calc.go 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "github.com/xuri/efp"
  28. )
  29. // Excel formula errors
  30. const (
  31. formulaErrorDIV = "#DIV/0!"
  32. formulaErrorNAME = "#NAME?"
  33. formulaErrorNA = "#N/A"
  34. formulaErrorNUM = "#NUM!"
  35. formulaErrorVALUE = "#VALUE!"
  36. formulaErrorREF = "#REF!"
  37. formulaErrorNULL = "#NULL"
  38. formulaErrorSPILL = "#SPILL!"
  39. formulaErrorCALC = "#CALC!"
  40. formulaErrorGETTINGDATA = "#GETTING_DATA"
  41. )
  42. // Numeric precision correct numeric values as legacy Excel application
  43. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  44. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  45. // has a decimal representation that is an infinite string of ones, Excel
  46. // displays only the leading 15 figures. In the second line, the number one
  47. // is added to the fraction, and again Excel displays only 15 figures.
  48. const numericPrecision = 1000000000000000
  49. // cellRef defines the structure of a cell reference.
  50. type cellRef struct {
  51. Col int
  52. Row int
  53. Sheet string
  54. }
  55. // cellRef defines the structure of a cell range.
  56. type cellRange struct {
  57. From cellRef
  58. To cellRef
  59. }
  60. // formula criteria condition enumeration.
  61. const (
  62. _ byte = iota
  63. criteriaEq
  64. criteriaLe
  65. criteriaGe
  66. criteriaL
  67. criteriaG
  68. criteriaBeg
  69. criteriaEnd
  70. criteriaErr
  71. )
  72. // formulaCriteria defined formula criteria parser result.
  73. type formulaCriteria struct {
  74. Type byte
  75. Condition string
  76. }
  77. // ArgType is the type if formula argument type.
  78. type ArgType byte
  79. // Formula argument types enumeration.
  80. const (
  81. ArgUnknown ArgType = iota
  82. ArgNumber
  83. ArgString
  84. ArgList
  85. ArgMatrix
  86. ArgError
  87. ArgEmpty
  88. )
  89. // formulaArg is the argument of a formula or function.
  90. type formulaArg struct {
  91. SheetName string
  92. Number float64
  93. String string
  94. List []formulaArg
  95. Matrix [][]formulaArg
  96. Boolean bool
  97. Error string
  98. Type ArgType
  99. }
  100. // Value returns a string data type of the formula argument.
  101. func (fa formulaArg) Value() (value string) {
  102. switch fa.Type {
  103. case ArgNumber:
  104. if fa.Boolean {
  105. if fa.Number == 0 {
  106. return "FALSE"
  107. }
  108. return "TRUE"
  109. }
  110. return fmt.Sprintf("%g", fa.Number)
  111. case ArgString:
  112. return fa.String
  113. case ArgError:
  114. return fa.Error
  115. }
  116. return
  117. }
  118. // ToNumber returns a formula argument with number data type.
  119. func (fa formulaArg) ToNumber() formulaArg {
  120. var n float64
  121. var err error
  122. switch fa.Type {
  123. case ArgString:
  124. n, err = strconv.ParseFloat(fa.String, 64)
  125. if err != nil {
  126. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  127. }
  128. case ArgNumber:
  129. n = fa.Number
  130. }
  131. return newNumberFormulaArg(n)
  132. }
  133. // ToBool returns a formula argument with boolean data type.
  134. func (fa formulaArg) ToBool() formulaArg {
  135. var b bool
  136. var err error
  137. switch fa.Type {
  138. case ArgString:
  139. b, err = strconv.ParseBool(fa.String)
  140. if err != nil {
  141. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  142. }
  143. case ArgNumber:
  144. if fa.Boolean && fa.Number == 1 {
  145. b = true
  146. }
  147. }
  148. return newBoolFormulaArg(b)
  149. }
  150. // ToList returns a formula argument with array data type.
  151. func (fa formulaArg) ToList() []formulaArg {
  152. if fa.Type == ArgMatrix {
  153. list := []formulaArg{}
  154. for _, row := range fa.Matrix {
  155. list = append(list, row...)
  156. }
  157. return list
  158. }
  159. if fa.Type == ArgList {
  160. return fa.List
  161. }
  162. return nil
  163. }
  164. // formulaFuncs is the type of the formula functions.
  165. type formulaFuncs struct {
  166. f *File
  167. sheet string
  168. }
  169. // tokenPriority defined basic arithmetic operator priority.
  170. var tokenPriority = map[string]int{
  171. "^": 5,
  172. "*": 4,
  173. "/": 4,
  174. "+": 3,
  175. "-": 3,
  176. "=": 2,
  177. "<>": 2,
  178. "<": 2,
  179. "<=": 2,
  180. ">": 2,
  181. ">=": 2,
  182. "&": 1,
  183. }
  184. // CalcCellValue provides a function to get calculated cell value. This
  185. // feature is currently in working processing. Array formula, table formula
  186. // and some other formulas are not supported currently.
  187. //
  188. // Supported formula functions:
  189. //
  190. // ABS
  191. // ACOS
  192. // ACOSH
  193. // ACOT
  194. // ACOTH
  195. // AND
  196. // ARABIC
  197. // ASIN
  198. // ASINH
  199. // ATAN
  200. // ATAN2
  201. // ATANH
  202. // AVERAGE
  203. // AVERAGEA
  204. // BASE
  205. // CEILING
  206. // CEILING.MATH
  207. // CEILING.PRECISE
  208. // CHOOSE
  209. // CLEAN
  210. // COMBIN
  211. // COMBINA
  212. // CONCAT
  213. // CONCATENATE
  214. // COS
  215. // COSH
  216. // COT
  217. // COTH
  218. // COUNT
  219. // COUNTA
  220. // COUNTBLANK
  221. // CSC
  222. // CSCH
  223. // DATE
  224. // DECIMAL
  225. // DEGREES
  226. // ENCODEURL
  227. // EVEN
  228. // EXACT
  229. // EXP
  230. // FACT
  231. // FACTDOUBLE
  232. // FALSE
  233. // FISHER
  234. // FISHERINV
  235. // FLOOR
  236. // FLOOR.MATH
  237. // FLOOR.PRECISE
  238. // GAMMA
  239. // GAMMALN
  240. // GCD
  241. // HLOOKUP
  242. // IF
  243. // IFERROR
  244. // INT
  245. // ISBLANK
  246. // ISERR
  247. // ISERROR
  248. // ISEVEN
  249. // ISNA
  250. // ISNONTEXT
  251. // ISNUMBER
  252. // ISODD
  253. // ISTEXT
  254. // ISO.CEILING
  255. // LCM
  256. // LEN
  257. // LENB
  258. // LN
  259. // LOG
  260. // LOG10
  261. // LOOKUP
  262. // LOWER
  263. // MAX
  264. // MDETERM
  265. // MEDIAN
  266. // MIN
  267. // MINA
  268. // MOD
  269. // MROUND
  270. // MULTINOMIAL
  271. // MUNIT
  272. // NA
  273. // NOT
  274. // ODD
  275. // OR
  276. // PERMUT
  277. // PI
  278. // POWER
  279. // PRODUCT
  280. // PROPER
  281. // QUOTIENT
  282. // RADIANS
  283. // RAND
  284. // RANDBETWEEN
  285. // REPT
  286. // ROMAN
  287. // ROUND
  288. // ROUNDDOWN
  289. // ROUNDUP
  290. // SEC
  291. // SECH
  292. // SHEET
  293. // SIGN
  294. // SIN
  295. // SINH
  296. // SQRT
  297. // SQRTPI
  298. // SUM
  299. // SUMIF
  300. // SUMSQ
  301. // TAN
  302. // TANH
  303. // TRIM
  304. // TRUE
  305. // TRUNC
  306. // UPPER
  307. // VLOOKUP
  308. //
  309. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  310. var (
  311. formula string
  312. token efp.Token
  313. )
  314. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  315. return
  316. }
  317. ps := efp.ExcelParser()
  318. tokens := ps.Parse(formula)
  319. if tokens == nil {
  320. return
  321. }
  322. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  323. return
  324. }
  325. result = token.TValue
  326. isNum, precision := isNumeric(result)
  327. if isNum && precision > 15 {
  328. num, _ := roundPrecision(result)
  329. result = strings.ToUpper(num)
  330. }
  331. return
  332. }
  333. // getPriority calculate arithmetic operator priority.
  334. func getPriority(token efp.Token) (pri int) {
  335. pri = tokenPriority[token.TValue]
  336. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  337. pri = 6
  338. }
  339. if isBeginParenthesesToken(token) { // (
  340. pri = 0
  341. }
  342. return
  343. }
  344. // newNumberFormulaArg constructs a number formula argument.
  345. func newNumberFormulaArg(n float64) formulaArg {
  346. if math.IsNaN(n) {
  347. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  348. }
  349. return formulaArg{Type: ArgNumber, Number: n}
  350. }
  351. // newStringFormulaArg constructs a string formula argument.
  352. func newStringFormulaArg(s string) formulaArg {
  353. return formulaArg{Type: ArgString, String: s}
  354. }
  355. // newMatrixFormulaArg constructs a matrix formula argument.
  356. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  357. return formulaArg{Type: ArgMatrix, Matrix: m}
  358. }
  359. // newListFormulaArg create a list formula argument.
  360. func newListFormulaArg(l []formulaArg) formulaArg {
  361. return formulaArg{Type: ArgList, List: l}
  362. }
  363. // newBoolFormulaArg constructs a boolean formula argument.
  364. func newBoolFormulaArg(b bool) formulaArg {
  365. var n float64
  366. if b {
  367. n = 1
  368. }
  369. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  370. }
  371. // newErrorFormulaArg create an error formula argument of a given type with a
  372. // specified error message.
  373. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  374. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  375. }
  376. // newEmptyFormulaArg create an empty formula argument.
  377. func newEmptyFormulaArg() formulaArg {
  378. return formulaArg{Type: ArgEmpty}
  379. }
  380. // evalInfixExp evaluate syntax analysis by given infix expression after
  381. // lexical analysis. Evaluate an infix expression containing formulas by
  382. // stacks:
  383. //
  384. // opd - Operand
  385. // opt - Operator
  386. // opf - Operation formula
  387. // opfd - Operand of the operation formula
  388. // opft - Operator of the operation formula
  389. //
  390. // Evaluate arguments of the operation formula by list:
  391. //
  392. // args - Arguments of the operation formula
  393. //
  394. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  395. //
  396. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  397. var err error
  398. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  399. for i := 0; i < len(tokens); i++ {
  400. token := tokens[i]
  401. // out of function stack
  402. if opfStack.Len() == 0 {
  403. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  404. return efp.Token{}, err
  405. }
  406. }
  407. // function start
  408. if isFunctionStartToken(token) {
  409. opfStack.Push(token)
  410. argsStack.Push(list.New().Init())
  411. continue
  412. }
  413. // in function stack, walk 2 token at once
  414. if opfStack.Len() > 0 {
  415. var nextToken efp.Token
  416. if i+1 < len(tokens) {
  417. nextToken = tokens[i+1]
  418. }
  419. // current token is args or range, skip next token, order required: parse reference first
  420. if token.TSubType == efp.TokenSubTypeRange {
  421. if !opftStack.Empty() {
  422. // parse reference: must reference at here
  423. result, err := f.parseReference(sheet, token.TValue)
  424. if err != nil {
  425. return efp.Token{TValue: formulaErrorNAME}, err
  426. }
  427. if result.Type != ArgString {
  428. return efp.Token{}, errors.New(formulaErrorVALUE)
  429. }
  430. opfdStack.Push(efp.Token{
  431. TType: efp.TokenTypeOperand,
  432. TSubType: efp.TokenSubTypeNumber,
  433. TValue: result.String,
  434. })
  435. continue
  436. }
  437. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  438. // parse reference: reference or range at here
  439. result, err := f.parseReference(sheet, token.TValue)
  440. if err != nil {
  441. return efp.Token{TValue: formulaErrorNAME}, err
  442. }
  443. if result.Type == ArgUnknown {
  444. return efp.Token{}, errors.New(formulaErrorVALUE)
  445. }
  446. argsStack.Peek().(*list.List).PushBack(result)
  447. continue
  448. }
  449. }
  450. // check current token is opft
  451. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  452. return efp.Token{}, err
  453. }
  454. // current token is arg
  455. if token.TType == efp.TokenTypeArgument {
  456. for !opftStack.Empty() {
  457. // calculate trigger
  458. topOpt := opftStack.Peek().(efp.Token)
  459. if err := calculate(opfdStack, topOpt); err != nil {
  460. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  461. }
  462. opftStack.Pop()
  463. }
  464. if !opfdStack.Empty() {
  465. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  466. }
  467. continue
  468. }
  469. // current token is logical
  470. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  471. }
  472. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  473. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  474. }
  475. // current token is text
  476. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  477. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  478. }
  479. if err = f.evalInfixExpFunc(sheet, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  480. return efp.Token{}, err
  481. }
  482. }
  483. }
  484. for optStack.Len() != 0 {
  485. topOpt := optStack.Peek().(efp.Token)
  486. if err = calculate(opdStack, topOpt); err != nil {
  487. return efp.Token{}, err
  488. }
  489. optStack.Pop()
  490. }
  491. if opdStack.Len() == 0 {
  492. return efp.Token{}, errors.New("formula not valid")
  493. }
  494. return opdStack.Peek().(efp.Token), err
  495. }
  496. // evalInfixExpFunc evaluate formula function in the infix expression.
  497. func (f *File) evalInfixExpFunc(sheet string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  498. if !isFunctionStopToken(token) {
  499. return nil
  500. }
  501. // current token is function stop
  502. for !opftStack.Empty() {
  503. // calculate trigger
  504. topOpt := opftStack.Peek().(efp.Token)
  505. if err := calculate(opfdStack, topOpt); err != nil {
  506. return err
  507. }
  508. opftStack.Pop()
  509. }
  510. // push opfd to args
  511. if opfdStack.Len() > 0 {
  512. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  513. }
  514. // call formula function to evaluate
  515. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet}, strings.NewReplacer(
  516. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  517. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  518. if arg.Type == ArgError && opfStack.Len() == 1 {
  519. return errors.New(arg.Value())
  520. }
  521. argsStack.Pop()
  522. opfStack.Pop()
  523. if opfStack.Len() > 0 { // still in function stack
  524. if nextToken.TType == efp.TokenTypeOperatorInfix {
  525. // mathematics calculate in formula function
  526. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  527. } else {
  528. argsStack.Peek().(*list.List).PushBack(arg)
  529. }
  530. } else {
  531. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  532. }
  533. return nil
  534. }
  535. // calcPow evaluate exponentiation arithmetic operations.
  536. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  537. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  538. if err != nil {
  539. return err
  540. }
  541. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  542. if err != nil {
  543. return err
  544. }
  545. result := math.Pow(lOpdVal, rOpdVal)
  546. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  547. return nil
  548. }
  549. // calcEq evaluate equal arithmetic operations.
  550. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  551. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  552. return nil
  553. }
  554. // calcNEq evaluate not equal arithmetic operations.
  555. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  556. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  557. return nil
  558. }
  559. // calcL evaluate less than arithmetic operations.
  560. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  561. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  562. if err != nil {
  563. return err
  564. }
  565. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  566. if err != nil {
  567. return err
  568. }
  569. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  570. return nil
  571. }
  572. // calcLe evaluate less than or equal arithmetic operations.
  573. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  574. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  575. if err != nil {
  576. return err
  577. }
  578. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  579. if err != nil {
  580. return err
  581. }
  582. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  583. return nil
  584. }
  585. // calcG evaluate greater than or equal arithmetic operations.
