calc.go 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "github.com/xuri/efp"
  28. )
  29. // Excel formula errors
  30. const (
  31. formulaErrorDIV = "#DIV/0!"
  32. formulaErrorNAME = "#NAME?"
  33. formulaErrorNA = "#N/A"
  34. formulaErrorNUM = "#NUM!"
  35. formulaErrorVALUE = "#VALUE!"
  36. formulaErrorREF = "#REF!"
  37. formulaErrorNULL = "#NULL"
  38. formulaErrorSPILL = "#SPILL!"
  39. formulaErrorCALC = "#CALC!"
  40. formulaErrorGETTINGDATA = "#GETTING_DATA"
  41. )
  42. // Numeric precision correct numeric values as legacy Excel application
  43. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  44. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  45. // has a decimal representation that is an infinite string of ones, Excel
  46. // displays only the leading 15 figures. In the second line, the number one
  47. // is added to the fraction, and again Excel displays only 15 figures.
  48. const numericPrecision = 1000000000000000
  49. // cellRef defines the structure of a cell reference.
  50. type cellRef struct {
  51. Col int
  52. Row int
  53. Sheet string
  54. }
  55. // cellRef defines the structure of a cell range.
  56. type cellRange struct {
  57. From cellRef
  58. To cellRef
  59. }
  60. // formula criteria condition enumeration.
  61. const (
  62. _ byte = iota
  63. criteriaEq
  64. criteriaLe
  65. criteriaGe
  66. criteriaL
  67. criteriaG
  68. criteriaBeg
  69. criteriaEnd
  70. criteriaErr
  71. )
  72. // formulaCriteria defined formula criteria parser result.
  73. type formulaCriteria struct {
  74. Type byte
  75. Condition string
  76. }
  77. // ArgType is the type if formula argument type.
  78. type ArgType byte
  79. // Formula argument types enumeration.
  80. const (
  81. ArgUnknown ArgType = iota
  82. ArgNumber
  83. ArgString
  84. ArgList
  85. ArgMatrix
  86. ArgError
  87. ArgEmpty
  88. )
  89. // formulaArg is the argument of a formula or function.
  90. type formulaArg struct {
  91. SheetName string
  92. Number float64
  93. String string
  94. List []formulaArg
  95. Matrix [][]formulaArg
  96. Boolean bool
  97. Error string
  98. Type ArgType
  99. }
  100. // Value returns a string data type of the formula argument.
  101. func (fa formulaArg) Value() (value string) {
  102. switch fa.Type {
  103. case ArgNumber:
  104. if fa.Boolean {
  105. if fa.Number == 0 {
  106. return "FALSE"
  107. }
  108. return "TRUE"
  109. }
  110. return fmt.Sprintf("%g", fa.Number)
  111. case ArgString:
  112. return fa.String
  113. case ArgError:
  114. return fa.Error
  115. }
  116. return
  117. }
  118. // ToNumber returns a formula argument with number data type.
  119. func (fa formulaArg) ToNumber() formulaArg {
  120. var n float64
  121. var err error
  122. switch fa.Type {
  123. case ArgString:
  124. n, err = strconv.ParseFloat(fa.String, 64)
  125. if err != nil {
  126. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  127. }
  128. case ArgNumber:
  129. n = fa.Number
  130. }
  131. return newNumberFormulaArg(n)
  132. }
  133. // ToBool returns a formula argument with boolean data type.
  134. func (fa formulaArg) ToBool() formulaArg {
  135. var b bool
  136. var err error
  137. switch fa.Type {
  138. case ArgString:
  139. b, err = strconv.ParseBool(fa.String)
  140. if err != nil {
  141. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  142. }
  143. case ArgNumber:
  144. if fa.Boolean && fa.Number == 1 {
  145. b = true
  146. }
  147. }
  148. return newBoolFormulaArg(b)
  149. }
  150. // ToList returns a formula argument with array data type.
  151. func (fa formulaArg) ToList() []formulaArg {
  152. if fa.Type == ArgMatrix {
  153. list := []formulaArg{}
  154. for _, row := range fa.Matrix {
  155. list = append(list, row...)
  156. }
  157. return list
  158. }
  159. if fa.Type == ArgList {
  160. return fa.List
  161. }
  162. return nil
  163. }
  164. // formulaFuncs is the type of the formula functions.
  165. type formulaFuncs struct {
  166. f *File
  167. sheet string
  168. }
  169. // tokenPriority defined basic arithmetic operator priority.
  170. var tokenPriority = map[string]int{
  171. "^": 5,
  172. "*": 4,
  173. "/": 4,
  174. "+": 3,
  175. "-": 3,
  176. "=": 2,
  177. "<>": 2,
  178. "<": 2,
  179. "<=": 2,
  180. ">": 2,
  181. ">=": 2,
  182. "&": 1,
  183. }
  184. // CalcCellValue provides a function to get calculated cell value. This
  185. // feature is currently in working processing. Array formula, table formula
  186. // and some other formulas are not supported currently.
  187. //
  188. // Supported formula functions:
  189. //
  190. // ABS
  191. // ACOS
  192. // ACOSH
  193. // ACOT
  194. // ACOTH
  195. // AND
  196. // ARABIC
  197. // ASIN
  198. // ASINH
  199. // ATAN
  200. // ATAN2
  201. // ATANH
  202. // AVERAGE
  203. // AVERAGEA
  204. // BASE
  205. // CEILING
  206. // CEILING.MATH
  207. // CEILING.PRECISE
  208. // CHOOSE
  209. // CLEAN
  210. // COMBIN
  211. // COMBINA
  212. // CONCAT
  213. // CONCATENATE
  214. // COS
  215. // COSH
  216. // COT
  217. // COTH
  218. // COUNT
  219. // COUNTA
  220. // COUNTBLANK
  221. // CSC
  222. // CSCH
  223. // DATE
  224. // DECIMAL
  225. // DEGREES
  226. // ENCODEURL
  227. // EVEN
  228. // EXACT
  229. // EXP
  230. // FACT
  231. // FACTDOUBLE
  232. // FALSE
  233. // FISHER
  234. // FISHERINV
  235. // FLOOR
  236. // FLOOR.MATH
  237. // FLOOR.PRECISE
  238. // GAMMA
  239. // GAMMALN
  240. // GCD
  241. // HLOOKUP
  242. // IF
  243. // IFERROR
  244. // INT
  245. // ISBLANK
  246. // ISERR
  247. // ISERROR
  248. // ISEVEN
  249. // ISNA
  250. // ISNONTEXT
  251. // ISNUMBER
  252. // ISODD
  253. // ISTEXT
  254. // ISO.CEILING
  255. // KURT
  256. // LCM
  257. // LEN
  258. // LENB
  259. // LN
  260. // LOG
  261. // LOG10
  262. // LOOKUP
  263. // LOWER
  264. // MAX
  265. // MDETERM
  266. // MEDIAN
  267. // MIN
  268. // MINA
  269. // MOD
  270. // MROUND
  271. // MULTINOMIAL
  272. // MUNIT
  273. // NA
  274. // NOT
  275. // ODD
  276. // OR
  277. // PERMUT
  278. // PI
  279. // POWER
  280. // PRODUCT
  281. // PROPER
  282. // QUOTIENT
  283. // RADIANS
  284. // RAND
  285. // RANDBETWEEN
  286. // REPT
  287. // ROMAN
  288. // ROUND
  289. // ROUNDDOWN
  290. // ROUNDUP
  291. // SEC
  292. // SECH
  293. // SHEET
  294. // SIGN
  295. // SIN
  296. // SINH
  297. // SQRT
  298. // SQRTPI
  299. // STDEV
  300. // STDEVA
  301. // SUM
  302. // SUMIF
  303. // SUMSQ
  304. // TAN
  305. // TANH
  306. // TRIM
  307. // TRUE
  308. // TRUNC
  309. // UPPER
  310. // VLOOKUP
  311. //
  312. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  313. var (
  314. formula string
  315. token efp.Token
  316. )
  317. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  318. return
  319. }
  320. ps := efp.ExcelParser()
  321. tokens := ps.Parse(formula)
  322. if tokens == nil {
  323. return
  324. }
  325. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  326. return
  327. }
  328. result = token.TValue
  329. isNum, precision := isNumeric(result)
  330. if isNum && precision > 15 {
  331. num, _ := roundPrecision(result)
  332. result = strings.ToUpper(num)
  333. }
  334. return
  335. }
  336. // getPriority calculate arithmetic operator priority.
  337. func getPriority(token efp.Token) (pri int) {
  338. pri = tokenPriority[token.TValue]
  339. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  340. pri = 6
  341. }
  342. if isBeginParenthesesToken(token) { // (
  343. pri = 0
  344. }
  345. return
  346. }
  347. // newNumberFormulaArg constructs a number formula argument.
  348. func newNumberFormulaArg(n float64) formulaArg {
  349. if math.IsNaN(n) {
  350. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  351. }
  352. return formulaArg{Type: ArgNumber, Number: n}
  353. }
  354. // newStringFormulaArg constructs a string formula argument.
  355. func newStringFormulaArg(s string) formulaArg {
  356. return formulaArg{Type: ArgString, String: s}
  357. }
  358. // newMatrixFormulaArg constructs a matrix formula argument.
  359. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  360. return formulaArg{Type: ArgMatrix, Matrix: m}
  361. }
  362. // newListFormulaArg create a list formula argument.
  363. func newListFormulaArg(l []formulaArg) formulaArg {
  364. return formulaArg{Type: ArgList, List: l}
  365. }
  366. // newBoolFormulaArg constructs a boolean formula argument.
  367. func newBoolFormulaArg(b bool) formulaArg {
  368. var n float64
  369. if b {
  370. n = 1
  371. }
  372. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  373. }
  374. // newErrorFormulaArg create an error formula argument of a given type with a
  375. // specified error message.
  376. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  377. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  378. }
  379. // newEmptyFormulaArg create an empty formula argument.
