calc.go 147 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. )
  30. // Excel formula errors
  31. const (
  32. formulaErrorDIV = "#DIV/0!"
  33. formulaErrorNAME = "#NAME?"
  34. formulaErrorNA = "#N/A"
  35. formulaErrorNUM = "#NUM!"
  36. formulaErrorVALUE = "#VALUE!"
  37. formulaErrorREF = "#REF!"
  38. formulaErrorNULL = "#NULL"
  39. formulaErrorSPILL = "#SPILL!"
  40. formulaErrorCALC = "#CALC!"
  41. formulaErrorGETTINGDATA = "#GETTING_DATA"
  42. )
  43. // Numeric precision correct numeric values as legacy Excel application
  44. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  45. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  46. // has a decimal representation that is an infinite string of ones, Excel
  47. // displays only the leading 15 figures. In the second line, the number one
  48. // is added to the fraction, and again Excel displays only 15 figures.
  49. const numericPrecision = 1000000000000000
  50. // cellRef defines the structure of a cell reference.
  51. type cellRef struct {
  52. Col int
  53. Row int
  54. Sheet string
  55. }
  56. // cellRef defines the structure of a cell range.
  57. type cellRange struct {
  58. From cellRef
  59. To cellRef
  60. }
  61. // formula criteria condition enumeration.
  62. const (
  63. _ byte = iota
  64. criteriaEq
  65. criteriaLe
  66. criteriaGe
  67. criteriaL
  68. criteriaG
  69. criteriaBeg
  70. criteriaEnd
  71. criteriaErr
  72. )
  73. // formulaCriteria defined formula criteria parser result.
  74. type formulaCriteria struct {
  75. Type byte
  76. Condition string
  77. }
  78. // ArgType is the type if formula argument type.
  79. type ArgType byte
  80. // Formula argument types enumeration.
  81. const (
  82. ArgUnknown ArgType = iota
  83. ArgNumber
  84. ArgString
  85. ArgList
  86. ArgMatrix
  87. ArgError
  88. ArgEmpty
  89. )
  90. // formulaArg is the argument of a formula or function.
  91. type formulaArg struct {
  92. SheetName string
  93. Number float64
  94. String string
  95. List []formulaArg
  96. Matrix [][]formulaArg
  97. Boolean bool
  98. Error string
  99. Type ArgType
  100. }
  101. // Value returns a string data type of the formula argument.
  102. func (fa formulaArg) Value() (value string) {
  103. switch fa.Type {
  104. case ArgNumber:
  105. if fa.Boolean {
  106. if fa.Number == 0 {
  107. return "FALSE"
  108. }
  109. return "TRUE"
  110. }
  111. return fmt.Sprintf("%g", fa.Number)
  112. case ArgString:
  113. return fa.String
  114. case ArgError:
  115. return fa.Error
  116. }
  117. return
  118. }
  119. // ToNumber returns a formula argument with number data type.
  120. func (fa formulaArg) ToNumber() formulaArg {
  121. var n float64
  122. var err error
  123. switch fa.Type {
  124. case ArgString:
  125. n, err = strconv.ParseFloat(fa.String, 64)
  126. if err != nil {
  127. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  128. }
  129. case ArgNumber:
  130. n = fa.Number
  131. }
  132. return newNumberFormulaArg(n)
  133. }
  134. // ToBool returns a formula argument with boolean data type.
  135. func (fa formulaArg) ToBool() formulaArg {
  136. var b bool
  137. var err error
  138. switch fa.Type {
  139. case ArgString:
  140. b, err = strconv.ParseBool(fa.String)
  141. if err != nil {
  142. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  143. }
  144. case ArgNumber:
  145. if fa.Boolean && fa.Number == 1 {
  146. b = true
  147. }
  148. }
  149. return newBoolFormulaArg(b)
  150. }
  151. // ToList returns a formula argument with array data type.
  152. func (fa formulaArg) ToList() []formulaArg {
  153. if fa.Type == ArgMatrix {
  154. list := []formulaArg{}
  155. for _, row := range fa.Matrix {
  156. list = append(list, row...)
  157. }
  158. return list
  159. }
  160. if fa.Type == ArgList {
  161. return fa.List
  162. }
  163. return nil
  164. }
  165. // formulaFuncs is the type of the formula functions.
  166. type formulaFuncs struct {
  167. f *File
  168. sheet string
  169. }
  170. // tokenPriority defined basic arithmetic operator priority.
  171. var tokenPriority = map[string]int{
  172. "^": 5,
  173. "*": 4,
  174. "/": 4,
  175. "+": 3,
  176. "-": 3,
  177. "=": 2,
  178. "<>": 2,
  179. "<": 2,
  180. "<=": 2,
  181. ">": 2,
  182. ">=": 2,
  183. "&": 1,
  184. }
  185. // CalcCellValue provides a function to get calculated cell value. This
  186. // feature is currently in working processing. Array formula, table formula
  187. // and some other formulas are not supported currently.
  188. //
  189. // Supported formula functions:
  190. //
  191. // ABS
  192. // ACOS
  193. // ACOSH
  194. // ACOT
  195. // ACOTH
  196. // AND
  197. // ARABIC
  198. // ASIN
  199. // ASINH
  200. // ATAN
  201. // ATAN2
  202. // ATANH
  203. // AVERAGE
  204. // AVERAGEA
  205. // BASE
  206. // BIN2DEC
  207. // BIN2HEX
  208. // BIN2OCT
  209. // BITAND
  210. // BITLSHIFT
  211. // BITOR
  212. // BITRSHIFT
  213. // BITXOR
  214. // CEILING
  215. // CEILING.MATH
  216. // CEILING.PRECISE
  217. // CHOOSE
  218. // CLEAN
  219. // COMBIN
  220. // COMBINA
  221. // CONCAT
  222. // CONCATENATE
  223. // COS
  224. // COSH
  225. // COT
  226. // COTH
  227. // COUNT
  228. // COUNTA
  229. // COUNTBLANK
  230. // CSC
  231. // CSCH
  232. // DATE
  233. // DEC2BIN
  234. // DEC2HEX
  235. // DEC2OCT
  236. // DECIMAL
  237. // DEGREES
  238. // ENCODEURL
  239. // EVEN
  240. // EXACT
  241. // EXP
  242. // FACT
  243. // FACTDOUBLE
  244. // FALSE
  245. // FISHER
  246. // FISHERINV
  247. // FLOOR
  248. // FLOOR.MATH
  249. // FLOOR.PRECISE
  250. // GAMMA
  251. // GAMMALN
  252. // GCD
  253. // HEX2BIN
  254. // HEX2DEC
  255. // HEX2OCT
  256. // HLOOKUP
  257. // IF
  258. // IFERROR
  259. // INT
  260. // ISBLANK
  261. // ISERR
  262. // ISERROR
  263. // ISEVEN
  264. // ISNA
  265. // ISNONTEXT
  266. // ISNUMBER
  267. // ISODD
  268. // ISTEXT
  269. // ISO.CEILING
  270. // KURT
  271. // LCM
  272. // LEN
  273. // LENB
  274. // LN
  275. // LOG
  276. // LOG10
  277. // LOOKUP
  278. // LOWER
  279. // MAX
  280. // MDETERM
  281. // MEDIAN
  282. // MIN
  283. // MINA
  284. // MOD
  285. // MROUND
  286. // MULTINOMIAL
  287. // MUNIT
  288. // NA
  289. // NOT
  290. // OCT2BIN
  291. // OCT2DEC
  292. // OCT2HEX
  293. // ODD
  294. // OR
  295. // PERMUT
  296. // PI
  297. // POWER
  298. // PRODUCT
  299. // PROPER
  300. // QUOTIENT
  301. // RADIANS
  302. // RAND
  303. // RANDBETWEEN
  304. // REPT
  305. // ROMAN
  306. // ROUND
  307. // ROUNDDOWN
  308. // ROUNDUP
  309. // SEC
  310. // SECH
  311. // SHEET
  312. // SIGN
  313. // SIN
  314. // SINH
  315. // SQRT
  316. // SQRTPI
  317. // STDEV
  318. // STDEVA
  319. // SUM
  320. // SUMIF
  321. // SUMSQ
  322. // TAN
  323. // TANH
  324. // TRIM
  325. // TRUE
  326. // TRUNC
  327. // UPPER
  328. // VLOOKUP
  329. //
  330. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  331. var (
  332. formula string
  333. token efp.Token
  334. )
  335. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  336. return
  337. }
  338. ps := efp.ExcelParser()
  339. tokens := ps.Parse(formula)
  340. if tokens == nil {
  341. return
  342. }
  343. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  344. return
  345. }
  346. result = token.TValue
  347. isNum, precision := isNumeric(result)
  348. if isNum && precision > 15 {
  349. num, _ := roundPrecision(result)
  350. result = strings.ToUpper(num)
  351. }
  352. return
  353. }
  354. // getPriority calculate arithmetic operator priority.
  355. func getPriority(token efp.Token) (pri int) {
  356. pri = tokenPriority[token.TValue]
  357. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  358. pri = 6
  359. }
  360. if isBeginParenthesesToken(token) { // (
  361. pri = 0
  362. }
  363. return
  364. }
  365. // newNumberFormulaArg constructs a number formula argument.
  366. func newNumberFormulaArg(n float64) formulaArg {
  367. if math.IsNaN(n) {
  368. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  369. }
  370. return formulaArg{Type: ArgNumber, Number: n}
  371. }
  372. // newStringFormulaArg constructs a string formula argument.
  373. func newStringFormulaArg(s string) formulaArg {
  374. return formulaArg{Type: ArgString, String: s}
  375. }
  376. // newMatrixFormulaArg constructs a matrix formula argument.
  377. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  378. return formulaArg{Type: ArgMatrix, Matrix: m}
  379. }
  380. // newListFormulaArg create a list formula argument.
  381. func newListFormulaArg(l []formulaArg) formulaArg {
  382. return formulaArg{Type: ArgList, List: l}
  383. }
  384. // newBoolFormulaArg constructs a boolean formula argument.
  385. func newBoolFormulaArg(b bool) formulaArg {
  386. var n float64
  387. if b {
  388. n = 1
  389. }
  390. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  391. }
  392. // newErrorFormulaArg create an error formula argument of a given type with a
  393. // specified error message.
  394. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  395. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  396. }
  397. // newEmptyFormulaArg create an empty formula argument.
  398. func newEmptyFormulaArg() formulaArg {
  399. return formulaArg{Type: ArgEmpty}
  400. }
  401. // evalInfixExp evaluate syntax analysis by given infix expression after
  402. // lexical analysis. Evaluate an infix expression containing formulas by
  403. // stacks:
  404. //
  405. // opd - Operand
  406. // opt - Operator
  407. // opf - Operation formula
  408. // opfd - Operand of the operation formula
  409. // opft - Operator of the operation formula
  410. //
  411. // Evaluate arguments of the operation formula by list:
  412. //
  413. // args - Arguments of the operation formula
  414. //
  415. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  416. //
  417. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  418. var err error
  419. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  420. for i := 0; i < len(tokens); i++ {
  421. token := tokens[i]
  422. // out of function stack
  423. if opfStack.Len() == 0 {
  424. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  425. return efp.Token{}, err
  426. }
  427. }
  428. // function start
  429. if isFunctionStartToken(token) {
  430. opfStack.Push(token)
  431. argsStack.Push(list.New().Init())
  432. continue
  433. }
  434. // in function stack, walk 2 token at once
  435. if opfStack.Len() > 0 {
  436. var nextToken efp.Token
  437. if i+1 < len(tokens) {
  438. nextToken = tokens[i+1]
  439. }
  440. // current token is args or range, skip next token, order required: parse reference first
  441. if token.TSubType == efp.TokenSubTypeRange {
  442. if !opftStack.Empty() {
  443. // parse reference: must reference at here
  444. result, err := f.parseReference(sheet, token.TValue)
  445. if err != nil {
  446. return efp.Token{TValue: formulaErrorNAME}, err
  447. }
  448. if result.Type != ArgString {
  449. return efp.Token{}, errors.New(formulaErrorVALUE)
  450. }
  451. opfdStack.Push(efp.Token{
  452. TType: efp.TokenTypeOperand,
  453. TSubType: efp.TokenSubTypeNumber,
  454. TValue: result.String,
  455. })
  456. continue
  457. }
  458. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  459. // parse reference: reference or range at here
  460. result, err := f.parseReference(sheet, token.TValue)
  461. if err != nil {
  462. return efp.Token{TValue: formulaErrorNAME}, err
  463. }
  464. if result.Type == ArgUnknown {
  465. return efp.Token{}, errors.New(formulaErrorVALUE)
  466. }
  467. argsStack.Peek().(*list.List).PushBack(result)
  468. continue
  469. }
  470. }
  471. // check current token is opft
  472. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  473. return efp.Token{}, err
  474. }
  475. // current token is arg
  476. if token.TType == efp.TokenTypeArgument {
  477. for !opftStack.Empty() {
  478. // calculate trigger
  479. topOpt := opftStack.Peek().(efp.Token)
  480. if err := calculate(opfdStack, topOpt); err != nil {
  481. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  482. }
  483. opftStack.Pop()
  484. }
  485. if !opfdStack.Empty() {
  486. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  487. }
  488. continue
  489. }
  490. // current token is logical
  491. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  492. }
  493. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  494. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  495. }
  496. // current token is text
  497. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  498. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  499. }
  500. if err = f.evalInfixExpFunc(sheet, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  501. return efp.Token{}, err
  502. }
  503. }
  504. }
  505. for optStack.Len() != 0 {
  506. topOpt := optStack.Peek().(efp.Token)
  507. if err = calculate(opdStack, topOpt); err != nil {
  508. return efp.Token{}, err
  509. }
  510. optStack.Pop()
  511. }
  512. if opdStack.Len() == 0 {
  513. return efp.Token{}, errors.New("formula not valid")
  514. }
  515. return opdStack.Peek().(efp.Token), err
  516. }
  517. // evalInfixExpFunc evaluate formula function in the infix expression.
  518. func (f *File) evalInfixExpFunc(sheet string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  519. if !isFunctionStopToken(token) {
  520. return nil
  521. }
  522. // current token is function stop
  523. for !opftStack.Empty() {
  524. // calculate trigger
  525. topOpt := opftStack.Peek().(efp.Token)
  526. if err := calculate(opfdStack, topOpt); err != nil {
  527. return err
  528. }
  529. opftStack.Pop()
  530. }
  531. // push opfd to args
  532. if opfdStack.Len() > 0 {
  533. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  534. }
  535. // call formula function to evaluate
  536. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet}, strings.NewReplacer(
  537. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  538. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  539. if arg.Type == ArgError && opfStack.Len() == 1 {
  540. return errors.New(arg.Value())
  541. }
  542. argsStack.Pop()
  543. opfStack.Pop()
  544. if opfStack.Len() > 0 { // still in function stack
  545. if nextToken.TType == efp.TokenTypeOperatorInfix {
  546. // mathematics calculate in formula function
  547. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  548. } else {
  549. argsStack.Peek().(*list.List).PushBack(arg)
  550. }
  551. } else {
  552. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  553. }
  554. return nil
  555. }
  556. // calcPow evaluate exponentiation arithmetic operations.
  557. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  558. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  559. if err != nil {
  560. return err
  561. }
  562. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  563. if err != nil {
  564. return err
  565. }
  566. result := math.Pow(lOpdVal, rOpdVal)
  567. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  568. return nil
  569. }
  570. // calcEq evaluate equal arithmetic operations.
  571. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  572. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  573. return nil
  574. }
  575. // calcNEq evaluate not equal arithmetic operations.
  576. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  577. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  578. return nil
  579. }
  580. // calcL evaluate less than arithmetic operations.
  581. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  582. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  583. if err != nil {
  584. return err
  585. }
  586. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  587. if err != nil {
  588. return err
  589. }
  590. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  591. return nil
  592. }
  593. // calcLe evaluate less than or equal arithmetic operations.
  594. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  595. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  596. if err != nil {
  597. return err
  598. }
  599. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  600. if err != nil {
  601. return err
  602. }
  603. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  604. return nil
  605. }
  606. // calcG evaluate greater than or equal arithmetic operations.
  607. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  608. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  609. if err != nil {
  610. return err
  611. }
  612. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  613. if err != nil {
  614. return err
  615. }
  616. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  617. return nil
  618. }
  619. // calcGe evaluate greater than or equal arithmetic operations.
  620. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  621. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  622. if err != nil {
  623. return err
  624. }
  625. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  626. if err != nil {
  627. return err
  628. }
  629. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  630. return nil
  631. }
  632. // calcSplice evaluate splice '&' operations.
  633. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  634. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  635. return nil
  636. }
  637. // calcAdd evaluate addition arithmetic operations.
  638. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  639. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  640. if err != nil {
  641. return err
  642. }
  643. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  644. if err != nil {
  645. return err
  646. }
  647. result := lOpdVal + rOpdVal
  648. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  649. return nil
  650. }
  651. // calcSubtract evaluate subtraction arithmetic operations.
  652. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  653. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  654. if err != nil {
  655. return err
  656. }
  657. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  658. if err != nil {
  659. return err
  660. }
  661. result := lOpdVal - rOpdVal
  662. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  663. return nil
  664. }
  665. // calcMultiply evaluate multiplication arithmetic operations.
  666. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  667. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  668. if err != nil {
  669. return err
  670. }
  671. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  672. if err != nil {
  673. return err
  674. }
  675. result := lOpdVal * rOpdVal
  676. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  677. return nil
  678. }
  679. // calcDiv evaluate division arithmetic operations.
