683. }
  1684. if argsList.Len() > 1 {
  1685. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1686. if s.Type == ArgError {
  1687. return s
  1688. }
  1689. significance = s.Number
  1690. }
  1691. if argsList.Len() == 1 {
  1692. return newNumberFormulaArg(math.Floor(number.Number))
  1693. }
  1694. if argsList.Len() > 2 {
  1695. m := argsList.Back().Value.(formulaArg).ToNumber()
  1696. if m.Type == ArgError {
  1697. return m
  1698. }
  1699. mode = m.Number
  1700. }
  1701. val, res := math.Modf(number.Number / significance)
  1702. if res != 0 && number.Number < 0 && mode > 0 {
  1703. val--
  1704. }
  1705. return newNumberFormulaArg(val * significance)
  1706. }
  1707. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1708. // of significance. The syntax of the function is:
  1709. //
  1710. // FLOOR.PRECISE(number,[significance])
  1711. //
  1712. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1713. if argsList.Len() == 0 {
  1714. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1715. }
  1716. if argsList.Len() > 2 {
  1717. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1718. }
  1719. var significance float64
  1720. number := argsList.Front().Value.(formulaArg).ToNumber()
  1721. if number.Type == ArgError {
  1722. return number
  1723. }
  1724. if number.Number < 0 {
  1725. significance = -1
  1726. }
  1727. if argsList.Len() == 1 {
  1728. return newNumberFormulaArg(math.Floor(number.Number))
  1729. }
  1730. if argsList.Len() > 1 {
  1731. s := argsList.Back().Value.(formulaArg).ToNumber()
  1732. if s.Type == ArgError {
  1733. return s
  1734. }
  1735. significance = s.Number
  1736. significance = math.Abs(significance)
  1737. if significance == 0 {
  1738. return newNumberFormulaArg(significance)
  1739. }
  1740. }
  1741. val, res := math.Modf(number.Number / significance)
  1742. if res != 0 {
  1743. if number.Number < 0 {
  1744. val--
  1745. }
  1746. }
  1747. return newNumberFormulaArg(val * significance)
  1748. }
  1749. // gcd returns the greatest common divisor of two supplied integers.
  1750. func gcd(x, y float64) float64 {
  1751. x, y = math.Trunc(x), math.Trunc(y)
  1752. if x == 0 {
  1753. return y
  1754. }
  1755. if y == 0 {
  1756. return x
  1757. }
  1758. for x != y {
  1759. if x > y {
  1760. x = x - y
  1761. } else {
  1762. y = y - x
  1763. }
  1764. }
  1765. return x
  1766. }
  1767. // GCD function returns the greatest common divisor of two or more supplied
  1768. // integers. The syntax of the function is:
  1769. //
  1770. // GCD(number1,[number2],...)
  1771. //
  1772. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  1773. if argsList.Len() == 0 {
  1774. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  1775. }
  1776. var (
  1777. val float64
  1778. nums = []float64{}
  1779. err error
  1780. )
  1781. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1782. token := arg.Value.(formulaArg)
  1783. switch token.Type {
  1784. case ArgString:
  1785. if token.String == "" {
  1786. continue
  1787. }
  1788. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1789. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1790. }
  1791. break
  1792. case ArgNumber:
  1793. val = token.Number
  1794. break
  1795. }
  1796. nums = append(nums, val)
  1797. }
  1798. if nums[0] < 0 {
  1799. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1800. }
  1801. if len(nums) == 1 {
  1802. return newNumberFormulaArg(nums[0])
  1803. }
  1804. cd := nums[0]
  1805. for i := 1; i < len(nums); i++ {
  1806. if nums[i] < 0 {
  1807. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1808. }
  1809. cd = gcd(cd, nums[i])
  1810. }
  1811. return newNumberFormulaArg(cd)
  1812. }
  1813. // INT function truncates a supplied number down to the closest integer. The
  1814. // syntax of the function is:
  1815. //
  1816. // INT(number)
  1817. //
  1818. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  1819. if argsList.Len() != 1 {
  1820. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  1821. }
  1822. number := argsList.Front().Value.(formulaArg).ToNumber()
  1823. if number.Type == ArgError {
  1824. return number
  1825. }
  1826. val, frac := math.Modf(number.Number)
  1827. if frac < 0 {
  1828. val--
  1829. }
  1830. return newNumberFormulaArg(val)
  1831. }
  1832. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1833. // sign), to the nearest multiple of a supplied significance. The syntax of
  1834. // the function is:
  1835. //
  1836. // ISO.CEILING(number,[significance])
  1837. //
  1838. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  1839. if argsList.Len() == 0 {
  1840. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  1841. }
  1842. if argsList.Len() > 2 {
  1843. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  1844. }
  1845. var significance float64
  1846. number := argsList.Front().Value.(formulaArg).ToNumber()
  1847. if number.Type == ArgError {
  1848. return number
  1849. }
  1850. if number.Number < 0 {
  1851. significance = -1
  1852. }
  1853. if argsList.Len() == 1 {
  1854. return newNumberFormulaArg(math.Ceil(number.Number))
  1855. }
  1856. if argsList.Len() > 1 {
  1857. s := argsList.Back().Value.(formulaArg).ToNumber()
  1858. if s.Type == ArgError {
  1859. return s
  1860. }
  1861. significance = s.Number
  1862. significance = math.Abs(significance)
  1863. if significance == 0 {
  1864. return newNumberFormulaArg(significance)
  1865. }
  1866. }
  1867. val, res := math.Modf(number.Number / significance)
  1868. if res != 0 {
  1869. if number.Number > 0 {
  1870. val++
  1871. }
  1872. }
  1873. return newNumberFormulaArg(val * significance)
  1874. }
  1875. // lcm returns the least common multiple of two supplied integers.
