calc.go 171 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. "golang.org/x/text/language"
  30. "golang.org/x/text/message"
  31. )
  32. // Excel formula errors
  33. const (
  34. formulaErrorDIV = "#DIV/0!"
  35. formulaErrorNAME = "#NAME?"
  36. formulaErrorNA = "#N/A"
  37. formulaErrorNUM = "#NUM!"
  38. formulaErrorVALUE = "#VALUE!"
  39. formulaErrorREF = "#REF!"
  40. formulaErrorNULL = "#NULL"
  41. formulaErrorSPILL = "#SPILL!"
  42. formulaErrorCALC = "#CALC!"
  43. formulaErrorGETTINGDATA = "#GETTING_DATA"
  44. )
  45. // Numeric precision correct numeric values as legacy Excel application
  46. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  47. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  48. // has a decimal representation that is an infinite string of ones, Excel
  49. // displays only the leading 15 figures. In the second line, the number one
  50. // is added to the fraction, and again Excel displays only 15 figures.
  51. const numericPrecision = 1000000000000000
  52. // cellRef defines the structure of a cell reference.
  53. type cellRef struct {
  54. Col int
  55. Row int
  56. Sheet string
  57. }
  58. // cellRef defines the structure of a cell range.
  59. type cellRange struct {
  60. From cellRef
  61. To cellRef
  62. }
  63. // formula criteria condition enumeration.
  64. const (
  65. _ byte = iota
  66. criteriaEq
  67. criteriaLe
  68. criteriaGe
  69. criteriaL
  70. criteriaG
  71. criteriaBeg
  72. criteriaEnd
  73. criteriaErr
  74. )
  75. // formulaCriteria defined formula criteria parser result.
  76. type formulaCriteria struct {
  77. Type byte
  78. Condition string
  79. }
  80. // ArgType is the type if formula argument type.
  81. type ArgType byte
  82. // Formula argument types enumeration.
  83. const (
  84. ArgUnknown ArgType = iota
  85. ArgNumber
  86. ArgString
  87. ArgList
  88. ArgMatrix
  89. ArgError
  90. ArgEmpty
  91. )
  92. // formulaArg is the argument of a formula or function.
  93. type formulaArg struct {
  94. SheetName string
  95. Number float64
  96. String string
  97. List []formulaArg
  98. Matrix [][]formulaArg
  99. Boolean bool
  100. Error string
  101. Type ArgType
  102. cellRefs, cellRanges *list.List
  103. }
  104. // Value returns a string data type of the formula argument.
  105. func (fa formulaArg) Value() (value string) {
  106. switch fa.Type {
  107. case ArgNumber:
  108. if fa.Boolean {
  109. if fa.Number == 0 {
  110. return "FALSE"
  111. }
  112. return "TRUE"
  113. }
  114. return fmt.Sprintf("%g", fa.Number)
  115. case ArgString:
  116. return fa.String
  117. case ArgError:
  118. return fa.Error
  119. }
  120. return
  121. }
  122. // ToNumber returns a formula argument with number data type.
  123. func (fa formulaArg) ToNumber() formulaArg {
  124. var n float64
  125. var err error
  126. switch fa.Type {
  127. case ArgString:
  128. n, err = strconv.ParseFloat(fa.String, 64)
  129. if err != nil {
  130. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  131. }
  132. case ArgNumber:
  133. n = fa.Number
  134. }
  135. return newNumberFormulaArg(n)
  136. }
  137. // ToBool returns a formula argument with boolean data type.
  138. func (fa formulaArg) ToBool() formulaArg {
  139. var b bool
  140. var err error
  141. switch fa.Type {
  142. case ArgString:
  143. b, err = strconv.ParseBool(fa.String)
  144. if err != nil {
  145. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  146. }
  147. case ArgNumber:
  148. if fa.Boolean && fa.Number == 1 {
  149. b = true
  150. }
  151. }
  152. return newBoolFormulaArg(b)
  153. }
  154. // ToList returns a formula argument with array data type.
  155. func (fa formulaArg) ToList() []formulaArg {
  156. switch fa.Type {
  157. case ArgMatrix:
  158. list := []formulaArg{}
  159. for _, row := range fa.Matrix {
  160. list = append(list, row...)
  161. }
  162. return list
  163. case ArgList:
  164. return fa.List
  165. case ArgNumber, ArgString, ArgError, ArgUnknown:
  166. return []formulaArg{fa}
  167. }
  168. return nil
  169. }
  170. // formulaFuncs is the type of the formula functions.
  171. type formulaFuncs struct {
  172. f *File
  173. sheet, cell string
  174. }
  175. // tokenPriority defined basic arithmetic operator priority.
  176. var tokenPriority = map[string]int{
  177. "^": 5,
  178. "*": 4,
  179. "/": 4,
  180. "+": 3,
  181. "-": 3,
  182. "=": 2,
  183. "<>": 2,
  184. "<": 2,
  185. "<=": 2,
  186. ">": 2,
  187. ">=": 2,
  188. "&": 1,
  189. }
  190. // CalcCellValue provides a function to get calculated cell value. This
  191. // feature is currently in working processing. Array formula, table formula
  192. // and some other formulas are not supported currently.
  193. //
  194. // Supported formula functions:
  195. //
  196. // ABS
  197. // ACOS
  198. // ACOSH
  199. // ACOT
  200. // ACOTH
  201. // AND
  202. // ARABIC
  203. // ASIN
  204. // ASINH
  205. // ATAN
  206. // ATAN2
  207. // ATANH
  208. // AVERAGE
  209. // AVERAGEA
  210. // BASE
  211. // BIN2DEC
  212. // BIN2HEX
  213. // BIN2OCT
  214. // BITAND
  215. // BITLSHIFT
  216. // BITOR
  217. // BITRSHIFT
  218. // BITXOR
  219. // CEILING
  220. // CEILING.MATH
  221. // CEILING.PRECISE
  222. // CHAR
  223. // CHOOSE
  224. // CLEAN
  225. // CODE
  226. // COLUMN
  227. // COLUMNS
  228. // COMBIN
  229. // COMBINA
  230. // CONCAT
  231. // CONCATENATE
  232. // COS
  233. // COSH
  234. // COT
  235. // COTH
  236. // COUNT
  237. // COUNTA
  238. // COUNTBLANK
  239. // CSC
  240. // CSCH
  241. // DATE
  242. // DATEDIF
  243. // DEC2BIN
  244. // DEC2HEX
  245. // DEC2OCT
  246. // DECIMAL
  247. // DEGREES
  248. // ENCODEURL
  249. // EVEN
  250. // EXACT
  251. // EXP
  252. // FACT
  253. // FACTDOUBLE
  254. // FALSE
  255. // FIND
  256. // FINDB
  257. // FISHER
  258. // FISHERINV
  259. // FIXED
  260. // FLOOR
  261. // FLOOR.MATH
  262. // FLOOR.PRECISE
  263. // GAMMA
  264. // GAMMALN
  265. // GCD
  266. // HEX2BIN
  267. // HEX2DEC
  268. // HEX2OCT
  269. // HLOOKUP
  270. // IF
  271. // IFERROR
  272. // INT
  273. // ISBLANK
  274. // ISERR
  275. // ISERROR
  276. // ISEVEN
  277. // ISNA
  278. // ISNONTEXT
  279. // ISNUMBER
  280. // ISODD
  281. // ISTEXT
  282. // ISO.CEILING
  283. // KURT
  284. // LARGE
  285. // LCM
  286. // LEFT
  287. // LEFTB
  288. // LEN
  289. // LENB
  290. // LN
  291. // LOG
  292. // LOG10
  293. // LOOKUP
  294. // LOWER
  295. // MAX
  296. // MDETERM
  297. // MEDIAN
  298. // MID
  299. // MIDB
  300. // MIN
  301. // MINA
  302. // MOD
  303. // MROUND
  304. // MULTINOMIAL
  305. // MUNIT
  306. // NA
  307. // NOT
  308. // NOW
  309. // OCT2BIN
  310. // OCT2DEC
  311. // OCT2HEX
  312. // ODD
  313. // OR
  314. // PERMUT
  315. // PI
  316. // POWER
  317. // PRODUCT
  318. // PROPER
  319. // QUOTIENT
  320. // RADIANS
  321. // RAND
  322. // RANDBETWEEN
  323. // REPLACE
  324. // REPLACEB
  325. // REPT
  326. // RIGHT
  327. // RIGHTB
  328. // ROMAN
  329. // ROUND
  330. // ROUNDDOWN
  331. // ROUNDUP
  332. // ROW
  333. // ROWS
  334. // SEC
  335. // SECH
  336. // SHEET
  337. // SIGN
  338. // SIN
  339. // SINH
  340. // SMALL
  341. // SQRT
  342. // SQRTPI
  343. // STDEV
  344. // STDEVA
  345. // SUBSTITUTE
  346. // SUM
  347. // SUMIF
  348. // SUMSQ
  349. // TAN
  350. // TANH
  351. // TODAY
  352. // TRIM
  353. // TRUE
  354. // TRUNC
  355. // UNICHAR
  356. // UNICODE
  357. // UPPER
  358. // VLOOKUP
  359. //
  360. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  361. var (
  362. formula string
  363. token efp.Token
  364. )
  365. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  366. return
  367. }
  368. ps := efp.ExcelParser()
  369. tokens := ps.Parse(formula)
  370. if tokens == nil {
  371. return
  372. }
  373. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  374. return
  375. }
  376. result = token.TValue
  377. isNum, precision := isNumeric(result)
  378. if isNum && precision > 15 {
  379. num, _ := roundPrecision(result)
  380. result = strings.ToUpper(num)
  381. }
  382. return
  383. }
  384. // getPriority calculate arithmetic operator priority.
  385. func getPriority(token efp.Token) (pri int) {
  386. pri = tokenPriority[token.TValue]
  387. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  388. pri = 6
  389. }
  390. if isBeginParenthesesToken(token) { // (
  391. pri = 0
  392. }
  393. return
  394. }
  395. // newNumberFormulaArg constructs a number formula argument.
  396. func newNumberFormulaArg(n float64) formulaArg {
  397. if math.IsNaN(n) {
  398. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  399. }
  400. return formulaArg{Type: ArgNumber, Number: n}
  401. }
  402. // newStringFormulaArg constructs a string formula argument.
  403. func newStringFormulaArg(s string) formulaArg {
  404. return formulaArg{Type: ArgString, String: s}
  405. }
  406. // newMatrixFormulaArg constructs a matrix formula argument.
  407. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  408. return formulaArg{Type: ArgMatrix, Matrix: m}
  409. }
  410. // newListFormulaArg create a list formula argument.
  411. func newListFormulaArg(l []formulaArg) formulaArg {
  412. return formulaArg{Type: ArgList, List: l}
  413. }
  414. // newBoolFormulaArg constructs a boolean formula argument.
  415. func newBoolFormulaArg(b bool) formulaArg {
  416. var n float64
  417. if b {
  418. n = 1
  419. }
  420. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  421. }
  422. // newErrorFormulaArg create an error formula argument of a given type with a
  423. // specified error message.
  424. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  425. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  426. }
  427. // newEmptyFormulaArg create an empty formula argument.
  428. func newEmptyFormulaArg() formulaArg {
  429. return formulaArg{Type: ArgEmpty}
  430. }
  431. // evalInfixExp evaluate syntax analysis by given infix expression after
  432. // lexical analysis. Evaluate an infix expression containing formulas by
  433. // stacks:
  434. //
  435. // opd - Operand
  436. // opt - Operator
  437. // opf - Operation formula
  438. // opfd - Operand of the operation formula
  439. // opft - Operator of the operation formula
  440. // args - Arguments list of the operation formula
  441. //
  442. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  443. //
  444. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  445. var err error
  446. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  447. for i := 0; i < len(tokens); i++ {
  448. token := tokens[i]
  449. // out of function stack
  450. if opfStack.Len() == 0 {
  451. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  452. return efp.Token{}, err
  453. }
  454. }
  455. // function start
  456. if isFunctionStartToken(token) {
  457. opfStack.Push(token)
  458. argsStack.Push(list.New().Init())
  459. continue
  460. }
  461. // in function stack, walk 2 token at once
  462. if opfStack.Len() > 0 {
  463. var nextToken efp.Token
  464. if i+1 < len(tokens) {
  465. nextToken = tokens[i+1]
  466. }
  467. // current token is args or range, skip next token, order required: parse reference first
  468. if token.TSubType == efp.TokenSubTypeRange {
  469. if !opftStack.Empty() {
  470. // parse reference: must reference at here
  471. result, err := f.parseReference(sheet, token.TValue)
  472. if err != nil {
  473. return efp.Token{TValue: formulaErrorNAME}, err
  474. }
  475. if result.Type != ArgString {
  476. return efp.Token{}, errors.New(formulaErrorVALUE)
  477. }
  478. opfdStack.Push(efp.Token{
  479. TType: efp.TokenTypeOperand,
  480. TSubType: efp.TokenSubTypeNumber,
  481. TValue: result.String,
  482. })
  483. continue
  484. }
  485. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  486. // parse reference: reference or range at here
  487. result, err := f.parseReference(sheet, token.TValue)
  488. if err != nil {
  489. return efp.Token{TValue: formulaErrorNAME}, err
  490. }
  491. if result.Type == ArgUnknown {
  492. return efp.Token{}, errors.New(formulaErrorVALUE)
  493. }
  494. argsStack.Peek().(*list.List).PushBack(result)
  495. continue
  496. }
  497. }
  498. // check current token is opft
  499. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  500. return efp.Token{}, err
  501. }
  502. // current token is arg
  503. if token.TType == efp.TokenTypeArgument {
  504. for !opftStack.Empty() {
  505. // calculate trigger
  506. topOpt := opftStack.Peek().(efp.Token)
  507. if err := calculate(opfdStack, topOpt); err != nil {
  508. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  509. }
  510. opftStack.Pop()
  511. }
  512. if !opfdStack.Empty() {
  513. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  514. }
  515. continue
  516. }
  517. // current token is logical
  518. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  519. }
  520. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  521. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  522. }
  523. // current token is text
  524. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  525. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  526. }
  527. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  528. return efp.Token{}, err
  529. }
  530. }
  531. }
  532. for optStack.Len() != 0 {
  533. topOpt := optStack.Peek().(efp.Token)
  534. if err = calculate(opdStack, topOpt); err != nil {
  535. return efp.Token{}, err
  536. }
  537. optStack.Pop()
  538. }
  539. if opdStack.Len() == 0 {
  540. return efp.Token{}, errors.New("formula not valid")
  541. }
  542. return opdStack.Peek().(efp.Token), err
  543. }
  544. // evalInfixExpFunc evaluate formula function in the infix expression.
  545. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  546. if !isFunctionStopToken(token) {
  547. return nil
  548. }
  549. // current token is function stop
  550. for !opftStack.Empty() {
  551. // calculate trigger
  552. topOpt := opftStack.Peek().(efp.Token)
  553. if err := calculate(opfdStack, topOpt); err != nil {
  554. return err
  555. }
  556. opftStack.Pop()
  557. }
  558. // push opfd to args
  559. if opfdStack.Len() > 0 {
  560. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  561. }
  562. // call formula function to evaluate
  563. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  564. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  565. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  566. if arg.Type == ArgError && opfStack.Len() == 1 {
  567. return errors.New(arg.Value())
  568. }
  569. argsStack.Pop()
  570. opfStack.Pop()
  571. if opfStack.Len() > 0 { // still in function stack
  572. if nextToken.TType == efp.TokenTypeOperatorInfix {
  573. // mathematics calculate in formula function
  574. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  575. } else {
  576. argsStack.Peek().(*list.List).PushBack(arg)
  577. }
  578. } else {
  579. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  580. }
  581. return nil
  582. }
  583. // calcPow evaluate exponentiation arithmetic operations.
  584. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  585. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  586. if err != nil {
  587. return err
  588. }
  589. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  590. if err != nil {
  591. return err
  592. }
  593. result := math.Pow(lOpdVal, rOpdVal)
  594. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  595. return nil
  596. }
  597. // calcEq evaluate equal arithmetic operations.
  598. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  599. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  600. return nil
  601. }
  602. // calcNEq evaluate not equal arithmetic operations.
  603. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  604. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  605. return nil
  606. }
  607. // calcL evaluate less than arithmetic operations.
  608. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  609. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  610. if err != nil {
  611. return err
  612. }
  613. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  614. if err != nil {
  615. return err
  616. }
  617. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  618. return nil
  619. }
  620. // calcLe evaluate less than or equal arithmetic operations.
  621. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  622. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  623. if err != nil {
  624. return err
  625. }
  626. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  627. if err != nil {
  628. return err
  629. }
  630. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  631. return nil
  632. }
  633. // calcG evaluate greater than or equal arithmetic operations.
  634. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  635. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  636. if err != nil {
  637. return err
  638. }
  639. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  640. if err != nil {
  641. return err
  642. }
  643. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  644. return nil
  645. }
  646. // calcGe evaluate greater than or equal arithmetic operations.
  647. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  648. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  649. if err != nil {
  650. return err
  651. }
  652. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  653. if err != nil {
  654. return err
  655. }
  656. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  657. return nil
  658. }
  659. // calcSplice evaluate splice '&' operations.
  660. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  661. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  662. return nil
  663. }
  664. // calcAdd evaluate addition arithmetic operations.
  665. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  666. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  667. if err != nil {
  668. return err
  669. }
  670. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  671. if err != nil {
  672. return err
  673. }
  674. result := lOpdVal + rOpdVal
  675. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  676. return nil
  677. }
  678. // calcSubtract evaluate subtraction arithmetic operations.
  679. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  680. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  681. if err != nil {
  682. return err
  683. }
  684. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  685. if err != nil {
  686. return err
  687. }
  688. result := lOpdVal - rOpdVal
  689. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  690. return nil
  691. }
  692. // calcMultiply evaluate multiplication arithmetic operations.
  693. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  694. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  695. if err != nil {
  696. return err
  697. }
  698. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  699. if err != nil {
  700. return err
  701. }
  702. result := lOpdVal * rOpdVal
  703. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  704. return nil
  705. }
  706. // calcDiv evaluate division arithmetic operations.
  707. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  708. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  709. if err != nil {
  710. return err
  711. }
  712. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  713. if err != nil {
  714. return err
  715. }
  716. result := lOpdVal / rOpdVal
  717. if rOpdVal == 0 {
  718. return errors.New(formulaErrorDIV)
  719. }
  720. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  721. return nil
  722. }
  723. // calculate evaluate basic arithmetic operations.
  724. func calculate(opdStack *Stack, opt efp.Token) error {
  725. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  726. if opdStack.Len() < 1 {
  727. return errors.New("formula not valid")
  728. }
  729. opd := opdStack.Pop().(efp.Token)
  730. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  731. if err != nil {
  732. return err
  733. }
  734. result := 0 - opdVal
  735. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  736. }
  737. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  738. "^": calcPow,
  739. "*": calcMultiply,
  740. "/": calcDiv,
  741. "+": calcAdd,
  742. "=": calcEq,
  743. "<>": calcNEq,
  744. "<": calcL,
  745. "<=": calcLe,
  746. ">": calcG,
  747. ">=": calcGe,
  748. "&": calcSplice,
  749. }
  750. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  751. if opdStack.Len() < 2 {
  752. return errors.New("formula not valid")
  753. }
  754. rOpd := opdStack.Pop().(efp.Token)
  755. lOpd := opdStack.Pop().(efp.Token)
  756. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  757. return err
  758. }
  759. }
  760. fn, ok := tokenCalcFunc[opt.TValue]
  761. if ok {
  762. if opdStack.Len() < 2 {
  763. return errors.New("formula not valid")
  764. }
  765. rOpd := opdStack.Pop().(efp.Token)
  766. lOpd := opdStack.Pop().(efp.Token)
  767. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  768. return err
  769. }
  770. }
  771. return nil
  772. }
  773. // parseOperatorPrefixToken parse operator prefix token.