  680. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  681. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  682. if err != nil {
  683. return err
  684. }
  685. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  686. if err != nil {
  687. return err
  688. }
  689. result := lOpdVal / rOpdVal
  690. if rOpdVal == 0 {
  691. return errors.New(formulaErrorDIV)
  692. }
  693. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  694. return nil
  695. }
  696. // calculate evaluate basic arithmetic operations.
  697. func calculate(opdStack *Stack, opt efp.Token) error {
  698. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  699. if opdStack.Len() < 1 {
  700. return errors.New("formula not valid")
  701. }
  702. opd := opdStack.Pop().(efp.Token)
  703. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  704. if err != nil {
  705. return err
  706. }
  707. result := 0 - opdVal
  708. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  709. }
  710. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  711. "^": calcPow,
  712. "*": calcMultiply,
  713. "/": calcDiv,
  714. "+": calcAdd,
  715. "=": calcEq,
  716. "<>": calcNEq,
  717. "<": calcL,
  718. "<=": calcLe,
  719. ">": calcG,
  720. ">=": calcGe,
  721. "&": calcSplice,
  722. }
  723. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  724. if opdStack.Len() < 2 {
  725. return errors.New("formula not valid")
  726. }
  727. rOpd := opdStack.Pop().(efp.Token)
  728. lOpd := opdStack.Pop().(efp.Token)
  729. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  730. return err
  731. }
  732. }
  733. fn, ok := tokenCalcFunc[opt.TValue]
  734. if ok {
  735. if opdStack.Len() < 2 {
  736. return errors.New("formula not valid")
  737. }
  738. rOpd := opdStack.Pop().(efp.Token)
  739. lOpd := opdStack.Pop().(efp.Token)
  740. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  741. return err
  742. }
  743. }
  744. return nil
  745. }
  746. // parseOperatorPrefixToken parse operator prefix token.
  747. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  748. if optStack.Len() == 0 {
  749. optStack.Push(token)
  750. } else {
  751. tokenPriority := getPriority(token)
  752. topOpt := optStack.Peek().(efp.Token)
  753. topOptPriority := getPriority(topOpt)
  754. if tokenPriority > topOptPriority {
  755. optStack.Push(token)
  756. } else {
  757. for tokenPriority <= topOptPriority {
  758. optStack.Pop()
  759. if err = calculate(opdStack, topOpt); err != nil {
  760. return
  761. }
  762. if optStack.Len() > 0 {
  763. topOpt = optStack.Peek().(efp.Token)
  764. topOptPriority = getPriority(topOpt)
  765. continue
  766. }
  767. break
  768. }
  769. optStack.Push(token)
  770. }
  771. }
  772. return
  773. }
  774. // isFunctionStartToken determine if the token is function stop.
  775. func isFunctionStartToken(token efp.Token) bool {
  776. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  777. }
  778. // isFunctionStopToken determine if the token is function stop.
  779. func isFunctionStopToken(token efp.Token) bool {
  780. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  781. }
  782. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  783. func isBeginParenthesesToken(token efp.Token) bool {
  784. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  785. }
  786. // isEndParenthesesToken determine if the token is end parentheses: ).
  787. func isEndParenthesesToken(token efp.Token) bool {
  788. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  789. }
  790. // isOperatorPrefixToken determine if the token is parse operator prefix
  791. // token.
  792. func isOperatorPrefixToken(token efp.Token) bool {
  793. _, ok := tokenPriority[token.TValue]
  794. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  795. return true
  796. }
  797. return false
  798. }
  799. // getDefinedNameRefTo convert defined name to reference range.
  800. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  801. for _, definedName := range f.GetDefinedName() {
  802. if definedName.Name == definedNameName {
  803. refTo = definedName.RefersTo
  804. // worksheet scope takes precedence over scope workbook when both definedNames exist
  805. if definedName.Scope == currentSheet {
  806. break
  807. }
  808. }
  809. }
  810. return refTo
  811. }
  812. // parseToken parse basic arithmetic operator priority and evaluate based on
  813. // operators and operands.
  814. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  815. // parse reference: must reference at here
  816. if token.TSubType == efp.TokenSubTypeRange {
  817. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  818. if refTo != "" {
  819. token.TValue = refTo
  820. }
  821. result, err := f.parseReference(sheet, token.TValue)
  822. if err != nil {
  823. return errors.New(formulaErrorNAME)
  824. }
  825. if result.Type != ArgString {
  826. return errors.New(formulaErrorVALUE)
  827. }
  828. token.TValue = result.String
  829. token.TType = efp.TokenTypeOperand
  830. token.TSubType = efp.TokenSubTypeNumber
  831. }
  832. if isOperatorPrefixToken(token) {
  833. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  834. return err
  835. }
  836. }
  837. if isBeginParenthesesToken(token) { // (
  838. optStack.Push(token)
  839. }
  840. if isEndParenthesesToken(token) { // )
  841. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  842. topOpt := optStack.Peek().(efp.Token)
  843. if err := calculate(opdStack, topOpt); err != nil {
  844. return err
  845. }
  846. optStack.Pop()
  847. }
  848. optStack.Pop()
  849. }
  850. // opd
  851. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  852. opdStack.Push(token)
  853. }
  854. return nil
  855. }
  856. // parseReference parse reference and extract values by given reference
  857. // characters and default sheet name.
  858. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  859. reference = strings.Replace(reference, "$", "", -1)
  860. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  861. for _, ref := range strings.Split(reference, ":") {
  862. tokens := strings.Split(ref, "!")
  863. cr := cellRef{}
  864. if len(tokens) == 2 { // have a worksheet name
  865. cr.Sheet = tokens[0]
  866. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  867. return
  868. }
  869. if refs.Len() > 0 {
  870. e := refs.Back()
  871. cellRefs.PushBack(e.Value.(cellRef))
  872. refs.Remove(e)
  873. }
  874. refs.PushBack(cr)
  875. continue
  876. }
  877. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  878. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  879. return
  880. }
  881. cellRanges.PushBack(cellRange{
  882. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  883. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  884. })
  885. cellRefs.Init()
  886. arg, err = f.rangeResolver(cellRefs, cellRanges)
  887. return
  888. }
  889. e := refs.Back()
  890. if e == nil {
  891. cr.Sheet = sheet
  892. refs.PushBack(cr)
  893. continue
  894. }
  895. cellRanges.PushBack(cellRange{
  896. From: e.Value.(cellRef),
  897. To: cr,
  898. })
  899. refs.Remove(e)
  900. }
  901. if refs.Len() > 0 {
  902. e := refs.Back()
  903. cellRefs.PushBack(e.Value.(cellRef))
  904. refs.Remove(e)
  905. }
  906. arg, err = f.rangeResolver(cellRefs, cellRanges)
  907. return
  908. }
  909. // prepareValueRange prepare value range.
  910. func prepareValueRange(cr cellRange, valueRange []int) {
  911. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  912. valueRange[0] = cr.From.Row
  913. }
  914. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  915. valueRange[2] = cr.From.Col
  916. }
  917. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  918. valueRange[1] = cr.To.Row
  919. }
  920. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  921. valueRange[3] = cr.To.Col
  922. }
  923. }
  924. // prepareValueRef prepare value reference.
  925. func prepareValueRef(cr cellRef, valueRange []int) {
  926. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  927. valueRange[0] = cr.Row
  928. }
  929. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  930. valueRange[2] = cr.Col
  931. }
  932. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  933. valueRange[1] = cr.Row
  934. }
  935. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  936. valueRange[3] = cr.Col
  937. }
  938. }
  939. // rangeResolver extract value as string from given reference and range list.
  940. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  941. // be reference A1:B3.
  942. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  943. // value range order: from row, to row, from column, to column
  944. valueRange := []int{0, 0, 0, 0}
  945. var sheet string
  946. // prepare value range
  947. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  948. cr := temp.Value.(cellRange)
  949. if cr.From.Sheet != cr.To.Sheet {
  950. err = errors.New(formulaErrorVALUE)
  951. }
  952. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  953. _ = sortCoordinates(rng)
  954. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  955. prepareValueRange(cr, valueRange)
  956. if cr.From.Sheet != "" {
  957. sheet = cr.From.Sheet
  958. }
  959. }
  960. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  961. cr := temp.Value.(cellRef)
  962. if cr.Sheet != "" {
  963. sheet = cr.Sheet
  964. }
  965. prepareValueRef(cr, valueRange)
  966. }
  967. // extract value from ranges
  968. if cellRanges.Len() > 0 {
  969. arg.Type = ArgMatrix
  970. for row := valueRange[0]; row <= valueRange[1]; row++ {
  971. var matrixRow = []formulaArg{}
  972. for col := valueRange[2]; col <= valueRange[3]; col++ {
  973. var cell, value string
  974. if cell, err = CoordinatesToCellName(col, row); err != nil {
  975. return
  976. }
  977. if value, err = f.GetCellValue(sheet, cell); err != nil {
  978. return
  979. }
  980. matrixRow = append(matrixRow, formulaArg{
  981. String: value,
  982. Type: ArgString,
  983. })
  984. }
  985. arg.Matrix = append(arg.Matrix, matrixRow)
  986. }
  987. return
  988. }
  989. // extract value from references
  990. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  991. cr := temp.Value.(cellRef)
  992. var cell string
  993. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  994. return
  995. }
  996. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  997. return
  998. }
  999. arg.Type = ArgString
  1000. }
  1001. return
  1002. }
  1003. // callFuncByName calls the no error or only error return function with
  1004. // reflect by given receiver, name and parameters.
  1005. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1006. function := reflect.ValueOf(receiver).MethodByName(name)
  1007. if function.IsValid() {
  1008. rt := function.Call(params)
  1009. if len(rt) == 0 {
  1010. return
  1011. }
  1012. arg = rt[0].Interface().(formulaArg)
  1013. return
  1014. }
  1015. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1016. }
  1017. // formulaCriteriaParser parse formula criteria.
  1018. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1019. fc = &formulaCriteria{}
  1020. if exp == "" {
  1021. return
  1022. }
  1023. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1024. fc.Type, fc.Condition = criteriaEq, match[1]
  1025. return
  1026. }
  1027. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1028. fc.Type, fc.Condition = criteriaEq, match[1]
  1029. return
  1030. }
  1031. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1032. fc.Type, fc.Condition = criteriaLe, match[1]
  1033. return
  1034. }
  1035. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1036. fc.Type, fc.Condition = criteriaGe, match[1]
  1037. return
  1038. }
  1039. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1040. fc.Type, fc.Condition = criteriaL, match[1]
  1041. return
  1042. }
  1043. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1044. fc.Type, fc.Condition = criteriaG, match[1]
  1045. return
  1046. }
  1047. if strings.Contains(exp, "*") {
  1048. if strings.HasPrefix(exp, "*") {
  1049. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1050. }
  1051. if strings.HasSuffix(exp, "*") {
  1052. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1053. }
  1054. return
  1055. }
  1056. fc.Type, fc.Condition = criteriaEq, exp
  1057. return
  1058. }
  1059. // formulaCriteriaEval evaluate formula criteria expression.
  1060. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1061. var value, expected float64
  1062. var e error
  1063. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1064. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1065. return
  1066. }
  1067. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1068. return
  1069. }
  1070. return
  1071. }
  1072. switch criteria.Type {
  1073. case criteriaEq:
  1074. return val == criteria.Condition, err
  1075. case criteriaLe:
  1076. value, expected, e = prepareValue(val, criteria.Condition)
  1077. return value <= expected && e == nil, err
  1078. case criteriaGe:
  1079. value, expected, e = prepareValue(val, criteria.Condition)
  1080. return value >= expected && e == nil, err
  1081. case criteriaL:
  1082. value, expected, e = prepareValue(val, criteria.Condition)
  1083. return value < expected && e == nil, err
  1084. case criteriaG:
  1085. value, expected, e = prepareValue(val, criteria.Condition)
  1086. return value > expected && e == nil, err
  1087. case criteriaBeg:
  1088. return strings.HasPrefix(val, criteria.Condition), err
  1089. case criteriaEnd:
  1090. return strings.HasSuffix(val, criteria.Condition), err
  1091. }
  1092. return
  1093. }
  1094. // Engineering Functions
  1095. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1096. // The syntax of the function is:
  1097. //
  1098. // BIN2DEC(number)
  1099. //
  1100. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1101. if argsList.Len() != 1 {
  1102. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1103. }
  1104. token := argsList.Front().Value.(formulaArg)
  1105. number := token.ToNumber()
  1106. if number.Type != ArgNumber {
  1107. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1108. }
  1109. return fn.bin2dec(token.Value())
  1110. }
  1111. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1112. // (Base 16) number. The syntax of the function is:
  1113. //
  1114. // BIN2HEX(number,[places])
  1115. //
  1116. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1117. if argsList.Len() < 1 {
  1118. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1119. }
  1120. if argsList.Len() > 2 {
  1121. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1122. }
  1123. token := argsList.Front().Value.(formulaArg)
  1124. number := token.ToNumber()
  1125. if number.Type != ArgNumber {
  1126. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1127. }
  1128. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1129. if decimal.Type != ArgNumber {
  1130. return decimal
  1131. }
  1132. newList.PushBack(decimal)
  1133. if argsList.Len() == 2 {
  1134. newList.PushBack(argsList.Back().Value.(formulaArg))
  1135. }
  1136. return fn.dec2x("BIN2HEX", newList)
  1137. }
  1138. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1139. // number. The syntax of the function is:
  1140. //
  1141. // BIN2OCT(number,[places])
  1142. //
  1143. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1144. if argsList.Len() < 1 {
  1145. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1146. }
  1147. if argsList.Len() > 2 {
  1148. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1149. }
  1150. token := argsList.Front().Value.(formulaArg)
  1151. number := token.ToNumber()
  1152. if number.Type != ArgNumber {
  1153. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1154. }
  1155. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1156. if decimal.Type != ArgNumber {
  1157. return decimal
  1158. }
  1159. newList.PushBack(decimal)
  1160. if argsList.Len() == 2 {
  1161. newList.PushBack(argsList.Back().Value.(formulaArg))
  1162. }
  1163. return fn.dec2x("BIN2OCT", newList)
  1164. }
  1165. // bin2dec is an implementation of the formula function BIN2DEC.
  1166. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1167. decimal, length := 0.0, len(number)
  1168. for i := length; i > 0; i-- {
  1169. s := string(number[length-i])
  1170. if 10 == i && s == "1" {
  1171. decimal += math.Pow(-2.0, float64(i-1))
  1172. continue
  1173. }
  1174. if s == "1" {
  1175. decimal += math.Pow(2.0, float64(i-1))
  1176. continue
  1177. }
  1178. if s != "0" {
  1179. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1180. }
  1181. }
  1182. return newNumberFormulaArg(decimal)
  1183. }
  1184. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1185. // syntax of the function is:
  1186. //
  1187. // BITAND(number1,number2)
  1188. //
  1189. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1190. return fn.bitwise("BITAND", argsList)
  1191. }
  1192. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1193. // number of bits. The syntax of the function is:
  1194. //
  1195. // BITLSHIFT(number1,shift_amount)
  1196. //
  1197. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1198. return fn.bitwise("BITLSHIFT", argsList)
  1199. }
  1200. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1201. // syntax of the function is:
  1202. //
  1203. // BITOR(number1,number2)
  1204. //
  1205. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1206. return fn.bitwise("BITOR", argsList)
  1207. }
  1208. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1209. // number of bits. The syntax of the function is:
  1210. //
  1211. // BITRSHIFT(number1,shift_amount)
  1212. //
  1213. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1214. return fn.bitwise("BITRSHIFT", argsList)
  1215. }
  1216. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1217. // integers. The syntax of the function is:
  1218. //
  1219. // BITXOR(number1,number2)
  1220. //
  1221. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1222. return fn.bitwise("BITXOR", argsList)
  1223. }
  1224. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1225. // BITOR, BITRSHIFT and BITXOR.
  1226. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1227. if argsList.Len() != 2 {
  1228. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1229. }
  1230. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1231. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1232. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1233. }
  1234. max := math.Pow(2, 48) - 1
  1235. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1236. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1237. }
  1238. bitwiseFuncMap := map[string]func(a, b int) int{
  1239. "BITAND": func(a, b int) int { return a & b },
  1240. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1241. "BITOR": func(a, b int) int { return a | b },
  1242. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1243. "BITXOR": func(a, b int) int { return a ^ b },
  1244. }
  1245. bitwiseFunc, _ := bitwiseFuncMap[name]
  1246. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1247. }
  1248. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1249. // The syntax of the function is:
  1250. //
  1251. // DEC2BIN(number,[places])
  1252. //
  1253. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1254. return fn.dec2x("DEC2BIN", argsList)
  1255. }
  1256. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1257. // number. The syntax of the function is:
  1258. //
  1259. // DEC2HEX(number,[places])
  1260. //
  1261. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1262. return fn.dec2x("DEC2HEX", argsList)
  1263. }
  1264. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1265. // The syntax of the function is:
  1266. //
  1267. // DEC2OCT(number,[places])
  1268. //
  1269. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1270. return fn.dec2x("DEC2OCT", argsList)
  1271. }
  1272. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1273. // DEC2OCT.
