calc.go 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "github.com/xuri/efp"
  26. )
  27. // Excel formula errors
  28. const (
  29. formulaErrorDIV = "#DIV/0!"
  30. formulaErrorNAME = "#NAME?"
  31. formulaErrorNA = "#N/A"
  32. formulaErrorNUM = "#NUM!"
  33. formulaErrorVALUE = "#VALUE!"
  34. formulaErrorREF = "#REF!"
  35. formulaErrorNULL = "#NULL"
  36. formulaErrorSPILL = "#SPILL!"
  37. formulaErrorCALC = "#CALC!"
  38. formulaErrorGETTINGDATA = "#GETTING_DATA"
  39. )
  40. // cellRef defines the structure of a cell reference.
  41. type cellRef struct {
  42. Col int
  43. Row int
  44. Sheet string
  45. }
  46. // cellRef defines the structure of a cell range.
  47. type cellRange struct {
  48. From cellRef
  49. To cellRef
  50. }
  51. // formula criteria condition enumeration.
  52. const (
  53. _ byte = iota
  54. criteriaEq
  55. criteriaLe
  56. criteriaGe
  57. criteriaL
  58. criteriaG
  59. criteriaBeg
  60. criteriaEnd
  61. )
  62. // formulaCriteria defined formula criteria parser result.
  63. type formulaCriteria struct {
  64. Type byte
  65. Condition string
  66. }
  67. // ArgType is the type if formula argument type.
  68. type ArgType byte
  69. // Formula argument types enumeration.
  70. const (
  71. ArgUnknown ArgType = iota
  72. ArgString
  73. ArgMatrix
  74. )
  75. // formulaArg is the argument of a formula or function.
  76. type formulaArg struct {
  77. String string
  78. Matrix [][]formulaArg
  79. Type ArgType
  80. }
  81. // formulaFuncs is the type of the formula functions.
  82. type formulaFuncs struct{}
  83. // CalcCellValue provides a function to get calculated cell value. This
  84. // feature is currently in working processing. Array formula, table formula
  85. // and some other formulas are not supported currently.
  86. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  87. var (
  88. formula string
  89. token efp.Token
  90. )
  91. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  92. return
  93. }
  94. ps := efp.ExcelParser()
  95. tokens := ps.Parse(formula)
  96. if tokens == nil {
  97. return
  98. }
  99. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  100. return
  101. }
  102. result = token.TValue
  103. return
  104. }
  105. // getPriority calculate arithmetic operator priority.
  106. func getPriority(token efp.Token) (pri int) {
  107. var priority = map[string]int{
  108. "*": 2,
  109. "/": 2,
  110. "+": 1,
  111. "-": 1,
  112. }
  113. pri, _ = priority[token.TValue]
  114. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  115. pri = 3
  116. }
  117. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  118. pri = 0
  119. }
  120. return
  121. }
  122. // evalInfixExp evaluate syntax analysis by given infix expression after
  123. // lexical analysis. Evaluate an infix expression containing formulas by
  124. // stacks:
  125. //
  126. // opd - Operand
  127. // opt - Operator
  128. // opf - Operation formula
  129. // opfd - Operand of the operation formula
  130. // opft - Operator of the operation formula
  131. //
  132. // Evaluate arguments of the operation formula by list:
  133. //
  134. // args - Arguments of the operation formula
  135. //
  136. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  137. //
  138. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  139. var err error
  140. opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  141. argsList := list.New()
  142. for i := 0; i < len(tokens); i++ {
  143. token := tokens[i]
  144. // out of function stack
  145. if opfStack.Len() == 0 {
  146. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  147. return efp.Token{}, err
  148. }
  149. }
  150. // function start
  151. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  152. opfStack.Push(token)
  153. continue
  154. }
  155. // in function stack, walk 2 token at once
  156. if opfStack.Len() > 0 {
  157. var nextToken efp.Token
  158. if i+1 < len(tokens) {
  159. nextToken = tokens[i+1]
  160. }
  161. // current token is args or range, skip next token, order required: parse reference first
  162. if token.TSubType == efp.TokenSubTypeRange {
  163. if !opftStack.Empty() {
  164. // parse reference: must reference at here
  165. result, err := f.parseReference(sheet, token.TValue)
  166. if err != nil {
  167. return efp.Token{TValue: formulaErrorNAME}, err
  168. }
  169. if result.Type != ArgString {
  170. return efp.Token{}, errors.New(formulaErrorVALUE)
  171. }
  172. opfdStack.Push(efp.Token{
  173. TType: efp.TokenTypeOperand,
  174. TSubType: efp.TokenSubTypeNumber,
  175. TValue: result.String,
  176. })
  177. continue
  178. }
  179. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  180. // parse reference: reference or range at here
  181. result, err := f.parseReference(sheet, token.TValue)
  182. if err != nil {
  183. return efp.Token{TValue: formulaErrorNAME}, err
  184. }
  185. if result.Type == ArgUnknown {
  186. return efp.Token{}, errors.New(formulaErrorVALUE)
  187. }
  188. argsList.PushBack(result)
  189. continue
  190. }
  191. }
  192. // check current token is opft
  193. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  194. return efp.Token{}, err
  195. }
  196. // current token is arg
  197. if token.TType == efp.TokenTypeArgument {
  198. for !opftStack.Empty() {
  199. // calculate trigger
  200. topOpt := opftStack.Peek().(efp.Token)
  201. if err := calculate(opfdStack, topOpt); err != nil {
  202. return efp.Token{}, err
  203. }
  204. opftStack.Pop()
  205. }
  206. if !opfdStack.Empty() {
  207. argsList.PushBack(formulaArg{
  208. String: opfdStack.Pop().(efp.Token).TValue,
  209. Type: ArgString,
  210. })
  211. }
  212. continue
  213. }
  214. // current token is logical
  215. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  216. }
  217. // current token is text
  218. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  219. argsList.PushBack(formulaArg{
  220. String: token.TValue,
  221. Type: ArgString,
  222. })
  223. }
  224. // current token is function stop
  225. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  226. for !opftStack.Empty() {
  227. // calculate trigger
  228. topOpt := opftStack.Peek().(efp.Token)
  229. if err := calculate(opfdStack, topOpt); err != nil {
  230. return efp.Token{}, err
  231. }
  232. opftStack.Pop()
  233. }
  234. // push opfd to args
  235. if opfdStack.Len() > 0 {
  236. argsList.PushBack(formulaArg{
  237. String: opfdStack.Pop().(efp.Token).TValue,
  238. Type: ArgString,
  239. })
  240. }
  241. // call formula function to evaluate
  242. result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  243. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  244. []reflect.Value{reflect.ValueOf(argsList)})
  245. if err != nil {
  246. return efp.Token{}, err
  247. }
  248. argsList.Init()
  249. opfStack.Pop()
  250. if opfStack.Len() > 0 { // still in function stack
  251. opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  252. } else {
  253. opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  254. }
  255. }
  256. }
  257. }
  258. for optStack.Len() != 0 {
  259. topOpt := optStack.Peek().(efp.Token)
  260. if err = calculate(opdStack, topOpt); err != nil {
  261. return efp.Token{}, err
  262. }
  263. optStack.Pop()
  264. }
  265. if opdStack.Len() == 0 {
  266. return efp.Token{}, errors.New("formula not valid")
  267. }
  268. return opdStack.Peek().(efp.Token), err
  269. }
  270. // calcAdd evaluate addition arithmetic operations.
  271. func calcAdd(opdStack *Stack) error {
  272. if opdStack.Len() < 2 {
  273. return errors.New("formula not valid")
  274. }
  275. rOpd := opdStack.Pop().(efp.Token)
  276. lOpd := opdStack.Pop().(efp.Token)
  277. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  278. if err != nil {
  279. return err
  280. }
  281. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  282. if err != nil {
  283. return err
  284. }
  285. result := lOpdVal + rOpdVal
  286. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  287. return nil
  288. }
  289. // calcSubtract evaluate subtraction arithmetic operations.
  290. func calcSubtract(opdStack *Stack) error {
  291. if opdStack.Len() < 2 {
  292. return errors.New("formula not valid")
  293. }
  294. rOpd := opdStack.Pop().(efp.Token)
  295. lOpd := opdStack.Pop().(efp.Token)
  296. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  297. if err != nil {
  298. return err
  299. }
  300. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  301. if err != nil {
  302. return err
  303. }
  304. result := lOpdVal - rOpdVal
  305. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  306. return nil
  307. }
  308. // calcMultiply evaluate multiplication arithmetic operations.
  309. func calcMultiply(opdStack *Stack) error {
  310. if opdStack.Len() < 2 {
  311. return errors.New("formula not valid")
  312. }
  313. rOpd := opdStack.Pop().(efp.Token)
  314. lOpd := opdStack.Pop().(efp.Token)
  315. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  316. if err != nil {
  317. return err
  318. }
  319. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  320. if err != nil {
  321. return err
  322. }
  323. result := lOpdVal * rOpdVal
  324. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  325. return nil
  326. }
  327. // calcDivide evaluate division arithmetic operations.
  328. func calcDivide(opdStack *Stack) error {
  329. if opdStack.Len() < 2 {
  330. return errors.New("formula not valid")
  331. }
  332. rOpd := opdStack.Pop().(efp.Token)
  333. lOpd := opdStack.Pop().(efp.Token)
  334. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  335. if err != nil {
  336. return err
  337. }
  338. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  339. if err != nil {
  340. return err
  341. }
  342. result := lOpdVal / rOpdVal
  343. if rOpdVal == 0 {
  344. return errors.New(formulaErrorDIV)
  345. }
  346. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  347. return nil
  348. }
  349. // calculate evaluate basic arithmetic operations.
  350. func calculate(opdStack *Stack, opt efp.Token) error {
  351. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  352. if opdStack.Len() < 1 {
  353. return errors.New("formula not valid")
  354. }
  355. opd := opdStack.Pop().(efp.Token)
  356. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  357. if err != nil {
  358. return err
  359. }
  360. result := 0 - opdVal
  361. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  362. }
  363. if opt.TValue == "+" {
  364. if err := calcAdd(opdStack); err != nil {
  365. return err
  366. }
  367. }
  368. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  369. if err := calcSubtract(opdStack); err != nil {
  370. return err
  371. }
  372. }
  373. if opt.TValue == "*" {
  374. if err := calcMultiply(opdStack); err != nil {
  375. return err
  376. }
  377. }
  378. if opt.TValue == "/" {
  379. if err := calcDivide(opdStack); err != nil {
  380. return err
  381. }
  382. }
  383. return nil
  384. }
  385. // parseOperatorPrefixToken parse operator prefix token.