  380. func newEmptyFormulaArg() formulaArg {
  381. return formulaArg{Type: ArgEmpty}
  382. }
  383. // evalInfixExp evaluate syntax analysis by given infix expression after
  384. // lexical analysis. Evaluate an infix expression containing formulas by
  385. // stacks:
  386. //
  387. // opd - Operand
  388. // opt - Operator
  389. // opf - Operation formula
  390. // opfd - Operand of the operation formula
  391. // opft - Operator of the operation formula
  392. //
  393. // Evaluate arguments of the operation formula by list:
  394. //
  395. // args - Arguments of the operation formula
  396. //
  397. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  398. //
  399. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  400. var err error
  401. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  402. for i := 0; i < len(tokens); i++ {
  403. token := tokens[i]
  404. // out of function stack
  405. if opfStack.Len() == 0 {
  406. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  407. return efp.Token{}, err
  408. }
  409. }
  410. // function start
  411. if isFunctionStartToken(token) {
  412. opfStack.Push(token)
  413. argsStack.Push(list.New().Init())
  414. continue
  415. }
  416. // in function stack, walk 2 token at once
  417. if opfStack.Len() > 0 {
  418. var nextToken efp.Token
  419. if i+1 < len(tokens) {
  420. nextToken = tokens[i+1]
  421. }
  422. // current token is args or range, skip next token, order required: parse reference first
  423. if token.TSubType == efp.TokenSubTypeRange {
  424. if !opftStack.Empty() {
  425. // parse reference: must reference at here
  426. result, err := f.parseReference(sheet, token.TValue)
  427. if err != nil {
  428. return efp.Token{TValue: formulaErrorNAME}, err
  429. }
  430. if result.Type != ArgString {
  431. return efp.Token{}, errors.New(formulaErrorVALUE)
  432. }
  433. opfdStack.Push(efp.Token{
  434. TType: efp.TokenTypeOperand,
  435. TSubType: efp.TokenSubTypeNumber,
  436. TValue: result.String,
  437. })
  438. continue
  439. }
  440. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  441. // parse reference: reference or range at here
  442. result, err := f.parseReference(sheet, token.TValue)
  443. if err != nil {
  444. return efp.Token{TValue: formulaErrorNAME}, err
  445. }
  446. if result.Type == ArgUnknown {
  447. return efp.Token{}, errors.New(formulaErrorVALUE)
  448. }
  449. argsStack.Peek().(*list.List).PushBack(result)
  450. continue
  451. }
  452. }
  453. // check current token is opft
  454. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  455. return efp.Token{}, err
  456. }
  457. // current token is arg
  458. if token.TType == efp.TokenTypeArgument {
  459. for !opftStack.Empty() {
  460. // calculate trigger
  461. topOpt := opftStack.Peek().(efp.Token)
  462. if err := calculate(opfdStack, topOpt); err != nil {
  463. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  464. }
  465. opftStack.Pop()
  466. }
  467. if !opfdStack.Empty() {
  468. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  469. }
  470. continue
  471. }
  472. // current token is logical
  473. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  474. }
  475. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  476. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  477. }
  478. // current token is text
  479. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  480. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  481. }
  482. if err = f.evalInfixExpFunc(sheet, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  483. return efp.Token{}, err
  484. }
  485. }
  486. }
  487. for optStack.Len() != 0 {
  488. topOpt := optStack.Peek().(efp.Token)
  489. if err = calculate(opdStack, topOpt); err != nil {
  490. return efp.Token{}, err
  491. }
  492. optStack.Pop()
  493. }
  494. if opdStack.Len() == 0 {
  495. return efp.Token{}, errors.New("formula not valid")
  496. }
  497. return opdStack.Peek().(efp.Token), err
  498. }
  499. // evalInfixExpFunc evaluate formula function in the infix expression.
  500. func (f *File) evalInfixExpFunc(sheet string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  501. if !isFunctionStopToken(token) {
  502. return nil
  503. }
  504. // current token is function stop
  505. for !opftStack.Empty() {
  506. // calculate trigger
  507. topOpt := opftStack.Peek().(efp.Token)
  508. if err := calculate(opfdStack, topOpt); err != nil {
  509. return err
  510. }
  511. opftStack.Pop()
  512. }
  513. // push opfd to args
  514. if opfdStack.Len() > 0 {
  515. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  516. }
  517. // call formula function to evaluate
  518. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet}, strings.NewReplacer(
  519. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  520. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  521. if arg.Type == ArgError && opfStack.Len() == 1 {
  522. return errors.New(arg.Value())
  523. }
  524. argsStack.Pop()
  525. opfStack.Pop()
  526. if opfStack.Len() > 0 { // still in function stack
  527. if nextToken.TType == efp.TokenTypeOperatorInfix {
  528. // mathematics calculate in formula function
  529. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  530. } else {
  531. argsStack.Peek().(*list.List).PushBack(arg)
  532. }
  533. } else {
  534. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  535. }
  536. return nil
  537. }
  538. // calcPow evaluate exponentiation arithmetic operations.
  539. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  540. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  541. if err != nil {
  542. return err
  543. }
  544. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  545. if err != nil {
  546. return err
  547. }
  548. result := math.Pow(lOpdVal, rOpdVal)
  549. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  550. return nil
  551. }
  552. // calcEq evaluate equal arithmetic operations.
  553. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  554. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  555. return nil
  556. }
  557. // calcNEq evaluate not equal arithmetic operations.
  558. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  559. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  560. return nil
  561. }
  562. // calcL evaluate less than arithmetic operations.
  563. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  564. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  565. if err != nil {
  566. return err
  567. }
  568. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  569. if err != nil {
  570. return err
  571. }
  572. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  573. return nil
  574. }
  575. // calcLe evaluate less than or equal arithmetic operations.
  576. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  577. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  578. if err != nil {
  579. return err
  580. }
  581. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  582. if err != nil {
  583. return err
  584. }
  585. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  586. return nil
  587. }
  588. // calcG evaluate greater than or equal arithmetic operations.
  589. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  590. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  591. if err != nil {
  592. return err
  593. }
  594. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  595. if err != nil {
  596. return err
  597. }
  598. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  599. return nil
  600. }
  601. // calcGe evaluate greater than or equal arithmetic operations.
  602. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  603. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  604. if err != nil {
  605. return err
  606. }
  607. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  608. if err != nil {
  609. return err
  610. }
  611. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  612. return nil
  613. }
  614. // calcSplice evaluate splice '&' operations.
  615. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  616. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  617. return nil
  618. }
  619. // calcAdd evaluate addition arithmetic operations.
  620. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  621. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  622. if err != nil {
  623. return err
  624. }
  625. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  626. if err != nil {
  627. return err
  628. }
  629. result := lOpdVal + rOpdVal
  630. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  631. return nil
  632. }
  633. // calcSubtract evaluate subtraction arithmetic operations.
  634. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  635. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  636. if err != nil {
  637. return err
  638. }
  639. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  640. if err != nil {
  641. return err
  642. }
  643. result := lOpdVal - rOpdVal
  644. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  645. return nil
  646. }
  647. // calcMultiply evaluate multiplication arithmetic operations.
  648. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  649. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  650. if err != nil {
  651. return err
  652. }
  653. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  654. if err != nil {
  655. return err
  656. }
  657. result := lOpdVal * rOpdVal
  658. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  659. return nil
  660. }
  661. // calcDiv evaluate division arithmetic operations.
  662. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  663. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  664. if err != nil {
  665. return err
  666. }
  667. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  668. if err != nil {
  669. return err
  670. }
  671. result := lOpdVal / rOpdVal
  672. if rOpdVal == 0 {
  673. return errors.New(formulaErrorDIV)
  674. }
  675. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  676. return nil
  677. }
  678. // calculate evaluate basic arithmetic operations.
  679. func calculate(opdStack *Stack, opt efp.Token) error {
  680. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  681. if opdStack.Len() < 1 {
  682. return errors.New("formula not valid")
  683. }
  684. opd := opdStack.Pop().(efp.Token)
  685. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  686. if err != nil {
  687. return err
  688. }
  689. result := 0 - opdVal
  690. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  691. }
  692. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  693. "^": calcPow,
  694. "*": calcMultiply,
  695. "/": calcDiv,
  696. "+": calcAdd,
  697. "=": calcEq,
  698. "<>": calcNEq,
  699. "<": calcL,
  700. "<=": calcLe,
  701. ">": calcG,
  702. ">=": calcGe,
  703. "&": calcSplice,
  704. }
  705. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  706. if opdStack.Len() < 2 {
  707. return errors.New("formula not valid")
  708. }
  709. rOpd := opdStack.Pop().(efp.Token)
  710. lOpd := opdStack.Pop().(efp.Token)
  711. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  712. return err
  713. }
  714. }
  715. fn, ok := tokenCalcFunc[opt.TValue]
  716. if ok {
  717. if opdStack.Len() < 2 {
  718. return errors.New("formula not valid")
  719. }
  720. rOpd := opdStack.Pop().(efp.Token)
  721. lOpd := opdStack.Pop().(efp.Token)
  722. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  723. return err
  724. }
  725. }
  726. return nil
  727. }
  728. // parseOperatorPrefixToken parse operator prefix token.
  729. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  730. if optStack.Len() == 0 {
  731. optStack.Push(token)
  732. } else {
  733. tokenPriority := getPriority(token)
  734. topOpt := optStack.Peek().(efp.Token)
  735. topOptPriority := getPriority(topOpt)
  736. if tokenPriority > topOptPriority {
  737. optStack.Push(token)
  738. } else {
  739. for tokenPriority <= topOptPriority {
  740. optStack.Pop()
  741. if err = calculate(opdStack, topOpt); err != nil {
  742. return
  743. }
  744. if optStack.Len() > 0 {
  745. topOpt = optStack.Peek().(efp.Token)
  746. topOptPriority = getPriority(topOpt)
  747. continue
  748. }
  749. break
  750. }
  751. optStack.Push(token)
  752. }
  753. }
  754. return
  755. }
  756. // isFunctionStartToken determine if the token is function stop.
  757. func isFunctionStartToken(token efp.Token) bool {
  758. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  759. }
  760. // isFunctionStopToken determine if the token is function stop.
  761. func isFunctionStopToken(token efp.Token) bool {
  762. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  763. }
  764. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  765. func isBeginParenthesesToken(token efp.Token) bool {
  766. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  767. }
  768. // isEndParenthesesToken determine if the token is end parentheses: ).
  769. func isEndParenthesesToken(token efp.Token) bool {
  770. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  771. }
  772. // isOperatorPrefixToken determine if the token is parse operator prefix
  773. // token.
  774. func isOperatorPrefixToken(token efp.Token) bool {
  775. _, ok := tokenPriority[token.TValue]
  776. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  777. return true
  778. }
  779. return false
  780. }
  781. // getDefinedNameRefTo convert defined name to reference range.
  782. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  783. for _, definedName := range f.GetDefinedName() {
  784. if definedName.Name == definedNameName {
  785. refTo = definedName.RefersTo
  786. // worksheet scope takes precedence over scope workbook when both definedNames exist
  787. if definedName.Scope == currentSheet {
  788. break
  789. }
  790. }
  791. }
  792. return refTo
  793. }
  794. // parseToken parse basic arithmetic operator priority and evaluate based on
  795. // operators and operands.
  796. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  797. // parse reference: must reference at here
  798. if token.TSubType == efp.TokenSubTypeRange {
  799. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  800. if refTo != "" {
  801. token.TValue = refTo
  802. }
  803. result, err := f.parseReference(sheet, token.TValue)
  804. if err != nil {
  805. return errors.New(formulaErrorNAME)
  806. }
  807. if result.Type != ArgString {
  808. return errors.New(formulaErrorVALUE)
  809. }
  810. token.TValue = result.String
  811. token.TType = efp.TokenTypeOperand
  812. token.TSubType = efp.TokenSubTypeNumber
  813. }
  814. if isOperatorPrefixToken(token) {
  815. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  816. return err
  817. }
  818. }
  819. if isBeginParenthesesToken(token) { // (
  820. optStack.Push(token)
  821. }
  822. if isEndParenthesesToken(token) { // )
  823. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  824. topOpt := optStack.Peek().(efp.Token)
  825. if err := calculate(opdStack, topOpt); err != nil {
  826. return err
  827. }
  828. optStack.Pop()
  829. }
  830. optStack.Pop()
  831. }
  832. // opd
  833. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  834. opdStack.Push(token)
  835. }
  836. return nil
  837. }
  838. // parseReference parse reference and extract values by given reference
  839. // characters and default sheet name.
