calc.go 167 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. )
  30. // Excel formula errors
  31. const (
  32. formulaErrorDIV = "#DIV/0!"
  33. formulaErrorNAME = "#NAME?"
  34. formulaErrorNA = "#N/A"
  35. formulaErrorNUM = "#NUM!"
  36. formulaErrorVALUE = "#VALUE!"
  37. formulaErrorREF = "#REF!"
  38. formulaErrorNULL = "#NULL"
  39. formulaErrorSPILL = "#SPILL!"
  40. formulaErrorCALC = "#CALC!"
  41. formulaErrorGETTINGDATA = "#GETTING_DATA"
  42. )
  43. // Numeric precision correct numeric values as legacy Excel application
  44. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  45. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  46. // has a decimal representation that is an infinite string of ones, Excel
  47. // displays only the leading 15 figures. In the second line, the number one
  48. // is added to the fraction, and again Excel displays only 15 figures.
  49. const numericPrecision = 1000000000000000
  50. // cellRef defines the structure of a cell reference.
  51. type cellRef struct {
  52. Col int
  53. Row int
  54. Sheet string
  55. }
  56. // cellRef defines the structure of a cell range.
  57. type cellRange struct {
  58. From cellRef
  59. To cellRef
  60. }
  61. // formula criteria condition enumeration.
  62. const (
  63. _ byte = iota
  64. criteriaEq
  65. criteriaLe
  66. criteriaGe
  67. criteriaL
  68. criteriaG
  69. criteriaBeg
  70. criteriaEnd
  71. criteriaErr
  72. )
  73. // formulaCriteria defined formula criteria parser result.
  74. type formulaCriteria struct {
  75. Type byte
  76. Condition string
  77. }
  78. // ArgType is the type if formula argument type.
  79. type ArgType byte
  80. // Formula argument types enumeration.
  81. const (
  82. ArgUnknown ArgType = iota
  83. ArgNumber
  84. ArgString
  85. ArgList
  86. ArgMatrix
  87. ArgError
  88. ArgEmpty
  89. )
  90. // formulaArg is the argument of a formula or function.
  91. type formulaArg struct {
  92. SheetName string
  93. Number float64
  94. String string
  95. List []formulaArg
  96. Matrix [][]formulaArg
  97. Boolean bool
  98. Error string
  99. Type ArgType
  100. cellRefs, cellRanges *list.List
  101. }
  102. // Value returns a string data type of the formula argument.
  103. func (fa formulaArg) Value() (value string) {
  104. switch fa.Type {
  105. case ArgNumber:
  106. if fa.Boolean {
  107. if fa.Number == 0 {
  108. return "FALSE"
  109. }
  110. return "TRUE"
  111. }
  112. return fmt.Sprintf("%g", fa.Number)
  113. case ArgString:
  114. return fa.String
  115. case ArgError:
  116. return fa.Error
  117. }
  118. return
  119. }
  120. // ToNumber returns a formula argument with number data type.
  121. func (fa formulaArg) ToNumber() formulaArg {
  122. var n float64
  123. var err error
  124. switch fa.Type {
  125. case ArgString:
  126. n, err = strconv.ParseFloat(fa.String, 64)
  127. if err != nil {
  128. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  129. }
  130. case ArgNumber:
  131. n = fa.Number
  132. }
  133. return newNumberFormulaArg(n)
  134. }
  135. // ToBool returns a formula argument with boolean data type.
  136. func (fa formulaArg) ToBool() formulaArg {
  137. var b bool
  138. var err error
  139. switch fa.Type {
  140. case ArgString:
  141. b, err = strconv.ParseBool(fa.String)
  142. if err != nil {
  143. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  144. }
  145. case ArgNumber:
  146. if fa.Boolean && fa.Number == 1 {
  147. b = true
  148. }
  149. }
  150. return newBoolFormulaArg(b)
  151. }
  152. // ToList returns a formula argument with array data type.
  153. func (fa formulaArg) ToList() []formulaArg {
  154. switch fa.Type {
  155. case ArgMatrix:
  156. list := []formulaArg{}
  157. for _, row := range fa.Matrix {
  158. list = append(list, row...)
  159. }
  160. return list
  161. case ArgList:
  162. return fa.List
  163. case ArgNumber, ArgString, ArgError, ArgUnknown:
  164. return []formulaArg{fa}
  165. }
  166. return nil
  167. }
  168. // formulaFuncs is the type of the formula functions.
  169. type formulaFuncs struct {
  170. f *File
  171. sheet, cell string
  172. }
  173. // tokenPriority defined basic arithmetic operator priority.
  174. var tokenPriority = map[string]int{
  175. "^": 5,
  176. "*": 4,
  177. "/": 4,
  178. "+": 3,
  179. "-": 3,
  180. "=": 2,
  181. "<>": 2,
  182. "<": 2,
  183. "<=": 2,
  184. ">": 2,
  185. ">=": 2,
  186. "&": 1,
  187. }
  188. // CalcCellValue provides a function to get calculated cell value. This
  189. // feature is currently in working processing. Array formula, table formula
  190. // and some other formulas are not supported currently.
  191. //
  192. // Supported formula functions:
  193. //
  194. // ABS
  195. // ACOS
  196. // ACOSH
  197. // ACOT
  198. // ACOTH
  199. // AND
  200. // ARABIC
  201. // ASIN
  202. // ASINH
  203. // ATAN
  204. // ATAN2
  205. // ATANH
  206. // AVERAGE
  207. // AVERAGEA
  208. // BASE
  209. // BIN2DEC
  210. // BIN2HEX
  211. // BIN2OCT
  212. // BITAND
  213. // BITLSHIFT
  214. // BITOR
  215. // BITRSHIFT
  216. // BITXOR
  217. // CEILING
  218. // CEILING.MATH
  219. // CEILING.PRECISE
  220. // CHAR
  221. // CHOOSE
  222. // CLEAN
  223. // CODE
  224. // COLUMN
  225. // COLUMNS
  226. // COMBIN
  227. // COMBINA
  228. // CONCAT
  229. // CONCATENATE
  230. // COS
  231. // COSH
  232. // COT
  233. // COTH
  234. // COUNT
  235. // COUNTA
  236. // COUNTBLANK
  237. // CSC
  238. // CSCH
  239. // DATE
  240. // DEC2BIN
  241. // DEC2HEX
  242. // DEC2OCT
  243. // DECIMAL
  244. // DEGREES
  245. // ENCODEURL
  246. // EVEN
  247. // EXACT
  248. // EXP
  249. // FACT
  250. // FACTDOUBLE
  251. // FALSE
  252. // FIND
  253. // FINDB
  254. // FISHER
  255. // FISHERINV
  256. // FLOOR
  257. // FLOOR.MATH
  258. // FLOOR.PRECISE
  259. // GAMMA
  260. // GAMMALN
  261. // GCD
  262. // HEX2BIN
  263. // HEX2DEC
  264. // HEX2OCT
  265. // HLOOKUP
  266. // IF
  267. // IFERROR
  268. // INT
  269. // ISBLANK
  270. // ISERR
  271. // ISERROR
  272. // ISEVEN
  273. // ISNA
  274. // ISNONTEXT
  275. // ISNUMBER
  276. // ISODD
  277. // ISTEXT
  278. // ISO.CEILING
  279. // KURT
  280. // LARGE
  281. // LCM
  282. // LEFT
  283. // LEFTB
  284. // LEN
  285. // LENB
  286. // LN
  287. // LOG
  288. // LOG10
  289. // LOOKUP
  290. // LOWER
  291. // MAX
  292. // MDETERM
  293. // MEDIAN
  294. // MID
  295. // MIDB
  296. // MIN
  297. // MINA
  298. // MOD
  299. // MROUND
  300. // MULTINOMIAL
  301. // MUNIT
  302. // NA
  303. // NOT
  304. // OCT2BIN
  305. // OCT2DEC
  306. // OCT2HEX
  307. // ODD
  308. // OR
  309. // PERMUT
  310. // PI
  311. // POWER
  312. // PRODUCT
  313. // PROPER
  314. // QUOTIENT
  315. // RADIANS
  316. // RAND
  317. // RANDBETWEEN
  318. // REPLACE
  319. // REPLACEB
  320. // REPT
  321. // RIGHT
  322. // RIGHTB
  323. // ROMAN
  324. // ROUND
  325. // ROUNDDOWN
  326. // ROUNDUP
  327. // ROW
  328. // ROWS
  329. // SEC
  330. // SECH
  331. // SHEET
  332. // SIGN
  333. // SIN
  334. // SINH
  335. // SMALL
  336. // SQRT
  337. // SQRTPI
  338. // STDEV
  339. // STDEVA
  340. // SUBSTITUTE
  341. // SUM
  342. // SUMIF
  343. // SUMSQ
  344. // TAN
  345. // TANH
  346. // TRIM
  347. // TRUE
  348. // TRUNC
  349. // UNICHAR
  350. // UNICODE
  351. // UPPER
  352. // VLOOKUP
  353. //
  354. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  355. var (
  356. formula string
  357. token efp.Token
  358. )
  359. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  360. return
  361. }
  362. ps := efp.ExcelParser()
  363. tokens := ps.Parse(formula)
  364. if tokens == nil {
  365. return
  366. }
  367. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  368. return
  369. }
  370. result = token.TValue
  371. isNum, precision := isNumeric(result)
  372. if isNum && precision > 15 {
  373. num, _ := roundPrecision(result)
  374. result = strings.ToUpper(num)
  375. }
  376. return
  377. }
  378. // getPriority calculate arithmetic operator priority.
  379. func getPriority(token efp.Token) (pri int) {
  380. pri = tokenPriority[token.TValue]
  381. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  382. pri = 6
  383. }
  384. if isBeginParenthesesToken(token) { // (
  385. pri = 0
  386. }
  387. return
  388. }
  389. // newNumberFormulaArg constructs a number formula argument.
  390. func newNumberFormulaArg(n float64) formulaArg {
  391. if math.IsNaN(n) {
  392. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  393. }
  394. return formulaArg{Type: ArgNumber, Number: n}
  395. }
  396. // newStringFormulaArg constructs a string formula argument.
  397. func newStringFormulaArg(s string) formulaArg {
  398. return formulaArg{Type: ArgString, String: s}
  399. }
  400. // newMatrixFormulaArg constructs a matrix formula argument.
  401. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  402. return formulaArg{Type: ArgMatrix, Matrix: m}
  403. }
  404. // newListFormulaArg create a list formula argument.
  405. func newListFormulaArg(l []formulaArg) formulaArg {
  406. return formulaArg{Type: ArgList, List: l}
  407. }
  408. // newBoolFormulaArg constructs a boolean formula argument.
  409. func newBoolFormulaArg(b bool) formulaArg {
  410. var n float64
  411. if b {
  412. n = 1
  413. }
  414. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  415. }
  416. // newErrorFormulaArg create an error formula argument of a given type with a
  417. // specified error message.
  418. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  419. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  420. }
  421. // newEmptyFormulaArg create an empty formula argument.
  422. func newEmptyFormulaArg() formulaArg {
  423. return formulaArg{Type: ArgEmpty}
  424. }
  425. // evalInfixExp evaluate syntax analysis by given infix expression after
  426. // lexical analysis. Evaluate an infix expression containing formulas by
  427. // stacks:
  428. //
  429. // opd - Operand
  430. // opt - Operator
  431. // opf - Operation formula
  432. // opfd - Operand of the operation formula
  433. // opft - Operator of the operation formula
  434. // args - Arguments list of the operation formula
  435. //
  436. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  437. //
  438. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  439. var err error
  440. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  441. for i := 0; i < len(tokens); i++ {
  442. token := tokens[i]
  443. // out of function stack
  444. if opfStack.Len() == 0 {
  445. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  446. return efp.Token{}, err
  447. }
  448. }
  449. // function start
  450. if isFunctionStartToken(token) {
  451. opfStack.Push(token)
  452. argsStack.Push(list.New().Init())
  453. continue
  454. }
  455. // in function stack, walk 2 token at once
  456. if opfStack.Len() > 0 {
  457. var nextToken efp.Token
  458. if i+1 < len(tokens) {
  459. nextToken = tokens[i+1]
  460. }
  461. // current token is args or range, skip next token, order required: parse reference first
  462. if token.TSubType == efp.TokenSubTypeRange {
  463. if !opftStack.Empty() {
  464. // parse reference: must reference at here
  465. result, err := f.parseReference(sheet, token.TValue)
  466. if err != nil {
  467. return efp.Token{TValue: formulaErrorNAME}, err
  468. }
  469. if result.Type != ArgString {
  470. return efp.Token{}, errors.New(formulaErrorVALUE)
  471. }
  472. opfdStack.Push(efp.Token{
  473. TType: efp.TokenTypeOperand,
  474. TSubType: efp.TokenSubTypeNumber,
  475. TValue: result.String,
  476. })
  477. continue
  478. }
  479. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  480. // parse reference: reference or range at here
  481. result, err := f.parseReference(sheet, token.TValue)
  482. if err != nil {
  483. return efp.Token{TValue: formulaErrorNAME}, err
  484. }
  485. if result.Type == ArgUnknown {
  486. return efp.Token{}, errors.New(formulaErrorVALUE)
  487. }
  488. argsStack.Peek().(*list.List).PushBack(result)
  489. continue
  490. }
  491. }
  492. // check current token is opft
  493. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  494. return efp.Token{}, err
  495. }
  496. // current token is arg
  497. if token.TType == efp.TokenTypeArgument {
  498. for !opftStack.Empty() {
  499. // calculate trigger
  500. topOpt := opftStack.Peek().(efp.Token)
  501. if err := calculate(opfdStack, topOpt); err != nil {
  502. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  503. }
  504. opftStack.Pop()
  505. }
  506. if !opfdStack.Empty() {
  507. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  508. }
  509. continue
  510. }
  511. // current token is logical
  512. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  513. }
  514. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  515. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  516. }
  517. // current token is text
  518. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  519. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  520. }
  521. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  522. return efp.Token{}, err
  523. }
  524. }
  525. }
  526. for optStack.Len() != 0 {
  527. topOpt := optStack.Peek().(efp.Token)
  528. if err = calculate(opdStack, topOpt); err != nil {
  529. return efp.Token{}, err
  530. }
  531. optStack.Pop()
  532. }
  533. if opdStack.Len() == 0 {
  534. return efp.Token{}, errors.New("formula not valid")
  535. }
  536. return opdStack.Peek().(efp.Token), err
  537. }
  538. // evalInfixExpFunc evaluate formula function in the infix expression.
  539. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  540. if !isFunctionStopToken(token) {
  541. return nil
  542. }
  543. // current token is function stop
  544. for !opftStack.Empty() {
  545. // calculate trigger
  546. topOpt := opftStack.Peek().(efp.Token)
  547. if err := calculate(opfdStack, topOpt); err != nil {
  548. return err
  549. }
  550. opftStack.Pop()
  551. }
  552. // push opfd to args
  553. if opfdStack.Len() > 0 {
  554. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  555. }
  556. // call formula function to evaluate
  557. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  558. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  559. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  560. if arg.Type == ArgError && opfStack.Len() == 1 {
  561. return errors.New(arg.Value())
  562. }
  563. argsStack.Pop()
  564. opfStack.Pop()
  565. if opfStack.Len() > 0 { // still in function stack
  566. if nextToken.TType == efp.TokenTypeOperatorInfix {
  567. // mathematics calculate in formula function
  568. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  569. } else {
  570. argsStack.Peek().(*list.List).PushBack(arg)
  571. }
  572. } else {
  573. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  574. }
  575. return nil
  576. }
  577. // calcPow evaluate exponentiation arithmetic operations.
  578. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  579. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  580. if err != nil {
  581. return err
  582. }
  583. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  584. if err != nil {
  585. return err
  586. }
  587. result := math.Pow(lOpdVal, rOpdVal)
  588. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  589. return nil
  590. }
  591. // calcEq evaluate equal arithmetic operations.
  592. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  593. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  594. return nil
  595. }
  596. // calcNEq evaluate not equal arithmetic operations.
  597. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  598. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  599. return nil
  600. }
  601. // calcL evaluate less than arithmetic operations.
  602. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  603. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  604. if err != nil {
  605. return err
  606. }
  607. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  608. if err != nil {
  609. return err
  610. }
  611. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  612. return nil
  613. }
  614. // calcLe evaluate less than or equal arithmetic operations.
  615. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  616. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  617. if err != nil {
  618. return err
  619. }
  620. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  621. if err != nil {
  622. return err
  623. }
  624. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  625. return nil
  626. }
  627. // calcG evaluate greater than or equal arithmetic operations.
  628. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  629. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  630. if err != nil {
  631. return err
  632. }
  633. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  634. if err != nil {
  635. return err
  636. }
  637. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  638. return nil
  639. }
  640. // calcGe evaluate greater than or equal arithmetic operations.
  641. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  642. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  643. if err != nil {
  644. return err
  645. }
  646. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  647. if err != nil {
  648. return err
  649. }
  650. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  651. return nil
  652. }
  653. // calcSplice evaluate splice '&' operations.
  654. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  655. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  656. return nil
  657. }
  658. // calcAdd evaluate addition arithmetic operations.
  659. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  660. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  661. if err != nil {
  662. return err
  663. }
  664. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  665. if err != nil {
  666. return err
  667. }
  668. result := lOpdVal + rOpdVal
  669. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  670. return nil
  671. }
  672. // calcSubtract evaluate subtraction arithmetic operations.
  673. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  674. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  675. if err != nil {
  676. return err
  677. }
  678. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  679. if err != nil {
  680. return err
  681. }
  682. result := lOpdVal - rOpdVal
  683. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  684. return nil
  685. }
  686. // calcMultiply evaluate multiplication arithmetic operations.
  687. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  688. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  689. if err != nil {
  690. return err
  691. }
  692. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  693. if err != nil {
  694. return err
  695. }
  696. result := lOpdVal * rOpdVal
  697. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  698. return nil
  699. }
  700. // calcDiv evaluate division arithmetic operations.
  701. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  702. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  703. if err != nil {
  704. return err
  705. }
  706. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  707. if err != nil {
  708. return err
  709. }
  710. result := lOpdVal / rOpdVal
  711. if rOpdVal == 0 {
  712. return errors.New(formulaErrorDIV)
  713. }
  714. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  715. return nil
  716. }
  717. // calculate evaluate basic arithmetic operations.
  718. func calculate(opdStack *Stack, opt efp.Token) error {
  719. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  720. if opdStack.Len() < 1 {
  721. return errors.New("formula not valid")
  722. }
  723. opd := opdStack.Pop().(efp.Token)
  724. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  725. if err != nil {
  726. return err
  727. }
  728. result := 0 - opdVal
  729. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  730. }
  731. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  732. "^": calcPow,
  733. "*": calcMultiply,
  734. "/": calcDiv,
  735. "+": calcAdd,
  736. "=": calcEq,
  737. "<>": calcNEq,
  738. "<": calcL,
  739. "<=": calcLe,
  740. ">": calcG,
  741. ">=": calcGe,
  742. "&": calcSplice,
  743. }
  744. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  745. if opdStack.Len() < 2 {
  746. return errors.New("formula not valid")
  747. }
  748. rOpd := opdStack.Pop().(efp.Token)
  749. lOpd := opdStack.Pop().(efp.Token)
  750. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  751. return err
  752. }
  753. }
  754. fn, ok := tokenCalcFunc[opt.TValue]
  755. if ok {
  756. if opdStack.Len() < 2 {
  757. return errors.New("formula not valid")
  758. }
  759. rOpd := opdStack.Pop().(efp.Token)
  760. lOpd := opdStack.Pop().(efp.Token)
  761. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  762. return err
  763. }
  764. }
  765. return nil
  766. }
  767. // parseOperatorPrefixToken parse operator prefix token.