  386. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  387. if optStack.Len() == 0 {
  388. optStack.Push(token)
  389. } else {
  390. tokenPriority := getPriority(token)
  391. topOpt := optStack.Peek().(efp.Token)
  392. topOptPriority := getPriority(topOpt)
  393. if tokenPriority > topOptPriority {
  394. optStack.Push(token)
  395. } else {
  396. for tokenPriority <= topOptPriority {
  397. optStack.Pop()
  398. if err = calculate(opdStack, topOpt); err != nil {
  399. return
  400. }
  401. if optStack.Len() > 0 {
  402. topOpt = optStack.Peek().(efp.Token)
  403. topOptPriority = getPriority(topOpt)
  404. continue
  405. }
  406. break
  407. }
  408. optStack.Push(token)
  409. }
  410. }
  411. return
  412. }
  413. // isOperatorPrefixToken determine if the token is parse operator prefix
  414. // token.
  415. func isOperatorPrefixToken(token efp.Token) bool {
  416. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) ||
  417. token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
  418. return true
  419. }
  420. return false
  421. }
  422. // parseToken parse basic arithmetic operator priority and evaluate based on
  423. // operators and operands.
  424. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  425. // parse reference: must reference at here
  426. if token.TSubType == efp.TokenSubTypeRange {
  427. result, err := f.parseReference(sheet, token.TValue)
  428. if err != nil {
  429. return errors.New(formulaErrorNAME)
  430. }
  431. if result.Type != ArgString {
  432. return errors.New(formulaErrorVALUE)
  433. }
  434. token.TValue = result.String
  435. token.TType = efp.TokenTypeOperand
  436. token.TSubType = efp.TokenSubTypeNumber
  437. }
  438. if isOperatorPrefixToken(token) {
  439. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  440. return err
  441. }
  442. }
  443. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  444. optStack.Push(token)
  445. }
  446. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  447. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  448. topOpt := optStack.Peek().(efp.Token)
  449. if err := calculate(opdStack, topOpt); err != nil {
  450. return err
  451. }
  452. optStack.Pop()
  453. }
  454. optStack.Pop()
  455. }
  456. // opd
  457. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  458. opdStack.Push(token)
  459. }
  460. return nil
  461. }
  462. // parseReference parse reference and extract values by given reference
  463. // characters and default sheet name.
  464. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  465. reference = strings.Replace(reference, "$", "", -1)
  466. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  467. for _, ref := range strings.Split(reference, ":") {
  468. tokens := strings.Split(ref, "!")
  469. cr := cellRef{}
  470. if len(tokens) == 2 { // have a worksheet name
  471. cr.Sheet = tokens[0]
  472. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  473. return
  474. }
  475. if refs.Len() > 0 {
  476. e := refs.Back()
  477. cellRefs.PushBack(e.Value.(cellRef))
  478. refs.Remove(e)
  479. }
  480. refs.PushBack(cr)
  481. continue
  482. }
  483. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  484. return
  485. }
  486. e := refs.Back()
  487. if e == nil {
  488. cr.Sheet = sheet
  489. refs.PushBack(cr)
  490. continue
  491. }
  492. cellRanges.PushBack(cellRange{
  493. From: e.Value.(cellRef),
  494. To: cr,
  495. })
  496. refs.Remove(e)
  497. }
  498. if refs.Len() > 0 {
  499. e := refs.Back()
  500. cellRefs.PushBack(e.Value.(cellRef))
  501. refs.Remove(e)
  502. }
  503. arg, err = f.rangeResolver(cellRefs, cellRanges)
  504. return
  505. }
  506. // prepareValueRange prepare value range.
  507. func prepareValueRange(cr cellRange, valueRange []int) {
  508. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  509. valueRange[0] = cr.From.Row
  510. }
  511. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  512. valueRange[2] = cr.From.Col
  513. }
  514. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  515. valueRange[1] = cr.To.Row
  516. }
  517. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  518. valueRange[3] = cr.To.Col
  519. }
  520. }
  521. // prepareValueRef prepare value reference.
  522. func prepareValueRef(cr cellRef, valueRange []int) {
  523. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  524. valueRange[0] = cr.Row
  525. }
  526. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  527. valueRange[2] = cr.Col
  528. }
  529. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  530. valueRange[1] = cr.Row
  531. }
  532. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  533. valueRange[3] = cr.Col
  534. }
  535. }
  536. // rangeResolver extract value as string from given reference and range list.
  537. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  538. // be reference A1:B3.
  539. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  540. // value range order: from row, to row, from column, to column
  541. valueRange := []int{0, 0, 0, 0}
  542. var sheet string
  543. // prepare value range
  544. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  545. cr := temp.Value.(cellRange)
  546. if cr.From.Sheet != cr.To.Sheet {
  547. err = errors.New(formulaErrorVALUE)
  548. }
  549. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  550. sortCoordinates(rng)
  551. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  552. prepareValueRange(cr, valueRange)
  553. if cr.From.Sheet != "" {
  554. sheet = cr.From.Sheet
  555. }
  556. }
  557. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  558. cr := temp.Value.(cellRef)
  559. if cr.Sheet != "" {
  560. sheet = cr.Sheet
  561. }
  562. prepareValueRef(cr, valueRange)
  563. }
  564. // extract value from ranges
  565. if cellRanges.Len() > 0 {
  566. arg.Type = ArgMatrix
  567. for row := valueRange[0]; row <= valueRange[1]; row++ {
  568. var matrixRow = []formulaArg{}
  569. for col := valueRange[2]; col <= valueRange[3]; col++ {
  570. var cell, value string
  571. if cell, err = CoordinatesToCellName(col, row); err != nil {
  572. return
  573. }
  574. if value, err = f.GetCellValue(sheet, cell); err != nil {
  575. return
  576. }
  577. matrixRow = append(matrixRow, formulaArg{
  578. String: value,
  579. Type: ArgString,
  580. })
  581. }
  582. arg.Matrix = append(arg.Matrix, matrixRow)
  583. }
  584. return
  585. }
  586. // extract value from references
  587. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  588. cr := temp.Value.(cellRef)
  589. var cell string
  590. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  591. return
  592. }
  593. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  594. return
  595. }
  596. arg.Type = ArgString
  597. }
  598. return
  599. }
  600. // callFuncByName calls the no error or only error return function with
  601. // reflect by given receiver, name and parameters.
  602. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
  603. function := reflect.ValueOf(receiver).MethodByName(name)
  604. if function.IsValid() {
  605. rt := function.Call(params)
  606. if len(rt) == 0 {
  607. return
  608. }
  609. if !rt[1].IsNil() {
  610. err = rt[1].Interface().(error)
  611. return
  612. }
  613. result = rt[0].Interface().(string)
  614. return
  615. }
  616. err = fmt.Errorf("not support %s function", name)
  617. return
  618. }
  619. // formulaCriteriaParser parse formula criteria.
  620. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  621. fc = &formulaCriteria{}
  622. if exp == "" {
  623. return
  624. }
  625. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  626. fc.Type, fc.Condition = criteriaEq, match[1]
  627. return
  628. }
  629. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  630. fc.Type, fc.Condition = criteriaEq, match[1]
  631. return
  632. }
  633. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  634. fc.Type, fc.Condition = criteriaLe, match[1]
  635. return
  636. }
  637. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  638. fc.Type, fc.Condition = criteriaGe, match[1]
  639. return
  640. }
  641. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  642. fc.Type, fc.Condition = criteriaL, match[1]
  643. return
  644. }
  645. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  646. fc.Type, fc.Condition = criteriaG, match[1]
  647. return
  648. }
  649. if strings.Contains(exp, "*") {
  650. if strings.HasPrefix(exp, "*") {
  651. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  652. }
  653. if strings.HasSuffix(exp, "*") {
  654. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  655. }
  656. return
  657. }
  658. fc.Type, fc.Condition = criteriaEq, exp
  659. return
  660. }
  661. // formulaCriteriaEval evaluate formula criteria expression.
  662. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  663. var value, expected float64
  664. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  665. value, _ = strconv.ParseFloat(val, 64)
  666. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  667. return
  668. }
  669. return
  670. }
  671. switch criteria.Type {
  672. case criteriaEq:
  673. return val == criteria.Condition, err
  674. case criteriaLe:
  675. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  676. return
  677. }
  678. return value <= expected, err
  679. case criteriaGe:
  680. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  681. return
  682. }
  683. return value >= expected, err
  684. case criteriaL:
  685. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  686. return
  687. }
  688. return value < expected, err
  689. case criteriaG:
  690. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  691. return
  692. }
  693. return value > expected, err
  694. case criteriaBeg:
  695. return strings.HasPrefix(val, criteria.Condition), err
  696. case criteriaEnd:
  697. return strings.HasSuffix(val, criteria.Condition), err
  698. }
  699. return
  700. }
  701. // Math and Trigonometric functions
  702. // ABS function returns the absolute value of any supplied number. The syntax
  703. // of the function is:
  704. //
  705. // ABS(number)
  706. //
  707. func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
  708. if argsList.Len() != 1 {
  709. err = errors.New("ABS requires 1 numeric argument")
  710. return
  711. }
  712. var val float64
  713. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  714. err = errors.New(formulaErrorVALUE)
  715. return
  716. }
  717. result = fmt.Sprintf("%g", math.Abs(val))
  718. return
  719. }
  720. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  721. // number, and returns an angle, in radians, between 0 and π. The syntax of
  722. // the function is:
  723. //
  724. // ACOS(number)
  725. //
  726. func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
  727. if argsList.Len() != 1 {
  728. err = errors.New("ACOS requires 1 numeric argument")
  729. return
  730. }
  731. var val float64
  732. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  733. err = errors.New(formulaErrorVALUE)
  734. return
  735. }
  736. result = fmt.Sprintf("%g", math.Acos(val))
  737. return
  738. }
  739. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  740. // of the function is:
  741. //
  742. // ACOSH(number)
  743. //
  744. func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
  745. if argsList.Len() != 1 {
  746. err = errors.New("ACOSH requires 1 numeric argument")
  747. return
  748. }
  749. var val float64
  750. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  751. err = errors.New(formulaErrorVALUE)
  752. return
  753. }
  754. result = fmt.Sprintf("%g", math.Acosh(val))
  755. return
  756. }
  757. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  758. // given number, and returns an angle, in radians, between 0 and π. The syntax
  759. // of the function is:
  760. //
  761. // ACOT(number)
  762. //
  763. func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
  764. if argsList.Len() != 1 {
  765. err = errors.New("ACOT requires 1 numeric argument")
  766. return
  767. }
  768. var val float64
  769. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  770. err = errors.New(formulaErrorVALUE)
  771. return
  772. }
  773. result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
  774. return
  775. }