  586. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  587. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  588. if err != nil {
  589. return err
  590. }
  591. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  592. if err != nil {
  593. return err
  594. }
  595. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  596. return nil
  597. }
  598. // calcGe evaluate greater than or equal arithmetic operations.
  599. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  600. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  601. if err != nil {
  602. return err
  603. }
  604. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  605. if err != nil {
  606. return err
  607. }
  608. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  609. return nil
  610. }
  611. // calcSplice evaluate splice '&' operations.
  612. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  613. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  614. return nil
  615. }
  616. // calcAdd evaluate addition arithmetic operations.
  617. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  618. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  619. if err != nil {
  620. return err
  621. }
  622. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  623. if err != nil {
  624. return err
  625. }
  626. result := lOpdVal + rOpdVal
  627. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  628. return nil
  629. }
  630. // calcSubtract evaluate subtraction arithmetic operations.
  631. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  632. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  633. if err != nil {
  634. return err
  635. }
  636. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  637. if err != nil {
  638. return err
  639. }
  640. result := lOpdVal - rOpdVal
  641. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  642. return nil
  643. }
  644. // calcMultiply evaluate multiplication arithmetic operations.
  645. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  646. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  647. if err != nil {
  648. return err
  649. }
  650. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  651. if err != nil {
  652. return err
  653. }
  654. result := lOpdVal * rOpdVal
  655. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  656. return nil
  657. }
  658. // calcDiv evaluate division arithmetic operations.
  659. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  660. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  661. if err != nil {
  662. return err
  663. }
  664. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  665. if err != nil {
  666. return err
  667. }
  668. result := lOpdVal / rOpdVal
  669. if rOpdVal == 0 {
  670. return errors.New(formulaErrorDIV)
  671. }
  672. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  673. return nil
  674. }
  675. // calculate evaluate basic arithmetic operations.
  676. func calculate(opdStack *Stack, opt efp.Token) error {
  677. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  678. if opdStack.Len() < 1 {
  679. return errors.New("formula not valid")
  680. }
  681. opd := opdStack.Pop().(efp.Token)
  682. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  683. if err != nil {
  684. return err
  685. }
  686. result := 0 - opdVal
  687. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  688. }
  689. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  690. "^": calcPow,
  691. "*": calcMultiply,
  692. "/": calcDiv,
  693. "+": calcAdd,
  694. "=": calcEq,
  695. "<>": calcNEq,
  696. "<": calcL,
  697. "<=": calcLe,
  698. ">": calcG,
  699. ">=": calcGe,
  700. "&": calcSplice,
  701. }
  702. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  703. if opdStack.Len() < 2 {
  704. return errors.New("formula not valid")
  705. }
  706. rOpd := opdStack.Pop().(efp.Token)
  707. lOpd := opdStack.Pop().(efp.Token)
  708. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  709. return err
  710. }
  711. }
  712. fn, ok := tokenCalcFunc[opt.TValue]
  713. if ok {
  714. if opdStack.Len() < 2 {
  715. return errors.New("formula not valid")
  716. }
  717. rOpd := opdStack.Pop().(efp.Token)
  718. lOpd := opdStack.Pop().(efp.Token)
  719. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  720. return err
  721. }
  722. }
  723. return nil
  724. }
  725. // parseOperatorPrefixToken parse operator prefix token.
  726. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  727. if optStack.Len() == 0 {
  728. optStack.Push(token)
  729. } else {
  730. tokenPriority := getPriority(token)
  731. topOpt := optStack.Peek().(efp.Token)
  732. topOptPriority := getPriority(topOpt)
  733. if tokenPriority > topOptPriority {
  734. optStack.Push(token)
  735. } else {
  736. for tokenPriority <= topOptPriority {
  737. optStack.Pop()
  738. if err = calculate(opdStack, topOpt); err != nil {
  739. return
  740. }
  741. if optStack.Len() > 0 {
  742. topOpt = optStack.Peek().(efp.Token)
  743. topOptPriority = getPriority(topOpt)
  744. continue
  745. }
  746. break
  747. }
  748. optStack.Push(token)
  749. }
  750. }
  751. return
  752. }
  753. // isFunctionStartToken determine if the token is function stop.
  754. func isFunctionStartToken(token efp.Token) bool {
  755. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  756. }
  757. // isFunctionStopToken determine if the token is function stop.
  758. func isFunctionStopToken(token efp.Token) bool {
  759. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  760. }
  761. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  762. func isBeginParenthesesToken(token efp.Token) bool {
  763. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  764. }
  765. // isEndParenthesesToken determine if the token is end parentheses: ).
  766. func isEndParenthesesToken(token efp.Token) bool {
  767. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  768. }
  769. // isOperatorPrefixToken determine if the token is parse operator prefix
  770. // token.
  771. func isOperatorPrefixToken(token efp.Token) bool {
  772. _, ok := tokenPriority[token.TValue]
  773. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  774. return true
  775. }
  776. return false
  777. }
  778. // getDefinedNameRefTo convert defined name to reference range.
  779. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  780. for _, definedName := range f.GetDefinedName() {
  781. if definedName.Name == definedNameName {
  782. refTo = definedName.RefersTo
  783. // worksheet scope takes precedence over scope workbook when both definedNames exist
  784. if definedName.Scope == currentSheet {
  785. break
  786. }
  787. }
  788. }
  789. return refTo
  790. }
  791. // parseToken parse basic arithmetic operator priority and evaluate based on
  792. // operators and operands.
  793. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  794. // parse reference: must reference at here
  795. if token.TSubType == efp.TokenSubTypeRange {
  796. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  797. if refTo != "" {
  798. token.TValue = refTo
  799. }
  800. result, err := f.parseReference(sheet, token.TValue)
  801. if err != nil {
  802. return errors.New(formulaErrorNAME)
  803. }
  804. if result.Type != ArgString {
  805. return errors.New(formulaErrorVALUE)
  806. }
  807. token.TValue = result.String
  808. token.TType = efp.TokenTypeOperand
  809. token.TSubType = efp.TokenSubTypeNumber
  810. }
  811. if isOperatorPrefixToken(token) {
  812. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  813. return err
  814. }
  815. }
  816. if isBeginParenthesesToken(token) { // (
  817. optStack.Push(token)
  818. }
  819. if isEndParenthesesToken(token) { // )
  820. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  821. topOpt := optStack.Peek().(efp.Token)
  822. if err := calculate(opdStack, topOpt); err != nil {
  823. return err
  824. }
  825. optStack.Pop()
  826. }
  827. optStack.Pop()
  828. }
  829. // opd
  830. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  831. opdStack.Push(token)
  832. }
  833. return nil
  834. }
  835. // parseReference parse reference and extract values by given reference
  836. // characters and default sheet name.
  837. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  838. reference = strings.Replace(reference, "$", "", -1)
  839. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  840. for _, ref := range strings.Split(reference, ":") {
  841. tokens := strings.Split(ref, "!")
  842. cr := cellRef{}
  843. if len(tokens) == 2 { // have a worksheet name
  844. cr.Sheet = tokens[0]
  845. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  846. return
  847. }
  848. if refs.Len() > 0 {
  849. e := refs.Back()
  850. cellRefs.PushBack(e.Value.(cellRef))
  851. refs.Remove(e)
  852. }
  853. refs.PushBack(cr)
  854. continue
  855. }
  856. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  857. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  858. return
  859. }
  860. cellRanges.PushBack(cellRange{
  861. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  862. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  863. })
  864. cellRefs.Init()
  865. arg, err = f.rangeResolver(cellRefs, cellRanges)
  866. return
  867. }
  868. e := refs.Back()
  869. if e == nil {
  870. cr.Sheet = sheet
  871. refs.PushBack(cr)
  872. continue
  873. }
  874. cellRanges.PushBack(cellRange{
  875. From: e.Value.(cellRef),
  876. To: cr,
  877. })
  878. refs.Remove(e)
  879. }
  880. if refs.Len() > 0 {
  881. e := refs.Back()
  882. cellRefs.PushBack(e.Value.(cellRef))
  883. refs.Remove(e)
  884. }
  885. arg, err = f.rangeResolver(cellRefs, cellRanges)
  886. return
  887. }
  888. // prepareValueRange prepare value range.
  889. func prepareValueRange(cr cellRange, valueRange []int) {
  890. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  891. valueRange[0] = cr.From.Row
  892. }
  893. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  894. valueRange[2] = cr.From.Col
  895. }
  896. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  897. valueRange[1] = cr.To.Row
  898. }
  899. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  900. valueRange[3] = cr.To.Col
  901. }
  902. }
  903. // prepareValueRef prepare value reference.
  904. func prepareValueRef(cr cellRef, valueRange []int) {
  905. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  906. valueRange[0] = cr.Row
  907. }
  908. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  909. valueRange[2] = cr.Col
  910. }
  911. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  912. valueRange[1] = cr.Row
  913. }
  914. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  915. valueRange[3] = cr.Col
  916. }
  917. }
  918. // rangeResolver extract value as string from given reference and range list.
  919. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  920. // be reference A1:B3.
  921. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  922. // value range order: from row, to row, from column, to column
  923. valueRange := []int{0, 0, 0, 0}
  924. var sheet string
  925. // prepare value range
  926. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  927. cr := temp.Value.(cellRange)
  928. if cr.From.Sheet != cr.To.Sheet {
  929. err = errors.New(formulaErrorVALUE)
  930. }
  931. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  932. _ = sortCoordinates(rng)
  933. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  934. prepareValueRange(cr, valueRange)
  935. if cr.From.Sheet != "" {
  936. sheet = cr.From.Sheet
  937. }
  938. }
  939. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  940. cr := temp.Value.(cellRef)
  941. if cr.Sheet != "" {
  942. sheet = cr.Sheet
  943. }
  944. prepareValueRef(cr, valueRange)
  945. }
  946. // extract value from ranges
  947. if cellRanges.Len() > 0 {
  948. arg.Type = ArgMatrix
  949. for row := valueRange[0]; row <= valueRange[1]; row++ {
  950. var matrixRow = []formulaArg{}
  951. for col := valueRange[2]; col <= valueRange[3]; col++ {
  952. var cell, value string
  953. if cell, err = CoordinatesToCellName(col, row); err != nil {
  954. return
  955. }
  956. if value, err = f.GetCellValue(sheet, cell); err != nil {
  957. return
  958. }
  959. matrixRow = append(matrixRow, formulaArg{
  960. String: value,
  961. Type: ArgString,
  962. })
  963. }
  964. arg.Matrix = append(arg.Matrix, matrixRow)
  965. }
  966. return
  967. }
  968. // extract value from references
  969. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  970. cr := temp.Value.(cellRef)
  971. var cell string
  972. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  973. return
  974. }
  975. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  976. return
  977. }
  978. arg.Type = ArgString
  979. }
  980. return
  981. }
  982. // callFuncByName calls the no error or only error return function with
  983. // reflect by given receiver, name and parameters.
  984. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  985. function := reflect.ValueOf(receiver).MethodByName(name)
  986. if function.IsValid() {
  987. rt := function.Call(params)
  988. if len(rt) == 0 {
  989. return
  990. }
  991. arg = rt[0].Interface().(formulaArg)
  992. return
  993. }
  994. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  995. }
  996. // formulaCriteriaParser parse formula criteria.
  997. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  998. fc = &formulaCriteria{}
  999. if exp == "" {
  1000. return
  1001. }
  1002. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1003. fc.Type, fc.Condition = criteriaEq, match[1]
  1004. return
  1005. }
  1006. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1007. fc.Type, fc.Condition = criteriaEq, match[1]
  1008. return
  1009. }
  1010. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1011. fc.Type, fc.Condition = criteriaLe, match[1]
  1012. return
  1013. }
  1014. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1015. fc.Type, fc.Condition = criteriaGe, match[1]
  1016. return
  1017. }
  1018. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1019. fc.Type, fc.Condition = criteriaL, match[1]
  1020. return
  1021. }
  1022. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1023. fc.Type, fc.Condition = criteriaG, match[1]
  1024. return
  1025. }
  1026. if strings.Contains(exp, "*") {
  1027. if strings.HasPrefix(exp, "*") {
  1028. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1029. }
  1030. if strings.HasSuffix(exp, "*") {
  1031. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1032. }
  1033. return
  1034. }
  1035. fc.Type, fc.Condition = criteriaEq, exp
  1036. return
  1037. }
  1038. // formulaCriteriaEval evaluate formula criteria expression.