  768. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  769. if optStack.Len() == 0 {
  770. optStack.Push(token)
  771. } else {
  772. tokenPriority := getPriority(token)
  773. topOpt := optStack.Peek().(efp.Token)
  774. topOptPriority := getPriority(topOpt)
  775. if tokenPriority > topOptPriority {
  776. optStack.Push(token)
  777. } else {
  778. for tokenPriority <= topOptPriority {
  779. optStack.Pop()
  780. if err = calculate(opdStack, topOpt); err != nil {
  781. return
  782. }
  783. if optStack.Len() > 0 {
  784. topOpt = optStack.Peek().(efp.Token)
  785. topOptPriority = getPriority(topOpt)
  786. continue
  787. }
  788. break
  789. }
  790. optStack.Push(token)
  791. }
  792. }
  793. return
  794. }
  795. // isFunctionStartToken determine if the token is function stop.
  796. func isFunctionStartToken(token efp.Token) bool {
  797. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  798. }
  799. // isFunctionStopToken determine if the token is function stop.
  800. func isFunctionStopToken(token efp.Token) bool {
  801. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  802. }
  803. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  804. func isBeginParenthesesToken(token efp.Token) bool {
  805. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  806. }
  807. // isEndParenthesesToken determine if the token is end parentheses: ).
  808. func isEndParenthesesToken(token efp.Token) bool {
  809. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  810. }
  811. // isOperatorPrefixToken determine if the token is parse operator prefix
  812. // token.
  813. func isOperatorPrefixToken(token efp.Token) bool {
  814. _, ok := tokenPriority[token.TValue]
  815. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  816. return true
  817. }
  818. return false
  819. }
  820. // getDefinedNameRefTo convert defined name to reference range.
  821. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  822. for _, definedName := range f.GetDefinedName() {
  823. if definedName.Name == definedNameName {
  824. refTo = definedName.RefersTo
  825. // worksheet scope takes precedence over scope workbook when both definedNames exist
  826. if definedName.Scope == currentSheet {
  827. break
  828. }
  829. }
  830. }
  831. return refTo
  832. }
  833. // parseToken parse basic arithmetic operator priority and evaluate based on
  834. // operators and operands.
  835. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  836. // parse reference: must reference at here
  837. if token.TSubType == efp.TokenSubTypeRange {
  838. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  839. if refTo != "" {
  840. token.TValue = refTo
  841. }
  842. result, err := f.parseReference(sheet, token.TValue)
  843. if err != nil {
  844. return errors.New(formulaErrorNAME)
  845. }
  846. if result.Type != ArgString {
  847. return errors.New(formulaErrorVALUE)
  848. }
  849. token.TValue = result.String
  850. token.TType = efp.TokenTypeOperand
  851. token.TSubType = efp.TokenSubTypeNumber
  852. }
  853. if isOperatorPrefixToken(token) {
  854. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  855. return err
  856. }
  857. }
  858. if isBeginParenthesesToken(token) { // (
  859. optStack.Push(token)
  860. }
  861. if isEndParenthesesToken(token) { // )
  862. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  863. topOpt := optStack.Peek().(efp.Token)
  864. if err := calculate(opdStack, topOpt); err != nil {
  865. return err
  866. }
  867. optStack.Pop()
  868. }
  869. optStack.Pop()
  870. }
  871. // opd
  872. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  873. opdStack.Push(token)
  874. }
  875. return nil
  876. }
  877. // parseReference parse reference and extract values by given reference
  878. // characters and default sheet name.
  879. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  880. reference = strings.Replace(reference, "$", "", -1)
  881. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  882. for _, ref := range strings.Split(reference, ":") {
  883. tokens := strings.Split(ref, "!")
  884. cr := cellRef{}
  885. if len(tokens) == 2 { // have a worksheet name
  886. cr.Sheet = tokens[0]
  887. // cast to cell coordinates
  888. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  889. // cast to column
  890. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  891. // cast to row
  892. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  893. err = newInvalidColumnNameError(tokens[1])
  894. return
  895. }
  896. cr.Col = TotalColumns
  897. }
  898. }
  899. if refs.Len() > 0 {
  900. e := refs.Back()
  901. cellRefs.PushBack(e.Value.(cellRef))
  902. refs.Remove(e)
  903. }
  904. refs.PushBack(cr)
  905. continue
  906. }
  907. // cast to cell coordinates
  908. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  909. // cast to column
  910. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  911. // cast to row
  912. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  913. err = newInvalidColumnNameError(tokens[0])
  914. return
  915. }
  916. cr.Col = TotalColumns
  917. }
  918. cellRanges.PushBack(cellRange{
  919. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  920. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  921. })
  922. cellRefs.Init()
  923. arg, err = f.rangeResolver(cellRefs, cellRanges)
  924. return
  925. }
  926. e := refs.Back()
  927. if e == nil {
  928. cr.Sheet = sheet
  929. refs.PushBack(cr)
  930. continue
  931. }
  932. cellRanges.PushBack(cellRange{
  933. From: e.Value.(cellRef),
  934. To: cr,
  935. })
  936. refs.Remove(e)
  937. }
  938. if refs.Len() > 0 {
  939. e := refs.Back()
  940. cellRefs.PushBack(e.Value.(cellRef))
  941. refs.Remove(e)
  942. }
  943. arg, err = f.rangeResolver(cellRefs, cellRanges)
  944. return
  945. }
  946. // prepareValueRange prepare value range.
  947. func prepareValueRange(cr cellRange, valueRange []int) {
  948. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  949. valueRange[0] = cr.From.Row
  950. }
  951. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  952. valueRange[2] = cr.From.Col
  953. }
  954. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  955. valueRange[1] = cr.To.Row
  956. }
  957. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  958. valueRange[3] = cr.To.Col
  959. }
  960. }
  961. // prepareValueRef prepare value reference.
  962. func prepareValueRef(cr cellRef, valueRange []int) {
  963. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  964. valueRange[0] = cr.Row
  965. }
  966. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  967. valueRange[2] = cr.Col
  968. }
  969. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  970. valueRange[1] = cr.Row
  971. }
  972. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  973. valueRange[3] = cr.Col
  974. }
  975. }
  976. // rangeResolver extract value as string from given reference and range list.
  977. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  978. // be reference A1:B3.
  979. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  980. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  981. // value range order: from row, to row, from column, to column
  982. valueRange := []int{0, 0, 0, 0}
  983. var sheet string
  984. // prepare value range
  985. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  986. cr := temp.Value.(cellRange)
  987. if cr.From.Sheet != cr.To.Sheet {
  988. err = errors.New(formulaErrorVALUE)
  989. }
  990. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  991. _ = sortCoordinates(rng)
  992. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  993. prepareValueRange(cr, valueRange)
  994. if cr.From.Sheet != "" {
  995. sheet = cr.From.Sheet
  996. }
  997. }
  998. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  999. cr := temp.Value.(cellRef)
  1000. if cr.Sheet != "" {
  1001. sheet = cr.Sheet
  1002. }
  1003. prepareValueRef(cr, valueRange)
  1004. }
  1005. // extract value from ranges
  1006. if cellRanges.Len() > 0 {
  1007. arg.Type = ArgMatrix
  1008. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1009. var matrixRow = []formulaArg{}
  1010. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1011. var cell, value string
  1012. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1013. return
  1014. }
  1015. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1016. return
  1017. }
  1018. matrixRow = append(matrixRow, formulaArg{
  1019. String: value,
  1020. Type: ArgString,
  1021. })
  1022. }
  1023. arg.Matrix = append(arg.Matrix, matrixRow)
  1024. }
  1025. return
  1026. }
  1027. // extract value from references
  1028. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1029. cr := temp.Value.(cellRef)
  1030. var cell string
  1031. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1032. return
  1033. }
  1034. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1035. return
  1036. }
  1037. arg.Type = ArgString
  1038. }
  1039. return
  1040. }
  1041. // callFuncByName calls the no error or only error return function with
  1042. // reflect by given receiver, name and parameters.
  1043. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1044. function := reflect.ValueOf(receiver).MethodByName(name)
  1045. if function.IsValid() {
  1046. rt := function.Call(params)
  1047. if len(rt) == 0 {
  1048. return
  1049. }
  1050. arg = rt[0].Interface().(formulaArg)
  1051. return
  1052. }
  1053. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1054. }
  1055. // formulaCriteriaParser parse formula criteria.
  1056. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1057. fc = &formulaCriteria{}
  1058. if exp == "" {
  1059. return
  1060. }
  1061. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1062. fc.Type, fc.Condition = criteriaEq, match[1]
  1063. return
  1064. }
  1065. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1066. fc.Type, fc.Condition = criteriaEq, match[1]
  1067. return
  1068. }
  1069. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1070. fc.Type, fc.Condition = criteriaLe, match[1]
  1071. return
  1072. }
  1073. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1074. fc.Type, fc.Condition = criteriaGe, match[1]
  1075. return
  1076. }
  1077. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1078. fc.Type, fc.Condition = criteriaL, match[1]
  1079. return
  1080. }
  1081. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1082. fc.Type, fc.Condition = criteriaG, match[1]
  1083. return
  1084. }
  1085. if strings.Contains(exp, "*") {
  1086. if strings.HasPrefix(exp, "*") {
  1087. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1088. }
  1089. if strings.HasSuffix(exp, "*") {
  1090. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1091. }
  1092. return
  1093. }
  1094. fc.Type, fc.Condition = criteriaEq, exp
  1095. return
  1096. }
  1097. // formulaCriteriaEval evaluate formula criteria expression.
  1098. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1099. var value, expected float64
  1100. var e error
  1101. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1102. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1103. return
  1104. }
  1105. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1106. return
  1107. }
  1108. return
  1109. }
  1110. switch criteria.Type {
  1111. case criteriaEq:
  1112. return val == criteria.Condition, err
  1113. case criteriaLe:
  1114. value, expected, e = prepareValue(val, criteria.Condition)
  1115. return value <= expected && e == nil, err
  1116. case criteriaGe:
  1117. value, expected, e = prepareValue(val, criteria.Condition)
  1118. return value >= expected && e == nil, err
  1119. case criteriaL:
  1120. value, expected, e = prepareValue(val, criteria.Condition)
  1121. return value < expected && e == nil, err
  1122. case criteriaG:
  1123. value, expected, e = prepareValue(val, criteria.Condition)
  1124. return value > expected && e == nil, err
  1125. case criteriaBeg:
  1126. return strings.HasPrefix(val, criteria.Condition), err
  1127. case criteriaEnd:
  1128. return strings.HasSuffix(val, criteria.Condition), err
  1129. }
  1130. return
  1131. }
  1132. // Engineering Functions
  1133. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1134. // The syntax of the function is:
  1135. //
  1136. // BIN2DEC(number)
  1137. //
  1138. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1139. if argsList.Len() != 1 {
  1140. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1141. }
  1142. token := argsList.Front().Value.(formulaArg)
  1143. number := token.ToNumber()
  1144. if number.Type != ArgNumber {
  1145. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1146. }
  1147. return fn.bin2dec(token.Value())
  1148. }
  1149. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1150. // (Base 16) number. The syntax of the function is:
  1151. //
  1152. // BIN2HEX(number,[places])
  1153. //
  1154. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1155. if argsList.Len() < 1 {
  1156. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1157. }
  1158. if argsList.Len() > 2 {
  1159. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1160. }
  1161. token := argsList.Front().Value.(formulaArg)
  1162. number := token.ToNumber()
  1163. if number.Type != ArgNumber {
  1164. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1165. }
  1166. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1167. if decimal.Type != ArgNumber {
  1168. return decimal
  1169. }
  1170. newList.PushBack(decimal)
  1171. if argsList.Len() == 2 {
  1172. newList.PushBack(argsList.Back().Value.(formulaArg))
  1173. }
  1174. return fn.dec2x("BIN2HEX", newList)
  1175. }
  1176. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1177. // number. The syntax of the function is:
  1178. //
  1179. // BIN2OCT(number,[places])
  1180. //
  1181. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1182. if argsList.Len() < 1 {
  1183. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1184. }
  1185. if argsList.Len() > 2 {
  1186. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1187. }
  1188. token := argsList.Front().Value.(formulaArg)
  1189. number := token.ToNumber()
  1190. if number.Type != ArgNumber {
  1191. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1192. }
  1193. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1194. if decimal.Type != ArgNumber {
  1195. return decimal
  1196. }
  1197. newList.PushBack(decimal)
  1198. if argsList.Len() == 2 {
  1199. newList.PushBack(argsList.Back().Value.(formulaArg))
  1200. }
  1201. return fn.dec2x("BIN2OCT", newList)
  1202. }
  1203. // bin2dec is an implementation of the formula function BIN2DEC.
  1204. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1205. decimal, length := 0.0, len(number)
  1206. for i := length; i > 0; i-- {
  1207. s := string(number[length-i])
  1208. if 10 == i && s == "1" {
  1209. decimal += math.Pow(-2.0, float64(i-1))
  1210. continue
  1211. }
  1212. if s == "1" {
  1213. decimal += math.Pow(2.0, float64(i-1))
  1214. continue
  1215. }
  1216. if s != "0" {
  1217. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1218. }
  1219. }
  1220. return newNumberFormulaArg(decimal)
  1221. }
  1222. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1223. // syntax of the function is:
  1224. //
  1225. // BITAND(number1,number2)
  1226. //
  1227. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1228. return fn.bitwise("BITAND", argsList)
  1229. }
  1230. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1231. // number of bits. The syntax of the function is:
  1232. //
  1233. // BITLSHIFT(number1,shift_amount)
  1234. //
  1235. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1236. return fn.bitwise("BITLSHIFT", argsList)
  1237. }
  1238. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1239. // syntax of the function is:
  1240. //
  1241. // BITOR(number1,number2)
  1242. //
  1243. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1244. return fn.bitwise("BITOR", argsList)
  1245. }
  1246. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1247. // number of bits. The syntax of the function is:
  1248. //
  1249. // BITRSHIFT(number1,shift_amount)
  1250. //
  1251. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1252. return fn.bitwise("BITRSHIFT", argsList)
  1253. }
  1254. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1255. // integers. The syntax of the function is:
  1256. //
  1257. // BITXOR(number1,number2)
  1258. //
  1259. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1260. return fn.bitwise("BITXOR", argsList)
  1261. }
  1262. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1263. // BITOR, BITRSHIFT and BITXOR.
  1264. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1265. if argsList.Len() != 2 {
  1266. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1267. }
  1268. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1269. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1270. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1271. }
  1272. max := math.Pow(2, 48) - 1
  1273. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1274. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1275. }
  1276. bitwiseFuncMap := map[string]func(a, b int) int{
  1277. "BITAND": func(a, b int) int { return a & b },
  1278. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1279. "BITOR": func(a, b int) int { return a | b },
  1280. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1281. "BITXOR": func(a, b int) int { return a ^ b },
  1282. }
  1283. bitwiseFunc := bitwiseFuncMap[name]
  1284. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1285. }
  1286. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1287. // The syntax of the function is:
  1288. //
  1289. // DEC2BIN(number,[places])
  1290. //
  1291. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1292. return fn.dec2x("DEC2BIN", argsList)
  1293. }
  1294. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1295. // number. The syntax of the function is:
  1296. //
  1297. // DEC2HEX(number,[places])
  1298. //
  1299. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1300. return fn.dec2x("DEC2HEX", argsList)
  1301. }
  1302. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1303. // The syntax of the function is:
  1304. //
  1305. // DEC2OCT(number,[places])
  1306. //
  1307. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1308. return fn.dec2x("DEC2OCT", argsList)
  1309. }
  1310. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1311. // DEC2OCT.
  1312. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1313. if argsList.Len() < 1 {
  1314. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1315. }
  1316. if argsList.Len() > 2 {
  1317. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1318. }
  1319. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1320. if decimal.Type != ArgNumber {
  1321. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1322. }
  1323. maxLimitMap := map[string]float64{
  1324. "DEC2BIN": 511,
  1325. "HEX2BIN": 511,
  1326. "OCT2BIN": 511,
  1327. "BIN2HEX": 549755813887,
  1328. "DEC2HEX": 549755813887,
  1329. "OCT2HEX": 549755813887,
  1330. "BIN2OCT": 536870911,
  1331. "DEC2OCT": 536870911,
  1332. "HEX2OCT": 536870911,
  1333. }
  1334. minLimitMap := map[string]float64{
  1335. "DEC2BIN": -512,
  1336. "HEX2BIN": -512,
  1337. "OCT2BIN": -512,
  1338. "BIN2HEX": -549755813888,
  1339. "DEC2HEX": -549755813888,
  1340. "OCT2HEX": -549755813888,
  1341. "BIN2OCT": -536870912,
  1342. "DEC2OCT": -536870912,
  1343. "HEX2OCT": -536870912,
  1344. }
  1345. baseMap := map[string]int{
  1346. "DEC2BIN": 2,
  1347. "HEX2BIN": 2,
  1348. "OCT2BIN": 2,
  1349. "BIN2HEX": 16,
  1350. "DEC2HEX": 16,
  1351. "OCT2HEX": 16,
  1352. "BIN2OCT": 8,
  1353. "DEC2OCT": 8,
  1354. "HEX2OCT": 8,
  1355. }
  1356. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1357. base := baseMap[name]
  1358. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1359. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1360. }
  1361. n := int64(decimal.Number)
  1362. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1363. if argsList.Len() == 2 {
  1364. places := argsList.Back().Value.(formulaArg).ToNumber()
  1365. if places.Type != ArgNumber {
  1366. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1367. }
  1368. binaryPlaces := len(binary)
  1369. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1370. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1371. }
  1372. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1373. }
  1374. if decimal.Number < 0 && len(binary) > 10 {
  1375. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1376. }
  1377. return newStringFormulaArg(strings.ToUpper(binary))
  1378. }
  1379. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1380. // (Base 2) number. The syntax of the function is:
  1381. //
  1382. // HEX2BIN(number,[places])
  1383. //
  1384. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1385. if argsList.Len() < 1 {
  1386. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1387. }
  1388. if argsList.Len() > 2 {
  1389. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1390. }
  1391. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1392. if decimal.Type != ArgNumber {
  1393. return decimal
  1394. }
  1395. newList.PushBack(decimal)
  1396. if argsList.Len() == 2 {
  1397. newList.PushBack(argsList.Back().Value.(formulaArg))
  1398. }
  1399. return fn.dec2x("HEX2BIN", newList)
  1400. }
  1401. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1402. // number. The syntax of the function is:
  1403. //
  1404. // HEX2DEC(number)
  1405. //
  1406. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1407. if argsList.Len() != 1 {
  1408. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1409. }
  1410. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1411. }
  1412. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1413. // (Base 8) number. The syntax of the function is:
  1414. //
  1415. // HEX2OCT(number,[places])
  1416. //
  1417. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1418. if argsList.Len() < 1 {
  1419. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1420. }
  1421. if argsList.Len() > 2 {
  1422. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1423. }
  1424. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1425. if decimal.Type != ArgNumber {
  1426. return decimal
  1427. }
  1428. newList.PushBack(decimal)
  1429. if argsList.Len() == 2 {
  1430. newList.PushBack(argsList.Back().Value.(formulaArg))
  1431. }
  1432. return fn.dec2x("HEX2OCT", newList)
  1433. }
  1434. // hex2dec is an implementation of the formula function HEX2DEC.