  774. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  775. if optStack.Len() == 0 {
  776. optStack.Push(token)
  777. } else {
  778. tokenPriority := getPriority(token)
  779. topOpt := optStack.Peek().(efp.Token)
  780. topOptPriority := getPriority(topOpt)
  781. if tokenPriority > topOptPriority {
  782. optStack.Push(token)
  783. } else {
  784. for tokenPriority <= topOptPriority {
  785. optStack.Pop()
  786. if err = calculate(opdStack, topOpt); err != nil {
  787. return
  788. }
  789. if optStack.Len() > 0 {
  790. topOpt = optStack.Peek().(efp.Token)
  791. topOptPriority = getPriority(topOpt)
  792. continue
  793. }
  794. break
  795. }
  796. optStack.Push(token)
  797. }
  798. }
  799. return
  800. }
  801. // isFunctionStartToken determine if the token is function stop.
  802. func isFunctionStartToken(token efp.Token) bool {
  803. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  804. }
  805. // isFunctionStopToken determine if the token is function stop.
  806. func isFunctionStopToken(token efp.Token) bool {
  807. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  808. }
  809. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  810. func isBeginParenthesesToken(token efp.Token) bool {
  811. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  812. }
  813. // isEndParenthesesToken determine if the token is end parentheses: ).
  814. func isEndParenthesesToken(token efp.Token) bool {
  815. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  816. }
  817. // isOperatorPrefixToken determine if the token is parse operator prefix
  818. // token.
  819. func isOperatorPrefixToken(token efp.Token) bool {
  820. _, ok := tokenPriority[token.TValue]
  821. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  822. return true
  823. }
  824. return false
  825. }
  826. // getDefinedNameRefTo convert defined name to reference range.
  827. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  828. for _, definedName := range f.GetDefinedName() {
  829. if definedName.Name == definedNameName {
  830. refTo = definedName.RefersTo
  831. // worksheet scope takes precedence over scope workbook when both definedNames exist
  832. if definedName.Scope == currentSheet {
  833. break
  834. }
  835. }
  836. }
  837. return refTo
  838. }
  839. // parseToken parse basic arithmetic operator priority and evaluate based on
  840. // operators and operands.
  841. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  842. // parse reference: must reference at here
  843. if token.TSubType == efp.TokenSubTypeRange {
  844. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  845. if refTo != "" {
  846. token.TValue = refTo
  847. }
  848. result, err := f.parseReference(sheet, token.TValue)
  849. if err != nil {
  850. return errors.New(formulaErrorNAME)
  851. }
  852. if result.Type != ArgString {
  853. return errors.New(formulaErrorVALUE)
  854. }
  855. token.TValue = result.String
  856. token.TType = efp.TokenTypeOperand
  857. token.TSubType = efp.TokenSubTypeNumber
  858. }
  859. if isOperatorPrefixToken(token) {
  860. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  861. return err
  862. }
  863. }
  864. if isBeginParenthesesToken(token) { // (
  865. optStack.Push(token)
  866. }
  867. if isEndParenthesesToken(token) { // )
  868. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  869. topOpt := optStack.Peek().(efp.Token)
  870. if err := calculate(opdStack, topOpt); err != nil {
  871. return err
  872. }
  873. optStack.Pop()
  874. }
  875. optStack.Pop()
  876. }
  877. // opd
  878. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  879. opdStack.Push(token)
  880. }
  881. return nil
  882. }
  883. // parseReference parse reference and extract values by given reference
  884. // characters and default sheet name.
  885. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  886. reference = strings.Replace(reference, "$", "", -1)
  887. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  888. for _, ref := range strings.Split(reference, ":") {
  889. tokens := strings.Split(ref, "!")
  890. cr := cellRef{}
  891. if len(tokens) == 2 { // have a worksheet name
  892. cr.Sheet = tokens[0]
  893. // cast to cell coordinates
  894. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  895. // cast to column
  896. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  897. // cast to row
  898. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  899. err = newInvalidColumnNameError(tokens[1])
  900. return
  901. }
  902. cr.Col = TotalColumns
  903. }
  904. }
  905. if refs.Len() > 0 {
  906. e := refs.Back()
  907. cellRefs.PushBack(e.Value.(cellRef))
  908. refs.Remove(e)
  909. }
  910. refs.PushBack(cr)
  911. continue
  912. }
  913. // cast to cell coordinates
  914. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  915. // cast to column
  916. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  917. // cast to row
  918. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  919. err = newInvalidColumnNameError(tokens[0])
  920. return
  921. }
  922. cr.Col = TotalColumns
  923. }
  924. cellRanges.PushBack(cellRange{
  925. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  926. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  927. })
  928. cellRefs.Init()
  929. arg, err = f.rangeResolver(cellRefs, cellRanges)
  930. return
  931. }
  932. e := refs.Back()
  933. if e == nil {
  934. cr.Sheet = sheet
  935. refs.PushBack(cr)
  936. continue
  937. }
  938. cellRanges.PushBack(cellRange{
  939. From: e.Value.(cellRef),
  940. To: cr,
  941. })
  942. refs.Remove(e)
  943. }
  944. if refs.Len() > 0 {
  945. e := refs.Back()
  946. cellRefs.PushBack(e.Value.(cellRef))
  947. refs.Remove(e)
  948. }
  949. arg, err = f.rangeResolver(cellRefs, cellRanges)
  950. return
  951. }
  952. // prepareValueRange prepare value range.
  953. func prepareValueRange(cr cellRange, valueRange []int) {
  954. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  955. valueRange[0] = cr.From.Row
  956. }
  957. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  958. valueRange[2] = cr.From.Col
  959. }
  960. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  961. valueRange[1] = cr.To.Row
  962. }
  963. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  964. valueRange[3] = cr.To.Col
  965. }
  966. }
  967. // prepareValueRef prepare value reference.
  968. func prepareValueRef(cr cellRef, valueRange []int) {
  969. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  970. valueRange[0] = cr.Row
  971. }
  972. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  973. valueRange[2] = cr.Col
  974. }
  975. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  976. valueRange[1] = cr.Row
  977. }
  978. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  979. valueRange[3] = cr.Col
  980. }
  981. }
  982. // rangeResolver extract value as string from given reference and range list.
  983. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  984. // be reference A1:B3.
  985. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  986. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  987. // value range order: from row, to row, from column, to column
  988. valueRange := []int{0, 0, 0, 0}
  989. var sheet string
  990. // prepare value range
  991. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  992. cr := temp.Value.(cellRange)
  993. if cr.From.Sheet != cr.To.Sheet {
  994. err = errors.New(formulaErrorVALUE)
  995. }
  996. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  997. _ = sortCoordinates(rng)
  998. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  999. prepareValueRange(cr, valueRange)
  1000. if cr.From.Sheet != "" {
  1001. sheet = cr.From.Sheet
  1002. }
  1003. }
  1004. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1005. cr := temp.Value.(cellRef)
  1006. if cr.Sheet != "" {
  1007. sheet = cr.Sheet
  1008. }
  1009. prepareValueRef(cr, valueRange)
  1010. }
  1011. // extract value from ranges
  1012. if cellRanges.Len() > 0 {
  1013. arg.Type = ArgMatrix
  1014. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1015. var matrixRow = []formulaArg{}
  1016. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1017. var cell, value string
  1018. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1019. return
  1020. }
  1021. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1022. return
  1023. }
  1024. matrixRow = append(matrixRow, formulaArg{
  1025. String: value,
  1026. Type: ArgString,
  1027. })
  1028. }
  1029. arg.Matrix = append(arg.Matrix, matrixRow)
  1030. }
  1031. return
  1032. }
  1033. // extract value from references
  1034. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1035. cr := temp.Value.(cellRef)
  1036. var cell string
  1037. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1038. return
  1039. }
  1040. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1041. return
  1042. }
  1043. arg.Type = ArgString
  1044. }
  1045. return
  1046. }
  1047. // callFuncByName calls the no error or only error return function with
  1048. // reflect by given receiver, name and parameters.
  1049. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1050. function := reflect.ValueOf(receiver).MethodByName(name)
  1051. if function.IsValid() {
  1052. rt := function.Call(params)
  1053. if len(rt) == 0 {
  1054. return
  1055. }
  1056. arg = rt[0].Interface().(formulaArg)
  1057. return
  1058. }
  1059. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1060. }
  1061. // formulaCriteriaParser parse formula criteria.
  1062. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1063. fc = &formulaCriteria{}
  1064. if exp == "" {
  1065. return
  1066. }
  1067. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1068. fc.Type, fc.Condition = criteriaEq, match[1]
  1069. return
  1070. }
  1071. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1072. fc.Type, fc.Condition = criteriaEq, match[1]
  1073. return
  1074. }
  1075. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1076. fc.Type, fc.Condition = criteriaLe, match[1]
  1077. return
  1078. }
  1079. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1080. fc.Type, fc.Condition = criteriaGe, match[1]
  1081. return
  1082. }
  1083. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1084. fc.Type, fc.Condition = criteriaL, match[1]
  1085. return
  1086. }
  1087. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1088. fc.Type, fc.Condition = criteriaG, match[1]
  1089. return
  1090. }
  1091. if strings.Contains(exp, "*") {
  1092. if strings.HasPrefix(exp, "*") {
  1093. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1094. }
  1095. if strings.HasSuffix(exp, "*") {
  1096. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1097. }
  1098. return
  1099. }
  1100. fc.Type, fc.Condition = criteriaEq, exp
  1101. return
  1102. }
  1103. // formulaCriteriaEval evaluate formula criteria expression.
  1104. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1105. var value, expected float64
  1106. var e error
  1107. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1108. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1109. return
  1110. }
  1111. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1112. return
  1113. }
  1114. return
  1115. }
  1116. switch criteria.Type {
  1117. case criteriaEq:
  1118. return val == criteria.Condition, err
  1119. case criteriaLe:
  1120. value, expected, e = prepareValue(val, criteria.Condition)
  1121. return value <= expected && e == nil, err
  1122. case criteriaGe:
  1123. value, expected, e = prepareValue(val, criteria.Condition)
  1124. return value >= expected && e == nil, err
  1125. case criteriaL:
  1126. value, expected, e = prepareValue(val, criteria.Condition)
  1127. return value < expected && e == nil, err
  1128. case criteriaG:
  1129. value, expected, e = prepareValue(val, criteria.Condition)
  1130. return value > expected && e == nil, err
  1131. case criteriaBeg:
  1132. return strings.HasPrefix(val, criteria.Condition), err
  1133. case criteriaEnd:
  1134. return strings.HasSuffix(val, criteria.Condition), err
  1135. }
  1136. return
  1137. }
  1138. // Engineering Functions
  1139. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1140. // The syntax of the function is:
  1141. //
  1142. // BIN2DEC(number)
  1143. //
  1144. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1145. if argsList.Len() != 1 {
  1146. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1147. }
  1148. token := argsList.Front().Value.(formulaArg)
  1149. number := token.ToNumber()
  1150. if number.Type != ArgNumber {
  1151. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1152. }
  1153. return fn.bin2dec(token.Value())
  1154. }
  1155. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1156. // (Base 16) number. The syntax of the function is:
  1157. //
  1158. // BIN2HEX(number,[places])
  1159. //
  1160. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1161. if argsList.Len() < 1 {
  1162. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1163. }
  1164. if argsList.Len() > 2 {
  1165. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1166. }
  1167. token := argsList.Front().Value.(formulaArg)
  1168. number := token.ToNumber()
  1169. if number.Type != ArgNumber {
  1170. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1171. }
  1172. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1173. if decimal.Type != ArgNumber {
  1174. return decimal
  1175. }
  1176. newList.PushBack(decimal)
  1177. if argsList.Len() == 2 {
  1178. newList.PushBack(argsList.Back().Value.(formulaArg))
  1179. }
  1180. return fn.dec2x("BIN2HEX", newList)
  1181. }
  1182. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1183. // number. The syntax of the function is:
  1184. //
  1185. // BIN2OCT(number,[places])
  1186. //
  1187. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1188. if argsList.Len() < 1 {
  1189. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1190. }
  1191. if argsList.Len() > 2 {
  1192. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1193. }
  1194. token := argsList.Front().Value.(formulaArg)
  1195. number := token.ToNumber()
  1196. if number.Type != ArgNumber {
  1197. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1198. }
  1199. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1200. if decimal.Type != ArgNumber {
  1201. return decimal
  1202. }
  1203. newList.PushBack(decimal)
  1204. if argsList.Len() == 2 {
  1205. newList.PushBack(argsList.Back().Value.(formulaArg))
  1206. }
  1207. return fn.dec2x("BIN2OCT", newList)
  1208. }
  1209. // bin2dec is an implementation of the formula function BIN2DEC.
  1210. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1211. decimal, length := 0.0, len(number)
  1212. for i := length; i > 0; i-- {
  1213. s := string(number[length-i])
  1214. if 10 == i && s == "1" {
  1215. decimal += math.Pow(-2.0, float64(i-1))
  1216. continue
  1217. }
  1218. if s == "1" {
  1219. decimal += math.Pow(2.0, float64(i-1))
  1220. continue
  1221. }
  1222. if s != "0" {
  1223. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1224. }
  1225. }
  1226. return newNumberFormulaArg(decimal)
  1227. }
  1228. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1229. // syntax of the function is:
  1230. //
  1231. // BITAND(number1,number2)
  1232. //
  1233. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1234. return fn.bitwise("BITAND", argsList)
  1235. }
  1236. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1237. // number of bits. The syntax of the function is:
  1238. //
  1239. // BITLSHIFT(number1,shift_amount)
  1240. //
  1241. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1242. return fn.bitwise("BITLSHIFT", argsList)
  1243. }
  1244. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1245. // syntax of the function is:
  1246. //
  1247. // BITOR(number1,number2)
  1248. //
  1249. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1250. return fn.bitwise("BITOR", argsList)
  1251. }
  1252. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1253. // number of bits. The syntax of the function is:
  1254. //
  1255. // BITRSHIFT(number1,shift_amount)
  1256. //
  1257. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1258. return fn.bitwise("BITRSHIFT", argsList)
  1259. }
  1260. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1261. // integers. The syntax of the function is:
  1262. //
  1263. // BITXOR(number1,number2)
  1264. //
  1265. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1266. return fn.bitwise("BITXOR", argsList)
  1267. }
  1268. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1269. // BITOR, BITRSHIFT and BITXOR.
  1270. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1271. if argsList.Len() != 2 {
  1272. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1273. }
  1274. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1275. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1276. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1277. }
  1278. max := math.Pow(2, 48) - 1
  1279. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1280. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1281. }
  1282. bitwiseFuncMap := map[string]func(a, b int) int{
  1283. "BITAND": func(a, b int) int { return a & b },
  1284. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1285. "BITOR": func(a, b int) int { return a | b },
  1286. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1287. "BITXOR": func(a, b int) int { return a ^ b },
  1288. }
  1289. bitwiseFunc := bitwiseFuncMap[name]
  1290. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1291. }
  1292. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1293. // The syntax of the function is:
  1294. //
  1295. // DEC2BIN(number,[places])
  1296. //
  1297. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1298. return fn.dec2x("DEC2BIN", argsList)
  1299. }
  1300. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1301. // number. The syntax of the function is:
  1302. //
  1303. // DEC2HEX(number,[places])
  1304. //
  1305. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1306. return fn.dec2x("DEC2HEX", argsList)
  1307. }
  1308. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1309. // The syntax of the function is:
  1310. //
  1311. // DEC2OCT(number,[places])
  1312. //
  1313. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1314. return fn.dec2x("DEC2OCT", argsList)
  1315. }
  1316. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1317. // DEC2OCT.
  1318. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1319. if argsList.Len() < 1 {
  1320. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1321. }
  1322. if argsList.Len() > 2 {
  1323. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1324. }
  1325. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1326. if decimal.Type != ArgNumber {
  1327. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1328. }
  1329. maxLimitMap := map[string]float64{
  1330. "DEC2BIN": 511,
  1331. "HEX2BIN": 511,
  1332. "OCT2BIN": 511,
  1333. "BIN2HEX": 549755813887,
  1334. "DEC2HEX": 549755813887,
  1335. "OCT2HEX": 549755813887,
  1336. "BIN2OCT": 536870911,
  1337. "DEC2OCT": 536870911,
  1338. "HEX2OCT": 536870911,
  1339. }
  1340. minLimitMap := map[string]float64{
  1341. "DEC2BIN": -512,
  1342. "HEX2BIN": -512,
  1343. "OCT2BIN": -512,
  1344. "BIN2HEX": -549755813888,
  1345. "DEC2HEX": -549755813888,
  1346. "OCT2HEX": -549755813888,
  1347. "BIN2OCT": -536870912,
  1348. "DEC2OCT": -536870912,
  1349. "HEX2OCT": -536870912,
  1350. }
  1351. baseMap := map[string]int{
  1352. "DEC2BIN": 2,
  1353. "HEX2BIN": 2,
  1354. "OCT2BIN": 2,
  1355. "BIN2HEX": 16,
  1356. "DEC2HEX": 16,
  1357. "OCT2HEX": 16,
  1358. "BIN2OCT": 8,
  1359. "DEC2OCT": 8,
  1360. "HEX2OCT": 8,
  1361. }
  1362. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1363. base := baseMap[name]
  1364. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1365. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1366. }
  1367. n := int64(decimal.Number)
  1368. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1369. if argsList.Len() == 2 {
  1370. places := argsList.Back().Value.(formulaArg).ToNumber()
  1371. if places.Type != ArgNumber {
  1372. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1373. }
  1374. binaryPlaces := len(binary)
  1375. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1376. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1377. }
  1378. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1379. }
  1380. if decimal.Number < 0 && len(binary) > 10 {
  1381. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1382. }
  1383. return newStringFormulaArg(strings.ToUpper(binary))
  1384. }
  1385. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1386. // (Base 2) number. The syntax of the function is:
  1387. //
  1388. // HEX2BIN(number,[places])
  1389. //
  1390. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1391. if argsList.Len() < 1 {
  1392. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1393. }
  1394. if argsList.Len() > 2 {
  1395. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1396. }
  1397. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1398. if decimal.Type != ArgNumber {
  1399. return decimal
  1400. }
  1401. newList.PushBack(decimal)
  1402. if argsList.Len() == 2 {
  1403. newList.PushBack(argsList.Back().Value.(formulaArg))
  1404. }
  1405. return fn.dec2x("HEX2BIN", newList)
  1406. }
  1407. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1408. // number. The syntax of the function is:
  1409. //
  1410. // HEX2DEC(number)
  1411. //
  1412. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1413. if argsList.Len() != 1 {
  1414. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1415. }
  1416. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1417. }
  1418. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1419. // (Base 8) number. The syntax of the function is:
  1420. //
  1421. // HEX2OCT(number,[places])
  1422. //
  1423. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1424. if argsList.Len() < 1 {
  1425. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1426. }
  1427. if argsList.Len() > 2 {
  1428. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1429. }
  1430. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1431. if decimal.Type != ArgNumber {
  1432. return decimal
  1433. }
  1434. newList.PushBack(decimal)
  1435. if argsList.Len() == 2 {
  1436. newList.PushBack(argsList.Back().Value.(formulaArg))
  1437. }
  1438. return fn.dec2x("HEX2OCT", newList)
  1439. }
  1440. // hex2dec is an implementation of the formula function HEX2DEC.