  1039. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1040. var value, expected float64
  1041. var e error
  1042. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1043. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1044. return
  1045. }
  1046. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1047. return
  1048. }
  1049. return
  1050. }
  1051. switch criteria.Type {
  1052. case criteriaEq:
  1053. return val == criteria.Condition, err
  1054. case criteriaLe:
  1055. value, expected, e = prepareValue(val, criteria.Condition)
  1056. return value <= expected && e == nil, err
  1057. case criteriaGe:
  1058. value, expected, e = prepareValue(val, criteria.Condition)
  1059. return value >= expected && e == nil, err
  1060. case criteriaL:
  1061. value, expected, e = prepareValue(val, criteria.Condition)
  1062. return value < expected && e == nil, err
  1063. case criteriaG:
  1064. value, expected, e = prepareValue(val, criteria.Condition)
  1065. return value > expected && e == nil, err
  1066. case criteriaBeg:
  1067. return strings.HasPrefix(val, criteria.Condition), err
  1068. case criteriaEnd:
  1069. return strings.HasSuffix(val, criteria.Condition), err
  1070. }
  1071. return
  1072. }
  1073. // Math and Trigonometric functions
  1074. // ABS function returns the absolute value of any supplied number. The syntax
  1075. // of the function is:
  1076. //
  1077. // ABS(number)
  1078. //
  1079. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1080. if argsList.Len() != 1 {
  1081. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1082. }
  1083. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1084. if arg.Type == ArgError {
  1085. return arg
  1086. }
  1087. return newNumberFormulaArg(math.Abs(arg.Number))
  1088. }
  1089. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1090. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1091. // the function is:
  1092. //
  1093. // ACOS(number)
  1094. //
  1095. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1096. if argsList.Len() != 1 {
  1097. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1098. }
  1099. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1100. if arg.Type == ArgError {
  1101. return arg
  1102. }
  1103. return newNumberFormulaArg(math.Acos(arg.Number))
  1104. }
  1105. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1106. // of the function is:
  1107. //
  1108. // ACOSH(number)
  1109. //
  1110. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1111. if argsList.Len() != 1 {
  1112. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1113. }
  1114. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1115. if arg.Type == ArgError {
  1116. return arg
  1117. }
  1118. return newNumberFormulaArg(math.Acosh(arg.Number))
  1119. }
  1120. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1121. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1122. // of the function is:
  1123. //
  1124. // ACOT(number)
  1125. //
  1126. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1127. if argsList.Len() != 1 {
  1128. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1129. }
  1130. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1131. if arg.Type == ArgError {
  1132. return arg
  1133. }
  1134. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1135. }
  1136. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1137. // value. The syntax of the function is:
  1138. //
  1139. // ACOTH(number)
  1140. //
  1141. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1142. if argsList.Len() != 1 {
  1143. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1144. }
  1145. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1146. if arg.Type == ArgError {
  1147. return arg
  1148. }
  1149. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1150. }
  1151. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1152. // of the function is:
  1153. //
  1154. // ARABIC(text)
  1155. //
  1156. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1157. if argsList.Len() != 1 {
  1158. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1159. }
  1160. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1161. val, last, prefix := 0.0, 0.0, 1.0
  1162. for _, char := range argsList.Front().Value.(formulaArg).String {
  1163. digit := 0.0
  1164. if char == '-' {
  1165. prefix = -1
  1166. continue
  1167. }
  1168. digit = charMap[char]
  1169. val += digit
  1170. switch {
  1171. case last == digit && (last == 5 || last == 50 || last == 500):
  1172. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1173. case 2*last == digit:
  1174. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1175. }
  1176. if last < digit {
  1177. val -= 2 * last
  1178. }
  1179. last = digit
  1180. }
  1181. return newNumberFormulaArg(prefix * val)
  1182. }
  1183. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1184. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1185. // of the function is:
  1186. //
  1187. // ASIN(number)
  1188. //
  1189. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1190. if argsList.Len() != 1 {
  1191. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1192. }
  1193. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1194. if arg.Type == ArgError {
  1195. return arg
  1196. }
  1197. return newNumberFormulaArg(math.Asin(arg.Number))
  1198. }
  1199. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1200. // The syntax of the function is:
  1201. //
  1202. // ASINH(number)
  1203. //
  1204. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1205. if argsList.Len() != 1 {
  1206. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1207. }
  1208. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1209. if arg.Type == ArgError {
  1210. return arg
  1211. }
  1212. return newNumberFormulaArg(math.Asinh(arg.Number))
  1213. }
  1214. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1215. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1216. // syntax of the function is:
  1217. //
  1218. // ATAN(number)
  1219. //
  1220. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1221. if argsList.Len() != 1 {
  1222. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1223. }
  1224. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1225. if arg.Type == ArgError {
  1226. return arg
  1227. }
  1228. return newNumberFormulaArg(math.Atan(arg.Number))
  1229. }
  1230. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1231. // number. The syntax of the function is:
  1232. //
  1233. // ATANH(number)
  1234. //
  1235. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1236. if argsList.Len() != 1 {
  1237. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1238. }
  1239. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1240. if arg.Type == ArgError {
  1241. return arg
  1242. }
  1243. return newNumberFormulaArg(math.Atanh(arg.Number))
  1244. }
  1245. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1246. // given set of x and y coordinates, and returns an angle, in radians, between
  1247. // -π/2 and +π/2. The syntax of the function is:
  1248. //
  1249. // ATAN2(x_num,y_num)
  1250. //
  1251. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1252. if argsList.Len() != 2 {
  1253. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1254. }
  1255. x := argsList.Back().Value.(formulaArg).ToNumber()
  1256. if x.Type == ArgError {
  1257. return x
  1258. }
  1259. y := argsList.Front().Value.(formulaArg).ToNumber()
  1260. if y.Type == ArgError {
  1261. return y
  1262. }
  1263. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1264. }
  1265. // BASE function converts a number into a supplied base (radix), and returns a
  1266. // text representation of the calculated value. The syntax of the function is:
  1267. //
  1268. // BASE(number,radix,[min_length])
  1269. //
  1270. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1271. if argsList.Len() < 2 {
  1272. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1273. }
  1274. if argsList.Len() > 3 {
  1275. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1276. }
  1277. var minLength int
  1278. var err error
  1279. number := argsList.Front().Value.(formulaArg).ToNumber()
  1280. if number.Type == ArgError {
  1281. return number
  1282. }
  1283. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1284. if radix.Type == ArgError {
  1285. return radix
  1286. }
  1287. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1288. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1289. }
  1290. if argsList.Len() > 2 {
  1291. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1292. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1293. }
  1294. }
  1295. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1296. if len(result) < minLength {
  1297. result = strings.Repeat("0", minLength-len(result)) + result
  1298. }
  1299. return newStringFormulaArg(strings.ToUpper(result))
  1300. }
  1301. // CEILING function rounds a supplied number away from zero, to the nearest
  1302. // multiple of a given number. The syntax of the function is:
  1303. //
  1304. // CEILING(number,significance)
  1305. //
  1306. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1307. if argsList.Len() == 0 {
  1308. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1309. }
  1310. if argsList.Len() > 2 {
  1311. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1312. }
  1313. number, significance, res := 0.0, 1.0, 0.0
  1314. n := argsList.Front().Value.(formulaArg).ToNumber()
  1315. if n.Type == ArgError {
  1316. return n
  1317. }
  1318. number = n.Number
  1319. if number < 0 {
  1320. significance = -1
  1321. }
  1322. if argsList.Len() > 1 {
  1323. s := argsList.Back().Value.(formulaArg).ToNumber()
  1324. if s.Type == ArgError {
  1325. return s
  1326. }
  1327. significance = s.Number
  1328. }
  1329. if significance < 0 && number > 0 {
  1330. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1331. }
  1332. if argsList.Len() == 1 {
  1333. return newNumberFormulaArg(math.Ceil(number))
  1334. }
  1335. number, res = math.Modf(number / significance)
  1336. if res > 0 {
  1337. number++
  1338. }
  1339. return newNumberFormulaArg(number * significance)
  1340. }
  1341. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1342. // significance. The syntax of the function is:
  1343. //
  1344. // CEILING.MATH(number,[significance],[mode])
  1345. //
  1346. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1347. if argsList.Len() == 0 {
  1348. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1349. }
  1350. if argsList.Len() > 3 {
  1351. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1352. }
  1353. number, significance, mode := 0.0, 1.0, 1.0
  1354. n := argsList.Front().Value.(formulaArg).ToNumber()
  1355. if n.Type == ArgError {
  1356. return n
  1357. }
  1358. number = n.Number
  1359. if number < 0 {
  1360. significance = -1
  1361. }
  1362. if argsList.Len() > 1 {
  1363. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1364. if s.Type == ArgError {
  1365. return s
  1366. }
  1367. significance = s.Number
  1368. }
  1369. if argsList.Len() == 1 {
  1370. return newNumberFormulaArg(math.Ceil(number))
  1371. }
  1372. if argsList.Len() > 2 {
  1373. m := argsList.Back().Value.(formulaArg).ToNumber()
  1374. if m.Type == ArgError {
  1375. return m
  1376. }
  1377. mode = m.Number
  1378. }
  1379. val, res := math.Modf(number / significance)
  1380. if res != 0 {
  1381. if number > 0 {
  1382. val++
  1383. } else if mode < 0 {
  1384. val--
  1385. }
  1386. }
  1387. return newNumberFormulaArg(val * significance)
  1388. }
  1389. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1390. // number's sign), to the nearest multiple of a given number. The syntax of
  1391. // the function is:
  1392. //
  1393. // CEILING.PRECISE(number,[significance])
  1394. //
  1395. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1396. if argsList.Len() == 0 {
  1397. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1398. }
  1399. if argsList.Len() > 2 {
  1400. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1401. }
  1402. number, significance := 0.0, 1.0
  1403. n := argsList.Front().Value.(formulaArg).ToNumber()
  1404. if n.Type == ArgError {
  1405. return n
  1406. }
  1407. number = n.Number
  1408. if number < 0 {
  1409. significance = -1
  1410. }
  1411. if argsList.Len() == 1 {
  1412. return newNumberFormulaArg(math.Ceil(number))
  1413. }
  1414. if argsList.Len() > 1 {
  1415. s := argsList.Back().Value.(formulaArg).ToNumber()
  1416. if s.Type == ArgError {
  1417. return s
  1418. }
  1419. significance = s.Number
  1420. significance = math.Abs(significance)
  1421. if significance == 0 {
  1422. return newNumberFormulaArg(significance)
  1423. }
  1424. }
  1425. val, res := math.Modf(number / significance)
  1426. if res != 0 {
  1427. if number > 0 {
  1428. val++
  1429. }
  1430. }
  1431. return newNumberFormulaArg(val * significance)
  1432. }
  1433. // COMBIN function calculates the number of combinations (in any order) of a
  1434. // given number objects from a set. The syntax of the function is:
  1435. //
  1436. // COMBIN(number,number_chosen)
  1437. //
  1438. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1439. if argsList.Len() != 2 {
  1440. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1441. }
  1442. number, chosen, val := 0.0, 0.0, 1.0
  1443. n := argsList.Front().Value.(formulaArg).ToNumber()
  1444. if n.Type == ArgError {
  1445. return n
  1446. }
  1447. number = n.Number
  1448. c := argsList.Back().Value.(formulaArg).ToNumber()
  1449. if c.Type == ArgError {
  1450. return c
  1451. }
  1452. chosen = c.Number
  1453. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1454. if chosen > number {
  1455. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1456. }
  1457. if chosen == number || chosen == 0 {
  1458. return newNumberFormulaArg(1)
  1459. }
  1460. for c := float64(1); c <= chosen; c++ {
  1461. val *= (number + 1 - c) / c
  1462. }
  1463. return newNumberFormulaArg(math.Ceil(val))
  1464. }
  1465. // COMBINA function calculates the number of combinations, with repetitions,
  1466. // of a given number objects from a set. The syntax of the function is:
  1467. //
  1468. // COMBINA(number,number_chosen)
  1469. //
  1470. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1471. if argsList.Len() != 2 {
  1472. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1473. }
  1474. var number, chosen float64
  1475. n := argsList.Front().Value.(formulaArg).ToNumber()
  1476. if n.Type == ArgError {
  1477. return n
  1478. }
  1479. number = n.Number
  1480. c := argsList.Back().Value.(formulaArg).ToNumber()
  1481. if c.Type == ArgError {
  1482. return c
  1483. }
  1484. chosen = c.Number
  1485. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1486. if number < chosen {
  1487. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1488. }
  1489. if number == 0 {
  1490. return newNumberFormulaArg(number)
  1491. }
  1492. args := list.New()
  1493. args.PushBack(formulaArg{
  1494. String: fmt.Sprintf("%g", number+chosen-1),
  1495. Type: ArgString,
  1496. })
  1497. args.PushBack(formulaArg{
  1498. String: fmt.Sprintf("%g", number-1),
  1499. Type: ArgString,
  1500. })
  1501. return fn.COMBIN(args)
  1502. }
  1503. // COS function calculates the cosine of a given angle. The syntax of the
  1504. // function is:
  1505. //
  1506. // COS(number)
  1507. //
  1508. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1509. if argsList.Len() != 1 {
  1510. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1511. }
  1512. val := argsList.Front().Value.(formulaArg).ToNumber()
  1513. if val.Type == ArgError {
  1514. return val
  1515. }
  1516. return newNumberFormulaArg(math.Cos(val.Number))
  1517. }
  1518. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1519. // The syntax of the function is:
  1520. //
  1521. // COSH(number)
  1522. //
  1523. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1524. if argsList.Len() != 1 {
  1525. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1526. }
  1527. val := argsList.Front().Value.(formulaArg).ToNumber()
  1528. if val.Type == ArgError {
  1529. return val
  1530. }
  1531. return newNumberFormulaArg(math.Cosh(val.Number))
  1532. }
  1533. // COT function calculates the cotangent of a given angle. The syntax of the
  1534. // function is:
  1535. //
  1536. // COT(number)
  1537. //
  1538. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1539. if argsList.Len() != 1 {
  1540. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1541. }
  1542. val := argsList.Front().Value.(formulaArg).ToNumber()
  1543. if val.Type == ArgError {
  1544. return val
  1545. }
  1546. if val.Number == 0 {
  1547. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1548. }
  1549. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1550. }
  1551. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1552. // angle. The syntax of the function is:
  1553. //
  1554. // COTH(number)
  1555. //
  1556. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1557. if argsList.Len() != 1 {
  1558. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1559. }
  1560. val := argsList.Front().Value.(formulaArg).ToNumber()
  1561. if val.Type == ArgError {
  1562. return val
  1563. }
  1564. if val.Number == 0 {
  1565. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1566. }
  1567. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1568. }
  1569. // CSC function calculates the cosecant of a given angle. The syntax of the
  1570. // function is:
  1571. //
  1572. // CSC(number)
  1573. //
  1574. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1575. if argsList.Len() != 1 {
  1576. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1577. }
  1578. val := argsList.Front().Value.(formulaArg).ToNumber()
  1579. if val.Type == ArgError {
  1580. return val
  1581. }
  1582. if val.Number == 0 {
  1583. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1584. }
  1585. return newNumberFormulaArg(1 / math.Sin(val.Number))
  1586. }
  1587. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1588. // angle. The syntax of the function is:
  1589. //
  1590. // CSCH(number)
  1591. //
  1592. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1593. if argsList.Len() != 1 {
  1594. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1595. }
  1596. val := argsList.Front().Value.(formulaArg).ToNumber()
  1597. if val.Type == ArgError {
  1598. return val
  1599. }
  1600. if val.Number == 0 {
  1601. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1602. }
  1603. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  1604. }
  1605. // DECIMAL function converts a text representation of a number in a specified
  1606. // base, into a decimal value. The syntax of the function is:
  1607. //
  1608. // DECIMAL(text,radix)
  1609. //
  1610. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1611. if argsList.Len() != 2 {
  1612. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1613. }
  1614. var text = argsList.Front().Value.(formulaArg).String
  1615. var radix int
  1616. var err error
  1617. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1618. if err != nil {
  1619. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1620. }
  1621. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1622. text = text[2:]
  1623. }
  1624. val, err := strconv.ParseInt(text, radix, 64)
  1625. if err != nil {
  1626. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1627. }
  1628. return newNumberFormulaArg(float64(val))
  1629. }
  1630. // DEGREES function converts radians into degrees. The syntax of the function
  1631. // is:
  1632. //
  1633. // DEGREES(angle)
  1634. //
  1635. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1636. if argsList.Len() != 1 {
  1637. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1638. }
  1639. val := argsList.Front().Value.(formulaArg).ToNumber()
  1640. if val.Type == ArgError {
  1641. return val
  1642. }
  1643. if val.Number == 0 {
  1644. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1645. }
  1646. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  1647. }
  1648. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1649. // positive number up and a negative number down), to the next even number.
  1650. // The syntax of the function is:
  1651. //
  1652. // EVEN(number)
  1653. //
  1654. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1655. if argsList.Len() != 1 {
  1656. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1657. }
  1658. number := argsList.Front().Value.(formulaArg).ToNumber()
  1659. if number.Type == ArgError {
  1660. return number
  1661. }
  1662. sign := math.Signbit(number.Number)
  1663. m, frac := math.Modf(number.Number / 2)
  1664. val := m * 2
  1665. if frac != 0 {
  1666. if !sign {
  1667. val += 2
  1668. } else {
  1669. val -= 2
  1670. }
  1671. }
  1672. return newNumberFormulaArg(val)
  1673. }
  1674. // EXP function calculates the value of the mathematical constant e, raised to
  1675. // the power of a given number. The syntax of the function is:
  1676. //
  1677. // EXP(number)
  1678. //
  1679. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1680. if argsList.Len() != 1 {
  1681. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1682. }
  1683. number := argsList.Front().Value.(formulaArg).ToNumber()
  1684. if number.Type == ArgError {
  1685. return number
  1686. }
  1687. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  1688. }
  1689. // fact returns the factorial of a supplied number.