  1435. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1436. decimal, length := 0.0, len(number)
  1437. for i := length; i > 0; i-- {
  1438. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1439. if err != nil {
  1440. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1441. }
  1442. if 10 == i && string(number[length-i]) == "F" {
  1443. decimal += math.Pow(-16.0, float64(i-1))
  1444. continue
  1445. }
  1446. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1447. }
  1448. return newNumberFormulaArg(decimal)
  1449. }
  1450. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1451. // number. The syntax of the function is:
  1452. //
  1453. // OCT2BIN(number,[places])
  1454. //
  1455. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1456. if argsList.Len() < 1 {
  1457. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1458. }
  1459. if argsList.Len() > 2 {
  1460. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1461. }
  1462. token := argsList.Front().Value.(formulaArg)
  1463. number := token.ToNumber()
  1464. if number.Type != ArgNumber {
  1465. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1466. }
  1467. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1468. newList.PushBack(decimal)
  1469. if argsList.Len() == 2 {
  1470. newList.PushBack(argsList.Back().Value.(formulaArg))
  1471. }
  1472. return fn.dec2x("OCT2BIN", newList)
  1473. }
  1474. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1475. // The syntax of the function is:
  1476. //
  1477. // OCT2DEC(number)
  1478. //
  1479. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1480. if argsList.Len() != 1 {
  1481. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1482. }
  1483. token := argsList.Front().Value.(formulaArg)
  1484. number := token.ToNumber()
  1485. if number.Type != ArgNumber {
  1486. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1487. }
  1488. return fn.oct2dec(token.Value())
  1489. }
  1490. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1491. // (Base 16) number. The syntax of the function is:
  1492. //
  1493. // OCT2HEX(number,[places])
  1494. //
  1495. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1496. if argsList.Len() < 1 {
  1497. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1498. }
  1499. if argsList.Len() > 2 {
  1500. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1501. }
  1502. token := argsList.Front().Value.(formulaArg)
  1503. number := token.ToNumber()
  1504. if number.Type != ArgNumber {
  1505. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1506. }
  1507. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1508. newList.PushBack(decimal)
  1509. if argsList.Len() == 2 {
  1510. newList.PushBack(argsList.Back().Value.(formulaArg))
  1511. }
  1512. return fn.dec2x("OCT2HEX", newList)
  1513. }
  1514. // oct2dec is an implementation of the formula function OCT2DEC.
  1515. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1516. decimal, length := 0.0, len(number)
  1517. for i := length; i > 0; i-- {
  1518. num, _ := strconv.Atoi(string(number[length-i]))
  1519. if 10 == i && string(number[length-i]) == "7" {
  1520. decimal += math.Pow(-8.0, float64(i-1))
  1521. continue
  1522. }
  1523. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1524. }
  1525. return newNumberFormulaArg(decimal)
  1526. }
  1527. // Math and Trigonometric Functions
  1528. // ABS function returns the absolute value of any supplied number. The syntax
  1529. // of the function is:
  1530. //
  1531. // ABS(number)
  1532. //
  1533. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1534. if argsList.Len() != 1 {
  1535. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1536. }
  1537. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1538. if arg.Type == ArgError {
  1539. return arg
  1540. }
  1541. return newNumberFormulaArg(math.Abs(arg.Number))
  1542. }
  1543. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1544. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1545. // the function is:
  1546. //
  1547. // ACOS(number)
  1548. //
  1549. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1550. if argsList.Len() != 1 {
  1551. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1552. }
  1553. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1554. if arg.Type == ArgError {
  1555. return arg
  1556. }
  1557. return newNumberFormulaArg(math.Acos(arg.Number))
  1558. }
  1559. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1560. // of the function is:
  1561. //
  1562. // ACOSH(number)
  1563. //
  1564. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1565. if argsList.Len() != 1 {
  1566. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1567. }
  1568. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1569. if arg.Type == ArgError {
  1570. return arg
  1571. }
  1572. return newNumberFormulaArg(math.Acosh(arg.Number))
  1573. }
  1574. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1575. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1576. // of the function is:
  1577. //
  1578. // ACOT(number)
  1579. //
  1580. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1581. if argsList.Len() != 1 {
  1582. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1583. }
  1584. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1585. if arg.Type == ArgError {
  1586. return arg
  1587. }
  1588. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1589. }
  1590. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1591. // value. The syntax of the function is:
  1592. //
  1593. // ACOTH(number)
  1594. //
  1595. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1596. if argsList.Len() != 1 {
  1597. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1598. }
  1599. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1600. if arg.Type == ArgError {
  1601. return arg
  1602. }
  1603. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1604. }
  1605. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1606. // of the function is:
  1607. //
  1608. // ARABIC(text)
  1609. //
  1610. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1611. if argsList.Len() != 1 {
  1612. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1613. }
  1614. text := argsList.Front().Value.(formulaArg).Value()
  1615. if len(text) > 255 {
  1616. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1617. }
  1618. text = strings.ToUpper(text)
  1619. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1620. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1621. for index >= 0 && text[index] == ' ' {
  1622. index--
  1623. }
  1624. for actualStart <= index && text[actualStart] == ' ' {
  1625. actualStart++
  1626. }
  1627. if actualStart <= index && text[actualStart] == '-' {
  1628. isNegative = true
  1629. actualStart++
  1630. }
  1631. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1632. for index >= actualStart {
  1633. startIndex = index
  1634. startChar := text[startIndex]
  1635. index--
  1636. for index >= actualStart && (text[index]|' ') == startChar {
  1637. index--
  1638. }
  1639. currentCharValue = charMap[rune(startChar)]
  1640. currentPartValue = (startIndex - index) * currentCharValue
  1641. if currentCharValue >= prevCharValue {
  1642. number += currentPartValue - subtractNumber
  1643. prevCharValue = currentCharValue
  1644. subtractNumber = 0
  1645. continue
  1646. }
  1647. subtractNumber += currentPartValue
  1648. }
  1649. if subtractNumber != 0 {
  1650. number -= subtractNumber
  1651. }
  1652. if isNegative {
  1653. number = -number
  1654. }
  1655. return newNumberFormulaArg(float64(number))
  1656. }
  1657. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1658. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1659. // of the function is:
  1660. //
  1661. // ASIN(number)
  1662. //
  1663. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1664. if argsList.Len() != 1 {
  1665. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1666. }
  1667. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1668. if arg.Type == ArgError {
  1669. return arg
  1670. }
  1671. return newNumberFormulaArg(math.Asin(arg.Number))
  1672. }
  1673. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1674. // The syntax of the function is:
  1675. //
  1676. // ASINH(number)
  1677. //
  1678. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1679. if argsList.Len() != 1 {
  1680. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1681. }
  1682. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1683. if arg.Type == ArgError {
  1684. return arg
  1685. }
  1686. return newNumberFormulaArg(math.Asinh(arg.Number))
  1687. }
  1688. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1689. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1690. // syntax of the function is:
  1691. //
  1692. // ATAN(number)
  1693. //
  1694. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1695. if argsList.Len() != 1 {
  1696. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1697. }
  1698. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1699. if arg.Type == ArgError {
  1700. return arg
  1701. }
  1702. return newNumberFormulaArg(math.Atan(arg.Number))
  1703. }
  1704. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1705. // number. The syntax of the function is:
  1706. //
  1707. // ATANH(number)
  1708. //
  1709. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1710. if argsList.Len() != 1 {
  1711. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1712. }
  1713. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1714. if arg.Type == ArgError {
  1715. return arg
  1716. }
  1717. return newNumberFormulaArg(math.Atanh(arg.Number))
  1718. }
  1719. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1720. // given set of x and y coordinates, and returns an angle, in radians, between
  1721. // -π/2 and +π/2. The syntax of the function is:
  1722. //
  1723. // ATAN2(x_num,y_num)
  1724. //
  1725. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1726. if argsList.Len() != 2 {
  1727. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1728. }
  1729. x := argsList.Back().Value.(formulaArg).ToNumber()
  1730. if x.Type == ArgError {
  1731. return x
  1732. }
  1733. y := argsList.Front().Value.(formulaArg).ToNumber()
  1734. if y.Type == ArgError {
  1735. return y
  1736. }
  1737. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1738. }
  1739. // BASE function converts a number into a supplied base (radix), and returns a
  1740. // text representation of the calculated value. The syntax of the function is:
  1741. //
  1742. // BASE(number,radix,[min_length])
  1743. //
  1744. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1745. if argsList.Len() < 2 {
  1746. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1747. }
  1748. if argsList.Len() > 3 {
  1749. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1750. }
  1751. var minLength int
  1752. var err error
  1753. number := argsList.Front().Value.(formulaArg).ToNumber()
  1754. if number.Type == ArgError {
  1755. return number
  1756. }
  1757. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1758. if radix.Type == ArgError {
  1759. return radix
  1760. }
  1761. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1762. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1763. }
  1764. if argsList.Len() > 2 {
  1765. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1766. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1767. }
  1768. }
  1769. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1770. if len(result) < minLength {
  1771. result = strings.Repeat("0", minLength-len(result)) + result
  1772. }
  1773. return newStringFormulaArg(strings.ToUpper(result))
  1774. }
  1775. // CEILING function rounds a supplied number away from zero, to the nearest
  1776. // multiple of a given number. The syntax of the function is:
  1777. //
  1778. // CEILING(number,significance)
  1779. //
  1780. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1781. if argsList.Len() == 0 {
  1782. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1783. }
  1784. if argsList.Len() > 2 {
  1785. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1786. }
  1787. number, significance, res := 0.0, 1.0, 0.0
  1788. n := argsList.Front().Value.(formulaArg).ToNumber()
  1789. if n.Type == ArgError {
  1790. return n
  1791. }
  1792. number = n.Number
  1793. if number < 0 {
  1794. significance = -1
  1795. }
  1796. if argsList.Len() > 1 {
  1797. s := argsList.Back().Value.(formulaArg).ToNumber()
  1798. if s.Type == ArgError {
  1799. return s
  1800. }
  1801. significance = s.Number
  1802. }
  1803. if significance < 0 && number > 0 {
  1804. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1805. }
  1806. if argsList.Len() == 1 {
  1807. return newNumberFormulaArg(math.Ceil(number))
  1808. }
  1809. number, res = math.Modf(number / significance)
  1810. if res > 0 {
  1811. number++
  1812. }
  1813. return newNumberFormulaArg(number * significance)
  1814. }
  1815. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1816. // significance. The syntax of the function is:
  1817. //
  1818. // CEILING.MATH(number,[significance],[mode])
  1819. //
  1820. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1821. if argsList.Len() == 0 {
  1822. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1823. }
  1824. if argsList.Len() > 3 {
  1825. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1826. }
  1827. number, significance, mode := 0.0, 1.0, 1.0
  1828. n := argsList.Front().Value.(formulaArg).ToNumber()
  1829. if n.Type == ArgError {
  1830. return n
  1831. }
  1832. number = n.Number
  1833. if number < 0 {
  1834. significance = -1
  1835. }
  1836. if argsList.Len() > 1 {
  1837. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1838. if s.Type == ArgError {
  1839. return s
  1840. }
  1841. significance = s.Number
  1842. }
  1843. if argsList.Len() == 1 {
  1844. return newNumberFormulaArg(math.Ceil(number))
  1845. }
  1846. if argsList.Len() > 2 {
  1847. m := argsList.Back().Value.(formulaArg).ToNumber()
  1848. if m.Type == ArgError {
  1849. return m
  1850. }
  1851. mode = m.Number
  1852. }
  1853. val, res := math.Modf(number / significance)
  1854. if res != 0 {
  1855. if number > 0 {
  1856. val++
  1857. } else if mode < 0 {
  1858. val--
  1859. }
  1860. }
  1861. return newNumberFormulaArg(val * significance)
  1862. }
  1863. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1864. // number's sign), to the nearest multiple of a given number. The syntax of
  1865. // the function is:
  1866. //
  1867. // CEILING.PRECISE(number,[significance])
  1868. //
  1869. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1870. if argsList.Len() == 0 {
  1871. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1872. }
  1873. if argsList.Len() > 2 {
  1874. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1875. }
  1876. number, significance := 0.0, 1.0
  1877. n := argsList.Front().Value.(formulaArg).ToNumber()
  1878. if n.Type == ArgError {
  1879. return n
  1880. }
  1881. number = n.Number
  1882. if number < 0 {
  1883. significance = -1
  1884. }
  1885. if argsList.Len() == 1 {
  1886. return newNumberFormulaArg(math.Ceil(number))
  1887. }
  1888. if argsList.Len() > 1 {
  1889. s := argsList.Back().Value.(formulaArg).ToNumber()
  1890. if s.Type == ArgError {
  1891. return s
  1892. }
  1893. significance = s.Number
  1894. significance = math.Abs(significance)
  1895. if significance == 0 {
  1896. return newNumberFormulaArg(significance)
  1897. }
  1898. }
  1899. val, res := math.Modf(number / significance)
  1900. if res != 0 {
  1901. if number > 0 {
  1902. val++
  1903. }
  1904. }
  1905. return newNumberFormulaArg(val * significance)
  1906. }
  1907. // COMBIN function calculates the number of combinations (in any order) of a
  1908. // given number objects from a set. The syntax of the function is:
  1909. //
  1910. // COMBIN(number,number_chosen)
  1911. //
  1912. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1913. if argsList.Len() != 2 {
  1914. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1915. }
  1916. number, chosen, val := 0.0, 0.0, 1.0
  1917. n := argsList.Front().Value.(formulaArg).ToNumber()
  1918. if n.Type == ArgError {
  1919. return n
  1920. }
  1921. number = n.Number
  1922. c := argsList.Back().Value.(formulaArg).ToNumber()
  1923. if c.Type == ArgError {
  1924. return c
  1925. }
  1926. chosen = c.Number
  1927. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1928. if chosen > number {
  1929. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1930. }
  1931. if chosen == number || chosen == 0 {
  1932. return newNumberFormulaArg(1)
  1933. }
  1934. for c := float64(1); c <= chosen; c++ {
  1935. val *= (number + 1 - c) / c
  1936. }
  1937. return newNumberFormulaArg(math.Ceil(val))
  1938. }
  1939. // COMBINA function calculates the number of combinations, with repetitions,
  1940. // of a given number objects from a set. The syntax of the function is:
  1941. //
  1942. // COMBINA(number,number_chosen)
  1943. //
  1944. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1945. if argsList.Len() != 2 {
  1946. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1947. }
  1948. var number, chosen float64
  1949. n := argsList.Front().Value.(formulaArg).ToNumber()
  1950. if n.Type == ArgError {
  1951. return n
  1952. }
  1953. number = n.Number
  1954. c := argsList.Back().Value.(formulaArg).ToNumber()
  1955. if c.Type == ArgError {
  1956. return c
  1957. }
  1958. chosen = c.Number
  1959. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1960. if number < chosen {
  1961. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1962. }
  1963. if number == 0 {
  1964. return newNumberFormulaArg(number)
  1965. }
  1966. args := list.New()
  1967. args.PushBack(formulaArg{
  1968. String: fmt.Sprintf("%g", number+chosen-1),
  1969. Type: ArgString,
  1970. })
  1971. args.PushBack(formulaArg{
  1972. String: fmt.Sprintf("%g", number-1),
  1973. Type: ArgString,
  1974. })
  1975. return fn.COMBIN(args)
  1976. }
  1977. // COS function calculates the cosine of a given angle. The syntax of the
  1978. // function is:
  1979. //
  1980. // COS(number)
  1981. //
  1982. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1983. if argsList.Len() != 1 {
  1984. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1985. }
  1986. val := argsList.Front().Value.(formulaArg).ToNumber()
  1987. if val.Type == ArgError {
  1988. return val
  1989. }
  1990. return newNumberFormulaArg(math.Cos(val.Number))
  1991. }
  1992. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1993. // The syntax of the function is:
  1994. //
  1995. // COSH(number)
  1996. //
  1997. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1998. if argsList.Len() != 1 {
  1999. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2000. }
  2001. val := argsList.Front().Value.(formulaArg).ToNumber()
  2002. if val.Type == ArgError {
  2003. return val
  2004. }
  2005. return newNumberFormulaArg(math.Cosh(val.Number))
  2006. }
  2007. // COT function calculates the cotangent of a given angle. The syntax of the
  2008. // function is:
  2009. //
  2010. // COT(number)
  2011. //
  2012. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2013. if argsList.Len() != 1 {
  2014. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2015. }
  2016. val := argsList.Front().Value.(formulaArg).ToNumber()
  2017. if val.Type == ArgError {
  2018. return val
  2019. }
  2020. if val.Number == 0 {
  2021. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2022. }
  2023. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2024. }
  2025. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2026. // angle. The syntax of the function is:
  2027. //
  2028. // COTH(number)
  2029. //
  2030. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2031. if argsList.Len() != 1 {
  2032. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2033. }
  2034. val := argsList.Front().Value.(formulaArg).ToNumber()
  2035. if val.Type == ArgError {
  2036. return val
  2037. }
  2038. if val.Number == 0 {
  2039. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2040. }
  2041. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2042. }
  2043. // CSC function calculates the cosecant of a given angle. The syntax of the
  2044. // function is:
  2045. //
  2046. // CSC(number)
  2047. //
  2048. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2049. if argsList.Len() != 1 {
  2050. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2051. }
  2052. val := argsList.Front().Value.(formulaArg).ToNumber()
  2053. if val.Type == ArgError {
  2054. return val
  2055. }
  2056. if val.Number == 0 {
  2057. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2058. }
  2059. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2060. }
  2061. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2062. // angle. The syntax of the function is:
  2063. //
  2064. // CSCH(number)
  2065. //
  2066. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2067. if argsList.Len() != 1 {
  2068. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2069. }
  2070. val := argsList.Front().Value.(formulaArg).ToNumber()
  2071. if val.Type == ArgError {
  2072. return val
  2073. }
  2074. if val.Number == 0 {
  2075. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2076. }
  2077. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2078. }
  2079. // DECIMAL function converts a text representation of a number in a specified
  2080. // base, into a decimal value. The syntax of the function is:
  2081. //
  2082. // DECIMAL(text,radix)
  2083. //
  2084. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2085. if argsList.Len() != 2 {
  2086. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2087. }
  2088. var text = argsList.Front().Value.(formulaArg).String
  2089. var radix int
  2090. var err error
  2091. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2092. if err != nil {
  2093. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2094. }
  2095. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2096. text = text[2:]
  2097. }
  2098. val, err := strconv.ParseInt(text, radix, 64)
  2099. if err != nil {
  2100. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2101. }
  2102. return newNumberFormulaArg(float64(val))
  2103. }
  2104. // DEGREES function converts radians into degrees. The syntax of the function
  2105. // is:
  2106. //
  2107. // DEGREES(angle)
  2108. //
  2109. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2110. if argsList.Len() != 1 {
  2111. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2112. }
  2113. val := argsList.Front().Value.(formulaArg).ToNumber()
  2114. if val.Type == ArgError {
  2115. return val
  2116. }
  2117. if val.Number == 0 {
  2118. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2119. }
  2120. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2121. }
  2122. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2123. // positive number up and a negative number down), to the next even number.
  2124. // The syntax of the function is:
  2125. //
  2126. // EVEN(number)
  2127. //
  2128. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2129. if argsList.Len() != 1 {
  2130. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2131. }
  2132. number := argsList.Front().Value.(formulaArg).ToNumber()
  2133. if number.Type == ArgError {
  2134. return number
  2135. }
  2136. sign := math.Signbit(number.Number)
  2137. m, frac := math.Modf(number.Number / 2)
  2138. val := m * 2
  2139. if frac != 0 {
  2140. if !sign {
  2141. val += 2
  2142. } else {
  2143. val -= 2
  2144. }
  2145. }
  2146. return newNumberFormulaArg(val)
  2147. }
  2148. // EXP function calculates the value of the mathematical constant e, raised to
  2149. // the power of a given number. The syntax of the function is:
  2150. //
  2151. // EXP(number)
  2152. //
  2153. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2154. if argsList.Len() != 1 {
  2155. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2156. }
  2157. number := argsList.Front().Value.(formulaArg).ToNumber()
  2158. if number.Type == ArgError {
  2159. return number
  2160. }
  2161. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2162. }
  2163. // fact returns the factorial of a supplied number.