  840. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  841. reference = strings.Replace(reference, "$", "", -1)
  842. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  843. for _, ref := range strings.Split(reference, ":") {
  844. tokens := strings.Split(ref, "!")
  845. cr := cellRef{}
  846. if len(tokens) == 2 { // have a worksheet name
  847. cr.Sheet = tokens[0]
  848. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  849. return
  850. }
  851. if refs.Len() > 0 {
  852. e := refs.Back()
  853. cellRefs.PushBack(e.Value.(cellRef))
  854. refs.Remove(e)
  855. }
  856. refs.PushBack(cr)
  857. continue
  858. }
  859. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  860. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  861. return
  862. }
  863. cellRanges.PushBack(cellRange{
  864. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  865. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  866. })
  867. cellRefs.Init()
  868. arg, err = f.rangeResolver(cellRefs, cellRanges)
  869. return
  870. }
  871. e := refs.Back()
  872. if e == nil {
  873. cr.Sheet = sheet
  874. refs.PushBack(cr)
  875. continue
  876. }
  877. cellRanges.PushBack(cellRange{
  878. From: e.Value.(cellRef),
  879. To: cr,
  880. })
  881. refs.Remove(e)
  882. }
  883. if refs.Len() > 0 {
  884. e := refs.Back()
  885. cellRefs.PushBack(e.Value.(cellRef))
  886. refs.Remove(e)
  887. }
  888. arg, err = f.rangeResolver(cellRefs, cellRanges)
  889. return
  890. }
  891. // prepareValueRange prepare value range.
  892. func prepareValueRange(cr cellRange, valueRange []int) {
  893. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  894. valueRange[0] = cr.From.Row
  895. }
  896. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  897. valueRange[2] = cr.From.Col
  898. }
  899. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  900. valueRange[1] = cr.To.Row
  901. }
  902. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  903. valueRange[3] = cr.To.Col
  904. }
  905. }
  906. // prepareValueRef prepare value reference.
  907. func prepareValueRef(cr cellRef, valueRange []int) {
  908. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  909. valueRange[0] = cr.Row
  910. }
  911. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  912. valueRange[2] = cr.Col
  913. }
  914. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  915. valueRange[1] = cr.Row
  916. }
  917. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  918. valueRange[3] = cr.Col
  919. }
  920. }
  921. // rangeResolver extract value as string from given reference and range list.
  922. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  923. // be reference A1:B3.
  924. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  925. // value range order: from row, to row, from column, to column
  926. valueRange := []int{0, 0, 0, 0}
  927. var sheet string
  928. // prepare value range
  929. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  930. cr := temp.Value.(cellRange)
  931. if cr.From.Sheet != cr.To.Sheet {
  932. err = errors.New(formulaErrorVALUE)
  933. }
  934. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  935. _ = sortCoordinates(rng)
  936. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  937. prepareValueRange(cr, valueRange)
  938. if cr.From.Sheet != "" {
  939. sheet = cr.From.Sheet
  940. }
  941. }
  942. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  943. cr := temp.Value.(cellRef)
  944. if cr.Sheet != "" {
  945. sheet = cr.Sheet
  946. }
  947. prepareValueRef(cr, valueRange)
  948. }
  949. // extract value from ranges
  950. if cellRanges.Len() > 0 {
  951. arg.Type = ArgMatrix
  952. for row := valueRange[0]; row <= valueRange[1]; row++ {
  953. var matrixRow = []formulaArg{}
  954. for col := valueRange[2]; col <= valueRange[3]; col++ {
  955. var cell, value string
  956. if cell, err = CoordinatesToCellName(col, row); err != nil {
  957. return
  958. }
  959. if value, err = f.GetCellValue(sheet, cell); err != nil {
  960. return
  961. }
  962. matrixRow = append(matrixRow, formulaArg{
  963. String: value,
  964. Type: ArgString,
  965. })
  966. }
  967. arg.Matrix = append(arg.Matrix, matrixRow)
  968. }
  969. return
  970. }
  971. // extract value from references
  972. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  973. cr := temp.Value.(cellRef)
  974. var cell string
  975. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  976. return
  977. }
  978. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  979. return
  980. }
  981. arg.Type = ArgString
  982. }
  983. return
  984. }
  985. // callFuncByName calls the no error or only error return function with
  986. // reflect by given receiver, name and parameters.
  987. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  988. function := reflect.ValueOf(receiver).MethodByName(name)
  989. if function.IsValid() {
  990. rt := function.Call(params)
  991. if len(rt) == 0 {
  992. return
  993. }
  994. arg = rt[0].Interface().(formulaArg)
  995. return
  996. }
  997. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  998. }
  999. // formulaCriteriaParser parse formula criteria.
  1000. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1001. fc = &formulaCriteria{}
  1002. if exp == "" {
  1003. return
  1004. }
  1005. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1006. fc.Type, fc.Condition = criteriaEq, match[1]
  1007. return
  1008. }
  1009. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1010. fc.Type, fc.Condition = criteriaEq, match[1]
  1011. return
  1012. }
  1013. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1014. fc.Type, fc.Condition = criteriaLe, match[1]
  1015. return
  1016. }
  1017. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1018. fc.Type, fc.Condition = criteriaGe, match[1]
  1019. return
  1020. }
  1021. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1022. fc.Type, fc.Condition = criteriaL, match[1]
  1023. return
  1024. }
  1025. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1026. fc.Type, fc.Condition = criteriaG, match[1]
  1027. return
  1028. }
  1029. if strings.Contains(exp, "*") {
  1030. if strings.HasPrefix(exp, "*") {
  1031. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1032. }
  1033. if strings.HasSuffix(exp, "*") {
  1034. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1035. }
  1036. return
  1037. }
  1038. fc.Type, fc.Condition = criteriaEq, exp
  1039. return
  1040. }
  1041. // formulaCriteriaEval evaluate formula criteria expression.
  1042. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1043. var value, expected float64
  1044. var e error
  1045. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1046. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1047. return
  1048. }
  1049. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1050. return
  1051. }
  1052. return
  1053. }
  1054. switch criteria.Type {
  1055. case criteriaEq:
  1056. return val == criteria.Condition, err
  1057. case criteriaLe:
  1058. value, expected, e = prepareValue(val, criteria.Condition)
  1059. return value <= expected && e == nil, err
  1060. case criteriaGe:
  1061. value, expected, e = prepareValue(val, criteria.Condition)
  1062. return value >= expected && e == nil, err
  1063. case criteriaL:
  1064. value, expected, e = prepareValue(val, criteria.Condition)
  1065. return value < expected && e == nil, err
  1066. case criteriaG:
  1067. value, expected, e = prepareValue(val, criteria.Condition)
  1068. return value > expected && e == nil, err
  1069. case criteriaBeg:
  1070. return strings.HasPrefix(val, criteria.Condition), err
  1071. case criteriaEnd:
  1072. return strings.HasSuffix(val, criteria.Condition), err
  1073. }
  1074. return
  1075. }
  1076. // Math and Trigonometric functions
  1077. // ABS function returns the absolute value of any supplied number. The syntax
  1078. // of the function is:
  1079. //
  1080. // ABS(number)
  1081. //
  1082. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1083. if argsList.Len() != 1 {
  1084. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1085. }
  1086. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1087. if arg.Type == ArgError {
  1088. return arg
  1089. }
  1090. return newNumberFormulaArg(math.Abs(arg.Number))
  1091. }
  1092. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1093. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1094. // the function is:
  1095. //
  1096. // ACOS(number)
  1097. //
  1098. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1099. if argsList.Len() != 1 {
  1100. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1101. }
  1102. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1103. if arg.Type == ArgError {
  1104. return arg
  1105. }
  1106. return newNumberFormulaArg(math.Acos(arg.Number))
  1107. }
  1108. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1109. // of the function is:
  1110. //
  1111. // ACOSH(number)
  1112. //
  1113. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1114. if argsList.Len() != 1 {
  1115. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1116. }
  1117. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1118. if arg.Type == ArgError {
  1119. return arg
  1120. }
  1121. return newNumberFormulaArg(math.Acosh(arg.Number))
  1122. }
  1123. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1124. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1125. // of the function is:
  1126. //
  1127. // ACOT(number)
  1128. //
  1129. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1130. if argsList.Len() != 1 {
  1131. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1132. }
  1133. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1134. if arg.Type == ArgError {
  1135. return arg
  1136. }
  1137. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1138. }
  1139. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1140. // value. The syntax of the function is:
  1141. //
  1142. // ACOTH(number)
  1143. //
  1144. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1145. if argsList.Len() != 1 {
  1146. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1147. }
  1148. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1149. if arg.Type == ArgError {
  1150. return arg
  1151. }
  1152. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1153. }
  1154. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1155. // of the function is:
  1156. //
  1157. // ARABIC(text)
  1158. //
  1159. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1160. if argsList.Len() != 1 {
  1161. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1162. }
  1163. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1164. val, last, prefix := 0.0, 0.0, 1.0
  1165. for _, char := range argsList.Front().Value.(formulaArg).String {
  1166. digit := 0.0
  1167. if char == '-' {
  1168. prefix = -1
  1169. continue
  1170. }
  1171. digit = charMap[char]
  1172. val += digit
  1173. switch {
  1174. case last == digit && (last == 5 || last == 50 || last == 500):
  1175. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1176. case 2*last == digit:
  1177. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1178. }
  1179. if last < digit {
  1180. val -= 2 * last
  1181. }
  1182. last = digit
  1183. }
  1184. return newNumberFormulaArg(prefix * val)
  1185. }
  1186. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1187. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1188. // of the function is:
  1189. //
  1190. // ASIN(number)
  1191. //
  1192. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1193. if argsList.Len() != 1 {
  1194. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1195. }
  1196. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1197. if arg.Type == ArgError {
  1198. return arg
  1199. }
  1200. return newNumberFormulaArg(math.Asin(arg.Number))
  1201. }
  1202. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1203. // The syntax of the function is:
  1204. //
  1205. // ASINH(number)
  1206. //
  1207. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1208. if argsList.Len() != 1 {
  1209. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1210. }
  1211. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1212. if arg.Type == ArgError {
  1213. return arg
  1214. }
  1215. return newNumberFormulaArg(math.Asinh(arg.Number))
  1216. }
  1217. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1218. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1219. // syntax of the function is:
  1220. //
  1221. // ATAN(number)
  1222. //
  1223. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1224. if argsList.Len() != 1 {
  1225. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1226. }
  1227. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1228. if arg.Type == ArgError {
  1229. return arg
  1230. }
  1231. return newNumberFormulaArg(math.Atan(arg.Number))
  1232. }
  1233. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1234. // number. The syntax of the function is:
  1235. //
  1236. // ATANH(number)
  1237. //
  1238. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1239. if argsList.Len() != 1 {
  1240. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1241. }
  1242. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1243. if arg.Type == ArgError {
  1244. return arg
  1245. }
  1246. return newNumberFormulaArg(math.Atanh(arg.Number))
  1247. }