  1274. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1275. if argsList.Len() < 1 {
  1276. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1277. }
  1278. if argsList.Len() > 2 {
  1279. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1280. }
  1281. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1282. if decimal.Type != ArgNumber {
  1283. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1284. }
  1285. maxLimitMap := map[string]float64{
  1286. "DEC2BIN": 511,
  1287. "HEX2BIN": 511,
  1288. "OCT2BIN": 511,
  1289. "BIN2HEX": 549755813887,
  1290. "DEC2HEX": 549755813887,
  1291. "OCT2HEX": 549755813887,
  1292. "BIN2OCT": 536870911,
  1293. "DEC2OCT": 536870911,
  1294. "HEX2OCT": 536870911,
  1295. }
  1296. minLimitMap := map[string]float64{
  1297. "DEC2BIN": -512,
  1298. "HEX2BIN": -512,
  1299. "OCT2BIN": -512,
  1300. "BIN2HEX": -549755813888,
  1301. "DEC2HEX": -549755813888,
  1302. "OCT2HEX": -549755813888,
  1303. "BIN2OCT": -536870912,
  1304. "DEC2OCT": -536870912,
  1305. "HEX2OCT": -536870912,
  1306. }
  1307. baseMap := map[string]int{
  1308. "DEC2BIN": 2,
  1309. "HEX2BIN": 2,
  1310. "OCT2BIN": 2,
  1311. "BIN2HEX": 16,
  1312. "DEC2HEX": 16,
  1313. "OCT2HEX": 16,
  1314. "BIN2OCT": 8,
  1315. "DEC2OCT": 8,
  1316. "HEX2OCT": 8,
  1317. }
  1318. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1319. base := baseMap[name]
  1320. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1321. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1322. }
  1323. n := int64(decimal.Number)
  1324. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1325. if argsList.Len() == 2 {
  1326. places := argsList.Back().Value.(formulaArg).ToNumber()
  1327. if places.Type != ArgNumber {
  1328. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1329. }
  1330. binaryPlaces := len(binary)
  1331. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1332. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1333. }
  1334. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1335. }
  1336. if decimal.Number < 0 && len(binary) > 10 {
  1337. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1338. }
  1339. return newStringFormulaArg(strings.ToUpper(binary))
  1340. }
  1341. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1342. // (Base 2) number. The syntax of the function is:
  1343. //
  1344. // HEX2BIN(number,[places])
  1345. //
  1346. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1347. if argsList.Len() < 1 {
  1348. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1349. }
  1350. if argsList.Len() > 2 {
  1351. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1352. }
  1353. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1354. if decimal.Type != ArgNumber {
  1355. return decimal
  1356. }
  1357. newList.PushBack(decimal)
  1358. if argsList.Len() == 2 {
  1359. newList.PushBack(argsList.Back().Value.(formulaArg))
  1360. }
  1361. return fn.dec2x("HEX2BIN", newList)
  1362. }
  1363. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1364. // number. The syntax of the function is:
  1365. //
  1366. // HEX2DEC(number)
  1367. //
  1368. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1369. if argsList.Len() != 1 {
  1370. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1371. }
  1372. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1373. }
  1374. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1375. // (Base 8) number. The syntax of the function is:
  1376. //
  1377. // HEX2OCT(number,[places])
  1378. //
  1379. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1380. if argsList.Len() < 1 {
  1381. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1382. }
  1383. if argsList.Len() > 2 {
  1384. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1385. }
  1386. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1387. if decimal.Type != ArgNumber {
  1388. return decimal
  1389. }
  1390. newList.PushBack(decimal)
  1391. if argsList.Len() == 2 {
  1392. newList.PushBack(argsList.Back().Value.(formulaArg))
  1393. }
  1394. return fn.dec2x("HEX2OCT", newList)
  1395. }
  1396. // hex2dec is an implementation of the formula function HEX2DEC.
  1397. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1398. decimal, length := 0.0, len(number)
  1399. for i := length; i > 0; i-- {
  1400. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1401. if err != nil {
  1402. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1403. }
  1404. if 10 == i && string(number[length-i]) == "F" {
  1405. decimal += math.Pow(-16.0, float64(i-1))
  1406. continue
  1407. }
  1408. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1409. }
  1410. return newNumberFormulaArg(decimal)
  1411. }
  1412. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1413. // number. The syntax of the function is:
  1414. //
  1415. // OCT2BIN(number,[places])
  1416. //
  1417. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1418. if argsList.Len() < 1 {
  1419. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1420. }
  1421. if argsList.Len() > 2 {
  1422. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1423. }
  1424. token := argsList.Front().Value.(formulaArg)
  1425. number := token.ToNumber()
  1426. if number.Type != ArgNumber {
  1427. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1428. }
  1429. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1430. newList.PushBack(decimal)
  1431. if argsList.Len() == 2 {
  1432. newList.PushBack(argsList.Back().Value.(formulaArg))
  1433. }
  1434. return fn.dec2x("OCT2BIN", newList)
  1435. }
  1436. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1437. // The syntax of the function is:
  1438. //
  1439. // OCT2DEC(number)
  1440. //
  1441. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1442. if argsList.Len() != 1 {
  1443. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1444. }
  1445. token := argsList.Front().Value.(formulaArg)
  1446. number := token.ToNumber()
  1447. if number.Type != ArgNumber {
  1448. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1449. }
  1450. return fn.oct2dec(token.Value())
  1451. }
  1452. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1453. // (Base 16) number. The syntax of the function is:
  1454. //
  1455. // OCT2HEX(number,[places])
  1456. //
  1457. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1458. if argsList.Len() < 1 {
  1459. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1460. }
  1461. if argsList.Len() > 2 {
  1462. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1463. }
  1464. token := argsList.Front().Value.(formulaArg)
  1465. number := token.ToNumber()
  1466. if number.Type != ArgNumber {
  1467. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1468. }
  1469. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1470. newList.PushBack(decimal)
  1471. if argsList.Len() == 2 {
  1472. newList.PushBack(argsList.Back().Value.(formulaArg))
  1473. }
  1474. return fn.dec2x("OCT2HEX", newList)
  1475. }
  1476. // oct2dec is an implementation of the formula function OCT2DEC.
  1477. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1478. decimal, length := 0.0, len(number)
  1479. for i := length; i > 0; i-- {
  1480. num, _ := strconv.Atoi(string(number[length-i]))
  1481. if 10 == i && string(number[length-i]) == "7" {
  1482. decimal += math.Pow(-8.0, float64(i-1))
  1483. continue
  1484. }
  1485. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1486. }
  1487. return newNumberFormulaArg(decimal)
  1488. }
  1489. // Math and Trigonometric Functions
  1490. // ABS function returns the absolute value of any supplied number. The syntax
  1491. // of the function is:
  1492. //
  1493. // ABS(number)
  1494. //
  1495. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1496. if argsList.Len() != 1 {
  1497. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1498. }
  1499. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1500. if arg.Type == ArgError {
  1501. return arg
  1502. }
  1503. return newNumberFormulaArg(math.Abs(arg.Number))
  1504. }
  1505. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1506. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1507. // the function is:
  1508. //
  1509. // ACOS(number)
  1510. //
  1511. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1512. if argsList.Len() != 1 {
  1513. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1514. }
  1515. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1516. if arg.Type == ArgError {
  1517. return arg
  1518. }
  1519. return newNumberFormulaArg(math.Acos(arg.Number))
  1520. }
  1521. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1522. // of the function is:
  1523. //
  1524. // ACOSH(number)
  1525. //
  1526. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1527. if argsList.Len() != 1 {
  1528. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1529. }
  1530. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1531. if arg.Type == ArgError {
  1532. return arg
  1533. }
  1534. return newNumberFormulaArg(math.Acosh(arg.Number))
  1535. }
  1536. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1537. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1538. // of the function is:
  1539. //
  1540. // ACOT(number)
  1541. //
  1542. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1543. if argsList.Len() != 1 {
  1544. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1545. }
  1546. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1547. if arg.Type == ArgError {
  1548. return arg
  1549. }
  1550. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1551. }
  1552. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1553. // value. The syntax of the function is:
  1554. //
  1555. // ACOTH(number)
  1556. //
  1557. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1558. if argsList.Len() != 1 {
  1559. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1560. }
  1561. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1562. if arg.Type == ArgError {
  1563. return arg
  1564. }
  1565. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1566. }
  1567. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1568. // of the function is:
  1569. //
  1570. // ARABIC(text)
  1571. //
  1572. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1573. if argsList.Len() != 1 {
  1574. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1575. }
  1576. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1577. val, last, prefix := 0.0, 0.0, 1.0
  1578. for _, char := range argsList.Front().Value.(formulaArg).String {
  1579. digit := 0.0
  1580. if char == '-' {
  1581. prefix = -1
  1582. continue
  1583. }
  1584. digit = charMap[char]
  1585. val += digit
  1586. switch {
  1587. case last == digit && (last == 5 || last == 50 || last == 500):
  1588. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1589. case 2*last == digit:
  1590. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1591. }
  1592. if last < digit {
  1593. val -= 2 * last
  1594. }
  1595. last = digit
  1596. }
  1597. return newNumberFormulaArg(prefix * val)
  1598. }
  1599. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1600. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1601. // of the function is:
  1602. //
  1603. // ASIN(number)
  1604. //
  1605. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1606. if argsList.Len() != 1 {
  1607. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1608. }
  1609. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1610. if arg.Type == ArgError {
  1611. return arg
  1612. }
  1613. return newNumberFormulaArg(math.Asin(arg.Number))
  1614. }
  1615. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1616. // The syntax of the function is:
  1617. //
  1618. // ASINH(number)
  1619. //
  1620. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1621. if argsList.Len() != 1 {
  1622. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1623. }
  1624. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1625. if arg.Type == ArgError {
  1626. return arg
  1627. }
  1628. return newNumberFormulaArg(math.Asinh(arg.Number))
  1629. }
  1630. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1631. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1632. // syntax of the function is:
  1633. //
  1634. // ATAN(number)
  1635. //
  1636. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1637. if argsList.Len() != 1 {
  1638. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1639. }
  1640. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1641. if arg.Type == ArgError {
  1642. return arg
  1643. }
  1644. return newNumberFormulaArg(math.Atan(arg.Number))
  1645. }
  1646. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1647. // number. The syntax of the function is:
  1648. //
  1649. // ATANH(number)
  1650. //
  1651. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1652. if argsList.Len() != 1 {
  1653. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1654. }
  1655. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1656. if arg.Type == ArgError {
  1657. return arg
  1658. }
  1659. return newNumberFormulaArg(math.Atanh(arg.Number))
  1660. }
  1661. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1662. // given set of x and y coordinates, and returns an angle, in radians, between
  1663. // -π/2 and +π/2. The syntax of the function is:
  1664. //
  1665. // ATAN2(x_num,y_num)
  1666. //
  1667. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1668. if argsList.Len() != 2 {
  1669. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1670. }
  1671. x := argsList.Back().Value.(formulaArg).ToNumber()
  1672. if x.Type == ArgError {
  1673. return x
  1674. }
  1675. y := argsList.Front().Value.(formulaArg).ToNumber()
  1676. if y.Type == ArgError {
  1677. return y
  1678. }
  1679. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1680. }
  1681. // BASE function converts a number into a supplied base (radix), and returns a
  1682. // text representation of the calculated value. The syntax of the function is:
  1683. //
  1684. // BASE(number,radix,[min_length])
  1685. //
  1686. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1687. if argsList.Len() < 2 {
  1688. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1689. }
  1690. if argsList.Len() > 3 {
  1691. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1692. }
  1693. var minLength int
  1694. var err error
  1695. number := argsList.Front().Value.(formulaArg).ToNumber()
  1696. if number.Type == ArgError {
  1697. return number
  1698. }
  1699. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1700. if radix.Type == ArgError {
  1701. return radix
  1702. }
  1703. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1704. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1705. }
  1706. if argsList.Len() > 2 {
  1707. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1708. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1709. }
  1710. }
  1711. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1712. if len(result) < minLength {
  1713. result = strings.Repeat("0", minLength-len(result)) + result
  1714. }
  1715. return newStringFormulaArg(strings.ToUpper(result))
  1716. }
  1717. // CEILING function rounds a supplied number away from zero, to the nearest
  1718. // multiple of a given number. The syntax of the function is:
  1719. //
  1720. // CEILING(number,significance)
  1721. //
  1722. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1723. if argsList.Len() == 0 {
  1724. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1725. }
  1726. if argsList.Len() > 2 {
  1727. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1728. }
  1729. number, significance, res := 0.0, 1.0, 0.0
  1730. n := argsList.Front().Value.(formulaArg).ToNumber()
  1731. if n.Type == ArgError {
  1732. return n
  1733. }
  1734. number = n.Number
  1735. if number < 0 {
  1736. significance = -1
  1737. }
  1738. if argsList.Len() > 1 {
  1739. s := argsList.Back().Value.(formulaArg).ToNumber()
  1740. if s.Type == ArgError {
  1741. return s
  1742. }
  1743. significance = s.Number
  1744. }
  1745. if significance < 0 && number > 0 {
  1746. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1747. }
  1748. if argsList.Len() == 1 {
  1749. return newNumberFormulaArg(math.Ceil(number))
  1750. }
  1751. number, res = math.Modf(number / significance)
  1752. if res > 0 {
  1753. number++
  1754. }
  1755. return newNumberFormulaArg(number * significance)
  1756. }
  1757. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1758. // significance. The syntax of the function is:
  1759. //
  1760. // CEILING.MATH(number,[significance],[mode])
  1761. //
  1762. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1763. if argsList.Len() == 0 {
  1764. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1765. }
  1766. if argsList.Len() > 3 {
  1767. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1768. }
  1769. number, significance, mode := 0.0, 1.0, 1.0
  1770. n := argsList.Front().Value.(formulaArg).ToNumber()
  1771. if n.Type == ArgError {
  1772. return n
  1773. }
  1774. number = n.Number
  1775. if number < 0 {
  1776. significance = -1
  1777. }
  1778. if argsList.Len() > 1 {
  1779. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1780. if s.Type == ArgError {
  1781. return s
  1782. }
  1783. significance = s.Number
  1784. }
  1785. if argsList.Len() == 1 {
  1786. return newNumberFormulaArg(math.Ceil(number))
  1787. }
  1788. if argsList.Len() > 2 {
  1789. m := argsList.Back().Value.(formulaArg).ToNumber()
  1790. if m.Type == ArgError {
  1791. return m
  1792. }
  1793. mode = m.Number
  1794. }
  1795. val, res := math.Modf(number / significance)
  1796. if res != 0 {
  1797. if number > 0 {
  1798. val++
  1799. } else if mode < 0 {
  1800. val--
  1801. }
  1802. }
  1803. return newNumberFormulaArg(val * significance)
  1804. }
  1805. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1806. // number's sign), to the nearest multiple of a given number. The syntax of
  1807. // the function is:
  1808. //
  1809. // CEILING.PRECISE(number,[significance])
  1810. //
  1811. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1812. if argsList.Len() == 0 {
  1813. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1814. }
  1815. if argsList.Len() > 2 {
  1816. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1817. }
  1818. number, significance := 0.0, 1.0
  1819. n := argsList.Front().Value.(formulaArg).ToNumber()
  1820. if n.Type == ArgError {
  1821. return n
  1822. }
  1823. number = n.Number
  1824. if number < 0 {
  1825. significance = -1
  1826. }
  1827. if argsList.Len() == 1 {
  1828. return newNumberFormulaArg(math.Ceil(number))
  1829. }
  1830. if argsList.Len() > 1 {
  1831. s := argsList.Back().Value.(formulaArg).ToNumber()
  1832. if s.Type == ArgError {
  1833. return s
  1834. }
  1835. significance = s.Number
  1836. significance = math.Abs(significance)
  1837. if significance == 0 {
  1838. return newNumberFormulaArg(significance)
  1839. }
  1840. }
  1841. val, res := math.Modf(number / significance)
  1842. if res != 0 {
  1843. if number > 0 {
  1844. val++
  1845. }
  1846. }
  1847. return newNumberFormulaArg(val * significance)
  1848. }
  1849. // COMBIN function calculates the number of combinations (in any order) of a
  1850. // given number objects from a set. The syntax of the function is:
  1851. //
  1852. // COMBIN(number,number_chosen)
  1853. //
  1854. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1855. if argsList.Len() != 2 {
  1856. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1857. }
  1858. number, chosen, val := 0.0, 0.0, 1.0
  1859. n := argsList.Front().Value.(formulaArg).ToNumber()
  1860. if n.Type == ArgError {
  1861. return n
  1862. }
  1863. number = n.Number
  1864. c := argsList.Back().Value.(formulaArg).ToNumber()
  1865. if c.Type == ArgError {
  1866. return c
  1867. }
  1868. chosen = c.Number
  1869. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1870. if chosen > number {
  1871. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1872. }
  1873. if chosen == number || chosen == 0 {
  1874. return newNumberFormulaArg(1)
  1875. }
  1876. for c := float64(1); c <= chosen; c++ {
  1877. val *= (number + 1 - c) / c
  1878. }
  1879. return newNumberFormulaArg(math.Ceil(val))
  1880. }
  1881. // COMBINA function calculates the number of combinations, with repetitions,
  1882. // of a given number objects from a set. The syntax of the function is:
  1883. //
  1884. // COMBINA(number,number_chosen)
  1885. //
  1886. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1887. if argsList.Len() != 2 {
  1888. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1889. }
  1890. var number, chosen float64
  1891. n := argsList.Front().Value.(formulaArg).ToNumber()
  1892. if n.Type == ArgError {
  1893. return n
  1894. }
  1895. number = n.Number
  1896. c := argsList.Back().Value.(formulaArg).ToNumber()
  1897. if c.Type == ArgError {
  1898. return c
  1899. }
  1900. chosen = c.Number
  1901. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1902. if number < chosen {
  1903. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1904. }
  1905. if number == 0 {
  1906. return newNumberFormulaArg(number)
  1907. }
  1908. args := list.New()
  1909. args.PushBack(formulaArg{
  1910. String: fmt.Sprintf("%g", number+chosen-1),
  1911. Type: ArgString,
  1912. })
  1913. args.PushBack(formulaArg{
  1914. String: fmt.Sprintf("%g", number-1),
  1915. Type: ArgString,
  1916. })
  1917. return fn.COMBIN(args)
  1918. }
  1919. // COS function calculates the cosine of a given angle. The syntax of the
  1920. // function is:
  1921. //
  1922. // COS(number)
  1923. //
  1924. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1925. if argsList.Len() != 1 {
  1926. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1927. }
  1928. val := argsList.Front().Value.(formulaArg).ToNumber()
  1929. if val.Type == ArgError {
  1930. return val
  1931. }
  1932. return newNumberFormulaArg(math.Cos(val.Number))
  1933. }
  1934. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1935. // The syntax of the function is:
  1936. //
  1937. // COSH(number)
  1938. //
  1939. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1940. if argsList.Len() != 1 {
  1941. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1942. }
  1943. val := argsList.Front().Value.(formulaArg).ToNumber()
  1944. if val.Type == ArgError {
  1945. return val
  1946. }
  1947. return newNumberFormulaArg(math.Cosh(val.Number))
  1948. }
  1949. // COT function calculates the cotangent of a given angle. The syntax of the
  1950. // function is:
  1951. //
  1952. // COT(number)
  1953. //
  1954. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1955. if argsList.Len() != 1 {
  1956. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1957. }
  1958. val := argsList.Front().Value.(formulaArg).ToNumber()
  1959. if val.Type == ArgError {
  1960. return val
  1961. }
  1962. if val.Number == 0 {
  1963. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1964. }
  1965. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1966. }
  1967. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1968. // angle. The syntax of the function is:
  1969. //
  1970. // COTH(number)
  1971. //
  1972. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1973. if argsList.Len() != 1 {
  1974. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1975. }
  1976. val := argsList.Front().Value.(formulaArg).ToNumber()
  1977. if val.Type == ArgError {
  1978. return val
  1979. }
  1980. if val.Number == 0 {
  1981. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1982. }
  1983. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1984. }
  1985. // CSC function calculates the cosecant of a given angle. The syntax of the
  1986. // function is:
  1987. //
  1988. // CSC(number)
  1989. //
  1990. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1991. if argsList.Len() != 1 {
  1992. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1993. }
  1994. val := argsList.Front().Value.(formulaArg).ToNumber()
  1995. if val.Type == ArgError {
  1996. return val
  1997. }
  1998. if val.Number == 0 {
  1999. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2000. }
  2001. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2002. }
  2003. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2004. // angle. The syntax of the function is:
  2005. //
  2006. // CSCH(number)
  2007. //
  2008. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2009. if argsList.Len() != 1 {
  2010. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2011. }
  2012. val := argsList.Front().Value.(formulaArg).ToNumber()
  2013. if val.Type == ArgError {
  2014. return val
  2015. }
  2016. if val.Number == 0 {
  2017. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2018. }
  2019. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2020. }
  2021. // DECIMAL function converts a text representation of a number in a specified
  2022. // base, into a decimal value. The syntax of the function is:
  2023. //
  2024. // DECIMAL(text,radix)
  2025. //
  2026. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2027. if argsList.Len() != 2 {
  2028. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2029. }
  2030. var text = argsList.Front().Value.(formulaArg).String
  2031. var radix int
  2032. var err error
  2033. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2034. if err != nil {
  2035. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2036. }
  2037. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2038. text = text[2:]
  2039. }
  2040. val, err := strconv.ParseInt(text, radix, 64)
  2041. if err != nil {
  2042. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2043. }
  2044. return newNumberFormulaArg(float64(val))
  2045. }
  2046. // DEGREES function converts radians into degrees. The syntax of the function
  2047. // is:
  2048. //
  2049. // DEGREES(angle)
  2050. //
  2051. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2052. if argsList.Len() != 1 {
  2053. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2054. }
  2055. val := argsList.Front().Value.(formulaArg).ToNumber()
  2056. if val.Type == ArgError {
  2057. return val
  2058. }
  2059. if val.Number == 0 {
  2060. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2061. }
  2062. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2063. }
  2064. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2065. // positive number up and a negative number down), to the next even number.