  1876. func lcm(a, b float64) float64 {
  1877. a = math.Trunc(a)
  1878. b = math.Trunc(b)
  1879. if a == 0 && b == 0 {
  1880. return 0
  1881. }
  1882. return a * b / gcd(a, b)
  1883. }
  1884. // LCM function returns the least common multiple of two or more supplied
  1885. // integers. The syntax of the function is:
  1886. //
  1887. // LCM(number1,[number2],...)
  1888. //
  1889. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  1890. if argsList.Len() == 0 {
  1891. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  1892. }
  1893. var (
  1894. val float64
  1895. nums = []float64{}
  1896. err error
  1897. )
  1898. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1899. token := arg.Value.(formulaArg)
  1900. switch token.Type {
  1901. case ArgString:
  1902. if token.String == "" {
  1903. continue
  1904. }
  1905. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1906. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1907. }
  1908. break
  1909. case ArgNumber:
  1910. val = token.Number
  1911. break
  1912. }
  1913. nums = append(nums, val)
  1914. }
  1915. if nums[0] < 0 {
  1916. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1917. }
  1918. if len(nums) == 1 {
  1919. return newNumberFormulaArg(nums[0])
  1920. }
  1921. cm := nums[0]
  1922. for i := 1; i < len(nums); i++ {
  1923. if nums[i] < 0 {
  1924. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1925. }
  1926. cm = lcm(cm, nums[i])
  1927. }
  1928. return newNumberFormulaArg(cm)
  1929. }
  1930. // LN function calculates the natural logarithm of a given number. The syntax
  1931. // of the function is:
  1932. //
  1933. // LN(number)
  1934. //
  1935. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  1936. if argsList.Len() != 1 {
  1937. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  1938. }
  1939. number := argsList.Front().Value.(formulaArg).ToNumber()
  1940. if number.Type == ArgError {
  1941. return number
  1942. }
  1943. return newNumberFormulaArg(math.Log(number.Number))
  1944. }
  1945. // LOG function calculates the logarithm of a given number, to a supplied
  1946. // base. The syntax of the function is:
  1947. //
  1948. // LOG(number,[base])
  1949. //
  1950. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  1951. if argsList.Len() == 0 {
  1952. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  1953. }
  1954. if argsList.Len() > 2 {
  1955. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  1956. }
  1957. base := 10.0
  1958. number := argsList.Front().Value.(formulaArg).ToNumber()
  1959. if number.Type == ArgError {
  1960. return number
  1961. }
  1962. if argsList.Len() > 1 {
  1963. b := argsList.Back().Value.(formulaArg).ToNumber()
  1964. if b.Type == ArgError {
  1965. return b
  1966. }
  1967. base = b.Number
  1968. }
  1969. if number.Number == 0 {
  1970. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  1971. }
  1972. if base == 0 {
  1973. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  1974. }
  1975. if base == 1 {
  1976. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1977. }
  1978. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  1979. }
  1980. // LOG10 function calculates the base 10 logarithm of a given number. The
  1981. // syntax of the function is:
  1982. //
  1983. // LOG10(number)
  1984. //
  1985. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  1986. if argsList.Len() != 1 {
  1987. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  1988. }
  1989. number := argsList.Front().Value.(formulaArg).ToNumber()
  1990. if number.Type == ArgError {
  1991. return number
  1992. }
  1993. return newNumberFormulaArg(math.Log10(number.Number))
  1994. }
  1995. // minor function implement a minor of a matrix A is the determinant of some
  1996. // smaller square matrix.
  1997. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1998. ret := [][]float64{}
  1999. for i := range sqMtx {
  2000. if i == 0 {
  2001. continue
  2002. }
  2003. row := []float64{}
  2004. for j := range sqMtx {
  2005. if j == idx {
  2006. continue
  2007. }
  2008. row = append(row, sqMtx[i][j])
  2009. }
  2010. ret = append(ret, row)
  2011. }
  2012. return ret
  2013. }
  2014. // det determinant of the 2x2 matrix.
  2015. func det(sqMtx [][]float64) float64 {
  2016. if len(sqMtx) == 2 {
  2017. m00 := sqMtx[0][0]
  2018. m01 := sqMtx[0][1]
  2019. m10 := sqMtx[1][0]
  2020. m11 := sqMtx[1][1]
  2021. return m00*m11 - m10*m01
  2022. }
  2023. var res, sgn float64 = 0, 1
  2024. for j := range sqMtx {
  2025. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2026. sgn *= -1
  2027. }
  2028. return res
  2029. }
  2030. // MDETERM calculates the determinant of a square matrix. The
  2031. // syntax of the function is:
  2032. //
  2033. // MDETERM(array)
  2034. //
  2035. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2036. var (
  2037. num float64
  2038. numMtx = [][]float64{}
  2039. err error
  2040. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2041. )
  2042. if argsList.Len() < 1 {
  2043. return
  2044. }
  2045. var rows = len(strMtx)
  2046. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2047. if len(row) != rows {
  2048. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2049. }
  2050. numRow := []float64{}
  2051. for _, ele := range row {
  2052. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2053. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2054. }
  2055. numRow = append(numRow, num)
  2056. }
  2057. numMtx = append(numMtx, numRow)
  2058. }
  2059. return newNumberFormulaArg(det(numMtx))
  2060. }
  2061. // MOD function returns the remainder of a division between two supplied
  2062. // numbers. The syntax of the function is:
  2063. //
  2064. // MOD(number,divisor)
  2065. //
  2066. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2067. if argsList.Len() != 2 {
  2068. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2069. }
  2070. number := argsList.Front().Value.(formulaArg).ToNumber()
  2071. if number.Type == ArgError {
  2072. return number
  2073. }
  2074. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2075. if divisor.Type == ArgError {
  2076. return divisor
  2077. }
  2078. if divisor.Number == 0 {
  2079. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2080. }
  2081. trunc, rem := math.Modf(number.Number / divisor.Number)
  2082. if rem < 0 {
  2083. trunc--
  2084. }
  2085. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2086. }
  2087. // MROUND function rounds a supplied number up or down to the nearest multiple
  2088. // of a given number. The syntax of the function is:
  2089. //
  2090. // MROUND(number,multiple)
  2091. //
  2092. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2093. if argsList.Len() != 2 {
  2094. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2095. }
  2096. n := argsList.Front().Value.(formulaArg).ToNumber()
  2097. if n.Type == ArgError {
  2098. return n
  2099. }
  2100. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2101. if multiple.Type == ArgError {
  2102. return multiple
  2103. }
  2104. if multiple.Number == 0 {
  2105. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2106. }
  2107. if multiple.Number < 0 && n.Number > 0 ||
  2108. multiple.Number > 0 && n.Number < 0 {
  2109. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2110. }
  2111. number, res := math.Modf(n.Number / multiple.Number)
  2112. if math.Trunc(res+0.5) > 0 {
  2113. number++
  2114. }
  2115. return newNumberFormulaArg(number * multiple.Number)
  2116. }
  2117. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2118. // supplied values to the product of factorials of those values. The syntax of
  2119. // the function is:
  2120. //
  2121. // MULTINOMIAL(number1,[number2],...)