  1248. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1249. // given set of x and y coordinates, and returns an angle, in radians, between
  1250. // -π/2 and +π/2. The syntax of the function is:
  1251. //
  1252. // ATAN2(x_num,y_num)
  1253. //
  1254. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1255. if argsList.Len() != 2 {
  1256. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1257. }
  1258. x := argsList.Back().Value.(formulaArg).ToNumber()
  1259. if x.Type == ArgError {
  1260. return x
  1261. }
  1262. y := argsList.Front().Value.(formulaArg).ToNumber()
  1263. if y.Type == ArgError {
  1264. return y
  1265. }
  1266. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1267. }
  1268. // BASE function converts a number into a supplied base (radix), and returns a
  1269. // text representation of the calculated value. The syntax of the function is:
  1270. //
  1271. // BASE(number,radix,[min_length])
  1272. //
  1273. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1274. if argsList.Len() < 2 {
  1275. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1276. }
  1277. if argsList.Len() > 3 {
  1278. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1279. }
  1280. var minLength int
  1281. var err error
  1282. number := argsList.Front().Value.(formulaArg).ToNumber()
  1283. if number.Type == ArgError {
  1284. return number
  1285. }
  1286. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1287. if radix.Type == ArgError {
  1288. return radix
  1289. }
  1290. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1291. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1292. }
  1293. if argsList.Len() > 2 {
  1294. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1295. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1296. }
  1297. }
  1298. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1299. if len(result) < minLength {
  1300. result = strings.Repeat("0", minLength-len(result)) + result
  1301. }
  1302. return newStringFormulaArg(strings.ToUpper(result))
  1303. }
  1304. // CEILING function rounds a supplied number away from zero, to the nearest
  1305. // multiple of a given number. The syntax of the function is:
  1306. //
  1307. // CEILING(number,significance)
  1308. //
  1309. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1310. if argsList.Len() == 0 {
  1311. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1312. }
  1313. if argsList.Len() > 2 {
  1314. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1315. }
  1316. number, significance, res := 0.0, 1.0, 0.0
  1317. n := argsList.Front().Value.(formulaArg).ToNumber()
  1318. if n.Type == ArgError {
  1319. return n
  1320. }
  1321. number = n.Number
  1322. if number < 0 {
  1323. significance = -1
  1324. }
  1325. if argsList.Len() > 1 {
  1326. s := argsList.Back().Value.(formulaArg).ToNumber()
  1327. if s.Type == ArgError {
  1328. return s
  1329. }
  1330. significance = s.Number
  1331. }
  1332. if significance < 0 && number > 0 {
  1333. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1334. }
  1335. if argsList.Len() == 1 {
  1336. return newNumberFormulaArg(math.Ceil(number))
  1337. }
  1338. number, res = math.Modf(number / significance)
  1339. if res > 0 {
  1340. number++
  1341. }
  1342. return newNumberFormulaArg(number * significance)
  1343. }
  1344. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1345. // significance. The syntax of the function is:
  1346. //
  1347. // CEILING.MATH(number,[significance],[mode])
  1348. //
  1349. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1350. if argsList.Len() == 0 {
  1351. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1352. }
  1353. if argsList.Len() > 3 {
  1354. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1355. }
  1356. number, significance, mode := 0.0, 1.0, 1.0
  1357. n := argsList.Front().Value.(formulaArg).ToNumber()
  1358. if n.Type == ArgError {
  1359. return n
  1360. }
  1361. number = n.Number
  1362. if number < 0 {
  1363. significance = -1
  1364. }
  1365. if argsList.Len() > 1 {
  1366. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1367. if s.Type == ArgError {
  1368. return s
  1369. }
  1370. significance = s.Number
  1371. }
  1372. if argsList.Len() == 1 {
  1373. return newNumberFormulaArg(math.Ceil(number))
  1374. }
  1375. if argsList.Len() > 2 {
  1376. m := argsList.Back().Value.(formulaArg).ToNumber()
  1377. if m.Type == ArgError {
  1378. return m
  1379. }
  1380. mode = m.Number
  1381. }
  1382. val, res := math.Modf(number / significance)
  1383. if res != 0 {
  1384. if number > 0 {
  1385. val++
  1386. } else if mode < 0 {
  1387. val--
  1388. }
  1389. }
  1390. return newNumberFormulaArg(val * significance)
  1391. }
  1392. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1393. // number's sign), to the nearest multiple of a given number. The syntax of
  1394. // the function is:
  1395. //
  1396. // CEILING.PRECISE(number,[significance])
  1397. //
  1398. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1399. if argsList.Len() == 0 {
  1400. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1401. }
  1402. if argsList.Len() > 2 {
  1403. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1404. }
  1405. number, significance := 0.0, 1.0
  1406. n := argsList.Front().Value.(formulaArg).ToNumber()
  1407. if n.Type == ArgError {
  1408. return n
  1409. }
  1410. number = n.Number
  1411. if number < 0 {
  1412. significance = -1
  1413. }
  1414. if argsList.Len() == 1 {
  1415. return newNumberFormulaArg(math.Ceil(number))
  1416. }
  1417. if argsList.Len() > 1 {
  1418. s := argsList.Back().Value.(formulaArg).ToNumber()
  1419. if s.Type == ArgError {
  1420. return s
  1421. }
  1422. significance = s.Number
  1423. significance = math.Abs(significance)
  1424. if significance == 0 {
  1425. return newNumberFormulaArg(significance)
  1426. }
  1427. }
  1428. val, res := math.Modf(number / significance)
  1429. if res != 0 {
  1430. if number > 0 {
  1431. val++
  1432. }
  1433. }
  1434. return newNumberFormulaArg(val * significance)
  1435. }
  1436. // COMBIN function calculates the number of combinations (in any order) of a
  1437. // given number objects from a set. The syntax of the function is:
  1438. //
  1439. // COMBIN(number,number_chosen)
  1440. //
  1441. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1442. if argsList.Len() != 2 {
  1443. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1444. }
  1445. number, chosen, val := 0.0, 0.0, 1.0
  1446. n := argsList.Front().Value.(formulaArg).ToNumber()
  1447. if n.Type == ArgError {
  1448. return n
  1449. }
  1450. number = n.Number
  1451. c := argsList.Back().Value.(formulaArg).ToNumber()
  1452. if c.Type == ArgError {
  1453. return c
  1454. }
  1455. chosen = c.Number
  1456. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1457. if chosen > number {
  1458. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1459. }
  1460. if chosen == number || chosen == 0 {
  1461. return newNumberFormulaArg(1)
  1462. }
  1463. for c := float64(1); c <= chosen; c++ {
  1464. val *= (number + 1 - c) / c
  1465. }
  1466. return newNumberFormulaArg(math.Ceil(val))
  1467. }
  1468. // COMBINA function calculates the number of combinations, with repetitions,
  1469. // of a given number objects from a set. The syntax of the function is:
  1470. //
  1471. // COMBINA(number,number_chosen)
  1472. //
  1473. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1474. if argsList.Len() != 2 {
  1475. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1476. }
  1477. var number, chosen float64
  1478. n := argsList.Front().Value.(formulaArg).ToNumber()
  1479. if n.Type == ArgError {
  1480. return n
  1481. }
  1482. number = n.Number
  1483. c := argsList.Back().Value.(formulaArg).ToNumber()
  1484. if c.Type == ArgError {
  1485. return c
  1486. }
  1487. chosen = c.Number
  1488. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1489. if number < chosen {
  1490. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1491. }
  1492. if number == 0 {
  1493. return newNumberFormulaArg(number)
  1494. }
  1495. args := list.New()
  1496. args.PushBack(formulaArg{
  1497. String: fmt.Sprintf("%g", number+chosen-1),
  1498. Type: ArgString,
  1499. })
  1500. args.PushBack(formulaArg{
  1501. String: fmt.Sprintf("%g", number-1),
  1502. Type: ArgString,
  1503. })
  1504. return fn.COMBIN(args)
  1505. }
  1506. // COS function calculates the cosine of a given angle. The syntax of the
  1507. // function is:
  1508. //
  1509. // COS(number)
  1510. //
  1511. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1512. if argsList.Len() != 1 {
  1513. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1514. }
  1515. val := argsList.Front().Value.(formulaArg).ToNumber()
  1516. if val.Type == ArgError {
  1517. return val
  1518. }
  1519. return newNumberFormulaArg(math.Cos(val.Number))
  1520. }
  1521. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1522. // The syntax of the function is:
  1523. //
  1524. // COSH(number)
  1525. //
  1526. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1527. if argsList.Len() != 1 {
  1528. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1529. }
  1530. val := argsList.Front().Value.(formulaArg).ToNumber()
  1531. if val.Type == ArgError {
  1532. return val
  1533. }
  1534. return newNumberFormulaArg(math.Cosh(val.Number))
  1535. }
  1536. // COT function calculates the cotangent of a given angle. The syntax of the
  1537. // function is:
  1538. //
  1539. // COT(number)
  1540. //
  1541. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1542. if argsList.Len() != 1 {
  1543. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1544. }
  1545. val := argsList.Front().Value.(formulaArg).ToNumber()
  1546. if val.Type == ArgError {
  1547. return val
  1548. }
  1549. if val.Number == 0 {
  1550. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1551. }
  1552. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1553. }
  1554. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1555. // angle. The syntax of the function is:
  1556. //
  1557. // COTH(number)
  1558. //
  1559. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1560. if argsList.Len() != 1 {
  1561. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1562. }
  1563. val := argsList.Front().Value.(formulaArg).ToNumber()
  1564. if val.Type == ArgError {
  1565. return val
  1566. }
  1567. if val.Number == 0 {
  1568. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1569. }
  1570. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1571. }
  1572. // CSC function calculates the cosecant of a given angle. The syntax of the
  1573. // function is:
  1574. //
  1575. // CSC(number)
  1576. //
  1577. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1578. if argsList.Len() != 1 {
  1579. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1580. }
  1581. val := argsList.Front().Value.(formulaArg).ToNumber()
  1582. if val.Type == ArgError {
  1583. return val
  1584. }
  1585. if val.Number == 0 {
  1586. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1587. }
  1588. return newNumberFormulaArg(1 / math.Sin(val.Number))
  1589. }
  1590. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1591. // angle. The syntax of the function is:
  1592. //
  1593. // CSCH(number)
  1594. //
  1595. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1596. if argsList.Len() != 1 {
  1597. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1598. }
  1599. val := argsList.Front().Value.(formulaArg).ToNumber()
  1600. if val.Type == ArgError {
  1601. return val
  1602. }
  1603. if val.Number == 0 {
  1604. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1605. }
  1606. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  1607. }
  1608. // DECIMAL function converts a text representation of a number in a specified
  1609. // base, into a decimal value. The syntax of the function is:
  1610. //
  1611. // DECIMAL(text,radix)
  1612. //
  1613. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1614. if argsList.Len() != 2 {
  1615. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1616. }
  1617. var text = argsList.Front().Value.(formulaArg).String
  1618. var radix int
  1619. var err error
  1620. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1621. if err != nil {
  1622. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1623. }
  1624. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1625. text = text[2:]
  1626. }
  1627. val, err := strconv.ParseInt(text, radix, 64)
  1628. if err != nil {
  1629. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1630. }
  1631. return newNumberFormulaArg(float64(val))
  1632. }
  1633. // DEGREES function converts radians into degrees. The syntax of the function
  1634. // is:
  1635. //
  1636. // DEGREES(angle)
  1637. //
  1638. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1639. if argsList.Len() != 1 {
  1640. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1641. }
  1642. val := argsList.Front().Value.(formulaArg).ToNumber()
  1643. if val.Type == ArgError {
  1644. return val
  1645. }
  1646. if val.Number == 0 {
  1647. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1648. }
  1649. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  1650. }
  1651. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1652. // positive number up and a negative number down), to the next even number.