  2066. // The syntax of the function is:
  2067. //
  2068. // EVEN(number)
  2069. //
  2070. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2071. if argsList.Len() != 1 {
  2072. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2073. }
  2074. number := argsList.Front().Value.(formulaArg).ToNumber()
  2075. if number.Type == ArgError {
  2076. return number
  2077. }
  2078. sign := math.Signbit(number.Number)
  2079. m, frac := math.Modf(number.Number / 2)
  2080. val := m * 2
  2081. if frac != 0 {
  2082. if !sign {
  2083. val += 2
  2084. } else {
  2085. val -= 2
  2086. }
  2087. }
  2088. return newNumberFormulaArg(val)
  2089. }
  2090. // EXP function calculates the value of the mathematical constant e, raised to
  2091. // the power of a given number. The syntax of the function is:
  2092. //
  2093. // EXP(number)
  2094. //
  2095. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2096. if argsList.Len() != 1 {
  2097. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2098. }
  2099. number := argsList.Front().Value.(formulaArg).ToNumber()
  2100. if number.Type == ArgError {
  2101. return number
  2102. }
  2103. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2104. }
  2105. // fact returns the factorial of a supplied number.
  2106. func fact(number float64) float64 {
  2107. val := float64(1)
  2108. for i := float64(2); i <= number; i++ {
  2109. val *= i
  2110. }
  2111. return val
  2112. }
  2113. // FACT function returns the factorial of a supplied number. The syntax of the
  2114. // function is:
  2115. //
  2116. // FACT(number)
  2117. //
  2118. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2119. if argsList.Len() != 1 {
  2120. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2121. }
  2122. number := argsList.Front().Value.(formulaArg).ToNumber()
  2123. if number.Type == ArgError {
  2124. return number
  2125. }
  2126. if number.Number < 0 {
  2127. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2128. }
  2129. return newNumberFormulaArg(fact(number.Number))
  2130. }
  2131. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2132. // syntax of the function is:
  2133. //
  2134. // FACTDOUBLE(number)
  2135. //
  2136. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2137. if argsList.Len() != 1 {
  2138. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2139. }
  2140. val := 1.0
  2141. number := argsList.Front().Value.(formulaArg).ToNumber()
  2142. if number.Type == ArgError {
  2143. return number
  2144. }
  2145. if number.Number < 0 {
  2146. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2147. }
  2148. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2149. val *= i
  2150. }
  2151. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2152. }
  2153. // FLOOR function rounds a supplied number towards zero to the nearest
  2154. // multiple of a specified significance. The syntax of the function is:
  2155. //
  2156. // FLOOR(number,significance)
  2157. //
  2158. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2159. if argsList.Len() != 2 {
  2160. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2161. }
  2162. number := argsList.Front().Value.(formulaArg).ToNumber()
  2163. if number.Type == ArgError {
  2164. return number
  2165. }
  2166. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2167. if significance.Type == ArgError {
  2168. return significance
  2169. }
  2170. if significance.Number < 0 && number.Number >= 0 {
  2171. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2172. }
  2173. val := number.Number
  2174. val, res := math.Modf(val / significance.Number)
  2175. if res != 0 {
  2176. if number.Number < 0 && res < 0 {
  2177. val--
  2178. }
  2179. }
  2180. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2181. }
  2182. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  2183. // significance. The syntax of the function is:
  2184. //
  2185. // FLOOR.MATH(number,[significance],[mode])
  2186. //
  2187. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  2188. if argsList.Len() == 0 {
  2189. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2190. }
  2191. if argsList.Len() > 3 {
  2192. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2193. }
  2194. significance, mode := 1.0, 1.0
  2195. number := argsList.Front().Value.(formulaArg).ToNumber()
  2196. if number.Type == ArgError {
  2197. return number
  2198. }
  2199. if number.Number < 0 {
  2200. significance = -1
  2201. }
  2202. if argsList.Len() > 1 {
  2203. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2204. if s.Type == ArgError {
  2205. return s
  2206. }
  2207. significance = s.Number
  2208. }
  2209. if argsList.Len() == 1 {
  2210. return newNumberFormulaArg(math.Floor(number.Number))
  2211. }
  2212. if argsList.Len() > 2 {
  2213. m := argsList.Back().Value.(formulaArg).ToNumber()
  2214. if m.Type == ArgError {
  2215. return m
  2216. }
  2217. mode = m.Number
  2218. }
  2219. val, res := math.Modf(number.Number / significance)
  2220. if res != 0 && number.Number < 0 && mode > 0 {
  2221. val--
  2222. }
  2223. return newNumberFormulaArg(val * significance)
  2224. }
  2225. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  2226. // of significance. The syntax of the function is:
  2227. //
  2228. // FLOOR.PRECISE(number,[significance])
  2229. //
  2230. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  2231. if argsList.Len() == 0 {
  2232. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2233. }
  2234. if argsList.Len() > 2 {
  2235. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2236. }
  2237. var significance float64
  2238. number := argsList.Front().Value.(formulaArg).ToNumber()
  2239. if number.Type == ArgError {
  2240. return number
  2241. }
  2242. if number.Number < 0 {
  2243. significance = -1
  2244. }
  2245. if argsList.Len() == 1 {
  2246. return newNumberFormulaArg(math.Floor(number.Number))
  2247. }
  2248. if argsList.Len() > 1 {
  2249. s := argsList.Back().Value.(formulaArg).ToNumber()
  2250. if s.Type == ArgError {
  2251. return s
  2252. }
  2253. significance = s.Number
  2254. significance = math.Abs(significance)
  2255. if significance == 0 {
  2256. return newNumberFormulaArg(significance)
  2257. }
  2258. }
  2259. val, res := math.Modf(number.Number / significance)
  2260. if res != 0 {
  2261. if number.Number < 0 {
  2262. val--
  2263. }
  2264. }
  2265. return newNumberFormulaArg(val * significance)
  2266. }
  2267. // gcd returns the greatest common divisor of two supplied integers.
  2268. func gcd(x, y float64) float64 {
  2269. x, y = math.Trunc(x), math.Trunc(y)
  2270. if x == 0 {
  2271. return y
  2272. }
  2273. if y == 0 {
  2274. return x
  2275. }
  2276. for x != y {
  2277. if x > y {
  2278. x = x - y
  2279. } else {
  2280. y = y - x
  2281. }
  2282. }
  2283. return x
  2284. }
  2285. // GCD function returns the greatest common divisor of two or more supplied
  2286. // integers. The syntax of the function is:
  2287. //
  2288. // GCD(number1,[number2],...)
  2289. //
  2290. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2291. if argsList.Len() == 0 {
  2292. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2293. }
  2294. var (
  2295. val float64
  2296. nums = []float64{}
  2297. )
  2298. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2299. token := arg.Value.(formulaArg)
  2300. switch token.Type {
  2301. case ArgString:
  2302. num := token.ToNumber()
  2303. if num.Type == ArgError {
  2304. return num
  2305. }
  2306. val = num.Number
  2307. case ArgNumber:
  2308. val = token.Number
  2309. }
  2310. nums = append(nums, val)
  2311. }
  2312. if nums[0] < 0 {
  2313. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2314. }
  2315. if len(nums) == 1 {
  2316. return newNumberFormulaArg(nums[0])
  2317. }
  2318. cd := nums[0]
  2319. for i := 1; i < len(nums); i++ {
  2320. if nums[i] < 0 {
  2321. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2322. }
  2323. cd = gcd(cd, nums[i])
  2324. }
  2325. return newNumberFormulaArg(cd)
  2326. }
  2327. // INT function truncates a supplied number down to the closest integer. The
  2328. // syntax of the function is:
  2329. //
  2330. // INT(number)
  2331. //
  2332. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2333. if argsList.Len() != 1 {
  2334. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2335. }
  2336. number := argsList.Front().Value.(formulaArg).ToNumber()
  2337. if number.Type == ArgError {
  2338. return number
  2339. }
  2340. val, frac := math.Modf(number.Number)
  2341. if frac < 0 {
  2342. val--
  2343. }
  2344. return newNumberFormulaArg(val)
  2345. }
  2346. // ISOCEILING function rounds a supplied number up (regardless of the number's
  2347. // sign), to the nearest multiple of a supplied significance. The syntax of
  2348. // the function is:
  2349. //
  2350. // ISO.CEILING(number,[significance])
  2351. //
  2352. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  2353. if argsList.Len() == 0 {
  2354. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2355. }
  2356. if argsList.Len() > 2 {
  2357. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2358. }
  2359. var significance float64
  2360. number := argsList.Front().Value.(formulaArg).ToNumber()
  2361. if number.Type == ArgError {
  2362. return number
  2363. }
  2364. if number.Number < 0 {
  2365. significance = -1
  2366. }
  2367. if argsList.Len() == 1 {
  2368. return newNumberFormulaArg(math.Ceil(number.Number))
  2369. }
  2370. if argsList.Len() > 1 {
  2371. s := argsList.Back().Value.(formulaArg).ToNumber()
  2372. if s.Type == ArgError {
  2373. return s
  2374. }
  2375. significance = s.Number
  2376. significance = math.Abs(significance)
  2377. if significance == 0 {
  2378. return newNumberFormulaArg(significance)
  2379. }
  2380. }
  2381. val, res := math.Modf(number.Number / significance)
  2382. if res != 0 {
  2383. if number.Number > 0 {
  2384. val++
  2385. }
  2386. }
  2387. return newNumberFormulaArg(val * significance)
  2388. }
  2389. // lcm returns the least common multiple of two supplied integers.
  2390. func lcm(a, b float64) float64 {
  2391. a = math.Trunc(a)
  2392. b = math.Trunc(b)
  2393. if a == 0 && b == 0 {
  2394. return 0
  2395. }
  2396. return a * b / gcd(a, b)
  2397. }
  2398. // LCM function returns the least common multiple of two or more supplied
  2399. // integers. The syntax of the function is:
  2400. //
  2401. // LCM(number1,[number2],...)
  2402. //
  2403. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2404. if argsList.Len() == 0 {
  2405. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2406. }
  2407. var (
  2408. val float64
  2409. nums = []float64{}
  2410. err error
  2411. )
  2412. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2413. token := arg.Value.(formulaArg)
  2414. switch token.Type {
  2415. case ArgString:
  2416. if token.String == "" {
  2417. continue
  2418. }
  2419. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2420. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2421. }
  2422. case ArgNumber:
  2423. val = token.Number
  2424. }
  2425. nums = append(nums, val)
  2426. }
  2427. if nums[0] < 0 {
  2428. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2429. }
  2430. if len(nums) == 1 {
  2431. return newNumberFormulaArg(nums[0])
  2432. }
  2433. cm := nums[0]
  2434. for i := 1; i < len(nums); i++ {
  2435. if nums[i] < 0 {
  2436. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2437. }
  2438. cm = lcm(cm, nums[i])
  2439. }
  2440. return newNumberFormulaArg(cm)
  2441. }
  2442. // LN function calculates the natural logarithm of a given number. The syntax
  2443. // of the function is:
  2444. //
  2445. // LN(number)
  2446. //
  2447. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2448. if argsList.Len() != 1 {
  2449. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2450. }
  2451. number := argsList.Front().Value.(formulaArg).ToNumber()
  2452. if number.Type == ArgError {
  2453. return number
  2454. }
  2455. return newNumberFormulaArg(math.Log(number.Number))
  2456. }
  2457. // LOG function calculates the logarithm of a given number, to a supplied
  2458. // base. The syntax of the function is:
  2459. //
  2460. // LOG(number,[base])
  2461. //
  2462. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2463. if argsList.Len() == 0 {
  2464. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2465. }
  2466. if argsList.Len() > 2 {
  2467. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2468. }
  2469. base := 10.0
  2470. number := argsList.Front().Value.(formulaArg).ToNumber()
  2471. if number.Type == ArgError {
  2472. return number
  2473. }
  2474. if argsList.Len() > 1 {
  2475. b := argsList.Back().Value.(formulaArg).ToNumber()
  2476. if b.Type == ArgError {
  2477. return b
  2478. }
  2479. base = b.Number
  2480. }
  2481. if number.Number == 0 {
  2482. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2483. }
  2484. if base == 0 {
  2485. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2486. }
  2487. if base == 1 {
  2488. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2489. }
  2490. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2491. }
  2492. // LOG10 function calculates the base 10 logarithm of a given number. The
  2493. // syntax of the function is:
  2494. //
  2495. // LOG10(number)
  2496. //
  2497. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2498. if argsList.Len() != 1 {
  2499. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2500. }
  2501. number := argsList.Front().Value.(formulaArg).ToNumber()
  2502. if number.Type == ArgError {
  2503. return number
  2504. }
  2505. return newNumberFormulaArg(math.Log10(number.Number))
  2506. }
  2507. // minor function implement a minor of a matrix A is the determinant of some
  2508. // smaller square matrix.
  2509. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2510. ret := [][]float64{}
  2511. for i := range sqMtx {
  2512. if i == 0 {
  2513. continue
  2514. }
  2515. row := []float64{}
  2516. for j := range sqMtx {
  2517. if j == idx {
  2518. continue
  2519. }
  2520. row = append(row, sqMtx[i][j])
  2521. }
  2522. ret = append(ret, row)
  2523. }
  2524. return ret
  2525. }
  2526. // det determinant of the 2x2 matrix.