  2122. //
  2123. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2124. val, num, denom := 0.0, 0.0, 1.0
  2125. var err error
  2126. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2127. token := arg.Value.(formulaArg)
  2128. switch token.Type {
  2129. case ArgString:
  2130. if token.String == "" {
  2131. continue
  2132. }
  2133. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2134. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2135. }
  2136. break
  2137. case ArgNumber:
  2138. val = token.Number
  2139. break
  2140. }
  2141. num += val
  2142. denom *= fact(val)
  2143. }
  2144. return newNumberFormulaArg(fact(num) / denom)
  2145. }
  2146. // MUNIT function returns the unit matrix for a specified dimension. The
  2147. // syntax of the function is:
  2148. //
  2149. // MUNIT(dimension)
  2150. //
  2151. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2152. if argsList.Len() != 1 {
  2153. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2154. }
  2155. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2156. if dimension.Type == ArgError {
  2157. return dimension
  2158. }
  2159. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2160. for i := 0; i < int(dimension.Number); i++ {
  2161. row := make([]formulaArg, int(dimension.Number))
  2162. for j := 0; j < int(dimension.Number); j++ {
  2163. if i == j {
  2164. row[j] = newNumberFormulaArg(1.0)
  2165. } else {
  2166. row[j] = newNumberFormulaArg(0.0)
  2167. }
  2168. }
  2169. matrix = append(matrix, row)
  2170. }
  2171. return newMatrixFormulaArg(matrix)
  2172. }
  2173. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2174. // number up and a negative number down), to the next odd number. The syntax
  2175. // of the function is:
  2176. //
  2177. // ODD(number)
  2178. //
  2179. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2180. if argsList.Len() != 1 {
  2181. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2182. }
  2183. number := argsList.Back().Value.(formulaArg).ToNumber()
  2184. if number.Type == ArgError {
  2185. return number
  2186. }
  2187. if number.Number == 0 {
  2188. return newNumberFormulaArg(1)
  2189. }
  2190. sign := math.Signbit(number.Number)
  2191. m, frac := math.Modf((number.Number - 1) / 2)
  2192. val := m*2 + 1
  2193. if frac != 0 {
  2194. if !sign {
  2195. val += 2
  2196. } else {
  2197. val -= 2
  2198. }
  2199. }
  2200. return newNumberFormulaArg(val)
  2201. }
  2202. // PI function returns the value of the mathematical constant π (pi), accurate
  2203. // to 15 digits (14 decimal places). The syntax of the function is:
  2204. //
  2205. // PI()
  2206. //
  2207. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2208. if argsList.Len() != 0 {
  2209. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2210. }
  2211. return newNumberFormulaArg(math.Pi)
  2212. }
  2213. // POWER function calculates a given number, raised to a supplied power.
  2214. // The syntax of the function is:
  2215. //
  2216. // POWER(number,power)
  2217. //
  2218. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2219. if argsList.Len() != 2 {
  2220. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2221. }
  2222. x := argsList.Front().Value.(formulaArg).ToNumber()
  2223. if x.Type == ArgError {
  2224. return x
  2225. }
  2226. y := argsList.Back().Value.(formulaArg).ToNumber()
  2227. if y.Type == ArgError {
  2228. return y
  2229. }
  2230. if x.Number == 0 && y.Number == 0 {
  2231. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2232. }
  2233. if x.Number == 0 && y.Number < 0 {
  2234. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2235. }
  2236. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2237. }
  2238. // PRODUCT function returns the product (multiplication) of a supplied set of
  2239. // numerical values. The syntax of the function is:
  2240. //
  2241. // PRODUCT(number1,[number2],...)