  1653. // The syntax of the function is:
  1654. //
  1655. // EVEN(number)
  1656. //
  1657. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1658. if argsList.Len() != 1 {
  1659. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1660. }
  1661. number := argsList.Front().Value.(formulaArg).ToNumber()
  1662. if number.Type == ArgError {
  1663. return number
  1664. }
  1665. sign := math.Signbit(number.Number)
  1666. m, frac := math.Modf(number.Number / 2)
  1667. val := m * 2
  1668. if frac != 0 {
  1669. if !sign {
  1670. val += 2
  1671. } else {
  1672. val -= 2
  1673. }
  1674. }
  1675. return newNumberFormulaArg(val)
  1676. }
  1677. // EXP function calculates the value of the mathematical constant e, raised to
  1678. // the power of a given number. The syntax of the function is:
  1679. //
  1680. // EXP(number)
  1681. //
  1682. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1683. if argsList.Len() != 1 {
  1684. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1685. }
  1686. number := argsList.Front().Value.(formulaArg).ToNumber()
  1687. if number.Type == ArgError {
  1688. return number
  1689. }
  1690. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  1691. }
  1692. // fact returns the factorial of a supplied number.
  1693. func fact(number float64) float64 {
  1694. val := float64(1)
  1695. for i := float64(2); i <= number; i++ {
  1696. val *= i
  1697. }
  1698. return val
  1699. }
  1700. // FACT function returns the factorial of a supplied number. The syntax of the
  1701. // function is:
  1702. //
  1703. // FACT(number)
  1704. //
  1705. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1706. if argsList.Len() != 1 {
  1707. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1708. }
  1709. number := argsList.Front().Value.(formulaArg).ToNumber()
  1710. if number.Type == ArgError {
  1711. return number
  1712. }
  1713. if number.Number < 0 {
  1714. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1715. }
  1716. return newNumberFormulaArg(fact(number.Number))
  1717. }
  1718. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1719. // syntax of the function is:
  1720. //
  1721. // FACTDOUBLE(number)
  1722. //
  1723. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1724. if argsList.Len() != 1 {
  1725. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1726. }
  1727. val := 1.0
  1728. number := argsList.Front().Value.(formulaArg).ToNumber()
  1729. if number.Type == ArgError {
  1730. return number
  1731. }
  1732. if number.Number < 0 {
  1733. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1734. }
  1735. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  1736. val *= i
  1737. }
  1738. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1739. }
  1740. // FLOOR function rounds a supplied number towards zero to the nearest
  1741. // multiple of a specified significance. The syntax of the function is:
  1742. //
  1743. // FLOOR(number,significance)
  1744. //
  1745. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1746. if argsList.Len() != 2 {
  1747. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1748. }
  1749. number := argsList.Front().Value.(formulaArg).ToNumber()
  1750. if number.Type == ArgError {
  1751. return number
  1752. }
  1753. significance := argsList.Back().Value.(formulaArg).ToNumber()
  1754. if significance.Type == ArgError {
  1755. return significance
  1756. }
  1757. if significance.Number < 0 && number.Number >= 0 {
  1758. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1759. }
  1760. val := number.Number
  1761. val, res := math.Modf(val / significance.Number)
  1762. if res != 0 {
  1763. if number.Number < 0 && res < 0 {
  1764. val--
  1765. }
  1766. }
  1767. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  1768. }
  1769. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1770. // significance. The syntax of the function is:
  1771. //
  1772. // FLOOR.MATH(number,[significance],[mode])
  1773. //
  1774. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1775. if argsList.Len() == 0 {
  1776. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1777. }
  1778. if argsList.Len() > 3 {
  1779. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1780. }
  1781. significance, mode := 1.0, 1.0
  1782. number := argsList.Front().Value.(formulaArg).ToNumber()
  1783. if number.Type == ArgError {
  1784. return number
  1785. }
  1786. if number.Number < 0 {
  1787. significance = -1
  1788. }
  1789. if argsList.Len() > 1 {
  1790. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1791. if s.Type == ArgError {
  1792. return s
  1793. }
  1794. significance = s.Number
  1795. }
  1796. if argsList.Len() == 1 {
  1797. return newNumberFormulaArg(math.Floor(number.Number))
  1798. }
  1799. if argsList.Len() > 2 {
  1800. m := argsList.Back().Value.(formulaArg).ToNumber()
  1801. if m.Type == ArgError {
  1802. return m
  1803. }
  1804. mode = m.Number
  1805. }
  1806. val, res := math.Modf(number.Number / significance)
  1807. if res != 0 && number.Number < 0 && mode > 0 {
  1808. val--
  1809. }
  1810. return newNumberFormulaArg(val * significance)
  1811. }
  1812. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1813. // of significance. The syntax of the function is:
  1814. //
  1815. // FLOOR.PRECISE(number,[significance])
  1816. //
  1817. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1818. if argsList.Len() == 0 {
  1819. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1820. }
  1821. if argsList.Len() > 2 {
  1822. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1823. }
  1824. var significance float64
  1825. number := argsList.Front().Value.(formulaArg).ToNumber()
  1826. if number.Type == ArgError {
  1827. return number
  1828. }
  1829. if number.Number < 0 {
  1830. significance = -1
  1831. }
  1832. if argsList.Len() == 1 {
  1833. return newNumberFormulaArg(math.Floor(number.Number))
  1834. }
  1835. if argsList.Len() > 1 {
  1836. s := argsList.Back().Value.(formulaArg).ToNumber()
  1837. if s.Type == ArgError {
  1838. return s
  1839. }
  1840. significance = s.Number
  1841. significance = math.Abs(significance)
  1842. if significance == 0 {
  1843. return newNumberFormulaArg(significance)
  1844. }
  1845. }
  1846. val, res := math.Modf(number.Number / significance)
  1847. if res != 0 {
  1848. if number.Number < 0 {
  1849. val--
  1850. }
  1851. }
  1852. return newNumberFormulaArg(val * significance)
  1853. }
  1854. // gcd returns the greatest common divisor of two supplied integers.
  1855. func gcd(x, y float64) float64 {
  1856. x, y = math.Trunc(x), math.Trunc(y)
  1857. if x == 0 {
  1858. return y
  1859. }
  1860. if y == 0 {
  1861. return x
  1862. }
  1863. for x != y {
  1864. if x > y {
  1865. x = x - y
  1866. } else {
  1867. y = y - x
  1868. }
  1869. }
  1870. return x
  1871. }
  1872. // GCD function returns the greatest common divisor of two or more supplied
  1873. // integers. The syntax of the function is:
  1874. //
  1875. // GCD(number1,[number2],...)
  1876. //
  1877. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  1878. if argsList.Len() == 0 {
  1879. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  1880. }
  1881. var (
  1882. val float64
  1883. nums = []float64{}
  1884. )
  1885. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1886. token := arg.Value.(formulaArg)
  1887. switch token.Type {
  1888. case ArgString:
  1889. num := token.ToNumber()
  1890. if num.Type == ArgError {
  1891. return num
  1892. }
  1893. val = num.Number
  1894. case ArgNumber:
  1895. val = token.Number
  1896. }
  1897. nums = append(nums, val)
  1898. }
  1899. if nums[0] < 0 {
  1900. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1901. }
  1902. if len(nums) == 1 {
  1903. return newNumberFormulaArg(nums[0])
  1904. }
  1905. cd := nums[0]
  1906. for i := 1; i < len(nums); i++ {
  1907. if nums[i] < 0 {
  1908. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1909. }
  1910. cd = gcd(cd, nums[i])
  1911. }
  1912. return newNumberFormulaArg(cd)
  1913. }
  1914. // INT function truncates a supplied number down to the closest integer. The
  1915. // syntax of the function is:
  1916. //
  1917. // INT(number)
  1918. //
  1919. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  1920. if argsList.Len() != 1 {
  1921. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  1922. }
  1923. number := argsList.Front().Value.(formulaArg).ToNumber()
  1924. if number.Type == ArgError {
  1925. return number
  1926. }
  1927. val, frac := math.Modf(number.Number)
  1928. if frac < 0 {
  1929. val--
  1930. }
  1931. return newNumberFormulaArg(val)
  1932. }
  1933. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1934. // sign), to the nearest multiple of a supplied significance. The syntax of
  1935. // the function is:
  1936. //
  1937. // ISO.CEILING(number,[significance])
  1938. //
  1939. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  1940. if argsList.Len() == 0 {
  1941. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  1942. }
  1943. if argsList.Len() > 2 {
  1944. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  1945. }
  1946. var significance float64
  1947. number := argsList.Front().Value.(formulaArg).ToNumber()
  1948. if number.Type == ArgError {
  1949. return number
  1950. }
  1951. if number.Number < 0 {
  1952. significance = -1
  1953. }
  1954. if argsList.Len() == 1 {
  1955. return newNumberFormulaArg(math.Ceil(number.Number))
  1956. }
  1957. if argsList.Len() > 1 {
  1958. s := argsList.Back().Value.(formulaArg).ToNumber()
  1959. if s.Type == ArgError {
  1960. return s
  1961. }
  1962. significance = s.Number
  1963. significance = math.Abs(significance)
  1964. if significance == 0 {
  1965. return newNumberFormulaArg(significance)
  1966. }
  1967. }
  1968. val, res := math.Modf(number.Number / significance)
  1969. if res != 0 {
  1970. if number.Number > 0 {
  1971. val++
  1972. }
  1973. }
  1974. return newNumberFormulaArg(val * significance)
  1975. }
  1976. // lcm returns the least common multiple of two supplied integers.
  1977. func lcm(a, b float64) float64 {
  1978. a = math.Trunc(a)
  1979. b = math.Trunc(b)
  1980. if a == 0 && b == 0 {
  1981. return 0
  1982. }
  1983. return a * b / gcd(a, b)
  1984. }
  1985. // LCM function returns the least common multiple of two or more supplied
  1986. // integers. The syntax of the function is:
  1987. //
  1988. // LCM(number1,[number2],...)