  776. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  777. // value. The syntax of the function is:
  778. //
  779. // ACOTH(number)
  780. //
  781. func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
  782. if argsList.Len() != 1 {
  783. err = errors.New("ACOTH requires 1 numeric argument")
  784. return
  785. }
  786. var val float64
  787. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  788. err = errors.New(formulaErrorVALUE)
  789. return
  790. }
  791. result = fmt.Sprintf("%g", math.Atanh(1/val))
  792. return
  793. }
  794. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  795. // of the function is:
  796. //
  797. // ARABIC(text)
  798. //
  799. func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
  800. if argsList.Len() != 1 {
  801. err = errors.New("ARABIC requires 1 numeric argument")
  802. return
  803. }
  804. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  805. val, last, prefix := 0.0, 0.0, 1.0
  806. for _, char := range argsList.Front().Value.(formulaArg).String {
  807. digit := 0.0
  808. if char == '-' {
  809. prefix = -1
  810. continue
  811. }
  812. digit, _ = charMap[char]
  813. val += digit
  814. switch {
  815. case last == digit && (last == 5 || last == 50 || last == 500):
  816. result = formulaErrorVALUE
  817. return
  818. case 2*last == digit:
  819. result = formulaErrorVALUE
  820. return
  821. }
  822. if last < digit {
  823. val -= 2 * last
  824. }
  825. last = digit
  826. }
  827. result = fmt.Sprintf("%g", prefix*val)
  828. return
  829. }
  830. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  831. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  832. // of the function is:
  833. //
  834. // ASIN(number)
  835. //
  836. func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
  837. if argsList.Len() != 1 {
  838. err = errors.New("ASIN requires 1 numeric argument")
  839. return
  840. }
  841. var val float64
  842. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  843. err = errors.New(formulaErrorVALUE)
  844. return
  845. }
  846. result = fmt.Sprintf("%g", math.Asin(val))
  847. return
  848. }
  849. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  850. // The syntax of the function is:
  851. //
  852. // ASINH(number)
  853. //
  854. func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
  855. if argsList.Len() != 1 {
  856. err = errors.New("ASINH requires 1 numeric argument")
  857. return
  858. }
  859. var val float64
  860. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  861. err = errors.New(formulaErrorVALUE)
  862. return
  863. }
  864. result = fmt.Sprintf("%g", math.Asinh(val))
  865. return
  866. }
  867. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  868. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  869. // syntax of the function is:
  870. //
  871. // ATAN(number)
  872. //
  873. func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
  874. if argsList.Len() != 1 {
  875. err = errors.New("ATAN requires 1 numeric argument")
  876. return
  877. }
  878. var val float64
  879. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  880. err = errors.New(formulaErrorVALUE)
  881. return
  882. }
  883. result = fmt.Sprintf("%g", math.Atan(val))
  884. return
  885. }
  886. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  887. // number. The syntax of the function is:
  888. //
  889. // ATANH(number)
  890. //
  891. func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
  892. if argsList.Len() != 1 {
  893. err = errors.New("ATANH requires 1 numeric argument")
  894. return
  895. }
  896. var val float64
  897. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  898. err = errors.New(formulaErrorVALUE)
  899. return
  900. }
  901. result = fmt.Sprintf("%g", math.Atanh(val))
  902. return
  903. }
  904. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  905. // given set of x and y coordinates, and returns an angle, in radians, between
  906. // -π/2 and +π/2. The syntax of the function is:
  907. //
  908. // ATAN2(x_num,y_num)
  909. //
  910. func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
  911. if argsList.Len() != 2 {
  912. err = errors.New("ATAN2 requires 2 numeric arguments")
  913. return
  914. }
  915. var x, y float64
  916. if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  917. err = errors.New(formulaErrorVALUE)
  918. return
  919. }
  920. if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  921. err = errors.New(formulaErrorVALUE)
  922. return
  923. }
  924. result = fmt.Sprintf("%g", math.Atan2(x, y))
  925. return
  926. }
  927. // BASE function converts a number into a supplied base (radix), and returns a
  928. // text representation of the calculated value. The syntax of the function is:
  929. //
  930. // BASE(number,radix,[min_length])
  931. //
  932. func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
  933. if argsList.Len() < 2 {
  934. err = errors.New("BASE requires at least 2 arguments")
  935. return
  936. }
  937. if argsList.Len() > 3 {
  938. err = errors.New("BASE allows at most 3 arguments")
  939. return
  940. }
  941. var number float64
  942. var radix, minLength int
  943. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  944. err = errors.New(formulaErrorVALUE)
  945. return
  946. }
  947. if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  948. err = errors.New(formulaErrorVALUE)
  949. return
  950. }
  951. if radix < 2 || radix > 36 {
  952. err = errors.New("radix must be an integer >= 2 and <= 36")
  953. return
  954. }
  955. if argsList.Len() > 2 {
  956. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  957. err = errors.New(formulaErrorVALUE)
  958. return
  959. }
  960. }
  961. result = strconv.FormatInt(int64(number), radix)
  962. if len(result) < minLength {
  963. result = strings.Repeat("0", minLength-len(result)) + result
  964. }
  965. result = strings.ToUpper(result)
  966. return
  967. }
  968. // CEILING function rounds a supplied number away from zero, to the nearest
  969. // multiple of a given number. The syntax of the function is:
  970. //
  971. // CEILING(number,significance)
  972. //
  973. func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
  974. if argsList.Len() == 0 {
  975. err = errors.New("CEILING requires at least 1 argument")
  976. return
  977. }
  978. if argsList.Len() > 2 {
  979. err = errors.New("CEILING allows at most 2 arguments")
  980. return
  981. }
  982. number, significance, res := 0.0, 1.0, 0.0
  983. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  984. err = errors.New(formulaErrorVALUE)
  985. return
  986. }
  987. if number < 0 {
  988. significance = -1
  989. }
  990. if argsList.Len() > 1 {
  991. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  992. err = errors.New(formulaErrorVALUE)
  993. return
  994. }
  995. }
  996. if significance < 0 && number > 0 {
  997. err = errors.New("negative sig to CEILING invalid")
  998. return
  999. }
  1000. if argsList.Len() == 1 {
  1001. result = fmt.Sprintf("%g", math.Ceil(number))
  1002. return
  1003. }
  1004. number, res = math.Modf(number / significance)
  1005. if res > 0 {
  1006. number++
  1007. }
  1008. result = fmt.Sprintf("%g", number*significance)
  1009. return
  1010. }
  1011. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1012. // significance. The syntax of the function is:
  1013. //
  1014. // CEILING.MATH(number,[significance],[mode])
  1015. //
  1016. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
  1017. if argsList.Len() == 0 {
  1018. err = errors.New("CEILING.MATH requires at least 1 argument")
  1019. return
  1020. }
  1021. if argsList.Len() > 3 {
  1022. err = errors.New("CEILING.MATH allows at most 3 arguments")
  1023. return
  1024. }
  1025. number, significance, mode := 0.0, 1.0, 1.0
  1026. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1027. err = errors.New(formulaErrorVALUE)
  1028. return
  1029. }
  1030. if number < 0 {
  1031. significance = -1
  1032. }
  1033. if argsList.Len() > 1 {
  1034. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1035. err = errors.New(formulaErrorVALUE)
  1036. return
  1037. }
  1038. }
  1039. if argsList.Len() == 1 {
  1040. result = fmt.Sprintf("%g", math.Ceil(number))
  1041. return
  1042. }
  1043. if argsList.Len() > 2 {
  1044. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1045. err = errors.New(formulaErrorVALUE)
  1046. return
  1047. }
  1048. }
  1049. val, res := math.Modf(number / significance)
  1050. if res != 0 {
  1051. if number > 0 {
  1052. val++
  1053. } else if mode < 0 {
  1054. val--
  1055. }
  1056. }
  1057. result = fmt.Sprintf("%g", val*significance)
  1058. return
  1059. }
  1060. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1061. // number's sign), to the nearest multiple of a given number. The syntax of
  1062. // the function is:
  1063. //
  1064. // CEILING.PRECISE(number,[significance])
  1065. //
  1066. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
  1067. if argsList.Len() == 0 {
  1068. err = errors.New("CEILING.PRECISE requires at least 1 argument")
  1069. return
  1070. }
  1071. if argsList.Len() > 2 {
  1072. err = errors.New("CEILING.PRECISE allows at most 2 arguments")
  1073. return
  1074. }
  1075. number, significance := 0.0, 1.0
  1076. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1077. err = errors.New(formulaErrorVALUE)
  1078. return
  1079. }
  1080. if number < 0 {
  1081. significance = -1
  1082. }
  1083. if argsList.Len() == 1 {
  1084. result = fmt.Sprintf("%g", math.Ceil(number))
  1085. return
  1086. }
  1087. if argsList.Len() > 1 {
  1088. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1089. err = errors.New(formulaErrorVALUE)
  1090. return
  1091. }
  1092. significance = math.Abs(significance)
  1093. if significance == 0 {
  1094. result = "0"
  1095. return
  1096. }
  1097. }
  1098. val, res := math.Modf(number / significance)
  1099. if res != 0 {
  1100. if number > 0 {
  1101. val++
  1102. }
  1103. }
  1104. result = fmt.Sprintf("%g", val*significance)
  1105. return
  1106. }
  1107. // COMBIN function calculates the number of combinations (in any order) of a
  1108. // given number objects from a set. The syntax of the function is:
  1109. //
  1110. // COMBIN(number,number_chosen)
  1111. //
  1112. func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
  1113. if argsList.Len() != 2 {
  1114. err = errors.New("COMBIN requires 2 argument")
  1115. return
  1116. }
  1117. number, chosen, val := 0.0, 0.0, 1.0
  1118. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1119. err = errors.New(formulaErrorVALUE)
  1120. return
  1121. }
  1122. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1123. err = errors.New(formulaErrorVALUE)
  1124. return
  1125. }
  1126. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1127. if chosen > number {
  1128. err = errors.New("COMBIN requires number >= number_chosen")
  1129. return
  1130. }
  1131. if chosen == number || chosen == 0 {
  1132. result = "1"
  1133. return
  1134. }
  1135. for c := float64(1); c <= chosen; c++ {
  1136. val *= (number + 1 - c) / c
  1137. }
  1138. result = fmt.Sprintf("%g", math.Ceil(val))
  1139. return
  1140. }
  1141. // COMBINA function calculates the number of combinations, with repetitions,
  1142. // of a given number objects from a set. The syntax of the function is:
  1143. //
  1144. // COMBINA(number,number_chosen)
  1145. //
  1146. func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
  1147. if argsList.Len() != 2 {
  1148. err = errors.New("COMBINA requires 2 argument")
  1149. return
  1150. }
  1151. var number, chosen float64
  1152. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1153. err = errors.New(formulaErrorVALUE)
  1154. return
  1155. }
  1156. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1157. err = errors.New(formulaErrorVALUE)
  1158. return
  1159. }
  1160. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1161. if number < chosen {
  1162. err = errors.New("COMBINA requires number > number_chosen")
  1163. return
  1164. }
  1165. if number == 0 {
  1166. result = "0"
  1167. return
  1168. }
  1169. args := list.New()
  1170. args.PushBack(formulaArg{
  1171. String: fmt.Sprintf("%g", number+chosen-1),
  1172. Type: ArgString,
  1173. })
  1174. args.PushBack(formulaArg{