  2164. func fact(number float64) float64 {
  2165. val := float64(1)
  2166. for i := float64(2); i <= number; i++ {
  2167. val *= i
  2168. }
  2169. return val
  2170. }
  2171. // FACT function returns the factorial of a supplied number. The syntax of the
  2172. // function is:
  2173. //
  2174. // FACT(number)
  2175. //
  2176. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2177. if argsList.Len() != 1 {
  2178. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2179. }
  2180. number := argsList.Front().Value.(formulaArg).ToNumber()
  2181. if number.Type == ArgError {
  2182. return number
  2183. }
  2184. if number.Number < 0 {
  2185. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2186. }
  2187. return newNumberFormulaArg(fact(number.Number))
  2188. }
  2189. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2190. // syntax of the function is:
  2191. //
  2192. // FACTDOUBLE(number)
  2193. //
  2194. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2195. if argsList.Len() != 1 {
  2196. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2197. }
  2198. val := 1.0
  2199. number := argsList.Front().Value.(formulaArg).ToNumber()
  2200. if number.Type == ArgError {
  2201. return number
  2202. }
  2203. if number.Number < 0 {
  2204. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2205. }
  2206. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2207. val *= i
  2208. }
  2209. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2210. }
  2211. // FLOOR function rounds a supplied number towards zero to the nearest
  2212. // multiple of a specified significance. The syntax of the function is:
  2213. //
  2214. // FLOOR(number,significance)
  2215. //
  2216. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2217. if argsList.Len() != 2 {
  2218. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2219. }
  2220. number := argsList.Front().Value.(formulaArg).ToNumber()
  2221. if number.Type == ArgError {
  2222. return number
  2223. }
  2224. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2225. if significance.Type == ArgError {
  2226. return significance
  2227. }
  2228. if significance.Number < 0 && number.Number >= 0 {
  2229. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2230. }
  2231. val := number.Number
  2232. val, res := math.Modf(val / significance.Number)
  2233. if res != 0 {
  2234. if number.Number < 0 && res < 0 {
  2235. val--
  2236. }
  2237. }
  2238. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2239. }
  2240. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  2241. // significance. The syntax of the function is:
  2242. //
  2243. // FLOOR.MATH(number,[significance],[mode])
  2244. //
  2245. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  2246. if argsList.Len() == 0 {
  2247. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2248. }
  2249. if argsList.Len() > 3 {
  2250. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2251. }
  2252. significance, mode := 1.0, 1.0
  2253. number := argsList.Front().Value.(formulaArg).ToNumber()
  2254. if number.Type == ArgError {
  2255. return number
  2256. }
  2257. if number.Number < 0 {
  2258. significance = -1
  2259. }
  2260. if argsList.Len() > 1 {
  2261. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2262. if s.Type == ArgError {
  2263. return s
  2264. }
  2265. significance = s.Number
  2266. }
  2267. if argsList.Len() == 1 {
  2268. return newNumberFormulaArg(math.Floor(number.Number))
  2269. }
  2270. if argsList.Len() > 2 {
  2271. m := argsList.Back().Value.(formulaArg).ToNumber()
  2272. if m.Type == ArgError {
  2273. return m
  2274. }
  2275. mode = m.Number
  2276. }
  2277. val, res := math.Modf(number.Number / significance)
  2278. if res != 0 && number.Number < 0 && mode > 0 {
  2279. val--
  2280. }
  2281. return newNumberFormulaArg(val * significance)
  2282. }
  2283. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  2284. // of significance. The syntax of the function is:
  2285. //
  2286. // FLOOR.PRECISE(number,[significance])
  2287. //
  2288. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  2289. if argsList.Len() == 0 {
  2290. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2291. }
  2292. if argsList.Len() > 2 {
  2293. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2294. }
  2295. var significance float64
  2296. number := argsList.Front().Value.(formulaArg).ToNumber()
  2297. if number.Type == ArgError {
  2298. return number
  2299. }
  2300. if number.Number < 0 {
  2301. significance = -1
  2302. }
  2303. if argsList.Len() == 1 {
  2304. return newNumberFormulaArg(math.Floor(number.Number))
  2305. }
  2306. if argsList.Len() > 1 {
  2307. s := argsList.Back().Value.(formulaArg).ToNumber()
  2308. if s.Type == ArgError {
  2309. return s
  2310. }
  2311. significance = s.Number
  2312. significance = math.Abs(significance)
  2313. if significance == 0 {
  2314. return newNumberFormulaArg(significance)
  2315. }
  2316. }
  2317. val, res := math.Modf(number.Number / significance)
  2318. if res != 0 {
  2319. if number.Number < 0 {
  2320. val--
  2321. }
  2322. }
  2323. return newNumberFormulaArg(val * significance)
  2324. }
  2325. // gcd returns the greatest common divisor of two supplied integers.
  2326. func gcd(x, y float64) float64 {
  2327. x, y = math.Trunc(x), math.Trunc(y)
  2328. if x == 0 {
  2329. return y
  2330. }
  2331. if y == 0 {
  2332. return x
  2333. }
  2334. for x != y {
  2335. if x > y {
  2336. x = x - y
  2337. } else {
  2338. y = y - x
  2339. }
  2340. }
  2341. return x
  2342. }
  2343. // GCD function returns the greatest common divisor of two or more supplied
  2344. // integers. The syntax of the function is:
  2345. //
  2346. // GCD(number1,[number2],...)
  2347. //
  2348. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2349. if argsList.Len() == 0 {
  2350. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2351. }
  2352. var (
  2353. val float64
  2354. nums = []float64{}
  2355. )
  2356. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2357. token := arg.Value.(formulaArg)
  2358. switch token.Type {
  2359. case ArgString:
  2360. num := token.ToNumber()
  2361. if num.Type == ArgError {
  2362. return num
  2363. }
  2364. val = num.Number
  2365. case ArgNumber:
  2366. val = token.Number
  2367. }
  2368. nums = append(nums, val)
  2369. }
  2370. if nums[0] < 0 {
  2371. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2372. }
  2373. if len(nums) == 1 {
  2374. return newNumberFormulaArg(nums[0])
  2375. }
  2376. cd := nums[0]
  2377. for i := 1; i < len(nums); i++ {
  2378. if nums[i] < 0 {
  2379. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2380. }
  2381. cd = gcd(cd, nums[i])
  2382. }
  2383. return newNumberFormulaArg(cd)
  2384. }
  2385. // INT function truncates a supplied number down to the closest integer. The
  2386. // syntax of the function is:
  2387. //
  2388. // INT(number)
  2389. //
  2390. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2391. if argsList.Len() != 1 {
  2392. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2393. }
  2394. number := argsList.Front().Value.(formulaArg).ToNumber()
  2395. if number.Type == ArgError {
  2396. return number
  2397. }
  2398. val, frac := math.Modf(number.Number)
  2399. if frac < 0 {
  2400. val--
  2401. }
  2402. return newNumberFormulaArg(val)
  2403. }
  2404. // ISOCEILING function rounds a supplied number up (regardless of the number's
  2405. // sign), to the nearest multiple of a supplied significance. The syntax of
  2406. // the function is:
  2407. //
  2408. // ISO.CEILING(number,[significance])
  2409. //
  2410. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  2411. if argsList.Len() == 0 {
  2412. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2413. }
  2414. if argsList.Len() > 2 {
  2415. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2416. }
  2417. var significance float64
  2418. number := argsList.Front().Value.(formulaArg).ToNumber()
  2419. if number.Type == ArgError {
  2420. return number
  2421. }
  2422. if number.Number < 0 {
  2423. significance = -1
  2424. }
  2425. if argsList.Len() == 1 {
  2426. return newNumberFormulaArg(math.Ceil(number.Number))
  2427. }
  2428. if argsList.Len() > 1 {
  2429. s := argsList.Back().Value.(formulaArg).ToNumber()
  2430. if s.Type == ArgError {
  2431. return s
  2432. }
  2433. significance = s.Number
  2434. significance = math.Abs(significance)
  2435. if significance == 0 {
  2436. return newNumberFormulaArg(significance)
  2437. }
  2438. }
  2439. val, res := math.Modf(number.Number / significance)
  2440. if res != 0 {
  2441. if number.Number > 0 {
  2442. val++
  2443. }
  2444. }
  2445. return newNumberFormulaArg(val * significance)
  2446. }
  2447. // lcm returns the least common multiple of two supplied integers.
  2448. func lcm(a, b float64) float64 {
  2449. a = math.Trunc(a)
  2450. b = math.Trunc(b)
  2451. if a == 0 && b == 0 {
  2452. return 0
  2453. }
  2454. return a * b / gcd(a, b)
  2455. }
  2456. // LCM function returns the least common multiple of two or more supplied
  2457. // integers. The syntax of the function is:
  2458. //
  2459. // LCM(number1,[number2],...)
  2460. //
  2461. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2462. if argsList.Len() == 0 {
  2463. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2464. }
  2465. var (
  2466. val float64
  2467. nums = []float64{}
  2468. err error
  2469. )
  2470. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2471. token := arg.Value.(formulaArg)
  2472. switch token.Type {
  2473. case ArgString:
  2474. if token.String == "" {
  2475. continue
  2476. }
  2477. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2478. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2479. }
  2480. case ArgNumber:
  2481. val = token.Number
  2482. }
  2483. nums = append(nums, val)
  2484. }
  2485. if nums[0] < 0 {
  2486. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2487. }
  2488. if len(nums) == 1 {
  2489. return newNumberFormulaArg(nums[0])
  2490. }
  2491. cm := nums[0]
  2492. for i := 1; i < len(nums); i++ {
  2493. if nums[i] < 0 {
  2494. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2495. }
  2496. cm = lcm(cm, nums[i])
  2497. }
  2498. return newNumberFormulaArg(cm)
  2499. }
  2500. // LN function calculates the natural logarithm of a given number. The syntax
  2501. // of the function is:
  2502. //
  2503. // LN(number)
  2504. //
  2505. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2506. if argsList.Len() != 1 {
  2507. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2508. }
  2509. number := argsList.Front().Value.(formulaArg).ToNumber()
  2510. if number.Type == ArgError {
  2511. return number
  2512. }
  2513. return newNumberFormulaArg(math.Log(number.Number))
  2514. }
  2515. // LOG function calculates the logarithm of a given number, to a supplied
  2516. // base. The syntax of the function is:
  2517. //
  2518. // LOG(number,[base])
  2519. //
  2520. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2521. if argsList.Len() == 0 {
  2522. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2523. }
  2524. if argsList.Len() > 2 {
  2525. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2526. }
  2527. base := 10.0
  2528. number := argsList.Front().Value.(formulaArg).ToNumber()
  2529. if number.Type == ArgError {
  2530. return number
  2531. }
  2532. if argsList.Len() > 1 {
  2533. b := argsList.Back().Value.(formulaArg).ToNumber()
  2534. if b.Type == ArgError {
  2535. return b
  2536. }
  2537. base = b.Number
  2538. }
  2539. if number.Number == 0 {
  2540. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2541. }
  2542. if base == 0 {
  2543. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2544. }
  2545. if base == 1 {
  2546. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2547. }
  2548. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2549. }
  2550. // LOG10 function calculates the base 10 logarithm of a given number. The
  2551. // syntax of the function is:
  2552. //
  2553. // LOG10(number)
  2554. //
  2555. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2556. if argsList.Len() != 1 {
  2557. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2558. }
  2559. number := argsList.Front().Value.(formulaArg).ToNumber()
  2560. if number.Type == ArgError {
  2561. return number
  2562. }
  2563. return newNumberFormulaArg(math.Log10(number.Number))
  2564. }
  2565. // minor function implement a minor of a matrix A is the determinant of some
  2566. // smaller square matrix.
  2567. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2568. ret := [][]float64{}
  2569. for i := range sqMtx {
  2570. if i == 0 {
  2571. continue
  2572. }
  2573. row := []float64{}
  2574. for j := range sqMtx {
  2575. if j == idx {
  2576. continue
  2577. }
  2578. row = append(row, sqMtx[i][j])
  2579. }
  2580. ret = append(ret, row)
  2581. }
  2582. return ret
  2583. }
  2584. // det determinant of the 2x2 matrix.
  2585. func det(sqMtx [][]float64) float64 {
  2586. if len(sqMtx) == 2 {
  2587. m00 := sqMtx[0][0]
  2588. m01 := sqMtx[0][1]
  2589. m10 := sqMtx[1][0]
  2590. m11 := sqMtx[1][1]
  2591. return m00*m11 - m10*m01
  2592. }
  2593. var res, sgn float64 = 0, 1
  2594. for j := range sqMtx {
  2595. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2596. sgn *= -1
  2597. }
  2598. return res
  2599. }
  2600. // MDETERM calculates the determinant of a square matrix. The
  2601. // syntax of the function is:
  2602. //
  2603. // MDETERM(array)
  2604. //
  2605. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2606. var (
  2607. num float64
  2608. numMtx = [][]float64{}
  2609. err error
  2610. strMtx [][]formulaArg
  2611. )
  2612. if argsList.Len() < 1 {
  2613. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2614. }
  2615. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2616. var rows = len(strMtx)
  2617. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2618. if len(row) != rows {
  2619. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2620. }
  2621. numRow := []float64{}
  2622. for _, ele := range row {
  2623. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2624. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2625. }
  2626. numRow = append(numRow, num)
  2627. }
  2628. numMtx = append(numMtx, numRow)
  2629. }
  2630. return newNumberFormulaArg(det(numMtx))
  2631. }
  2632. // MOD function returns the remainder of a division between two supplied
  2633. // numbers. The syntax of the function is:
  2634. //
  2635. // MOD(number,divisor)
  2636. //
  2637. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2638. if argsList.Len() != 2 {
  2639. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2640. }
  2641. number := argsList.Front().Value.(formulaArg).ToNumber()
  2642. if number.Type == ArgError {
  2643. return number
  2644. }
  2645. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2646. if divisor.Type == ArgError {
  2647. return divisor
  2648. }
  2649. if divisor.Number == 0 {
  2650. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2651. }
  2652. trunc, rem := math.Modf(number.Number / divisor.Number)
  2653. if rem < 0 {
  2654. trunc--
  2655. }
  2656. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2657. }
  2658. // MROUND function rounds a supplied number up or down to the nearest multiple
  2659. // of a given number. The syntax of the function is:
  2660. //
  2661. // MROUND(number,multiple)
  2662. //
  2663. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2664. if argsList.Len() != 2 {
  2665. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2666. }
  2667. n := argsList.Front().Value.(formulaArg).ToNumber()
  2668. if n.Type == ArgError {
  2669. return n
  2670. }
  2671. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2672. if multiple.Type == ArgError {
  2673. return multiple
  2674. }
  2675. if multiple.Number == 0 {
  2676. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2677. }
  2678. if multiple.Number < 0 && n.Number > 0 ||
  2679. multiple.Number > 0 && n.Number < 0 {
  2680. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2681. }
  2682. number, res := math.Modf(n.Number / multiple.Number)
  2683. if math.Trunc(res+0.5) > 0 {
  2684. number++
  2685. }
  2686. return newNumberFormulaArg(number * multiple.Number)
  2687. }
  2688. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2689. // supplied values to the product of factorials of those values. The syntax of
  2690. // the function is:
  2691. //
  2692. // MULTINOMIAL(number1,[number2],...)
  2693. //
  2694. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2695. val, num, denom := 0.0, 0.0, 1.0
  2696. var err error
  2697. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2698. token := arg.Value.(formulaArg)
  2699. switch token.Type {
  2700. case ArgString:
  2701. if token.String == "" {
  2702. continue
  2703. }
  2704. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2705. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2706. }
  2707. case ArgNumber:
  2708. val = token.Number
  2709. }
  2710. num += val
  2711. denom *= fact(val)
  2712. }
  2713. return newNumberFormulaArg(fact(num) / denom)
  2714. }
  2715. // MUNIT function returns the unit matrix for a specified dimension. The
  2716. // syntax of the function is:
  2717. //
  2718. // MUNIT(dimension)
  2719. //
  2720. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2721. if argsList.Len() != 1 {
  2722. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2723. }
  2724. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2725. if dimension.Type == ArgError || dimension.Number < 0 {
  2726. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2727. }
  2728. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2729. for i := 0; i < int(dimension.Number); i++ {
  2730. row := make([]formulaArg, int(dimension.Number))
  2731. for j := 0; j < int(dimension.Number); j++ {
  2732. if i == j {
  2733. row[j] = newNumberFormulaArg(1.0)
  2734. } else {
  2735. row[j] = newNumberFormulaArg(0.0)
  2736. }
  2737. }
  2738. matrix = append(matrix, row)
  2739. }
  2740. return newMatrixFormulaArg(matrix)
  2741. }
  2742. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2743. // number up and a negative number down), to the next odd number. The syntax
  2744. // of the function is:
  2745. //
  2746. // ODD(number)
  2747. //
  2748. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2749. if argsList.Len() != 1 {
  2750. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2751. }
  2752. number := argsList.Back().Value.(formulaArg).ToNumber()
  2753. if number.Type == ArgError {
  2754. return number
  2755. }
  2756. if number.Number == 0 {
  2757. return newNumberFormulaArg(1)
  2758. }
  2759. sign := math.Signbit(number.Number)
  2760. m, frac := math.Modf((number.Number - 1) / 2)
  2761. val := m*2 + 1
  2762. if frac != 0 {
  2763. if !sign {
  2764. val += 2
  2765. } else {
  2766. val -= 2
  2767. }
  2768. }
  2769. return newNumberFormulaArg(val)
  2770. }
  2771. // PI function returns the value of the mathematical constant π (pi), accurate
  2772. // to 15 digits (14 decimal places). The syntax of the function is:
  2773. //
  2774. // PI()
  2775. //
  2776. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2777. if argsList.Len() != 0 {
  2778. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2779. }
  2780. return newNumberFormulaArg(math.Pi)
  2781. }
  2782. // POWER function calculates a given number, raised to a supplied power.
  2783. // The syntax of the function is:
  2784. //
  2785. // POWER(number,power)
  2786. //
  2787. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2788. if argsList.Len() != 2 {
  2789. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2790. }
  2791. x := argsList.Front().Value.(formulaArg).ToNumber()
  2792. if x.Type == ArgError {
  2793. return x
  2794. }
  2795. y := argsList.Back().Value.(formulaArg).ToNumber()
  2796. if y.Type == ArgError {
  2797. return y
  2798. }
  2799. if x.Number == 0 && y.Number == 0 {
  2800. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2801. }
  2802. if x.Number == 0 && y.Number < 0 {
  2803. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2804. }
  2805. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2806. }
  2807. // PRODUCT function returns the product (multiplication) of a supplied set of
  2808. // numerical values. The syntax of the function is:
  2809. //
  2810. // PRODUCT(number1,[number2],...)