  1441. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1442. decimal, length := 0.0, len(number)
  1443. for i := length; i > 0; i-- {
  1444. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1445. if err != nil {
  1446. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1447. }
  1448. if 10 == i && string(number[length-i]) == "F" {
  1449. decimal += math.Pow(-16.0, float64(i-1))
  1450. continue
  1451. }
  1452. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1453. }
  1454. return newNumberFormulaArg(decimal)
  1455. }
  1456. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1457. // number. The syntax of the function is:
  1458. //
  1459. // OCT2BIN(number,[places])
  1460. //
  1461. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1462. if argsList.Len() < 1 {
  1463. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1464. }
  1465. if argsList.Len() > 2 {
  1466. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1467. }
  1468. token := argsList.Front().Value.(formulaArg)
  1469. number := token.ToNumber()
  1470. if number.Type != ArgNumber {
  1471. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1472. }
  1473. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1474. newList.PushBack(decimal)
  1475. if argsList.Len() == 2 {
  1476. newList.PushBack(argsList.Back().Value.(formulaArg))
  1477. }
  1478. return fn.dec2x("OCT2BIN", newList)
  1479. }
  1480. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1481. // The syntax of the function is:
  1482. //
  1483. // OCT2DEC(number)
  1484. //
  1485. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1486. if argsList.Len() != 1 {
  1487. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1488. }
  1489. token := argsList.Front().Value.(formulaArg)
  1490. number := token.ToNumber()
  1491. if number.Type != ArgNumber {
  1492. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1493. }
  1494. return fn.oct2dec(token.Value())
  1495. }
  1496. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1497. // (Base 16) number. The syntax of the function is:
  1498. //
  1499. // OCT2HEX(number,[places])
  1500. //
  1501. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1502. if argsList.Len() < 1 {
  1503. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1504. }
  1505. if argsList.Len() > 2 {
  1506. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1507. }
  1508. token := argsList.Front().Value.(formulaArg)
  1509. number := token.ToNumber()
  1510. if number.Type != ArgNumber {
  1511. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1512. }
  1513. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1514. newList.PushBack(decimal)
  1515. if argsList.Len() == 2 {
  1516. newList.PushBack(argsList.Back().Value.(formulaArg))
  1517. }
  1518. return fn.dec2x("OCT2HEX", newList)
  1519. }
  1520. // oct2dec is an implementation of the formula function OCT2DEC.
  1521. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1522. decimal, length := 0.0, len(number)
  1523. for i := length; i > 0; i-- {
  1524. num, _ := strconv.Atoi(string(number[length-i]))
  1525. if 10 == i && string(number[length-i]) == "7" {
  1526. decimal += math.Pow(-8.0, float64(i-1))
  1527. continue
  1528. }
  1529. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1530. }
  1531. return newNumberFormulaArg(decimal)
  1532. }
  1533. // Math and Trigonometric Functions
  1534. // ABS function returns the absolute value of any supplied number. The syntax
  1535. // of the function is:
  1536. //
  1537. // ABS(number)
  1538. //
  1539. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1540. if argsList.Len() != 1 {
  1541. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1542. }
  1543. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1544. if arg.Type == ArgError {
  1545. return arg
  1546. }
  1547. return newNumberFormulaArg(math.Abs(arg.Number))
  1548. }
  1549. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1550. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1551. // the function is:
  1552. //
  1553. // ACOS(number)
  1554. //
  1555. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1556. if argsList.Len() != 1 {
  1557. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1558. }
  1559. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1560. if arg.Type == ArgError {
  1561. return arg
  1562. }
  1563. return newNumberFormulaArg(math.Acos(arg.Number))
  1564. }
  1565. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1566. // of the function is:
  1567. //
  1568. // ACOSH(number)
  1569. //
  1570. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1571. if argsList.Len() != 1 {
  1572. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1573. }
  1574. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1575. if arg.Type == ArgError {
  1576. return arg
  1577. }
  1578. return newNumberFormulaArg(math.Acosh(arg.Number))
  1579. }
  1580. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1581. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1582. // of the function is:
  1583. //
  1584. // ACOT(number)
  1585. //
  1586. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1587. if argsList.Len() != 1 {
  1588. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1589. }
  1590. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1591. if arg.Type == ArgError {
  1592. return arg
  1593. }
  1594. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1595. }
  1596. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1597. // value. The syntax of the function is:
  1598. //
  1599. // ACOTH(number)
  1600. //
  1601. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1602. if argsList.Len() != 1 {
  1603. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1604. }
  1605. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1606. if arg.Type == ArgError {
  1607. return arg
  1608. }
  1609. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1610. }
  1611. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1612. // of the function is:
  1613. //
  1614. // ARABIC(text)
  1615. //
  1616. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1617. if argsList.Len() != 1 {
  1618. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1619. }
  1620. text := argsList.Front().Value.(formulaArg).Value()
  1621. if len(text) > 255 {
  1622. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1623. }
  1624. text = strings.ToUpper(text)
  1625. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1626. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1627. for index >= 0 && text[index] == ' ' {
  1628. index--
  1629. }
  1630. for actualStart <= index && text[actualStart] == ' ' {
  1631. actualStart++
  1632. }
  1633. if actualStart <= index && text[actualStart] == '-' {
  1634. isNegative = true
  1635. actualStart++
  1636. }
  1637. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1638. for index >= actualStart {
  1639. startIndex = index
  1640. startChar := text[startIndex]
  1641. index--
  1642. for index >= actualStart && (text[index]|' ') == startChar {
  1643. index--
  1644. }
  1645. currentCharValue = charMap[rune(startChar)]
  1646. currentPartValue = (startIndex - index) * currentCharValue
  1647. if currentCharValue >= prevCharValue {
  1648. number += currentPartValue - subtractNumber
  1649. prevCharValue = currentCharValue
  1650. subtractNumber = 0
  1651. continue
  1652. }
  1653. subtractNumber += currentPartValue
  1654. }
  1655. if subtractNumber != 0 {
  1656. number -= subtractNumber
  1657. }
  1658. if isNegative {
  1659. number = -number
  1660. }
  1661. return newNumberFormulaArg(float64(number))
  1662. }
  1663. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1664. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1665. // of the function is:
  1666. //
  1667. // ASIN(number)
  1668. //
  1669. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1670. if argsList.Len() != 1 {
  1671. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1672. }
  1673. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1674. if arg.Type == ArgError {
  1675. return arg
  1676. }
  1677. return newNumberFormulaArg(math.Asin(arg.Number))
  1678. }
  1679. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1680. // The syntax of the function is:
  1681. //
  1682. // ASINH(number)
  1683. //
  1684. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1685. if argsList.Len() != 1 {
  1686. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1687. }
  1688. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1689. if arg.Type == ArgError {
  1690. return arg
  1691. }
  1692. return newNumberFormulaArg(math.Asinh(arg.Number))
  1693. }
  1694. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1695. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1696. // syntax of the function is:
  1697. //
  1698. // ATAN(number)
  1699. //
  1700. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1701. if argsList.Len() != 1 {
  1702. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1703. }
  1704. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1705. if arg.Type == ArgError {
  1706. return arg
  1707. }
  1708. return newNumberFormulaArg(math.Atan(arg.Number))
  1709. }
  1710. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1711. // number. The syntax of the function is:
  1712. //
  1713. // ATANH(number)
  1714. //
  1715. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1716. if argsList.Len() != 1 {
  1717. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1718. }
  1719. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1720. if arg.Type == ArgError {
  1721. return arg
  1722. }
  1723. return newNumberFormulaArg(math.Atanh(arg.Number))
  1724. }
  1725. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1726. // given set of x and y coordinates, and returns an angle, in radians, between
  1727. // -π/2 and +π/2. The syntax of the function is:
  1728. //
  1729. // ATAN2(x_num,y_num)
  1730. //
  1731. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1732. if argsList.Len() != 2 {
  1733. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1734. }
  1735. x := argsList.Back().Value.(formulaArg).ToNumber()
  1736. if x.Type == ArgError {
  1737. return x
  1738. }
  1739. y := argsList.Front().Value.(formulaArg).ToNumber()
  1740. if y.Type == ArgError {
  1741. return y
  1742. }
  1743. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1744. }
  1745. // BASE function converts a number into a supplied base (radix), and returns a
  1746. // text representation of the calculated value. The syntax of the function is:
  1747. //
  1748. // BASE(number,radix,[min_length])
  1749. //
  1750. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1751. if argsList.Len() < 2 {
  1752. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1753. }
  1754. if argsList.Len() > 3 {
  1755. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1756. }
  1757. var minLength int
  1758. var err error
  1759. number := argsList.Front().Value.(formulaArg).ToNumber()
  1760. if number.Type == ArgError {
  1761. return number
  1762. }
  1763. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1764. if radix.Type == ArgError {
  1765. return radix
  1766. }
  1767. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1768. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1769. }
  1770. if argsList.Len() > 2 {
  1771. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1772. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1773. }
  1774. }
  1775. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1776. if len(result) < minLength {
  1777. result = strings.Repeat("0", minLength-len(result)) + result
  1778. }
  1779. return newStringFormulaArg(strings.ToUpper(result))
  1780. }
  1781. // CEILING function rounds a supplied number away from zero, to the nearest
  1782. // multiple of a given number. The syntax of the function is:
  1783. //
  1784. // CEILING(number,significance)
  1785. //
  1786. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1787. if argsList.Len() == 0 {
  1788. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1789. }
  1790. if argsList.Len() > 2 {
  1791. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1792. }
  1793. number, significance, res := 0.0, 1.0, 0.0
  1794. n := argsList.Front().Value.(formulaArg).ToNumber()
  1795. if n.Type == ArgError {
  1796. return n
  1797. }
  1798. number = n.Number
  1799. if number < 0 {
  1800. significance = -1
  1801. }
  1802. if argsList.Len() > 1 {
  1803. s := argsList.Back().Value.(formulaArg).ToNumber()
  1804. if s.Type == ArgError {
  1805. return s
  1806. }
  1807. significance = s.Number
  1808. }
  1809. if significance < 0 && number > 0 {
  1810. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1811. }
  1812. if argsList.Len() == 1 {
  1813. return newNumberFormulaArg(math.Ceil(number))
  1814. }
  1815. number, res = math.Modf(number / significance)
  1816. if res > 0 {
  1817. number++
  1818. }
  1819. return newNumberFormulaArg(number * significance)
  1820. }
  1821. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1822. // significance. The syntax of the function is:
  1823. //
  1824. // CEILING.MATH(number,[significance],[mode])
  1825. //
  1826. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1827. if argsList.Len() == 0 {
  1828. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1829. }
  1830. if argsList.Len() > 3 {
  1831. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1832. }
  1833. number, significance, mode := 0.0, 1.0, 1.0
  1834. n := argsList.Front().Value.(formulaArg).ToNumber()
  1835. if n.Type == ArgError {
  1836. return n
  1837. }
  1838. number = n.Number
  1839. if number < 0 {
  1840. significance = -1
  1841. }
  1842. if argsList.Len() > 1 {
  1843. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1844. if s.Type == ArgError {
  1845. return s
  1846. }
  1847. significance = s.Number
  1848. }
  1849. if argsList.Len() == 1 {
  1850. return newNumberFormulaArg(math.Ceil(number))
  1851. }
  1852. if argsList.Len() > 2 {
  1853. m := argsList.Back().Value.(formulaArg).ToNumber()
  1854. if m.Type == ArgError {
  1855. return m
  1856. }
  1857. mode = m.Number
  1858. }
  1859. val, res := math.Modf(number / significance)
  1860. if res != 0 {
  1861. if number > 0 {
  1862. val++
  1863. } else if mode < 0 {
  1864. val--
  1865. }
  1866. }
  1867. return newNumberFormulaArg(val * significance)
  1868. }
  1869. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1870. // number's sign), to the nearest multiple of a given number. The syntax of
  1871. // the function is:
  1872. //
  1873. // CEILING.PRECISE(number,[significance])
  1874. //
  1875. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1876. if argsList.Len() == 0 {
  1877. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1878. }
  1879. if argsList.Len() > 2 {
  1880. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1881. }
  1882. number, significance := 0.0, 1.0
  1883. n := argsList.Front().Value.(formulaArg).ToNumber()
  1884. if n.Type == ArgError {
  1885. return n
  1886. }
  1887. number = n.Number
  1888. if number < 0 {
  1889. significance = -1
  1890. }
  1891. if argsList.Len() == 1 {
  1892. return newNumberFormulaArg(math.Ceil(number))
  1893. }
  1894. if argsList.Len() > 1 {
  1895. s := argsList.Back().Value.(formulaArg).ToNumber()
  1896. if s.Type == ArgError {
  1897. return s
  1898. }
  1899. significance = s.Number
  1900. significance = math.Abs(significance)
  1901. if significance == 0 {
  1902. return newNumberFormulaArg(significance)
  1903. }
  1904. }
  1905. val, res := math.Modf(number / significance)
  1906. if res != 0 {
  1907. if number > 0 {
  1908. val++
  1909. }
  1910. }
  1911. return newNumberFormulaArg(val * significance)
  1912. }
  1913. // COMBIN function calculates the number of combinations (in any order) of a
  1914. // given number objects from a set. The syntax of the function is:
  1915. //
  1916. // COMBIN(number,number_chosen)
  1917. //
  1918. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1919. if argsList.Len() != 2 {
  1920. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1921. }
  1922. number, chosen, val := 0.0, 0.0, 1.0
  1923. n := argsList.Front().Value.(formulaArg).ToNumber()
  1924. if n.Type == ArgError {
  1925. return n
  1926. }
  1927. number = n.Number
  1928. c := argsList.Back().Value.(formulaArg).ToNumber()
  1929. if c.Type == ArgError {
  1930. return c
  1931. }
  1932. chosen = c.Number
  1933. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1934. if chosen > number {
  1935. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1936. }
  1937. if chosen == number || chosen == 0 {
  1938. return newNumberFormulaArg(1)
  1939. }
  1940. for c := float64(1); c <= chosen; c++ {
  1941. val *= (number + 1 - c) / c
  1942. }
  1943. return newNumberFormulaArg(math.Ceil(val))
  1944. }
  1945. // COMBINA function calculates the number of combinations, with repetitions,
  1946. // of a given number objects from a set. The syntax of the function is:
  1947. //
  1948. // COMBINA(number,number_chosen)
  1949. //
  1950. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1951. if argsList.Len() != 2 {
  1952. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1953. }
  1954. var number, chosen float64
  1955. n := argsList.Front().Value.(formulaArg).ToNumber()
  1956. if n.Type == ArgError {
  1957. return n
  1958. }
  1959. number = n.Number
  1960. c := argsList.Back().Value.(formulaArg).ToNumber()
  1961. if c.Type == ArgError {
  1962. return c
  1963. }
  1964. chosen = c.Number
  1965. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1966. if number < chosen {
  1967. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1968. }
  1969. if number == 0 {
  1970. return newNumberFormulaArg(number)
  1971. }
  1972. args := list.New()
  1973. args.PushBack(formulaArg{
  1974. String: fmt.Sprintf("%g", number+chosen-1),
  1975. Type: ArgString,
  1976. })
  1977. args.PushBack(formulaArg{
  1978. String: fmt.Sprintf("%g", number-1),
  1979. Type: ArgString,
  1980. })
  1981. return fn.COMBIN(args)
  1982. }
  1983. // COS function calculates the cosine of a given angle. The syntax of the
  1984. // function is:
  1985. //
  1986. // COS(number)
  1987. //
  1988. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1989. if argsList.Len() != 1 {
  1990. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1991. }
  1992. val := argsList.Front().Value.(formulaArg).ToNumber()
  1993. if val.Type == ArgError {
  1994. return val
  1995. }
  1996. return newNumberFormulaArg(math.Cos(val.Number))
  1997. }
  1998. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1999. // The syntax of the function is:
  2000. //
  2001. // COSH(number)
  2002. //
  2003. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2004. if argsList.Len() != 1 {
  2005. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2006. }
  2007. val := argsList.Front().Value.(formulaArg).ToNumber()
  2008. if val.Type == ArgError {
  2009. return val
  2010. }
  2011. return newNumberFormulaArg(math.Cosh(val.Number))
  2012. }
  2013. // COT function calculates the cotangent of a given angle. The syntax of the
  2014. // function is:
  2015. //
  2016. // COT(number)
  2017. //
  2018. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2019. if argsList.Len() != 1 {
  2020. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2021. }
  2022. val := argsList.Front().Value.(formulaArg).ToNumber()
  2023. if val.Type == ArgError {
  2024. return val
  2025. }
  2026. if val.Number == 0 {
  2027. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2028. }
  2029. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2030. }
  2031. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2032. // angle. The syntax of the function is:
  2033. //
  2034. // COTH(number)
  2035. //
  2036. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2037. if argsList.Len() != 1 {
  2038. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2039. }
  2040. val := argsList.Front().Value.(formulaArg).ToNumber()
  2041. if val.Type == ArgError {
  2042. return val
  2043. }
  2044. if val.Number == 0 {
  2045. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2046. }
  2047. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2048. }
  2049. // CSC function calculates the cosecant of a given angle. The syntax of the
  2050. // function is:
  2051. //
  2052. // CSC(number)
  2053. //
  2054. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2055. if argsList.Len() != 1 {
  2056. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2057. }
  2058. val := argsList.Front().Value.(formulaArg).ToNumber()
  2059. if val.Type == ArgError {
  2060. return val
  2061. }
  2062. if val.Number == 0 {
  2063. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2064. }
  2065. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2066. }
  2067. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2068. // angle. The syntax of the function is:
  2069. //
  2070. // CSCH(number)
  2071. //
  2072. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2073. if argsList.Len() != 1 {
  2074. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2075. }
  2076. val := argsList.Front().Value.(formulaArg).ToNumber()
  2077. if val.Type == ArgError {
  2078. return val
  2079. }
  2080. if val.Number == 0 {
  2081. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2082. }
  2083. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2084. }
  2085. // DECIMAL function converts a text representation of a number in a specified
  2086. // base, into a decimal value. The syntax of the function is:
  2087. //
  2088. // DECIMAL(text,radix)
  2089. //
  2090. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2091. if argsList.Len() != 2 {
  2092. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2093. }
  2094. var text = argsList.Front().Value.(formulaArg).String
  2095. var radix int
  2096. var err error
  2097. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2098. if err != nil {
  2099. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2100. }
  2101. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2102. text = text[2:]
  2103. }
  2104. val, err := strconv.ParseInt(text, radix, 64)
  2105. if err != nil {
  2106. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2107. }
  2108. return newNumberFormulaArg(float64(val))
  2109. }
  2110. // DEGREES function converts radians into degrees. The syntax of the function
  2111. // is:
  2112. //
  2113. // DEGREES(angle)
  2114. //
  2115. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2116. if argsList.Len() != 1 {
  2117. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2118. }
  2119. val := argsList.Front().Value.(formulaArg).ToNumber()
  2120. if val.Type == ArgError {
  2121. return val
  2122. }
  2123. if val.Number == 0 {
  2124. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2125. }
  2126. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2127. }
  2128. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2129. // positive number up and a negative number down), to the next even number.
  2130. // The syntax of the function is:
  2131. //
  2132. // EVEN(number)
  2133. //
  2134. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2135. if argsList.Len() != 1 {
  2136. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2137. }
  2138. number := argsList.Front().Value.(formulaArg).ToNumber()
  2139. if number.Type == ArgError {
  2140. return number
  2141. }
  2142. sign := math.Signbit(number.Number)
  2143. m, frac := math.Modf(number.Number / 2)
  2144. val := m * 2
  2145. if frac != 0 {
  2146. if !sign {
  2147. val += 2
  2148. } else {
  2149. val -= 2
  2150. }
  2151. }
  2152. return newNumberFormulaArg(val)
  2153. }
  2154. // EXP function calculates the value of the mathematical constant e, raised to
  2155. // the power of a given number. The syntax of the function is:
  2156. //
  2157. // EXP(number)
  2158. //
  2159. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2160. if argsList.Len() != 1 {
  2161. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2162. }
  2163. number := argsList.Front().Value.(formulaArg).ToNumber()
  2164. if number.Type == ArgError {
  2165. return number
  2166. }
  2167. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2168. }
  2169. // fact returns the factorial of a supplied number.