  1690. func fact(number float64) float64 {
  1691. val := float64(1)
  1692. for i := float64(2); i <= number; i++ {
  1693. val *= i
  1694. }
  1695. return val
  1696. }
  1697. // FACT function returns the factorial of a supplied number. The syntax of the
  1698. // function is:
  1699. //
  1700. // FACT(number)
  1701. //
  1702. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1703. if argsList.Len() != 1 {
  1704. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1705. }
  1706. number := argsList.Front().Value.(formulaArg).ToNumber()
  1707. if number.Type == ArgError {
  1708. return number
  1709. }
  1710. if number.Number < 0 {
  1711. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1712. }
  1713. return newNumberFormulaArg(fact(number.Number))
  1714. }
  1715. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1716. // syntax of the function is:
  1717. //
  1718. // FACTDOUBLE(number)
  1719. //
  1720. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1721. if argsList.Len() != 1 {
  1722. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1723. }
  1724. val := 1.0
  1725. number := argsList.Front().Value.(formulaArg).ToNumber()
  1726. if number.Type == ArgError {
  1727. return number
  1728. }
  1729. if number.Number < 0 {
  1730. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1731. }
  1732. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  1733. val *= i
  1734. }
  1735. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1736. }
  1737. // FLOOR function rounds a supplied number towards zero to the nearest
  1738. // multiple of a specified significance. The syntax of the function is:
  1739. //
  1740. // FLOOR(number,significance)
  1741. //
  1742. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1743. if argsList.Len() != 2 {
  1744. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1745. }
  1746. number := argsList.Front().Value.(formulaArg).ToNumber()
  1747. if number.Type == ArgError {
  1748. return number
  1749. }
  1750. significance := argsList.Back().Value.(formulaArg).ToNumber()
  1751. if significance.Type == ArgError {
  1752. return significance
  1753. }
  1754. if significance.Number < 0 && number.Number >= 0 {
  1755. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1756. }
  1757. val := number.Number
  1758. val, res := math.Modf(val / significance.Number)
  1759. if res != 0 {
  1760. if number.Number < 0 && res < 0 {
  1761. val--
  1762. }
  1763. }
  1764. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  1765. }
  1766. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1767. // significance. The syntax of the function is:
  1768. //
  1769. // FLOOR.MATH(number,[significance],[mode])
  1770. //
  1771. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1772. if argsList.Len() == 0 {
  1773. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1774. }
  1775. if argsList.Len() > 3 {
  1776. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1777. }
  1778. significance, mode := 1.0, 1.0
  1779. number := argsList.Front().Value.(formulaArg).ToNumber()
  1780. if number.Type == ArgError {
  1781. return number
  1782. }
  1783. if number.Number < 0 {
  1784. significance = -1
  1785. }
  1786. if argsList.Len() > 1 {
  1787. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1788. if s.Type == ArgError {
  1789. return s
  1790. }
  1791. significance = s.Number
  1792. }
  1793. if argsList.Len() == 1 {
  1794. return newNumberFormulaArg(math.Floor(number.Number))
  1795. }
  1796. if argsList.Len() > 2 {
  1797. m := argsList.Back().Value.(formulaArg).ToNumber()
  1798. if m.Type == ArgError {
  1799. return m
  1800. }
  1801. mode = m.Number
  1802. }
  1803. val, res := math.Modf(number.Number / significance)
  1804. if res != 0 && number.Number < 0 && mode > 0 {
  1805. val--
  1806. }
  1807. return newNumberFormulaArg(val * significance)
  1808. }
  1809. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1810. // of significance. The syntax of the function is:
  1811. //
  1812. // FLOOR.PRECISE(number,[significance])
  1813. //
  1814. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1815. if argsList.Len() == 0 {
  1816. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1817. }
  1818. if argsList.Len() > 2 {
  1819. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1820. }
  1821. var significance float64
  1822. number := argsList.Front().Value.(formulaArg).ToNumber()
  1823. if number.Type == ArgError {
  1824. return number
  1825. }
  1826. if number.Number < 0 {
  1827. significance = -1
  1828. }
  1829. if argsList.Len() == 1 {
  1830. return newNumberFormulaArg(math.Floor(number.Number))
  1831. }
  1832. if argsList.Len() > 1 {
  1833. s := argsList.Back().Value.(formulaArg).ToNumber()
  1834. if s.Type == ArgError {
  1835. return s
  1836. }
  1837. significance = s.Number
  1838. significance = math.Abs(significance)
  1839. if significance == 0 {
  1840. return newNumberFormulaArg(significance)
  1841. }
  1842. }
  1843. val, res := math.Modf(number.Number / significance)
  1844. if res != 0 {
  1845. if number.Number < 0 {
  1846. val--
  1847. }
  1848. }
  1849. return newNumberFormulaArg(val * significance)
  1850. }
  1851. // gcd returns the greatest common divisor of two supplied integers.
  1852. func gcd(x, y float64) float64 {
  1853. x, y = math.Trunc(x), math.Trunc(y)
  1854. if x == 0 {
  1855. return y
  1856. }
  1857. if y == 0 {
  1858. return x
  1859. }
  1860. for x != y {
  1861. if x > y {
  1862. x = x - y
  1863. } else {
  1864. y = y - x
  1865. }
  1866. }
  1867. return x
  1868. }
  1869. // GCD function returns the greatest common divisor of two or more supplied
  1870. // integers. The syntax of the function is:
  1871. //
  1872. // GCD(number1,[number2],...)
  1873. //
  1874. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  1875. if argsList.Len() == 0 {
  1876. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  1877. }
  1878. var (
  1879. val float64
  1880. nums = []float64{}
  1881. )
  1882. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1883. token := arg.Value.(formulaArg)
  1884. switch token.Type {
  1885. case ArgString:
  1886. num := token.ToNumber()
  1887. if num.Type == ArgError {
  1888. return num
  1889. }
  1890. val = num.Number
  1891. case ArgNumber:
  1892. val = token.Number
  1893. }
  1894. nums = append(nums, val)
  1895. }
  1896. if nums[0] < 0 {
  1897. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1898. }
  1899. if len(nums) == 1 {
  1900. return newNumberFormulaArg(nums[0])
  1901. }
  1902. cd := nums[0]
  1903. for i := 1; i < len(nums); i++ {
  1904. if nums[i] < 0 {
  1905. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1906. }
  1907. cd = gcd(cd, nums[i])
  1908. }
  1909. return newNumberFormulaArg(cd)
  1910. }
  1911. // INT function truncates a supplied number down to the closest integer. The
  1912. // syntax of the function is:
  1913. //
  1914. // INT(number)
  1915. //
  1916. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  1917. if argsList.Len() != 1 {
  1918. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  1919. }
  1920. number := argsList.Front().Value.(formulaArg).ToNumber()
  1921. if number.Type == ArgError {
  1922. return number
  1923. }
  1924. val, frac := math.Modf(number.Number)
  1925. if frac < 0 {
  1926. val--
  1927. }
  1928. return newNumberFormulaArg(val)
  1929. }
  1930. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1931. // sign), to the nearest multiple of a supplied significance. The syntax of
  1932. // the function is:
  1933. //
  1934. // ISO.CEILING(number,[significance])
  1935. //
  1936. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  1937. if argsList.Len() == 0 {
  1938. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  1939. }
  1940. if argsList.Len() > 2 {
  1941. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  1942. }
  1943. var significance float64
  1944. number := argsList.Front().Value.(formulaArg).ToNumber()
  1945. if number.Type == ArgError {
  1946. return number
  1947. }
  1948. if number.Number < 0 {
  1949. significance = -1
  1950. }
  1951. if argsList.Len() == 1 {
  1952. return newNumberFormulaArg(math.Ceil(number.Number))
  1953. }
  1954. if argsList.Len() > 1 {
  1955. s := argsList.Back().Value.(formulaArg).ToNumber()
  1956. if s.Type == ArgError {
  1957. return s
  1958. }
  1959. significance = s.Number
  1960. significance = math.Abs(significance)
  1961. if significance == 0 {
  1962. return newNumberFormulaArg(significance)
  1963. }
  1964. }
  1965. val, res := math.Modf(number.Number / significance)
  1966. if res != 0 {
  1967. if number.Number > 0 {
  1968. val++
  1969. }
  1970. }
  1971. return newNumberFormulaArg(val * significance)
  1972. }
  1973. // lcm returns the least common multiple of two supplied integers.
  1974. func lcm(a, b float64) float64 {
  1975. a = math.Trunc(a)
  1976. b = math.Trunc(b)
  1977. if a == 0 && b == 0 {
  1978. return 0
  1979. }
  1980. return a * b / gcd(a, b)
  1981. }
  1982. // LCM function returns the least common multiple of two or more supplied
  1983. // integers. The syntax of the function is:
  1984. //
  1985. // LCM(number1,[number2],...)
  1986. //
  1987. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  1988. if argsList.Len() == 0 {
  1989. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  1990. }
  1991. var (
  1992. val float64
  1993. nums = []float64{}
  1994. err error
  1995. )
  1996. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1997. token := arg.Value.(formulaArg)
  1998. switch token.Type {
  1999. case ArgString:
  2000. if token.String == "" {
  2001. continue
  2002. }
  2003. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2004. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2005. }
  2006. case ArgNumber:
  2007. val = token.Number
  2008. }
  2009. nums = append(nums, val)
  2010. }
  2011. if nums[0] < 0 {
  2012. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2013. }
  2014. if len(nums) == 1 {
  2015. return newNumberFormulaArg(nums[0])
  2016. }
  2017. cm := nums[0]
  2018. for i := 1; i < len(nums); i++ {
  2019. if nums[i] < 0 {
  2020. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2021. }
  2022. cm = lcm(cm, nums[i])
  2023. }
  2024. return newNumberFormulaArg(cm)
  2025. }
  2026. // LN function calculates the natural logarithm of a given number. The syntax
  2027. // of the function is:
  2028. //
  2029. // LN(number)
  2030. //
  2031. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2032. if argsList.Len() != 1 {
  2033. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2034. }
  2035. number := argsList.Front().Value.(formulaArg).ToNumber()
  2036. if number.Type == ArgError {
  2037. return number
  2038. }
  2039. return newNumberFormulaArg(math.Log(number.Number))
  2040. }
  2041. // LOG function calculates the logarithm of a given number, to a supplied
  2042. // base. The syntax of the function is:
  2043. //
  2044. // LOG(number,[base])
  2045. //
  2046. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2047. if argsList.Len() == 0 {
  2048. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2049. }
  2050. if argsList.Len() > 2 {
  2051. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2052. }
  2053. base := 10.0
  2054. number := argsList.Front().Value.(formulaArg).ToNumber()
  2055. if number.Type == ArgError {
  2056. return number
  2057. }
  2058. if argsList.Len() > 1 {
  2059. b := argsList.Back().Value.(formulaArg).ToNumber()
  2060. if b.Type == ArgError {
  2061. return b
  2062. }
  2063. base = b.Number
  2064. }
  2065. if number.Number == 0 {
  2066. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2067. }
  2068. if base == 0 {
  2069. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2070. }
  2071. if base == 1 {
  2072. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2073. }
  2074. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2075. }
  2076. // LOG10 function calculates the base 10 logarithm of a given number. The
  2077. // syntax of the function is:
  2078. //
  2079. // LOG10(number)
  2080. //
  2081. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2082. if argsList.Len() != 1 {
  2083. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2084. }
  2085. number := argsList.Front().Value.(formulaArg).ToNumber()
  2086. if number.Type == ArgError {
  2087. return number
  2088. }
  2089. return newNumberFormulaArg(math.Log10(number.Number))
  2090. }
  2091. // minor function implement a minor of a matrix A is the determinant of some
  2092. // smaller square matrix.
  2093. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2094. ret := [][]float64{}
  2095. for i := range sqMtx {
  2096. if i == 0 {
  2097. continue
  2098. }
  2099. row := []float64{}
  2100. for j := range sqMtx {
  2101. if j == idx {
  2102. continue
  2103. }
  2104. row = append(row, sqMtx[i][j])
  2105. }
  2106. ret = append(ret, row)
  2107. }
  2108. return ret
  2109. }
  2110. // det determinant of the 2x2 matrix.
  2111. func det(sqMtx [][]float64) float64 {
  2112. if len(sqMtx) == 2 {
  2113. m00 := sqMtx[0][0]
  2114. m01 := sqMtx[0][1]
  2115. m10 := sqMtx[1][0]
  2116. m11 := sqMtx[1][1]
  2117. return m00*m11 - m10*m01
  2118. }
  2119. var res, sgn float64 = 0, 1
  2120. for j := range sqMtx {
  2121. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2122. sgn *= -1
  2123. }
  2124. return res
  2125. }
  2126. // MDETERM calculates the determinant of a square matrix. The
  2127. // syntax of the function is:
  2128. //
  2129. // MDETERM(array)
  2130. //
  2131. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2132. var (
  2133. num float64
  2134. numMtx = [][]float64{}
  2135. err error
  2136. strMtx [][]formulaArg
  2137. )
  2138. if argsList.Len() < 1 {
  2139. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2140. }
  2141. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2142. var rows = len(strMtx)
  2143. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2144. if len(row) != rows {
  2145. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2146. }
  2147. numRow := []float64{}
  2148. for _, ele := range row {
  2149. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2150. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2151. }
  2152. numRow = append(numRow, num)
  2153. }
  2154. numMtx = append(numMtx, numRow)
  2155. }
  2156. return newNumberFormulaArg(det(numMtx))
  2157. }
  2158. // MOD function returns the remainder of a division between two supplied
  2159. // numbers. The syntax of the function is:
  2160. //
  2161. // MOD(number,divisor)
  2162. //
  2163. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2164. if argsList.Len() != 2 {
  2165. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2166. }
  2167. number := argsList.Front().Value.(formulaArg).ToNumber()
  2168. if number.Type == ArgError {
  2169. return number
  2170. }
  2171. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2172. if divisor.Type == ArgError {
  2173. return divisor
  2174. }
  2175. if divisor.Number == 0 {
  2176. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2177. }
  2178. trunc, rem := math.Modf(number.Number / divisor.Number)
  2179. if rem < 0 {
  2180. trunc--
  2181. }
  2182. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2183. }
  2184. // MROUND function rounds a supplied number up or down to the nearest multiple
  2185. // of a given number. The syntax of the function is:
  2186. //
  2187. // MROUND(number,multiple)
  2188. //
  2189. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2190. if argsList.Len() != 2 {
  2191. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2192. }
  2193. n := argsList.Front().Value.(formulaArg).ToNumber()
  2194. if n.Type == ArgError {
  2195. return n
  2196. }
  2197. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2198. if multiple.Type == ArgError {
  2199. return multiple
  2200. }
  2201. if multiple.Number == 0 {
  2202. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2203. }
  2204. if multiple.Number < 0 && n.Number > 0 ||
  2205. multiple.Number > 0 && n.Number < 0 {
  2206. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2207. }
  2208. number, res := math.Modf(n.Number / multiple.Number)
  2209. if math.Trunc(res+0.5) > 0 {
  2210. number++
  2211. }
  2212. return newNumberFormulaArg(number * multiple.Number)
  2213. }
  2214. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2215. // supplied values to the product of factorials of those values. The syntax of
  2216. // the function is:
  2217. //
  2218. // MULTINOMIAL(number1,[number2],...)