  2242. //
  2243. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2244. val, product := 0.0, 1.0
  2245. var err error
  2246. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2247. token := arg.Value.(formulaArg)
  2248. switch token.Type {
  2249. case ArgUnknown:
  2250. continue
  2251. case ArgString:
  2252. if token.String == "" {
  2253. continue
  2254. }
  2255. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2256. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2257. }
  2258. product = product * val
  2259. break
  2260. case ArgNumber:
  2261. product = product * token.Number
  2262. break
  2263. case ArgMatrix:
  2264. for _, row := range token.Matrix {
  2265. for _, value := range row {
  2266. if value.String == "" {
  2267. continue
  2268. }
  2269. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2270. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2271. }
  2272. product = product * val
  2273. }
  2274. }
  2275. }
  2276. }
  2277. return newNumberFormulaArg(product)
  2278. }
  2279. // QUOTIENT function returns the integer portion of a division between two
  2280. // supplied numbers. The syntax of the function is:
  2281. //
  2282. // QUOTIENT(numerator,denominator)
  2283. //
  2284. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2285. if argsList.Len() != 2 {
  2286. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2287. }
  2288. x := argsList.Front().Value.(formulaArg).ToNumber()
  2289. if x.Type == ArgError {
  2290. return x
  2291. }
  2292. y := argsList.Back().Value.(formulaArg).ToNumber()
  2293. if y.Type == ArgError {
  2294. return y
  2295. }
  2296. if y.Number == 0 {
  2297. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2298. }
  2299. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2300. }
  2301. // RADIANS function converts radians into degrees. The syntax of the function is:
  2302. //
  2303. // RADIANS(angle)
  2304. //
  2305. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2306. if argsList.Len() != 1 {
  2307. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2308. }
  2309. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2310. if angle.Type == ArgError {
  2311. return angle
  2312. }
  2313. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2314. }
  2315. // RAND function generates a random real number between 0 and 1. The syntax of
  2316. // the function is:
  2317. //
  2318. // RAND()
  2319. //
  2320. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2321. if argsList.Len() != 0 {
  2322. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2323. }
  2324. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2325. }
  2326. // RANDBETWEEN function generates a random integer between two supplied
  2327. // integers. The syntax of the function is:
  2328. //
  2329. // RANDBETWEEN(bottom,top)
  2330. //
  2331. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2332. if argsList.Len() != 2 {
  2333. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2334. }
  2335. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2336. if bottom.Type == ArgError {
  2337. return bottom
  2338. }
  2339. top := argsList.Back().Value.(formulaArg).ToNumber()
  2340. if top.Type == ArgError {
  2341. return top
  2342. }
  2343. if top.Number < bottom.Number {
  2344. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2345. }
  2346. return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
  2347. }
  2348. // romanNumerals defined a numeral system that originated in ancient Rome and
  2349. // remained the usual way of writing numbers throughout Europe well into the
  2350. // Late Middle Ages.
  2351. type romanNumerals struct {
  2352. n float64
  2353. s string
  2354. }
  2355. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2356. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2357. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2358. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2359. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2360. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2361. // integer, the function returns a text string depicting the roman numeral
  2362. // form of the number. The syntax of the function is:
  2363. //
  2364. // ROMAN(number,[form])
  2365. //
  2366. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2367. if argsList.Len() == 0 {
  2368. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2369. }
  2370. if argsList.Len() > 2 {
  2371. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2372. }
  2373. var form int
  2374. number := argsList.Front().Value.(formulaArg).ToNumber()
  2375. if number.Type == ArgError {
  2376. return number
  2377. }
  2378. if argsList.Len() > 1 {
  2379. f := argsList.Back().Value.(formulaArg).ToNumber()
  2380. if f.Type == ArgError {
  2381. return f
  2382. }
  2383. form = int(f.Number)
  2384. if form < 0 {
  2385. form = 0
  2386. } else if form > 4 {
  2387. form = 4
  2388. }
  2389. }
  2390. decimalTable := romanTable[0]
  2391. switch form {
  2392. case 1:
  2393. decimalTable = romanTable[1]
  2394. case 2:
  2395. decimalTable = romanTable[2]
  2396. case 3:
  2397. decimalTable = romanTable[3]
  2398. case 4:
  2399. decimalTable = romanTable[4]
  2400. }
  2401. val := math.Trunc(number.Number)
  2402. buf := bytes.Buffer{}
  2403. for _, r := range decimalTable {
  2404. for val >= r.n {
  2405. buf.WriteString(r.s)
  2406. val -= r.n
  2407. }
  2408. }
  2409. return newStringFormulaArg(buf.String())
  2410. }
  2411. type roundMode byte
  2412. const (
  2413. closest roundMode = iota
  2414. down
  2415. up
  2416. )
  2417. // round rounds a supplied number up or down.
  2418. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2419. var significance float64
  2420. if digits > 0 {
  2421. significance = math.Pow(1/10.0, digits)
  2422. } else {
  2423. significance = math.Pow(10.0, -digits)
  2424. }
  2425. val, res := math.Modf(number / significance)
  2426. switch mode {
  2427. case closest:
  2428. const eps = 0.499999999
  2429. if res >= eps {
  2430. val++
  2431. } else if res <= -eps {
  2432. val--
  2433. }
  2434. case down:
  2435. case up:
  2436. if res > 0 {
  2437. val++
  2438. } else if res < 0 {
  2439. val--
  2440. }
  2441. }
  2442. return val * significance
  2443. }
  2444. // ROUND function rounds a supplied number up or down, to a specified number
  2445. // of decimal places. The syntax of the function is:
  2446. //
  2447. // ROUND(number,num_digits)
  2448. //
  2449. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2450. if argsList.Len() != 2 {
  2451. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2452. }
  2453. number := argsList.Front().Value.(formulaArg).ToNumber()
  2454. if number.Type == ArgError {
  2455. return number
  2456. }
  2457. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2458. if digits.Type == ArgError {
  2459. return digits
  2460. }
  2461. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2462. }
  2463. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2464. // specified number of decimal places. The syntax of the function is:
  2465. //
  2466. // ROUNDDOWN(number,num_digits)
  2467. //
  2468. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2469. if argsList.Len() != 2 {
  2470. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2471. }
  2472. number := argsList.Front().Value.(formulaArg).ToNumber()
  2473. if number.Type == ArgError {
  2474. return number
  2475. }
  2476. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2477. if digits.Type == ArgError {
  2478. return digits
  2479. }