  1175. String: fmt.Sprintf("%g", number-1),
  1176. Type: ArgString,
  1177. })
  1178. return fn.COMBIN(args)
  1179. }
  1180. // COS function calculates the cosine of a given angle. The syntax of the
  1181. // function is:
  1182. //
  1183. // COS(number)
  1184. //
  1185. func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
  1186. if argsList.Len() != 1 {
  1187. err = errors.New("COS requires 1 numeric argument")
  1188. return
  1189. }
  1190. var val float64
  1191. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1192. err = errors.New(formulaErrorVALUE)
  1193. return
  1194. }
  1195. result = fmt.Sprintf("%g", math.Cos(val))
  1196. return
  1197. }
  1198. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1199. // The syntax of the function is:
  1200. //
  1201. // COSH(number)
  1202. //
  1203. func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
  1204. if argsList.Len() != 1 {
  1205. err = errors.New("COSH requires 1 numeric argument")
  1206. return
  1207. }
  1208. var val float64
  1209. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1210. err = errors.New(formulaErrorVALUE)
  1211. return
  1212. }
  1213. result = fmt.Sprintf("%g", math.Cosh(val))
  1214. return
  1215. }
  1216. // COT function calculates the cotangent of a given angle. The syntax of the
  1217. // function is:
  1218. //
  1219. // COT(number)
  1220. //
  1221. func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
  1222. if argsList.Len() != 1 {
  1223. err = errors.New("COT requires 1 numeric argument")
  1224. return
  1225. }
  1226. var val float64
  1227. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1228. err = errors.New(formulaErrorVALUE)
  1229. return
  1230. }
  1231. if val == 0 {
  1232. err = errors.New(formulaErrorDIV)
  1233. return
  1234. }
  1235. result = fmt.Sprintf("%g", math.Tan(val))
  1236. return
  1237. }
  1238. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1239. // angle. The syntax of the function is:
  1240. //
  1241. // COTH(number)
  1242. //
  1243. func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
  1244. if argsList.Len() != 1 {
  1245. err = errors.New("COTH requires 1 numeric argument")
  1246. return
  1247. }
  1248. var val float64
  1249. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1250. err = errors.New(formulaErrorVALUE)
  1251. return
  1252. }
  1253. if val == 0 {
  1254. err = errors.New(formulaErrorDIV)
  1255. return
  1256. }
  1257. result = fmt.Sprintf("%g", math.Tanh(val))
  1258. return
  1259. }
  1260. // CSC function calculates the cosecant of a given angle. The syntax of the
  1261. // function is:
  1262. //
  1263. // CSC(number)
  1264. //
  1265. func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
  1266. if argsList.Len() != 1 {
  1267. err = errors.New("CSC requires 1 numeric argument")
  1268. return
  1269. }
  1270. var val float64
  1271. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1272. err = errors.New(formulaErrorVALUE)
  1273. return
  1274. }
  1275. if val == 0 {
  1276. err = errors.New(formulaErrorDIV)
  1277. return
  1278. }
  1279. result = fmt.Sprintf("%g", 1/math.Sin(val))
  1280. return
  1281. }
  1282. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1283. // angle. The syntax of the function is:
  1284. //
  1285. // CSCH(number)
  1286. //
  1287. func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
  1288. if argsList.Len() != 1 {
  1289. err = errors.New("CSCH requires 1 numeric argument")
  1290. return
  1291. }
  1292. var val float64
  1293. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1294. err = errors.New(formulaErrorVALUE)
  1295. return
  1296. }
  1297. if val == 0 {
  1298. err = errors.New(formulaErrorDIV)
  1299. return
  1300. }
  1301. result = fmt.Sprintf("%g", 1/math.Sinh(val))
  1302. return
  1303. }
  1304. // DECIMAL function converts a text representation of a number in a specified
  1305. // base, into a decimal value. The syntax of the function is:
  1306. //
  1307. // DECIMAL(text,radix)
  1308. //
  1309. func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
  1310. if argsList.Len() != 2 {
  1311. err = errors.New("DECIMAL requires 2 numeric arguments")
  1312. return
  1313. }
  1314. var text = argsList.Front().Value.(formulaArg).String
  1315. var radix int
  1316. if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1317. err = errors.New(formulaErrorVALUE)
  1318. return
  1319. }
  1320. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1321. text = text[2:]
  1322. }
  1323. val, err := strconv.ParseInt(text, radix, 64)
  1324. if err != nil {
  1325. err = errors.New(formulaErrorVALUE)
  1326. return
  1327. }
  1328. result = fmt.Sprintf("%g", float64(val))
  1329. return
  1330. }
  1331. // DEGREES function converts radians into degrees. The syntax of the function
  1332. // is:
  1333. //
  1334. // DEGREES(angle)
  1335. //
  1336. func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
  1337. if argsList.Len() != 1 {
  1338. err = errors.New("DEGREES requires 1 numeric argument")
  1339. return
  1340. }
  1341. var val float64
  1342. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1343. err = errors.New(formulaErrorVALUE)
  1344. return
  1345. }
  1346. if val == 0 {
  1347. err = errors.New(formulaErrorDIV)
  1348. return
  1349. }
  1350. result = fmt.Sprintf("%g", 180.0/math.Pi*val)
  1351. return
  1352. }
  1353. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1354. // positive number up and a negative number down), to the next even number.
  1355. // The syntax of the function is:
  1356. //
  1357. // EVEN(number)
  1358. //
  1359. func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
  1360. if argsList.Len() != 1 {
  1361. err = errors.New("EVEN requires 1 numeric argument")
  1362. return
  1363. }
  1364. var number float64
  1365. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1366. err = errors.New(formulaErrorVALUE)
  1367. return
  1368. }
  1369. sign := math.Signbit(number)
  1370. m, frac := math.Modf(number / 2)
  1371. val := m * 2
  1372. if frac != 0 {
  1373. if !sign {
  1374. val += 2
  1375. } else {
  1376. val -= 2
  1377. }
  1378. }
  1379. result = fmt.Sprintf("%g", val)
  1380. return
  1381. }
  1382. // EXP function calculates the value of the mathematical constant e, raised to
  1383. // the power of a given number. The syntax of the function is:
  1384. //
  1385. // EXP(number)
  1386. //
  1387. func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
  1388. if argsList.Len() != 1 {
  1389. err = errors.New("EXP requires 1 numeric argument")
  1390. return
  1391. }
  1392. var number float64
  1393. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1394. err = errors.New(formulaErrorVALUE)
  1395. return
  1396. }
  1397. result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
  1398. return
  1399. }
  1400. // fact returns the factorial of a supplied number.
  1401. func fact(number float64) float64 {
  1402. val := float64(1)
  1403. for i := float64(2); i <= number; i++ {
  1404. val *= i
  1405. }
  1406. return val
  1407. }
  1408. // FACT function returns the factorial of a supplied number. The syntax of the
  1409. // function is:
  1410. //
  1411. // FACT(number)
  1412. //
  1413. func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
  1414. if argsList.Len() != 1 {
  1415. err = errors.New("FACT requires 1 numeric argument")
  1416. return
  1417. }
  1418. var number float64
  1419. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1420. err = errors.New(formulaErrorVALUE)
  1421. return
  1422. }
  1423. if number < 0 {
  1424. err = errors.New(formulaErrorNUM)
  1425. }
  1426. result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
  1427. return
  1428. }
  1429. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1430. // syntax of the function is:
  1431. //
  1432. // FACTDOUBLE(number)
  1433. //
  1434. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
  1435. if argsList.Len() != 1 {
  1436. err = errors.New("FACTDOUBLE requires 1 numeric argument")
  1437. return
  1438. }
  1439. number, val := 0.0, 1.0
  1440. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1441. err = errors.New(formulaErrorVALUE)
  1442. return
  1443. }
  1444. if number < 0 {
  1445. err = errors.New(formulaErrorNUM)
  1446. return
  1447. }
  1448. for i := math.Trunc(number); i > 1; i -= 2 {
  1449. val *= i
  1450. }
  1451. result = strings.ToUpper(fmt.Sprintf("%g", val))
  1452. return
  1453. }
  1454. // FLOOR function rounds a supplied number towards zero to the nearest
  1455. // multiple of a specified significance. The syntax of the function is:
  1456. //
  1457. // FLOOR(number,significance)
  1458. //
  1459. func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
  1460. if argsList.Len() != 2 {
  1461. err = errors.New("FLOOR requires 2 numeric arguments")
  1462. return
  1463. }
  1464. var number, significance float64
  1465. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1466. err = errors.New(formulaErrorVALUE)
  1467. return
  1468. }
  1469. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1470. err = errors.New(formulaErrorVALUE)
  1471. return
  1472. }
  1473. if significance < 0 && number >= 0 {
  1474. err = errors.New(formulaErrorNUM)
  1475. return
  1476. }
  1477. val := number
  1478. val, res := math.Modf(val / significance)
  1479. if res != 0 {
  1480. if number < 0 && res < 0 {
  1481. val--
  1482. }
  1483. }
  1484. result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
  1485. return
  1486. }
  1487. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1488. // significance. The syntax of the function is:
  1489. //
  1490. // FLOOR.MATH(number,[significance],[mode])
  1491. //
  1492. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
  1493. if argsList.Len() == 0 {
  1494. err = errors.New("FLOOR.MATH requires at least 1 argument")
  1495. return
  1496. }
  1497. if argsList.Len() > 3 {
  1498. err = errors.New("FLOOR.MATH allows at most 3 arguments")
  1499. return
  1500. }
  1501. number, significance, mode := 0.0, 1.0, 1.0
  1502. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1503. err = errors.New(formulaErrorVALUE)
  1504. return
  1505. }
  1506. if number < 0 {
  1507. significance = -1
  1508. }
  1509. if argsList.Len() > 1 {
  1510. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1511. err = errors.New(formulaErrorVALUE)
  1512. return
  1513. }
  1514. }
  1515. if argsList.Len() == 1 {
  1516. result = fmt.Sprintf("%g", math.Floor(number))
  1517. return
  1518. }
  1519. if argsList.Len() > 2 {
  1520. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1521. err = errors.New(formulaErrorVALUE)
  1522. return
  1523. }
  1524. }
  1525. val, res := math.Modf(number / significance)
  1526. if res != 0 && number < 0 && mode > 0 {
  1527. val--
  1528. }
  1529. result = fmt.Sprintf("%g", val*significance)
  1530. return
  1531. }
  1532. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1533. // of significance. The syntax of the function is:
  1534. //
  1535. // FLOOR.PRECISE(number,[significance])
  1536. //
  1537. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
  1538. if argsList.Len() == 0 {
  1539. err = errors.New("FLOOR.PRECISE requires at least 1 argument")
  1540. return
  1541. }
  1542. if argsList.Len() > 2 {
  1543. err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
  1544. return
  1545. }
  1546. var number, significance float64
  1547. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1548. err = errors.New(formulaErrorVALUE)
  1549. return
  1550. }
  1551. if number < 0 {
  1552. significance = -1
  1553. }
  1554. if argsList.Len() == 1 {
  1555. result = fmt.Sprintf("%g", math.Floor(number))
  1556. return
  1557. }
  1558. if argsList.Len() > 1 {
  1559. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1560. err = errors.New(formulaErrorVALUE)
  1561. return
  1562. }
  1563. significance = math.Abs(significance)
  1564. if significance == 0 {
  1565. result = "0"
  1566. return
  1567. }
  1568. }
  1569. val, res := math.Modf(number / significance)
  1570. if res != 0 {
  1571. if number < 0 {
  1572. val--
  1573. }
  1574. }
  1575. result = fmt.Sprintf("%g", val*significance)
  1576. return
  1577. }
  1578. // gcd returns the greatest common divisor of two supplied integers.