  2219. //
  2220. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2221. val, num, denom := 0.0, 0.0, 1.0
  2222. var err error
  2223. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2224. token := arg.Value.(formulaArg)
  2225. switch token.Type {
  2226. case ArgString:
  2227. if token.String == "" {
  2228. continue
  2229. }
  2230. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2231. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2232. }
  2233. case ArgNumber:
  2234. val = token.Number
  2235. }
  2236. num += val
  2237. denom *= fact(val)
  2238. }
  2239. return newNumberFormulaArg(fact(num) / denom)
  2240. }
  2241. // MUNIT function returns the unit matrix for a specified dimension. The
  2242. // syntax of the function is:
  2243. //
  2244. // MUNIT(dimension)
  2245. //
  2246. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2247. if argsList.Len() != 1 {
  2248. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2249. }
  2250. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2251. if dimension.Type == ArgError || dimension.Number < 0 {
  2252. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2253. }
  2254. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2255. for i := 0; i < int(dimension.Number); i++ {
  2256. row := make([]formulaArg, int(dimension.Number))
  2257. for j := 0; j < int(dimension.Number); j++ {
  2258. if i == j {
  2259. row[j] = newNumberFormulaArg(1.0)
  2260. } else {
  2261. row[j] = newNumberFormulaArg(0.0)
  2262. }
  2263. }
  2264. matrix = append(matrix, row)
  2265. }
  2266. return newMatrixFormulaArg(matrix)
  2267. }
  2268. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2269. // number up and a negative number down), to the next odd number. The syntax
  2270. // of the function is:
  2271. //
  2272. // ODD(number)
  2273. //
  2274. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2275. if argsList.Len() != 1 {
  2276. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2277. }
  2278. number := argsList.Back().Value.(formulaArg).ToNumber()
  2279. if number.Type == ArgError {
  2280. return number
  2281. }
  2282. if number.Number == 0 {
  2283. return newNumberFormulaArg(1)
  2284. }
  2285. sign := math.Signbit(number.Number)
  2286. m, frac := math.Modf((number.Number - 1) / 2)
  2287. val := m*2 + 1
  2288. if frac != 0 {
  2289. if !sign {
  2290. val += 2
  2291. } else {
  2292. val -= 2
  2293. }
  2294. }
  2295. return newNumberFormulaArg(val)
  2296. }
  2297. // PI function returns the value of the mathematical constant π (pi), accurate
  2298. // to 15 digits (14 decimal places). The syntax of the function is:
  2299. //
  2300. // PI()
  2301. //
  2302. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2303. if argsList.Len() != 0 {
  2304. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2305. }
  2306. return newNumberFormulaArg(math.Pi)
  2307. }
  2308. // POWER function calculates a given number, raised to a supplied power.
  2309. // The syntax of the function is:
  2310. //
  2311. // POWER(number,power)
  2312. //
  2313. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2314. if argsList.Len() != 2 {
  2315. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2316. }
  2317. x := argsList.Front().Value.(formulaArg).ToNumber()
  2318. if x.Type == ArgError {
  2319. return x
  2320. }
  2321. y := argsList.Back().Value.(formulaArg).ToNumber()
  2322. if y.Type == ArgError {
  2323. return y
  2324. }
  2325. if x.Number == 0 && y.Number == 0 {
  2326. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2327. }
  2328. if x.Number == 0 && y.Number < 0 {
  2329. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2330. }
  2331. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2332. }
  2333. // PRODUCT function returns the product (multiplication) of a supplied set of
  2334. // numerical values. The syntax of the function is:
  2335. //
  2336. // PRODUCT(number1,[number2],...)
  2337. //
  2338. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2339. val, product := 0.0, 1.0
  2340. var err error
  2341. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2342. token := arg.Value.(formulaArg)
  2343. switch token.Type {
  2344. case ArgUnknown:
  2345. continue
  2346. case ArgString:
  2347. if token.String == "" {
  2348. continue
  2349. }
  2350. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2351. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2352. }
  2353. product = product * val
  2354. case ArgNumber:
  2355. product = product * token.Number
  2356. case ArgMatrix:
  2357. for _, row := range token.Matrix {
  2358. for _, value := range row {
  2359. if value.String == "" {
  2360. continue
  2361. }
  2362. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2363. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2364. }
  2365. product = product * val
  2366. }
  2367. }
  2368. }
  2369. }
  2370. return newNumberFormulaArg(product)
  2371. }
  2372. // QUOTIENT function returns the integer portion of a division between two
  2373. // supplied numbers. The syntax of the function is:
  2374. //
  2375. // QUOTIENT(numerator,denominator)
  2376. //
  2377. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2378. if argsList.Len() != 2 {
  2379. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2380. }
  2381. x := argsList.Front().Value.(formulaArg).ToNumber()
  2382. if x.Type == ArgError {
  2383. return x
  2384. }
  2385. y := argsList.Back().Value.(formulaArg).ToNumber()
  2386. if y.Type == ArgError {
  2387. return y
  2388. }
  2389. if y.Number == 0 {
  2390. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2391. }
  2392. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2393. }
  2394. // RADIANS function converts radians into degrees. The syntax of the function is:
  2395. //
  2396. // RADIANS(angle)
  2397. //
  2398. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2399. if argsList.Len() != 1 {
  2400. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2401. }
  2402. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2403. if angle.Type == ArgError {
  2404. return angle
  2405. }
  2406. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2407. }
  2408. // RAND function generates a random real number between 0 and 1. The syntax of
  2409. // the function is:
  2410. //
  2411. // RAND()
  2412. //
  2413. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2414. if argsList.Len() != 0 {
  2415. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2416. }
  2417. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2418. }
  2419. // RANDBETWEEN function generates a random integer between two supplied
  2420. // integers. The syntax of the function is:
  2421. //
  2422. // RANDBETWEEN(bottom,top)
  2423. //
  2424. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2425. if argsList.Len() != 2 {
  2426. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2427. }
  2428. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2429. if bottom.Type == ArgError {
  2430. return bottom
  2431. }
  2432. top := argsList.Back().Value.(formulaArg).ToNumber()
  2433. if top.Type == ArgError {
  2434. return top
  2435. }
  2436. if top.Number < bottom.Number {
  2437. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2438. }
  2439. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2440. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2441. }
  2442. // romanNumerals defined a numeral system that originated in ancient Rome and
  2443. // remained the usual way of writing numbers throughout Europe well into the
  2444. // Late Middle Ages.
  2445. type romanNumerals struct {
  2446. n float64
  2447. s string
  2448. }
  2449. var romanTable = [][]romanNumerals{
  2450. {
  2451. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2452. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2453. },
  2454. {
  2455. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2456. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2457. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2458. },
  2459. {
  2460. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2461. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2462. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2463. },
  2464. {
  2465. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2466. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2467. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2468. {5, "V"}, {4, "IV"}, {1, "I"},
  2469. },
  2470. {
  2471. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2472. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2473. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2474. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2475. },
  2476. }
  2477. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2478. // integer, the function returns a text string depicting the roman numeral
  2479. // form of the number. The syntax of the function is:
  2480. //
  2481. // ROMAN(number,[form])
  2482. //
  2483. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2484. if argsList.Len() == 0 {
  2485. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2486. }
  2487. if argsList.Len() > 2 {
  2488. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2489. }
  2490. var form int
  2491. number := argsList.Front().Value.(formulaArg).ToNumber()
  2492. if number.Type == ArgError {
  2493. return number
  2494. }
  2495. if argsList.Len() > 1 {
  2496. f := argsList.Back().Value.(formulaArg).ToNumber()
  2497. if f.Type == ArgError {
  2498. return f
  2499. }
  2500. form = int(f.Number)
  2501. if form < 0 {
  2502. form = 0
  2503. } else if form > 4 {
  2504. form = 4
  2505. }
  2506. }
  2507. decimalTable := romanTable[0]
  2508. switch form {
  2509. case 1:
  2510. decimalTable = romanTable[1]
  2511. case 2:
  2512. decimalTable = romanTable[2]
  2513. case 3:
  2514. decimalTable = romanTable[3]
  2515. case 4:
  2516. decimalTable = romanTable[4]
  2517. }
  2518. val := math.Trunc(number.Number)
  2519. buf := bytes.Buffer{}
  2520. for _, r := range decimalTable {
  2521. for val >= r.n {
  2522. buf.WriteString(r.s)
  2523. val -= r.n
  2524. }
  2525. }
  2526. return newStringFormulaArg(buf.String())
  2527. }
  2528. type roundMode byte
  2529. const (
  2530. closest roundMode = iota
  2531. down
  2532. up
  2533. )
  2534. // round rounds a supplied number up or down.
  2535. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2536. var significance float64
  2537. if digits > 0 {
  2538. significance = math.Pow(1/10.0, digits)
  2539. } else {
  2540. significance = math.Pow(10.0, -digits)
  2541. }
  2542. val, res := math.Modf(number / significance)
  2543. switch mode {
  2544. case closest:
  2545. const eps = 0.499999999
  2546. if res >= eps {
  2547. val++
  2548. } else if res <= -eps {
  2549. val--
  2550. }
  2551. case down:
  2552. case up:
  2553. if res > 0 {
  2554. val++
  2555. } else if res < 0 {
  2556. val--
  2557. }
  2558. }
  2559. return val * significance
  2560. }
  2561. // ROUND function rounds a supplied number up or down, to a specified number
  2562. // of decimal places. The syntax of the function is:
  2563. //
  2564. // ROUND(number,num_digits)
  2565. //
  2566. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2567. if argsList.Len() != 2 {
  2568. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2569. }
  2570. number := argsList.Front().Value.(formulaArg).ToNumber()
  2571. if number.Type == ArgError {
  2572. return number
  2573. }
  2574. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2575. if digits.Type == ArgError {
  2576. return digits
  2577. }
  2578. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2579. }
  2580. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2581. // specified number of decimal places. The syntax of the function is:
  2582. //
  2583. // ROUNDDOWN(number,num_digits)
  2584. //
  2585. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2586. if argsList.Len() != 2 {
  2587. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2588. }
  2589. number := argsList.Front().Value.(formulaArg).ToNumber()
  2590. if number.Type == ArgError {
  2591. return number
  2592. }
  2593. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2594. if digits.Type == ArgError {
  2595. return digits
  2596. }
  2597. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  2598. }
  2599. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2600. // specified number of decimal places. The syntax of the function is:
  2601. //
  2602. // ROUNDUP(number,num_digits)
  2603. //
  2604. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2605. if argsList.Len() != 2 {
  2606. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2607. }
  2608. number := argsList.Front().Value.(formulaArg).ToNumber()
  2609. if number.Type == ArgError {
  2610. return number
  2611. }
  2612. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2613. if digits.Type == ArgError {
  2614. return digits
  2615. }
  2616. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  2617. }
  2618. // SEC function calculates the secant of a given angle. The syntax of the
  2619. // function is:
  2620. //
  2621. // SEC(number)
  2622. //
  2623. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2624. if argsList.Len() != 1 {
  2625. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2626. }
  2627. number := argsList.Front().Value.(formulaArg).ToNumber()
  2628. if number.Type == ArgError {
  2629. return number
  2630. }
  2631. return newNumberFormulaArg(math.Cos(number.Number))
  2632. }
  2633. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2634. // The syntax of the function is:
  2635. //
  2636. // SECH(number)
  2637. //
  2638. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2639. if argsList.Len() != 1 {
  2640. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2641. }
  2642. number := argsList.Front().Value.(formulaArg).ToNumber()
  2643. if number.Type == ArgError {
  2644. return number
  2645. }
  2646. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  2647. }
  2648. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2649. // number. I.e. if the number is positive, the Sign function returns +1, if
  2650. // the number is negative, the function returns -1 and if the number is 0
  2651. // (zero), the function returns 0. The syntax of the function is:
  2652. //
  2653. // SIGN(number)
  2654. //
  2655. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2656. if argsList.Len() != 1 {
  2657. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2658. }
  2659. val := argsList.Front().Value.(formulaArg).ToNumber()
  2660. if val.Type == ArgError {
  2661. return val
  2662. }
  2663. if val.Number < 0 {
  2664. return newNumberFormulaArg(-1)
  2665. }
  2666. if val.Number > 0 {
  2667. return newNumberFormulaArg(1)
  2668. }
  2669. return newNumberFormulaArg(0)
  2670. }
  2671. // SIN function calculates the sine of a given angle. The syntax of the
  2672. // function is:
  2673. //
  2674. // SIN(number)
  2675. //
  2676. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2677. if argsList.Len() != 1 {
  2678. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2679. }
  2680. number := argsList.Front().Value.(formulaArg).ToNumber()
  2681. if number.Type == ArgError {
  2682. return number
  2683. }
  2684. return newNumberFormulaArg(math.Sin(number.Number))
  2685. }
  2686. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2687. // The syntax of the function is:
  2688. //
  2689. // SINH(number)
  2690. //
  2691. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2692. if argsList.Len() != 1 {
  2693. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2694. }
  2695. number := argsList.Front().Value.(formulaArg).ToNumber()
  2696. if number.Type == ArgError {
  2697. return number
  2698. }
  2699. return newNumberFormulaArg(math.Sinh(number.Number))
  2700. }
  2701. // SQRT function calculates the positive square root of a supplied number. The
  2702. // syntax of the function is:
  2703. //
  2704. // SQRT(number)
  2705. //
  2706. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2707. if argsList.Len() != 1 {
  2708. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2709. }
  2710. value := argsList.Front().Value.(formulaArg).ToNumber()
  2711. if value.Type == ArgError {
  2712. return value
  2713. }
  2714. if value.Number < 0 {
  2715. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2716. }
  2717. return newNumberFormulaArg(math.Sqrt(value.Number))
  2718. }
  2719. // SQRTPI function returns the square root of a supplied number multiplied by
  2720. // the mathematical constant, π. The syntax of the function is:
  2721. //
  2722. // SQRTPI(number)
  2723. //
  2724. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2725. if argsList.Len() != 1 {
  2726. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2727. }
  2728. number := argsList.Front().Value.(formulaArg).ToNumber()
  2729. if number.Type == ArgError {
  2730. return number
  2731. }
  2732. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  2733. }
  2734. // SUM function adds together a supplied set of numbers and returns the sum of
  2735. // these values. The syntax of the function is:
  2736. //
  2737. // SUM(number1,[number2],...)
  2738. //
  2739. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2740. var (
  2741. val, sum float64
  2742. err error
  2743. )
  2744. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2745. token := arg.Value.(formulaArg)
  2746. switch token.Type {
  2747. case ArgUnknown:
  2748. continue
  2749. case ArgString:
  2750. if token.String == "" {
  2751. continue
  2752. }
  2753. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2754. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2755. }
  2756. sum += val
  2757. case ArgNumber:
  2758. sum += token.Number
  2759. case ArgMatrix:
  2760. for _, row := range token.Matrix {
  2761. for _, value := range row {
  2762. if value.String == "" {
  2763. continue
  2764. }
  2765. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2766. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2767. }
  2768. sum += val
  2769. }
  2770. }
  2771. }
  2772. }
  2773. return newNumberFormulaArg(sum)
  2774. }
  2775. // SUMIF function finds the values in a supplied array, that satisfy a given
  2776. // criteria, and returns the sum of the corresponding values in a second
  2777. // supplied array. The syntax of the function is:
  2778. //
  2779. // SUMIF(range,criteria,[sum_range])
  2780. //
  2781. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  2782. if argsList.Len() < 2 {
  2783. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  2784. }
  2785. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2786. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2787. var sumRange [][]formulaArg
  2788. if argsList.Len() == 3 {
  2789. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2790. }
  2791. var sum, val float64
  2792. var err error
  2793. for rowIdx, row := range rangeMtx {
  2794. for colIdx, col := range row {
  2795. var ok bool
  2796. fromVal := col.String
  2797. if col.String == "" {
  2798. continue
  2799. }
  2800. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2801. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2802. }
  2803. if ok {
  2804. if argsList.Len() == 3 {
  2805. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2806. continue
  2807. }
  2808. fromVal = sumRange[rowIdx][colIdx].String
  2809. }
  2810. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2811. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2812. }
  2813. sum += val
  2814. }
  2815. }
  2816. }
  2817. return newNumberFormulaArg(sum)
  2818. }
  2819. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2820. // syntax of the function is:
  2821. //
  2822. // SUMSQ(number1,[number2],...)