  2480. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  2481. }
  2482. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2483. // specified number of decimal places. The syntax of the function is:
  2484. //
  2485. // ROUNDUP(number,num_digits)
  2486. //
  2487. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2488. if argsList.Len() != 2 {
  2489. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2490. }
  2491. number := argsList.Front().Value.(formulaArg).ToNumber()
  2492. if number.Type == ArgError {
  2493. return number
  2494. }
  2495. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2496. if digits.Type == ArgError {
  2497. return digits
  2498. }
  2499. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  2500. }
  2501. // SEC function calculates the secant of a given angle. The syntax of the
  2502. // function is:
  2503. //
  2504. // SEC(number)
  2505. //
  2506. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2507. if argsList.Len() != 1 {
  2508. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2509. }
  2510. number := argsList.Front().Value.(formulaArg).ToNumber()
  2511. if number.Type == ArgError {
  2512. return number
  2513. }
  2514. return newNumberFormulaArg(math.Cos(number.Number))
  2515. }
  2516. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2517. // The syntax of the function is:
  2518. //
  2519. // SECH(number)
  2520. //
  2521. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2522. if argsList.Len() != 1 {
  2523. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2524. }
  2525. number := argsList.Front().Value.(formulaArg).ToNumber()
  2526. if number.Type == ArgError {
  2527. return number
  2528. }
  2529. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  2530. }
  2531. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2532. // number. I.e. if the number is positive, the Sign function returns +1, if
  2533. // the number is negative, the function returns -1 and if the number is 0
  2534. // (zero), the function returns 0. The syntax of the function is:
  2535. //
  2536. // SIGN(number)
  2537. //
  2538. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2539. if argsList.Len() != 1 {
  2540. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2541. }
  2542. val := argsList.Front().Value.(formulaArg).ToNumber()
  2543. if val.Type == ArgError {
  2544. return val
  2545. }
  2546. if val.Number < 0 {
  2547. return newNumberFormulaArg(-1)
  2548. }
  2549. if val.Number > 0 {
  2550. return newNumberFormulaArg(1)
  2551. }
  2552. return newNumberFormulaArg(0)
  2553. }
  2554. // SIN function calculates the sine of a given angle. The syntax of the
  2555. // function is:
  2556. //
  2557. // SIN(number)
  2558. //
  2559. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2560. if argsList.Len() != 1 {
  2561. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2562. }
  2563. number := argsList.Front().Value.(formulaArg).ToNumber()
  2564. if number.Type == ArgError {
  2565. return number
  2566. }
  2567. return newNumberFormulaArg(math.Sin(number.Number))
  2568. }
  2569. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2570. // The syntax of the function is:
  2571. //
  2572. // SINH(number)
  2573. //
  2574. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2575. if argsList.Len() != 1 {
  2576. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2577. }
  2578. number := argsList.Front().Value.(formulaArg).ToNumber()
  2579. if number.Type == ArgError {
  2580. return number
  2581. }
  2582. return newNumberFormulaArg(math.Sinh(number.Number))
  2583. }
  2584. // SQRT function calculates the positive square root of a supplied number. The
  2585. // syntax of the function is:
  2586. //
  2587. // SQRT(number)
  2588. //
  2589. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2590. if argsList.Len() != 1 {
  2591. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2592. }
  2593. value := argsList.Front().Value.(formulaArg).ToNumber()
  2594. if value.Type == ArgError {
  2595. return value
  2596. }
  2597. if value.Number < 0 {
  2598. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2599. }
  2600. return newNumberFormulaArg(math.Sqrt(value.Number))
  2601. }
  2602. // SQRTPI function returns the square root of a supplied number multiplied by
  2603. // the mathematical constant, π. The syntax of the function is:
  2604. //
  2605. // SQRTPI(number)
  2606. //
  2607. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2608. if argsList.Len() != 1 {
  2609. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2610. }
  2611. number := argsList.Front().Value.(formulaArg).ToNumber()
  2612. if number.Type == ArgError {
  2613. return number
  2614. }
  2615. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  2616. }
  2617. // SUM function adds together a supplied set of numbers and returns the sum of
  2618. // these values. The syntax of the function is:
  2619. //
  2620. // SUM(number1,[number2],...)
  2621. //
  2622. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2623. var (
  2624. val, sum float64
  2625. err error
  2626. )
  2627. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2628. token := arg.Value.(formulaArg)
  2629. switch token.Type {
  2630. case ArgUnknown:
  2631. continue
  2632. case ArgString:
  2633. if token.String == "" {
  2634. continue
  2635. }
  2636. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2637. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2638. }
  2639. sum += val
  2640. case ArgNumber:
  2641. sum += token.Number
  2642. case ArgMatrix:
  2643. for _, row := range token.Matrix {
  2644. for _, value := range row {
  2645. if value.String == "" {
  2646. continue
  2647. }
  2648. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2649. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2650. }
  2651. sum += val
  2652. }
  2653. }
  2654. }
  2655. }
  2656. return newNumberFormulaArg(sum)
  2657. }
  2658. // SUMIF function finds the values in a supplied array, that satisfy a given
  2659. // criteria, and returns the sum of the corresponding values in a second
  2660. // supplied array. The syntax of the function is:
  2661. //
  2662. // SUMIF(range,criteria,[sum_range])
  2663. //
  2664. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  2665. if argsList.Len() < 2 {
  2666. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  2667. }
  2668. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2669. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2670. var sumRange [][]formulaArg
  2671. if argsList.Len() == 3 {
  2672. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2673. }
  2674. var sum, val float64
  2675. var err error
  2676. for rowIdx, row := range rangeMtx {
  2677. for colIdx, col := range row {
  2678. var ok bool
  2679. fromVal := col.String
  2680. if col.String == "" {
  2681. continue
  2682. }
  2683. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2684. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2685. }
  2686. if ok {
  2687. if argsList.Len() == 3 {
  2688. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2689. continue
  2690. }
  2691. fromVal = sumRange[rowIdx][colIdx].String
  2692. }
  2693. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2694. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2695. }
  2696. sum += val
  2697. }
  2698. }
  2699. }
  2700. return newNumberFormulaArg(sum)
  2701. }
  2702. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2703. // syntax of the function is:
  2704. //
  2705. // SUMSQ(number1,[number2],...)