  2811. //
  2812. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2813. val, product := 0.0, 1.0
  2814. var err error
  2815. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2816. token := arg.Value.(formulaArg)
  2817. switch token.Type {
  2818. case ArgUnknown:
  2819. continue
  2820. case ArgString:
  2821. if token.String == "" {
  2822. continue
  2823. }
  2824. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2825. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2826. }
  2827. product = product * val
  2828. case ArgNumber:
  2829. product = product * token.Number
  2830. case ArgMatrix:
  2831. for _, row := range token.Matrix {
  2832. for _, value := range row {
  2833. if value.String == "" {
  2834. continue
  2835. }
  2836. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2837. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2838. }
  2839. product = product * val
  2840. }
  2841. }
  2842. }
  2843. }
  2844. return newNumberFormulaArg(product)
  2845. }
  2846. // QUOTIENT function returns the integer portion of a division between two
  2847. // supplied numbers. The syntax of the function is:
  2848. //
  2849. // QUOTIENT(numerator,denominator)
  2850. //
  2851. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2852. if argsList.Len() != 2 {
  2853. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2854. }
  2855. x := argsList.Front().Value.(formulaArg).ToNumber()
  2856. if x.Type == ArgError {
  2857. return x
  2858. }
  2859. y := argsList.Back().Value.(formulaArg).ToNumber()
  2860. if y.Type == ArgError {
  2861. return y
  2862. }
  2863. if y.Number == 0 {
  2864. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2865. }
  2866. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2867. }
  2868. // RADIANS function converts radians into degrees. The syntax of the function is:
  2869. //
  2870. // RADIANS(angle)
  2871. //
  2872. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2873. if argsList.Len() != 1 {
  2874. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2875. }
  2876. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2877. if angle.Type == ArgError {
  2878. return angle
  2879. }
  2880. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2881. }
  2882. // RAND function generates a random real number between 0 and 1. The syntax of
  2883. // the function is:
  2884. //
  2885. // RAND()
  2886. //
  2887. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2888. if argsList.Len() != 0 {
  2889. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2890. }
  2891. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2892. }
  2893. // RANDBETWEEN function generates a random integer between two supplied
  2894. // integers. The syntax of the function is:
  2895. //
  2896. // RANDBETWEEN(bottom,top)
  2897. //
  2898. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2899. if argsList.Len() != 2 {
  2900. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2901. }
  2902. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2903. if bottom.Type == ArgError {
  2904. return bottom
  2905. }
  2906. top := argsList.Back().Value.(formulaArg).ToNumber()
  2907. if top.Type == ArgError {
  2908. return top
  2909. }
  2910. if top.Number < bottom.Number {
  2911. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2912. }
  2913. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2914. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2915. }
  2916. // romanNumerals defined a numeral system that originated in ancient Rome and
  2917. // remained the usual way of writing numbers throughout Europe well into the
  2918. // Late Middle Ages.
  2919. type romanNumerals struct {
  2920. n float64
  2921. s string
  2922. }
  2923. var romanTable = [][]romanNumerals{
  2924. {
  2925. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2926. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2927. },
  2928. {
  2929. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2930. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2931. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2932. },
  2933. {
  2934. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2935. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2936. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2937. },
  2938. {
  2939. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2940. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2941. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2942. {5, "V"}, {4, "IV"}, {1, "I"},
  2943. },
  2944. {
  2945. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2946. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2947. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2948. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2949. },
  2950. }
  2951. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2952. // integer, the function returns a text string depicting the roman numeral
  2953. // form of the number. The syntax of the function is:
  2954. //
  2955. // ROMAN(number,[form])
  2956. //
  2957. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2958. if argsList.Len() == 0 {
  2959. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2960. }
  2961. if argsList.Len() > 2 {
  2962. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2963. }
  2964. var form int
  2965. number := argsList.Front().Value.(formulaArg).ToNumber()
  2966. if number.Type == ArgError {
  2967. return number
  2968. }
  2969. if argsList.Len() > 1 {
  2970. f := argsList.Back().Value.(formulaArg).ToNumber()
  2971. if f.Type == ArgError {
  2972. return f
  2973. }
  2974. form = int(f.Number)
  2975. if form < 0 {
  2976. form = 0
  2977. } else if form > 4 {
  2978. form = 4
  2979. }
  2980. }
  2981. decimalTable := romanTable[0]
  2982. switch form {
  2983. case 1:
  2984. decimalTable = romanTable[1]
  2985. case 2:
  2986. decimalTable = romanTable[2]
  2987. case 3:
  2988. decimalTable = romanTable[3]
  2989. case 4:
  2990. decimalTable = romanTable[4]
  2991. }
  2992. val := math.Trunc(number.Number)
  2993. buf := bytes.Buffer{}
  2994. for _, r := range decimalTable {
  2995. for val >= r.n {
  2996. buf.WriteString(r.s)
  2997. val -= r.n
  2998. }
  2999. }
  3000. return newStringFormulaArg(buf.String())
  3001. }
  3002. type roundMode byte
  3003. const (
  3004. closest roundMode = iota
  3005. down
  3006. up
  3007. )
  3008. // round rounds a supplied number up or down.
  3009. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3010. var significance float64
  3011. if digits > 0 {
  3012. significance = math.Pow(1/10.0, digits)
  3013. } else {
  3014. significance = math.Pow(10.0, -digits)
  3015. }
  3016. val, res := math.Modf(number / significance)
  3017. switch mode {
  3018. case closest:
  3019. const eps = 0.499999999
  3020. if res >= eps {
  3021. val++
  3022. } else if res <= -eps {
  3023. val--
  3024. }
  3025. case down:
  3026. case up:
  3027. if res > 0 {
  3028. val++
  3029. } else if res < 0 {
  3030. val--
  3031. }
  3032. }
  3033. return val * significance
  3034. }
  3035. // ROUND function rounds a supplied number up or down, to a specified number
  3036. // of decimal places. The syntax of the function is:
  3037. //
  3038. // ROUND(number,num_digits)
  3039. //
  3040. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3041. if argsList.Len() != 2 {
  3042. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3043. }
  3044. number := argsList.Front().Value.(formulaArg).ToNumber()
  3045. if number.Type == ArgError {
  3046. return number
  3047. }
  3048. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3049. if digits.Type == ArgError {
  3050. return digits
  3051. }
  3052. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3053. }
  3054. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3055. // specified number of decimal places. The syntax of the function is:
  3056. //
  3057. // ROUNDDOWN(number,num_digits)
  3058. //
  3059. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3060. if argsList.Len() != 2 {
  3061. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3062. }
  3063. number := argsList.Front().Value.(formulaArg).ToNumber()
  3064. if number.Type == ArgError {
  3065. return number
  3066. }
  3067. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3068. if digits.Type == ArgError {
  3069. return digits
  3070. }
  3071. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3072. }
  3073. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3074. // specified number of decimal places. The syntax of the function is:
  3075. //
  3076. // ROUNDUP(number,num_digits)
  3077. //
  3078. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3079. if argsList.Len() != 2 {
  3080. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3081. }
  3082. number := argsList.Front().Value.(formulaArg).ToNumber()
  3083. if number.Type == ArgError {
  3084. return number
  3085. }
  3086. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3087. if digits.Type == ArgError {
  3088. return digits
  3089. }
  3090. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3091. }
  3092. // SEC function calculates the secant of a given angle. The syntax of the
  3093. // function is:
  3094. //
  3095. // SEC(number)
  3096. //
  3097. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3098. if argsList.Len() != 1 {
  3099. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3100. }
  3101. number := argsList.Front().Value.(formulaArg).ToNumber()
  3102. if number.Type == ArgError {
  3103. return number
  3104. }
  3105. return newNumberFormulaArg(math.Cos(number.Number))
  3106. }
  3107. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3108. // The syntax of the function is:
  3109. //
  3110. // SECH(number)
  3111. //
  3112. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3113. if argsList.Len() != 1 {
  3114. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3115. }
  3116. number := argsList.Front().Value.(formulaArg).ToNumber()
  3117. if number.Type == ArgError {
  3118. return number
  3119. }
  3120. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3121. }
  3122. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3123. // number. I.e. if the number is positive, the Sign function returns +1, if
  3124. // the number is negative, the function returns -1 and if the number is 0
  3125. // (zero), the function returns 0. The syntax of the function is:
  3126. //
  3127. // SIGN(number)
  3128. //
  3129. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3130. if argsList.Len() != 1 {
  3131. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3132. }
  3133. val := argsList.Front().Value.(formulaArg).ToNumber()
  3134. if val.Type == ArgError {
  3135. return val
  3136. }
  3137. if val.Number < 0 {
  3138. return newNumberFormulaArg(-1)
  3139. }
  3140. if val.Number > 0 {
  3141. return newNumberFormulaArg(1)
  3142. }
  3143. return newNumberFormulaArg(0)
  3144. }
  3145. // SIN function calculates the sine of a given angle. The syntax of the
  3146. // function is:
  3147. //
  3148. // SIN(number)
  3149. //
  3150. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3151. if argsList.Len() != 1 {
  3152. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3153. }
  3154. number := argsList.Front().Value.(formulaArg).ToNumber()
  3155. if number.Type == ArgError {
  3156. return number
  3157. }
  3158. return newNumberFormulaArg(math.Sin(number.Number))
  3159. }
  3160. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3161. // The syntax of the function is:
  3162. //
  3163. // SINH(number)
  3164. //
  3165. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3166. if argsList.Len() != 1 {
  3167. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3168. }
  3169. number := argsList.Front().Value.(formulaArg).ToNumber()
  3170. if number.Type == ArgError {
  3171. return number
  3172. }
  3173. return newNumberFormulaArg(math.Sinh(number.Number))
  3174. }
  3175. // SQRT function calculates the positive square root of a supplied number. The
  3176. // syntax of the function is:
  3177. //
  3178. // SQRT(number)
  3179. //
  3180. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3181. if argsList.Len() != 1 {
  3182. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3183. }
  3184. value := argsList.Front().Value.(formulaArg).ToNumber()
  3185. if value.Type == ArgError {
  3186. return value
  3187. }
  3188. if value.Number < 0 {
  3189. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3190. }
  3191. return newNumberFormulaArg(math.Sqrt(value.Number))
  3192. }
  3193. // SQRTPI function returns the square root of a supplied number multiplied by
  3194. // the mathematical constant, π. The syntax of the function is:
  3195. //
  3196. // SQRTPI(number)
  3197. //
  3198. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3199. if argsList.Len() != 1 {
  3200. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3201. }
  3202. number := argsList.Front().Value.(formulaArg).ToNumber()
  3203. if number.Type == ArgError {
  3204. return number
  3205. }
  3206. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3207. }
  3208. // STDEV function calculates the sample standard deviation of a supplied set
  3209. // of values. The syntax of the function is:
  3210. //
  3211. // STDEV(number1,[number2],...)
  3212. //
  3213. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3214. if argsList.Len() < 1 {
  3215. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3216. }
  3217. return fn.stdev(false, argsList)
  3218. }
  3219. // STDEVA function estimates standard deviation based on a sample. The
  3220. // standard deviation is a measure of how widely values are dispersed from
  3221. // the average value (the mean). The syntax of the function is:
  3222. //
  3223. // STDEVA(number1,[number2],...)
  3224. //
  3225. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3226. if argsList.Len() < 1 {
  3227. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3228. }
  3229. return fn.stdev(true, argsList)
  3230. }
  3231. // stdev is an implementation of the formula function STDEV and STDEVA.
  3232. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3233. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3234. if result == -1 {
  3235. result = math.Pow((n.Number - m.Number), 2)
  3236. } else {
  3237. result += math.Pow((n.Number - m.Number), 2)
  3238. }
  3239. count++
  3240. return result, count
  3241. }
  3242. count, result := -1.0, -1.0
  3243. var mean formulaArg
  3244. if stdeva {
  3245. mean = fn.AVERAGEA(argsList)
  3246. } else {
  3247. mean = fn.AVERAGE(argsList)
  3248. }
  3249. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3250. token := arg.Value.(formulaArg)
  3251. switch token.Type {
  3252. case ArgString, ArgNumber:
  3253. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3254. continue
  3255. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3256. num := token.ToBool()
  3257. if num.Type == ArgNumber {
  3258. result, count = pow(result, count, num, mean)
  3259. continue
  3260. }
  3261. } else {
  3262. num := token.ToNumber()
  3263. if num.Type == ArgNumber {
  3264. result, count = pow(result, count, num, mean)
  3265. }
  3266. }
  3267. case ArgList, ArgMatrix:
  3268. for _, row := range token.ToList() {
  3269. if row.Type == ArgNumber || row.Type == ArgString {
  3270. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3271. continue
  3272. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3273. num := row.ToBool()
  3274. if num.Type == ArgNumber {
  3275. result, count = pow(result, count, num, mean)
  3276. continue
  3277. }
  3278. } else {
  3279. num := row.ToNumber()
  3280. if num.Type == ArgNumber {
  3281. result, count = pow(result, count, num, mean)
  3282. }
  3283. }
  3284. }
  3285. }
  3286. }
  3287. }
  3288. if count > 0 && result >= 0 {
  3289. return newNumberFormulaArg(math.Sqrt(result / count))
  3290. }
  3291. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3292. }
  3293. // SUM function adds together a supplied set of numbers and returns the sum of
  3294. // these values. The syntax of the function is:
  3295. //
  3296. // SUM(number1,[number2],...)
  3297. //
  3298. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3299. var sum float64
  3300. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3301. token := arg.Value.(formulaArg)
  3302. switch token.Type {
  3303. case ArgUnknown:
  3304. continue
  3305. case ArgString:
  3306. if num := token.ToNumber(); num.Type == ArgNumber {
  3307. sum += num.Number
  3308. }
  3309. case ArgNumber:
  3310. sum += token.Number
  3311. case ArgMatrix:
  3312. for _, row := range token.Matrix {
  3313. for _, value := range row {
  3314. if num := value.ToNumber(); num.Type == ArgNumber {
  3315. sum += num.Number
  3316. }
  3317. }
  3318. }
  3319. }
  3320. }
  3321. return newNumberFormulaArg(sum)
  3322. }
  3323. // SUMIF function finds the values in a supplied array, that satisfy a given
  3324. // criteria, and returns the sum of the corresponding values in a second
  3325. // supplied array. The syntax of the function is:
  3326. //
  3327. // SUMIF(range,criteria,[sum_range])
  3328. //
  3329. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3330. if argsList.Len() < 2 {
  3331. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3332. }
  3333. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3334. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3335. var sumRange [][]formulaArg
  3336. if argsList.Len() == 3 {
  3337. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3338. }
  3339. var sum, val float64
  3340. var err error
  3341. for rowIdx, row := range rangeMtx {
  3342. for colIdx, col := range row {
  3343. var ok bool
  3344. fromVal := col.String
  3345. if col.String == "" {
  3346. continue
  3347. }
  3348. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3349. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3350. }
  3351. if ok {
  3352. if argsList.Len() == 3 {
  3353. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3354. continue
  3355. }
  3356. fromVal = sumRange[rowIdx][colIdx].String
  3357. }
  3358. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3359. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3360. }
  3361. sum += val
  3362. }
  3363. }
  3364. }
  3365. return newNumberFormulaArg(sum)
  3366. }
  3367. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3368. // syntax of the function is:
  3369. //
  3370. // SUMSQ(number1,[number2],...)
  3371. //
  3372. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3373. var val, sq float64
  3374. var err error
  3375. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3376. token := arg.Value.(formulaArg)
  3377. switch token.Type {
  3378. case ArgString:
  3379. if token.String == "" {
  3380. continue
  3381. }
  3382. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3383. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3384. }
  3385. sq += val * val
  3386. case ArgNumber:
  3387. sq += token.Number
  3388. case ArgMatrix:
  3389. for _, row := range token.Matrix {
  3390. for _, value := range row {
  3391. if value.String == "" {
  3392. continue
  3393. }
  3394. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3395. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3396. }
  3397. sq += val * val
  3398. }
  3399. }
  3400. }
  3401. }
  3402. return newNumberFormulaArg(sq)
  3403. }
  3404. // TAN function calculates the tangent of a given angle. The syntax of the
  3405. // function is:
  3406. //
  3407. // TAN(number)
  3408. //
  3409. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3410. if argsList.Len() != 1 {
  3411. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3412. }
  3413. number := argsList.Front().Value.(formulaArg).ToNumber()
  3414. if number.Type == ArgError {
  3415. return number
  3416. }
  3417. return newNumberFormulaArg(math.Tan(number.Number))
  3418. }
  3419. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3420. // number. The syntax of the function is:
  3421. //
  3422. // TANH(number)
  3423. //
  3424. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3425. if argsList.Len() != 1 {
  3426. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3427. }
  3428. number := argsList.Front().Value.(formulaArg).ToNumber()
  3429. if number.Type == ArgError {
  3430. return number
  3431. }
  3432. return newNumberFormulaArg(math.Tanh(number.Number))
  3433. }
  3434. // TRUNC function truncates a supplied number to a specified number of decimal
  3435. // places. The syntax of the function is:
  3436. //
  3437. // TRUNC(number,[number_digits])
  3438. //
  3439. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3440. if argsList.Len() == 0 {
  3441. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3442. }
  3443. var digits, adjust, rtrim float64
  3444. var err error
  3445. number := argsList.Front().Value.(formulaArg).ToNumber()
  3446. if number.Type == ArgError {
  3447. return number
  3448. }
  3449. if argsList.Len() > 1 {
  3450. d := argsList.Back().Value.(formulaArg).ToNumber()
  3451. if d.Type == ArgError {
  3452. return d
  3453. }
  3454. digits = d.Number
  3455. digits = math.Floor(digits)
  3456. }
  3457. adjust = math.Pow(10, digits)
  3458. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3459. if x != 0 {
  3460. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3461. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3462. }
  3463. }
  3464. if (digits > 0) && (rtrim < adjust/10) {
  3465. return newNumberFormulaArg(number.Number)
  3466. }
  3467. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3468. }
  3469. // Statistical Functions
  3470. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3471. // The syntax of the function is:
  3472. //
  3473. // AVERAGE(number1,[number2],...)
  3474. //
  3475. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3476. args := []formulaArg{}
  3477. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3478. args = append(args, arg.Value.(formulaArg))
  3479. }
  3480. count, sum := fn.countSum(false, args)
  3481. if count == 0 {
  3482. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3483. }
  3484. return newNumberFormulaArg(sum / count)
  3485. }
  3486. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3487. // with text cell and zero values. The syntax of the function is:
  3488. //
  3489. // AVERAGEA(number1,[number2],...)
  3490. //
  3491. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3492. args := []formulaArg{}
  3493. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3494. args = append(args, arg.Value.(formulaArg))
  3495. }
  3496. count, sum := fn.countSum(true, args)
  3497. if count == 0 {
  3498. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3499. }
  3500. return newNumberFormulaArg(sum / count)
  3501. }
  3502. // countSum get count and sum for a formula arguments array.
  3503. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3504. for _, arg := range args {
  3505. switch arg.Type {
  3506. case ArgNumber:
  3507. if countText || !arg.Boolean {
  3508. sum += arg.Number
  3509. count++
  3510. }
  3511. case ArgString:
  3512. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3513. continue
  3514. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3515. num := arg.ToBool()
  3516. if num.Type == ArgNumber {
  3517. count++
  3518. sum += num.Number
  3519. continue
  3520. }
  3521. }
  3522. num := arg.ToNumber()
  3523. if countText && num.Type == ArgError && arg.String != "" {
  3524. count++
  3525. }
  3526. if num.Type == ArgNumber {
  3527. sum += num.Number
  3528. count++
  3529. }
  3530. case ArgList, ArgMatrix:
  3531. cnt, summary := fn.countSum(countText, arg.ToList())
  3532. sum += summary
  3533. count += cnt
  3534. }
  3535. }
  3536. return
  3537. }
  3538. // COUNT function returns the count of numeric values in a supplied set of
  3539. // cells or values. This count includes both numbers and dates. The syntax of
  3540. // the function is:
  3541. //
  3542. // COUNT(value1,[value2],...)