  2823. //
  2824. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  2825. var val, sq float64
  2826. var err error
  2827. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2828. token := arg.Value.(formulaArg)
  2829. switch token.Type {
  2830. case ArgString:
  2831. if token.String == "" {
  2832. continue
  2833. }
  2834. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2835. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2836. }
  2837. sq += val * val
  2838. case ArgNumber:
  2839. sq += token.Number
  2840. case ArgMatrix:
  2841. for _, row := range token.Matrix {
  2842. for _, value := range row {
  2843. if value.String == "" {
  2844. continue
  2845. }
  2846. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2847. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2848. }
  2849. sq += val * val
  2850. }
  2851. }
  2852. }
  2853. }
  2854. return newNumberFormulaArg(sq)
  2855. }
  2856. // TAN function calculates the tangent of a given angle. The syntax of the
  2857. // function is:
  2858. //
  2859. // TAN(number)
  2860. //
  2861. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  2862. if argsList.Len() != 1 {
  2863. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  2864. }
  2865. number := argsList.Front().Value.(formulaArg).ToNumber()
  2866. if number.Type == ArgError {
  2867. return number
  2868. }
  2869. return newNumberFormulaArg(math.Tan(number.Number))
  2870. }
  2871. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2872. // number. The syntax of the function is:
  2873. //
  2874. // TANH(number)
  2875. //
  2876. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  2877. if argsList.Len() != 1 {
  2878. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  2879. }
  2880. number := argsList.Front().Value.(formulaArg).ToNumber()
  2881. if number.Type == ArgError {
  2882. return number
  2883. }
  2884. return newNumberFormulaArg(math.Tanh(number.Number))
  2885. }
  2886. // TRUNC function truncates a supplied number to a specified number of decimal
  2887. // places. The syntax of the function is:
  2888. //
  2889. // TRUNC(number,[number_digits])
  2890. //
  2891. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  2892. if argsList.Len() == 0 {
  2893. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  2894. }
  2895. var digits, adjust, rtrim float64
  2896. var err error
  2897. number := argsList.Front().Value.(formulaArg).ToNumber()
  2898. if number.Type == ArgError {
  2899. return number
  2900. }
  2901. if argsList.Len() > 1 {
  2902. d := argsList.Back().Value.(formulaArg).ToNumber()
  2903. if d.Type == ArgError {
  2904. return d
  2905. }
  2906. digits = d.Number
  2907. digits = math.Floor(digits)
  2908. }
  2909. adjust = math.Pow(10, digits)
  2910. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  2911. if x != 0 {
  2912. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2913. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2914. }
  2915. }
  2916. if (digits > 0) && (rtrim < adjust/10) {
  2917. return newNumberFormulaArg(number.Number)
  2918. }
  2919. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  2920. }
  2921. // Statistical Functions
  2922. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  2923. // The syntax of the function is:
  2924. //
  2925. // AVERAGE(number1,[number2],...)
  2926. //
  2927. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  2928. args := []formulaArg{}
  2929. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2930. args = append(args, arg.Value.(formulaArg))
  2931. }
  2932. count, sum := fn.countSum(false, args)
  2933. if count == 0 {
  2934. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  2935. }
  2936. return newNumberFormulaArg(sum / count)
  2937. }
  2938. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  2939. // with text cell and zero values. The syntax of the function is:
  2940. //
  2941. // AVERAGEA(number1,[number2],...)
  2942. //
  2943. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  2944. args := []formulaArg{}
  2945. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2946. args = append(args, arg.Value.(formulaArg))
  2947. }
  2948. count, sum := fn.countSum(true, args)
  2949. if count == 0 {
  2950. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  2951. }
  2952. return newNumberFormulaArg(sum / count)
  2953. }
  2954. // countSum get count and sum for a formula arguments array.
  2955. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  2956. for _, arg := range args {
  2957. switch arg.Type {
  2958. case ArgNumber:
  2959. if countText || !arg.Boolean {
  2960. sum += arg.Number
  2961. count++
  2962. }
  2963. case ArgString:
  2964. num := arg.ToNumber()
  2965. if countText && num.Type == ArgError && arg.String != "" {
  2966. count++
  2967. }
  2968. if num.Type == ArgNumber {
  2969. sum += num.Number
  2970. count++
  2971. }
  2972. case ArgList, ArgMatrix:
  2973. cnt, summary := fn.countSum(countText, arg.ToList())
  2974. sum += summary
  2975. count += cnt
  2976. }
  2977. }
  2978. return
  2979. }
  2980. // COUNT function returns the count of numeric values in a supplied set of
  2981. // cells or values. This count includes both numbers and dates. The syntax of
  2982. // the function is:
  2983. //
  2984. // COUNT(value1,[value2],...)
  2985. //
  2986. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  2987. var count int
  2988. for token := argsList.Front(); token != nil; token = token.Next() {
  2989. arg := token.Value.(formulaArg)
  2990. switch arg.Type {
  2991. case ArgString:
  2992. if arg.ToNumber().Type != ArgError {
  2993. count++
  2994. }
  2995. case ArgNumber:
  2996. count++
  2997. case ArgMatrix:
  2998. for _, row := range arg.Matrix {
  2999. for _, value := range row {
  3000. if value.ToNumber().Type != ArgError {
  3001. count++
  3002. }
  3003. }
  3004. }
  3005. }
  3006. }
  3007. return newNumberFormulaArg(float64(count))
  3008. }
  3009. // COUNTA function returns the number of non-blanks within a supplied set of
  3010. // cells or values. The syntax of the function is:
  3011. //
  3012. // COUNTA(value1,[value2],...)
  3013. //
  3014. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3015. var count int
  3016. for token := argsList.Front(); token != nil; token = token.Next() {
  3017. arg := token.Value.(formulaArg)
  3018. switch arg.Type {
  3019. case ArgString:
  3020. if arg.String != "" {
  3021. count++
  3022. }
  3023. case ArgNumber:
  3024. count++
  3025. case ArgMatrix:
  3026. for _, row := range arg.ToList() {
  3027. switch row.Type {
  3028. case ArgString:
  3029. if row.String != "" {
  3030. count++
  3031. }
  3032. case ArgNumber:
  3033. count++
  3034. }
  3035. }
  3036. }
  3037. }
  3038. return newNumberFormulaArg(float64(count))
  3039. }
  3040. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3041. // The syntax of the function is:
  3042. //
  3043. // COUNTBLANK(range)
  3044. //
  3045. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3046. if argsList.Len() != 1 {
  3047. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3048. }
  3049. var count int
  3050. token := argsList.Front().Value.(formulaArg)
  3051. switch token.Type {
  3052. case ArgString:
  3053. if token.String == "" {
  3054. count++
  3055. }
  3056. case ArgList, ArgMatrix:
  3057. for _, row := range token.ToList() {
  3058. switch row.Type {
  3059. case ArgString:
  3060. if row.String == "" {
  3061. count++
  3062. }
  3063. case ArgEmpty:
  3064. count++
  3065. }
  3066. }
  3067. case ArgEmpty:
  3068. count++
  3069. }
  3070. return newNumberFormulaArg(float64(count))
  3071. }
  3072. // FISHER function calculates the Fisher Transformation for a supplied value.
  3073. // The syntax of the function is:
  3074. //
  3075. // FISHER(x)
  3076. //
  3077. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3078. if argsList.Len() != 1 {
  3079. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3080. }
  3081. token := argsList.Front().Value.(formulaArg)
  3082. switch token.Type {
  3083. case ArgString:
  3084. arg := token.ToNumber()
  3085. if arg.Type == ArgNumber {
  3086. if arg.Number <= -1 || arg.Number >= 1 {
  3087. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3088. }
  3089. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3090. }
  3091. case ArgNumber:
  3092. if token.Number <= -1 || token.Number >= 1 {
  3093. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3094. }
  3095. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3096. }
  3097. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3098. }
  3099. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3100. // returns a value between -1 and +1. The syntax of the function is:
  3101. //
  3102. // FISHERINV(y)
  3103. //
  3104. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3105. if argsList.Len() != 1 {
  3106. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3107. }
  3108. token := argsList.Front().Value.(formulaArg)
  3109. switch token.Type {
  3110. case ArgString:
  3111. arg := token.ToNumber()
  3112. if arg.Type == ArgNumber {
  3113. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3114. }
  3115. case ArgNumber:
  3116. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3117. }
  3118. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3119. }
  3120. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3121. // specified number, n. The syntax of the function is:
  3122. //
  3123. // GAMMA(number)
  3124. //
  3125. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3126. if argsList.Len() != 1 {
  3127. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3128. }
  3129. token := argsList.Front().Value.(formulaArg)
  3130. switch token.Type {
  3131. case ArgString:
  3132. arg := token.ToNumber()
  3133. if arg.Type == ArgNumber {
  3134. if arg.Number <= 0 {
  3135. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3136. }
  3137. return newNumberFormulaArg(math.Gamma(arg.Number))
  3138. }
  3139. case ArgNumber:
  3140. if token.Number <= 0 {
  3141. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3142. }
  3143. return newNumberFormulaArg(math.Gamma(token.Number))
  3144. }
  3145. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3146. }
  3147. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3148. // (n). The syntax of the function is:
  3149. //
  3150. // GAMMALN(x)
  3151. //
  3152. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3153. if argsList.Len() != 1 {
  3154. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3155. }
  3156. token := argsList.Front().Value.(formulaArg)
  3157. switch token.Type {
  3158. case ArgString:
  3159. arg := token.ToNumber()
  3160. if arg.Type == ArgNumber {
  3161. if arg.Number <= 0 {
  3162. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3163. }
  3164. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3165. }
  3166. case ArgNumber:
  3167. if token.Number <= 0 {
  3168. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3169. }
  3170. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3171. }
  3172. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3173. }
  3174. // MAX function returns the largest value from a supplied set of numeric
  3175. // values. The syntax of the function is:
  3176. //
  3177. // MAX(number1,[number2],...)
  3178. //
  3179. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3180. if argsList.Len() == 0 {
  3181. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3182. }
  3183. return fn.max(false, argsList)
  3184. }
  3185. // MAXA function returns the largest value from a supplied set of numeric
  3186. // values, while counting text and the logical value FALSE as the value 0 and
  3187. // counting the logical value TRUE as the value 1. The syntax of the function
  3188. // is:
  3189. //
  3190. // MAXA(number1,[number2],...)
  3191. //
  3192. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3193. if argsList.Len() == 0 {
  3194. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3195. }
  3196. return fn.max(true, argsList)
  3197. }
  3198. // max is an implementation of the formula function MAX and MAXA.
  3199. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3200. max := -math.MaxFloat64
  3201. for token := argsList.Front(); token != nil; token = token.Next() {
  3202. arg := token.Value.(formulaArg)
  3203. switch arg.Type {
  3204. case ArgString:
  3205. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3206. continue
  3207. } else {
  3208. num := arg.ToBool()
  3209. if num.Type == ArgNumber && num.Number > max {
  3210. max = num.Number
  3211. continue
  3212. }
  3213. }
  3214. num := arg.ToNumber()
  3215. if num.Type != ArgError && num.Number > max {
  3216. max = num.Number
  3217. }
  3218. case ArgNumber:
  3219. if arg.Number > max {
  3220. max = arg.Number
  3221. }
  3222. case ArgList, ArgMatrix:
  3223. for _, row := range arg.ToList() {
  3224. switch row.Type {
  3225. case ArgString:
  3226. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3227. continue
  3228. } else {
  3229. num := row.ToBool()
  3230. if num.Type == ArgNumber && num.Number > max {
  3231. max = num.Number
  3232. continue
  3233. }
  3234. }
  3235. num := row.ToNumber()
  3236. if num.Type != ArgError && num.Number > max {
  3237. max = num.Number
  3238. }
  3239. case ArgNumber:
  3240. if row.Number > max {
  3241. max = row.Number
  3242. }
  3243. }
  3244. }
  3245. case ArgError:
  3246. return arg
  3247. }
  3248. }
  3249. if max == -math.MaxFloat64 {
  3250. max = 0
  3251. }
  3252. return newNumberFormulaArg(max)
  3253. }
  3254. // MEDIAN function returns the statistical median (the middle value) of a list
  3255. // of supplied numbers. The syntax of the function is:
  3256. //
  3257. // MEDIAN(number1,[number2],...)
  3258. //
  3259. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3260. if argsList.Len() == 0 {
  3261. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3262. }
  3263. var values = []float64{}
  3264. var median, digits float64
  3265. var err error
  3266. for token := argsList.Front(); token != nil; token = token.Next() {
  3267. arg := token.Value.(formulaArg)
  3268. switch arg.Type {
  3269. case ArgString:
  3270. num := arg.ToNumber()
  3271. if num.Type == ArgError {
  3272. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3273. }
  3274. values = append(values, num.Number)
  3275. case ArgNumber:
  3276. values = append(values, arg.Number)
  3277. case ArgMatrix:
  3278. for _, row := range arg.Matrix {
  3279. for _, value := range row {
  3280. if value.String == "" {
  3281. continue
  3282. }
  3283. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3284. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3285. }
  3286. values = append(values, digits)
  3287. }
  3288. }
  3289. }
  3290. }
  3291. sort.Float64s(values)
  3292. if len(values)%2 == 0 {
  3293. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3294. } else {
  3295. median = values[len(values)/2]
  3296. }
  3297. return newNumberFormulaArg(median)
  3298. }
  3299. // MIN function returns the smallest value from a supplied set of numeric
  3300. // values. The syntax of the function is:
  3301. //
  3302. // MIN(number1,[number2],...)
  3303. //
  3304. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3305. if argsList.Len() == 0 {
  3306. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3307. }
  3308. return fn.min(false, argsList)
  3309. }
  3310. // MINA function returns the smallest value from a supplied set of numeric
  3311. // values, while counting text and the logical value FALSE as the value 0 and
  3312. // counting the logical value TRUE as the value 1. The syntax of the function
  3313. // is:
  3314. //
  3315. // MINA(number1,[number2],...)
  3316. //
  3317. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3318. if argsList.Len() == 0 {
  3319. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3320. }
  3321. return fn.min(true, argsList)
  3322. }
  3323. // min is an implementation of the formula function MIN and MINA.