  2706. //
  2707. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  2708. var val, sq float64
  2709. var err error
  2710. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2711. token := arg.Value.(formulaArg)
  2712. switch token.Type {
  2713. case ArgString:
  2714. if token.String == "" {
  2715. continue
  2716. }
  2717. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2718. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2719. }
  2720. sq += val * val
  2721. break
  2722. case ArgNumber:
  2723. sq += token.Number
  2724. break
  2725. case ArgMatrix:
  2726. for _, row := range token.Matrix {
  2727. for _, value := range row {
  2728. if value.String == "" {
  2729. continue
  2730. }
  2731. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2732. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2733. }
  2734. sq += val * val
  2735. }
  2736. }
  2737. }
  2738. }
  2739. return newNumberFormulaArg(sq)
  2740. }
  2741. // TAN function calculates the tangent of a given angle. The syntax of the
  2742. // function is:
  2743. //
  2744. // TAN(number)
  2745. //
  2746. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  2747. if argsList.Len() != 1 {
  2748. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  2749. }
  2750. number := argsList.Front().Value.(formulaArg).ToNumber()
  2751. if number.Type == ArgError {
  2752. return number
  2753. }
  2754. return newNumberFormulaArg(math.Tan(number.Number))
  2755. }
  2756. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2757. // number. The syntax of the function is:
  2758. //
  2759. // TANH(number)
  2760. //
  2761. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  2762. if argsList.Len() != 1 {
  2763. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  2764. }
  2765. number := argsList.Front().Value.(formulaArg).ToNumber()
  2766. if number.Type == ArgError {
  2767. return number
  2768. }
  2769. return newNumberFormulaArg(math.Tanh(number.Number))
  2770. }
  2771. // TRUNC function truncates a supplied number to a specified number of decimal
  2772. // places. The syntax of the function is:
  2773. //
  2774. // TRUNC(number,[number_digits])
  2775. //
  2776. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  2777. if argsList.Len() == 0 {
  2778. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  2779. }
  2780. var digits, adjust, rtrim float64
  2781. var err error
  2782. number := argsList.Front().Value.(formulaArg).ToNumber()
  2783. if number.Type == ArgError {
  2784. return number
  2785. }
  2786. if argsList.Len() > 1 {
  2787. d := argsList.Back().Value.(formulaArg).ToNumber()
  2788. if d.Type == ArgError {
  2789. return d
  2790. }
  2791. digits = d.Number
  2792. digits = math.Floor(digits)
  2793. }
  2794. adjust = math.Pow(10, digits)
  2795. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  2796. if x != 0 {
  2797. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2798. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2799. }
  2800. }
  2801. if (digits > 0) && (rtrim < adjust/10) {
  2802. return newNumberFormulaArg(number.Number)
  2803. }
  2804. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  2805. }
  2806. // Statistical functions
  2807. // COUNTA function returns the number of non-blanks within a supplied set of
  2808. // cells or values. The syntax of the function is:
  2809. //
  2810. // COUNTA(value1,[value2],...)
  2811. //
  2812. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  2813. var count int
  2814. for token := argsList.Front(); token != nil; token = token.Next() {
  2815. arg := token.Value.(formulaArg)
  2816. switch arg.Type {
  2817. case ArgString:
  2818. if arg.String != "" {
  2819. count++
  2820. }
  2821. case ArgMatrix:
  2822. for _, row := range arg.Matrix {
  2823. for _, value := range row {
  2824. if value.String != "" {
  2825. count++
  2826. }
  2827. }
  2828. }
  2829. }
  2830. }
  2831. return newStringFormulaArg(fmt.Sprintf("%d", count))
  2832. }
  2833. // MEDIAN function returns the statistical median (the middle value) of a list
  2834. // of supplied numbers. The syntax of the function is:
  2835. //
  2836. // MEDIAN(number1,[number2],...)
  2837. //
  2838. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  2839. if argsList.Len() == 0 {
  2840. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  2841. }
  2842. var values = []float64{}
  2843. var median, digits float64
  2844. var err error
  2845. for token := argsList.Front(); token != nil; token = token.Next() {
  2846. arg := token.Value.(formulaArg)
  2847. switch arg.Type {
  2848. case ArgString:
  2849. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2850. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2851. }
  2852. values = append(values, digits)
  2853. break
  2854. case ArgNumber:
  2855. values = append(values, arg.Number)
  2856. break
  2857. case ArgMatrix:
  2858. for _, row := range arg.Matrix {
  2859. for _, value := range row {
  2860. if value.String == "" {
  2861. continue
  2862. }
  2863. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2864. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2865. }
  2866. values = append(values, digits)
  2867. }
  2868. }
  2869. }
  2870. }
  2871. sort.Float64s(values)
  2872. if len(values)%2 == 0 {
  2873. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2874. } else {
  2875. median = values[len(values)/2]
  2876. }
  2877. return newNumberFormulaArg(median)
  2878. }
  2879. // Information functions
  2880. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2881. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2882. // function is:
  2883. //
  2884. // ISBLANK(value)
  2885. //
  2886. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  2887. if argsList.Len() != 1 {
  2888. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  2889. }
  2890. token := argsList.Front().Value.(formulaArg)
  2891. result := "FALSE"
  2892. switch token.Type {
  2893. case ArgUnknown:
  2894. result = "TRUE"
  2895. case ArgString:
  2896. if token.String == "" {
  2897. result = "TRUE"
  2898. }
  2899. }
  2900. return newStringFormulaArg(result)
  2901. }
  2902. // ISERR function tests if an initial supplied expression (or value) returns
  2903. // any Excel Error, except the #N/A error. If so, the function returns the
  2904. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2905. // error, the ISERR function returns FALSE. The syntax of the function is:
  2906. //
  2907. // ISERR(value)
  2908. //
  2909. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  2910. if argsList.Len() != 1 {
  2911. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  2912. }