  3543. //
  3544. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3545. var count int
  3546. for token := argsList.Front(); token != nil; token = token.Next() {
  3547. arg := token.Value.(formulaArg)
  3548. switch arg.Type {
  3549. case ArgString:
  3550. if arg.ToNumber().Type != ArgError {
  3551. count++
  3552. }
  3553. case ArgNumber:
  3554. count++
  3555. case ArgMatrix:
  3556. for _, row := range arg.Matrix {
  3557. for _, value := range row {
  3558. if value.ToNumber().Type != ArgError {
  3559. count++
  3560. }
  3561. }
  3562. }
  3563. }
  3564. }
  3565. return newNumberFormulaArg(float64(count))
  3566. }
  3567. // COUNTA function returns the number of non-blanks within a supplied set of
  3568. // cells or values. The syntax of the function is:
  3569. //
  3570. // COUNTA(value1,[value2],...)
  3571. //
  3572. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3573. var count int
  3574. for token := argsList.Front(); token != nil; token = token.Next() {
  3575. arg := token.Value.(formulaArg)
  3576. switch arg.Type {
  3577. case ArgString:
  3578. if arg.String != "" {
  3579. count++
  3580. }
  3581. case ArgNumber:
  3582. count++
  3583. case ArgMatrix:
  3584. for _, row := range arg.ToList() {
  3585. switch row.Type {
  3586. case ArgString:
  3587. if row.String != "" {
  3588. count++
  3589. }
  3590. case ArgNumber:
  3591. count++
  3592. }
  3593. }
  3594. }
  3595. }
  3596. return newNumberFormulaArg(float64(count))
  3597. }
  3598. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3599. // The syntax of the function is:
  3600. //
  3601. // COUNTBLANK(range)
  3602. //
  3603. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3604. if argsList.Len() != 1 {
  3605. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3606. }
  3607. var count int
  3608. token := argsList.Front().Value.(formulaArg)
  3609. switch token.Type {
  3610. case ArgString:
  3611. if token.String == "" {
  3612. count++
  3613. }
  3614. case ArgList, ArgMatrix:
  3615. for _, row := range token.ToList() {
  3616. switch row.Type {
  3617. case ArgString:
  3618. if row.String == "" {
  3619. count++
  3620. }
  3621. case ArgEmpty:
  3622. count++
  3623. }
  3624. }
  3625. case ArgEmpty:
  3626. count++
  3627. }
  3628. return newNumberFormulaArg(float64(count))
  3629. }
  3630. // FISHER function calculates the Fisher Transformation for a supplied value.
  3631. // The syntax of the function is:
  3632. //
  3633. // FISHER(x)
  3634. //
  3635. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3636. if argsList.Len() != 1 {
  3637. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3638. }
  3639. token := argsList.Front().Value.(formulaArg)
  3640. switch token.Type {
  3641. case ArgString:
  3642. arg := token.ToNumber()
  3643. if arg.Type == ArgNumber {
  3644. if arg.Number <= -1 || arg.Number >= 1 {
  3645. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3646. }
  3647. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3648. }
  3649. case ArgNumber:
  3650. if token.Number <= -1 || token.Number >= 1 {
  3651. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3652. }
  3653. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3654. }
  3655. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3656. }
  3657. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3658. // returns a value between -1 and +1. The syntax of the function is:
  3659. //
  3660. // FISHERINV(y)
  3661. //
  3662. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3663. if argsList.Len() != 1 {
  3664. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3665. }
  3666. token := argsList.Front().Value.(formulaArg)
  3667. switch token.Type {
  3668. case ArgString:
  3669. arg := token.ToNumber()
  3670. if arg.Type == ArgNumber {
  3671. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3672. }
  3673. case ArgNumber:
  3674. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3675. }
  3676. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3677. }
  3678. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3679. // specified number, n. The syntax of the function is:
  3680. //
  3681. // GAMMA(number)
  3682. //
  3683. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3684. if argsList.Len() != 1 {
  3685. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3686. }
  3687. token := argsList.Front().Value.(formulaArg)
  3688. switch token.Type {
  3689. case ArgString:
  3690. arg := token.ToNumber()
  3691. if arg.Type == ArgNumber {
  3692. if arg.Number <= 0 {
  3693. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3694. }
  3695. return newNumberFormulaArg(math.Gamma(arg.Number))
  3696. }
  3697. case ArgNumber:
  3698. if token.Number <= 0 {
  3699. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3700. }
  3701. return newNumberFormulaArg(math.Gamma(token.Number))
  3702. }
  3703. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3704. }
  3705. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3706. // (n). The syntax of the function is:
  3707. //
  3708. // GAMMALN(x)
  3709. //
  3710. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3711. if argsList.Len() != 1 {
  3712. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3713. }
  3714. token := argsList.Front().Value.(formulaArg)
  3715. switch token.Type {
  3716. case ArgString:
  3717. arg := token.ToNumber()
  3718. if arg.Type == ArgNumber {
  3719. if arg.Number <= 0 {
  3720. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3721. }
  3722. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3723. }
  3724. case ArgNumber:
  3725. if token.Number <= 0 {
  3726. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3727. }
  3728. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3729. }
  3730. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3731. }
  3732. // KURT function calculates the kurtosis of a supplied set of values. The
  3733. // syntax of the function is:
  3734. //
  3735. // KURT(number1,[number2],...)
  3736. //
  3737. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3738. if argsList.Len() < 1 {
  3739. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3740. }
  3741. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3742. if stdev.Number > 0 {
  3743. count, summer := 0.0, 0.0
  3744. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3745. token := arg.Value.(formulaArg)
  3746. switch token.Type {
  3747. case ArgString, ArgNumber:
  3748. num := token.ToNumber()
  3749. if num.Type == ArgError {
  3750. continue
  3751. }
  3752. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3753. count++
  3754. case ArgList, ArgMatrix:
  3755. for _, row := range token.ToList() {
  3756. if row.Type == ArgNumber || row.Type == ArgString {
  3757. num := row.ToNumber()
  3758. if num.Type == ArgError {
  3759. continue
  3760. }
  3761. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3762. count++
  3763. }
  3764. }
  3765. }
  3766. }
  3767. if count > 3 {
  3768. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3769. }
  3770. }
  3771. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3772. }
  3773. // kth is an implementation of the formula function LARGE and SMALL.
  3774. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  3775. if argsList.Len() != 2 {
  3776. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  3777. }
  3778. array := argsList.Front().Value.(formulaArg).ToList()
  3779. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  3780. if kArg.Type != ArgNumber {
  3781. return kArg
  3782. }
  3783. k := int(kArg.Number)
  3784. if k < 1 {
  3785. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  3786. }
  3787. data := []float64{}
  3788. for _, arg := range array {
  3789. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  3790. data = append(data, numArg.Number)
  3791. }
  3792. }
  3793. if len(data) < k {
  3794. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  3795. }
  3796. sort.Float64s(data)
  3797. if name == "LARGE" {
  3798. return newNumberFormulaArg(data[len(data)-k])
  3799. }
  3800. return newNumberFormulaArg(data[k-1])
  3801. }
  3802. // LARGE function returns the k'th largest value from an array of numeric
  3803. // values. The syntax of the function is:
  3804. //
  3805. // LARGE(array,k)
  3806. //
  3807. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  3808. return fn.kth("LARGE", argsList)
  3809. }
  3810. // MAX function returns the largest value from a supplied set of numeric
  3811. // values. The syntax of the function is:
  3812. //
  3813. // MAX(number1,[number2],...)
  3814. //
  3815. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3816. if argsList.Len() == 0 {
  3817. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3818. }
  3819. return fn.max(false, argsList)
  3820. }
  3821. // MAXA function returns the largest value from a supplied set of numeric
  3822. // values, while counting text and the logical value FALSE as the value 0 and
  3823. // counting the logical value TRUE as the value 1. The syntax of the function
  3824. // is:
  3825. //
  3826. // MAXA(number1,[number2],...)
  3827. //
  3828. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3829. if argsList.Len() == 0 {
  3830. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3831. }
  3832. return fn.max(true, argsList)
  3833. }
  3834. // max is an implementation of the formula function MAX and MAXA.
  3835. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3836. max := -math.MaxFloat64
  3837. for token := argsList.Front(); token != nil; token = token.Next() {
  3838. arg := token.Value.(formulaArg)
  3839. switch arg.Type {
  3840. case ArgString:
  3841. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3842. continue
  3843. } else {
  3844. num := arg.ToBool()
  3845. if num.Type == ArgNumber && num.Number > max {
  3846. max = num.Number
  3847. continue
  3848. }
  3849. }
  3850. num := arg.ToNumber()
  3851. if num.Type != ArgError && num.Number > max {
  3852. max = num.Number
  3853. }
  3854. case ArgNumber:
  3855. if arg.Number > max {
  3856. max = arg.Number
  3857. }
  3858. case ArgList, ArgMatrix:
  3859. for _, row := range arg.ToList() {
  3860. switch row.Type {
  3861. case ArgString:
  3862. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3863. continue
  3864. } else {
  3865. num := row.ToBool()
  3866. if num.Type == ArgNumber && num.Number > max {
  3867. max = num.Number
  3868. continue
  3869. }
  3870. }
  3871. num := row.ToNumber()
  3872. if num.Type != ArgError && num.Number > max {
  3873. max = num.Number
  3874. }
  3875. case ArgNumber:
  3876. if row.Number > max {
  3877. max = row.Number
  3878. }
  3879. }
  3880. }
  3881. case ArgError:
  3882. return arg
  3883. }
  3884. }
  3885. if max == -math.MaxFloat64 {
  3886. max = 0
  3887. }
  3888. return newNumberFormulaArg(max)
  3889. }
  3890. // MEDIAN function returns the statistical median (the middle value) of a list
  3891. // of supplied numbers. The syntax of the function is:
  3892. //
  3893. // MEDIAN(number1,[number2],...)
  3894. //
  3895. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3896. if argsList.Len() == 0 {
  3897. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3898. }
  3899. var values = []float64{}
  3900. var median, digits float64
  3901. var err error
  3902. for token := argsList.Front(); token != nil; token = token.Next() {
  3903. arg := token.Value.(formulaArg)
  3904. switch arg.Type {
  3905. case ArgString:
  3906. num := arg.ToNumber()
  3907. if num.Type == ArgError {
  3908. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3909. }
  3910. values = append(values, num.Number)
  3911. case ArgNumber:
  3912. values = append(values, arg.Number)
  3913. case ArgMatrix:
  3914. for _, row := range arg.Matrix {
  3915. for _, value := range row {
  3916. if value.String == "" {
  3917. continue
  3918. }
  3919. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3920. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3921. }
  3922. values = append(values, digits)
  3923. }
  3924. }
  3925. }
  3926. }
  3927. sort.Float64s(values)
  3928. if len(values)%2 == 0 {
  3929. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3930. } else {
  3931. median = values[len(values)/2]
  3932. }
  3933. return newNumberFormulaArg(median)
  3934. }
  3935. // MIN function returns the smallest value from a supplied set of numeric
  3936. // values. The syntax of the function is:
  3937. //
  3938. // MIN(number1,[number2],...)
  3939. //
  3940. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3941. if argsList.Len() == 0 {
  3942. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3943. }
  3944. return fn.min(false, argsList)
  3945. }
  3946. // MINA function returns the smallest value from a supplied set of numeric
  3947. // values, while counting text and the logical value FALSE as the value 0 and
  3948. // counting the logical value TRUE as the value 1. The syntax of the function
  3949. // is:
  3950. //
  3951. // MINA(number1,[number2],...)
  3952. //
  3953. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3954. if argsList.Len() == 0 {
  3955. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3956. }
  3957. return fn.min(true, argsList)
  3958. }
  3959. // min is an implementation of the formula function MIN and MINA.
  3960. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3961. min := math.MaxFloat64
  3962. for token := argsList.Front(); token != nil; token = token.Next() {
  3963. arg := token.Value.(formulaArg)
  3964. switch arg.Type {
  3965. case ArgString:
  3966. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3967. continue
  3968. } else {
  3969. num := arg.ToBool()
  3970. if num.Type == ArgNumber && num.Number < min {
  3971. min = num.Number
  3972. continue
  3973. }
  3974. }
  3975. num := arg.ToNumber()
  3976. if num.Type != ArgError && num.Number < min {
  3977. min = num.Number
  3978. }
  3979. case ArgNumber:
  3980. if arg.Number < min {
  3981. min = arg.Number
  3982. }
  3983. case ArgList, ArgMatrix:
  3984. for _, row := range arg.ToList() {
  3985. switch row.Type {
  3986. case ArgString:
  3987. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3988. continue
  3989. } else {
  3990. num := row.ToBool()
  3991. if num.Type == ArgNumber && num.Number < min {
  3992. min = num.Number
  3993. continue
  3994. }
  3995. }
  3996. num := row.ToNumber()
  3997. if num.Type != ArgError && num.Number < min {
  3998. min = num.Number
  3999. }
  4000. case ArgNumber:
  4001. if row.Number < min {
  4002. min = row.Number
  4003. }
  4004. }
  4005. }
  4006. case ArgError:
  4007. return arg
  4008. }
  4009. }
  4010. if min == math.MaxFloat64 {
  4011. min = 0
  4012. }
  4013. return newNumberFormulaArg(min)
  4014. }
  4015. // PERMUT function calculates the number of permutations of a specified number
  4016. // of objects from a set of objects. The syntax of the function is:
  4017. //
  4018. // PERMUT(number,number_chosen)
  4019. //
  4020. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4021. if argsList.Len() != 2 {
  4022. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4023. }
  4024. number := argsList.Front().Value.(formulaArg).ToNumber()
  4025. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4026. if number.Type != ArgNumber {
  4027. return number
  4028. }
  4029. if chosen.Type != ArgNumber {
  4030. return chosen
  4031. }
  4032. if number.Number < chosen.Number {
  4033. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4034. }
  4035. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4036. }
  4037. // SMALL function returns the k'th smallest value from an array of numeric
  4038. // values. The syntax of the function is:
  4039. //
  4040. // SMALL(array,k)
  4041. //
  4042. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4043. return fn.kth("SMALL", argsList)
  4044. }
  4045. // Information Functions
  4046. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4047. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4048. // function is:
  4049. //
  4050. // ISBLANK(value)
  4051. //
  4052. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4053. if argsList.Len() != 1 {
  4054. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4055. }
  4056. token := argsList.Front().Value.(formulaArg)
  4057. result := "FALSE"
  4058. switch token.Type {
  4059. case ArgUnknown:
  4060. result = "TRUE"
  4061. case ArgString:
  4062. if token.String == "" {
  4063. result = "TRUE"
  4064. }
  4065. }
  4066. return newStringFormulaArg(result)
  4067. }
  4068. // ISERR function tests if an initial supplied expression (or value) returns
  4069. // any Excel Error, except the #N/A error. If so, the function returns the
  4070. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4071. // error, the ISERR function returns FALSE. The syntax of the function is:
  4072. //
  4073. // ISERR(value)
  4074. //
  4075. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4076. if argsList.Len() != 1 {
  4077. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4078. }
  4079. token := argsList.Front().Value.(formulaArg)
  4080. result := "FALSE"
  4081. if token.Type == ArgError {
  4082. for _, errType := range []string{
  4083. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4084. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4085. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4086. } {
  4087. if errType == token.String {
  4088. result = "TRUE"
  4089. }
  4090. }
  4091. }
  4092. return newStringFormulaArg(result)
  4093. }
  4094. // ISERROR function tests if an initial supplied expression (or value) returns
  4095. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4096. // function returns FALSE. The syntax of the function is:
  4097. //
  4098. // ISERROR(value)
  4099. //
  4100. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4101. if argsList.Len() != 1 {
  4102. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4103. }
  4104. token := argsList.Front().Value.(formulaArg)
  4105. result := "FALSE"
  4106. if token.Type == ArgError {
  4107. for _, errType := range []string{
  4108. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4109. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4110. formulaErrorCALC, formulaErrorGETTINGDATA,
  4111. } {
  4112. if errType == token.String {
  4113. result = "TRUE"
  4114. }
  4115. }
  4116. }
  4117. return newStringFormulaArg(result)
  4118. }
  4119. // ISEVEN function tests if a supplied number (or numeric expression)
  4120. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4121. // function returns FALSE. The syntax of the function is:
  4122. //
  4123. // ISEVEN(value)
  4124. //
  4125. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4126. if argsList.Len() != 1 {
  4127. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4128. }
  4129. var (
  4130. token = argsList.Front().Value.(formulaArg)
  4131. result = "FALSE"
  4132. numeric int
  4133. err error
  4134. )
  4135. if token.Type == ArgString {
  4136. if numeric, err = strconv.Atoi(token.String); err != nil {
  4137. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4138. }
  4139. if numeric == numeric/2*2 {
  4140. return newStringFormulaArg("TRUE")
  4141. }
  4142. }
  4143. return newStringFormulaArg(result)
  4144. }
  4145. // ISNA function tests if an initial supplied expression (or value) returns
  4146. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4147. // returns FALSE. The syntax of the function is:
  4148. //
  4149. // ISNA(value)
  4150. //
  4151. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4152. if argsList.Len() != 1 {
  4153. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4154. }
  4155. token := argsList.Front().Value.(formulaArg)
  4156. result := "FALSE"
  4157. if token.Type == ArgError && token.String == formulaErrorNA {
  4158. result = "TRUE"
  4159. }
  4160. return newStringFormulaArg(result)
  4161. }
  4162. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4163. // function returns TRUE; If the supplied value is text, the function returns
  4164. // FALSE. The syntax of the function is:
  4165. //
  4166. // ISNONTEXT(value)
  4167. //
  4168. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4169. if argsList.Len() != 1 {
  4170. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4171. }
  4172. token := argsList.Front().Value.(formulaArg)
  4173. result := "TRUE"
  4174. if token.Type == ArgString && token.String != "" {
  4175. result = "FALSE"
  4176. }
  4177. return newStringFormulaArg(result)
  4178. }
  4179. // ISNUMBER function function tests if a supplied value is a number. If so,
  4180. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4181. // function is:
  4182. //
  4183. // ISNUMBER(value)
  4184. //
  4185. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4186. if argsList.Len() != 1 {
  4187. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4188. }
  4189. token, result := argsList.Front().Value.(formulaArg), false
  4190. if token.Type == ArgString && token.String != "" {
  4191. if _, err := strconv.Atoi(token.String); err == nil {
  4192. result = true
  4193. }
  4194. }
  4195. return newBoolFormulaArg(result)
  4196. }
  4197. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4198. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4199. // FALSE. The syntax of the function is:
  4200. //
  4201. // ISODD(value)
  4202. //
  4203. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4204. if argsList.Len() != 1 {
  4205. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4206. }
  4207. var (
  4208. token = argsList.Front().Value.(formulaArg)
  4209. result = "FALSE"
  4210. numeric int
  4211. err error
  4212. )
  4213. if token.Type == ArgString {
  4214. if numeric, err = strconv.Atoi(token.String); err != nil {
  4215. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4216. }
  4217. if numeric != numeric/2*2 {
  4218. return newStringFormulaArg("TRUE")
  4219. }
  4220. }
  4221. return newStringFormulaArg(result)
  4222. }
  4223. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4224. // Otherwise, the function returns FALSE. The syntax of the function is:
  4225. //
  4226. // ISTEXT(value)
  4227. //
  4228. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4229. if argsList.Len() != 1 {
  4230. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4231. }
  4232. token := argsList.Front().Value.(formulaArg)
  4233. if token.ToNumber().Type != ArgError {
  4234. return newBoolFormulaArg(false)
  4235. }
  4236. return newBoolFormulaArg(token.Type == ArgString)
  4237. }
  4238. // NA function returns the Excel #N/A error. This error message has the
  4239. // meaning 'value not available' and is produced when an Excel Formula is
  4240. // unable to find a value that it needs. The syntax of the function is:
  4241. //
  4242. // NA()
  4243. //
  4244. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4245. if argsList.Len() != 0 {
  4246. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4247. }
  4248. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4249. }
  4250. // SHEET function returns the Sheet number for a specified reference. The
  4251. // syntax of the function is:
  4252. //
  4253. // SHEET()
  4254. //
  4255. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4256. if argsList.Len() != 0 {
  4257. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4258. }
  4259. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4260. }
  4261. // Logical Functions
  4262. // AND function tests a number of supplied conditions and returns TRUE or
  4263. // FALSE. The syntax of the function is:
  4264. //
  4265. // AND(logical_test1,[logical_test2],...)