  2170. func fact(number float64) float64 {
  2171. val := float64(1)
  2172. for i := float64(2); i <= number; i++ {
  2173. val *= i
  2174. }
  2175. return val
  2176. }
  2177. // FACT function returns the factorial of a supplied number. The syntax of the
  2178. // function is:
  2179. //
  2180. // FACT(number)
  2181. //
  2182. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2183. if argsList.Len() != 1 {
  2184. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2185. }
  2186. number := argsList.Front().Value.(formulaArg).ToNumber()
  2187. if number.Type == ArgError {
  2188. return number
  2189. }
  2190. if number.Number < 0 {
  2191. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2192. }
  2193. return newNumberFormulaArg(fact(number.Number))
  2194. }
  2195. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2196. // syntax of the function is:
  2197. //
  2198. // FACTDOUBLE(number)
  2199. //
  2200. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2201. if argsList.Len() != 1 {
  2202. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2203. }
  2204. val := 1.0
  2205. number := argsList.Front().Value.(formulaArg).ToNumber()
  2206. if number.Type == ArgError {
  2207. return number
  2208. }
  2209. if number.Number < 0 {
  2210. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2211. }
  2212. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2213. val *= i
  2214. }
  2215. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2216. }
  2217. // FLOOR function rounds a supplied number towards zero to the nearest
  2218. // multiple of a specified significance. The syntax of the function is:
  2219. //
  2220. // FLOOR(number,significance)
  2221. //
  2222. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2223. if argsList.Len() != 2 {
  2224. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2225. }
  2226. number := argsList.Front().Value.(formulaArg).ToNumber()
  2227. if number.Type == ArgError {
  2228. return number
  2229. }
  2230. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2231. if significance.Type == ArgError {
  2232. return significance
  2233. }
  2234. if significance.Number < 0 && number.Number >= 0 {
  2235. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2236. }
  2237. val := number.Number
  2238. val, res := math.Modf(val / significance.Number)
  2239. if res != 0 {
  2240. if number.Number < 0 && res < 0 {
  2241. val--
  2242. }
  2243. }
  2244. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2245. }
  2246. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  2247. // significance. The syntax of the function is:
  2248. //
  2249. // FLOOR.MATH(number,[significance],[mode])
  2250. //
  2251. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  2252. if argsList.Len() == 0 {
  2253. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2254. }
  2255. if argsList.Len() > 3 {
  2256. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2257. }
  2258. significance, mode := 1.0, 1.0
  2259. number := argsList.Front().Value.(formulaArg).ToNumber()
  2260. if number.Type == ArgError {
  2261. return number
  2262. }
  2263. if number.Number < 0 {
  2264. significance = -1
  2265. }
  2266. if argsList.Len() > 1 {
  2267. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2268. if s.Type == ArgError {
  2269. return s
  2270. }
  2271. significance = s.Number
  2272. }
  2273. if argsList.Len() == 1 {
  2274. return newNumberFormulaArg(math.Floor(number.Number))
  2275. }
  2276. if argsList.Len() > 2 {
  2277. m := argsList.Back().Value.(formulaArg).ToNumber()
  2278. if m.Type == ArgError {
  2279. return m
  2280. }
  2281. mode = m.Number
  2282. }
  2283. val, res := math.Modf(number.Number / significance)
  2284. if res != 0 && number.Number < 0 && mode > 0 {
  2285. val--
  2286. }
  2287. return newNumberFormulaArg(val * significance)
  2288. }
  2289. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  2290. // of significance. The syntax of the function is:
  2291. //
  2292. // FLOOR.PRECISE(number,[significance])
  2293. //
  2294. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  2295. if argsList.Len() == 0 {
  2296. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2297. }
  2298. if argsList.Len() > 2 {
  2299. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2300. }
  2301. var significance float64
  2302. number := argsList.Front().Value.(formulaArg).ToNumber()
  2303. if number.Type == ArgError {
  2304. return number
  2305. }
  2306. if number.Number < 0 {
  2307. significance = -1
  2308. }
  2309. if argsList.Len() == 1 {
  2310. return newNumberFormulaArg(math.Floor(number.Number))
  2311. }
  2312. if argsList.Len() > 1 {
  2313. s := argsList.Back().Value.(formulaArg).ToNumber()
  2314. if s.Type == ArgError {
  2315. return s
  2316. }
  2317. significance = s.Number
  2318. significance = math.Abs(significance)
  2319. if significance == 0 {
  2320. return newNumberFormulaArg(significance)
  2321. }
  2322. }
  2323. val, res := math.Modf(number.Number / significance)
  2324. if res != 0 {
  2325. if number.Number < 0 {
  2326. val--
  2327. }
  2328. }
  2329. return newNumberFormulaArg(val * significance)
  2330. }
  2331. // gcd returns the greatest common divisor of two supplied integers.
  2332. func gcd(x, y float64) float64 {
  2333. x, y = math.Trunc(x), math.Trunc(y)
  2334. if x == 0 {
  2335. return y
  2336. }
  2337. if y == 0 {
  2338. return x
  2339. }
  2340. for x != y {
  2341. if x > y {
  2342. x = x - y
  2343. } else {
  2344. y = y - x
  2345. }
  2346. }
  2347. return x
  2348. }
  2349. // GCD function returns the greatest common divisor of two or more supplied
  2350. // integers. The syntax of the function is:
  2351. //
  2352. // GCD(number1,[number2],...)
  2353. //
  2354. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2355. if argsList.Len() == 0 {
  2356. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2357. }
  2358. var (
  2359. val float64
  2360. nums = []float64{}
  2361. )
  2362. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2363. token := arg.Value.(formulaArg)
  2364. switch token.Type {
  2365. case ArgString:
  2366. num := token.ToNumber()
  2367. if num.Type == ArgError {
  2368. return num
  2369. }
  2370. val = num.Number
  2371. case ArgNumber:
  2372. val = token.Number
  2373. }
  2374. nums = append(nums, val)
  2375. }
  2376. if nums[0] < 0 {
  2377. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2378. }
  2379. if len(nums) == 1 {
  2380. return newNumberFormulaArg(nums[0])
  2381. }
  2382. cd := nums[0]
  2383. for i := 1; i < len(nums); i++ {
  2384. if nums[i] < 0 {
  2385. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2386. }
  2387. cd = gcd(cd, nums[i])
  2388. }
  2389. return newNumberFormulaArg(cd)
  2390. }
  2391. // INT function truncates a supplied number down to the closest integer. The
  2392. // syntax of the function is:
  2393. //
  2394. // INT(number)
  2395. //
  2396. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2397. if argsList.Len() != 1 {
  2398. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2399. }
  2400. number := argsList.Front().Value.(formulaArg).ToNumber()
  2401. if number.Type == ArgError {
  2402. return number
  2403. }
  2404. val, frac := math.Modf(number.Number)
  2405. if frac < 0 {
  2406. val--
  2407. }
  2408. return newNumberFormulaArg(val)
  2409. }
  2410. // ISOCEILING function rounds a supplied number up (regardless of the number's
  2411. // sign), to the nearest multiple of a supplied significance. The syntax of
  2412. // the function is:
  2413. //
  2414. // ISO.CEILING(number,[significance])
  2415. //
  2416. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  2417. if argsList.Len() == 0 {
  2418. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2419. }
  2420. if argsList.Len() > 2 {
  2421. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2422. }
  2423. var significance float64
  2424. number := argsList.Front().Value.(formulaArg).ToNumber()
  2425. if number.Type == ArgError {
  2426. return number
  2427. }
  2428. if number.Number < 0 {
  2429. significance = -1
  2430. }
  2431. if argsList.Len() == 1 {
  2432. return newNumberFormulaArg(math.Ceil(number.Number))
  2433. }
  2434. if argsList.Len() > 1 {
  2435. s := argsList.Back().Value.(formulaArg).ToNumber()
  2436. if s.Type == ArgError {
  2437. return s
  2438. }
  2439. significance = s.Number
  2440. significance = math.Abs(significance)
  2441. if significance == 0 {
  2442. return newNumberFormulaArg(significance)
  2443. }
  2444. }
  2445. val, res := math.Modf(number.Number / significance)
  2446. if res != 0 {
  2447. if number.Number > 0 {
  2448. val++
  2449. }
  2450. }
  2451. return newNumberFormulaArg(val * significance)
  2452. }
  2453. // lcm returns the least common multiple of two supplied integers.
  2454. func lcm(a, b float64) float64 {
  2455. a = math.Trunc(a)
  2456. b = math.Trunc(b)
  2457. if a == 0 && b == 0 {
  2458. return 0
  2459. }
  2460. return a * b / gcd(a, b)
  2461. }
  2462. // LCM function returns the least common multiple of two or more supplied
  2463. // integers. The syntax of the function is:
  2464. //
  2465. // LCM(number1,[number2],...)
  2466. //
  2467. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2468. if argsList.Len() == 0 {
  2469. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2470. }
  2471. var (
  2472. val float64
  2473. nums = []float64{}
  2474. err error
  2475. )
  2476. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2477. token := arg.Value.(formulaArg)
  2478. switch token.Type {
  2479. case ArgString:
  2480. if token.String == "" {
  2481. continue
  2482. }
  2483. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2484. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2485. }
  2486. case ArgNumber:
  2487. val = token.Number
  2488. }
  2489. nums = append(nums, val)
  2490. }
  2491. if nums[0] < 0 {
  2492. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2493. }
  2494. if len(nums) == 1 {
  2495. return newNumberFormulaArg(nums[0])
  2496. }
  2497. cm := nums[0]
  2498. for i := 1; i < len(nums); i++ {
  2499. if nums[i] < 0 {
  2500. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2501. }
  2502. cm = lcm(cm, nums[i])
  2503. }
  2504. return newNumberFormulaArg(cm)
  2505. }
  2506. // LN function calculates the natural logarithm of a given number. The syntax
  2507. // of the function is:
  2508. //
  2509. // LN(number)
  2510. //
  2511. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2512. if argsList.Len() != 1 {
  2513. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2514. }
  2515. number := argsList.Front().Value.(formulaArg).ToNumber()
  2516. if number.Type == ArgError {
  2517. return number
  2518. }
  2519. return newNumberFormulaArg(math.Log(number.Number))
  2520. }
  2521. // LOG function calculates the logarithm of a given number, to a supplied
  2522. // base. The syntax of the function is:
  2523. //
  2524. // LOG(number,[base])
  2525. //
  2526. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2527. if argsList.Len() == 0 {
  2528. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2529. }
  2530. if argsList.Len() > 2 {
  2531. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2532. }
  2533. base := 10.0
  2534. number := argsList.Front().Value.(formulaArg).ToNumber()
  2535. if number.Type == ArgError {
  2536. return number
  2537. }
  2538. if argsList.Len() > 1 {
  2539. b := argsList.Back().Value.(formulaArg).ToNumber()
  2540. if b.Type == ArgError {
  2541. return b
  2542. }
  2543. base = b.Number
  2544. }
  2545. if number.Number == 0 {
  2546. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2547. }
  2548. if base == 0 {
  2549. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2550. }
  2551. if base == 1 {
  2552. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2553. }
  2554. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2555. }
  2556. // LOG10 function calculates the base 10 logarithm of a given number. The
  2557. // syntax of the function is:
  2558. //
  2559. // LOG10(number)
  2560. //
  2561. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2562. if argsList.Len() != 1 {
  2563. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2564. }
  2565. number := argsList.Front().Value.(formulaArg).ToNumber()
  2566. if number.Type == ArgError {
  2567. return number
  2568. }
  2569. return newNumberFormulaArg(math.Log10(number.Number))
  2570. }
  2571. // minor function implement a minor of a matrix A is the determinant of some
  2572. // smaller square matrix.
  2573. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2574. ret := [][]float64{}
  2575. for i := range sqMtx {
  2576. if i == 0 {
  2577. continue
  2578. }
  2579. row := []float64{}
  2580. for j := range sqMtx {
  2581. if j == idx {
  2582. continue
  2583. }
  2584. row = append(row, sqMtx[i][j])
  2585. }
  2586. ret = append(ret, row)
  2587. }
  2588. return ret
  2589. }
  2590. // det determinant of the 2x2 matrix.
  2591. func det(sqMtx [][]float64) float64 {
  2592. if len(sqMtx) == 2 {
  2593. m00 := sqMtx[0][0]
  2594. m01 := sqMtx[0][1]
  2595. m10 := sqMtx[1][0]
  2596. m11 := sqMtx[1][1]
  2597. return m00*m11 - m10*m01
  2598. }
  2599. var res, sgn float64 = 0, 1
  2600. for j := range sqMtx {
  2601. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2602. sgn *= -1
  2603. }
  2604. return res
  2605. }
  2606. // MDETERM calculates the determinant of a square matrix. The
  2607. // syntax of the function is:
  2608. //
  2609. // MDETERM(array)
  2610. //
  2611. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2612. var (
  2613. num float64
  2614. numMtx = [][]float64{}
  2615. err error
  2616. strMtx [][]formulaArg
  2617. )
  2618. if argsList.Len() < 1 {
  2619. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2620. }
  2621. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2622. var rows = len(strMtx)
  2623. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2624. if len(row) != rows {
  2625. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2626. }
  2627. numRow := []float64{}
  2628. for _, ele := range row {
  2629. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2630. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2631. }
  2632. numRow = append(numRow, num)
  2633. }
  2634. numMtx = append(numMtx, numRow)
  2635. }
  2636. return newNumberFormulaArg(det(numMtx))
  2637. }
  2638. // MOD function returns the remainder of a division between two supplied
  2639. // numbers. The syntax of the function is:
  2640. //
  2641. // MOD(number,divisor)
  2642. //
  2643. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2644. if argsList.Len() != 2 {
  2645. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2646. }
  2647. number := argsList.Front().Value.(formulaArg).ToNumber()
  2648. if number.Type == ArgError {
  2649. return number
  2650. }
  2651. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2652. if divisor.Type == ArgError {
  2653. return divisor
  2654. }
  2655. if divisor.Number == 0 {
  2656. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2657. }
  2658. trunc, rem := math.Modf(number.Number / divisor.Number)
  2659. if rem < 0 {
  2660. trunc--
  2661. }
  2662. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2663. }
  2664. // MROUND function rounds a supplied number up or down to the nearest multiple
  2665. // of a given number. The syntax of the function is:
  2666. //
  2667. // MROUND(number,multiple)
  2668. //
  2669. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2670. if argsList.Len() != 2 {
  2671. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2672. }
  2673. n := argsList.Front().Value.(formulaArg).ToNumber()
  2674. if n.Type == ArgError {
  2675. return n
  2676. }
  2677. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2678. if multiple.Type == ArgError {
  2679. return multiple
  2680. }
  2681. if multiple.Number == 0 {
  2682. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2683. }
  2684. if multiple.Number < 0 && n.Number > 0 ||
  2685. multiple.Number > 0 && n.Number < 0 {
  2686. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2687. }
  2688. number, res := math.Modf(n.Number / multiple.Number)
  2689. if math.Trunc(res+0.5) > 0 {
  2690. number++
  2691. }
  2692. return newNumberFormulaArg(number * multiple.Number)
  2693. }
  2694. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2695. // supplied values to the product of factorials of those values. The syntax of
  2696. // the function is:
  2697. //
  2698. // MULTINOMIAL(number1,[number2],...)
  2699. //
  2700. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2701. val, num, denom := 0.0, 0.0, 1.0
  2702. var err error
  2703. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2704. token := arg.Value.(formulaArg)
  2705. switch token.Type {
  2706. case ArgString:
  2707. if token.String == "" {
  2708. continue
  2709. }
  2710. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2711. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2712. }
  2713. case ArgNumber:
  2714. val = token.Number
  2715. }
  2716. num += val
  2717. denom *= fact(val)
  2718. }
  2719. return newNumberFormulaArg(fact(num) / denom)
  2720. }
  2721. // MUNIT function returns the unit matrix for a specified dimension. The
  2722. // syntax of the function is:
  2723. //
  2724. // MUNIT(dimension)
  2725. //
  2726. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2727. if argsList.Len() != 1 {
  2728. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2729. }
  2730. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2731. if dimension.Type == ArgError || dimension.Number < 0 {
  2732. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2733. }
  2734. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2735. for i := 0; i < int(dimension.Number); i++ {
  2736. row := make([]formulaArg, int(dimension.Number))
  2737. for j := 0; j < int(dimension.Number); j++ {
  2738. if i == j {
  2739. row[j] = newNumberFormulaArg(1.0)
  2740. } else {
  2741. row[j] = newNumberFormulaArg(0.0)
  2742. }
  2743. }
  2744. matrix = append(matrix, row)
  2745. }
  2746. return newMatrixFormulaArg(matrix)
  2747. }
  2748. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2749. // number up and a negative number down), to the next odd number. The syntax
  2750. // of the function is:
  2751. //
  2752. // ODD(number)
  2753. //
  2754. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2755. if argsList.Len() != 1 {
  2756. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2757. }
  2758. number := argsList.Back().Value.(formulaArg).ToNumber()
  2759. if number.Type == ArgError {
  2760. return number
  2761. }
  2762. if number.Number == 0 {
  2763. return newNumberFormulaArg(1)
  2764. }
  2765. sign := math.Signbit(number.Number)
  2766. m, frac := math.Modf((number.Number - 1) / 2)
  2767. val := m*2 + 1
  2768. if frac != 0 {
  2769. if !sign {
  2770. val += 2
  2771. } else {
  2772. val -= 2
  2773. }
  2774. }
  2775. return newNumberFormulaArg(val)
  2776. }
  2777. // PI function returns the value of the mathematical constant π (pi), accurate
  2778. // to 15 digits (14 decimal places). The syntax of the function is:
  2779. //
  2780. // PI()
  2781. //
  2782. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2783. if argsList.Len() != 0 {
  2784. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2785. }
  2786. return newNumberFormulaArg(math.Pi)
  2787. }
  2788. // POWER function calculates a given number, raised to a supplied power.
  2789. // The syntax of the function is:
  2790. //
  2791. // POWER(number,power)
  2792. //
  2793. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2794. if argsList.Len() != 2 {
  2795. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2796. }
  2797. x := argsList.Front().Value.(formulaArg).ToNumber()
  2798. if x.Type == ArgError {
  2799. return x
  2800. }
  2801. y := argsList.Back().Value.(formulaArg).ToNumber()
  2802. if y.Type == ArgError {
  2803. return y
  2804. }
  2805. if x.Number == 0 && y.Number == 0 {
  2806. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2807. }
  2808. if x.Number == 0 && y.Number < 0 {
  2809. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2810. }
  2811. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2812. }
  2813. // PRODUCT function returns the product (multiplication) of a supplied set of
  2814. // numerical values. The syntax of the function is:
  2815. //
  2816. // PRODUCT(number1,[number2],...)
  2817. //
  2818. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2819. val, product := 0.0, 1.0
  2820. var err error
  2821. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2822. token := arg.Value.(formulaArg)
  2823. switch token.Type {
  2824. case ArgUnknown:
  2825. continue
  2826. case ArgString:
  2827. if token.String == "" {
  2828. continue
  2829. }
  2830. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2831. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2832. }
  2833. product = product * val
  2834. case ArgNumber:
  2835. product = product * token.Number
  2836. case ArgMatrix:
  2837. for _, row := range token.Matrix {
  2838. for _, value := range row {
  2839. if value.String == "" {
  2840. continue
  2841. }
  2842. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2843. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2844. }
  2845. product = product * val
  2846. }
  2847. }
  2848. }
  2849. }
  2850. return newNumberFormulaArg(product)
  2851. }
  2852. // QUOTIENT function returns the integer portion of a division between two
  2853. // supplied numbers. The syntax of the function is:
  2854. //
  2855. // QUOTIENT(numerator,denominator)
  2856. //
  2857. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2858. if argsList.Len() != 2 {
  2859. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2860. }
  2861. x := argsList.Front().Value.(formulaArg).ToNumber()
  2862. if x.Type == ArgError {
  2863. return x
  2864. }
  2865. y := argsList.Back().Value.(formulaArg).ToNumber()
  2866. if y.Type == ArgError {
  2867. return y
  2868. }
  2869. if y.Number == 0 {
  2870. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2871. }
  2872. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2873. }
  2874. // RADIANS function converts radians into degrees. The syntax of the function is:
  2875. //
  2876. // RADIANS(angle)
  2877. //
  2878. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2879. if argsList.Len() != 1 {
  2880. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2881. }
  2882. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2883. if angle.Type == ArgError {
  2884. return angle
  2885. }
  2886. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2887. }
  2888. // RAND function generates a random real number between 0 and 1. The syntax of
  2889. // the function is:
  2890. //
  2891. // RAND()
  2892. //
  2893. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2894. if argsList.Len() != 0 {
  2895. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2896. }
  2897. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2898. }
  2899. // RANDBETWEEN function generates a random integer between two supplied
  2900. // integers. The syntax of the function is:
  2901. //
  2902. // RANDBETWEEN(bottom,top)
  2903. //
  2904. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2905. if argsList.Len() != 2 {
  2906. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2907. }
  2908. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2909. if bottom.Type == ArgError {
  2910. return bottom
  2911. }
  2912. top := argsList.Back().Value.(formulaArg).ToNumber()
  2913. if top.Type == ArgError {
  2914. return top
  2915. }
  2916. if top.Number < bottom.Number {
  2917. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2918. }
  2919. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2920. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2921. }
  2922. // romanNumerals defined a numeral system that originated in ancient Rome and
  2923. // remained the usual way of writing numbers throughout Europe well into the
  2924. // Late Middle Ages.