  2527. func det(sqMtx [][]float64) float64 {
  2528. if len(sqMtx) == 2 {
  2529. m00 := sqMtx[0][0]
  2530. m01 := sqMtx[0][1]
  2531. m10 := sqMtx[1][0]
  2532. m11 := sqMtx[1][1]
  2533. return m00*m11 - m10*m01
  2534. }
  2535. var res, sgn float64 = 0, 1
  2536. for j := range sqMtx {
  2537. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2538. sgn *= -1
  2539. }
  2540. return res
  2541. }
  2542. // MDETERM calculates the determinant of a square matrix. The
  2543. // syntax of the function is:
  2544. //
  2545. // MDETERM(array)
  2546. //
  2547. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2548. var (
  2549. num float64
  2550. numMtx = [][]float64{}
  2551. err error
  2552. strMtx [][]formulaArg
  2553. )
  2554. if argsList.Len() < 1 {
  2555. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2556. }
  2557. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2558. var rows = len(strMtx)
  2559. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2560. if len(row) != rows {
  2561. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2562. }
  2563. numRow := []float64{}
  2564. for _, ele := range row {
  2565. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2566. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2567. }
  2568. numRow = append(numRow, num)
  2569. }
  2570. numMtx = append(numMtx, numRow)
  2571. }
  2572. return newNumberFormulaArg(det(numMtx))
  2573. }
  2574. // MOD function returns the remainder of a division between two supplied
  2575. // numbers. The syntax of the function is:
  2576. //
  2577. // MOD(number,divisor)
  2578. //
  2579. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2580. if argsList.Len() != 2 {
  2581. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2582. }
  2583. number := argsList.Front().Value.(formulaArg).ToNumber()
  2584. if number.Type == ArgError {
  2585. return number
  2586. }
  2587. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2588. if divisor.Type == ArgError {
  2589. return divisor
  2590. }
  2591. if divisor.Number == 0 {
  2592. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2593. }
  2594. trunc, rem := math.Modf(number.Number / divisor.Number)
  2595. if rem < 0 {
  2596. trunc--
  2597. }
  2598. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2599. }
  2600. // MROUND function rounds a supplied number up or down to the nearest multiple
  2601. // of a given number. The syntax of the function is:
  2602. //
  2603. // MROUND(number,multiple)
  2604. //
  2605. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2606. if argsList.Len() != 2 {
  2607. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2608. }
  2609. n := argsList.Front().Value.(formulaArg).ToNumber()
  2610. if n.Type == ArgError {
  2611. return n
  2612. }
  2613. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2614. if multiple.Type == ArgError {
  2615. return multiple
  2616. }
  2617. if multiple.Number == 0 {
  2618. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2619. }
  2620. if multiple.Number < 0 && n.Number > 0 ||
  2621. multiple.Number > 0 && n.Number < 0 {
  2622. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2623. }
  2624. number, res := math.Modf(n.Number / multiple.Number)
  2625. if math.Trunc(res+0.5) > 0 {
  2626. number++
  2627. }
  2628. return newNumberFormulaArg(number * multiple.Number)
  2629. }
  2630. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2631. // supplied values to the product of factorials of those values. The syntax of
  2632. // the function is:
  2633. //
  2634. // MULTINOMIAL(number1,[number2],...)
  2635. //
  2636. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2637. val, num, denom := 0.0, 0.0, 1.0
  2638. var err error
  2639. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2640. token := arg.Value.(formulaArg)
  2641. switch token.Type {
  2642. case ArgString:
  2643. if token.String == "" {
  2644. continue
  2645. }
  2646. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2647. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2648. }
  2649. case ArgNumber:
  2650. val = token.Number
  2651. }
  2652. num += val
  2653. denom *= fact(val)
  2654. }
  2655. return newNumberFormulaArg(fact(num) / denom)
  2656. }
  2657. // MUNIT function returns the unit matrix for a specified dimension. The
  2658. // syntax of the function is:
  2659. //
  2660. // MUNIT(dimension)
  2661. //
  2662. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2663. if argsList.Len() != 1 {
  2664. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2665. }
  2666. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2667. if dimension.Type == ArgError || dimension.Number < 0 {
  2668. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2669. }
  2670. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2671. for i := 0; i < int(dimension.Number); i++ {
  2672. row := make([]formulaArg, int(dimension.Number))
  2673. for j := 0; j < int(dimension.Number); j++ {
  2674. if i == j {
  2675. row[j] = newNumberFormulaArg(1.0)
  2676. } else {
  2677. row[j] = newNumberFormulaArg(0.0)
  2678. }
  2679. }
  2680. matrix = append(matrix, row)
  2681. }
  2682. return newMatrixFormulaArg(matrix)
  2683. }
  2684. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2685. // number up and a negative number down), to the next odd number. The syntax
  2686. // of the function is:
  2687. //
  2688. // ODD(number)
  2689. //
  2690. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2691. if argsList.Len() != 1 {
  2692. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2693. }
  2694. number := argsList.Back().Value.(formulaArg).ToNumber()
  2695. if number.Type == ArgError {
  2696. return number
  2697. }
  2698. if number.Number == 0 {
  2699. return newNumberFormulaArg(1)
  2700. }
  2701. sign := math.Signbit(number.Number)
  2702. m, frac := math.Modf((number.Number - 1) / 2)
  2703. val := m*2 + 1
  2704. if frac != 0 {
  2705. if !sign {
  2706. val += 2
  2707. } else {
  2708. val -= 2
  2709. }
  2710. }
  2711. return newNumberFormulaArg(val)
  2712. }
  2713. // PI function returns the value of the mathematical constant π (pi), accurate
  2714. // to 15 digits (14 decimal places). The syntax of the function is:
  2715. //
  2716. // PI()
  2717. //
  2718. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2719. if argsList.Len() != 0 {
  2720. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2721. }
  2722. return newNumberFormulaArg(math.Pi)
  2723. }
  2724. // POWER function calculates a given number, raised to a supplied power.
  2725. // The syntax of the function is:
  2726. //
  2727. // POWER(number,power)
  2728. //
  2729. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2730. if argsList.Len() != 2 {
  2731. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2732. }
  2733. x := argsList.Front().Value.(formulaArg).ToNumber()
  2734. if x.Type == ArgError {
  2735. return x
  2736. }
  2737. y := argsList.Back().Value.(formulaArg).ToNumber()
  2738. if y.Type == ArgError {
  2739. return y
  2740. }
  2741. if x.Number == 0 && y.Number == 0 {
  2742. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2743. }
  2744. if x.Number == 0 && y.Number < 0 {
  2745. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2746. }
  2747. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2748. }
  2749. // PRODUCT function returns the product (multiplication) of a supplied set of
  2750. // numerical values. The syntax of the function is:
  2751. //
  2752. // PRODUCT(number1,[number2],...)
  2753. //
  2754. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2755. val, product := 0.0, 1.0
  2756. var err error
  2757. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2758. token := arg.Value.(formulaArg)
  2759. switch token.Type {
  2760. case ArgUnknown:
  2761. continue
  2762. case ArgString:
  2763. if token.String == "" {
  2764. continue
  2765. }
  2766. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2767. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2768. }
  2769. product = product * val
  2770. case ArgNumber:
  2771. product = product * token.Number
  2772. case ArgMatrix:
  2773. for _, row := range token.Matrix {
  2774. for _, value := range row {
  2775. if value.String == "" {
  2776. continue
  2777. }
  2778. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2779. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2780. }
  2781. product = product * val
  2782. }
  2783. }
  2784. }
  2785. }
  2786. return newNumberFormulaArg(product)
  2787. }
  2788. // QUOTIENT function returns the integer portion of a division between two
  2789. // supplied numbers. The syntax of the function is:
  2790. //
  2791. // QUOTIENT(numerator,denominator)
  2792. //
  2793. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2794. if argsList.Len() != 2 {
  2795. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2796. }
  2797. x := argsList.Front().Value.(formulaArg).ToNumber()
  2798. if x.Type == ArgError {
  2799. return x
  2800. }
  2801. y := argsList.Back().Value.(formulaArg).ToNumber()
  2802. if y.Type == ArgError {
  2803. return y
  2804. }
  2805. if y.Number == 0 {
  2806. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2807. }
  2808. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2809. }
  2810. // RADIANS function converts radians into degrees. The syntax of the function is:
  2811. //
  2812. // RADIANS(angle)
  2813. //
  2814. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2815. if argsList.Len() != 1 {
  2816. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2817. }
  2818. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2819. if angle.Type == ArgError {
  2820. return angle
  2821. }
  2822. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2823. }
  2824. // RAND function generates a random real number between 0 and 1. The syntax of
  2825. // the function is:
  2826. //
  2827. // RAND()
  2828. //
  2829. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2830. if argsList.Len() != 0 {
  2831. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2832. }
  2833. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2834. }
  2835. // RANDBETWEEN function generates a random integer between two supplied
  2836. // integers. The syntax of the function is:
  2837. //
  2838. // RANDBETWEEN(bottom,top)
  2839. //
  2840. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2841. if argsList.Len() != 2 {
  2842. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2843. }
  2844. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2845. if bottom.Type == ArgError {
  2846. return bottom
  2847. }
  2848. top := argsList.Back().Value.(formulaArg).ToNumber()
  2849. if top.Type == ArgError {
  2850. return top
  2851. }
  2852. if top.Number < bottom.Number {
  2853. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2854. }
  2855. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2856. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2857. }
  2858. // romanNumerals defined a numeral system that originated in ancient Rome and
  2859. // remained the usual way of writing numbers throughout Europe well into the
  2860. // Late Middle Ages.
  2861. type romanNumerals struct {
  2862. n float64
  2863. s string
  2864. }
  2865. var romanTable = [][]romanNumerals{
  2866. {
  2867. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2868. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2869. },
  2870. {
  2871. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2872. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2873. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2874. },
  2875. {
  2876. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2877. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2878. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2879. },
  2880. {
  2881. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2882. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2883. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2884. {5, "V"}, {4, "IV"}, {1, "I"},
  2885. },
  2886. {
  2887. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2888. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2889. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2890. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2891. },
  2892. }
  2893. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2894. // integer, the function returns a text string depicting the roman numeral
  2895. // form of the number. The syntax of the function is:
  2896. //
  2897. // ROMAN(number,[form])
  2898. //
  2899. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2900. if argsList.Len() == 0 {
  2901. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2902. }
  2903. if argsList.Len() > 2 {
  2904. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2905. }
  2906. var form int
  2907. number := argsList.Front().Value.(formulaArg).ToNumber()
  2908. if number.Type == ArgError {
  2909. return number
  2910. }
  2911. if argsList.Len() > 1 {
  2912. f := argsList.Back().Value.(formulaArg).ToNumber()
  2913. if f.Type == ArgError {
  2914. return f
  2915. }
  2916. form = int(f.Number)
  2917. if form < 0 {
  2918. form = 0
  2919. } else if form > 4 {
  2920. form = 4
  2921. }
  2922. }
  2923. decimalTable := romanTable[0]
  2924. switch form {
  2925. case 1:
  2926. decimalTable = romanTable[1]
  2927. case 2:
  2928. decimalTable = romanTable[2]
  2929. case 3:
  2930. decimalTable = romanTable[3]
  2931. case 4:
  2932. decimalTable = romanTable[4]
  2933. }
  2934. val := math.Trunc(number.Number)
  2935. buf := bytes.Buffer{}
  2936. for _, r := range decimalTable {
  2937. for val >= r.n {
  2938. buf.WriteString(r.s)
  2939. val -= r.n
  2940. }
  2941. }
  2942. return newStringFormulaArg(buf.String())
  2943. }
  2944. type roundMode byte
  2945. const (
  2946. closest roundMode = iota
  2947. down
  2948. up
  2949. )
  2950. // round rounds a supplied number up or down.
  2951. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2952. var significance float64
  2953. if digits > 0 {
  2954. significance = math.Pow(1/10.0, digits)
  2955. } else {
  2956. significance = math.Pow(10.0, -digits)
  2957. }
  2958. val, res := math.Modf(number / significance)
  2959. switch mode {
  2960. case closest:
  2961. const eps = 0.499999999
  2962. if res >= eps {
  2963. val++
  2964. } else if res <= -eps {
  2965. val--
  2966. }
  2967. case down:
  2968. case up:
  2969. if res > 0 {
  2970. val++
  2971. } else if res < 0 {
  2972. val--
  2973. }
  2974. }
  2975. return val * significance
  2976. }
  2977. // ROUND function rounds a supplied number up or down, to a specified number
  2978. // of decimal places. The syntax of the function is:
  2979. //
  2980. // ROUND(number,num_digits)
  2981. //
  2982. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2983. if argsList.Len() != 2 {
  2984. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2985. }
  2986. number := argsList.Front().Value.(formulaArg).ToNumber()
  2987. if number.Type == ArgError {
  2988. return number
  2989. }
  2990. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2991. if digits.Type == ArgError {
  2992. return digits
  2993. }
  2994. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2995. }
  2996. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2997. // specified number of decimal places. The syntax of the function is:
  2998. //
  2999. // ROUNDDOWN(number,num_digits)
  3000. //
  3001. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3002. if argsList.Len() != 2 {
  3003. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3004. }
  3005. number := argsList.Front().Value.(formulaArg).ToNumber()
  3006. if number.Type == ArgError {
  3007. return number
  3008. }
  3009. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3010. if digits.Type == ArgError {
  3011. return digits
  3012. }
  3013. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3014. }
  3015. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3016. // specified number of decimal places. The syntax of the function is:
  3017. //
  3018. // ROUNDUP(number,num_digits)
  3019. //
  3020. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3021. if argsList.Len() != 2 {
  3022. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3023. }
  3024. number := argsList.Front().Value.(formulaArg).ToNumber()
  3025. if number.Type == ArgError {
  3026. return number
  3027. }
  3028. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3029. if digits.Type == ArgError {
  3030. return digits
  3031. }
  3032. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3033. }
  3034. // SEC function calculates the secant of a given angle. The syntax of the
  3035. // function is:
  3036. //
  3037. // SEC(number)
  3038. //
  3039. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3040. if argsList.Len() != 1 {
  3041. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3042. }
  3043. number := argsList.Front().Value.(formulaArg).ToNumber()
  3044. if number.Type == ArgError {
  3045. return number
  3046. }
  3047. return newNumberFormulaArg(math.Cos(number.Number))
  3048. }
  3049. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3050. // The syntax of the function is:
  3051. //
  3052. // SECH(number)
  3053. //
  3054. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3055. if argsList.Len() != 1 {
  3056. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3057. }
  3058. number := argsList.Front().Value.(formulaArg).ToNumber()
  3059. if number.Type == ArgError {
  3060. return number
  3061. }
  3062. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3063. }
  3064. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3065. // number. I.e. if the number is positive, the Sign function returns +1, if
  3066. // the number is negative, the function returns -1 and if the number is 0
  3067. // (zero), the function returns 0. The syntax of the function is:
  3068. //
  3069. // SIGN(number)
  3070. //
  3071. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3072. if argsList.Len() != 1 {
  3073. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3074. }
  3075. val := argsList.Front().Value.(formulaArg).ToNumber()
  3076. if val.Type == ArgError {
  3077. return val
  3078. }
  3079. if val.Number < 0 {
  3080. return newNumberFormulaArg(-1)
  3081. }
  3082. if val.Number > 0 {
  3083. return newNumberFormulaArg(1)
  3084. }
  3085. return newNumberFormulaArg(0)
  3086. }
  3087. // SIN function calculates the sine of a given angle. The syntax of the
  3088. // function is:
  3089. //
  3090. // SIN(number)
  3091. //
  3092. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3093. if argsList.Len() != 1 {
  3094. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3095. }
  3096. number := argsList.Front().Value.(formulaArg).ToNumber()
  3097. if number.Type == ArgError {
  3098. return number
  3099. }
  3100. return newNumberFormulaArg(math.Sin(number.Number))
  3101. }
  3102. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3103. // The syntax of the function is:
  3104. //
  3105. // SINH(number)
  3106. //
  3107. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3108. if argsList.Len() != 1 {
  3109. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3110. }
  3111. number := argsList.Front().Value.(formulaArg).ToNumber()
  3112. if number.Type == ArgError {
  3113. return number
  3114. }
  3115. return newNumberFormulaArg(math.Sinh(number.Number))
  3116. }
  3117. // SQRT function calculates the positive square root of a supplied number. The
  3118. // syntax of the function is:
  3119. //
  3120. // SQRT(number)
  3121. //
  3122. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3123. if argsList.Len() != 1 {
  3124. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3125. }
  3126. value := argsList.Front().Value.(formulaArg).ToNumber()
  3127. if value.Type == ArgError {
  3128. return value
  3129. }
  3130. if value.Number < 0 {
  3131. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3132. }
  3133. return newNumberFormulaArg(math.Sqrt(value.Number))
  3134. }
  3135. // SQRTPI function returns the square root of a supplied number multiplied by
  3136. // the mathematical constant, π. The syntax of the function is:
  3137. //
  3138. // SQRTPI(number)
  3139. //
  3140. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3141. if argsList.Len() != 1 {
  3142. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3143. }
  3144. number := argsList.Front().Value.(formulaArg).ToNumber()
  3145. if number.Type == ArgError {
  3146. return number
  3147. }
  3148. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3149. }
  3150. // STDEV function calculates the sample standard deviation of a supplied set
  3151. // of values. The syntax of the function is:
  3152. //
  3153. // STDEV(number1,[number2],...)