  1579. func gcd(x, y float64) float64 {
  1580. x, y = math.Trunc(x), math.Trunc(y)
  1581. if x == 0 {
  1582. return y
  1583. }
  1584. if y == 0 {
  1585. return x
  1586. }
  1587. for x != y {
  1588. if x > y {
  1589. x = x - y
  1590. } else {
  1591. y = y - x
  1592. }
  1593. }
  1594. return x
  1595. }
  1596. // GCD function returns the greatest common divisor of two or more supplied
  1597. // integers. The syntax of the function is:
  1598. //
  1599. // GCD(number1,[number2],...)
  1600. //
  1601. func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
  1602. if argsList.Len() == 0 {
  1603. err = errors.New("GCD requires at least 1 argument")
  1604. return
  1605. }
  1606. var (
  1607. val float64
  1608. nums = []float64{}
  1609. )
  1610. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1611. token := arg.Value.(formulaArg).String
  1612. if token == "" {
  1613. continue
  1614. }
  1615. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1616. err = errors.New(formulaErrorVALUE)
  1617. return
  1618. }
  1619. nums = append(nums, val)
  1620. }
  1621. if nums[0] < 0 {
  1622. err = errors.New("GCD only accepts positive arguments")
  1623. return
  1624. }
  1625. if len(nums) == 1 {
  1626. result = fmt.Sprintf("%g", nums[0])
  1627. return
  1628. }
  1629. cd := nums[0]
  1630. for i := 1; i < len(nums); i++ {
  1631. if nums[i] < 0 {
  1632. err = errors.New("GCD only accepts positive arguments")
  1633. return
  1634. }
  1635. cd = gcd(cd, nums[i])
  1636. }
  1637. result = fmt.Sprintf("%g", cd)
  1638. return
  1639. }
  1640. // INT function truncates a supplied number down to the closest integer. The
  1641. // syntax of the function is:
  1642. //
  1643. // INT(number)
  1644. //
  1645. func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
  1646. if argsList.Len() != 1 {
  1647. err = errors.New("INT requires 1 numeric argument")
  1648. return
  1649. }
  1650. var number float64
  1651. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1652. err = errors.New(formulaErrorVALUE)
  1653. return
  1654. }
  1655. val, frac := math.Modf(number)
  1656. if frac < 0 {
  1657. val--
  1658. }
  1659. result = fmt.Sprintf("%g", val)
  1660. return
  1661. }
  1662. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1663. // sign), to the nearest multiple of a supplied significance. The syntax of
  1664. // the function is:
  1665. //
  1666. // ISO.CEILING(number,[significance])
  1667. //
  1668. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
  1669. if argsList.Len() == 0 {
  1670. err = errors.New("ISO.CEILING requires at least 1 argument")
  1671. return
  1672. }
  1673. if argsList.Len() > 2 {
  1674. err = errors.New("ISO.CEILING allows at most 2 arguments")
  1675. return
  1676. }
  1677. var number, significance float64
  1678. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1679. err = errors.New(formulaErrorVALUE)
  1680. return
  1681. }
  1682. if number < 0 {
  1683. significance = -1
  1684. }
  1685. if argsList.Len() == 1 {
  1686. result = fmt.Sprintf("%g", math.Ceil(number))
  1687. return
  1688. }
  1689. if argsList.Len() > 1 {
  1690. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1691. err = errors.New(formulaErrorVALUE)
  1692. return
  1693. }
  1694. significance = math.Abs(significance)
  1695. if significance == 0 {
  1696. result = "0"
  1697. return
  1698. }
  1699. }
  1700. val, res := math.Modf(number / significance)
  1701. if res != 0 {
  1702. if number > 0 {
  1703. val++
  1704. }
  1705. }
  1706. result = fmt.Sprintf("%g", val*significance)
  1707. return
  1708. }
  1709. // lcm returns the least common multiple of two supplied integers.
  1710. func lcm(a, b float64) float64 {
  1711. a = math.Trunc(a)
  1712. b = math.Trunc(b)
  1713. if a == 0 && b == 0 {
  1714. return 0
  1715. }
  1716. return a * b / gcd(a, b)
  1717. }
  1718. // LCM function returns the least common multiple of two or more supplied
  1719. // integers. The syntax of the function is:
  1720. //
  1721. // LCM(number1,[number2],...)
  1722. //
  1723. func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
  1724. if argsList.Len() == 0 {
  1725. err = errors.New("LCM requires at least 1 argument")
  1726. return
  1727. }
  1728. var (
  1729. val float64
  1730. nums = []float64{}
  1731. )
  1732. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1733. token := arg.Value.(formulaArg).String
  1734. if token == "" {
  1735. continue
  1736. }
  1737. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1738. err = errors.New(formulaErrorVALUE)
  1739. return
  1740. }
  1741. nums = append(nums, val)
  1742. }
  1743. if nums[0] < 0 {
  1744. err = errors.New("LCM only accepts positive arguments")
  1745. return
  1746. }
  1747. if len(nums) == 1 {
  1748. result = fmt.Sprintf("%g", nums[0])
  1749. return
  1750. }
  1751. cm := nums[0]
  1752. for i := 1; i < len(nums); i++ {
  1753. if nums[i] < 0 {
  1754. err = errors.New("LCM only accepts positive arguments")
  1755. return
  1756. }
  1757. cm = lcm(cm, nums[i])
  1758. }
  1759. result = fmt.Sprintf("%g", cm)
  1760. return
  1761. }
  1762. // LN function calculates the natural logarithm of a given number. The syntax
  1763. // of the function is:
  1764. //
  1765. // LN(number)
  1766. //
  1767. func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
  1768. if argsList.Len() != 1 {
  1769. err = errors.New("LN requires 1 numeric argument")
  1770. return
  1771. }
  1772. var number float64
  1773. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1774. err = errors.New(formulaErrorVALUE)
  1775. return
  1776. }
  1777. result = fmt.Sprintf("%g", math.Log(number))
  1778. return
  1779. }
  1780. // LOG function calculates the logarithm of a given number, to a supplied
  1781. // base. The syntax of the function is:
  1782. //
  1783. // LOG(number,[base])
  1784. //
  1785. func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
  1786. if argsList.Len() == 0 {
  1787. err = errors.New("LOG requires at least 1 argument")
  1788. return
  1789. }
  1790. if argsList.Len() > 2 {
  1791. err = errors.New("LOG allows at most 2 arguments")
  1792. return
  1793. }
  1794. number, base := 0.0, 10.0
  1795. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1796. err = errors.New(formulaErrorVALUE)
  1797. return
  1798. }
  1799. if argsList.Len() > 1 {
  1800. if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1801. err = errors.New(formulaErrorVALUE)
  1802. return
  1803. }
  1804. }
  1805. if number == 0 {
  1806. err = errors.New(formulaErrorNUM)
  1807. return
  1808. }
  1809. if base == 0 {
  1810. err = errors.New(formulaErrorNUM)
  1811. return
  1812. }
  1813. if base == 1 {
  1814. err = errors.New(formulaErrorDIV)
  1815. return
  1816. }
  1817. result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
  1818. return
  1819. }
  1820. // LOG10 function calculates the base 10 logarithm of a given number. The
  1821. // syntax of the function is:
  1822. //
  1823. // LOG10(number)
  1824. //
  1825. func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
  1826. if argsList.Len() != 1 {
  1827. err = errors.New("LOG10 requires 1 numeric argument")
  1828. return
  1829. }
  1830. var number float64
  1831. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1832. err = errors.New(formulaErrorVALUE)
  1833. return
  1834. }
  1835. result = fmt.Sprintf("%g", math.Log10(number))
  1836. return
  1837. }
  1838. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1839. ret := [][]float64{}
  1840. for i := range sqMtx {
  1841. if i == 0 {
  1842. continue
  1843. }
  1844. row := []float64{}
  1845. for j := range sqMtx {
  1846. if j == idx {
  1847. continue
  1848. }
  1849. row = append(row, sqMtx[i][j])
  1850. }
  1851. ret = append(ret, row)
  1852. }
  1853. return ret
  1854. }
  1855. // det determinant of the 2x2 matrix.
  1856. func det(sqMtx [][]float64) float64 {
  1857. if len(sqMtx) == 2 {
  1858. m00 := sqMtx[0][0]
  1859. m01 := sqMtx[0][1]
  1860. m10 := sqMtx[1][0]
  1861. m11 := sqMtx[1][1]
  1862. return m00*m11 - m10*m01
  1863. }
  1864. var res, sgn float64 = 0, 1
  1865. for j := range sqMtx {
  1866. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  1867. sgn *= -1
  1868. }
  1869. return res
  1870. }
  1871. // MDETERM calculates the determinant of a square matrix. The
  1872. // syntax of the function is:
  1873. //
  1874. // MDETERM(array)
  1875. //
  1876. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
  1877. var num float64
  1878. var numMtx = [][]float64{}
  1879. var strMtx = argsList.Front().Value.(formulaArg).Matrix
  1880. if argsList.Len() < 1 {
  1881. return
  1882. }
  1883. var rows = len(strMtx)
  1884. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  1885. if len(row) != rows {
  1886. err = errors.New(formulaErrorVALUE)
  1887. return
  1888. }
  1889. numRow := []float64{}
  1890. for _, ele := range row {
  1891. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  1892. return
  1893. }
  1894. numRow = append(numRow, num)
  1895. }
  1896. numMtx = append(numMtx, numRow)
  1897. }
  1898. result = fmt.Sprintf("%g", det(numMtx))
  1899. return
  1900. }
  1901. // MOD function returns the remainder of a division between two supplied
  1902. // numbers. The syntax of the function is:
  1903. //
  1904. // MOD(number,divisor)
  1905. //
  1906. func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
  1907. if argsList.Len() != 2 {
  1908. err = errors.New("MOD requires 2 numeric arguments")
  1909. return
  1910. }
  1911. var number, divisor float64
  1912. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1913. err = errors.New(formulaErrorVALUE)
  1914. return
  1915. }
  1916. if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1917. err = errors.New(formulaErrorVALUE)
  1918. return
  1919. }
  1920. if divisor == 0 {
  1921. err = errors.New(formulaErrorDIV)
  1922. return
  1923. }
  1924. trunc, rem := math.Modf(number / divisor)
  1925. if rem < 0 {
  1926. trunc--
  1927. }
  1928. result = fmt.Sprintf("%g", number-divisor*trunc)
  1929. return
  1930. }
  1931. // MROUND function rounds a supplied number up or down to the nearest multiple
  1932. // of a given number. The syntax of the function is:
  1933. //
  1934. // MOD(number,multiple)
  1935. //
  1936. func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
  1937. if argsList.Len() != 2 {
  1938. err = errors.New("MROUND requires 2 numeric arguments")
  1939. return
  1940. }
  1941. var number, multiple float64
  1942. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1943. err = errors.New(formulaErrorVALUE)
  1944. return
  1945. }
  1946. if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1947. err = errors.New(formulaErrorVALUE)
  1948. return
  1949. }
  1950. if multiple == 0 {
  1951. err = errors.New(formulaErrorNUM)
  1952. return
  1953. }
  1954. if multiple < 0 && number > 0 ||
  1955. multiple > 0 && number < 0 {
  1956. err = errors.New(formulaErrorNUM)
  1957. return
  1958. }
  1959. number, res := math.Modf(number / multiple)
  1960. if math.Trunc(res+0.5) > 0 {
  1961. number++
  1962. }
  1963. result = fmt.Sprintf("%g", number*multiple)
  1964. return
  1965. }
  1966. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  1967. // supplied values to the product of factorials of those values. The syntax of
  1968. // the function is:
  1969. //
  1970. // MULTINOMIAL(number1,[number2],...)