  2925. type romanNumerals struct {
  2926. n float64
  2927. s string
  2928. }
  2929. var romanTable = [][]romanNumerals{
  2930. {
  2931. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2932. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2933. },
  2934. {
  2935. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2936. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2937. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2938. },
  2939. {
  2940. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2941. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2942. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2943. },
  2944. {
  2945. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2946. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2947. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2948. {5, "V"}, {4, "IV"}, {1, "I"},
  2949. },
  2950. {
  2951. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2952. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2953. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2954. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2955. },
  2956. }
  2957. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2958. // integer, the function returns a text string depicting the roman numeral
  2959. // form of the number. The syntax of the function is:
  2960. //
  2961. // ROMAN(number,[form])
  2962. //
  2963. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2964. if argsList.Len() == 0 {
  2965. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2966. }
  2967. if argsList.Len() > 2 {
  2968. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2969. }
  2970. var form int
  2971. number := argsList.Front().Value.(formulaArg).ToNumber()
  2972. if number.Type == ArgError {
  2973. return number
  2974. }
  2975. if argsList.Len() > 1 {
  2976. f := argsList.Back().Value.(formulaArg).ToNumber()
  2977. if f.Type == ArgError {
  2978. return f
  2979. }
  2980. form = int(f.Number)
  2981. if form < 0 {
  2982. form = 0
  2983. } else if form > 4 {
  2984. form = 4
  2985. }
  2986. }
  2987. decimalTable := romanTable[0]
  2988. switch form {
  2989. case 1:
  2990. decimalTable = romanTable[1]
  2991. case 2:
  2992. decimalTable = romanTable[2]
  2993. case 3:
  2994. decimalTable = romanTable[3]
  2995. case 4:
  2996. decimalTable = romanTable[4]
  2997. }
  2998. val := math.Trunc(number.Number)
  2999. buf := bytes.Buffer{}
  3000. for _, r := range decimalTable {
  3001. for val >= r.n {
  3002. buf.WriteString(r.s)
  3003. val -= r.n
  3004. }
  3005. }
  3006. return newStringFormulaArg(buf.String())
  3007. }
  3008. type roundMode byte
  3009. const (
  3010. closest roundMode = iota
  3011. down
  3012. up
  3013. )
  3014. // round rounds a supplied number up or down.
  3015. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3016. var significance float64
  3017. if digits > 0 {
  3018. significance = math.Pow(1/10.0, digits)
  3019. } else {
  3020. significance = math.Pow(10.0, -digits)
  3021. }
  3022. val, res := math.Modf(number / significance)
  3023. switch mode {
  3024. case closest:
  3025. const eps = 0.499999999
  3026. if res >= eps {
  3027. val++
  3028. } else if res <= -eps {
  3029. val--
  3030. }
  3031. case down:
  3032. case up:
  3033. if res > 0 {
  3034. val++
  3035. } else if res < 0 {
  3036. val--
  3037. }
  3038. }
  3039. return val * significance
  3040. }
  3041. // ROUND function rounds a supplied number up or down, to a specified number
  3042. // of decimal places. The syntax of the function is:
  3043. //
  3044. // ROUND(number,num_digits)
  3045. //
  3046. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3047. if argsList.Len() != 2 {
  3048. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3049. }
  3050. number := argsList.Front().Value.(formulaArg).ToNumber()
  3051. if number.Type == ArgError {
  3052. return number
  3053. }
  3054. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3055. if digits.Type == ArgError {
  3056. return digits
  3057. }
  3058. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3059. }
  3060. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3061. // specified number of decimal places. The syntax of the function is:
  3062. //
  3063. // ROUNDDOWN(number,num_digits)
  3064. //
  3065. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3066. if argsList.Len() != 2 {
  3067. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3068. }
  3069. number := argsList.Front().Value.(formulaArg).ToNumber()
  3070. if number.Type == ArgError {
  3071. return number
  3072. }
  3073. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3074. if digits.Type == ArgError {
  3075. return digits
  3076. }
  3077. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3078. }
  3079. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3080. // specified number of decimal places. The syntax of the function is:
  3081. //
  3082. // ROUNDUP(number,num_digits)
  3083. //
  3084. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3085. if argsList.Len() != 2 {
  3086. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3087. }
  3088. number := argsList.Front().Value.(formulaArg).ToNumber()
  3089. if number.Type == ArgError {
  3090. return number
  3091. }
  3092. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3093. if digits.Type == ArgError {
  3094. return digits
  3095. }
  3096. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3097. }
  3098. // SEC function calculates the secant of a given angle. The syntax of the
  3099. // function is:
  3100. //
  3101. // SEC(number)
  3102. //
  3103. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3104. if argsList.Len() != 1 {
  3105. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3106. }
  3107. number := argsList.Front().Value.(formulaArg).ToNumber()
  3108. if number.Type == ArgError {
  3109. return number
  3110. }
  3111. return newNumberFormulaArg(math.Cos(number.Number))
  3112. }
  3113. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3114. // The syntax of the function is:
  3115. //
  3116. // SECH(number)
  3117. //
  3118. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3119. if argsList.Len() != 1 {
  3120. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3121. }
  3122. number := argsList.Front().Value.(formulaArg).ToNumber()
  3123. if number.Type == ArgError {
  3124. return number
  3125. }
  3126. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3127. }
  3128. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3129. // number. I.e. if the number is positive, the Sign function returns +1, if
  3130. // the number is negative, the function returns -1 and if the number is 0
  3131. // (zero), the function returns 0. The syntax of the function is:
  3132. //
  3133. // SIGN(number)
  3134. //
  3135. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3136. if argsList.Len() != 1 {
  3137. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3138. }
  3139. val := argsList.Front().Value.(formulaArg).ToNumber()
  3140. if val.Type == ArgError {
  3141. return val
  3142. }
  3143. if val.Number < 0 {
  3144. return newNumberFormulaArg(-1)
  3145. }
  3146. if val.Number > 0 {
  3147. return newNumberFormulaArg(1)
  3148. }
  3149. return newNumberFormulaArg(0)
  3150. }
  3151. // SIN function calculates the sine of a given angle. The syntax of the
  3152. // function is:
  3153. //
  3154. // SIN(number)
  3155. //
  3156. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3157. if argsList.Len() != 1 {
  3158. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3159. }
  3160. number := argsList.Front().Value.(formulaArg).ToNumber()
  3161. if number.Type == ArgError {
  3162. return number
  3163. }
  3164. return newNumberFormulaArg(math.Sin(number.Number))
  3165. }
  3166. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3167. // The syntax of the function is:
  3168. //
  3169. // SINH(number)
  3170. //
  3171. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3172. if argsList.Len() != 1 {
  3173. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3174. }
  3175. number := argsList.Front().Value.(formulaArg).ToNumber()
  3176. if number.Type == ArgError {
  3177. return number
  3178. }
  3179. return newNumberFormulaArg(math.Sinh(number.Number))
  3180. }
  3181. // SQRT function calculates the positive square root of a supplied number. The
  3182. // syntax of the function is:
  3183. //
  3184. // SQRT(number)
  3185. //
  3186. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3187. if argsList.Len() != 1 {
  3188. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3189. }
  3190. value := argsList.Front().Value.(formulaArg).ToNumber()
  3191. if value.Type == ArgError {
  3192. return value
  3193. }
  3194. if value.Number < 0 {
  3195. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3196. }
  3197. return newNumberFormulaArg(math.Sqrt(value.Number))
  3198. }
  3199. // SQRTPI function returns the square root of a supplied number multiplied by
  3200. // the mathematical constant, π. The syntax of the function is:
  3201. //
  3202. // SQRTPI(number)
  3203. //
  3204. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3205. if argsList.Len() != 1 {
  3206. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3207. }
  3208. number := argsList.Front().Value.(formulaArg).ToNumber()
  3209. if number.Type == ArgError {
  3210. return number
  3211. }
  3212. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3213. }
  3214. // STDEV function calculates the sample standard deviation of a supplied set
  3215. // of values. The syntax of the function is:
  3216. //
  3217. // STDEV(number1,[number2],...)
  3218. //
  3219. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3220. if argsList.Len() < 1 {
  3221. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3222. }
  3223. return fn.stdev(false, argsList)
  3224. }
  3225. // STDEVA function estimates standard deviation based on a sample. The
  3226. // standard deviation is a measure of how widely values are dispersed from
  3227. // the average value (the mean). The syntax of the function is:
  3228. //
  3229. // STDEVA(number1,[number2],...)
  3230. //
  3231. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3232. if argsList.Len() < 1 {
  3233. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3234. }
  3235. return fn.stdev(true, argsList)
  3236. }
  3237. // stdev is an implementation of the formula function STDEV and STDEVA.
  3238. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3239. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3240. if result == -1 {
  3241. result = math.Pow((n.Number - m.Number), 2)
  3242. } else {
  3243. result += math.Pow((n.Number - m.Number), 2)
  3244. }
  3245. count++
  3246. return result, count
  3247. }
  3248. count, result := -1.0, -1.0
  3249. var mean formulaArg
  3250. if stdeva {
  3251. mean = fn.AVERAGEA(argsList)
  3252. } else {
  3253. mean = fn.AVERAGE(argsList)
  3254. }
  3255. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3256. token := arg.Value.(formulaArg)
  3257. switch token.Type {
  3258. case ArgString, ArgNumber:
  3259. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3260. continue
  3261. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3262. num := token.ToBool()
  3263. if num.Type == ArgNumber {
  3264. result, count = pow(result, count, num, mean)
  3265. continue
  3266. }
  3267. } else {
  3268. num := token.ToNumber()
  3269. if num.Type == ArgNumber {
  3270. result, count = pow(result, count, num, mean)
  3271. }
  3272. }
  3273. case ArgList, ArgMatrix:
  3274. for _, row := range token.ToList() {
  3275. if row.Type == ArgNumber || row.Type == ArgString {
  3276. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3277. continue
  3278. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3279. num := row.ToBool()
  3280. if num.Type == ArgNumber {
  3281. result, count = pow(result, count, num, mean)
  3282. continue
  3283. }
  3284. } else {
  3285. num := row.ToNumber()
  3286. if num.Type == ArgNumber {
  3287. result, count = pow(result, count, num, mean)
  3288. }
  3289. }
  3290. }
  3291. }
  3292. }
  3293. }
  3294. if count > 0 && result >= 0 {
  3295. return newNumberFormulaArg(math.Sqrt(result / count))
  3296. }
  3297. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3298. }
  3299. // SUM function adds together a supplied set of numbers and returns the sum of
  3300. // these values. The syntax of the function is:
  3301. //
  3302. // SUM(number1,[number2],...)
  3303. //
  3304. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3305. var sum float64
  3306. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3307. token := arg.Value.(formulaArg)
  3308. switch token.Type {
  3309. case ArgUnknown:
  3310. continue
  3311. case ArgString:
  3312. if num := token.ToNumber(); num.Type == ArgNumber {
  3313. sum += num.Number
  3314. }
  3315. case ArgNumber:
  3316. sum += token.Number
  3317. case ArgMatrix:
  3318. for _, row := range token.Matrix {
  3319. for _, value := range row {
  3320. if num := value.ToNumber(); num.Type == ArgNumber {
  3321. sum += num.Number
  3322. }
  3323. }
  3324. }
  3325. }
  3326. }
  3327. return newNumberFormulaArg(sum)
  3328. }
  3329. // SUMIF function finds the values in a supplied array, that satisfy a given
  3330. // criteria, and returns the sum of the corresponding values in a second
  3331. // supplied array. The syntax of the function is:
  3332. //
  3333. // SUMIF(range,criteria,[sum_range])
  3334. //
  3335. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3336. if argsList.Len() < 2 {
  3337. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3338. }
  3339. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3340. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3341. var sumRange [][]formulaArg
  3342. if argsList.Len() == 3 {
  3343. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3344. }
  3345. var sum, val float64
  3346. var err error
  3347. for rowIdx, row := range rangeMtx {
  3348. for colIdx, col := range row {
  3349. var ok bool
  3350. fromVal := col.String
  3351. if col.String == "" {
  3352. continue
  3353. }
  3354. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3355. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3356. }
  3357. if ok {
  3358. if argsList.Len() == 3 {
  3359. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3360. continue
  3361. }
  3362. fromVal = sumRange[rowIdx][colIdx].String
  3363. }
  3364. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3365. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3366. }
  3367. sum += val
  3368. }
  3369. }
  3370. }
  3371. return newNumberFormulaArg(sum)
  3372. }
  3373. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3374. // syntax of the function is:
  3375. //
  3376. // SUMSQ(number1,[number2],...)
  3377. //
  3378. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3379. var val, sq float64
  3380. var err error
  3381. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3382. token := arg.Value.(formulaArg)
  3383. switch token.Type {
  3384. case ArgString:
  3385. if token.String == "" {
  3386. continue
  3387. }
  3388. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3389. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3390. }
  3391. sq += val * val
  3392. case ArgNumber:
  3393. sq += token.Number
  3394. case ArgMatrix:
  3395. for _, row := range token.Matrix {
  3396. for _, value := range row {
  3397. if value.String == "" {
  3398. continue
  3399. }
  3400. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3401. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3402. }
  3403. sq += val * val
  3404. }
  3405. }
  3406. }
  3407. }
  3408. return newNumberFormulaArg(sq)
  3409. }
  3410. // TAN function calculates the tangent of a given angle. The syntax of the
  3411. // function is:
  3412. //
  3413. // TAN(number)
  3414. //
  3415. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3416. if argsList.Len() != 1 {
  3417. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3418. }
  3419. number := argsList.Front().Value.(formulaArg).ToNumber()
  3420. if number.Type == ArgError {
  3421. return number
  3422. }
  3423. return newNumberFormulaArg(math.Tan(number.Number))
  3424. }
  3425. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3426. // number. The syntax of the function is:
  3427. //
  3428. // TANH(number)
  3429. //
  3430. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3431. if argsList.Len() != 1 {
  3432. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3433. }
  3434. number := argsList.Front().Value.(formulaArg).ToNumber()
  3435. if number.Type == ArgError {
  3436. return number
  3437. }
  3438. return newNumberFormulaArg(math.Tanh(number.Number))
  3439. }
  3440. // TRUNC function truncates a supplied number to a specified number of decimal
  3441. // places. The syntax of the function is:
  3442. //
  3443. // TRUNC(number,[number_digits])
  3444. //
  3445. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3446. if argsList.Len() == 0 {
  3447. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3448. }
  3449. var digits, adjust, rtrim float64
  3450. var err error
  3451. number := argsList.Front().Value.(formulaArg).ToNumber()
  3452. if number.Type == ArgError {
  3453. return number
  3454. }
  3455. if argsList.Len() > 1 {
  3456. d := argsList.Back().Value.(formulaArg).ToNumber()
  3457. if d.Type == ArgError {
  3458. return d
  3459. }
  3460. digits = d.Number
  3461. digits = math.Floor(digits)
  3462. }
  3463. adjust = math.Pow(10, digits)
  3464. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3465. if x != 0 {
  3466. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3467. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3468. }
  3469. }
  3470. if (digits > 0) && (rtrim < adjust/10) {
  3471. return newNumberFormulaArg(number.Number)
  3472. }
  3473. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3474. }
  3475. // Statistical Functions
  3476. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3477. // The syntax of the function is:
  3478. //
  3479. // AVERAGE(number1,[number2],...)
  3480. //
  3481. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3482. args := []formulaArg{}
  3483. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3484. args = append(args, arg.Value.(formulaArg))
  3485. }
  3486. count, sum := fn.countSum(false, args)
  3487. if count == 0 {
  3488. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3489. }
  3490. return newNumberFormulaArg(sum / count)
  3491. }
  3492. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3493. // with text cell and zero values. The syntax of the function is:
  3494. //
  3495. // AVERAGEA(number1,[number2],...)
  3496. //
  3497. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3498. args := []formulaArg{}
  3499. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3500. args = append(args, arg.Value.(formulaArg))
  3501. }
  3502. count, sum := fn.countSum(true, args)
  3503. if count == 0 {
  3504. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3505. }
  3506. return newNumberFormulaArg(sum / count)
  3507. }
  3508. // countSum get count and sum for a formula arguments array.
  3509. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3510. for _, arg := range args {
  3511. switch arg.Type {
  3512. case ArgNumber:
  3513. if countText || !arg.Boolean {
  3514. sum += arg.Number
  3515. count++
  3516. }
  3517. case ArgString:
  3518. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3519. continue
  3520. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3521. num := arg.ToBool()
  3522. if num.Type == ArgNumber {
  3523. count++
  3524. sum += num.Number
  3525. continue
  3526. }
  3527. }
  3528. num := arg.ToNumber()
  3529. if countText && num.Type == ArgError && arg.String != "" {
  3530. count++
  3531. }
  3532. if num.Type == ArgNumber {
  3533. sum += num.Number
  3534. count++
  3535. }
  3536. case ArgList, ArgMatrix:
  3537. cnt, summary := fn.countSum(countText, arg.ToList())
  3538. sum += summary
  3539. count += cnt
  3540. }
  3541. }
  3542. return
  3543. }
  3544. // COUNT function returns the count of numeric values in a supplied set of
  3545. // cells or values. This count includes both numbers and dates. The syntax of
  3546. // the function is:
  3547. //
  3548. // COUNT(value1,[value2],...)
  3549. //
  3550. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3551. var count int
  3552. for token := argsList.Front(); token != nil; token = token.Next() {
  3553. arg := token.Value.(formulaArg)
  3554. switch arg.Type {
  3555. case ArgString:
  3556. if arg.ToNumber().Type != ArgError {
  3557. count++
  3558. }
  3559. case ArgNumber:
  3560. count++
  3561. case ArgMatrix:
  3562. for _, row := range arg.Matrix {
  3563. for _, value := range row {
  3564. if value.ToNumber().Type != ArgError {
  3565. count++
  3566. }
  3567. }
  3568. }
  3569. }
  3570. }
  3571. return newNumberFormulaArg(float64(count))
  3572. }
  3573. // COUNTA function returns the number of non-blanks within a supplied set of
  3574. // cells or values. The syntax of the function is:
  3575. //
  3576. // COUNTA(value1,[value2],...)
  3577. //
  3578. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3579. var count int
  3580. for token := argsList.Front(); token != nil; token = token.Next() {
  3581. arg := token.Value.(formulaArg)
  3582. switch arg.Type {
  3583. case ArgString:
  3584. if arg.String != "" {
  3585. count++
  3586. }
  3587. case ArgNumber:
  3588. count++
  3589. case ArgMatrix:
  3590. for _, row := range arg.ToList() {
  3591. switch row.Type {
  3592. case ArgString:
  3593. if row.String != "" {
  3594. count++
  3595. }
  3596. case ArgNumber:
  3597. count++
  3598. }
  3599. }
  3600. }
  3601. }
  3602. return newNumberFormulaArg(float64(count))
  3603. }
  3604. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3605. // The syntax of the function is:
  3606. //
  3607. // COUNTBLANK(range)
  3608. //
  3609. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3610. if argsList.Len() != 1 {
  3611. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3612. }
  3613. var count int
  3614. token := argsList.Front().Value.(formulaArg)
  3615. switch token.Type {
  3616. case ArgString:
  3617. if token.String == "" {
  3618. count++
  3619. }
  3620. case ArgList, ArgMatrix:
  3621. for _, row := range token.ToList() {
  3622. switch row.Type {
  3623. case ArgString:
  3624. if row.String == "" {
  3625. count++
  3626. }
  3627. case ArgEmpty:
  3628. count++
  3629. }
  3630. }
  3631. case ArgEmpty:
  3632. count++
  3633. }
  3634. return newNumberFormulaArg(float64(count))
  3635. }
  3636. // FISHER function calculates the Fisher Transformation for a supplied value.