  3154. //
  3155. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3156. if argsList.Len() < 1 {
  3157. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3158. }
  3159. return fn.stdev(false, argsList)
  3160. }
  3161. // STDEVA function estimates standard deviation based on a sample. The
  3162. // standard deviation is a measure of how widely values are dispersed from
  3163. // the average value (the mean). The syntax of the function is:
  3164. //
  3165. // STDEVA(number1,[number2],...)
  3166. //
  3167. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3168. if argsList.Len() < 1 {
  3169. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3170. }
  3171. return fn.stdev(true, argsList)
  3172. }
  3173. // stdev is an implementation of the formula function STDEV and STDEVA.
  3174. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3175. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3176. if result == -1 {
  3177. result = math.Pow((n.Number - m.Number), 2)
  3178. } else {
  3179. result += math.Pow((n.Number - m.Number), 2)
  3180. }
  3181. count++
  3182. return result, count
  3183. }
  3184. count, result := -1.0, -1.0
  3185. var mean formulaArg
  3186. if stdeva {
  3187. mean = fn.AVERAGEA(argsList)
  3188. } else {
  3189. mean = fn.AVERAGE(argsList)
  3190. }
  3191. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3192. token := arg.Value.(formulaArg)
  3193. switch token.Type {
  3194. case ArgString, ArgNumber:
  3195. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3196. continue
  3197. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3198. num := token.ToBool()
  3199. if num.Type == ArgNumber {
  3200. result, count = pow(result, count, num, mean)
  3201. continue
  3202. }
  3203. } else {
  3204. num := token.ToNumber()
  3205. if num.Type == ArgNumber {
  3206. result, count = pow(result, count, num, mean)
  3207. }
  3208. }
  3209. case ArgList, ArgMatrix:
  3210. for _, row := range token.ToList() {
  3211. if row.Type == ArgNumber || row.Type == ArgString {
  3212. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3213. continue
  3214. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3215. num := row.ToBool()
  3216. if num.Type == ArgNumber {
  3217. result, count = pow(result, count, num, mean)
  3218. continue
  3219. }
  3220. } else {
  3221. num := row.ToNumber()
  3222. if num.Type == ArgNumber {
  3223. result, count = pow(result, count, num, mean)
  3224. }
  3225. }
  3226. }
  3227. }
  3228. }
  3229. }
  3230. if count > 0 && result >= 0 {
  3231. return newNumberFormulaArg(math.Sqrt(result / count))
  3232. }
  3233. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3234. }
  3235. // SUM function adds together a supplied set of numbers and returns the sum of
  3236. // these values. The syntax of the function is:
  3237. //
  3238. // SUM(number1,[number2],...)
  3239. //
  3240. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3241. var sum float64
  3242. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3243. token := arg.Value.(formulaArg)
  3244. switch token.Type {
  3245. case ArgUnknown:
  3246. continue
  3247. case ArgString:
  3248. if num := token.ToNumber(); num.Type == ArgNumber {
  3249. sum += num.Number
  3250. }
  3251. case ArgNumber:
  3252. sum += token.Number
  3253. case ArgMatrix:
  3254. for _, row := range token.Matrix {
  3255. for _, value := range row {
  3256. if num := value.ToNumber(); num.Type == ArgNumber {
  3257. sum += num.Number
  3258. }
  3259. }
  3260. }
  3261. }
  3262. }
  3263. return newNumberFormulaArg(sum)
  3264. }
  3265. // SUMIF function finds the values in a supplied array, that satisfy a given
  3266. // criteria, and returns the sum of the corresponding values in a second
  3267. // supplied array. The syntax of the function is:
  3268. //
  3269. // SUMIF(range,criteria,[sum_range])
  3270. //
  3271. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3272. if argsList.Len() < 2 {
  3273. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3274. }
  3275. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3276. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3277. var sumRange [][]formulaArg
  3278. if argsList.Len() == 3 {
  3279. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3280. }
  3281. var sum, val float64
  3282. var err error
  3283. for rowIdx, row := range rangeMtx {
  3284. for colIdx, col := range row {
  3285. var ok bool
  3286. fromVal := col.String
  3287. if col.String == "" {
  3288. continue
  3289. }
  3290. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3291. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3292. }
  3293. if ok {
  3294. if argsList.Len() == 3 {
  3295. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3296. continue
  3297. }
  3298. fromVal = sumRange[rowIdx][colIdx].String
  3299. }
  3300. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3301. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3302. }
  3303. sum += val
  3304. }
  3305. }
  3306. }
  3307. return newNumberFormulaArg(sum)
  3308. }
  3309. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3310. // syntax of the function is:
  3311. //
  3312. // SUMSQ(number1,[number2],...)
  3313. //
  3314. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3315. var val, sq float64
  3316. var err error
  3317. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3318. token := arg.Value.(formulaArg)
  3319. switch token.Type {
  3320. case ArgString:
  3321. if token.String == "" {
  3322. continue
  3323. }
  3324. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3325. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3326. }
  3327. sq += val * val
  3328. case ArgNumber:
  3329. sq += token.Number
  3330. case ArgMatrix:
  3331. for _, row := range token.Matrix {
  3332. for _, value := range row {
  3333. if value.String == "" {
  3334. continue
  3335. }
  3336. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3337. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3338. }
  3339. sq += val * val
  3340. }
  3341. }
  3342. }
  3343. }
  3344. return newNumberFormulaArg(sq)
  3345. }
  3346. // TAN function calculates the tangent of a given angle. The syntax of the
  3347. // function is:
  3348. //
  3349. // TAN(number)
  3350. //
  3351. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3352. if argsList.Len() != 1 {
  3353. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3354. }
  3355. number := argsList.Front().Value.(formulaArg).ToNumber()
  3356. if number.Type == ArgError {
  3357. return number
  3358. }
  3359. return newNumberFormulaArg(math.Tan(number.Number))
  3360. }
  3361. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3362. // number. The syntax of the function is:
  3363. //
  3364. // TANH(number)
  3365. //
  3366. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3367. if argsList.Len() != 1 {
  3368. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3369. }
  3370. number := argsList.Front().Value.(formulaArg).ToNumber()
  3371. if number.Type == ArgError {
  3372. return number
  3373. }
  3374. return newNumberFormulaArg(math.Tanh(number.Number))
  3375. }
  3376. // TRUNC function truncates a supplied number to a specified number of decimal
  3377. // places. The syntax of the function is:
  3378. //
  3379. // TRUNC(number,[number_digits])
  3380. //
  3381. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3382. if argsList.Len() == 0 {
  3383. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3384. }
  3385. var digits, adjust, rtrim float64
  3386. var err error
  3387. number := argsList.Front().Value.(formulaArg).ToNumber()
  3388. if number.Type == ArgError {
  3389. return number
  3390. }
  3391. if argsList.Len() > 1 {
  3392. d := argsList.Back().Value.(formulaArg).ToNumber()
  3393. if d.Type == ArgError {
  3394. return d
  3395. }
  3396. digits = d.Number
  3397. digits = math.Floor(digits)
  3398. }
  3399. adjust = math.Pow(10, digits)
  3400. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3401. if x != 0 {
  3402. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3403. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3404. }
  3405. }
  3406. if (digits > 0) && (rtrim < adjust/10) {
  3407. return newNumberFormulaArg(number.Number)
  3408. }
  3409. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3410. }
  3411. // Statistical Functions
  3412. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3413. // The syntax of the function is:
  3414. //
  3415. // AVERAGE(number1,[number2],...)
  3416. //
  3417. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3418. args := []formulaArg{}
  3419. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3420. args = append(args, arg.Value.(formulaArg))
  3421. }
  3422. count, sum := fn.countSum(false, args)
  3423. if count == 0 {
  3424. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3425. }
  3426. return newNumberFormulaArg(sum / count)
  3427. }
  3428. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3429. // with text cell and zero values. The syntax of the function is:
  3430. //
  3431. // AVERAGEA(number1,[number2],...)
  3432. //
  3433. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3434. args := []formulaArg{}
  3435. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3436. args = append(args, arg.Value.(formulaArg))
  3437. }
  3438. count, sum := fn.countSum(true, args)
  3439. if count == 0 {
  3440. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3441. }
  3442. return newNumberFormulaArg(sum / count)
  3443. }
  3444. // countSum get count and sum for a formula arguments array.
  3445. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3446. for _, arg := range args {
  3447. switch arg.Type {
  3448. case ArgNumber:
  3449. if countText || !arg.Boolean {
  3450. sum += arg.Number
  3451. count++
  3452. }
  3453. case ArgString:
  3454. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3455. continue
  3456. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3457. num := arg.ToBool()
  3458. if num.Type == ArgNumber {
  3459. count++
  3460. sum += num.Number
  3461. continue
  3462. }
  3463. }
  3464. num := arg.ToNumber()
  3465. if countText && num.Type == ArgError && arg.String != "" {
  3466. count++
  3467. }
  3468. if num.Type == ArgNumber {
  3469. sum += num.Number
  3470. count++
  3471. }
  3472. case ArgList, ArgMatrix:
  3473. cnt, summary := fn.countSum(countText, arg.ToList())
  3474. sum += summary
  3475. count += cnt
  3476. }
  3477. }
  3478. return
  3479. }
  3480. // COUNT function returns the count of numeric values in a supplied set of
  3481. // cells or values. This count includes both numbers and dates. The syntax of
  3482. // the function is:
  3483. //
  3484. // COUNT(value1,[value2],...)
  3485. //
  3486. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3487. var count int
  3488. for token := argsList.Front(); token != nil; token = token.Next() {
  3489. arg := token.Value.(formulaArg)
  3490. switch arg.Type {
  3491. case ArgString:
  3492. if arg.ToNumber().Type != ArgError {
  3493. count++
  3494. }
  3495. case ArgNumber:
  3496. count++
  3497. case ArgMatrix:
  3498. for _, row := range arg.Matrix {
  3499. for _, value := range row {
  3500. if value.ToNumber().Type != ArgError {
  3501. count++
  3502. }
  3503. }
  3504. }
  3505. }
  3506. }
  3507. return newNumberFormulaArg(float64(count))
  3508. }
  3509. // COUNTA function returns the number of non-blanks within a supplied set of
  3510. // cells or values. The syntax of the function is:
  3511. //
  3512. // COUNTA(value1,[value2],...)
  3513. //
  3514. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3515. var count int
  3516. for token := argsList.Front(); token != nil; token = token.Next() {
  3517. arg := token.Value.(formulaArg)
  3518. switch arg.Type {
  3519. case ArgString:
  3520. if arg.String != "" {
  3521. count++
  3522. }
  3523. case ArgNumber:
  3524. count++
  3525. case ArgMatrix:
  3526. for _, row := range arg.ToList() {
  3527. switch row.Type {
  3528. case ArgString:
  3529. if row.String != "" {
  3530. count++
  3531. }
  3532. case ArgNumber:
  3533. count++
  3534. }
  3535. }
  3536. }
  3537. }
  3538. return newNumberFormulaArg(float64(count))
  3539. }
  3540. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3541. // The syntax of the function is:
  3542. //
  3543. // COUNTBLANK(range)
  3544. //
  3545. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3546. if argsList.Len() != 1 {
  3547. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3548. }
  3549. var count int
  3550. token := argsList.Front().Value.(formulaArg)
  3551. switch token.Type {
  3552. case ArgString:
  3553. if token.String == "" {
  3554. count++
  3555. }
  3556. case ArgList, ArgMatrix:
  3557. for _, row := range token.ToList() {
  3558. switch row.Type {
  3559. case ArgString:
  3560. if row.String == "" {
  3561. count++
  3562. }
  3563. case ArgEmpty:
  3564. count++
  3565. }
  3566. }
  3567. case ArgEmpty:
  3568. count++
  3569. }
  3570. return newNumberFormulaArg(float64(count))
  3571. }
  3572. // FISHER function calculates the Fisher Transformation for a supplied value.
  3573. // The syntax of the function is:
  3574. //
  3575. // FISHER(x)
  3576. //
  3577. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3578. if argsList.Len() != 1 {
  3579. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3580. }
  3581. token := argsList.Front().Value.(formulaArg)
  3582. switch token.Type {
  3583. case ArgString:
  3584. arg := token.ToNumber()
  3585. if arg.Type == ArgNumber {
  3586. if arg.Number <= -1 || arg.Number >= 1 {
  3587. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3588. }
  3589. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3590. }
  3591. case ArgNumber:
  3592. if token.Number <= -1 || token.Number >= 1 {
  3593. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3594. }
  3595. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3596. }
  3597. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3598. }
  3599. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3600. // returns a value between -1 and +1. The syntax of the function is:
  3601. //
  3602. // FISHERINV(y)
  3603. //
  3604. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3605. if argsList.Len() != 1 {
  3606. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3607. }
  3608. token := argsList.Front().Value.(formulaArg)
  3609. switch token.Type {
  3610. case ArgString:
  3611. arg := token.ToNumber()
  3612. if arg.Type == ArgNumber {
  3613. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3614. }
  3615. case ArgNumber:
  3616. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3617. }
  3618. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3619. }
  3620. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3621. // specified number, n. The syntax of the function is:
  3622. //
  3623. // GAMMA(number)
  3624. //
  3625. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3626. if argsList.Len() != 1 {
  3627. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3628. }
  3629. token := argsList.Front().Value.(formulaArg)
  3630. switch token.Type {
  3631. case ArgString:
  3632. arg := token.ToNumber()
  3633. if arg.Type == ArgNumber {
  3634. if arg.Number <= 0 {
  3635. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3636. }
  3637. return newNumberFormulaArg(math.Gamma(arg.Number))
  3638. }
  3639. case ArgNumber:
  3640. if token.Number <= 0 {
  3641. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3642. }
  3643. return newNumberFormulaArg(math.Gamma(token.Number))
  3644. }
  3645. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3646. }
  3647. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3648. // (n). The syntax of the function is:
  3649. //
  3650. // GAMMALN(x)
  3651. //
  3652. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3653. if argsList.Len() != 1 {
  3654. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3655. }
  3656. token := argsList.Front().Value.(formulaArg)
  3657. switch token.Type {
  3658. case ArgString:
  3659. arg := token.ToNumber()
  3660. if arg.Type == ArgNumber {
  3661. if arg.Number <= 0 {
  3662. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3663. }
  3664. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3665. }
  3666. case ArgNumber:
  3667. if token.Number <= 0 {
  3668. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3669. }
  3670. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3671. }
  3672. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3673. }
  3674. // KURT function calculates the kurtosis of a supplied set of values. The
  3675. // syntax of the function is:
  3676. //
  3677. // KURT(number1,[number2],...)
  3678. //
  3679. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3680. if argsList.Len() < 1 {
  3681. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3682. }
  3683. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3684. if stdev.Number > 0 {
  3685. count, summer := 0.0, 0.0
  3686. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3687. token := arg.Value.(formulaArg)
  3688. switch token.Type {
  3689. case ArgString, ArgNumber:
  3690. num := token.ToNumber()
  3691. if num.Type == ArgError {
  3692. continue
  3693. }
  3694. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3695. count++
  3696. case ArgList, ArgMatrix:
  3697. for _, row := range token.ToList() {
  3698. if row.Type == ArgNumber || row.Type == ArgString {
  3699. num := row.ToNumber()
  3700. if num.Type == ArgError {
  3701. continue
  3702. }
  3703. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3704. count++
  3705. }
  3706. }
  3707. }
  3708. }
  3709. if count > 3 {
  3710. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3711. }
  3712. }
  3713. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3714. }
  3715. // MAX function returns the largest value from a supplied set of numeric
  3716. // values. The syntax of the function is:
  3717. //
  3718. // MAX(number1,[number2],...)
  3719. //
  3720. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3721. if argsList.Len() == 0 {
  3722. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3723. }
  3724. return fn.max(false, argsList)
  3725. }
  3726. // MAXA function returns the largest value from a supplied set of numeric
  3727. // values, while counting text and the logical value FALSE as the value 0 and
  3728. // counting the logical value TRUE as the value 1. The syntax of the function
  3729. // is:
  3730. //
  3731. // MAXA(number1,[number2],...)
  3732. //
  3733. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3734. if argsList.Len() == 0 {
  3735. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3736. }
  3737. return fn.max(true, argsList)
  3738. }
  3739. // max is an implementation of the formula function MAX and MAXA.
  3740. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3741. max := -math.MaxFloat64
  3742. for token := argsList.Front(); token != nil; token = token.Next() {
  3743. arg := token.Value.(formulaArg)
  3744. switch arg.Type {
  3745. case ArgString:
  3746. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3747. continue
  3748. } else {
  3749. num := arg.ToBool()
  3750. if num.Type == ArgNumber && num.Number > max {
  3751. max = num.Number
  3752. continue
  3753. }
  3754. }
  3755. num := arg.ToNumber()
  3756. if num.Type != ArgError && num.Number > max {
  3757. max = num.Number
  3758. }
  3759. case ArgNumber:
  3760. if arg.Number > max {
  3761. max = arg.Number
  3762. }
  3763. case ArgList, ArgMatrix:
  3764. for _, row := range arg.ToList() {
  3765. switch row.Type {
  3766. case ArgString:
  3767. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3768. continue
  3769. } else {
  3770. num := row.ToBool()
  3771. if num.Type == ArgNumber && num.Number > max {
  3772. max = num.Number
  3773. continue
  3774. }
  3775. }
  3776. num := row.ToNumber()
  3777. if num.Type != ArgError && num.Number > max {
  3778. max = num.Number
  3779. }
  3780. case ArgNumber:
  3781. if row.Number > max {
  3782. max = row.Number
  3783. }
  3784. }
  3785. }
  3786. case ArgError:
  3787. return arg
  3788. }
  3789. }
  3790. if max == -math.MaxFloat64 {
  3791. max = 0
  3792. }
  3793. return newNumberFormulaArg(max)
  3794. }
  3795. // MEDIAN function returns the statistical median (the middle value) of a list
  3796. // of supplied numbers. The syntax of the function is:
  3797. //
  3798. // MEDIAN(number1,[number2],...)