  2913. token := argsList.Front().Value.(formulaArg)
  2914. result := "FALSE"
  2915. if token.Type == ArgString {
  2916. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2917. if errType == token.String {
  2918. result = "TRUE"
  2919. }
  2920. }
  2921. }
  2922. return newStringFormulaArg(result)
  2923. }
  2924. // ISERROR function tests if an initial supplied expression (or value) returns
  2925. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2926. // function returns FALSE. The syntax of the function is:
  2927. //
  2928. // ISERROR(value)
  2929. //
  2930. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  2931. if argsList.Len() != 1 {
  2932. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  2933. }
  2934. token := argsList.Front().Value.(formulaArg)
  2935. result := "FALSE"
  2936. if token.Type == ArgString {
  2937. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2938. if errType == token.String {
  2939. result = "TRUE"
  2940. }
  2941. }
  2942. }
  2943. return newStringFormulaArg(result)
  2944. }
  2945. // ISEVEN function tests if a supplied number (or numeric expression)
  2946. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  2947. // function returns FALSE. The syntax of the function is:
  2948. //
  2949. // ISEVEN(value)
  2950. //
  2951. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  2952. if argsList.Len() != 1 {
  2953. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  2954. }
  2955. var (
  2956. token = argsList.Front().Value.(formulaArg)
  2957. result = "FALSE"
  2958. numeric int
  2959. err error
  2960. )
  2961. if token.Type == ArgString {
  2962. if numeric, err = strconv.Atoi(token.String); err != nil {
  2963. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2964. }
  2965. if numeric == numeric/2*2 {
  2966. return newStringFormulaArg("TRUE")
  2967. }
  2968. }
  2969. return newStringFormulaArg(result)
  2970. }
  2971. // ISNA function tests if an initial supplied expression (or value) returns
  2972. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  2973. // returns FALSE. The syntax of the function is:
  2974. //
  2975. // ISNA(value)
  2976. //
  2977. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  2978. if argsList.Len() != 1 {
  2979. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  2980. }
  2981. token := argsList.Front().Value.(formulaArg)
  2982. result := "FALSE"
  2983. if token.Type == ArgString && token.String == formulaErrorNA {
  2984. result = "TRUE"
  2985. }
  2986. return newStringFormulaArg(result)
  2987. }
  2988. // ISNONTEXT function function tests if a supplied value is text. If not, the
  2989. // function returns TRUE; If the supplied value is text, the function returns
  2990. // FALSE. The syntax of the function is:
  2991. //
  2992. // ISNONTEXT(value)
  2993. //
  2994. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  2995. if argsList.Len() != 1 {
  2996. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  2997. }
  2998. token := argsList.Front().Value.(formulaArg)
  2999. result := "TRUE"
  3000. if token.Type == ArgString && token.String != "" {
  3001. result = "FALSE"
  3002. }
  3003. return newStringFormulaArg(result)
  3004. }
  3005. // ISNUMBER function function tests if a supplied value is a number. If so,
  3006. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3007. // function is:
  3008. //
  3009. // ISNUMBER(value)
  3010. //
  3011. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  3012. if argsList.Len() != 1 {
  3013. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  3014. }
  3015. token := argsList.Front().Value.(formulaArg)
  3016. result := "FALSE"
  3017. if token.Type == ArgString && token.String != "" {
  3018. if _, err := strconv.Atoi(token.String); err == nil {
  3019. result = "TRUE"
  3020. }
  3021. }
  3022. return newStringFormulaArg(result)
  3023. }
  3024. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3025. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3026. // FALSE. The syntax of the function is:
  3027. //
  3028. // ISODD(value)
  3029. //
  3030. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  3031. if argsList.Len() != 1 {
  3032. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  3033. }
  3034. var (
  3035. token = argsList.Front().Value.(formulaArg)
  3036. result = "FALSE"
  3037. numeric int
  3038. err error
  3039. )
  3040. if token.Type == ArgString {
  3041. if numeric, err = strconv.Atoi(token.String); err != nil {
  3042. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3043. }
  3044. if numeric != numeric/2*2 {
  3045. return newStringFormulaArg("TRUE")
  3046. }
  3047. }
  3048. return newStringFormulaArg(result)
  3049. }
  3050. // NA function returns the Excel #N/A error. This error message has the
  3051. // meaning 'value not available' and is produced when an Excel Formula is
  3052. // unable to find a value that it needs. The syntax of the function is:
  3053. //
  3054. // NA()
  3055. //
  3056. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  3057. if argsList.Len() != 0 {
  3058. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  3059. }
  3060. return newStringFormulaArg(formulaErrorNA)
  3061. }
  3062. // Logical Functions
  3063. // AND function tests a number of supplied conditions and returns TRUE or
  3064. // FALSE. The syntax of the function is:
  3065. //
  3066. // AND(logical_test1,[logical_test2],...)
  3067. //
  3068. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  3069. if argsList.Len() == 0 {
  3070. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  3071. }
  3072. if argsList.Len() > 30 {
  3073. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  3074. }
  3075. var (
  3076. and = true
  3077. val float64
  3078. err error
  3079. )
  3080. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3081. token := arg.Value.(formulaArg)
  3082. switch token.Type {
  3083. case ArgUnknown:
  3084. continue
  3085. case ArgString:
  3086. if token.String == "TRUE" {
  3087. continue
  3088. }
  3089. if token.String == "FALSE" {
  3090. return newStringFormulaArg(token.String)
  3091. }
  3092. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3093. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3094. }
  3095. and = and && (val != 0)
  3096. case ArgMatrix:
  3097. // TODO
  3098. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3099. }
  3100. }
  3101. return newBoolFormulaArg(and)
  3102. }
  3103. // OR function tests a number of supplied conditions and returns either TRUE
  3104. // or FALSE. The syntax of the function is:
  3105. //
  3106. // OR(logical_test1,[logical_test2],...)