  3637. // The syntax of the function is:
  3638. //
  3639. // FISHER(x)
  3640. //
  3641. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3642. if argsList.Len() != 1 {
  3643. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3644. }
  3645. token := argsList.Front().Value.(formulaArg)
  3646. switch token.Type {
  3647. case ArgString:
  3648. arg := token.ToNumber()
  3649. if arg.Type == ArgNumber {
  3650. if arg.Number <= -1 || arg.Number >= 1 {
  3651. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3652. }
  3653. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3654. }
  3655. case ArgNumber:
  3656. if token.Number <= -1 || token.Number >= 1 {
  3657. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3658. }
  3659. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3660. }
  3661. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3662. }
  3663. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3664. // returns a value between -1 and +1. The syntax of the function is:
  3665. //
  3666. // FISHERINV(y)
  3667. //
  3668. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3669. if argsList.Len() != 1 {
  3670. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3671. }
  3672. token := argsList.Front().Value.(formulaArg)
  3673. switch token.Type {
  3674. case ArgString:
  3675. arg := token.ToNumber()
  3676. if arg.Type == ArgNumber {
  3677. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3678. }
  3679. case ArgNumber:
  3680. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3681. }
  3682. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3683. }
  3684. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3685. // specified number, n. The syntax of the function is:
  3686. //
  3687. // GAMMA(number)
  3688. //
  3689. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3690. if argsList.Len() != 1 {
  3691. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3692. }
  3693. token := argsList.Front().Value.(formulaArg)
  3694. switch token.Type {
  3695. case ArgString:
  3696. arg := token.ToNumber()
  3697. if arg.Type == ArgNumber {
  3698. if arg.Number <= 0 {
  3699. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3700. }
  3701. return newNumberFormulaArg(math.Gamma(arg.Number))
  3702. }
  3703. case ArgNumber:
  3704. if token.Number <= 0 {
  3705. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3706. }
  3707. return newNumberFormulaArg(math.Gamma(token.Number))
  3708. }
  3709. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3710. }
  3711. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3712. // (n). The syntax of the function is:
  3713. //
  3714. // GAMMALN(x)
  3715. //
  3716. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3717. if argsList.Len() != 1 {
  3718. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3719. }
  3720. token := argsList.Front().Value.(formulaArg)
  3721. switch token.Type {
  3722. case ArgString:
  3723. arg := token.ToNumber()
  3724. if arg.Type == ArgNumber {
  3725. if arg.Number <= 0 {
  3726. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3727. }
  3728. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3729. }
  3730. case ArgNumber:
  3731. if token.Number <= 0 {
  3732. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3733. }
  3734. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3735. }
  3736. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3737. }
  3738. // KURT function calculates the kurtosis of a supplied set of values. The
  3739. // syntax of the function is:
  3740. //
  3741. // KURT(number1,[number2],...)
  3742. //
  3743. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3744. if argsList.Len() < 1 {
  3745. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3746. }
  3747. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3748. if stdev.Number > 0 {
  3749. count, summer := 0.0, 0.0
  3750. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3751. token := arg.Value.(formulaArg)
  3752. switch token.Type {
  3753. case ArgString, ArgNumber:
  3754. num := token.ToNumber()
  3755. if num.Type == ArgError {
  3756. continue
  3757. }
  3758. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3759. count++
  3760. case ArgList, ArgMatrix:
  3761. for _, row := range token.ToList() {
  3762. if row.Type == ArgNumber || row.Type == ArgString {
  3763. num := row.ToNumber()
  3764. if num.Type == ArgError {
  3765. continue
  3766. }
  3767. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3768. count++
  3769. }
  3770. }
  3771. }
  3772. }
  3773. if count > 3 {
  3774. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3775. }
  3776. }
  3777. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3778. }
  3779. // kth is an implementation of the formula function LARGE and SMALL.
  3780. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  3781. if argsList.Len() != 2 {
  3782. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  3783. }
  3784. array := argsList.Front().Value.(formulaArg).ToList()
  3785. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  3786. if kArg.Type != ArgNumber {
  3787. return kArg
  3788. }
  3789. k := int(kArg.Number)
  3790. if k < 1 {
  3791. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  3792. }
  3793. data := []float64{}
  3794. for _, arg := range array {
  3795. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  3796. data = append(data, numArg.Number)
  3797. }
  3798. }
  3799. if len(data) < k {
  3800. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  3801. }
  3802. sort.Float64s(data)
  3803. if name == "LARGE" {
  3804. return newNumberFormulaArg(data[len(data)-k])
  3805. }
  3806. return newNumberFormulaArg(data[k-1])
  3807. }
  3808. // LARGE function returns the k'th largest value from an array of numeric
  3809. // values. The syntax of the function is:
  3810. //
  3811. // LARGE(array,k)
  3812. //
  3813. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  3814. return fn.kth("LARGE", argsList)
  3815. }
  3816. // MAX function returns the largest value from a supplied set of numeric
  3817. // values. The syntax of the function is:
  3818. //
  3819. // MAX(number1,[number2],...)
  3820. //
  3821. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3822. if argsList.Len() == 0 {
  3823. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3824. }
  3825. return fn.max(false, argsList)
  3826. }
  3827. // MAXA function returns the largest value from a supplied set of numeric
  3828. // values, while counting text and the logical value FALSE as the value 0 and
  3829. // counting the logical value TRUE as the value 1. The syntax of the function
  3830. // is:
  3831. //
  3832. // MAXA(number1,[number2],...)
  3833. //
  3834. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3835. if argsList.Len() == 0 {
  3836. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3837. }
  3838. return fn.max(true, argsList)
  3839. }
  3840. // max is an implementation of the formula function MAX and MAXA.
  3841. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3842. max := -math.MaxFloat64
  3843. for token := argsList.Front(); token != nil; token = token.Next() {
  3844. arg := token.Value.(formulaArg)
  3845. switch arg.Type {
  3846. case ArgString:
  3847. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3848. continue
  3849. } else {
  3850. num := arg.ToBool()
  3851. if num.Type == ArgNumber && num.Number > max {
  3852. max = num.Number
  3853. continue
  3854. }
  3855. }
  3856. num := arg.ToNumber()
  3857. if num.Type != ArgError && num.Number > max {
  3858. max = num.Number
  3859. }
  3860. case ArgNumber:
  3861. if arg.Number > max {
  3862. max = arg.Number
  3863. }
  3864. case ArgList, ArgMatrix:
  3865. for _, row := range arg.ToList() {
  3866. switch row.Type {
  3867. case ArgString:
  3868. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3869. continue
  3870. } else {
  3871. num := row.ToBool()
  3872. if num.Type == ArgNumber && num.Number > max {
  3873. max = num.Number
  3874. continue
  3875. }
  3876. }
  3877. num := row.ToNumber()
  3878. if num.Type != ArgError && num.Number > max {
  3879. max = num.Number
  3880. }
  3881. case ArgNumber:
  3882. if row.Number > max {
  3883. max = row.Number
  3884. }
  3885. }
  3886. }
  3887. case ArgError:
  3888. return arg
  3889. }
  3890. }
  3891. if max == -math.MaxFloat64 {
  3892. max = 0
  3893. }
  3894. return newNumberFormulaArg(max)
  3895. }
  3896. // MEDIAN function returns the statistical median (the middle value) of a list
  3897. // of supplied numbers. The syntax of the function is:
  3898. //
  3899. // MEDIAN(number1,[number2],...)
  3900. //
  3901. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3902. if argsList.Len() == 0 {
  3903. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3904. }
  3905. var values = []float64{}
  3906. var median, digits float64
  3907. var err error
  3908. for token := argsList.Front(); token != nil; token = token.Next() {
  3909. arg := token.Value.(formulaArg)
  3910. switch arg.Type {
  3911. case ArgString:
  3912. num := arg.ToNumber()
  3913. if num.Type == ArgError {
  3914. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3915. }
  3916. values = append(values, num.Number)
  3917. case ArgNumber:
  3918. values = append(values, arg.Number)
  3919. case ArgMatrix:
  3920. for _, row := range arg.Matrix {
  3921. for _, value := range row {
  3922. if value.String == "" {
  3923. continue
  3924. }
  3925. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3926. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3927. }
  3928. values = append(values, digits)
  3929. }
  3930. }
  3931. }
  3932. }
  3933. sort.Float64s(values)
  3934. if len(values)%2 == 0 {
  3935. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3936. } else {
  3937. median = values[len(values)/2]
  3938. }
  3939. return newNumberFormulaArg(median)
  3940. }
  3941. // MIN function returns the smallest value from a supplied set of numeric
  3942. // values. The syntax of the function is:
  3943. //
  3944. // MIN(number1,[number2],...)
  3945. //
  3946. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3947. if argsList.Len() == 0 {
  3948. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3949. }
  3950. return fn.min(false, argsList)
  3951. }
  3952. // MINA function returns the smallest value from a supplied set of numeric
  3953. // values, while counting text and the logical value FALSE as the value 0 and
  3954. // counting the logical value TRUE as the value 1. The syntax of the function
  3955. // is:
  3956. //
  3957. // MINA(number1,[number2],...)
  3958. //
  3959. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3960. if argsList.Len() == 0 {
  3961. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3962. }
  3963. return fn.min(true, argsList)
  3964. }
  3965. // min is an implementation of the formula function MIN and MINA.
  3966. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3967. min := math.MaxFloat64
  3968. for token := argsList.Front(); token != nil; token = token.Next() {
  3969. arg := token.Value.(formulaArg)
  3970. switch arg.Type {
  3971. case ArgString:
  3972. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3973. continue
  3974. } else {
  3975. num := arg.ToBool()
  3976. if num.Type == ArgNumber && num.Number < min {
  3977. min = num.Number
  3978. continue
  3979. }
  3980. }
  3981. num := arg.ToNumber()
  3982. if num.Type != ArgError && num.Number < min {
  3983. min = num.Number
  3984. }
  3985. case ArgNumber:
  3986. if arg.Number < min {
  3987. min = arg.Number
  3988. }
  3989. case ArgList, ArgMatrix:
  3990. for _, row := range arg.ToList() {
  3991. switch row.Type {
  3992. case ArgString:
  3993. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3994. continue
  3995. } else {
  3996. num := row.ToBool()
  3997. if num.Type == ArgNumber && num.Number < min {
  3998. min = num.Number
  3999. continue
  4000. }
  4001. }
  4002. num := row.ToNumber()
  4003. if num.Type != ArgError && num.Number < min {
  4004. min = num.Number
  4005. }
  4006. case ArgNumber:
  4007. if row.Number < min {
  4008. min = row.Number
  4009. }
  4010. }
  4011. }
  4012. case ArgError:
  4013. return arg
  4014. }
  4015. }
  4016. if min == math.MaxFloat64 {
  4017. min = 0
  4018. }
  4019. return newNumberFormulaArg(min)
  4020. }
  4021. // PERMUT function calculates the number of permutations of a specified number
  4022. // of objects from a set of objects. The syntax of the function is:
  4023. //
  4024. // PERMUT(number,number_chosen)
  4025. //
  4026. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4027. if argsList.Len() != 2 {
  4028. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4029. }
  4030. number := argsList.Front().Value.(formulaArg).ToNumber()
  4031. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4032. if number.Type != ArgNumber {
  4033. return number
  4034. }
  4035. if chosen.Type != ArgNumber {
  4036. return chosen
  4037. }
  4038. if number.Number < chosen.Number {
  4039. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4040. }
  4041. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4042. }
  4043. // SMALL function returns the k'th smallest value from an array of numeric
  4044. // values. The syntax of the function is:
  4045. //
  4046. // SMALL(array,k)
  4047. //
  4048. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4049. return fn.kth("SMALL", argsList)
  4050. }
  4051. // Information Functions
  4052. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4053. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4054. // function is:
  4055. //
  4056. // ISBLANK(value)
  4057. //
  4058. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4059. if argsList.Len() != 1 {
  4060. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4061. }
  4062. token := argsList.Front().Value.(formulaArg)
  4063. result := "FALSE"
  4064. switch token.Type {
  4065. case ArgUnknown:
  4066. result = "TRUE"
  4067. case ArgString:
  4068. if token.String == "" {
  4069. result = "TRUE"
  4070. }
  4071. }
  4072. return newStringFormulaArg(result)
  4073. }
  4074. // ISERR function tests if an initial supplied expression (or value) returns
  4075. // any Excel Error, except the #N/A error. If so, the function returns the
  4076. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4077. // error, the ISERR function returns FALSE. The syntax of the function is:
  4078. //
  4079. // ISERR(value)
  4080. //
  4081. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4082. if argsList.Len() != 1 {
  4083. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4084. }
  4085. token := argsList.Front().Value.(formulaArg)
  4086. result := "FALSE"
  4087. if token.Type == ArgError {
  4088. for _, errType := range []string{
  4089. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4090. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4091. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4092. } {
  4093. if errType == token.String {
  4094. result = "TRUE"
  4095. }
  4096. }
  4097. }
  4098. return newStringFormulaArg(result)
  4099. }
  4100. // ISERROR function tests if an initial supplied expression (or value) returns
  4101. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4102. // function returns FALSE. The syntax of the function is:
  4103. //
  4104. // ISERROR(value)
  4105. //
  4106. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4107. if argsList.Len() != 1 {
  4108. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4109. }
  4110. token := argsList.Front().Value.(formulaArg)
  4111. result := "FALSE"
  4112. if token.Type == ArgError {
  4113. for _, errType := range []string{
  4114. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4115. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4116. formulaErrorCALC, formulaErrorGETTINGDATA,
  4117. } {
  4118. if errType == token.String {
  4119. result = "TRUE"
  4120. }
  4121. }
  4122. }
  4123. return newStringFormulaArg(result)
  4124. }
  4125. // ISEVEN function tests if a supplied number (or numeric expression)
  4126. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4127. // function returns FALSE. The syntax of the function is:
  4128. //
  4129. // ISEVEN(value)
  4130. //
  4131. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4132. if argsList.Len() != 1 {
  4133. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4134. }
  4135. var (
  4136. token = argsList.Front().Value.(formulaArg)
  4137. result = "FALSE"
  4138. numeric int
  4139. err error
  4140. )
  4141. if token.Type == ArgString {
  4142. if numeric, err = strconv.Atoi(token.String); err != nil {
  4143. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4144. }
  4145. if numeric == numeric/2*2 {
  4146. return newStringFormulaArg("TRUE")
  4147. }
  4148. }
  4149. return newStringFormulaArg(result)
  4150. }
  4151. // ISNA function tests if an initial supplied expression (or value) returns
  4152. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4153. // returns FALSE. The syntax of the function is:
  4154. //
  4155. // ISNA(value)
  4156. //
  4157. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4158. if argsList.Len() != 1 {
  4159. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4160. }
  4161. token := argsList.Front().Value.(formulaArg)
  4162. result := "FALSE"
  4163. if token.Type == ArgError && token.String == formulaErrorNA {
  4164. result = "TRUE"
  4165. }
  4166. return newStringFormulaArg(result)
  4167. }
  4168. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4169. // function returns TRUE; If the supplied value is text, the function returns
  4170. // FALSE. The syntax of the function is:
  4171. //
  4172. // ISNONTEXT(value)
  4173. //
  4174. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4175. if argsList.Len() != 1 {
  4176. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4177. }
  4178. token := argsList.Front().Value.(formulaArg)
  4179. result := "TRUE"
  4180. if token.Type == ArgString && token.String != "" {
  4181. result = "FALSE"
  4182. }
  4183. return newStringFormulaArg(result)
  4184. }
  4185. // ISNUMBER function function tests if a supplied value is a number. If so,
  4186. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4187. // function is:
  4188. //
  4189. // ISNUMBER(value)
  4190. //
  4191. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4192. if argsList.Len() != 1 {
  4193. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4194. }
  4195. token, result := argsList.Front().Value.(formulaArg), false
  4196. if token.Type == ArgString && token.String != "" {
  4197. if _, err := strconv.Atoi(token.String); err == nil {
  4198. result = true
  4199. }
  4200. }
  4201. return newBoolFormulaArg(result)
  4202. }
  4203. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4204. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4205. // FALSE. The syntax of the function is:
  4206. //
  4207. // ISODD(value)
  4208. //
  4209. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4210. if argsList.Len() != 1 {
  4211. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4212. }
  4213. var (
  4214. token = argsList.Front().Value.(formulaArg)
  4215. result = "FALSE"
  4216. numeric int
  4217. err error
  4218. )
  4219. if token.Type == ArgString {
  4220. if numeric, err = strconv.Atoi(token.String); err != nil {
  4221. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4222. }
  4223. if numeric != numeric/2*2 {
  4224. return newStringFormulaArg("TRUE")
  4225. }
  4226. }
  4227. return newStringFormulaArg(result)
  4228. }
  4229. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4230. // Otherwise, the function returns FALSE. The syntax of the function is:
  4231. //
  4232. // ISTEXT(value)
  4233. //
  4234. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4235. if argsList.Len() != 1 {
  4236. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4237. }
  4238. token := argsList.Front().Value.(formulaArg)
  4239. if token.ToNumber().Type != ArgError {
  4240. return newBoolFormulaArg(false)
  4241. }
  4242. return newBoolFormulaArg(token.Type == ArgString)
  4243. }
  4244. // NA function returns the Excel #N/A error. This error message has the
  4245. // meaning 'value not available' and is produced when an Excel Formula is
  4246. // unable to find a value that it needs. The syntax of the function is:
  4247. //
  4248. // NA()
  4249. //
  4250. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4251. if argsList.Len() != 0 {
  4252. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4253. }
  4254. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4255. }
  4256. // SHEET function returns the Sheet number for a specified reference. The
  4257. // syntax of the function is:
  4258. //
  4259. // SHEET()
  4260. //
  4261. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4262. if argsList.Len() != 0 {
  4263. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4264. }
  4265. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4266. }
  4267. // Logical Functions
  4268. // AND function tests a number of supplied conditions and returns TRUE or
  4269. // FALSE. The syntax of the function is:
  4270. //
  4271. // AND(logical_test1,[logical_test2],...)
  4272. //
  4273. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4274. if argsList.Len() == 0 {
  4275. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4276. }
  4277. if argsList.Len() > 30 {
  4278. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4279. }
  4280. var (
  4281. and = true
  4282. val float64
  4283. err error
  4284. )
  4285. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4286. token := arg.Value.(formulaArg)
  4287. switch token.Type {
  4288. case ArgUnknown:
  4289. continue
  4290. case ArgString:
  4291. if token.String == "TRUE" {
  4292. continue
  4293. }
  4294. if token.String == "FALSE" {
  4295. return newStringFormulaArg(token.String)
  4296. }
  4297. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4298. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4299. }
  4300. and = and && (val != 0)
  4301. case ArgMatrix:
  4302. // TODO
  4303. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4304. }
  4305. }
  4306. return newBoolFormulaArg(and)
  4307. }
  4308. // FALSE function function returns the logical value FALSE. The syntax of the
  4309. // function is:
  4310. //
  4311. // FALSE()
  4312. //
  4313. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4314. if argsList.Len() != 0 {
  4315. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4316. }
  4317. return newBoolFormulaArg(false)
  4318. }
  4319. // IFERROR function receives two values (or expressions) and tests if the
  4320. // first of these evaluates to an error. The syntax of the function is:
  4321. //
  4322. // IFERROR(value,value_if_error)
  4323. //
  4324. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4325. if argsList.Len() != 2 {
  4326. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4327. }
  4328. value := argsList.Front().Value.(formulaArg)
  4329. if value.Type != ArgError {
  4330. if value.Type == ArgEmpty {
  4331. return newNumberFormulaArg(0)
  4332. }
  4333. return value
  4334. }
  4335. return argsList.Back().Value.(formulaArg)
  4336. }
  4337. // NOT function returns the opposite to a supplied logical value. The syntax
  4338. // of the function is:
  4339. //
  4340. // NOT(logical)
  4341. //
  4342. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4343. if argsList.Len() != 1 {
  4344. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4345. }
  4346. token := argsList.Front().Value.(formulaArg)
  4347. switch token.Type {
  4348. case ArgString, ArgList:
  4349. if strings.ToUpper(token.String) == "TRUE" {
  4350. return newBoolFormulaArg(false)
  4351. }
  4352. if strings.ToUpper(token.String) == "FALSE" {
  4353. return newBoolFormulaArg(true)
  4354. }
  4355. case ArgNumber:
  4356. return newBoolFormulaArg(!(token.Number != 0))
  4357. case ArgError:
  4358. return token
  4359. }
  4360. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4361. }
  4362. // OR function tests a number of supplied conditions and returns either TRUE
  4363. // or FALSE. The syntax of the function is:
  4364. //
  4365. // OR(logical_test1,[logical_test2],...)