  1971. //
  1972. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
  1973. val, num, denom := 0.0, 0.0, 1.0
  1974. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1975. token := arg.Value.(formulaArg)
  1976. if token.String == "" {
  1977. continue
  1978. }
  1979. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1980. err = errors.New(formulaErrorVALUE)
  1981. return
  1982. }
  1983. num += val
  1984. denom *= fact(val)
  1985. }
  1986. result = fmt.Sprintf("%g", fact(num)/denom)
  1987. return
  1988. }
  1989. // MUNIT function returns the unit matrix for a specified dimension. The
  1990. // syntax of the function is:
  1991. //
  1992. // MUNIT(dimension)
  1993. //
  1994. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
  1995. if argsList.Len() != 1 {
  1996. err = errors.New("MUNIT requires 1 numeric argument")
  1997. return
  1998. }
  1999. var dimension int
  2000. if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  2001. err = errors.New(formulaErrorVALUE)
  2002. return
  2003. }
  2004. matrix := make([][]float64, 0, dimension)
  2005. for i := 0; i < dimension; i++ {
  2006. row := make([]float64, dimension)
  2007. for j := 0; j < dimension; j++ {
  2008. if i == j {
  2009. row[j] = float64(1.0)
  2010. } else {
  2011. row[j] = float64(0.0)
  2012. }
  2013. }
  2014. matrix = append(matrix, row)
  2015. }
  2016. return
  2017. }
  2018. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2019. // number up and a negative number down), to the next odd number. The syntax
  2020. // of the function is:
  2021. //
  2022. // ODD(number)
  2023. //
  2024. func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
  2025. if argsList.Len() != 1 {
  2026. err = errors.New("ODD requires 1 numeric argument")
  2027. return
  2028. }
  2029. var number float64
  2030. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2031. err = errors.New(formulaErrorVALUE)
  2032. return
  2033. }
  2034. if number == 0 {
  2035. result = "1"
  2036. return
  2037. }
  2038. sign := math.Signbit(number)
  2039. m, frac := math.Modf((number - 1) / 2)
  2040. val := m*2 + 1
  2041. if frac != 0 {
  2042. if !sign {
  2043. val += 2
  2044. } else {
  2045. val -= 2
  2046. }
  2047. }
  2048. result = fmt.Sprintf("%g", val)
  2049. return
  2050. }
  2051. // PI function returns the value of the mathematical constant π (pi), accurate
  2052. // to 15 digits (14 decimal places). The syntax of the function is:
  2053. //
  2054. // PI()
  2055. //
  2056. func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
  2057. if argsList.Len() != 0 {
  2058. err = errors.New("PI accepts no arguments")
  2059. return
  2060. }
  2061. result = fmt.Sprintf("%g", math.Pi)
  2062. return
  2063. }
  2064. // POWER function calculates a given number, raised to a supplied power.
  2065. // The syntax of the function is:
  2066. //
  2067. // POWER(number,power)
  2068. //
  2069. func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
  2070. if argsList.Len() != 2 {
  2071. err = errors.New("POWER requires 2 numeric arguments")
  2072. return
  2073. }
  2074. var x, y float64
  2075. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2076. err = errors.New(formulaErrorVALUE)
  2077. return
  2078. }
  2079. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2080. err = errors.New(formulaErrorVALUE)
  2081. return
  2082. }
  2083. if x == 0 && y == 0 {
  2084. err = errors.New(formulaErrorNUM)
  2085. return
  2086. }
  2087. if x == 0 && y < 0 {
  2088. err = errors.New(formulaErrorDIV)
  2089. return
  2090. }
  2091. result = fmt.Sprintf("%g", math.Pow(x, y))
  2092. return
  2093. }
  2094. // PRODUCT function returns the product (multiplication) of a supplied set of
  2095. // numerical values. The syntax of the function is:
  2096. //
  2097. // PRODUCT(number1,[number2],...)
  2098. //
  2099. func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
  2100. val, product := 0.0, 1.0
  2101. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2102. token := arg.Value.(formulaArg)
  2103. switch token.Type {
  2104. case ArgUnknown:
  2105. continue
  2106. case ArgString:
  2107. if token.String == "" {
  2108. continue
  2109. }
  2110. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2111. err = errors.New(formulaErrorVALUE)
  2112. return
  2113. }
  2114. product = product * val
  2115. case ArgMatrix:
  2116. for _, row := range token.Matrix {
  2117. for _, value := range row {
  2118. if value.String == "" {
  2119. continue
  2120. }
  2121. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2122. err = errors.New(formulaErrorVALUE)
  2123. return
  2124. }
  2125. product = product * val
  2126. }
  2127. }
  2128. }
  2129. }
  2130. result = fmt.Sprintf("%g", product)
  2131. return
  2132. }
  2133. // QUOTIENT function returns the integer portion of a division between two
  2134. // supplied numbers. The syntax of the function is:
  2135. //
  2136. // QUOTIENT(numerator,denominator)
  2137. //
  2138. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
  2139. if argsList.Len() != 2 {
  2140. err = errors.New("QUOTIENT requires 2 numeric arguments")
  2141. return
  2142. }
  2143. var x, y float64
  2144. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2145. err = errors.New(formulaErrorVALUE)
  2146. return
  2147. }
  2148. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2149. err = errors.New(formulaErrorVALUE)
  2150. return
  2151. }
  2152. if y == 0 {
  2153. err = errors.New(formulaErrorDIV)
  2154. return
  2155. }
  2156. result = fmt.Sprintf("%g", math.Trunc(x/y))
  2157. return
  2158. }
  2159. // RADIANS function converts radians into degrees. The syntax of the function is:
  2160. //
  2161. // RADIANS(angle)
  2162. //
  2163. func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
  2164. if argsList.Len() != 1 {
  2165. err = errors.New("RADIANS requires 1 numeric argument")
  2166. return
  2167. }
  2168. var angle float64
  2169. if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2170. err = errors.New(formulaErrorVALUE)
  2171. return
  2172. }
  2173. result = fmt.Sprintf("%g", math.Pi/180.0*angle)
  2174. return
  2175. }
  2176. // RAND function generates a random real number between 0 and 1. The syntax of
  2177. // the function is:
  2178. //
  2179. // RAND()
  2180. //
  2181. func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
  2182. if argsList.Len() != 0 {
  2183. err = errors.New("RAND accepts no arguments")
  2184. return
  2185. }
  2186. result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2187. return
  2188. }
  2189. // RANDBETWEEN function generates a random integer between two supplied
  2190. // integers. The syntax of the function is:
  2191. //
  2192. // RANDBETWEEN(bottom,top)
  2193. //
  2194. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
  2195. if argsList.Len() != 2 {
  2196. err = errors.New("RANDBETWEEN requires 2 numeric arguments")
  2197. return
  2198. }
  2199. var bottom, top int64
  2200. if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64); err != nil {
  2201. err = errors.New(formulaErrorVALUE)
  2202. return
  2203. }
  2204. if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64); err != nil {
  2205. err = errors.New(formulaErrorVALUE)
  2206. return
  2207. }
  2208. if top < bottom {
  2209. err = errors.New(formulaErrorNUM)
  2210. return
  2211. }
  2212. result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
  2213. return
  2214. }
  2215. // romanNumerals defined a numeral system that originated in ancient Rome and
  2216. // remained the usual way of writing numbers throughout Europe well into the
  2217. // Late Middle Ages.
  2218. type romanNumerals struct {
  2219. n float64
  2220. s string
  2221. }
  2222. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2223. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2224. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2225. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2226. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2227. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2228. // integer, the function returns a text string depicting the roman numeral
  2229. // form of the number. The syntax of the function is:
  2230. //
  2231. // ROMAN(number,[form])
  2232. //
  2233. func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
  2234. if argsList.Len() == 0 {
  2235. err = errors.New("ROMAN requires at least 1 argument")
  2236. return
  2237. }
  2238. if argsList.Len() > 2 {
  2239. err = errors.New("ROMAN allows at most 2 arguments")
  2240. return
  2241. }
  2242. var number float64
  2243. var form int
  2244. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2245. err = errors.New(formulaErrorVALUE)
  2246. return
  2247. }
  2248. if argsList.Len() > 1 {
  2249. if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2250. err = errors.New(formulaErrorVALUE)
  2251. return
  2252. }
  2253. if form < 0 {
  2254. form = 0
  2255. } else if form > 4 {
  2256. form = 4
  2257. }
  2258. }
  2259. decimalTable := romanTable[0]
  2260. switch form {
  2261. case 1:
  2262. decimalTable = romanTable[1]
  2263. case 2:
  2264. decimalTable = romanTable[2]
  2265. case 3:
  2266. decimalTable = romanTable[3]
  2267. case 4:
  2268. decimalTable = romanTable[4]
  2269. }
  2270. val := math.Trunc(number)
  2271. buf := bytes.Buffer{}
  2272. for _, r := range decimalTable {
  2273. for val >= r.n {
  2274. buf.WriteString(r.s)
  2275. val -= r.n
  2276. }
  2277. }
  2278. result = buf.String()
  2279. return
  2280. }
  2281. type roundMode byte
  2282. const (
  2283. closest roundMode = iota
  2284. down
  2285. up
  2286. )
  2287. // round rounds a supplied number up or down.