  3107. //
  3108. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3109. if argsList.Len() == 0 {
  3110. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3111. }
  3112. if argsList.Len() > 30 {
  3113. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  3114. }
  3115. var (
  3116. or bool
  3117. val float64
  3118. err error
  3119. )
  3120. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3121. token := arg.Value.(formulaArg)
  3122. switch token.Type {
  3123. case ArgUnknown:
  3124. continue
  3125. case ArgString:
  3126. if token.String == "FALSE" {
  3127. continue
  3128. }
  3129. if token.String == "TRUE" {
  3130. or = true
  3131. continue
  3132. }
  3133. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3134. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3135. }
  3136. or = val != 0
  3137. case ArgMatrix:
  3138. // TODO
  3139. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3140. }
  3141. }
  3142. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  3143. }
  3144. // Date and Time Functions
  3145. // DATE returns a date, from a user-supplied year, month and day. The syntax
  3146. // of the function is:
  3147. //
  3148. // DATE(year,month,day)
  3149. //
  3150. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  3151. if argsList.Len() != 3 {
  3152. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3153. }
  3154. var year, month, day int
  3155. var err error
  3156. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3157. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3158. }
  3159. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  3160. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3161. }
  3162. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  3163. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3164. }
  3165. d := makeDate(year, time.Month(month), day)
  3166. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  3167. }
  3168. // makeDate return date as a Unix time, the number of seconds elapsed since
  3169. // January 1, 1970 UTC.
  3170. func makeDate(y int, m time.Month, d int) int64 {
  3171. if y == 1900 && int(m) <= 2 {
  3172. d--
  3173. }
  3174. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  3175. return date.Unix()
  3176. }
  3177. // daysBetween return time interval of the given start timestamp and end
  3178. // timestamp.
  3179. func daysBetween(startDate, endDate int64) float64 {
  3180. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  3181. }
  3182. // Text Functions
  3183. // CLEAN removes all non-printable characters from a supplied text string. The
  3184. // syntax of the function is:
  3185. //
  3186. // CLEAN(text)
  3187. //
  3188. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  3189. if argsList.Len() != 1 {
  3190. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  3191. }
  3192. b := bytes.Buffer{}
  3193. for _, c := range argsList.Front().Value.(formulaArg).String {
  3194. if c > 31 {
  3195. b.WriteRune(c)
  3196. }
  3197. }
  3198. return newStringFormulaArg(b.String())
  3199. }
  3200. // LEN returns the length of a supplied text string. The syntax of the
  3201. // function is:
  3202. //
  3203. // LEN(text)
  3204. //
  3205. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  3206. if argsList.Len() != 1 {
  3207. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  3208. }
  3209. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  3210. }
  3211. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  3212. // words or characters) from a supplied text string. The syntax of the
  3213. // function is:
  3214. //
  3215. // TRIM(text)
  3216. //
  3217. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  3218. if argsList.Len() != 1 {
  3219. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  3220. }
  3221. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  3222. }
  3223. // LOWER converts all characters in a supplied text string to lower case. The
  3224. // syntax of the function is:
  3225. //
  3226. // LOWER(text)
  3227. //
  3228. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  3229. if argsList.Len() != 1 {
  3230. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  3231. }
  3232. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  3233. }
  3234. // PROPER converts all characters in a supplied text string to proper case
  3235. // (i.e. all letters that do not immediately follow another letter are set to
  3236. // upper case and all other characters are lower case). The syntax of the
  3237. // function is:
  3238. //
  3239. // PROPER(text)
  3240. //
  3241. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  3242. if argsList.Len() != 1 {
  3243. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  3244. }
  3245. buf := bytes.Buffer{}
  3246. isLetter := false
  3247. for _, char := range argsList.Front().Value.(formulaArg).String {
  3248. if !isLetter && unicode.IsLetter(char) {
  3249. buf.WriteRune(unicode.ToUpper(char))
  3250. } else {
  3251. buf.WriteRune(unicode.ToLower(char))
  3252. }
  3253. isLetter = unicode.IsLetter(char)
  3254. }
  3255. return newStringFormulaArg(buf.String())
  3256. }
  3257. // UPPER converts all characters in a supplied text string to upper case. The
  3258. // syntax of the function is:
  3259. //
  3260. // UPPER(text)
  3261. //
  3262. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  3263. if argsList.Len() != 1 {
  3264. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  3265. }
  3266. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  3267. }
  3268. // Conditional Functions
  3269. // IF function tests a supplied condition and returns one result if the
  3270. // condition evaluates to TRUE, and another result if the condition evaluates
  3271. // to FALSE. The syntax of the function is:
  3272. //
  3273. // IF(logical_test,value_if_true,value_if_false)
  3274. //
  3275. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  3276. if argsList.Len() == 0 {
  3277. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  3278. }
  3279. if argsList.Len() > 3 {
  3280. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  3281. }
  3282. token := argsList.Front().Value.(formulaArg)
  3283. var (
  3284. cond bool
  3285. err error
  3286. result string
  3287. )
  3288. switch token.Type {
  3289. case ArgString:
  3290. if cond, err = strconv.ParseBool(token.String); err != nil {
  3291. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3292. }
  3293. if argsList.Len() == 1 {
  3294. return newBoolFormulaArg(cond)
  3295. }
  3296. if cond {
  3297. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  3298. }
  3299. if argsList.Len() == 3 {
  3300. result = argsList.Back().Value.(formulaArg).String
  3301. }
  3302. }
  3303. return newStringFormulaArg(result)
  3304. }
  3305. // Excel Lookup and Reference Functions
  3306. // CHOOSE function returns a value from an array, that corresponds to a
  3307. // supplied index number (position). The syntax of the function is:
  3308. //
  3309. // CHOOSE(index_num,value1,[value2],...)
  3310. //
  3311. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  3312. if argsList.Len() < 2 {
  3313. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  3314. }
  3315. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  3316. if err != nil {
  3317. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  3318. }
  3319. if argsList.Len() <= idx {
  3320. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  3321. }
  3322. arg := argsList.Front()
  3323. for i := 0; i < idx; i++ {
  3324. arg = arg.Next()
  3325. }
  3326. var result formulaArg
  3327. switch arg.Value.(formulaArg).Type {
  3328. case ArgString:
  3329. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  3330. case ArgMatrix:
  3331. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  3332. }
  3333. return result
  3334. }