  3799. //
  3800. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3801. if argsList.Len() == 0 {
  3802. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3803. }
  3804. var values = []float64{}
  3805. var median, digits float64
  3806. var err error
  3807. for token := argsList.Front(); token != nil; token = token.Next() {
  3808. arg := token.Value.(formulaArg)
  3809. switch arg.Type {
  3810. case ArgString:
  3811. num := arg.ToNumber()
  3812. if num.Type == ArgError {
  3813. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3814. }
  3815. values = append(values, num.Number)
  3816. case ArgNumber:
  3817. values = append(values, arg.Number)
  3818. case ArgMatrix:
  3819. for _, row := range arg.Matrix {
  3820. for _, value := range row {
  3821. if value.String == "" {
  3822. continue
  3823. }
  3824. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3825. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3826. }
  3827. values = append(values, digits)
  3828. }
  3829. }
  3830. }
  3831. }
  3832. sort.Float64s(values)
  3833. if len(values)%2 == 0 {
  3834. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3835. } else {
  3836. median = values[len(values)/2]
  3837. }
  3838. return newNumberFormulaArg(median)
  3839. }
  3840. // MIN function returns the smallest value from a supplied set of numeric
  3841. // values. The syntax of the function is:
  3842. //
  3843. // MIN(number1,[number2],...)
  3844. //
  3845. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3846. if argsList.Len() == 0 {
  3847. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3848. }
  3849. return fn.min(false, argsList)
  3850. }
  3851. // MINA function returns the smallest value from a supplied set of numeric
  3852. // values, while counting text and the logical value FALSE as the value 0 and
  3853. // counting the logical value TRUE as the value 1. The syntax of the function
  3854. // is:
  3855. //
  3856. // MINA(number1,[number2],...)
  3857. //
  3858. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3859. if argsList.Len() == 0 {
  3860. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3861. }
  3862. return fn.min(true, argsList)
  3863. }
  3864. // min is an implementation of the formula function MIN and MINA.
  3865. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3866. min := math.MaxFloat64
  3867. for token := argsList.Front(); token != nil; token = token.Next() {
  3868. arg := token.Value.(formulaArg)
  3869. switch arg.Type {
  3870. case ArgString:
  3871. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3872. continue
  3873. } else {
  3874. num := arg.ToBool()
  3875. if num.Type == ArgNumber && num.Number < min {
  3876. min = num.Number
  3877. continue
  3878. }
  3879. }
  3880. num := arg.ToNumber()
  3881. if num.Type != ArgError && num.Number < min {
  3882. min = num.Number
  3883. }
  3884. case ArgNumber:
  3885. if arg.Number < min {
  3886. min = arg.Number
  3887. }
  3888. case ArgList, ArgMatrix:
  3889. for _, row := range arg.ToList() {
  3890. switch row.Type {
  3891. case ArgString:
  3892. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3893. continue
  3894. } else {
  3895. num := row.ToBool()
  3896. if num.Type == ArgNumber && num.Number < min {
  3897. min = num.Number
  3898. continue
  3899. }
  3900. }
  3901. num := row.ToNumber()
  3902. if num.Type != ArgError && num.Number < min {
  3903. min = num.Number
  3904. }
  3905. case ArgNumber:
  3906. if row.Number < min {
  3907. min = row.Number
  3908. }
  3909. }
  3910. }
  3911. case ArgError:
  3912. return arg
  3913. }
  3914. }
  3915. if min == math.MaxFloat64 {
  3916. min = 0
  3917. }
  3918. return newNumberFormulaArg(min)
  3919. }
  3920. // PERMUT function calculates the number of permutations of a specified number
  3921. // of objects from a set of objects. The syntax of the function is:
  3922. //
  3923. // PERMUT(number,number_chosen)
  3924. //
  3925. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  3926. if argsList.Len() != 2 {
  3927. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  3928. }
  3929. number := argsList.Front().Value.(formulaArg).ToNumber()
  3930. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  3931. if number.Type != ArgNumber {
  3932. return number
  3933. }
  3934. if chosen.Type != ArgNumber {
  3935. return chosen
  3936. }
  3937. if number.Number < chosen.Number {
  3938. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3939. }
  3940. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  3941. }
  3942. // Information Functions
  3943. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  3944. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  3945. // function is:
  3946. //
  3947. // ISBLANK(value)
  3948. //
  3949. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  3950. if argsList.Len() != 1 {
  3951. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  3952. }
  3953. token := argsList.Front().Value.(formulaArg)
  3954. result := "FALSE"
  3955. switch token.Type {
  3956. case ArgUnknown:
  3957. result = "TRUE"
  3958. case ArgString:
  3959. if token.String == "" {
  3960. result = "TRUE"
  3961. }
  3962. }
  3963. return newStringFormulaArg(result)
  3964. }
  3965. // ISERR function tests if an initial supplied expression (or value) returns
  3966. // any Excel Error, except the #N/A error. If so, the function returns the
  3967. // logical value TRUE; If the supplied value is not an error or is the #N/A
  3968. // error, the ISERR function returns FALSE. The syntax of the function is:
  3969. //
  3970. // ISERR(value)
  3971. //
  3972. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  3973. if argsList.Len() != 1 {
  3974. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  3975. }
  3976. token := argsList.Front().Value.(formulaArg)
  3977. result := "FALSE"
  3978. if token.Type == ArgError {
  3979. for _, errType := range []string{
  3980. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  3981. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  3982. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  3983. } {
  3984. if errType == token.String {
  3985. result = "TRUE"
  3986. }
  3987. }
  3988. }
  3989. return newStringFormulaArg(result)
  3990. }
  3991. // ISERROR function tests if an initial supplied expression (or value) returns
  3992. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  3993. // function returns FALSE. The syntax of the function is:
  3994. //
  3995. // ISERROR(value)
  3996. //
  3997. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  3998. if argsList.Len() != 1 {
  3999. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4000. }
  4001. token := argsList.Front().Value.(formulaArg)
  4002. result := "FALSE"
  4003. if token.Type == ArgError {
  4004. for _, errType := range []string{
  4005. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4006. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4007. formulaErrorCALC, formulaErrorGETTINGDATA,
  4008. } {
  4009. if errType == token.String {
  4010. result = "TRUE"
  4011. }
  4012. }
  4013. }
  4014. return newStringFormulaArg(result)
  4015. }
  4016. // ISEVEN function tests if a supplied number (or numeric expression)
  4017. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4018. // function returns FALSE. The syntax of the function is:
  4019. //
  4020. // ISEVEN(value)
  4021. //
  4022. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4023. if argsList.Len() != 1 {
  4024. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4025. }
  4026. var (
  4027. token = argsList.Front().Value.(formulaArg)
  4028. result = "FALSE"
  4029. numeric int
  4030. err error
  4031. )
  4032. if token.Type == ArgString {
  4033. if numeric, err = strconv.Atoi(token.String); err != nil {
  4034. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4035. }
  4036. if numeric == numeric/2*2 {
  4037. return newStringFormulaArg("TRUE")
  4038. }
  4039. }
  4040. return newStringFormulaArg(result)
  4041. }
  4042. // ISNA function tests if an initial supplied expression (or value) returns
  4043. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4044. // returns FALSE. The syntax of the function is:
  4045. //
  4046. // ISNA(value)
  4047. //
  4048. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4049. if argsList.Len() != 1 {
  4050. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4051. }
  4052. token := argsList.Front().Value.(formulaArg)
  4053. result := "FALSE"
  4054. if token.Type == ArgError && token.String == formulaErrorNA {
  4055. result = "TRUE"
  4056. }
  4057. return newStringFormulaArg(result)
  4058. }
  4059. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4060. // function returns TRUE; If the supplied value is text, the function returns
  4061. // FALSE. The syntax of the function is:
  4062. //
  4063. // ISNONTEXT(value)
  4064. //
  4065. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4066. if argsList.Len() != 1 {
  4067. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4068. }
  4069. token := argsList.Front().Value.(formulaArg)
  4070. result := "TRUE"
  4071. if token.Type == ArgString && token.String != "" {
  4072. result = "FALSE"
  4073. }
  4074. return newStringFormulaArg(result)
  4075. }
  4076. // ISNUMBER function function tests if a supplied value is a number. If so,
  4077. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4078. // function is:
  4079. //
  4080. // ISNUMBER(value)
  4081. //
  4082. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4083. if argsList.Len() != 1 {
  4084. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4085. }
  4086. token, result := argsList.Front().Value.(formulaArg), false
  4087. if token.Type == ArgString && token.String != "" {
  4088. if _, err := strconv.Atoi(token.String); err == nil {
  4089. result = true
  4090. }
  4091. }
  4092. return newBoolFormulaArg(result)
  4093. }
  4094. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4095. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4096. // FALSE. The syntax of the function is:
  4097. //
  4098. // ISODD(value)
  4099. //
  4100. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4101. if argsList.Len() != 1 {
  4102. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4103. }
  4104. var (
  4105. token = argsList.Front().Value.(formulaArg)
  4106. result = "FALSE"
  4107. numeric int
  4108. err error
  4109. )
  4110. if token.Type == ArgString {
  4111. if numeric, err = strconv.Atoi(token.String); err != nil {
  4112. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4113. }
  4114. if numeric != numeric/2*2 {
  4115. return newStringFormulaArg("TRUE")
  4116. }
  4117. }
  4118. return newStringFormulaArg(result)
  4119. }
  4120. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4121. // Otherwise, the function returns FALSE. The syntax of the function is:
  4122. //
  4123. // ISTEXT(value)
  4124. //
  4125. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4126. if argsList.Len() != 1 {
  4127. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4128. }
  4129. token := argsList.Front().Value.(formulaArg)
  4130. if token.ToNumber().Type != ArgError {
  4131. return newBoolFormulaArg(false)
  4132. }
  4133. return newBoolFormulaArg(token.Type == ArgString)
  4134. }
  4135. // NA function returns the Excel #N/A error. This error message has the
  4136. // meaning 'value not available' and is produced when an Excel Formula is
  4137. // unable to find a value that it needs. The syntax of the function is:
  4138. //
  4139. // NA()
  4140. //
  4141. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4142. if argsList.Len() != 0 {
  4143. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4144. }
  4145. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4146. }
  4147. // SHEET function returns the Sheet number for a specified reference. The
  4148. // syntax of the function is:
  4149. //
  4150. // SHEET()
  4151. //
  4152. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4153. if argsList.Len() != 0 {
  4154. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4155. }
  4156. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4157. }
  4158. // Logical Functions
  4159. // AND function tests a number of supplied conditions and returns TRUE or
  4160. // FALSE. The syntax of the function is:
  4161. //
  4162. // AND(logical_test1,[logical_test2],...)
  4163. //
  4164. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4165. if argsList.Len() == 0 {
  4166. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4167. }
  4168. if argsList.Len() > 30 {
  4169. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4170. }
  4171. var (
  4172. and = true
  4173. val float64
  4174. err error
  4175. )
  4176. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4177. token := arg.Value.(formulaArg)
  4178. switch token.Type {
  4179. case ArgUnknown:
  4180. continue
  4181. case ArgString:
  4182. if token.String == "TRUE" {
  4183. continue
  4184. }
  4185. if token.String == "FALSE" {
  4186. return newStringFormulaArg(token.String)
  4187. }
  4188. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4189. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4190. }
  4191. and = and && (val != 0)
  4192. case ArgMatrix:
  4193. // TODO
  4194. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4195. }
  4196. }
  4197. return newBoolFormulaArg(and)
  4198. }
  4199. // FALSE function function returns the logical value FALSE. The syntax of the
  4200. // function is:
  4201. //
  4202. // FALSE()
  4203. //
  4204. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4205. if argsList.Len() != 0 {
  4206. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4207. }
  4208. return newBoolFormulaArg(false)
  4209. }
  4210. // IFERROR function receives two values (or expressions) and tests if the
  4211. // first of these evaluates to an error. The syntax of the function is:
  4212. //
  4213. // IFERROR(value,value_if_error)
  4214. //
  4215. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4216. if argsList.Len() != 2 {
  4217. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4218. }
  4219. value := argsList.Front().Value.(formulaArg)
  4220. if value.Type != ArgError {
  4221. if value.Type == ArgEmpty {
  4222. return newNumberFormulaArg(0)
  4223. }
  4224. return value
  4225. }
  4226. return argsList.Back().Value.(formulaArg)
  4227. }
  4228. // NOT function returns the opposite to a supplied logical value. The syntax
  4229. // of the function is:
  4230. //
  4231. // NOT(logical)
  4232. //
  4233. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4234. if argsList.Len() != 1 {
  4235. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4236. }
  4237. token := argsList.Front().Value.(formulaArg)
  4238. switch token.Type {
  4239. case ArgString, ArgList:
  4240. if strings.ToUpper(token.String) == "TRUE" {
  4241. return newBoolFormulaArg(false)
  4242. }
  4243. if strings.ToUpper(token.String) == "FALSE" {
  4244. return newBoolFormulaArg(true)
  4245. }
  4246. case ArgNumber:
  4247. return newBoolFormulaArg(!(token.Number != 0))
  4248. case ArgError:
  4249. return token
  4250. }
  4251. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4252. }
  4253. // OR function tests a number of supplied conditions and returns either TRUE
  4254. // or FALSE. The syntax of the function is:
  4255. //
  4256. // OR(logical_test1,[logical_test2],...)
  4257. //
  4258. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4259. if argsList.Len() == 0 {
  4260. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4261. }
  4262. if argsList.Len() > 30 {
  4263. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4264. }
  4265. var (
  4266. or bool
  4267. val float64
  4268. err error
  4269. )
  4270. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4271. token := arg.Value.(formulaArg)
  4272. switch token.Type {
  4273. case ArgUnknown:
  4274. continue
  4275. case ArgString:
  4276. if token.String == "FALSE" {
  4277. continue
  4278. }
  4279. if token.String == "TRUE" {
  4280. or = true
  4281. continue
  4282. }
  4283. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4284. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4285. }
  4286. or = val != 0
  4287. case ArgMatrix:
  4288. // TODO
  4289. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4290. }
  4291. }
  4292. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4293. }
  4294. // TRUE function returns the logical value TRUE. The syntax of the function
  4295. // is:
  4296. //
  4297. // TRUE()
  4298. //
  4299. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4300. if argsList.Len() != 0 {
  4301. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4302. }
  4303. return newBoolFormulaArg(true)
  4304. }
  4305. // Date and Time Functions
  4306. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4307. // of the function is:
  4308. //
  4309. // DATE(year,month,day)
  4310. //
  4311. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4312. if argsList.Len() != 3 {
  4313. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4314. }
  4315. var year, month, day int
  4316. var err error
  4317. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  4318. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4319. }
  4320. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  4321. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4322. }
  4323. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  4324. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4325. }
  4326. d := makeDate(year, time.Month(month), day)
  4327. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4328. }
  4329. // makeDate return date as a Unix time, the number of seconds elapsed since
  4330. // January 1, 1970 UTC.
  4331. func makeDate(y int, m time.Month, d int) int64 {
  4332. if y == 1900 && int(m) <= 2 {
  4333. d--
  4334. }
  4335. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4336. return date.Unix()
  4337. }
  4338. // daysBetween return time interval of the given start timestamp and end
  4339. // timestamp.
  4340. func daysBetween(startDate, endDate int64) float64 {
  4341. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4342. }
  4343. // Text Functions
  4344. // CLEAN removes all non-printable characters from a supplied text string. The
  4345. // syntax of the function is:
  4346. //
  4347. // CLEAN(text)
  4348. //
  4349. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4350. if argsList.Len() != 1 {
  4351. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4352. }
  4353. b := bytes.Buffer{}
  4354. for _, c := range argsList.Front().Value.(formulaArg).String {
  4355. if c > 31 {
  4356. b.WriteRune(c)
  4357. }
  4358. }
  4359. return newStringFormulaArg(b.String())
  4360. }
  4361. // CONCAT function joins together a series of supplied text strings into one
  4362. // combined text string.
  4363. //
  4364. // CONCAT(text1,[text2],...)
  4365. //
  4366. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4367. return fn.concat("CONCAT", argsList)
  4368. }
  4369. // CONCATENATE function joins together a series of supplied text strings into
  4370. // one combined text string.
  4371. //
  4372. // CONCATENATE(text1,[text2],...)