  1989. //
  1990. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  1991. if argsList.Len() == 0 {
  1992. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  1993. }
  1994. var (
  1995. val float64
  1996. nums = []float64{}
  1997. err error
  1998. )
  1999. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2000. token := arg.Value.(formulaArg)
  2001. switch token.Type {
  2002. case ArgString:
  2003. if token.String == "" {
  2004. continue
  2005. }
  2006. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2007. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2008. }
  2009. case ArgNumber:
  2010. val = token.Number
  2011. }
  2012. nums = append(nums, val)
  2013. }
  2014. if nums[0] < 0 {
  2015. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2016. }
  2017. if len(nums) == 1 {
  2018. return newNumberFormulaArg(nums[0])
  2019. }
  2020. cm := nums[0]
  2021. for i := 1; i < len(nums); i++ {
  2022. if nums[i] < 0 {
  2023. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2024. }
  2025. cm = lcm(cm, nums[i])
  2026. }
  2027. return newNumberFormulaArg(cm)
  2028. }
  2029. // LN function calculates the natural logarithm of a given number. The syntax
  2030. // of the function is:
  2031. //
  2032. // LN(number)
  2033. //
  2034. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2035. if argsList.Len() != 1 {
  2036. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2037. }
  2038. number := argsList.Front().Value.(formulaArg).ToNumber()
  2039. if number.Type == ArgError {
  2040. return number
  2041. }
  2042. return newNumberFormulaArg(math.Log(number.Number))
  2043. }
  2044. // LOG function calculates the logarithm of a given number, to a supplied
  2045. // base. The syntax of the function is:
  2046. //
  2047. // LOG(number,[base])
  2048. //
  2049. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2050. if argsList.Len() == 0 {
  2051. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2052. }
  2053. if argsList.Len() > 2 {
  2054. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2055. }
  2056. base := 10.0
  2057. number := argsList.Front().Value.(formulaArg).ToNumber()
  2058. if number.Type == ArgError {
  2059. return number
  2060. }
  2061. if argsList.Len() > 1 {
  2062. b := argsList.Back().Value.(formulaArg).ToNumber()
  2063. if b.Type == ArgError {
  2064. return b
  2065. }
  2066. base = b.Number
  2067. }
  2068. if number.Number == 0 {
  2069. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2070. }
  2071. if base == 0 {
  2072. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2073. }
  2074. if base == 1 {
  2075. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2076. }
  2077. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2078. }
  2079. // LOG10 function calculates the base 10 logarithm of a given number. The
  2080. // syntax of the function is:
  2081. //
  2082. // LOG10(number)
  2083. //
  2084. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2085. if argsList.Len() != 1 {
  2086. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2087. }
  2088. number := argsList.Front().Value.(formulaArg).ToNumber()
  2089. if number.Type == ArgError {
  2090. return number
  2091. }
  2092. return newNumberFormulaArg(math.Log10(number.Number))
  2093. }
  2094. // minor function implement a minor of a matrix A is the determinant of some
  2095. // smaller square matrix.
  2096. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2097. ret := [][]float64{}
  2098. for i := range sqMtx {
  2099. if i == 0 {
  2100. continue
  2101. }
  2102. row := []float64{}
  2103. for j := range sqMtx {
  2104. if j == idx {
  2105. continue
  2106. }
  2107. row = append(row, sqMtx[i][j])
  2108. }
  2109. ret = append(ret, row)
  2110. }
  2111. return ret
  2112. }
  2113. // det determinant of the 2x2 matrix.
  2114. func det(sqMtx [][]float64) float64 {
  2115. if len(sqMtx) == 2 {
  2116. m00 := sqMtx[0][0]
  2117. m01 := sqMtx[0][1]
  2118. m10 := sqMtx[1][0]
  2119. m11 := sqMtx[1][1]
  2120. return m00*m11 - m10*m01
  2121. }
  2122. var res, sgn float64 = 0, 1
  2123. for j := range sqMtx {
  2124. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2125. sgn *= -1
  2126. }
  2127. return res
  2128. }
  2129. // MDETERM calculates the determinant of a square matrix. The
  2130. // syntax of the function is:
  2131. //
  2132. // MDETERM(array)
  2133. //
  2134. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2135. var (
  2136. num float64
  2137. numMtx = [][]float64{}
  2138. err error
  2139. strMtx [][]formulaArg
  2140. )
  2141. if argsList.Len() < 1 {
  2142. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2143. }
  2144. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2145. var rows = len(strMtx)
  2146. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2147. if len(row) != rows {
  2148. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2149. }
  2150. numRow := []float64{}
  2151. for _, ele := range row {
  2152. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2153. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2154. }
  2155. numRow = append(numRow, num)
  2156. }
  2157. numMtx = append(numMtx, numRow)
  2158. }
  2159. return newNumberFormulaArg(det(numMtx))
  2160. }
  2161. // MOD function returns the remainder of a division between two supplied
  2162. // numbers. The syntax of the function is:
  2163. //
  2164. // MOD(number,divisor)
  2165. //
  2166. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2167. if argsList.Len() != 2 {
  2168. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2169. }
  2170. number := argsList.Front().Value.(formulaArg).ToNumber()
  2171. if number.Type == ArgError {
  2172. return number
  2173. }
  2174. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2175. if divisor.Type == ArgError {
  2176. return divisor
  2177. }
  2178. if divisor.Number == 0 {
  2179. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2180. }
  2181. trunc, rem := math.Modf(number.Number / divisor.Number)
  2182. if rem < 0 {
  2183. trunc--
  2184. }
  2185. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2186. }
  2187. // MROUND function rounds a supplied number up or down to the nearest multiple
  2188. // of a given number. The syntax of the function is:
  2189. //
  2190. // MROUND(number,multiple)
  2191. //
  2192. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2193. if argsList.Len() != 2 {
  2194. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2195. }
  2196. n := argsList.Front().Value.(formulaArg).ToNumber()
  2197. if n.Type == ArgError {
  2198. return n
  2199. }
  2200. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2201. if multiple.Type == ArgError {
  2202. return multiple
  2203. }
  2204. if multiple.Number == 0 {
  2205. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2206. }
  2207. if multiple.Number < 0 && n.Number > 0 ||
  2208. multiple.Number > 0 && n.Number < 0 {
  2209. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2210. }
  2211. number, res := math.Modf(n.Number / multiple.Number)
  2212. if math.Trunc(res+0.5) > 0 {
  2213. number++
  2214. }
  2215. return newNumberFormulaArg(number * multiple.Number)
  2216. }
  2217. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2218. // supplied values to the product of factorials of those values. The syntax of
  2219. // the function is:
  2220. //
  2221. // MULTINOMIAL(number1,[number2],...)
  2222. //
  2223. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2224. val, num, denom := 0.0, 0.0, 1.0
  2225. var err error
  2226. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2227. token := arg.Value.(formulaArg)
  2228. switch token.Type {
  2229. case ArgString:
  2230. if token.String == "" {
  2231. continue
  2232. }
  2233. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2234. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2235. }
  2236. case ArgNumber:
  2237. val = token.Number
  2238. }
  2239. num += val
  2240. denom *= fact(val)
  2241. }
  2242. return newNumberFormulaArg(fact(num) / denom)
  2243. }
  2244. // MUNIT function returns the unit matrix for a specified dimension. The
  2245. // syntax of the function is:
  2246. //
  2247. // MUNIT(dimension)
  2248. //
  2249. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2250. if argsList.Len() != 1 {
  2251. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2252. }
  2253. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2254. if dimension.Type == ArgError || dimension.Number < 0 {
  2255. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2256. }
  2257. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2258. for i := 0; i < int(dimension.Number); i++ {
  2259. row := make([]formulaArg, int(dimension.Number))
  2260. for j := 0; j < int(dimension.Number); j++ {
  2261. if i == j {
  2262. row[j] = newNumberFormulaArg(1.0)
  2263. } else {
  2264. row[j] = newNumberFormulaArg(0.0)
  2265. }
  2266. }
  2267. matrix = append(matrix, row)
  2268. }
  2269. return newMatrixFormulaArg(matrix)
  2270. }
  2271. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2272. // number up and a negative number down), to the next odd number. The syntax
  2273. // of the function is:
  2274. //
  2275. // ODD(number)
  2276. //
  2277. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2278. if argsList.Len() != 1 {
  2279. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2280. }
  2281. number := argsList.Back().Value.(formulaArg).ToNumber()
  2282. if number.Type == ArgError {
  2283. return number
  2284. }
  2285. if number.Number == 0 {
  2286. return newNumberFormulaArg(1)
  2287. }
  2288. sign := math.Signbit(number.Number)
  2289. m, frac := math.Modf((number.Number - 1) / 2)
  2290. val := m*2 + 1
  2291. if frac != 0 {
  2292. if !sign {
  2293. val += 2
  2294. } else {
  2295. val -= 2
  2296. }
  2297. }
  2298. return newNumberFormulaArg(val)
  2299. }
  2300. // PI function returns the value of the mathematical constant π (pi), accurate
  2301. // to 15 digits (14 decimal places). The syntax of the function is:
  2302. //
  2303. // PI()
  2304. //
  2305. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2306. if argsList.Len() != 0 {
  2307. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2308. }
  2309. return newNumberFormulaArg(math.Pi)
  2310. }
  2311. // POWER function calculates a given number, raised to a supplied power.
  2312. // The syntax of the function is:
  2313. //
  2314. // POWER(number,power)
  2315. //
  2316. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2317. if argsList.Len() != 2 {
  2318. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2319. }
  2320. x := argsList.Front().Value.(formulaArg).ToNumber()
  2321. if x.Type == ArgError {
  2322. return x
  2323. }
  2324. y := argsList.Back().Value.(formulaArg).ToNumber()
  2325. if y.Type == ArgError {
  2326. return y
  2327. }
  2328. if x.Number == 0 && y.Number == 0 {
  2329. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2330. }
  2331. if x.Number == 0 && y.Number < 0 {
  2332. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2333. }
  2334. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2335. }
  2336. // PRODUCT function returns the product (multiplication) of a supplied set of
  2337. // numerical values. The syntax of the function is:
  2338. //
  2339. // PRODUCT(number1,[number2],...)
  2340. //
  2341. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2342. val, product := 0.0, 1.0
  2343. var err error
  2344. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2345. token := arg.Value.(formulaArg)
  2346. switch token.Type {
  2347. case ArgUnknown:
  2348. continue
  2349. case ArgString:
  2350. if token.String == "" {
  2351. continue
  2352. }
  2353. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2354. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2355. }
  2356. product = product * val
  2357. case ArgNumber:
  2358. product = product * token.Number
  2359. case ArgMatrix:
  2360. for _, row := range token.Matrix {
  2361. for _, value := range row {
  2362. if value.String == "" {
  2363. continue
  2364. }
  2365. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2366. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2367. }
  2368. product = product * val
  2369. }
  2370. }
  2371. }
  2372. }
  2373. return newNumberFormulaArg(product)
  2374. }
  2375. // QUOTIENT function returns the integer portion of a division between two
  2376. // supplied numbers. The syntax of the function is:
  2377. //
  2378. // QUOTIENT(numerator,denominator)
  2379. //
  2380. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2381. if argsList.Len() != 2 {
  2382. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2383. }
  2384. x := argsList.Front().Value.(formulaArg).ToNumber()
  2385. if x.Type == ArgError {
  2386. return x
  2387. }
  2388. y := argsList.Back().Value.(formulaArg).ToNumber()
  2389. if y.Type == ArgError {
  2390. return y
  2391. }
  2392. if y.Number == 0 {
  2393. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2394. }
  2395. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2396. }
  2397. // RADIANS function converts radians into degrees. The syntax of the function is:
  2398. //
  2399. // RADIANS(angle)
  2400. //
  2401. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2402. if argsList.Len() != 1 {
  2403. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2404. }
  2405. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2406. if angle.Type == ArgError {
  2407. return angle
  2408. }
  2409. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2410. }
  2411. // RAND function generates a random real number between 0 and 1. The syntax of
  2412. // the function is:
  2413. //
  2414. // RAND()
  2415. //
  2416. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2417. if argsList.Len() != 0 {
  2418. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2419. }
  2420. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2421. }
  2422. // RANDBETWEEN function generates a random integer between two supplied
  2423. // integers. The syntax of the function is:
  2424. //
  2425. // RANDBETWEEN(bottom,top)
  2426. //
  2427. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2428. if argsList.Len() != 2 {
  2429. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2430. }
  2431. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2432. if bottom.Type == ArgError {
  2433. return bottom
  2434. }
  2435. top := argsList.Back().Value.(formulaArg).ToNumber()
  2436. if top.Type == ArgError {
  2437. return top
  2438. }
  2439. if top.Number < bottom.Number {
  2440. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2441. }
  2442. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2443. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2444. }
  2445. // romanNumerals defined a numeral system that originated in ancient Rome and
  2446. // remained the usual way of writing numbers throughout Europe well into the
  2447. // Late Middle Ages.