  4366. //
  4367. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4368. if argsList.Len() == 0 {
  4369. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4370. }
  4371. if argsList.Len() > 30 {
  4372. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4373. }
  4374. var (
  4375. or bool
  4376. val float64
  4377. err error
  4378. )
  4379. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4380. token := arg.Value.(formulaArg)
  4381. switch token.Type {
  4382. case ArgUnknown:
  4383. continue
  4384. case ArgString:
  4385. if token.String == "FALSE" {
  4386. continue
  4387. }
  4388. if token.String == "TRUE" {
  4389. or = true
  4390. continue
  4391. }
  4392. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4393. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4394. }
  4395. or = val != 0
  4396. case ArgMatrix:
  4397. // TODO
  4398. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4399. }
  4400. }
  4401. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4402. }
  4403. // TRUE function returns the logical value TRUE. The syntax of the function
  4404. // is:
  4405. //
  4406. // TRUE()
  4407. //
  4408. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4409. if argsList.Len() != 0 {
  4410. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4411. }
  4412. return newBoolFormulaArg(true)
  4413. }
  4414. // Date and Time Functions
  4415. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4416. // of the function is:
  4417. //
  4418. // DATE(year,month,day)
  4419. //
  4420. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4421. if argsList.Len() != 3 {
  4422. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4423. }
  4424. year := argsList.Front().Value.(formulaArg).ToNumber()
  4425. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  4426. day := argsList.Back().Value.(formulaArg).ToNumber()
  4427. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  4428. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4429. }
  4430. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  4431. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4432. }
  4433. // DATEDIF function calculates the number of days, months, or years between
  4434. // two dates. The syntax of the function is:
  4435. //
  4436. // DATEDIF(start_date,end_date,unit)
  4437. //
  4438. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  4439. if argsList.Len() != 3 {
  4440. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  4441. }
  4442. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  4443. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  4444. return startArg
  4445. }
  4446. if startArg.Number > endArg.Number {
  4447. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  4448. }
  4449. if startArg.Number == endArg.Number {
  4450. return newNumberFormulaArg(0)
  4451. }
  4452. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  4453. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  4454. sy, smm, sd := startDate.Date()
  4455. ey, emm, ed := endDate.Date()
  4456. sm, em, diff := int(smm), int(emm), 0.0
  4457. switch unit {
  4458. case "d":
  4459. return newNumberFormulaArg(endArg.Number - startArg.Number)
  4460. case "y":
  4461. diff = float64(ey - sy)
  4462. if em < sm || (em == sm && ed < sd) {
  4463. diff--
  4464. }
  4465. case "m":
  4466. ydiff := ey - sy
  4467. mdiff := em - sm
  4468. if ed < sd {
  4469. mdiff--
  4470. }
  4471. if mdiff < 0 {
  4472. ydiff--
  4473. mdiff += 12
  4474. }
  4475. diff = float64(ydiff*12 + mdiff)
  4476. case "md":
  4477. smMD := em
  4478. if ed < sd {
  4479. smMD--
  4480. }
  4481. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  4482. case "ym":
  4483. diff = float64(em - sm)
  4484. if ed < sd {
  4485. diff--
  4486. }
  4487. if diff < 0 {
  4488. diff += 12
  4489. }
  4490. case "yd":
  4491. syYD := sy
  4492. if em < sm || (em == sm && ed < sd) {
  4493. syYD++
  4494. }
  4495. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  4496. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  4497. diff = s - e
  4498. default:
  4499. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  4500. }
  4501. return newNumberFormulaArg(diff)
  4502. }
  4503. // NOW function returns the current date and time. The function receives no
  4504. // arguments and therefore. The syntax of the function is:
  4505. //
  4506. // NOW()
  4507. //
  4508. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  4509. if argsList.Len() != 0 {
  4510. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  4511. }
  4512. now := time.Now()
  4513. _, offset := now.Zone()
  4514. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  4515. }
  4516. // TODAY function returns the current date. The function has no arguments and
  4517. // therefore. The syntax of the function is:
  4518. //
  4519. // TODAY()
  4520. //
  4521. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  4522. if argsList.Len() != 0 {
  4523. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  4524. }
  4525. now := time.Now()
  4526. _, offset := now.Zone()
  4527. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  4528. }
  4529. // makeDate return date as a Unix time, the number of seconds elapsed since
  4530. // January 1, 1970 UTC.
  4531. func makeDate(y int, m time.Month, d int) int64 {
  4532. if y == 1900 && int(m) <= 2 {
  4533. d--
  4534. }
  4535. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4536. return date.Unix()
  4537. }
  4538. // daysBetween return time interval of the given start timestamp and end
  4539. // timestamp.
  4540. func daysBetween(startDate, endDate int64) float64 {
  4541. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4542. }
  4543. // Text Functions
  4544. // CHAR function returns the character relating to a supplied character set
  4545. // number (from 1 to 255). syntax of the function is:
  4546. //
  4547. // CHAR(number)
  4548. //
  4549. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  4550. if argsList.Len() != 1 {
  4551. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  4552. }
  4553. arg := argsList.Front().Value.(formulaArg).ToNumber()
  4554. if arg.Type != ArgNumber {
  4555. return arg
  4556. }
  4557. num := int(arg.Number)
  4558. if num < 0 || num > 255 {
  4559. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4560. }
  4561. return newStringFormulaArg(fmt.Sprintf("%c", num))
  4562. }
  4563. // CLEAN removes all non-printable characters from a supplied text string. The
  4564. // syntax of the function is:
  4565. //
  4566. // CLEAN(text)
  4567. //
  4568. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4569. if argsList.Len() != 1 {
  4570. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4571. }
  4572. b := bytes.Buffer{}
  4573. for _, c := range argsList.Front().Value.(formulaArg).String {
  4574. if c > 31 {
  4575. b.WriteRune(c)
  4576. }
  4577. }
  4578. return newStringFormulaArg(b.String())
  4579. }
  4580. // CODE function converts the first character of a supplied text string into
  4581. // the associated numeric character set code used by your computer. The
  4582. // syntax of the function is:
  4583. //
  4584. // CODE(text)
  4585. //
  4586. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  4587. return fn.code("CODE", argsList)
  4588. }
  4589. // code is an implementation of the formula function CODE and UNICODE.
  4590. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  4591. if argsList.Len() != 1 {
  4592. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  4593. }
  4594. text := argsList.Front().Value.(formulaArg).Value()
  4595. if len(text) == 0 {
  4596. if name == "CODE" {
  4597. return newNumberFormulaArg(0)
  4598. }
  4599. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4600. }
  4601. return newNumberFormulaArg(float64(text[0]))
  4602. }
  4603. // CONCAT function joins together a series of supplied text strings into one
  4604. // combined text string.
  4605. //
  4606. // CONCAT(text1,[text2],...)
  4607. //
  4608. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4609. return fn.concat("CONCAT", argsList)
  4610. }
  4611. // CONCATENATE function joins together a series of supplied text strings into
  4612. // one combined text string.
  4613. //
  4614. // CONCATENATE(text1,[text2],...)
  4615. //
  4616. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4617. return fn.concat("CONCATENATE", argsList)
  4618. }
  4619. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4620. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4621. buf := bytes.Buffer{}
  4622. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4623. token := arg.Value.(formulaArg)
  4624. switch token.Type {
  4625. case ArgString:
  4626. buf.WriteString(token.String)
  4627. case ArgNumber:
  4628. if token.Boolean {
  4629. if token.Number == 0 {
  4630. buf.WriteString("FALSE")
  4631. } else {
  4632. buf.WriteString("TRUE")
  4633. }
  4634. } else {
  4635. buf.WriteString(token.Value())
  4636. }
  4637. default:
  4638. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4639. }
  4640. }
  4641. return newStringFormulaArg(buf.String())
  4642. }
  4643. // EXACT function tests if two supplied text strings or values are exactly
  4644. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4645. // function is case-sensitive. The syntax of the function is:
  4646. //
  4647. // EXACT(text1,text2)
  4648. //
  4649. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4650. if argsList.Len() != 2 {
  4651. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4652. }
  4653. text1 := argsList.Front().Value.(formulaArg).Value()
  4654. text2 := argsList.Back().Value.(formulaArg).Value()
  4655. return newBoolFormulaArg(text1 == text2)
  4656. }
  4657. // FIXED function rounds a supplied number to a specified number of decimal
  4658. // places and then converts this into text. The syntax of the function is:
  4659. //
  4660. // FIXED(number,[decimals],[no_commas])
  4661. //
  4662. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  4663. if argsList.Len() < 1 {
  4664. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  4665. }
  4666. if argsList.Len() > 3 {
  4667. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  4668. }
  4669. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  4670. if numArg.Type != ArgNumber {
  4671. return numArg
  4672. }
  4673. precision, decimals, noCommas := 0, 0, false
  4674. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  4675. if argsList.Len() == 1 && len(s) == 2 {
  4676. precision = len(s[1])
  4677. decimals = len(s[1])
  4678. }
  4679. if argsList.Len() >= 2 {
  4680. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  4681. if decimalsArg.Type != ArgNumber {
  4682. return decimalsArg
  4683. }
  4684. decimals = int(decimalsArg.Number)
  4685. }
  4686. if argsList.Len() == 3 {
  4687. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  4688. if noCommasArg.Type == ArgError {
  4689. return noCommasArg
  4690. }
  4691. noCommas = noCommasArg.Boolean
  4692. }
  4693. n := math.Pow(10, float64(decimals))
  4694. r := numArg.Number * n
  4695. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  4696. if decimals > 0 {
  4697. precision = decimals
  4698. }
  4699. if noCommas {
  4700. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  4701. }
  4702. p := message.NewPrinter(language.English)
  4703. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  4704. }
  4705. // FIND function returns the position of a specified character or sub-string
  4706. // within a supplied text string. The function is case-sensitive. The syntax
  4707. // of the function is:
  4708. //
  4709. // FIND(find_text,within_text,[start_num])
  4710. //
  4711. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  4712. return fn.find("FIND", argsList)
  4713. }
  4714. // FINDB counts each double-byte character as 2 when you have enabled the
  4715. // editing of a language that supports DBCS and then set it as the default
  4716. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  4717. // function is:
  4718. //
  4719. // FINDB(find_text,within_text,[start_num])
  4720. //
  4721. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  4722. return fn.find("FINDB", argsList)
  4723. }
  4724. // find is an implementation of the formula function FIND and FINDB.
  4725. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  4726. if argsList.Len() < 2 {
  4727. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  4728. }
  4729. if argsList.Len() > 3 {
  4730. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  4731. }
  4732. findText := argsList.Front().Value.(formulaArg).Value()
  4733. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  4734. startNum, result := 1, 1
  4735. if argsList.Len() == 3 {
  4736. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4737. if numArg.Type != ArgNumber {
  4738. return numArg
  4739. }
  4740. if numArg.Number < 0 {
  4741. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4742. }
  4743. startNum = int(numArg.Number)
  4744. }
  4745. if findText == "" {
  4746. return newNumberFormulaArg(float64(startNum))
  4747. }
  4748. for idx := range withinText {
  4749. if result < startNum {
  4750. result++
  4751. }
  4752. if strings.Index(withinText[idx:], findText) == 0 {
  4753. return newNumberFormulaArg(float64(result))
  4754. }
  4755. result++
  4756. }
  4757. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4758. }
  4759. // LEFT function returns a specified number of characters from the start of a
  4760. // supplied text string. The syntax of the function is:
  4761. //
  4762. // LEFT(text,[num_chars])
  4763. //
  4764. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  4765. return fn.leftRight("LEFT", argsList)
  4766. }
  4767. // LEFTB returns the first character or characters in a text string, based on
  4768. // the number of bytes you specify. The syntax of the function is:
  4769. //
  4770. // LEFTB(text,[num_bytes])
  4771. //
  4772. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  4773. return fn.leftRight("LEFTB", argsList)
  4774. }
  4775. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  4776. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  4777. // (Traditional), and Korean.
  4778. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  4779. if argsList.Len() < 1 {
  4780. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  4781. }
  4782. if argsList.Len() > 2 {
  4783. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  4784. }
  4785. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  4786. if argsList.Len() == 2 {
  4787. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4788. if numArg.Type != ArgNumber {
  4789. return numArg
  4790. }
  4791. if numArg.Number < 0 {
  4792. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4793. }
  4794. numChars = int(numArg.Number)
  4795. }
  4796. if len(text) > numChars {
  4797. if name == "LEFT" || name == "LEFTB" {
  4798. return newStringFormulaArg(text[:numChars])
  4799. }
  4800. return newStringFormulaArg(text[len(text)-numChars:])
  4801. }
  4802. return newStringFormulaArg(text)
  4803. }
  4804. // LEN returns the length of a supplied text string. The syntax of the
  4805. // function is:
  4806. //
  4807. // LEN(text)
  4808. //
  4809. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4810. if argsList.Len() != 1 {
  4811. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4812. }
  4813. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4814. }
  4815. // LENB returns the number of bytes used to represent the characters in a text
  4816. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4817. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4818. // 1 byte per character. The syntax of the function is:
  4819. //
  4820. // LENB(text)
  4821. //
  4822. // TODO: the languages that support DBCS include Japanese, Chinese
  4823. // (Simplified), Chinese (Traditional), and Korean.
  4824. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4825. if argsList.Len() != 1 {
  4826. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4827. }
  4828. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4829. }
  4830. // LOWER converts all characters in a supplied text string to lower case. The
  4831. // syntax of the function is:
  4832. //
  4833. // LOWER(text)
  4834. //
  4835. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4836. if argsList.Len() != 1 {
  4837. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4838. }
  4839. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4840. }
  4841. // MID function returns a specified number of characters from the middle of a
  4842. // supplied text string. The syntax of the function is:
  4843. //
  4844. // MID(text,start_num,num_chars)
  4845. //
  4846. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  4847. return fn.mid("MID", argsList)
  4848. }
  4849. // MIDB returns a specific number of characters from a text string, starting
  4850. // at the position you specify, based on the number of bytes you specify. The
  4851. // syntax of the function is:
  4852. //
  4853. // MID(text,start_num,num_chars)
  4854. //
  4855. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  4856. return fn.mid("MIDB", argsList)
  4857. }
  4858. // mid is an implementation of the formula function MID and MIDB. TODO:
  4859. // support DBCS include Japanese, Chinese (Simplified), Chinese
  4860. // (Traditional), and Korean.
  4861. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  4862. if argsList.Len() != 3 {
  4863. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  4864. }
  4865. text := argsList.Front().Value.(formulaArg).Value()
  4866. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4867. if startNumArg.Type != ArgNumber {
  4868. return startNumArg
  4869. }
  4870. if numCharsArg.Type != ArgNumber {
  4871. return numCharsArg
  4872. }
  4873. startNum := int(startNumArg.Number)
  4874. if startNum < 0 {
  4875. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4876. }
  4877. textLen := len(text)
  4878. if startNum > textLen {
  4879. return newStringFormulaArg("")
  4880. }
  4881. startNum--
  4882. endNum := startNum + int(numCharsArg.Number)
  4883. if endNum > textLen+1 {
  4884. return newStringFormulaArg(text[startNum:])
  4885. }
  4886. return newStringFormulaArg(text[startNum:endNum])
  4887. }
  4888. // PROPER converts all characters in a supplied text string to proper case
  4889. // (i.e. all letters that do not immediately follow another letter are set to
  4890. // upper case and all other characters are lower case). The syntax of the
  4891. // function is:
  4892. //
  4893. // PROPER(text)
  4894. //
  4895. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4896. if argsList.Len() != 1 {
  4897. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4898. }
  4899. buf := bytes.Buffer{}
  4900. isLetter := false
  4901. for _, char := range argsList.Front().Value.(formulaArg).String {
  4902. if !isLetter && unicode.IsLetter(char) {
  4903. buf.WriteRune(unicode.ToUpper(char))
  4904. } else {
  4905. buf.WriteRune(unicode.ToLower(char))
  4906. }
  4907. isLetter = unicode.IsLetter(char)
  4908. }
  4909. return newStringFormulaArg(buf.String())
  4910. }
  4911. // REPLACE function replaces all or part of a text string with another string.
  4912. // The syntax of the function is:
  4913. //
  4914. // REPLACE(old_text,start_num,num_chars,new_text)
  4915. //
  4916. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  4917. return fn.replace("REPLACE", argsList)
  4918. }
  4919. // REPLACEB replaces part of a text string, based on the number of bytes you
  4920. // specify, with a different text string.
  4921. //
  4922. // REPLACEB(old_text,start_num,num_chars,new_text)
  4923. //
  4924. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  4925. return fn.replace("REPLACEB", argsList)
  4926. }
  4927. // replace is an implementation of the formula function REPLACE and REPLACEB.
  4928. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  4929. // (Traditional), and Korean.