  2288. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2289. var significance float64
  2290. if digits > 0 {
  2291. significance = math.Pow(1/10.0, digits)
  2292. } else {
  2293. significance = math.Pow(10.0, -digits)
  2294. }
  2295. val, res := math.Modf(number / significance)
  2296. switch mode {
  2297. case closest:
  2298. const eps = 0.499999999
  2299. if res >= eps {
  2300. val++
  2301. } else if res <= -eps {
  2302. val--
  2303. }
  2304. case down:
  2305. case up:
  2306. if res > 0 {
  2307. val++
  2308. } else if res < 0 {
  2309. val--
  2310. }
  2311. }
  2312. return val * significance
  2313. }
  2314. // ROUND function rounds a supplied number up or down, to a specified number
  2315. // of decimal places. The syntax of the function is:
  2316. //
  2317. // ROUND(number,num_digits)
  2318. //
  2319. func (fn *formulaFuncs) ROUND(argsList *list.List) (result string, err error) {
  2320. if argsList.Len() != 2 {
  2321. err = errors.New("ROUND requires 2 numeric arguments")
  2322. return
  2323. }
  2324. var number, digits float64
  2325. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2326. err = errors.New(formulaErrorVALUE)
  2327. return
  2328. }
  2329. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2330. err = errors.New(formulaErrorVALUE)
  2331. return
  2332. }
  2333. result = fmt.Sprintf("%g", fn.round(number, digits, closest))
  2334. return
  2335. }
  2336. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2337. // specified number of decimal places. The syntax of the function is:
  2338. //
  2339. // ROUNDDOWN(number,num_digits)
  2340. //
  2341. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) (result string, err error) {
  2342. if argsList.Len() != 2 {
  2343. err = errors.New("ROUNDDOWN requires 2 numeric arguments")
  2344. return
  2345. }
  2346. var number, digits float64
  2347. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2348. err = errors.New(formulaErrorVALUE)
  2349. return
  2350. }
  2351. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2352. err = errors.New(formulaErrorVALUE)
  2353. return
  2354. }
  2355. result = fmt.Sprintf("%g", fn.round(number, digits, down))
  2356. return
  2357. }
  2358. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2359. // specified number of decimal places. The syntax of the function is:
  2360. //
  2361. // ROUNDUP(number,num_digits)
  2362. //
  2363. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) (result string, err error) {
  2364. if argsList.Len() != 2 {
  2365. err = errors.New("ROUNDUP requires 2 numeric arguments")
  2366. return
  2367. }
  2368. var number, digits float64
  2369. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2370. err = errors.New(formulaErrorVALUE)
  2371. return
  2372. }
  2373. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2374. err = errors.New(formulaErrorVALUE)
  2375. return
  2376. }
  2377. result = fmt.Sprintf("%g", fn.round(number, digits, up))
  2378. return
  2379. }
  2380. // SEC function calculates the secant of a given angle. The syntax of the
  2381. // function is:
  2382. //
  2383. // SEC(number)
  2384. //
  2385. func (fn *formulaFuncs) SEC(argsList *list.List) (result string, err error) {
  2386. if argsList.Len() != 1 {
  2387. err = errors.New("SEC requires 1 numeric argument")
  2388. return
  2389. }
  2390. var number float64
  2391. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2392. err = errors.New(formulaErrorVALUE)
  2393. return
  2394. }
  2395. result = fmt.Sprintf("%g", math.Cos(number))
  2396. return
  2397. }
  2398. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2399. // The syntax of the function is:
  2400. //
  2401. // SECH(number)
  2402. //
  2403. func (fn *formulaFuncs) SECH(argsList *list.List) (result string, err error) {
  2404. if argsList.Len() != 1 {
  2405. err = errors.New("SECH requires 1 numeric argument")
  2406. return
  2407. }
  2408. var number float64
  2409. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2410. err = errors.New(formulaErrorVALUE)
  2411. return
  2412. }
  2413. result = fmt.Sprintf("%g", 1/math.Cosh(number))
  2414. return
  2415. }
  2416. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2417. // number. I.e. if the number is positive, the Sign function returns +1, if
  2418. // the number is negative, the function returns -1 and if the number is 0
  2419. // (zero), the function returns 0. The syntax of the function is:
  2420. //
  2421. // SIGN(number)
  2422. //
  2423. func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
  2424. if argsList.Len() != 1 {
  2425. err = errors.New("SIGN requires 1 numeric argument")
  2426. return
  2427. }
  2428. var val float64
  2429. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2430. err = errors.New(formulaErrorVALUE)
  2431. return
  2432. }
  2433. if val < 0 {
  2434. result = "-1"
  2435. return
  2436. }
  2437. if val > 0 {
  2438. result = "1"
  2439. return
  2440. }
  2441. result = "0"
  2442. return
  2443. }
  2444. // SIN function calculates the sine of a given angle. The syntax of the
  2445. // function is:
  2446. //
  2447. // SIN(number)
  2448. //
  2449. func (fn *formulaFuncs) SIN(argsList *list.List) (result string, err error) {
  2450. if argsList.Len() != 1 {
  2451. err = errors.New("SIN requires 1 numeric argument")
  2452. return
  2453. }
  2454. var number float64
  2455. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2456. err = errors.New(formulaErrorVALUE)
  2457. return
  2458. }
  2459. result = fmt.Sprintf("%g", math.Sin(number))
  2460. return
  2461. }
  2462. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2463. // The syntax of the function is:
  2464. //
  2465. // SINH(number)
  2466. //
  2467. func (fn *formulaFuncs) SINH(argsList *list.List) (result string, err error) {
  2468. if argsList.Len() != 1 {
  2469. err = errors.New("SINH requires 1 numeric argument")
  2470. return
  2471. }
  2472. var number float64
  2473. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2474. err = errors.New(formulaErrorVALUE)
  2475. return
  2476. }
  2477. result = fmt.Sprintf("%g", math.Sinh(number))
  2478. return
  2479. }
  2480. // SQRT function calculates the positive square root of a supplied number. The
  2481. // syntax of the function is:
  2482. //
  2483. // SQRT(number)
  2484. //
  2485. func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
  2486. if argsList.Len() != 1 {
  2487. err = errors.New("SQRT requires 1 numeric argument")
  2488. return
  2489. }
  2490. var res float64
  2491. var value = argsList.Front().Value.(formulaArg).String
  2492. if value == "" {
  2493. result = "0"
  2494. return
  2495. }
  2496. if res, err = strconv.ParseFloat(value, 64); err != nil {
  2497. err = errors.New(formulaErrorVALUE)
  2498. return
  2499. }
  2500. if res < 0 {
  2501. err = errors.New(formulaErrorNUM)
  2502. return
  2503. }
  2504. result = fmt.Sprintf("%g", math.Sqrt(res))
  2505. return
  2506. }
  2507. // SQRTPI function returns the square root of a supplied number multiplied by
  2508. // the mathematical constant, π. The syntax of the function is:
  2509. //
  2510. // SQRTPI(number)
  2511. //
  2512. func (fn *formulaFuncs) SQRTPI(argsList *list.List) (result string, err error) {
  2513. if argsList.Len() != 1 {
  2514. err = errors.New("SQRTPI requires 1 numeric argument")
  2515. return
  2516. }
  2517. var number float64
  2518. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2519. err = errors.New(formulaErrorVALUE)
  2520. return
  2521. }
  2522. result = fmt.Sprintf("%g", math.Sqrt(number*math.Pi))
  2523. return
  2524. }
  2525. // SUM function adds together a supplied set of numbers and returns the sum of
  2526. // these values. The syntax of the function is:
  2527. //
  2528. // SUM(number1,[number2],...)
  2529. //
  2530. func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
  2531. var val, sum float64
  2532. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2533. token := arg.Value.(formulaArg)
  2534. switch token.Type {
  2535. case ArgUnknown:
  2536. continue
  2537. case ArgString:
  2538. if token.String == "" {
  2539. continue
  2540. }
  2541. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2542. err = errors.New(formulaErrorVALUE)
  2543. return
  2544. }
  2545. sum += val
  2546. case ArgMatrix:
  2547. for _, row := range token.Matrix {
  2548. for _, value := range row {
  2549. if value.String == "" {
  2550. continue
  2551. }
  2552. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2553. err = errors.New(formulaErrorVALUE)
  2554. return
  2555. }
  2556. sum += val
  2557. }
  2558. }
  2559. }
  2560. }
  2561. result = fmt.Sprintf("%g", sum)
  2562. return
  2563. }
  2564. // SUMIF function finds the values in a supplied array, that satisfy a given
  2565. // criteria, and returns the sum of the corresponding values in a second
  2566. // supplied array. The syntax of the function is:
  2567. //
  2568. // SUMIF(range,criteria,[sum_range])
  2569. //
  2570. func (fn *formulaFuncs) SUMIF(argsList *list.List) (result string, err error) {
  2571. if argsList.Len() < 2 {
  2572. err = errors.New("SUMIF requires at least 2 argument")
  2573. return
  2574. }
  2575. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2576. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2577. var sumRange [][]formulaArg
  2578. if argsList.Len() == 3 {
  2579. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2580. }
  2581. var sum, val float64
  2582. for rowIdx, row := range rangeMtx {
  2583. for colIdx, col := range row {
  2584. var ok bool
  2585. fromVal := col.String
  2586. if col.String == "" {
  2587. continue
  2588. }
  2589. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2590. return
  2591. }
  2592. if ok {
  2593. if argsList.Len() == 3 {
  2594. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2595. continue
  2596. }
  2597. fromVal = sumRange[rowIdx][colIdx].String
  2598. }
  2599. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2600. err = errors.New(formulaErrorVALUE)
  2601. return
  2602. }
  2603. sum += val
  2604. }
  2605. }
  2606. }
  2607. result = fmt.Sprintf("%g", sum)
  2608. return
  2609. }
  2610. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2611. // syntax of the function is:
  2612. //
  2613. // SUMSQ(number1,[number2],...)