  2448. type romanNumerals struct {
  2449. n float64
  2450. s string
  2451. }
  2452. var romanTable = [][]romanNumerals{
  2453. {
  2454. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2455. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2456. },
  2457. {
  2458. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2459. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2460. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2461. },
  2462. {
  2463. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2464. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2465. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2466. },
  2467. {
  2468. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2469. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2470. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2471. {5, "V"}, {4, "IV"}, {1, "I"},
  2472. },
  2473. {
  2474. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2475. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2476. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2477. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2478. },
  2479. }
  2480. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2481. // integer, the function returns a text string depicting the roman numeral
  2482. // form of the number. The syntax of the function is:
  2483. //
  2484. // ROMAN(number,[form])
  2485. //
  2486. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2487. if argsList.Len() == 0 {
  2488. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2489. }
  2490. if argsList.Len() > 2 {
  2491. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2492. }
  2493. var form int
  2494. number := argsList.Front().Value.(formulaArg).ToNumber()
  2495. if number.Type == ArgError {
  2496. return number
  2497. }
  2498. if argsList.Len() > 1 {
  2499. f := argsList.Back().Value.(formulaArg).ToNumber()
  2500. if f.Type == ArgError {
  2501. return f
  2502. }
  2503. form = int(f.Number)
  2504. if form < 0 {
  2505. form = 0
  2506. } else if form > 4 {
  2507. form = 4
  2508. }
  2509. }
  2510. decimalTable := romanTable[0]
  2511. switch form {
  2512. case 1:
  2513. decimalTable = romanTable[1]
  2514. case 2:
  2515. decimalTable = romanTable[2]
  2516. case 3:
  2517. decimalTable = romanTable[3]
  2518. case 4:
  2519. decimalTable = romanTable[4]
  2520. }
  2521. val := math.Trunc(number.Number)
  2522. buf := bytes.Buffer{}
  2523. for _, r := range decimalTable {
  2524. for val >= r.n {
  2525. buf.WriteString(r.s)
  2526. val -= r.n
  2527. }
  2528. }
  2529. return newStringFormulaArg(buf.String())
  2530. }
  2531. type roundMode byte
  2532. const (
  2533. closest roundMode = iota
  2534. down
  2535. up
  2536. )
  2537. // round rounds a supplied number up or down.
  2538. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2539. var significance float64
  2540. if digits > 0 {
  2541. significance = math.Pow(1/10.0, digits)
  2542. } else {
  2543. significance = math.Pow(10.0, -digits)
  2544. }
  2545. val, res := math.Modf(number / significance)
  2546. switch mode {
  2547. case closest:
  2548. const eps = 0.499999999
  2549. if res >= eps {
  2550. val++
  2551. } else if res <= -eps {
  2552. val--
  2553. }
  2554. case down:
  2555. case up:
  2556. if res > 0 {
  2557. val++
  2558. } else if res < 0 {
  2559. val--
  2560. }
  2561. }
  2562. return val * significance
  2563. }
  2564. // ROUND function rounds a supplied number up or down, to a specified number
  2565. // of decimal places. The syntax of the function is:
  2566. //
  2567. // ROUND(number,num_digits)
  2568. //
  2569. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2570. if argsList.Len() != 2 {
  2571. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2572. }
  2573. number := argsList.Front().Value.(formulaArg).ToNumber()
  2574. if number.Type == ArgError {
  2575. return number
  2576. }
  2577. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2578. if digits.Type == ArgError {
  2579. return digits
  2580. }
  2581. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2582. }
  2583. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2584. // specified number of decimal places. The syntax of the function is:
  2585. //
  2586. // ROUNDDOWN(number,num_digits)
  2587. //
  2588. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2589. if argsList.Len() != 2 {
  2590. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2591. }
  2592. number := argsList.Front().Value.(formulaArg).ToNumber()
  2593. if number.Type == ArgError {
  2594. return number
  2595. }
  2596. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2597. if digits.Type == ArgError {
  2598. return digits
  2599. }
  2600. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  2601. }
  2602. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2603. // specified number of decimal places. The syntax of the function is:
  2604. //
  2605. // ROUNDUP(number,num_digits)
  2606. //
  2607. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2608. if argsList.Len() != 2 {
  2609. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2610. }
  2611. number := argsList.Front().Value.(formulaArg).ToNumber()
  2612. if number.Type == ArgError {
  2613. return number
  2614. }
  2615. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2616. if digits.Type == ArgError {
  2617. return digits
  2618. }
  2619. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  2620. }
  2621. // SEC function calculates the secant of a given angle. The syntax of the
  2622. // function is:
  2623. //
  2624. // SEC(number)
  2625. //
  2626. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2627. if argsList.Len() != 1 {
  2628. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2629. }
  2630. number := argsList.Front().Value.(formulaArg).ToNumber()
  2631. if number.Type == ArgError {
  2632. return number
  2633. }
  2634. return newNumberFormulaArg(math.Cos(number.Number))
  2635. }
  2636. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2637. // The syntax of the function is:
  2638. //
  2639. // SECH(number)
  2640. //
  2641. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2642. if argsList.Len() != 1 {
  2643. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2644. }
  2645. number := argsList.Front().Value.(formulaArg).ToNumber()
  2646. if number.Type == ArgError {
  2647. return number
  2648. }
  2649. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  2650. }
  2651. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2652. // number. I.e. if the number is positive, the Sign function returns +1, if
  2653. // the number is negative, the function returns -1 and if the number is 0
  2654. // (zero), the function returns 0. The syntax of the function is:
  2655. //
  2656. // SIGN(number)
  2657. //
  2658. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2659. if argsList.Len() != 1 {
  2660. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2661. }
  2662. val := argsList.Front().Value.(formulaArg).ToNumber()
  2663. if val.Type == ArgError {
  2664. return val
  2665. }
  2666. if val.Number < 0 {
  2667. return newNumberFormulaArg(-1)
  2668. }
  2669. if val.Number > 0 {
  2670. return newNumberFormulaArg(1)
  2671. }
  2672. return newNumberFormulaArg(0)
  2673. }
  2674. // SIN function calculates the sine of a given angle. The syntax of the
  2675. // function is:
  2676. //
  2677. // SIN(number)
  2678. //
  2679. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2680. if argsList.Len() != 1 {
  2681. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2682. }
  2683. number := argsList.Front().Value.(formulaArg).ToNumber()
  2684. if number.Type == ArgError {
  2685. return number
  2686. }
  2687. return newNumberFormulaArg(math.Sin(number.Number))
  2688. }
  2689. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2690. // The syntax of the function is:
  2691. //
  2692. // SINH(number)
  2693. //
  2694. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2695. if argsList.Len() != 1 {
  2696. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2697. }
  2698. number := argsList.Front().Value.(formulaArg).ToNumber()
  2699. if number.Type == ArgError {
  2700. return number
  2701. }
  2702. return newNumberFormulaArg(math.Sinh(number.Number))
  2703. }
  2704. // SQRT function calculates the positive square root of a supplied number. The
  2705. // syntax of the function is:
  2706. //
  2707. // SQRT(number)
  2708. //
  2709. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2710. if argsList.Len() != 1 {
  2711. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2712. }
  2713. value := argsList.Front().Value.(formulaArg).ToNumber()
  2714. if value.Type == ArgError {
  2715. return value
  2716. }
  2717. if value.Number < 0 {
  2718. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2719. }
  2720. return newNumberFormulaArg(math.Sqrt(value.Number))
  2721. }
  2722. // SQRTPI function returns the square root of a supplied number multiplied by
  2723. // the mathematical constant, π. The syntax of the function is:
  2724. //
  2725. // SQRTPI(number)
  2726. //
  2727. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2728. if argsList.Len() != 1 {
  2729. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2730. }
  2731. number := argsList.Front().Value.(formulaArg).ToNumber()
  2732. if number.Type == ArgError {
  2733. return number
  2734. }
  2735. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  2736. }
  2737. // STDEV function calculates the sample standard deviation of a supplied set
  2738. // of values. The syntax of the function is:
  2739. //
  2740. // STDEV(number1,[number2],...)
  2741. //
  2742. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  2743. if argsList.Len() < 1 {
  2744. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  2745. }
  2746. return fn.stdev(false, argsList)
  2747. }
  2748. // STDEVA function estimates standard deviation based on a sample. The
  2749. // standard deviation is a measure of how widely values are dispersed from
  2750. // the average value (the mean). The syntax of the function is:
  2751. //
  2752. // STDEVA(number1,[number2],...)
  2753. //
  2754. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  2755. if argsList.Len() < 1 {
  2756. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  2757. }
  2758. return fn.stdev(true, argsList)
  2759. }
  2760. // stdev is an implementation of the formula function STDEV and STDEVA.
  2761. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  2762. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  2763. if result == -1 {
  2764. result = math.Pow((n.Number - m.Number), 2)
  2765. } else {
  2766. result += math.Pow((n.Number - m.Number), 2)
  2767. }
  2768. count++
  2769. return result, count
  2770. }
  2771. count, result := -1.0, -1.0
  2772. var mean formulaArg
  2773. if stdeva {
  2774. mean = fn.AVERAGEA(argsList)
  2775. } else {
  2776. mean = fn.AVERAGE(argsList)
  2777. }
  2778. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2779. token := arg.Value.(formulaArg)
  2780. switch token.Type {
  2781. case ArgString, ArgNumber:
  2782. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  2783. continue
  2784. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  2785. num := token.ToBool()
  2786. if num.Type == ArgNumber {
  2787. result, count = pow(result, count, num, mean)
  2788. continue
  2789. }
  2790. } else {
  2791. num := token.ToNumber()
  2792. if num.Type == ArgNumber {
  2793. result, count = pow(result, count, num, mean)
  2794. }
  2795. }
  2796. case ArgList, ArgMatrix:
  2797. for _, row := range token.ToList() {
  2798. if row.Type == ArgNumber || row.Type == ArgString {
  2799. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  2800. continue
  2801. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  2802. num := row.ToBool()
  2803. if num.Type == ArgNumber {
  2804. result, count = pow(result, count, num, mean)
  2805. continue
  2806. }
  2807. } else {
  2808. num := row.ToNumber()
  2809. if num.Type == ArgNumber {
  2810. result, count = pow(result, count, num, mean)
  2811. }
  2812. }
  2813. }
  2814. }
  2815. }
  2816. }
  2817. if count > 0 && result >= 0 {
  2818. return newNumberFormulaArg(math.Sqrt(result / count))
  2819. }
  2820. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2821. }
  2822. // SUM function adds together a supplied set of numbers and returns the sum of
  2823. // these values. The syntax of the function is:
  2824. //
  2825. // SUM(number1,[number2],...)