  4266. //
  4267. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4268. if argsList.Len() == 0 {
  4269. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4270. }
  4271. if argsList.Len() > 30 {
  4272. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4273. }
  4274. var (
  4275. and = true
  4276. val float64
  4277. err error
  4278. )
  4279. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4280. token := arg.Value.(formulaArg)
  4281. switch token.Type {
  4282. case ArgUnknown:
  4283. continue
  4284. case ArgString:
  4285. if token.String == "TRUE" {
  4286. continue
  4287. }
  4288. if token.String == "FALSE" {
  4289. return newStringFormulaArg(token.String)
  4290. }
  4291. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4292. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4293. }
  4294. and = and && (val != 0)
  4295. case ArgMatrix:
  4296. // TODO
  4297. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4298. }
  4299. }
  4300. return newBoolFormulaArg(and)
  4301. }
  4302. // FALSE function function returns the logical value FALSE. The syntax of the
  4303. // function is:
  4304. //
  4305. // FALSE()
  4306. //
  4307. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4308. if argsList.Len() != 0 {
  4309. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4310. }
  4311. return newBoolFormulaArg(false)
  4312. }
  4313. // IFERROR function receives two values (or expressions) and tests if the
  4314. // first of these evaluates to an error. The syntax of the function is:
  4315. //
  4316. // IFERROR(value,value_if_error)
  4317. //
  4318. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4319. if argsList.Len() != 2 {
  4320. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4321. }
  4322. value := argsList.Front().Value.(formulaArg)
  4323. if value.Type != ArgError {
  4324. if value.Type == ArgEmpty {
  4325. return newNumberFormulaArg(0)
  4326. }
  4327. return value
  4328. }
  4329. return argsList.Back().Value.(formulaArg)
  4330. }
  4331. // NOT function returns the opposite to a supplied logical value. The syntax
  4332. // of the function is:
  4333. //
  4334. // NOT(logical)
  4335. //
  4336. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4337. if argsList.Len() != 1 {
  4338. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4339. }
  4340. token := argsList.Front().Value.(formulaArg)
  4341. switch token.Type {
  4342. case ArgString, ArgList:
  4343. if strings.ToUpper(token.String) == "TRUE" {
  4344. return newBoolFormulaArg(false)
  4345. }
  4346. if strings.ToUpper(token.String) == "FALSE" {
  4347. return newBoolFormulaArg(true)
  4348. }
  4349. case ArgNumber:
  4350. return newBoolFormulaArg(!(token.Number != 0))
  4351. case ArgError:
  4352. return token
  4353. }
  4354. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4355. }
  4356. // OR function tests a number of supplied conditions and returns either TRUE
  4357. // or FALSE. The syntax of the function is:
  4358. //
  4359. // OR(logical_test1,[logical_test2],...)
  4360. //
  4361. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4362. if argsList.Len() == 0 {
  4363. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4364. }
  4365. if argsList.Len() > 30 {
  4366. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4367. }
  4368. var (
  4369. or bool
  4370. val float64
  4371. err error
  4372. )
  4373. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4374. token := arg.Value.(formulaArg)
  4375. switch token.Type {
  4376. case ArgUnknown:
  4377. continue
  4378. case ArgString:
  4379. if token.String == "FALSE" {
  4380. continue
  4381. }
  4382. if token.String == "TRUE" {
  4383. or = true
  4384. continue
  4385. }
  4386. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4387. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4388. }
  4389. or = val != 0
  4390. case ArgMatrix:
  4391. // TODO
  4392. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4393. }
  4394. }
  4395. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4396. }
  4397. // TRUE function returns the logical value TRUE. The syntax of the function
  4398. // is:
  4399. //
  4400. // TRUE()
  4401. //
  4402. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4403. if argsList.Len() != 0 {
  4404. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4405. }
  4406. return newBoolFormulaArg(true)
  4407. }
  4408. // Date and Time Functions
  4409. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4410. // of the function is:
  4411. //
  4412. // DATE(year,month,day)
  4413. //
  4414. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4415. if argsList.Len() != 3 {
  4416. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4417. }
  4418. var year, month, day int
  4419. var err error
  4420. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  4421. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4422. }
  4423. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  4424. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4425. }
  4426. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  4427. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4428. }
  4429. d := makeDate(year, time.Month(month), day)
  4430. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4431. }
  4432. // makeDate return date as a Unix time, the number of seconds elapsed since
  4433. // January 1, 1970 UTC.
  4434. func makeDate(y int, m time.Month, d int) int64 {
  4435. if y == 1900 && int(m) <= 2 {
  4436. d--
  4437. }
  4438. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4439. return date.Unix()
  4440. }
  4441. // daysBetween return time interval of the given start timestamp and end
  4442. // timestamp.
  4443. func daysBetween(startDate, endDate int64) float64 {
  4444. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4445. }
  4446. // Text Functions
  4447. // CHAR function returns the character relating to a supplied character set
  4448. // number (from 1 to 255). syntax of the function is:
  4449. //
  4450. // CHAR(number)
  4451. //
  4452. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  4453. if argsList.Len() != 1 {
  4454. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  4455. }
  4456. arg := argsList.Front().Value.(formulaArg).ToNumber()
  4457. if arg.Type != ArgNumber {
  4458. return arg
  4459. }
  4460. num := int(arg.Number)
  4461. if num < 0 || num > 255 {
  4462. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4463. }
  4464. return newStringFormulaArg(fmt.Sprintf("%c", num))
  4465. }
  4466. // CLEAN removes all non-printable characters from a supplied text string. The
  4467. // syntax of the function is:
  4468. //
  4469. // CLEAN(text)
  4470. //
  4471. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4472. if argsList.Len() != 1 {
  4473. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4474. }
  4475. b := bytes.Buffer{}
  4476. for _, c := range argsList.Front().Value.(formulaArg).String {
  4477. if c > 31 {
  4478. b.WriteRune(c)
  4479. }
  4480. }
  4481. return newStringFormulaArg(b.String())
  4482. }
  4483. // CODE function converts the first character of a supplied text string into
  4484. // the associated numeric character set code used by your computer. The
  4485. // syntax of the function is:
  4486. //
  4487. // CODE(text)
  4488. //
  4489. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  4490. return fn.code("CODE", argsList)
  4491. }
  4492. // code is an implementation of the formula function CODE and UNICODE.
  4493. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  4494. if argsList.Len() != 1 {
  4495. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  4496. }
  4497. text := argsList.Front().Value.(formulaArg).Value()
  4498. if len(text) == 0 {
  4499. if name == "CODE" {
  4500. return newNumberFormulaArg(0)
  4501. }
  4502. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4503. }
  4504. return newNumberFormulaArg(float64(text[0]))
  4505. }
  4506. // CONCAT function joins together a series of supplied text strings into one
  4507. // combined text string.
  4508. //
  4509. // CONCAT(text1,[text2],...)
  4510. //
  4511. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4512. return fn.concat("CONCAT", argsList)
  4513. }
  4514. // CONCATENATE function joins together a series of supplied text strings into
  4515. // one combined text string.
  4516. //
  4517. // CONCATENATE(text1,[text2],...)
  4518. //
  4519. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4520. return fn.concat("CONCATENATE", argsList)
  4521. }
  4522. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4523. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4524. buf := bytes.Buffer{}
  4525. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4526. token := arg.Value.(formulaArg)
  4527. switch token.Type {
  4528. case ArgString:
  4529. buf.WriteString(token.String)
  4530. case ArgNumber:
  4531. if token.Boolean {
  4532. if token.Number == 0 {
  4533. buf.WriteString("FALSE")
  4534. } else {
  4535. buf.WriteString("TRUE")
  4536. }
  4537. } else {
  4538. buf.WriteString(token.Value())
  4539. }
  4540. default:
  4541. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4542. }
  4543. }
  4544. return newStringFormulaArg(buf.String())
  4545. }
  4546. // EXACT function tests if two supplied text strings or values are exactly
  4547. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4548. // function is case-sensitive. The syntax of the function is:
  4549. //
  4550. // EXACT(text1,text2)
  4551. //
  4552. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4553. if argsList.Len() != 2 {
  4554. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4555. }
  4556. text1 := argsList.Front().Value.(formulaArg).Value()
  4557. text2 := argsList.Back().Value.(formulaArg).Value()
  4558. return newBoolFormulaArg(text1 == text2)
  4559. }
  4560. // FIND function returns the position of a specified character or sub-string
  4561. // within a supplied text string. The function is case-sensitive. The syntax
  4562. // of the function is:
  4563. //
  4564. // FIND(find_text,within_text,[start_num])
  4565. //
  4566. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  4567. return fn.find("FIND", argsList)
  4568. }
  4569. // FINDB counts each double-byte character as 2 when you have enabled the
  4570. // editing of a language that supports DBCS and then set it as the default
  4571. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  4572. // function is:
  4573. //
  4574. // FINDB(find_text,within_text,[start_num])
  4575. //
  4576. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  4577. return fn.find("FINDB", argsList)
  4578. }
  4579. // find is an implementation of the formula function FIND and FINDB.
  4580. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  4581. if argsList.Len() < 2 {
  4582. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  4583. }
  4584. if argsList.Len() > 3 {
  4585. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  4586. }
  4587. findText := argsList.Front().Value.(formulaArg).Value()
  4588. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  4589. startNum, result := 1, 1
  4590. if argsList.Len() == 3 {
  4591. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4592. if numArg.Type != ArgNumber {
  4593. return numArg
  4594. }
  4595. if numArg.Number < 0 {
  4596. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4597. }
  4598. startNum = int(numArg.Number)
  4599. }
  4600. if findText == "" {
  4601. return newNumberFormulaArg(float64(startNum))
  4602. }
  4603. for idx := range withinText {
  4604. if result < startNum {
  4605. result++
  4606. }
  4607. if strings.Index(withinText[idx:], findText) == 0 {
  4608. return newNumberFormulaArg(float64(result))
  4609. }
  4610. result++
  4611. }
  4612. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4613. }
  4614. // LEFT function returns a specified number of characters from the start of a
  4615. // supplied text string. The syntax of the function is:
  4616. //
  4617. // LEFT(text,[num_chars])
  4618. //
  4619. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  4620. return fn.leftRight("LEFT", argsList)
  4621. }
  4622. // LEFTB returns the first character or characters in a text string, based on
  4623. // the number of bytes you specify. The syntax of the function is:
  4624. //
  4625. // LEFTB(text,[num_bytes])
  4626. //
  4627. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  4628. return fn.leftRight("LEFTB", argsList)
  4629. }
  4630. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  4631. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  4632. // (Traditional), and Korean.
  4633. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  4634. if argsList.Len() < 1 {
  4635. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  4636. }
  4637. if argsList.Len() > 2 {
  4638. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  4639. }
  4640. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  4641. if argsList.Len() == 2 {
  4642. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4643. if numArg.Type != ArgNumber {
  4644. return numArg
  4645. }
  4646. if numArg.Number < 0 {
  4647. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4648. }
  4649. numChars = int(numArg.Number)
  4650. }
  4651. if len(text) > numChars {
  4652. if name == "LEFT" || name == "LEFTB" {
  4653. return newStringFormulaArg(text[:numChars])
  4654. }
  4655. return newStringFormulaArg(text[len(text)-numChars:])
  4656. }
  4657. return newStringFormulaArg(text)
  4658. }
  4659. // LEN returns the length of a supplied text string. The syntax of the
  4660. // function is:
  4661. //
  4662. // LEN(text)
  4663. //
  4664. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4665. if argsList.Len() != 1 {
  4666. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4667. }
  4668. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4669. }
  4670. // LENB returns the number of bytes used to represent the characters in a text
  4671. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4672. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4673. // 1 byte per character. The syntax of the function is:
  4674. //
  4675. // LENB(text)
  4676. //
  4677. // TODO: the languages that support DBCS include Japanese, Chinese
  4678. // (Simplified), Chinese (Traditional), and Korean.
  4679. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4680. if argsList.Len() != 1 {
  4681. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4682. }
  4683. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4684. }
  4685. // LOWER converts all characters in a supplied text string to lower case. The
  4686. // syntax of the function is:
  4687. //
  4688. // LOWER(text)
  4689. //
  4690. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4691. if argsList.Len() != 1 {
  4692. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4693. }
  4694. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4695. }
  4696. // MID function returns a specified number of characters from the middle of a
  4697. // supplied text string. The syntax of the function is:
  4698. //
  4699. // MID(text,start_num,num_chars)
  4700. //
  4701. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  4702. return fn.mid("MID", argsList)
  4703. }
  4704. // MIDB returns a specific number of characters from a text string, starting
  4705. // at the position you specify, based on the number of bytes you specify. The
  4706. // syntax of the function is:
  4707. //
  4708. // MID(text,start_num,num_chars)
  4709. //
  4710. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  4711. return fn.mid("MIDB", argsList)
  4712. }
  4713. // mid is an implementation of the formula function MID and MIDB. TODO:
  4714. // support DBCS include Japanese, Chinese (Simplified), Chinese
  4715. // (Traditional), and Korean.
  4716. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  4717. if argsList.Len() != 3 {
  4718. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  4719. }
  4720. text := argsList.Front().Value.(formulaArg).Value()
  4721. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4722. if startNumArg.Type != ArgNumber {
  4723. return startNumArg
  4724. }
  4725. if numCharsArg.Type != ArgNumber {
  4726. return numCharsArg
  4727. }
  4728. startNum := int(startNumArg.Number)
  4729. if startNum < 0 {
  4730. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4731. }
  4732. textLen := len(text)
  4733. if startNum > textLen {
  4734. return newStringFormulaArg("")
  4735. }
  4736. startNum--
  4737. endNum := startNum + int(numCharsArg.Number)
  4738. if endNum > textLen+1 {
  4739. return newStringFormulaArg(text[startNum:])
  4740. }
  4741. return newStringFormulaArg(text[startNum:endNum])
  4742. }
  4743. // PROPER converts all characters in a supplied text string to proper case
  4744. // (i.e. all letters that do not immediately follow another letter are set to
  4745. // upper case and all other characters are lower case). The syntax of the
  4746. // function is:
  4747. //
  4748. // PROPER(text)
  4749. //
  4750. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4751. if argsList.Len() != 1 {
  4752. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4753. }
  4754. buf := bytes.Buffer{}
  4755. isLetter := false
  4756. for _, char := range argsList.Front().Value.(formulaArg).String {
  4757. if !isLetter && unicode.IsLetter(char) {
  4758. buf.WriteRune(unicode.ToUpper(char))
  4759. } else {
  4760. buf.WriteRune(unicode.ToLower(char))
  4761. }
  4762. isLetter = unicode.IsLetter(char)
  4763. }
  4764. return newStringFormulaArg(buf.String())
  4765. }
  4766. // REPLACE function replaces all or part of a text string with another string.
  4767. // The syntax of the function is:
  4768. //
  4769. // REPLACE(old_text,start_num,num_chars,new_text)
  4770. //
  4771. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  4772. return fn.replace("REPLACE", argsList)
  4773. }
  4774. // REPLACEB replaces part of a text string, based on the number of bytes you
  4775. // specify, with a different text string.
  4776. //
  4777. // REPLACEB(old_text,start_num,num_chars,new_text)
  4778. //
  4779. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  4780. return fn.replace("REPLACEB", argsList)
  4781. }
  4782. // replace is an implementation of the formula function REPLACE and REPLACEB.
  4783. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  4784. // (Traditional), and Korean.
  4785. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  4786. if argsList.Len() != 4 {
  4787. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  4788. }
  4789. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  4790. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4791. if startNumArg.Type != ArgNumber {
  4792. return startNumArg
  4793. }
  4794. if numCharsArg.Type != ArgNumber {
  4795. return numCharsArg
  4796. }
  4797. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  4798. if startIdx > oldTextLen {
  4799. startIdx = oldTextLen + 1
  4800. }
  4801. endIdx := startIdx + int(numCharsArg.Number)
  4802. if endIdx > oldTextLen {
  4803. endIdx = oldTextLen + 1
  4804. }
  4805. if startIdx < 1 || endIdx < 1 {
  4806. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4807. }
  4808. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  4809. return newStringFormulaArg(result)
  4810. }
  4811. // REPT function returns a supplied text string, repeated a specified number
  4812. // of times. The syntax of the function is:
  4813. //
  4814. // REPT(text,number_times)
  4815. //
  4816. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4817. if argsList.Len() != 2 {
  4818. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4819. }
  4820. text := argsList.Front().Value.(formulaArg)
  4821. if text.Type != ArgString {
  4822. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4823. }
  4824. times := argsList.Back().Value.(formulaArg).ToNumber()
  4825. if times.Type != ArgNumber {
  4826. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4827. }
  4828. if times.Number < 0 {
  4829. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4830. }
  4831. if times.Number == 0 {
  4832. return newStringFormulaArg("")
  4833. }
  4834. buf := bytes.Buffer{}
  4835. for i := 0; i < int(times.Number); i++ {
  4836. buf.WriteString(text.String)
  4837. }
  4838. return newStringFormulaArg(buf.String())
  4839. }
  4840. // RIGHT function returns a specified number of characters from the end of a
  4841. // supplied text string. The syntax of the function is:
  4842. //
  4843. // RIGHT(text,[num_chars])
  4844. //
  4845. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  4846. return fn.leftRight("RIGHT", argsList)
  4847. }
  4848. // RIGHTB returns the last character or characters in a text string, based on
  4849. // the number of bytes you specify. The syntax of the function is:
  4850. //
  4851. // RIGHTB(text,[num_bytes])
  4852. //
  4853. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  4854. return fn.leftRight("RIGHTB", argsList)
  4855. }
  4856. // SUBSTITUTE function replaces one or more instances of a given text string,
  4857. // within an original text string. The syntax of the function is:
  4858. //
  4859. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  4860. //
  4861. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  4862. if argsList.Len() != 3 && argsList.Len() != 4 {
  4863. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  4864. }
  4865. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  4866. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  4867. if argsList.Len() == 3 {
  4868. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  4869. }
  4870. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  4871. if instanceNumArg.Type != ArgNumber {
  4872. return instanceNumArg
  4873. }
  4874. instanceNum = int(instanceNumArg.Number)
  4875. if instanceNum < 1 {
  4876. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  4877. }
  4878. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  4879. for {
  4880. count--
  4881. index := strings.Index(str, oldText.Value())
  4882. if index == -1 {
  4883. pos = -1
  4884. break
  4885. } else {
  4886. pos = index + chars
  4887. if count == 0 {
  4888. break
  4889. }
  4890. idx := oldTextLen + index
  4891. chars += idx
  4892. str = str[idx:]
  4893. }
  4894. }
  4895. if pos == -1 {
  4896. return newStringFormulaArg(text.Value())
  4897. }
  4898. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  4899. return newStringFormulaArg(pre + newText.Value() + post)
  4900. }
  4901. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  4902. // words or characters) from a supplied text string. The syntax of the
  4903. // function is:
  4904. //
  4905. // TRIM(text)
  4906. //
  4907. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  4908. if argsList.Len() != 1 {
  4909. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  4910. }
  4911. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  4912. }
  4913. // UNICHAR returns the Unicode character that is referenced by the given
  4914. // numeric value. The syntax of the function is:
  4915. //
  4916. // UNICHAR(number)
  4917. //
  4918. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  4919. if argsList.Len() != 1 {
  4920. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  4921. }
  4922. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  4923. if numArg.Type != ArgNumber {
  4924. return numArg
  4925. }
  4926. if numArg.Number <= 0 || numArg.Number > 55295 {
  4927. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4928. }
  4929. return newStringFormulaArg(string(rune(numArg.Number)))
  4930. }
  4931. // UNICODE function returns the code point for the first character of a
  4932. // supplied text string. The syntax of the function is:
  4933. //
  4934. // UNICODE(text)
  4935. //
  4936. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  4937. return fn.code("UNICODE", argsList)
  4938. }
  4939. // UPPER converts all characters in a supplied text string to upper case. The
  4940. // syntax of the function is:
  4941. //
  4942. // UPPER(text)
  4943. //
  4944. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  4945. if argsList.Len() != 1 {
  4946. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  4947. }
  4948. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  4949. }
  4950. // Conditional Functions
  4951. // IF function tests a supplied condition and returns one result if the
  4952. // condition evaluates to TRUE, and another result if the condition evaluates
  4953. // to FALSE. The syntax of the function is:
  4954. //
  4955. // IF(logical_test,value_if_true,value_if_false)
  4956. //
  4957. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  4958. if argsList.Len() == 0 {
  4959. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  4960. }
  4961. if argsList.Len() > 3 {
  4962. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  4963. }
  4964. token := argsList.Front().Value.(formulaArg)
  4965. var (
  4966. cond bool
  4967. err error
  4968. result string
  4969. )
  4970. switch token.Type {
  4971. case ArgString:
  4972. if cond, err = strconv.ParseBool(token.String); err != nil {
  4973. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4974. }
  4975. if argsList.Len() == 1 {
  4976. return newBoolFormulaArg(cond)
  4977. }
  4978. if cond {
  4979. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  4980. }
  4981. if argsList.Len() == 3 {
  4982. result = argsList.Back().Value.(formulaArg).String
  4983. }
  4984. }
  4985. return newStringFormulaArg(result)
  4986. }
  4987. // Lookup and Reference Functions
  4988. // CHOOSE function returns a value from an array, that corresponds to a
  4989. // supplied index number (position). The syntax of the function is:
  4990. //
  4991. // CHOOSE(index_num,value1,[value2],...)