  3324. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3325. min := math.MaxFloat64
  3326. for token := argsList.Front(); token != nil; token = token.Next() {
  3327. arg := token.Value.(formulaArg)
  3328. switch arg.Type {
  3329. case ArgString:
  3330. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3331. continue
  3332. } else {
  3333. num := arg.ToBool()
  3334. if num.Type == ArgNumber && num.Number < min {
  3335. min = num.Number
  3336. continue
  3337. }
  3338. }
  3339. num := arg.ToNumber()
  3340. if num.Type != ArgError && num.Number < min {
  3341. min = num.Number
  3342. }
  3343. case ArgNumber:
  3344. if arg.Number < min {
  3345. min = arg.Number
  3346. }
  3347. case ArgList, ArgMatrix:
  3348. for _, row := range arg.ToList() {
  3349. switch row.Type {
  3350. case ArgString:
  3351. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3352. continue
  3353. } else {
  3354. num := row.ToBool()
  3355. if num.Type == ArgNumber && num.Number < min {
  3356. min = num.Number
  3357. continue
  3358. }
  3359. }
  3360. num := row.ToNumber()
  3361. if num.Type != ArgError && num.Number < min {
  3362. min = num.Number
  3363. }
  3364. case ArgNumber:
  3365. if row.Number < min {
  3366. min = row.Number
  3367. }
  3368. }
  3369. }
  3370. case ArgError:
  3371. return arg
  3372. }
  3373. }
  3374. if min == math.MaxFloat64 {
  3375. min = 0
  3376. }
  3377. return newNumberFormulaArg(min)
  3378. }
  3379. // PERMUT function calculates the number of permutations of a specified number
  3380. // of objects from a set of objects. The syntax of the function is:
  3381. //
  3382. // PERMUT(number,number_chosen)
  3383. //
  3384. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  3385. if argsList.Len() != 2 {
  3386. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  3387. }
  3388. number := argsList.Front().Value.(formulaArg).ToNumber()
  3389. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  3390. if number.Type != ArgNumber {
  3391. return number
  3392. }
  3393. if chosen.Type != ArgNumber {
  3394. return chosen
  3395. }
  3396. if number.Number < chosen.Number {
  3397. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3398. }
  3399. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  3400. }
  3401. // Information Functions
  3402. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  3403. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  3404. // function is:
  3405. //
  3406. // ISBLANK(value)
  3407. //
  3408. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  3409. if argsList.Len() != 1 {
  3410. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  3411. }
  3412. token := argsList.Front().Value.(formulaArg)
  3413. result := "FALSE"
  3414. switch token.Type {
  3415. case ArgUnknown:
  3416. result = "TRUE"
  3417. case ArgString:
  3418. if token.String == "" {
  3419. result = "TRUE"
  3420. }
  3421. }
  3422. return newStringFormulaArg(result)
  3423. }
  3424. // ISERR function tests if an initial supplied expression (or value) returns
  3425. // any Excel Error, except the #N/A error. If so, the function returns the
  3426. // logical value TRUE; If the supplied value is not an error or is the #N/A
  3427. // error, the ISERR function returns FALSE. The syntax of the function is:
  3428. //
  3429. // ISERR(value)
  3430. //
  3431. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  3432. if argsList.Len() != 1 {
  3433. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  3434. }
  3435. token := argsList.Front().Value.(formulaArg)
  3436. result := "FALSE"
  3437. if token.Type == ArgError {
  3438. for _, errType := range []string{
  3439. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  3440. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  3441. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  3442. } {
  3443. if errType == token.String {
  3444. result = "TRUE"
  3445. }
  3446. }
  3447. }
  3448. return newStringFormulaArg(result)
  3449. }
  3450. // ISERROR function tests if an initial supplied expression (or value) returns
  3451. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  3452. // function returns FALSE. The syntax of the function is:
  3453. //
  3454. // ISERROR(value)
  3455. //
  3456. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  3457. if argsList.Len() != 1 {
  3458. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  3459. }
  3460. token := argsList.Front().Value.(formulaArg)
  3461. result := "FALSE"
  3462. if token.Type == ArgError {
  3463. for _, errType := range []string{
  3464. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  3465. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  3466. formulaErrorCALC, formulaErrorGETTINGDATA,
  3467. } {
  3468. if errType == token.String {
  3469. result = "TRUE"
  3470. }
  3471. }
  3472. }
  3473. return newStringFormulaArg(result)
  3474. }
  3475. // ISEVEN function tests if a supplied number (or numeric expression)
  3476. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  3477. // function returns FALSE. The syntax of the function is:
  3478. //
  3479. // ISEVEN(value)
  3480. //
  3481. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  3482. if argsList.Len() != 1 {
  3483. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  3484. }
  3485. var (
  3486. token = argsList.Front().Value.(formulaArg)
  3487. result = "FALSE"
  3488. numeric int
  3489. err error
  3490. )
  3491. if token.Type == ArgString {
  3492. if numeric, err = strconv.Atoi(token.String); err != nil {
  3493. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3494. }
  3495. if numeric == numeric/2*2 {
  3496. return newStringFormulaArg("TRUE")
  3497. }
  3498. }
  3499. return newStringFormulaArg(result)
  3500. }
  3501. // ISNA function tests if an initial supplied expression (or value) returns
  3502. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  3503. // returns FALSE. The syntax of the function is:
  3504. //
  3505. // ISNA(value)
  3506. //
  3507. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  3508. if argsList.Len() != 1 {
  3509. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  3510. }
  3511. token := argsList.Front().Value.(formulaArg)
  3512. result := "FALSE"
  3513. if token.Type == ArgError && token.String == formulaErrorNA {
  3514. result = "TRUE"
  3515. }
  3516. return newStringFormulaArg(result)
  3517. }
  3518. // ISNONTEXT function function tests if a supplied value is text. If not, the
  3519. // function returns TRUE; If the supplied value is text, the function returns
  3520. // FALSE. The syntax of the function is:
  3521. //
  3522. // ISNONTEXT(value)
  3523. //
  3524. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  3525. if argsList.Len() != 1 {
  3526. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  3527. }
  3528. token := argsList.Front().Value.(formulaArg)
  3529. result := "TRUE"
  3530. if token.Type == ArgString && token.String != "" {
  3531. result = "FALSE"
  3532. }
  3533. return newStringFormulaArg(result)
  3534. }
  3535. // ISNUMBER function function tests if a supplied value is a number. If so,
  3536. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3537. // function is:
  3538. //
  3539. // ISNUMBER(value)
  3540. //
  3541. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  3542. if argsList.Len() != 1 {
  3543. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  3544. }
  3545. token, result := argsList.Front().Value.(formulaArg), false
  3546. if token.Type == ArgString && token.String != "" {
  3547. if _, err := strconv.Atoi(token.String); err == nil {
  3548. result = true
  3549. }
  3550. }
  3551. return newBoolFormulaArg(result)
  3552. }
  3553. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3554. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3555. // FALSE. The syntax of the function is:
  3556. //
  3557. // ISODD(value)
  3558. //
  3559. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  3560. if argsList.Len() != 1 {
  3561. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  3562. }
  3563. var (
  3564. token = argsList.Front().Value.(formulaArg)
  3565. result = "FALSE"
  3566. numeric int
  3567. err error
  3568. )
  3569. if token.Type == ArgString {
  3570. if numeric, err = strconv.Atoi(token.String); err != nil {
  3571. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3572. }
  3573. if numeric != numeric/2*2 {
  3574. return newStringFormulaArg("TRUE")
  3575. }
  3576. }
  3577. return newStringFormulaArg(result)
  3578. }
  3579. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  3580. // Otherwise, the function returns FALSE. The syntax of the function is:
  3581. //
  3582. // ISTEXT(value)
  3583. //
  3584. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  3585. if argsList.Len() != 1 {
  3586. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  3587. }
  3588. token := argsList.Front().Value.(formulaArg)
  3589. if token.ToNumber().Type != ArgError {
  3590. return newBoolFormulaArg(false)
  3591. }
  3592. return newBoolFormulaArg(token.Type == ArgString)
  3593. }
  3594. // NA function returns the Excel #N/A error. This error message has the
  3595. // meaning 'value not available' and is produced when an Excel Formula is
  3596. // unable to find a value that it needs. The syntax of the function is:
  3597. //
  3598. // NA()
  3599. //
  3600. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  3601. if argsList.Len() != 0 {
  3602. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  3603. }
  3604. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3605. }
  3606. // SHEET function returns the Sheet number for a specified reference. The
  3607. // syntax of the function is:
  3608. //
  3609. // SHEET()
  3610. //
  3611. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  3612. if argsList.Len() != 0 {
  3613. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  3614. }
  3615. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  3616. }
  3617. // Logical Functions
  3618. // AND function tests a number of supplied conditions and returns TRUE or
  3619. // FALSE. The syntax of the function is:
  3620. //
  3621. // AND(logical_test1,[logical_test2],...)
  3622. //
  3623. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  3624. if argsList.Len() == 0 {
  3625. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  3626. }
  3627. if argsList.Len() > 30 {
  3628. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  3629. }
  3630. var (
  3631. and = true
  3632. val float64
  3633. err error
  3634. )
  3635. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3636. token := arg.Value.(formulaArg)
  3637. switch token.Type {
  3638. case ArgUnknown:
  3639. continue
  3640. case ArgString:
  3641. if token.String == "TRUE" {
  3642. continue
  3643. }
  3644. if token.String == "FALSE" {
  3645. return newStringFormulaArg(token.String)
  3646. }
  3647. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3648. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3649. }
  3650. and = and && (val != 0)
  3651. case ArgMatrix:
  3652. // TODO
  3653. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3654. }
  3655. }
  3656. return newBoolFormulaArg(and)
  3657. }
  3658. // FALSE function function returns the logical value FALSE. The syntax of the
  3659. // function is:
  3660. //
  3661. // FALSE()
  3662. //
  3663. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  3664. if argsList.Len() != 0 {
  3665. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  3666. }
  3667. return newBoolFormulaArg(false)
  3668. }
  3669. // IFERROR function receives two values (or expressions) and tests if the
  3670. // first of these evaluates to an error. The syntax of the function is:
  3671. //
  3672. // IFERROR(value,value_if_error)
  3673. //
  3674. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  3675. if argsList.Len() != 2 {
  3676. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  3677. }
  3678. value := argsList.Front().Value.(formulaArg)
  3679. if value.Type != ArgError {
  3680. if value.Type == ArgEmpty {
  3681. return newNumberFormulaArg(0)
  3682. }
  3683. return value
  3684. }
  3685. return argsList.Back().Value.(formulaArg)
  3686. }
  3687. // NOT function returns the opposite to a supplied logical value. The syntax
  3688. // of the function is:
  3689. //
  3690. // NOT(logical)
  3691. //
  3692. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  3693. if argsList.Len() != 1 {
  3694. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  3695. }
  3696. token := argsList.Front().Value.(formulaArg)
  3697. switch token.Type {
  3698. case ArgString, ArgList:
  3699. if strings.ToUpper(token.String) == "TRUE" {
  3700. return newBoolFormulaArg(false)
  3701. }
  3702. if strings.ToUpper(token.String) == "FALSE" {
  3703. return newBoolFormulaArg(true)
  3704. }
  3705. case ArgNumber:
  3706. return newBoolFormulaArg(!(token.Number != 0))
  3707. case ArgError:
  3708. return token
  3709. }
  3710. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  3711. }
  3712. // OR function tests a number of supplied conditions and returns either TRUE
  3713. // or FALSE. The syntax of the function is:
  3714. //
  3715. // OR(logical_test1,[logical_test2],...)
  3716. //
  3717. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3718. if argsList.Len() == 0 {
  3719. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3720. }
  3721. if argsList.Len() > 30 {
  3722. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  3723. }
  3724. var (
  3725. or bool
  3726. val float64
  3727. err error
  3728. )
  3729. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3730. token := arg.Value.(formulaArg)
  3731. switch token.Type {
  3732. case ArgUnknown:
  3733. continue
  3734. case ArgString:
  3735. if token.String == "FALSE" {
  3736. continue
  3737. }
  3738. if token.String == "TRUE" {
  3739. or = true
  3740. continue
  3741. }
  3742. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3743. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3744. }
  3745. or = val != 0
  3746. case ArgMatrix:
  3747. // TODO
  3748. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3749. }
  3750. }
  3751. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  3752. }
  3753. // TRUE function returns the logical value TRUE. The syntax of the function
  3754. // is:
  3755. //
  3756. // TRUE()
  3757. //
  3758. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  3759. if argsList.Len() != 0 {
  3760. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  3761. }
  3762. return newBoolFormulaArg(true)
  3763. }
  3764. // Date and Time Functions
  3765. // DATE returns a date, from a user-supplied year, month and day. The syntax
  3766. // of the function is:
  3767. //
  3768. // DATE(year,month,day)
  3769. //
  3770. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  3771. if argsList.Len() != 3 {
  3772. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3773. }
  3774. var year, month, day int
  3775. var err error
  3776. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3777. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3778. }
  3779. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  3780. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3781. }
  3782. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  3783. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3784. }
  3785. d := makeDate(year, time.Month(month), day)
  3786. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  3787. }
  3788. // makeDate return date as a Unix time, the number of seconds elapsed since
  3789. // January 1, 1970 UTC.
  3790. func makeDate(y int, m time.Month, d int) int64 {
  3791. if y == 1900 && int(m) <= 2 {
  3792. d--
  3793. }
  3794. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  3795. return date.Unix()
  3796. }
  3797. // daysBetween return time interval of the given start timestamp and end
  3798. // timestamp.
  3799. func daysBetween(startDate, endDate int64) float64 {
  3800. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  3801. }
  3802. // Text Functions
  3803. // CLEAN removes all non-printable characters from a supplied text string. The
  3804. // syntax of the function is:
  3805. //
  3806. // CLEAN(text)
  3807. //
  3808. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  3809. if argsList.Len() != 1 {
  3810. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  3811. }
  3812. b := bytes.Buffer{}
  3813. for _, c := range argsList.Front().Value.(formulaArg).String {
  3814. if c > 31 {
  3815. b.WriteRune(c)
  3816. }
  3817. }
  3818. return newStringFormulaArg(b.String())
  3819. }
  3820. // CONCAT function joins together a series of supplied text strings into one
  3821. // combined text string.
  3822. //
  3823. // CONCAT(text1,[text2],...)
  3824. //
  3825. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  3826. return fn.concat("CONCAT", argsList)
  3827. }
  3828. // CONCATENATE function joins together a series of supplied text strings into
  3829. // one combined text string.
  3830. //
  3831. // CONCATENATE(text1,[text2],...)
  3832. //
  3833. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  3834. return fn.concat("CONCATENATE", argsList)
  3835. }
  3836. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  3837. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  3838. buf := bytes.Buffer{}
  3839. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3840. token := arg.Value.(formulaArg)
  3841. switch token.Type {
  3842. case ArgString:
  3843. buf.WriteString(token.String)
  3844. case ArgNumber:
  3845. if token.Boolean {
  3846. if token.Number == 0 {
  3847. buf.WriteString("FALSE")
  3848. } else {
  3849. buf.WriteString("TRUE")
  3850. }
  3851. } else {
  3852. buf.WriteString(token.Value())
  3853. }
  3854. default:
  3855. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  3856. }
  3857. }
  3858. return newStringFormulaArg(buf.String())
  3859. }
  3860. // EXACT function tests if two supplied text strings or values are exactly
  3861. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  3862. // function is case-sensitive. The syntax of the function is:
  3863. //
  3864. // EXACT(text1,text2)
  3865. //
  3866. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  3867. if argsList.Len() != 2 {
  3868. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  3869. }
  3870. text1 := argsList.Front().Value.(formulaArg).Value()
  3871. text2 := argsList.Back().Value.(formulaArg).Value()
  3872. return newBoolFormulaArg(text1 == text2)
  3873. }
  3874. // LEN returns the length of a supplied text string. The syntax of the
  3875. // function is:
  3876. //
  3877. // LEN(text)
  3878. //
  3879. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  3880. if argsList.Len() != 1 {
  3881. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  3882. }
  3883. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  3884. }
  3885. // LENB returns the number of bytes used to represent the characters in a text
  3886. // string. LENB counts 2 bytes per character only when a DBCS language is set
  3887. // as the default language. Otherwise LENB behaves the same as LEN, counting
  3888. // 1 byte per character. The syntax of the function is:
  3889. //
  3890. // LENB(text)
  3891. //
  3892. // TODO: the languages that support DBCS include Japanese, Chinese
  3893. // (Simplified), Chinese (Traditional), and Korean.