  2614. //
  2615. func (fn *formulaFuncs) SUMSQ(argsList *list.List) (result string, err error) {
  2616. var val, sq float64
  2617. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2618. token := arg.Value.(formulaArg)
  2619. switch token.Type {
  2620. case ArgString:
  2621. if token.String == "" {
  2622. continue
  2623. }
  2624. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2625. err = errors.New(formulaErrorVALUE)
  2626. return
  2627. }
  2628. sq += val * val
  2629. case ArgMatrix:
  2630. for _, row := range token.Matrix {
  2631. for _, value := range row {
  2632. if value.String == "" {
  2633. continue
  2634. }
  2635. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2636. err = errors.New(formulaErrorVALUE)
  2637. return
  2638. }
  2639. sq += val * val
  2640. }
  2641. }
  2642. }
  2643. }
  2644. result = fmt.Sprintf("%g", sq)
  2645. return
  2646. }
  2647. // TAN function calculates the tangent of a given angle. The syntax of the
  2648. // function is:
  2649. //
  2650. // TAN(number)
  2651. //
  2652. func (fn *formulaFuncs) TAN(argsList *list.List) (result string, err error) {
  2653. if argsList.Len() != 1 {
  2654. err = errors.New("TAN requires 1 numeric argument")
  2655. return
  2656. }
  2657. var number float64
  2658. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2659. err = errors.New(formulaErrorVALUE)
  2660. return
  2661. }
  2662. result = fmt.Sprintf("%g", math.Tan(number))
  2663. return
  2664. }
  2665. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2666. // number. The syntax of the function is:
  2667. //
  2668. // TANH(number)
  2669. //
  2670. func (fn *formulaFuncs) TANH(argsList *list.List) (result string, err error) {
  2671. if argsList.Len() != 1 {
  2672. err = errors.New("TANH requires 1 numeric argument")
  2673. return
  2674. }
  2675. var number float64
  2676. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2677. err = errors.New(formulaErrorVALUE)
  2678. return
  2679. }
  2680. result = fmt.Sprintf("%g", math.Tanh(number))
  2681. return
  2682. }
  2683. // TRUNC function truncates a supplied number to a specified number of decimal
  2684. // places. The syntax of the function is:
  2685. //
  2686. // TRUNC(number,[number_digits])
  2687. //
  2688. func (fn *formulaFuncs) TRUNC(argsList *list.List) (result string, err error) {
  2689. if argsList.Len() == 0 {
  2690. err = errors.New("TRUNC requires at least 1 argument")
  2691. return
  2692. }
  2693. var number, digits, adjust, rtrim float64
  2694. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2695. err = errors.New(formulaErrorVALUE)
  2696. return
  2697. }
  2698. if argsList.Len() > 1 {
  2699. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2700. err = errors.New(formulaErrorVALUE)
  2701. return
  2702. }
  2703. digits = math.Floor(digits)
  2704. }
  2705. adjust = math.Pow(10, digits)
  2706. x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
  2707. if x != 0 {
  2708. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2709. return
  2710. }
  2711. }
  2712. if (digits > 0) && (rtrim < adjust/10) {
  2713. result = fmt.Sprintf("%g", number)
  2714. return
  2715. }
  2716. result = fmt.Sprintf("%g", float64(int(number*adjust))/adjust)
  2717. return
  2718. }
  2719. // Statistical functions
  2720. // COUNTA function returns the number of non-blanks within a supplied set of
  2721. // cells or values. The syntax of the function is:
  2722. //
  2723. // COUNTA(value1,[value2],...)
  2724. //
  2725. func (fn *formulaFuncs) COUNTA(argsList *list.List) (result string, err error) {
  2726. var count int
  2727. for token := argsList.Front(); token != nil; token = token.Next() {
  2728. arg := token.Value.(formulaArg)
  2729. switch arg.Type {
  2730. case ArgString:
  2731. if arg.String != "" {
  2732. count++
  2733. }
  2734. case ArgMatrix:
  2735. for _, row := range arg.Matrix {
  2736. for _, value := range row {
  2737. if value.String != "" {
  2738. count++
  2739. }
  2740. }
  2741. }
  2742. }
  2743. }
  2744. result = fmt.Sprintf("%d", count)
  2745. return
  2746. }
  2747. // MEDIAN function returns the statistical median (the middle value) of a list
  2748. // of supplied numbers. The syntax of the function is:
  2749. //
  2750. // MEDIAN(number1,[number2],...)
  2751. //
  2752. func (fn *formulaFuncs) MEDIAN(argsList *list.List) (result string, err error) {
  2753. if argsList.Len() == 0 {
  2754. err = errors.New("MEDIAN requires at least 1 argument")
  2755. return
  2756. }
  2757. values := []float64{}
  2758. var median, digits float64
  2759. for token := argsList.Front(); token != nil; token = token.Next() {
  2760. arg := token.Value.(formulaArg)
  2761. switch arg.Type {
  2762. case ArgString:
  2763. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2764. err = errors.New(formulaErrorVALUE)
  2765. return
  2766. }
  2767. values = append(values, digits)
  2768. case ArgMatrix:
  2769. for _, row := range arg.Matrix {
  2770. for _, value := range row {
  2771. if value.String == "" {
  2772. continue
  2773. }
  2774. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2775. err = errors.New(formulaErrorVALUE)
  2776. return
  2777. }
  2778. values = append(values, digits)
  2779. }
  2780. }
  2781. }
  2782. }
  2783. sort.Float64s(values)
  2784. if len(values)%2 == 0 {
  2785. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2786. } else {
  2787. median = values[len(values)/2]
  2788. }
  2789. result = fmt.Sprintf("%g", median)
  2790. return
  2791. }
  2792. // Information functions
  2793. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2794. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2795. // function is:
  2796. //
  2797. // ISBLANK(value)
  2798. //
  2799. func (fn *formulaFuncs) ISBLANK(argsList *list.List) (result string, err error) {
  2800. if argsList.Len() != 1 {
  2801. err = errors.New("ISBLANK requires 1 argument")
  2802. return
  2803. }
  2804. token := argsList.Front().Value.(formulaArg)
  2805. result = "FALSE"
  2806. switch token.Type {
  2807. case ArgUnknown:
  2808. result = "TRUE"
  2809. case ArgString:
  2810. if token.String == "" {
  2811. result = "TRUE"
  2812. }
  2813. }
  2814. return
  2815. }
  2816. // ISERR function tests if an initial supplied expression (or value) returns
  2817. // any Excel Error, except the #N/A error. If so, the function returns the
  2818. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2819. // error, the ISERR function returns FALSE. The syntax of the function is:
  2820. //
  2821. // ISERR(value)
  2822. //
  2823. func (fn *formulaFuncs) ISERR(argsList *list.List) (result string, err error) {
  2824. if argsList.Len() != 1 {
  2825. err = errors.New("ISERR requires 1 argument")
  2826. return
  2827. }
  2828. token := argsList.Front().Value.(formulaArg)
  2829. result = "FALSE"
  2830. if token.Type == ArgString {
  2831. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2832. if errType == token.String {
  2833. result = "TRUE"
  2834. }
  2835. }
  2836. }
  2837. return
  2838. }
  2839. // ISERROR function tests if an initial supplied expression (or value) returns
  2840. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2841. // function returns FALSE. The syntax of the function is:
  2842. //
  2843. // ISERROR(value)
  2844. //
  2845. func (fn *formulaFuncs) ISERROR(argsList *list.List) (result string, err error) {
  2846. if argsList.Len() != 1 {
  2847. err = errors.New("ISERROR requires 1 argument")
  2848. return
  2849. }
  2850. token := argsList.Front().Value.(formulaArg)
  2851. result = "FALSE"
  2852. if token.Type == ArgString {
  2853. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2854. if errType == token.String {
  2855. result = "TRUE"
  2856. }
  2857. }
  2858. }
  2859. return
  2860. }
  2861. // ISEVEN function tests if a supplied number (or numeric expression)
  2862. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  2863. // function returns FALSE. The syntax of the function is:
  2864. //
  2865. // ISEVEN(value)
  2866. //
  2867. func (fn *formulaFuncs) ISEVEN(argsList *list.List) (result string, err error) {
  2868. if argsList.Len() != 1 {
  2869. err = errors.New("ISEVEN requires 1 argument")
  2870. return
  2871. }
  2872. token := argsList.Front().Value.(formulaArg)
  2873. result = "FALSE"
  2874. var numeric int
  2875. if token.Type == ArgString {
  2876. if numeric, err = strconv.Atoi(token.String); err != nil {
  2877. err = errors.New(formulaErrorVALUE)
  2878. return
  2879. }
  2880. if numeric == numeric/2*2 {
  2881. result = "TRUE"
  2882. return
  2883. }
  2884. }
  2885. return
  2886. }
  2887. // ISNA function tests if an initial supplied expression (or value) returns
  2888. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  2889. // returns FALSE. The syntax of the function is:
  2890. //
  2891. // ISNA(value)
  2892. //
  2893. func (fn *formulaFuncs) ISNA(argsList *list.List) (result string, err error) {
  2894. if argsList.Len() != 1 {
  2895. err = errors.New("ISNA requires 1 argument")
  2896. return
  2897. }
  2898. token := argsList.Front().Value.(formulaArg)
  2899. result = "FALSE"
  2900. if token.Type == ArgString && token.String == formulaErrorNA {
  2901. result = "TRUE"
  2902. }
  2903. return
  2904. }
  2905. // ISNONTEXT function function tests if a supplied value is text. If not, the
  2906. // function returns TRUE; If the supplied value is text, the function returns
  2907. // FALSE. The syntax of the function is:
  2908. //
  2909. // ISNONTEXT(value)
  2910. //
  2911. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) (result string, err error) {
  2912. if argsList.Len() != 1 {
  2913. err = errors.New("ISNONTEXT requires 1 argument")
  2914. return
  2915. }
  2916. token := argsList.Front().Value.(formulaArg)
  2917. result = "TRUE"
  2918. if token.Type == ArgString && token.String != "" {
  2919. result = "FALSE"
  2920. }
  2921. return
  2922. }
  2923. // ISNUMBER function function tests if a supplied value is a number. If so,
  2924. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  2925. // function is:
  2926. //
  2927. // ISNUMBER(value)
  2928. //
  2929. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) (result string, err error) {
  2930. if argsList.Len() != 1 {
  2931. err = errors.New("ISNUMBER requires 1 argument")
  2932. return
  2933. }
  2934. token := argsList.Front().Value.(formulaArg)
  2935. result = "FALSE"
  2936. if token.Type == ArgString && token.String != "" {
  2937. if _, err = strconv.Atoi(token.String); err == nil {
  2938. result = "TRUE"
  2939. }
  2940. err = nil
  2941. }
  2942. return
  2943. }
  2944. // ISODD function tests if a supplied number (or numeric expression) evaluates
  2945. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  2946. // FALSE. The syntax of the function is:
  2947. //
  2948. // ISODD(value)
  2949. //
  2950. func (fn *formulaFuncs) ISODD(argsList *list.List) (result string, err error) {
  2951. if argsList.Len() != 1 {
  2952. err = errors.New("ISODD requires 1 argument")
  2953. return
  2954. }
  2955. token := argsList.Front().Value.(formulaArg)
  2956. result = "FALSE"
  2957. var numeric int
  2958. if token.Type == ArgString {
  2959. if numeric, err = strconv.Atoi(token.String); err != nil {
  2960. err = errors.New(formulaErrorVALUE)
  2961. return
  2962. }
  2963. if numeric != numeric/2*2 {
  2964. result = "TRUE"
  2965. return
  2966. }
  2967. }
  2968. return
  2969. }
  2970. // NA function returns the Excel #N/A error. This error message has the
  2971. // meaning 'value not available' and is produced when an Excel Formula is
  2972. // unable to find a value that it needs. The syntax of the function is:
  2973. //
  2974. // NA()
  2975. //
  2976. func (fn *formulaFuncs) NA(argsList *list.List) (result string, err error) {
  2977. if argsList.Len() != 0 {
  2978. err = errors.New("NA accepts no arguments")
  2979. return
  2980. }
  2981. result = formulaErrorNA
  2982. return
  2983. }