  4992. //
  4993. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  4994. if argsList.Len() < 2 {
  4995. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  4996. }
  4997. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  4998. if err != nil {
  4999. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5000. }
  5001. if argsList.Len() <= idx {
  5002. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5003. }
  5004. arg := argsList.Front()
  5005. for i := 0; i < idx; i++ {
  5006. arg = arg.Next()
  5007. }
  5008. var result formulaArg
  5009. switch arg.Value.(formulaArg).Type {
  5010. case ArgString:
  5011. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5012. case ArgMatrix:
  5013. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5014. }
  5015. return result
  5016. }
  5017. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5018. // string.
  5019. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5020. for len(pattern) > 0 {
  5021. switch pattern[0] {
  5022. default:
  5023. if len(str) == 0 || str[0] != pattern[0] {
  5024. return false
  5025. }
  5026. case '?':
  5027. if len(str) == 0 && !simple {
  5028. return false
  5029. }
  5030. case '*':
  5031. return deepMatchRune(str, pattern[1:], simple) ||
  5032. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5033. }
  5034. str = str[1:]
  5035. pattern = pattern[1:]
  5036. }
  5037. return len(str) == 0 && len(pattern) == 0
  5038. }
  5039. // matchPattern finds whether the text matches or satisfies the pattern
  5040. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5041. func matchPattern(pattern, name string) (matched bool) {
  5042. if pattern == "" {
  5043. return name == pattern
  5044. }
  5045. if pattern == "*" {
  5046. return true
  5047. }
  5048. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5049. for _, r := range name {
  5050. rname = append(rname, r)
  5051. }
  5052. for _, r := range pattern {
  5053. rpattern = append(rpattern, r)
  5054. }
  5055. simple := false // Does extended wildcard '*' and '?' match.
  5056. return deepMatchRune(rname, rpattern, simple)
  5057. }
  5058. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5059. // formula arguments by given conditions such as case sensitive, if exact
  5060. // match, and make compare result as formula criteria condition type.
  5061. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5062. if lhs.Type != rhs.Type {
  5063. return criteriaErr
  5064. }
  5065. switch lhs.Type {
  5066. case ArgNumber:
  5067. if lhs.Number == rhs.Number {
  5068. return criteriaEq
  5069. }
  5070. if lhs.Number < rhs.Number {
  5071. return criteriaL
  5072. }
  5073. return criteriaG
  5074. case ArgString:
  5075. ls, rs := lhs.String, rhs.String
  5076. if !caseSensitive {
  5077. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5078. }
  5079. if exactMatch {
  5080. match := matchPattern(rs, ls)
  5081. if match {
  5082. return criteriaEq
  5083. }
  5084. return criteriaG
  5085. }
  5086. switch strings.Compare(ls, rs) {
  5087. case 1:
  5088. return criteriaG
  5089. case -1:
  5090. return criteriaL
  5091. case 0:
  5092. return criteriaEq
  5093. }
  5094. return criteriaErr
  5095. case ArgEmpty:
  5096. return criteriaEq
  5097. case ArgList:
  5098. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5099. case ArgMatrix:
  5100. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5101. }
  5102. return criteriaErr
  5103. }
  5104. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5105. // list type formula arguments.
  5106. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5107. if len(lhs.List) < len(rhs.List) {
  5108. return criteriaL
  5109. }
  5110. if len(lhs.List) > len(rhs.List) {
  5111. return criteriaG
  5112. }
  5113. for arg := range lhs.List {
  5114. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5115. if criteria != criteriaEq {
  5116. return criteria
  5117. }
  5118. }
  5119. return criteriaEq
  5120. }
  5121. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5122. // matrix type formula arguments.
  5123. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5124. if len(lhs.Matrix) < len(rhs.Matrix) {
  5125. return criteriaL
  5126. }
  5127. if len(lhs.Matrix) > len(rhs.Matrix) {
  5128. return criteriaG
  5129. }
  5130. for i := range lhs.Matrix {
  5131. left := lhs.Matrix[i]
  5132. right := lhs.Matrix[i]
  5133. if len(left) < len(right) {
  5134. return criteriaL
  5135. }
  5136. if len(left) > len(right) {
  5137. return criteriaG
  5138. }
  5139. for arg := range left {
  5140. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5141. if criteria != criteriaEq {
  5142. return criteria
  5143. }
  5144. }
  5145. }
  5146. return criteriaEq
  5147. }
  5148. // COLUMN function returns the first column number within a supplied reference
  5149. // or the number of the current column. The syntax of the function is:
  5150. //
  5151. // COLUMN([reference])
  5152. //
  5153. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5154. if argsList.Len() > 1 {
  5155. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5156. }
  5157. if argsList.Len() == 1 {
  5158. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5159. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5160. }
  5161. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5162. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5163. }
  5164. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5165. }
  5166. col, _, _ := CellNameToCoordinates(fn.cell)
  5167. return newNumberFormulaArg(float64(col))
  5168. }
  5169. // COLUMNS function receives an Excel range and returns the number of columns
  5170. // that are contained within the range. The syntax of the function is:
  5171. //
  5172. // COLUMNS(array)
  5173. //
  5174. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5175. if argsList.Len() != 1 {
  5176. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5177. }
  5178. var min, max int
  5179. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5180. crs := argsList.Front().Value.(formulaArg).cellRanges
  5181. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5182. if min == 0 {
  5183. min = cr.Value.(cellRange).From.Col
  5184. }
  5185. if min > cr.Value.(cellRange).From.Col {
  5186. min = cr.Value.(cellRange).From.Col
  5187. }
  5188. if min > cr.Value.(cellRange).To.Col {
  5189. min = cr.Value.(cellRange).To.Col
  5190. }
  5191. if max < cr.Value.(cellRange).To.Col {
  5192. max = cr.Value.(cellRange).To.Col
  5193. }
  5194. if max < cr.Value.(cellRange).From.Col {
  5195. max = cr.Value.(cellRange).From.Col
  5196. }
  5197. }
  5198. }
  5199. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5200. cr := argsList.Front().Value.(formulaArg).cellRefs
  5201. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5202. if min == 0 {
  5203. min = refs.Value.(cellRef).Col
  5204. }
  5205. if min > refs.Value.(cellRef).Col {
  5206. min = refs.Value.(cellRef).Col
  5207. }
  5208. if max < refs.Value.(cellRef).Col {
  5209. max = refs.Value.(cellRef).Col
  5210. }
  5211. }
  5212. }
  5213. if max == TotalColumns {
  5214. return newNumberFormulaArg(float64(TotalColumns))
  5215. }
  5216. result := max - min + 1
  5217. if max == min {
  5218. if min == 0 {
  5219. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5220. }
  5221. return newNumberFormulaArg(float64(1))
  5222. }
  5223. return newNumberFormulaArg(float64(result))
  5224. }
  5225. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5226. // (or table), and returns the corresponding value from another row of the
  5227. // array. The syntax of the function is:
  5228. //
  5229. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5230. //
  5231. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5232. if argsList.Len() < 3 {
  5233. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5234. }
  5235. if argsList.Len() > 4 {
  5236. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5237. }
  5238. lookupValue := argsList.Front().Value.(formulaArg)
  5239. tableArray := argsList.Front().Next().Value.(formulaArg)
  5240. if tableArray.Type != ArgMatrix {
  5241. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5242. }
  5243. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5244. if rowArg.Type != ArgNumber {
  5245. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5246. }
  5247. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5248. if argsList.Len() == 4 {
  5249. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5250. if rangeLookup.Type == ArgError {
  5251. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5252. }
  5253. if rangeLookup.Number == 0 {
  5254. exactMatch = true
  5255. }
  5256. }
  5257. row := tableArray.Matrix[0]
  5258. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5259. start:
  5260. for idx, mtx := range row {
  5261. lhs := mtx
  5262. switch lookupValue.Type {
  5263. case ArgNumber:
  5264. if !lookupValue.Boolean {
  5265. lhs = mtx.ToNumber()
  5266. if lhs.Type == ArgError {
  5267. lhs = mtx
  5268. }
  5269. }
  5270. case ArgMatrix:
  5271. lhs = tableArray
  5272. }
  5273. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5274. matchIdx = idx
  5275. wasExact = true
  5276. break start
  5277. }
  5278. }
  5279. } else {
  5280. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  5281. }
  5282. if matchIdx == -1 {
  5283. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5284. }
  5285. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  5286. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  5287. }
  5288. row = tableArray.Matrix[rowIdx]
  5289. if wasExact || !exactMatch {
  5290. return row[matchIdx]
  5291. }
  5292. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5293. }
  5294. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  5295. // data array (or table), and returns the corresponding value from another
  5296. // column of the array. The syntax of the function is:
  5297. //
  5298. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  5299. //
  5300. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  5301. if argsList.Len() < 3 {
  5302. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  5303. }
  5304. if argsList.Len() > 4 {
  5305. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  5306. }
  5307. lookupValue := argsList.Front().Value.(formulaArg)
  5308. tableArray := argsList.Front().Next().Value.(formulaArg)
  5309. if tableArray.Type != ArgMatrix {
  5310. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  5311. }
  5312. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5313. if colIdx.Type != ArgNumber {
  5314. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  5315. }
  5316. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  5317. if argsList.Len() == 4 {
  5318. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5319. if rangeLookup.Type == ArgError {
  5320. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5321. }
  5322. if rangeLookup.Number == 0 {
  5323. exactMatch = true
  5324. }
  5325. }
  5326. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5327. start:
  5328. for idx, mtx := range tableArray.Matrix {
  5329. lhs := mtx[0]
  5330. switch lookupValue.Type {
  5331. case ArgNumber:
  5332. if !lookupValue.Boolean {
  5333. lhs = mtx[0].ToNumber()
  5334. if lhs.Type == ArgError {
  5335. lhs = mtx[0]
  5336. }
  5337. }
  5338. case ArgMatrix:
  5339. lhs = tableArray
  5340. }
  5341. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5342. matchIdx = idx
  5343. wasExact = true
  5344. break start
  5345. }
  5346. }
  5347. } else {
  5348. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  5349. }
  5350. if matchIdx == -1 {
  5351. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5352. }
  5353. mtx := tableArray.Matrix[matchIdx]
  5354. if col < 0 || col >= len(mtx) {
  5355. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  5356. }
  5357. if wasExact || !exactMatch {
  5358. return mtx[col]
  5359. }
  5360. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5361. }
  5362. // vlookupBinarySearch finds the position of a target value when range lookup
  5363. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5364. // return wrong result.
  5365. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5366. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  5367. for low <= high {
  5368. var mid int = low + (high-low)/2
  5369. mtx := tableArray.Matrix[mid]
  5370. lhs := mtx[0]
  5371. switch lookupValue.Type {
  5372. case ArgNumber:
  5373. if !lookupValue.Boolean {
  5374. lhs = mtx[0].ToNumber()
  5375. if lhs.Type == ArgError {
  5376. lhs = mtx[0]
  5377. }
  5378. }
  5379. case ArgMatrix:
  5380. lhs = tableArray
  5381. }
  5382. result := compareFormulaArg(lhs, lookupValue, false, false)
  5383. if result == criteriaEq {
  5384. matchIdx, wasExact = mid, true
  5385. return
  5386. } else if result == criteriaG {
  5387. high = mid - 1
  5388. } else if result == criteriaL {
  5389. matchIdx, low = mid, mid+1
  5390. if lhs.Value() != "" {
  5391. lastMatchIdx = matchIdx
  5392. }
  5393. } else {
  5394. return -1, false
  5395. }
  5396. }
  5397. matchIdx, wasExact = lastMatchIdx, true
  5398. return
  5399. }
  5400. // vlookupBinarySearch finds the position of a target value when range lookup
  5401. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5402. // return wrong result.
  5403. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5404. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  5405. for low <= high {
  5406. var mid int = low + (high-low)/2
  5407. mtx := row[mid]
  5408. result := compareFormulaArg(mtx, lookupValue, false, false)
  5409. if result == criteriaEq {
  5410. matchIdx, wasExact = mid, true
  5411. return
  5412. } else if result == criteriaG {
  5413. high = mid - 1
  5414. } else if result == criteriaL {
  5415. low, lastMatchIdx = mid+1, mid
  5416. } else {
  5417. return -1, false
  5418. }
  5419. }
  5420. matchIdx, wasExact = lastMatchIdx, true
  5421. return
  5422. }
  5423. // LOOKUP function performs an approximate match lookup in a one-column or
  5424. // one-row range, and returns the corresponding value from another one-column
  5425. // or one-row range. The syntax of the function is:
  5426. //
  5427. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  5428. //
  5429. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  5430. if argsList.Len() < 2 {
  5431. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  5432. }
  5433. if argsList.Len() > 3 {
  5434. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  5435. }
  5436. lookupValue := argsList.Front().Value.(formulaArg)
  5437. lookupVector := argsList.Front().Next().Value.(formulaArg)
  5438. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  5439. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  5440. }
  5441. cols, matchIdx := lookupCol(lookupVector), -1
  5442. for idx, col := range cols {
  5443. lhs := lookupValue
  5444. switch col.Type {
  5445. case ArgNumber:
  5446. lhs = lhs.ToNumber()
  5447. if !col.Boolean {
  5448. if lhs.Type == ArgError {
  5449. lhs = lookupValue
  5450. }
  5451. }
  5452. }
  5453. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  5454. matchIdx = idx
  5455. break
  5456. }
  5457. }
  5458. column := cols
  5459. if argsList.Len() == 3 {
  5460. column = lookupCol(argsList.Back().Value.(formulaArg))
  5461. }
  5462. if matchIdx < 0 || matchIdx >= len(column) {
  5463. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  5464. }
  5465. return column[matchIdx]
  5466. }
  5467. // lookupCol extract columns for LOOKUP.
  5468. func lookupCol(arr formulaArg) []formulaArg {
  5469. col := arr.List
  5470. if arr.Type == ArgMatrix {
  5471. col = nil
  5472. for _, r := range arr.Matrix {
  5473. if len(r) > 0 {
  5474. col = append(col, r[0])
  5475. continue
  5476. }
  5477. col = append(col, newEmptyFormulaArg())
  5478. }
  5479. }
  5480. return col
  5481. }
  5482. // ROW function returns the first row number within a supplied reference or
  5483. // the number of the current row. The syntax of the function is:
  5484. //
  5485. // ROW([reference])
  5486. //
  5487. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  5488. if argsList.Len() > 1 {
  5489. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  5490. }
  5491. if argsList.Len() == 1 {
  5492. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5493. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  5494. }
  5495. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5496. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  5497. }
  5498. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5499. }
  5500. _, row, _ := CellNameToCoordinates(fn.cell)
  5501. return newNumberFormulaArg(float64(row))
  5502. }
  5503. // ROWS function takes an Excel range and returns the number of rows that are
  5504. // contained within the range. The syntax of the function is:
  5505. //
  5506. // ROWS(array)
  5507. //
  5508. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  5509. if argsList.Len() != 1 {
  5510. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  5511. }
  5512. var min, max int
  5513. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5514. crs := argsList.Front().Value.(formulaArg).cellRanges
  5515. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5516. if min == 0 {
  5517. min = cr.Value.(cellRange).From.Row
  5518. }
  5519. if min > cr.Value.(cellRange).From.Row {
  5520. min = cr.Value.(cellRange).From.Row
  5521. }
  5522. if min > cr.Value.(cellRange).To.Row {
  5523. min = cr.Value.(cellRange).To.Row
  5524. }
  5525. if max < cr.Value.(cellRange).To.Row {
  5526. max = cr.Value.(cellRange).To.Row
  5527. }
  5528. if max < cr.Value.(cellRange).From.Row {
  5529. max = cr.Value.(cellRange).From.Row
  5530. }
  5531. }
  5532. }
  5533. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5534. cr := argsList.Front().Value.(formulaArg).cellRefs
  5535. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5536. if min == 0 {
  5537. min = refs.Value.(cellRef).Row
  5538. }
  5539. if min > refs.Value.(cellRef).Row {
  5540. min = refs.Value.(cellRef).Row
  5541. }
  5542. if max < refs.Value.(cellRef).Row {
  5543. max = refs.Value.(cellRef).Row
  5544. }
  5545. }
  5546. }
  5547. if max == TotalRows {
  5548. return newStringFormulaArg(strconv.Itoa(TotalRows))
  5549. }
  5550. result := max - min + 1
  5551. if max == min {
  5552. if min == 0 {
  5553. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5554. }
  5555. return newNumberFormulaArg(float64(1))
  5556. }
  5557. return newStringFormulaArg(strconv.Itoa(result))
  5558. }
  5559. // Web Functions
  5560. // ENCODEURL function returns a URL-encoded string, replacing certain
  5561. // non-alphanumeric characters with the percentage symbol (%) and a
  5562. // hexadecimal number. The syntax of the function is:
  5563. //
  5564. // ENCODEURL(url)
  5565. //
  5566. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  5567. if argsList.Len() != 1 {
  5568. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  5569. }
  5570. token := argsList.Front().Value.(formulaArg).Value()
  5571. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  5572. }