  4930. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  4931. if argsList.Len() != 4 {
  4932. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  4933. }
  4934. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  4935. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4936. if startNumArg.Type != ArgNumber {
  4937. return startNumArg
  4938. }
  4939. if numCharsArg.Type != ArgNumber {
  4940. return numCharsArg
  4941. }
  4942. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  4943. if startIdx > oldTextLen {
  4944. startIdx = oldTextLen + 1
  4945. }
  4946. endIdx := startIdx + int(numCharsArg.Number)
  4947. if endIdx > oldTextLen {
  4948. endIdx = oldTextLen + 1
  4949. }
  4950. if startIdx < 1 || endIdx < 1 {
  4951. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4952. }
  4953. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  4954. return newStringFormulaArg(result)
  4955. }
  4956. // REPT function returns a supplied text string, repeated a specified number
  4957. // of times. The syntax of the function is:
  4958. //
  4959. // REPT(text,number_times)
  4960. //
  4961. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4962. if argsList.Len() != 2 {
  4963. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4964. }
  4965. text := argsList.Front().Value.(formulaArg)
  4966. if text.Type != ArgString {
  4967. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4968. }
  4969. times := argsList.Back().Value.(formulaArg).ToNumber()
  4970. if times.Type != ArgNumber {
  4971. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4972. }
  4973. if times.Number < 0 {
  4974. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4975. }
  4976. if times.Number == 0 {
  4977. return newStringFormulaArg("")
  4978. }
  4979. buf := bytes.Buffer{}
  4980. for i := 0; i < int(times.Number); i++ {
  4981. buf.WriteString(text.String)
  4982. }
  4983. return newStringFormulaArg(buf.String())
  4984. }
  4985. // RIGHT function returns a specified number of characters from the end of a
  4986. // supplied text string. The syntax of the function is:
  4987. //
  4988. // RIGHT(text,[num_chars])
  4989. //
  4990. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  4991. return fn.leftRight("RIGHT", argsList)
  4992. }
  4993. // RIGHTB returns the last character or characters in a text string, based on
  4994. // the number of bytes you specify. The syntax of the function is:
  4995. //
  4996. // RIGHTB(text,[num_bytes])
  4997. //
  4998. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  4999. return fn.leftRight("RIGHTB", argsList)
  5000. }
  5001. // SUBSTITUTE function replaces one or more instances of a given text string,
  5002. // within an original text string. The syntax of the function is:
  5003. //
  5004. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5005. //
  5006. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5007. if argsList.Len() != 3 && argsList.Len() != 4 {
  5008. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5009. }
  5010. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5011. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5012. if argsList.Len() == 3 {
  5013. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5014. }
  5015. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5016. if instanceNumArg.Type != ArgNumber {
  5017. return instanceNumArg
  5018. }
  5019. instanceNum = int(instanceNumArg.Number)
  5020. if instanceNum < 1 {
  5021. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5022. }
  5023. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5024. for {
  5025. count--
  5026. index := strings.Index(str, oldText.Value())
  5027. if index == -1 {
  5028. pos = -1
  5029. break
  5030. } else {
  5031. pos = index + chars
  5032. if count == 0 {
  5033. break
  5034. }
  5035. idx := oldTextLen + index
  5036. chars += idx
  5037. str = str[idx:]
  5038. }
  5039. }
  5040. if pos == -1 {
  5041. return newStringFormulaArg(text.Value())
  5042. }
  5043. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5044. return newStringFormulaArg(pre + newText.Value() + post)
  5045. }
  5046. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5047. // words or characters) from a supplied text string. The syntax of the
  5048. // function is:
  5049. //
  5050. // TRIM(text)
  5051. //
  5052. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5053. if argsList.Len() != 1 {
  5054. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5055. }
  5056. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5057. }
  5058. // UNICHAR returns the Unicode character that is referenced by the given
  5059. // numeric value. The syntax of the function is:
  5060. //
  5061. // UNICHAR(number)
  5062. //
  5063. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5064. if argsList.Len() != 1 {
  5065. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5066. }
  5067. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5068. if numArg.Type != ArgNumber {
  5069. return numArg
  5070. }
  5071. if numArg.Number <= 0 || numArg.Number > 55295 {
  5072. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5073. }
  5074. return newStringFormulaArg(string(rune(numArg.Number)))
  5075. }
  5076. // UNICODE function returns the code point for the first character of a
  5077. // supplied text string. The syntax of the function is:
  5078. //
  5079. // UNICODE(text)
  5080. //
  5081. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5082. return fn.code("UNICODE", argsList)
  5083. }
  5084. // UPPER converts all characters in a supplied text string to upper case. The
  5085. // syntax of the function is:
  5086. //
  5087. // UPPER(text)
  5088. //
  5089. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5090. if argsList.Len() != 1 {
  5091. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5092. }
  5093. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5094. }
  5095. // Conditional Functions
  5096. // IF function tests a supplied condition and returns one result if the
  5097. // condition evaluates to TRUE, and another result if the condition evaluates
  5098. // to FALSE. The syntax of the function is:
  5099. //
  5100. // IF(logical_test,value_if_true,value_if_false)
  5101. //
  5102. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5103. if argsList.Len() == 0 {
  5104. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5105. }
  5106. if argsList.Len() > 3 {
  5107. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5108. }
  5109. token := argsList.Front().Value.(formulaArg)
  5110. var (
  5111. cond bool
  5112. err error
  5113. result string
  5114. )
  5115. switch token.Type {
  5116. case ArgString:
  5117. if cond, err = strconv.ParseBool(token.String); err != nil {
  5118. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5119. }
  5120. if argsList.Len() == 1 {
  5121. return newBoolFormulaArg(cond)
  5122. }
  5123. if cond {
  5124. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5125. }
  5126. if argsList.Len() == 3 {
  5127. result = argsList.Back().Value.(formulaArg).String
  5128. }
  5129. }
  5130. return newStringFormulaArg(result)
  5131. }
  5132. // Lookup and Reference Functions
  5133. // CHOOSE function returns a value from an array, that corresponds to a
  5134. // supplied index number (position). The syntax of the function is:
  5135. //
  5136. // CHOOSE(index_num,value1,[value2],...)
  5137. //
  5138. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5139. if argsList.Len() < 2 {
  5140. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5141. }
  5142. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5143. if err != nil {
  5144. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5145. }
  5146. if argsList.Len() <= idx {
  5147. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5148. }
  5149. arg := argsList.Front()
  5150. for i := 0; i < idx; i++ {
  5151. arg = arg.Next()
  5152. }
  5153. var result formulaArg
  5154. switch arg.Value.(formulaArg).Type {
  5155. case ArgString:
  5156. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5157. case ArgMatrix:
  5158. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5159. }
  5160. return result
  5161. }
  5162. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5163. // string.
  5164. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5165. for len(pattern) > 0 {
  5166. switch pattern[0] {
  5167. default:
  5168. if len(str) == 0 || str[0] != pattern[0] {
  5169. return false
  5170. }
  5171. case '?':
  5172. if len(str) == 0 && !simple {
  5173. return false
  5174. }
  5175. case '*':
  5176. return deepMatchRune(str, pattern[1:], simple) ||
  5177. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5178. }
  5179. str = str[1:]
  5180. pattern = pattern[1:]
  5181. }
  5182. return len(str) == 0 && len(pattern) == 0
  5183. }
  5184. // matchPattern finds whether the text matches or satisfies the pattern
  5185. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5186. func matchPattern(pattern, name string) (matched bool) {
  5187. if pattern == "" {
  5188. return name == pattern
  5189. }
  5190. if pattern == "*" {
  5191. return true
  5192. }
  5193. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5194. for _, r := range name {
  5195. rname = append(rname, r)
  5196. }
  5197. for _, r := range pattern {
  5198. rpattern = append(rpattern, r)
  5199. }
  5200. simple := false // Does extended wildcard '*' and '?' match.
  5201. return deepMatchRune(rname, rpattern, simple)
  5202. }
  5203. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5204. // formula arguments by given conditions such as case sensitive, if exact
  5205. // match, and make compare result as formula criteria condition type.
  5206. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5207. if lhs.Type != rhs.Type {
  5208. return criteriaErr
  5209. }
  5210. switch lhs.Type {
  5211. case ArgNumber:
  5212. if lhs.Number == rhs.Number {
  5213. return criteriaEq
  5214. }
  5215. if lhs.Number < rhs.Number {
  5216. return criteriaL
  5217. }
  5218. return criteriaG
  5219. case ArgString:
  5220. ls, rs := lhs.String, rhs.String
  5221. if !caseSensitive {
  5222. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5223. }
  5224. if exactMatch {
  5225. match := matchPattern(rs, ls)
  5226. if match {
  5227. return criteriaEq
  5228. }
  5229. return criteriaG
  5230. }
  5231. switch strings.Compare(ls, rs) {
  5232. case 1:
  5233. return criteriaG
  5234. case -1:
  5235. return criteriaL
  5236. case 0:
  5237. return criteriaEq
  5238. }
  5239. return criteriaErr
  5240. case ArgEmpty:
  5241. return criteriaEq
  5242. case ArgList:
  5243. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5244. case ArgMatrix:
  5245. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5246. }
  5247. return criteriaErr
  5248. }
  5249. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5250. // list type formula arguments.
  5251. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5252. if len(lhs.List) < len(rhs.List) {
  5253. return criteriaL
  5254. }
  5255. if len(lhs.List) > len(rhs.List) {
  5256. return criteriaG
  5257. }
  5258. for arg := range lhs.List {
  5259. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5260. if criteria != criteriaEq {
  5261. return criteria
  5262. }
  5263. }
  5264. return criteriaEq
  5265. }
  5266. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5267. // matrix type formula arguments.
  5268. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5269. if len(lhs.Matrix) < len(rhs.Matrix) {
  5270. return criteriaL
  5271. }
  5272. if len(lhs.Matrix) > len(rhs.Matrix) {
  5273. return criteriaG
  5274. }
  5275. for i := range lhs.Matrix {
  5276. left := lhs.Matrix[i]
  5277. right := lhs.Matrix[i]
  5278. if len(left) < len(right) {
  5279. return criteriaL
  5280. }
  5281. if len(left) > len(right) {
  5282. return criteriaG
  5283. }
  5284. for arg := range left {
  5285. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5286. if criteria != criteriaEq {
  5287. return criteria
  5288. }
  5289. }
  5290. }
  5291. return criteriaEq
  5292. }
  5293. // COLUMN function returns the first column number within a supplied reference
  5294. // or the number of the current column. The syntax of the function is:
  5295. //
  5296. // COLUMN([reference])
  5297. //
  5298. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5299. if argsList.Len() > 1 {
  5300. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5301. }
  5302. if argsList.Len() == 1 {
  5303. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5304. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5305. }
  5306. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5307. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5308. }
  5309. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5310. }
  5311. col, _, _ := CellNameToCoordinates(fn.cell)
  5312. return newNumberFormulaArg(float64(col))
  5313. }
  5314. // COLUMNS function receives an Excel range and returns the number of columns
  5315. // that are contained within the range. The syntax of the function is:
  5316. //
  5317. // COLUMNS(array)
  5318. //
  5319. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5320. if argsList.Len() != 1 {
  5321. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5322. }
  5323. var min, max int
  5324. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5325. crs := argsList.Front().Value.(formulaArg).cellRanges
  5326. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5327. if min == 0 {
  5328. min = cr.Value.(cellRange).From.Col
  5329. }
  5330. if min > cr.Value.(cellRange).From.Col {
  5331. min = cr.Value.(cellRange).From.Col
  5332. }
  5333. if min > cr.Value.(cellRange).To.Col {
  5334. min = cr.Value.(cellRange).To.Col
  5335. }
  5336. if max < cr.Value.(cellRange).To.Col {
  5337. max = cr.Value.(cellRange).To.Col
  5338. }
  5339. if max < cr.Value.(cellRange).From.Col {
  5340. max = cr.Value.(cellRange).From.Col
  5341. }
  5342. }
  5343. }
  5344. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5345. cr := argsList.Front().Value.(formulaArg).cellRefs
  5346. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5347. if min == 0 {
  5348. min = refs.Value.(cellRef).Col
  5349. }
  5350. if min > refs.Value.(cellRef).Col {
  5351. min = refs.Value.(cellRef).Col
  5352. }
  5353. if max < refs.Value.(cellRef).Col {
  5354. max = refs.Value.(cellRef).Col
  5355. }
  5356. }
  5357. }
  5358. if max == TotalColumns {
  5359. return newNumberFormulaArg(float64(TotalColumns))
  5360. }
  5361. result := max - min + 1
  5362. if max == min {
  5363. if min == 0 {
  5364. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5365. }
  5366. return newNumberFormulaArg(float64(1))
  5367. }
  5368. return newNumberFormulaArg(float64(result))
  5369. }
  5370. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5371. // (or table), and returns the corresponding value from another row of the
  5372. // array. The syntax of the function is:
  5373. //
  5374. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5375. //
  5376. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5377. if argsList.Len() < 3 {
  5378. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5379. }
  5380. if argsList.Len() > 4 {
  5381. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5382. }
  5383. lookupValue := argsList.Front().Value.(formulaArg)
  5384. tableArray := argsList.Front().Next().Value.(formulaArg)
  5385. if tableArray.Type != ArgMatrix {
  5386. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5387. }
  5388. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5389. if rowArg.Type != ArgNumber {
  5390. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5391. }
  5392. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5393. if argsList.Len() == 4 {
  5394. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5395. if rangeLookup.Type == ArgError {
  5396. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5397. }
  5398. if rangeLookup.Number == 0 {
  5399. exactMatch = true
  5400. }
  5401. }
  5402. row := tableArray.Matrix[0]
  5403. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5404. start:
  5405. for idx, mtx := range row {
  5406. lhs := mtx
  5407. switch lookupValue.Type {
  5408. case ArgNumber:
  5409. if !lookupValue.Boolean {
  5410. lhs = mtx.ToNumber()
  5411. if lhs.Type == ArgError {
  5412. lhs = mtx
  5413. }
  5414. }
  5415. case ArgMatrix:
  5416. lhs = tableArray
  5417. }
  5418. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5419. matchIdx = idx
  5420. wasExact = true
  5421. break start
  5422. }
  5423. }
  5424. } else {
  5425. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  5426. }
  5427. if matchIdx == -1 {
  5428. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5429. }
  5430. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  5431. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  5432. }
  5433. row = tableArray.Matrix[rowIdx]
  5434. if wasExact || !exactMatch {
  5435. return row[matchIdx]
  5436. }
  5437. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5438. }
  5439. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  5440. // data array (or table), and returns the corresponding value from another
  5441. // column of the array. The syntax of the function is:
  5442. //
  5443. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  5444. //
  5445. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  5446. if argsList.Len() < 3 {
  5447. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  5448. }
  5449. if argsList.Len() > 4 {
  5450. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  5451. }
  5452. lookupValue := argsList.Front().Value.(formulaArg)
  5453. tableArray := argsList.Front().Next().Value.(formulaArg)
  5454. if tableArray.Type != ArgMatrix {
  5455. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  5456. }
  5457. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5458. if colIdx.Type != ArgNumber {
  5459. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  5460. }
  5461. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  5462. if argsList.Len() == 4 {
  5463. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5464. if rangeLookup.Type == ArgError {
  5465. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5466. }
  5467. if rangeLookup.Number == 0 {
  5468. exactMatch = true
  5469. }
  5470. }
  5471. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5472. start:
  5473. for idx, mtx := range tableArray.Matrix {
  5474. lhs := mtx[0]
  5475. switch lookupValue.Type {
  5476. case ArgNumber:
  5477. if !lookupValue.Boolean {
  5478. lhs = mtx[0].ToNumber()
  5479. if lhs.Type == ArgError {
  5480. lhs = mtx[0]
  5481. }
  5482. }
  5483. case ArgMatrix:
  5484. lhs = tableArray
  5485. }
  5486. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5487. matchIdx = idx
  5488. wasExact = true
  5489. break start
  5490. }
  5491. }
  5492. } else {
  5493. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  5494. }
  5495. if matchIdx == -1 {
  5496. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5497. }
  5498. mtx := tableArray.Matrix[matchIdx]
  5499. if col < 0 || col >= len(mtx) {
  5500. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  5501. }
  5502. if wasExact || !exactMatch {
  5503. return mtx[col]
  5504. }
  5505. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5506. }
  5507. // vlookupBinarySearch finds the position of a target value when range lookup
  5508. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5509. // return wrong result.
  5510. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5511. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  5512. for low <= high {
  5513. var mid int = low + (high-low)/2
  5514. mtx := tableArray.Matrix[mid]
  5515. lhs := mtx[0]
  5516. switch lookupValue.Type {
  5517. case ArgNumber:
  5518. if !lookupValue.Boolean {
  5519. lhs = mtx[0].ToNumber()
  5520. if lhs.Type == ArgError {
  5521. lhs = mtx[0]
  5522. }
  5523. }
  5524. case ArgMatrix:
  5525. lhs = tableArray
  5526. }
  5527. result := compareFormulaArg(lhs, lookupValue, false, false)
  5528. if result == criteriaEq {
  5529. matchIdx, wasExact = mid, true
  5530. return
  5531. } else if result == criteriaG {
  5532. high = mid - 1
  5533. } else if result == criteriaL {
  5534. matchIdx, low = mid, mid+1
  5535. if lhs.Value() != "" {
  5536. lastMatchIdx = matchIdx
  5537. }
  5538. } else {
  5539. return -1, false
  5540. }
  5541. }
  5542. matchIdx, wasExact = lastMatchIdx, true
  5543. return
  5544. }
  5545. // vlookupBinarySearch finds the position of a target value when range lookup
  5546. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5547. // return wrong result.
  5548. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5549. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  5550. for low <= high {
  5551. var mid int = low + (high-low)/2
  5552. mtx := row[mid]
  5553. result := compareFormulaArg(mtx, lookupValue, false, false)
  5554. if result == criteriaEq {
  5555. matchIdx, wasExact = mid, true
  5556. return
  5557. } else if result == criteriaG {
  5558. high = mid - 1
  5559. } else if result == criteriaL {
  5560. low, lastMatchIdx = mid+1, mid
  5561. } else {
  5562. return -1, false
  5563. }
  5564. }
  5565. matchIdx, wasExact = lastMatchIdx, true
  5566. return
  5567. }
  5568. // LOOKUP function performs an approximate match lookup in a one-column or
  5569. // one-row range, and returns the corresponding value from another one-column
  5570. // or one-row range. The syntax of the function is:
  5571. //
  5572. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  5573. //
  5574. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  5575. if argsList.Len() < 2 {
  5576. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  5577. }
  5578. if argsList.Len() > 3 {
  5579. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  5580. }
  5581. lookupValue := argsList.Front().Value.(formulaArg)
  5582. lookupVector := argsList.Front().Next().Value.(formulaArg)
  5583. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  5584. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  5585. }
  5586. cols, matchIdx := lookupCol(lookupVector), -1
  5587. for idx, col := range cols {
  5588. lhs := lookupValue
  5589. switch col.Type {
  5590. case ArgNumber:
  5591. lhs = lhs.ToNumber()
  5592. if !col.Boolean {
  5593. if lhs.Type == ArgError {
  5594. lhs = lookupValue
  5595. }
  5596. }
  5597. }
  5598. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  5599. matchIdx = idx
  5600. break
  5601. }
  5602. }
  5603. column := cols
  5604. if argsList.Len() == 3 {
  5605. column = lookupCol(argsList.Back().Value.(formulaArg))
  5606. }
  5607. if matchIdx < 0 || matchIdx >= len(column) {
  5608. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  5609. }
  5610. return column[matchIdx]
  5611. }
  5612. // lookupCol extract columns for LOOKUP.
  5613. func lookupCol(arr formulaArg) []formulaArg {
  5614. col := arr.List
  5615. if arr.Type == ArgMatrix {
  5616. col = nil
  5617. for _, r := range arr.Matrix {
  5618. if len(r) > 0 {
  5619. col = append(col, r[0])
  5620. continue
  5621. }
  5622. col = append(col, newEmptyFormulaArg())
  5623. }
  5624. }
  5625. return col
  5626. }
  5627. // ROW function returns the first row number within a supplied reference or
  5628. // the number of the current row. The syntax of the function is:
  5629. //
  5630. // ROW([reference])
  5631. //
  5632. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  5633. if argsList.Len() > 1 {
  5634. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  5635. }
  5636. if argsList.Len() == 1 {
  5637. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5638. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  5639. }
  5640. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5641. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  5642. }
  5643. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5644. }
  5645. _, row, _ := CellNameToCoordinates(fn.cell)
  5646. return newNumberFormulaArg(float64(row))
  5647. }
  5648. // ROWS function takes an Excel range and returns the number of rows that are
  5649. // contained within the range. The syntax of the function is:
  5650. //
  5651. // ROWS(array)
  5652. //
  5653. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  5654. if argsList.Len() != 1 {
  5655. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  5656. }
  5657. var min, max int
  5658. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5659. crs := argsList.Front().Value.(formulaArg).cellRanges
  5660. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5661. if min == 0 {
  5662. min = cr.Value.(cellRange).From.Row
  5663. }
  5664. if min > cr.Value.(cellRange).From.Row {
  5665. min = cr.Value.(cellRange).From.Row
  5666. }
  5667. if min > cr.Value.(cellRange).To.Row {
  5668. min = cr.Value.(cellRange).To.Row
  5669. }
  5670. if max < cr.Value.(cellRange).To.Row {
  5671. max = cr.Value.(cellRange).To.Row
  5672. }
  5673. if max < cr.Value.(cellRange).From.Row {
  5674. max = cr.Value.(cellRange).From.Row
  5675. }
  5676. }
  5677. }
  5678. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5679. cr := argsList.Front().Value.(formulaArg).cellRefs
  5680. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5681. if min == 0 {
  5682. min = refs.Value.(cellRef).Row
  5683. }
  5684. if min > refs.Value.(cellRef).Row {
  5685. min = refs.Value.(cellRef).Row
  5686. }
  5687. if max < refs.Value.(cellRef).Row {
  5688. max = refs.Value.(cellRef).Row
  5689. }
  5690. }
  5691. }
  5692. if max == TotalRows {
  5693. return newStringFormulaArg(strconv.Itoa(TotalRows))
  5694. }
  5695. result := max - min + 1
  5696. if max == min {
  5697. if min == 0 {
  5698. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5699. }
  5700. return newNumberFormulaArg(float64(1))
  5701. }
  5702. return newStringFormulaArg(strconv.Itoa(result))
  5703. }
  5704. // Web Functions
  5705. // ENCODEURL function returns a URL-encoded string, replacing certain
  5706. // non-alphanumeric characters with the percentage symbol (%) and a
  5707. // hexadecimal number. The syntax of the function is:
  5708. //
  5709. // ENCODEURL(url)
  5710. //
  5711. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  5712. if argsList.Len() != 1 {
  5713. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  5714. }
  5715. token := argsList.Front().Value.(formulaArg).Value()
  5716. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  5717. }