  3894. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  3895. if argsList.Len() != 1 {
  3896. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  3897. }
  3898. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  3899. }
  3900. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  3901. // words or characters) from a supplied text string. The syntax of the
  3902. // function is:
  3903. //
  3904. // TRIM(text)
  3905. //
  3906. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  3907. if argsList.Len() != 1 {
  3908. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  3909. }
  3910. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  3911. }
  3912. // LOWER converts all characters in a supplied text string to lower case. The
  3913. // syntax of the function is:
  3914. //
  3915. // LOWER(text)
  3916. //
  3917. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  3918. if argsList.Len() != 1 {
  3919. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  3920. }
  3921. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  3922. }
  3923. // PROPER converts all characters in a supplied text string to proper case
  3924. // (i.e. all letters that do not immediately follow another letter are set to
  3925. // upper case and all other characters are lower case). The syntax of the
  3926. // function is:
  3927. //
  3928. // PROPER(text)
  3929. //
  3930. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  3931. if argsList.Len() != 1 {
  3932. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  3933. }
  3934. buf := bytes.Buffer{}
  3935. isLetter := false
  3936. for _, char := range argsList.Front().Value.(formulaArg).String {
  3937. if !isLetter && unicode.IsLetter(char) {
  3938. buf.WriteRune(unicode.ToUpper(char))
  3939. } else {
  3940. buf.WriteRune(unicode.ToLower(char))
  3941. }
  3942. isLetter = unicode.IsLetter(char)
  3943. }
  3944. return newStringFormulaArg(buf.String())
  3945. }
  3946. // REPT function returns a supplied text string, repeated a specified number
  3947. // of times. The syntax of the function is:
  3948. //
  3949. // REPT(text,number_times)
  3950. //
  3951. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  3952. if argsList.Len() != 2 {
  3953. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  3954. }
  3955. text := argsList.Front().Value.(formulaArg)
  3956. if text.Type != ArgString {
  3957. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  3958. }
  3959. times := argsList.Back().Value.(formulaArg).ToNumber()
  3960. if times.Type != ArgNumber {
  3961. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  3962. }
  3963. if times.Number < 0 {
  3964. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  3965. }
  3966. if times.Number == 0 {
  3967. return newStringFormulaArg("")
  3968. }
  3969. buf := bytes.Buffer{}
  3970. for i := 0; i < int(times.Number); i++ {
  3971. buf.WriteString(text.String)
  3972. }
  3973. return newStringFormulaArg(buf.String())
  3974. }
  3975. // UPPER converts all characters in a supplied text string to upper case. The
  3976. // syntax of the function is:
  3977. //
  3978. // UPPER(text)
  3979. //
  3980. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  3981. if argsList.Len() != 1 {
  3982. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  3983. }
  3984. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  3985. }
  3986. // Conditional Functions
  3987. // IF function tests a supplied condition and returns one result if the
  3988. // condition evaluates to TRUE, and another result if the condition evaluates
  3989. // to FALSE. The syntax of the function is:
  3990. //
  3991. // IF(logical_test,value_if_true,value_if_false)
  3992. //
  3993. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  3994. if argsList.Len() == 0 {
  3995. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  3996. }
  3997. if argsList.Len() > 3 {
  3998. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  3999. }
  4000. token := argsList.Front().Value.(formulaArg)
  4001. var (
  4002. cond bool
  4003. err error
  4004. result string
  4005. )
  4006. switch token.Type {
  4007. case ArgString:
  4008. if cond, err = strconv.ParseBool(token.String); err != nil {
  4009. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4010. }
  4011. if argsList.Len() == 1 {
  4012. return newBoolFormulaArg(cond)
  4013. }
  4014. if cond {
  4015. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  4016. }
  4017. if argsList.Len() == 3 {
  4018. result = argsList.Back().Value.(formulaArg).String
  4019. }
  4020. }
  4021. return newStringFormulaArg(result)
  4022. }
  4023. // Excel Lookup and Reference Functions
  4024. // CHOOSE function returns a value from an array, that corresponds to a
  4025. // supplied index number (position). The syntax of the function is:
  4026. //
  4027. // CHOOSE(index_num,value1,[value2],...)
  4028. //
  4029. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  4030. if argsList.Len() < 2 {
  4031. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  4032. }
  4033. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  4034. if err != nil {
  4035. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  4036. }
  4037. if argsList.Len() <= idx {
  4038. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  4039. }
  4040. arg := argsList.Front()
  4041. for i := 0; i < idx; i++ {
  4042. arg = arg.Next()
  4043. }
  4044. var result formulaArg
  4045. switch arg.Value.(formulaArg).Type {
  4046. case ArgString:
  4047. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  4048. case ArgMatrix:
  4049. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  4050. }
  4051. return result
  4052. }
  4053. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  4054. // string.
  4055. func deepMatchRune(str, pattern []rune, simple bool) bool {
  4056. for len(pattern) > 0 {
  4057. switch pattern[0] {
  4058. default:
  4059. if len(str) == 0 || str[0] != pattern[0] {
  4060. return false
  4061. }
  4062. case '?':
  4063. if len(str) == 0 && !simple {
  4064. return false
  4065. }
  4066. case '*':
  4067. return deepMatchRune(str, pattern[1:], simple) ||
  4068. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  4069. }
  4070. str = str[1:]
  4071. pattern = pattern[1:]
  4072. }
  4073. return len(str) == 0 && len(pattern) == 0
  4074. }
  4075. // matchPattern finds whether the text matches or satisfies the pattern
  4076. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  4077. func matchPattern(pattern, name string) (matched bool) {
  4078. if pattern == "" {
  4079. return name == pattern
  4080. }
  4081. if pattern == "*" {
  4082. return true
  4083. }
  4084. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  4085. for _, r := range name {
  4086. rname = append(rname, r)
  4087. }
  4088. for _, r := range pattern {
  4089. rpattern = append(rpattern, r)
  4090. }
  4091. simple := false // Does extended wildcard '*' and '?' match.
  4092. return deepMatchRune(rname, rpattern, simple)
  4093. }
  4094. // compareFormulaArg compares the left-hand sides and the right-hand sides
  4095. // formula arguments by given conditions such as case sensitive, if exact
  4096. // match, and make compare result as formula criteria condition type.
  4097. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4098. if lhs.Type != rhs.Type {
  4099. return criteriaErr
  4100. }
  4101. switch lhs.Type {
  4102. case ArgNumber:
  4103. if lhs.Number == rhs.Number {
  4104. return criteriaEq
  4105. }
  4106. if lhs.Number < rhs.Number {
  4107. return criteriaL
  4108. }
  4109. return criteriaG
  4110. case ArgString:
  4111. ls, rs := lhs.String, rhs.String
  4112. if !caseSensitive {
  4113. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  4114. }
  4115. if exactMatch {
  4116. match := matchPattern(rs, ls)
  4117. if match {
  4118. return criteriaEq
  4119. }
  4120. return criteriaG
  4121. }
  4122. switch strings.Compare(ls, rs) {
  4123. case 1:
  4124. return criteriaG
  4125. case -1:
  4126. return criteriaL
  4127. case 0:
  4128. return criteriaEq
  4129. }
  4130. return criteriaErr
  4131. case ArgEmpty:
  4132. return criteriaEq
  4133. case ArgList:
  4134. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  4135. case ArgMatrix:
  4136. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  4137. }
  4138. return criteriaErr
  4139. }
  4140. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  4141. // list type formula arguments.
  4142. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4143. if len(lhs.List) < len(rhs.List) {
  4144. return criteriaL
  4145. }
  4146. if len(lhs.List) > len(rhs.List) {
  4147. return criteriaG
  4148. }
  4149. for arg := range lhs.List {
  4150. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  4151. if criteria != criteriaEq {
  4152. return criteria
  4153. }
  4154. }
  4155. return criteriaEq
  4156. }
  4157. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  4158. // matrix type formula arguments.
  4159. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4160. if len(lhs.Matrix) < len(rhs.Matrix) {
  4161. return criteriaL
  4162. }
  4163. if len(lhs.Matrix) > len(rhs.Matrix) {
  4164. return criteriaG
  4165. }
  4166. for i := range lhs.Matrix {
  4167. left := lhs.Matrix[i]
  4168. right := lhs.Matrix[i]
  4169. if len(left) < len(right) {
  4170. return criteriaL
  4171. }
  4172. if len(left) > len(right) {
  4173. return criteriaG
  4174. }
  4175. for arg := range left {
  4176. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  4177. if criteria != criteriaEq {
  4178. return criteria
  4179. }
  4180. }
  4181. }
  4182. return criteriaEq
  4183. }
  4184. // HLOOKUP function 'looks up' a given value in the top row of a data array
  4185. // (or table), and returns the corresponding value from another row of the
  4186. // array. The syntax of the function is:
  4187. //
  4188. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  4189. //
  4190. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  4191. if argsList.Len() < 3 {
  4192. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  4193. }
  4194. if argsList.Len() > 4 {
  4195. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  4196. }
  4197. lookupValue := argsList.Front().Value.(formulaArg)
  4198. tableArray := argsList.Front().Next().Value.(formulaArg)
  4199. if tableArray.Type != ArgMatrix {
  4200. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  4201. }
  4202. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4203. if rowArg.Type != ArgNumber {
  4204. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  4205. }
  4206. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  4207. if argsList.Len() == 4 {
  4208. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4209. if rangeLookup.Type == ArgError {
  4210. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4211. }
  4212. if rangeLookup.Number == 0 {
  4213. exactMatch = true
  4214. }
  4215. }
  4216. row := tableArray.Matrix[0]
  4217. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4218. start:
  4219. for idx, mtx := range row {
  4220. lhs := mtx
  4221. switch lookupValue.Type {
  4222. case ArgNumber:
  4223. if !lookupValue.Boolean {
  4224. lhs = mtx.ToNumber()
  4225. if lhs.Type == ArgError {
  4226. lhs = mtx
  4227. }
  4228. }
  4229. case ArgMatrix:
  4230. lhs = tableArray
  4231. }
  4232. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4233. matchIdx = idx
  4234. wasExact = true
  4235. break start
  4236. }
  4237. }
  4238. } else {
  4239. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  4240. }
  4241. if matchIdx == -1 {
  4242. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4243. }
  4244. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  4245. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  4246. }
  4247. row = tableArray.Matrix[rowIdx]
  4248. if wasExact || !exactMatch {
  4249. return row[matchIdx]
  4250. }
  4251. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4252. }
  4253. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  4254. // data array (or table), and returns the corresponding value from another
  4255. // column of the array. The syntax of the function is:
  4256. //
  4257. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  4258. //
  4259. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  4260. if argsList.Len() < 3 {
  4261. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  4262. }
  4263. if argsList.Len() > 4 {
  4264. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  4265. }
  4266. lookupValue := argsList.Front().Value.(formulaArg)
  4267. tableArray := argsList.Front().Next().Value.(formulaArg)
  4268. if tableArray.Type != ArgMatrix {
  4269. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  4270. }
  4271. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4272. if colIdx.Type != ArgNumber {
  4273. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  4274. }
  4275. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  4276. if argsList.Len() == 4 {
  4277. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4278. if rangeLookup.Type == ArgError {
  4279. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4280. }
  4281. if rangeLookup.Number == 0 {
  4282. exactMatch = true
  4283. }
  4284. }
  4285. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4286. start:
  4287. for idx, mtx := range tableArray.Matrix {
  4288. lhs := mtx[0]
  4289. switch lookupValue.Type {
  4290. case ArgNumber:
  4291. if !lookupValue.Boolean {
  4292. lhs = mtx[0].ToNumber()
  4293. if lhs.Type == ArgError {
  4294. lhs = mtx[0]
  4295. }
  4296. }
  4297. case ArgMatrix:
  4298. lhs = tableArray
  4299. }
  4300. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4301. matchIdx = idx
  4302. wasExact = true
  4303. break start
  4304. }
  4305. }
  4306. } else {
  4307. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  4308. }
  4309. if matchIdx == -1 {
  4310. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4311. }
  4312. mtx := tableArray.Matrix[matchIdx]
  4313. if col < 0 || col >= len(mtx) {
  4314. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  4315. }
  4316. if wasExact || !exactMatch {
  4317. return mtx[col]
  4318. }
  4319. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4320. }
  4321. // vlookupBinarySearch finds the position of a target value when range lookup
  4322. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4323. // return wrong result.
  4324. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4325. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  4326. for low <= high {
  4327. var mid int = low + (high-low)/2
  4328. mtx := tableArray.Matrix[mid]
  4329. lhs := mtx[0]
  4330. switch lookupValue.Type {
  4331. case ArgNumber:
  4332. if !lookupValue.Boolean {
  4333. lhs = mtx[0].ToNumber()
  4334. if lhs.Type == ArgError {
  4335. lhs = mtx[0]
  4336. }
  4337. }
  4338. case ArgMatrix:
  4339. lhs = tableArray
  4340. }
  4341. result := compareFormulaArg(lhs, lookupValue, false, false)
  4342. if result == criteriaEq {
  4343. matchIdx, wasExact = mid, true
  4344. return
  4345. } else if result == criteriaG {
  4346. high = mid - 1
  4347. } else if result == criteriaL {
  4348. matchIdx, low = mid, mid+1
  4349. if lhs.Value() != "" {
  4350. lastMatchIdx = matchIdx
  4351. }
  4352. } else {
  4353. return -1, false
  4354. }
  4355. }
  4356. matchIdx, wasExact = lastMatchIdx, true
  4357. return
  4358. }
  4359. // vlookupBinarySearch finds the position of a target value when range lookup
  4360. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4361. // return wrong result.
  4362. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4363. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  4364. for low <= high {
  4365. var mid int = low + (high-low)/2
  4366. mtx := row[mid]
  4367. result := compareFormulaArg(mtx, lookupValue, false, false)
  4368. if result == criteriaEq {
  4369. matchIdx, wasExact = mid, true
  4370. return
  4371. } else if result == criteriaG {
  4372. high = mid - 1
  4373. } else if result == criteriaL {
  4374. low, lastMatchIdx = mid+1, mid
  4375. } else {
  4376. return -1, false
  4377. }
  4378. }
  4379. matchIdx, wasExact = lastMatchIdx, true
  4380. return
  4381. }
  4382. // LOOKUP function performs an approximate match lookup in a one-column or
  4383. // one-row range, and returns the corresponding value from another one-column
  4384. // or one-row range. The syntax of the function is:
  4385. //
  4386. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  4387. //
  4388. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  4389. if argsList.Len() < 2 {
  4390. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  4391. }
  4392. if argsList.Len() > 3 {
  4393. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  4394. }
  4395. lookupValue := argsList.Front().Value.(formulaArg)
  4396. lookupVector := argsList.Front().Next().Value.(formulaArg)
  4397. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  4398. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  4399. }
  4400. cols, matchIdx := lookupCol(lookupVector), -1
  4401. for idx, col := range cols {
  4402. lhs := lookupValue
  4403. switch col.Type {
  4404. case ArgNumber:
  4405. lhs = lhs.ToNumber()
  4406. if !col.Boolean {
  4407. if lhs.Type == ArgError {
  4408. lhs = lookupValue
  4409. }
  4410. }
  4411. }
  4412. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  4413. matchIdx = idx
  4414. break
  4415. }
  4416. }
  4417. column := cols
  4418. if argsList.Len() == 3 {
  4419. column = lookupCol(argsList.Back().Value.(formulaArg))
  4420. }
  4421. if matchIdx < 0 || matchIdx >= len(column) {
  4422. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  4423. }
  4424. return column[matchIdx]
  4425. }
  4426. // lookupCol extract columns for LOOKUP.
  4427. func lookupCol(arr formulaArg) []formulaArg {
  4428. col := arr.List
  4429. if arr.Type == ArgMatrix {
  4430. col = nil
  4431. for _, r := range arr.Matrix {
  4432. if len(r) > 0 {
  4433. col = append(col, r[0])
  4434. continue
  4435. }
  4436. col = append(col, newEmptyFormulaArg())
  4437. }
  4438. }
  4439. return col
  4440. }
  4441. // Web Functions
  4442. // ENCODEURL function returns a URL-encoded string, replacing certain
  4443. // non-alphanumeric characters with the percentage symbol (%) and a
  4444. // hexadecimal number. The syntax of the function is:
  4445. //
  4446. // ENCODEURL(url)
  4447. //
  4448. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  4449. if argsList.Len() != 1 {
  4450. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  4451. }
  4452. token := argsList.Front().Value.(formulaArg).Value()
  4453. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  4454. }