  4373. //
  4374. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4375. return fn.concat("CONCATENATE", argsList)
  4376. }
  4377. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4378. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4379. buf := bytes.Buffer{}
  4380. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4381. token := arg.Value.(formulaArg)
  4382. switch token.Type {
  4383. case ArgString:
  4384. buf.WriteString(token.String)
  4385. case ArgNumber:
  4386. if token.Boolean {
  4387. if token.Number == 0 {
  4388. buf.WriteString("FALSE")
  4389. } else {
  4390. buf.WriteString("TRUE")
  4391. }
  4392. } else {
  4393. buf.WriteString(token.Value())
  4394. }
  4395. default:
  4396. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4397. }
  4398. }
  4399. return newStringFormulaArg(buf.String())
  4400. }
  4401. // EXACT function tests if two supplied text strings or values are exactly
  4402. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4403. // function is case-sensitive. The syntax of the function is:
  4404. //
  4405. // EXACT(text1,text2)
  4406. //
  4407. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4408. if argsList.Len() != 2 {
  4409. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4410. }
  4411. text1 := argsList.Front().Value.(formulaArg).Value()
  4412. text2 := argsList.Back().Value.(formulaArg).Value()
  4413. return newBoolFormulaArg(text1 == text2)
  4414. }
  4415. // LEN returns the length of a supplied text string. The syntax of the
  4416. // function is:
  4417. //
  4418. // LEN(text)
  4419. //
  4420. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4421. if argsList.Len() != 1 {
  4422. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4423. }
  4424. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4425. }
  4426. // LENB returns the number of bytes used to represent the characters in a text
  4427. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4428. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4429. // 1 byte per character. The syntax of the function is:
  4430. //
  4431. // LENB(text)
  4432. //
  4433. // TODO: the languages that support DBCS include Japanese, Chinese
  4434. // (Simplified), Chinese (Traditional), and Korean.
  4435. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4436. if argsList.Len() != 1 {
  4437. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4438. }
  4439. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4440. }
  4441. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  4442. // words or characters) from a supplied text string. The syntax of the
  4443. // function is:
  4444. //
  4445. // TRIM(text)
  4446. //
  4447. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  4448. if argsList.Len() != 1 {
  4449. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  4450. }
  4451. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  4452. }
  4453. // LOWER converts all characters in a supplied text string to lower case. The
  4454. // syntax of the function is:
  4455. //
  4456. // LOWER(text)
  4457. //
  4458. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4459. if argsList.Len() != 1 {
  4460. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4461. }
  4462. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4463. }
  4464. // PROPER converts all characters in a supplied text string to proper case
  4465. // (i.e. all letters that do not immediately follow another letter are set to
  4466. // upper case and all other characters are lower case). The syntax of the
  4467. // function is:
  4468. //
  4469. // PROPER(text)
  4470. //
  4471. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4472. if argsList.Len() != 1 {
  4473. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4474. }
  4475. buf := bytes.Buffer{}
  4476. isLetter := false
  4477. for _, char := range argsList.Front().Value.(formulaArg).String {
  4478. if !isLetter && unicode.IsLetter(char) {
  4479. buf.WriteRune(unicode.ToUpper(char))
  4480. } else {
  4481. buf.WriteRune(unicode.ToLower(char))
  4482. }
  4483. isLetter = unicode.IsLetter(char)
  4484. }
  4485. return newStringFormulaArg(buf.String())
  4486. }
  4487. // REPT function returns a supplied text string, repeated a specified number
  4488. // of times. The syntax of the function is:
  4489. //
  4490. // REPT(text,number_times)
  4491. //
  4492. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4493. if argsList.Len() != 2 {
  4494. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4495. }
  4496. text := argsList.Front().Value.(formulaArg)
  4497. if text.Type != ArgString {
  4498. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4499. }
  4500. times := argsList.Back().Value.(formulaArg).ToNumber()
  4501. if times.Type != ArgNumber {
  4502. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4503. }
  4504. if times.Number < 0 {
  4505. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4506. }
  4507. if times.Number == 0 {
  4508. return newStringFormulaArg("")
  4509. }
  4510. buf := bytes.Buffer{}
  4511. for i := 0; i < int(times.Number); i++ {
  4512. buf.WriteString(text.String)
  4513. }
  4514. return newStringFormulaArg(buf.String())
  4515. }
  4516. // UPPER converts all characters in a supplied text string to upper case. The
  4517. // syntax of the function is:
  4518. //
  4519. // UPPER(text)
  4520. //
  4521. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  4522. if argsList.Len() != 1 {
  4523. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  4524. }
  4525. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  4526. }
  4527. // Conditional Functions
  4528. // IF function tests a supplied condition and returns one result if the
  4529. // condition evaluates to TRUE, and another result if the condition evaluates
  4530. // to FALSE. The syntax of the function is:
  4531. //
  4532. // IF(logical_test,value_if_true,value_if_false)
  4533. //
  4534. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  4535. if argsList.Len() == 0 {
  4536. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  4537. }
  4538. if argsList.Len() > 3 {
  4539. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  4540. }
  4541. token := argsList.Front().Value.(formulaArg)
  4542. var (
  4543. cond bool
  4544. err error
  4545. result string
  4546. )
  4547. switch token.Type {
  4548. case ArgString:
  4549. if cond, err = strconv.ParseBool(token.String); err != nil {
  4550. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4551. }
  4552. if argsList.Len() == 1 {
  4553. return newBoolFormulaArg(cond)
  4554. }
  4555. if cond {
  4556. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  4557. }
  4558. if argsList.Len() == 3 {
  4559. result = argsList.Back().Value.(formulaArg).String
  4560. }
  4561. }
  4562. return newStringFormulaArg(result)
  4563. }
  4564. // Lookup and Reference Functions
  4565. // CHOOSE function returns a value from an array, that corresponds to a
  4566. // supplied index number (position). The syntax of the function is:
  4567. //
  4568. // CHOOSE(index_num,value1,[value2],...)
  4569. //
  4570. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  4571. if argsList.Len() < 2 {
  4572. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  4573. }
  4574. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  4575. if err != nil {
  4576. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  4577. }
  4578. if argsList.Len() <= idx {
  4579. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  4580. }
  4581. arg := argsList.Front()
  4582. for i := 0; i < idx; i++ {
  4583. arg = arg.Next()
  4584. }
  4585. var result formulaArg
  4586. switch arg.Value.(formulaArg).Type {
  4587. case ArgString:
  4588. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  4589. case ArgMatrix:
  4590. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  4591. }
  4592. return result
  4593. }
  4594. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  4595. // string.
  4596. func deepMatchRune(str, pattern []rune, simple bool) bool {
  4597. for len(pattern) > 0 {
  4598. switch pattern[0] {
  4599. default:
  4600. if len(str) == 0 || str[0] != pattern[0] {
  4601. return false
  4602. }
  4603. case '?':
  4604. if len(str) == 0 && !simple {
  4605. return false
  4606. }
  4607. case '*':
  4608. return deepMatchRune(str, pattern[1:], simple) ||
  4609. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  4610. }
  4611. str = str[1:]
  4612. pattern = pattern[1:]
  4613. }
  4614. return len(str) == 0 && len(pattern) == 0
  4615. }
  4616. // matchPattern finds whether the text matches or satisfies the pattern
  4617. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  4618. func matchPattern(pattern, name string) (matched bool) {
  4619. if pattern == "" {
  4620. return name == pattern
  4621. }
  4622. if pattern == "*" {
  4623. return true
  4624. }
  4625. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  4626. for _, r := range name {
  4627. rname = append(rname, r)
  4628. }
  4629. for _, r := range pattern {
  4630. rpattern = append(rpattern, r)
  4631. }
  4632. simple := false // Does extended wildcard '*' and '?' match.
  4633. return deepMatchRune(rname, rpattern, simple)
  4634. }
  4635. // compareFormulaArg compares the left-hand sides and the right-hand sides
  4636. // formula arguments by given conditions such as case sensitive, if exact
  4637. // match, and make compare result as formula criteria condition type.
  4638. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4639. if lhs.Type != rhs.Type {
  4640. return criteriaErr
  4641. }
  4642. switch lhs.Type {
  4643. case ArgNumber:
  4644. if lhs.Number == rhs.Number {
  4645. return criteriaEq
  4646. }
  4647. if lhs.Number < rhs.Number {
  4648. return criteriaL
  4649. }
  4650. return criteriaG
  4651. case ArgString:
  4652. ls, rs := lhs.String, rhs.String
  4653. if !caseSensitive {
  4654. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  4655. }
  4656. if exactMatch {
  4657. match := matchPattern(rs, ls)
  4658. if match {
  4659. return criteriaEq
  4660. }
  4661. return criteriaG
  4662. }
  4663. switch strings.Compare(ls, rs) {
  4664. case 1:
  4665. return criteriaG
  4666. case -1:
  4667. return criteriaL
  4668. case 0:
  4669. return criteriaEq
  4670. }
  4671. return criteriaErr
  4672. case ArgEmpty:
  4673. return criteriaEq
  4674. case ArgList:
  4675. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  4676. case ArgMatrix:
  4677. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  4678. }
  4679. return criteriaErr
  4680. }
  4681. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  4682. // list type formula arguments.
  4683. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4684. if len(lhs.List) < len(rhs.List) {
  4685. return criteriaL
  4686. }
  4687. if len(lhs.List) > len(rhs.List) {
  4688. return criteriaG
  4689. }
  4690. for arg := range lhs.List {
  4691. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  4692. if criteria != criteriaEq {
  4693. return criteria
  4694. }
  4695. }
  4696. return criteriaEq
  4697. }
  4698. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  4699. // matrix type formula arguments.
  4700. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4701. if len(lhs.Matrix) < len(rhs.Matrix) {
  4702. return criteriaL
  4703. }
  4704. if len(lhs.Matrix) > len(rhs.Matrix) {
  4705. return criteriaG
  4706. }
  4707. for i := range lhs.Matrix {
  4708. left := lhs.Matrix[i]
  4709. right := lhs.Matrix[i]
  4710. if len(left) < len(right) {
  4711. return criteriaL
  4712. }
  4713. if len(left) > len(right) {
  4714. return criteriaG
  4715. }
  4716. for arg := range left {
  4717. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  4718. if criteria != criteriaEq {
  4719. return criteria
  4720. }
  4721. }
  4722. }
  4723. return criteriaEq
  4724. }
  4725. // HLOOKUP function 'looks up' a given value in the top row of a data array
  4726. // (or table), and returns the corresponding value from another row of the
  4727. // array. The syntax of the function is:
  4728. //
  4729. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  4730. //
  4731. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  4732. if argsList.Len() < 3 {
  4733. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  4734. }
  4735. if argsList.Len() > 4 {
  4736. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  4737. }
  4738. lookupValue := argsList.Front().Value.(formulaArg)
  4739. tableArray := argsList.Front().Next().Value.(formulaArg)
  4740. if tableArray.Type != ArgMatrix {
  4741. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  4742. }
  4743. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4744. if rowArg.Type != ArgNumber {
  4745. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  4746. }
  4747. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  4748. if argsList.Len() == 4 {
  4749. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4750. if rangeLookup.Type == ArgError {
  4751. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4752. }
  4753. if rangeLookup.Number == 0 {
  4754. exactMatch = true
  4755. }
  4756. }
  4757. row := tableArray.Matrix[0]
  4758. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4759. start:
  4760. for idx, mtx := range row {
  4761. lhs := mtx
  4762. switch lookupValue.Type {
  4763. case ArgNumber:
  4764. if !lookupValue.Boolean {
  4765. lhs = mtx.ToNumber()
  4766. if lhs.Type == ArgError {
  4767. lhs = mtx
  4768. }
  4769. }
  4770. case ArgMatrix:
  4771. lhs = tableArray
  4772. }
  4773. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4774. matchIdx = idx
  4775. wasExact = true
  4776. break start
  4777. }
  4778. }
  4779. } else {
  4780. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  4781. }
  4782. if matchIdx == -1 {
  4783. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4784. }
  4785. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  4786. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  4787. }
  4788. row = tableArray.Matrix[rowIdx]
  4789. if wasExact || !exactMatch {
  4790. return row[matchIdx]
  4791. }
  4792. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4793. }
  4794. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  4795. // data array (or table), and returns the corresponding value from another
  4796. // column of the array. The syntax of the function is:
  4797. //
  4798. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  4799. //
  4800. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  4801. if argsList.Len() < 3 {
  4802. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  4803. }
  4804. if argsList.Len() > 4 {
  4805. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  4806. }
  4807. lookupValue := argsList.Front().Value.(formulaArg)
  4808. tableArray := argsList.Front().Next().Value.(formulaArg)
  4809. if tableArray.Type != ArgMatrix {
  4810. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  4811. }
  4812. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4813. if colIdx.Type != ArgNumber {
  4814. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  4815. }
  4816. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  4817. if argsList.Len() == 4 {
  4818. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4819. if rangeLookup.Type == ArgError {
  4820. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4821. }
  4822. if rangeLookup.Number == 0 {
  4823. exactMatch = true
  4824. }
  4825. }
  4826. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4827. start:
  4828. for idx, mtx := range tableArray.Matrix {
  4829. lhs := mtx[0]
  4830. switch lookupValue.Type {
  4831. case ArgNumber:
  4832. if !lookupValue.Boolean {
  4833. lhs = mtx[0].ToNumber()
  4834. if lhs.Type == ArgError {
  4835. lhs = mtx[0]
  4836. }
  4837. }
  4838. case ArgMatrix:
  4839. lhs = tableArray
  4840. }
  4841. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4842. matchIdx = idx
  4843. wasExact = true
  4844. break start
  4845. }
  4846. }
  4847. } else {
  4848. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  4849. }
  4850. if matchIdx == -1 {
  4851. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4852. }
  4853. mtx := tableArray.Matrix[matchIdx]
  4854. if col < 0 || col >= len(mtx) {
  4855. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  4856. }
  4857. if wasExact || !exactMatch {
  4858. return mtx[col]
  4859. }
  4860. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4861. }
  4862. // vlookupBinarySearch finds the position of a target value when range lookup
  4863. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4864. // return wrong result.
  4865. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4866. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  4867. for low <= high {
  4868. var mid int = low + (high-low)/2
  4869. mtx := tableArray.Matrix[mid]
  4870. lhs := mtx[0]
  4871. switch lookupValue.Type {
  4872. case ArgNumber:
  4873. if !lookupValue.Boolean {
  4874. lhs = mtx[0].ToNumber()
  4875. if lhs.Type == ArgError {
  4876. lhs = mtx[0]
  4877. }
  4878. }
  4879. case ArgMatrix:
  4880. lhs = tableArray
  4881. }
  4882. result := compareFormulaArg(lhs, lookupValue, false, false)
  4883. if result == criteriaEq {
  4884. matchIdx, wasExact = mid, true
  4885. return
  4886. } else if result == criteriaG {
  4887. high = mid - 1
  4888. } else if result == criteriaL {
  4889. matchIdx, low = mid, mid+1
  4890. if lhs.Value() != "" {
  4891. lastMatchIdx = matchIdx
  4892. }
  4893. } else {
  4894. return -1, false
  4895. }
  4896. }
  4897. matchIdx, wasExact = lastMatchIdx, true
  4898. return
  4899. }
  4900. // vlookupBinarySearch finds the position of a target value when range lookup
  4901. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4902. // return wrong result.
  4903. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4904. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  4905. for low <= high {
  4906. var mid int = low + (high-low)/2
  4907. mtx := row[mid]
  4908. result := compareFormulaArg(mtx, lookupValue, false, false)
  4909. if result == criteriaEq {
  4910. matchIdx, wasExact = mid, true
  4911. return
  4912. } else if result == criteriaG {
  4913. high = mid - 1
  4914. } else if result == criteriaL {
  4915. low, lastMatchIdx = mid+1, mid
  4916. } else {
  4917. return -1, false
  4918. }
  4919. }
  4920. matchIdx, wasExact = lastMatchIdx, true
  4921. return
  4922. }
  4923. // LOOKUP function performs an approximate match lookup in a one-column or
  4924. // one-row range, and returns the corresponding value from another one-column
  4925. // or one-row range. The syntax of the function is:
  4926. //
  4927. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  4928. //
  4929. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  4930. if argsList.Len() < 2 {
  4931. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  4932. }
  4933. if argsList.Len() > 3 {
  4934. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  4935. }
  4936. lookupValue := argsList.Front().Value.(formulaArg)
  4937. lookupVector := argsList.Front().Next().Value.(formulaArg)
  4938. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  4939. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  4940. }
  4941. cols, matchIdx := lookupCol(lookupVector), -1
  4942. for idx, col := range cols {
  4943. lhs := lookupValue
  4944. switch col.Type {
  4945. case ArgNumber:
  4946. lhs = lhs.ToNumber()
  4947. if !col.Boolean {
  4948. if lhs.Type == ArgError {
  4949. lhs = lookupValue
  4950. }
  4951. }
  4952. }
  4953. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  4954. matchIdx = idx
  4955. break
  4956. }
  4957. }
  4958. column := cols
  4959. if argsList.Len() == 3 {
  4960. column = lookupCol(argsList.Back().Value.(formulaArg))
  4961. }
  4962. if matchIdx < 0 || matchIdx >= len(column) {
  4963. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  4964. }
  4965. return column[matchIdx]
  4966. }
  4967. // lookupCol extract columns for LOOKUP.
  4968. func lookupCol(arr formulaArg) []formulaArg {
  4969. col := arr.List
  4970. if arr.Type == ArgMatrix {
  4971. col = nil
  4972. for _, r := range arr.Matrix {
  4973. if len(r) > 0 {
  4974. col = append(col, r[0])
  4975. continue
  4976. }
  4977. col = append(col, newEmptyFormulaArg())
  4978. }
  4979. }
  4980. return col
  4981. }
  4982. // Web Functions
  4983. // ENCODEURL function returns a URL-encoded string, replacing certain
  4984. // non-alphanumeric characters with the percentage symbol (%) and a
  4985. // hexadecimal number. The syntax of the function is:
  4986. //
  4987. // ENCODEURL(url)
  4988. //
  4989. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  4990. if argsList.Len() != 1 {
  4991. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  4992. }
  4993. token := argsList.Front().Value.(formulaArg).Value()
  4994. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  4995. }