  2826. //
  2827. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2828. var sum float64
  2829. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2830. token := arg.Value.(formulaArg)
  2831. switch token.Type {
  2832. case ArgUnknown:
  2833. continue
  2834. case ArgString:
  2835. if num := token.ToNumber(); num.Type == ArgNumber {
  2836. sum += num.Number
  2837. }
  2838. case ArgNumber:
  2839. sum += token.Number
  2840. case ArgMatrix:
  2841. for _, row := range token.Matrix {
  2842. for _, value := range row {
  2843. if num := value.ToNumber(); num.Type == ArgNumber {
  2844. sum += num.Number
  2845. }
  2846. }
  2847. }
  2848. }
  2849. }
  2850. return newNumberFormulaArg(sum)
  2851. }
  2852. // SUMIF function finds the values in a supplied array, that satisfy a given
  2853. // criteria, and returns the sum of the corresponding values in a second
  2854. // supplied array. The syntax of the function is:
  2855. //
  2856. // SUMIF(range,criteria,[sum_range])
  2857. //
  2858. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  2859. if argsList.Len() < 2 {
  2860. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  2861. }
  2862. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2863. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2864. var sumRange [][]formulaArg
  2865. if argsList.Len() == 3 {
  2866. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2867. }
  2868. var sum, val float64
  2869. var err error
  2870. for rowIdx, row := range rangeMtx {
  2871. for colIdx, col := range row {
  2872. var ok bool
  2873. fromVal := col.String
  2874. if col.String == "" {
  2875. continue
  2876. }
  2877. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2878. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2879. }
  2880. if ok {
  2881. if argsList.Len() == 3 {
  2882. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2883. continue
  2884. }
  2885. fromVal = sumRange[rowIdx][colIdx].String
  2886. }
  2887. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2888. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2889. }
  2890. sum += val
  2891. }
  2892. }
  2893. }
  2894. return newNumberFormulaArg(sum)
  2895. }
  2896. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2897. // syntax of the function is:
  2898. //
  2899. // SUMSQ(number1,[number2],...)
  2900. //
  2901. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  2902. var val, sq float64
  2903. var err error
  2904. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2905. token := arg.Value.(formulaArg)
  2906. switch token.Type {
  2907. case ArgString:
  2908. if token.String == "" {
  2909. continue
  2910. }
  2911. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2912. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2913. }
  2914. sq += val * val
  2915. case ArgNumber:
  2916. sq += token.Number
  2917. case ArgMatrix:
  2918. for _, row := range token.Matrix {
  2919. for _, value := range row {
  2920. if value.String == "" {
  2921. continue
  2922. }
  2923. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2924. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2925. }
  2926. sq += val * val
  2927. }
  2928. }
  2929. }
  2930. }
  2931. return newNumberFormulaArg(sq)
  2932. }
  2933. // TAN function calculates the tangent of a given angle. The syntax of the
  2934. // function is:
  2935. //
  2936. // TAN(number)
  2937. //
  2938. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  2939. if argsList.Len() != 1 {
  2940. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  2941. }
  2942. number := argsList.Front().Value.(formulaArg).ToNumber()
  2943. if number.Type == ArgError {
  2944. return number
  2945. }
  2946. return newNumberFormulaArg(math.Tan(number.Number))
  2947. }
  2948. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2949. // number. The syntax of the function is:
  2950. //
  2951. // TANH(number)
  2952. //
  2953. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  2954. if argsList.Len() != 1 {
  2955. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  2956. }
  2957. number := argsList.Front().Value.(formulaArg).ToNumber()
  2958. if number.Type == ArgError {
  2959. return number
  2960. }
  2961. return newNumberFormulaArg(math.Tanh(number.Number))
  2962. }
  2963. // TRUNC function truncates a supplied number to a specified number of decimal
  2964. // places. The syntax of the function is:
  2965. //
  2966. // TRUNC(number,[number_digits])
  2967. //
  2968. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  2969. if argsList.Len() == 0 {
  2970. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  2971. }
  2972. var digits, adjust, rtrim float64
  2973. var err error
  2974. number := argsList.Front().Value.(formulaArg).ToNumber()
  2975. if number.Type == ArgError {
  2976. return number
  2977. }
  2978. if argsList.Len() > 1 {
  2979. d := argsList.Back().Value.(formulaArg).ToNumber()
  2980. if d.Type == ArgError {
  2981. return d
  2982. }
  2983. digits = d.Number
  2984. digits = math.Floor(digits)
  2985. }
  2986. adjust = math.Pow(10, digits)
  2987. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  2988. if x != 0 {
  2989. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2990. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2991. }
  2992. }
  2993. if (digits > 0) && (rtrim < adjust/10) {
  2994. return newNumberFormulaArg(number.Number)
  2995. }
  2996. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  2997. }
  2998. // Statistical Functions
  2999. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3000. // The syntax of the function is:
  3001. //
  3002. // AVERAGE(number1,[number2],...)
  3003. //
  3004. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3005. args := []formulaArg{}
  3006. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3007. args = append(args, arg.Value.(formulaArg))
  3008. }
  3009. count, sum := fn.countSum(false, args)
  3010. if count == 0 {
  3011. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3012. }
  3013. return newNumberFormulaArg(sum / count)
  3014. }
  3015. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3016. // with text cell and zero values. The syntax of the function is:
  3017. //
  3018. // AVERAGEA(number1,[number2],...)
  3019. //
  3020. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3021. args := []formulaArg{}
  3022. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3023. args = append(args, arg.Value.(formulaArg))
  3024. }
  3025. count, sum := fn.countSum(true, args)
  3026. if count == 0 {
  3027. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3028. }
  3029. return newNumberFormulaArg(sum / count)
  3030. }
  3031. // countSum get count and sum for a formula arguments array.
  3032. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3033. for _, arg := range args {
  3034. switch arg.Type {
  3035. case ArgNumber:
  3036. if countText || !arg.Boolean {
  3037. sum += arg.Number
  3038. count++
  3039. }
  3040. case ArgString:
  3041. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3042. continue
  3043. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3044. num := arg.ToBool()
  3045. if num.Type == ArgNumber {
  3046. count++
  3047. sum += num.Number
  3048. continue
  3049. }
  3050. }
  3051. num := arg.ToNumber()
  3052. if countText && num.Type == ArgError && arg.String != "" {
  3053. count++
  3054. }
  3055. if num.Type == ArgNumber {
  3056. sum += num.Number
  3057. count++
  3058. }
  3059. case ArgList, ArgMatrix:
  3060. cnt, summary := fn.countSum(countText, arg.ToList())
  3061. sum += summary
  3062. count += cnt
  3063. }
  3064. }
  3065. return
  3066. }
  3067. // COUNT function returns the count of numeric values in a supplied set of
  3068. // cells or values. This count includes both numbers and dates. The syntax of
  3069. // the function is:
  3070. //
  3071. // COUNT(value1,[value2],...)
  3072. //
  3073. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3074. var count int
  3075. for token := argsList.Front(); token != nil; token = token.Next() {
  3076. arg := token.Value.(formulaArg)
  3077. switch arg.Type {
  3078. case ArgString:
  3079. if arg.ToNumber().Type != ArgError {
  3080. count++
  3081. }
  3082. case ArgNumber:
  3083. count++
  3084. case ArgMatrix:
  3085. for _, row := range arg.Matrix {
  3086. for _, value := range row {
  3087. if value.ToNumber().Type != ArgError {
  3088. count++
  3089. }
  3090. }
  3091. }
  3092. }
  3093. }
  3094. return newNumberFormulaArg(float64(count))
  3095. }
  3096. // COUNTA function returns the number of non-blanks within a supplied set of
  3097. // cells or values. The syntax of the function is:
  3098. //
  3099. // COUNTA(value1,[value2],...)
  3100. //
  3101. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3102. var count int
  3103. for token := argsList.Front(); token != nil; token = token.Next() {
  3104. arg := token.Value.(formulaArg)
  3105. switch arg.Type {
  3106. case ArgString:
  3107. if arg.String != "" {
  3108. count++
  3109. }
  3110. case ArgNumber:
  3111. count++
  3112. case ArgMatrix:
  3113. for _, row := range arg.ToList() {
  3114. switch row.Type {
  3115. case ArgString:
  3116. if row.String != "" {
  3117. count++
  3118. }
  3119. case ArgNumber:
  3120. count++
  3121. }
  3122. }
  3123. }
  3124. }
  3125. return newNumberFormulaArg(float64(count))
  3126. }
  3127. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3128. // The syntax of the function is:
  3129. //
  3130. // COUNTBLANK(range)
  3131. //
  3132. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3133. if argsList.Len() != 1 {
  3134. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3135. }
  3136. var count int
  3137. token := argsList.Front().Value.(formulaArg)
  3138. switch token.Type {
  3139. case ArgString:
  3140. if token.String == "" {
  3141. count++
  3142. }
  3143. case ArgList, ArgMatrix:
  3144. for _, row := range token.ToList() {
  3145. switch row.Type {
  3146. case ArgString:
  3147. if row.String == "" {
  3148. count++
  3149. }
  3150. case ArgEmpty:
  3151. count++
  3152. }
  3153. }
  3154. case ArgEmpty:
  3155. count++
  3156. }
  3157. return newNumberFormulaArg(float64(count))
  3158. }
  3159. // FISHER function calculates the Fisher Transformation for a supplied value.
  3160. // The syntax of the function is:
  3161. //
  3162. // FISHER(x)
  3163. //
  3164. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3165. if argsList.Len() != 1 {
  3166. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3167. }
  3168. token := argsList.Front().Value.(formulaArg)
  3169. switch token.Type {
  3170. case ArgString:
  3171. arg := token.ToNumber()
  3172. if arg.Type == ArgNumber {
  3173. if arg.Number <= -1 || arg.Number >= 1 {
  3174. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3175. }
  3176. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3177. }
  3178. case ArgNumber:
  3179. if token.Number <= -1 || token.Number >= 1 {
  3180. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3181. }
  3182. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3183. }
  3184. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3185. }
  3186. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3187. // returns a value between -1 and +1. The syntax of the function is:
  3188. //
  3189. // FISHERINV(y)
  3190. //
  3191. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3192. if argsList.Len() != 1 {
  3193. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3194. }
  3195. token := argsList.Front().Value.(formulaArg)
  3196. switch token.Type {
  3197. case ArgString:
  3198. arg := token.ToNumber()
  3199. if arg.Type == ArgNumber {
  3200. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3201. }
  3202. case ArgNumber:
  3203. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3204. }
  3205. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3206. }
  3207. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3208. // specified number, n. The syntax of the function is:
  3209. //
  3210. // GAMMA(number)
  3211. //
  3212. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3213. if argsList.Len() != 1 {
  3214. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3215. }
  3216. token := argsList.Front().Value.(formulaArg)
  3217. switch token.Type {
  3218. case ArgString:
  3219. arg := token.ToNumber()
  3220. if arg.Type == ArgNumber {
  3221. if arg.Number <= 0 {
  3222. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3223. }
  3224. return newNumberFormulaArg(math.Gamma(arg.Number))
  3225. }
  3226. case ArgNumber:
  3227. if token.Number <= 0 {
  3228. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3229. }
  3230. return newNumberFormulaArg(math.Gamma(token.Number))
  3231. }
  3232. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3233. }
  3234. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3235. // (n). The syntax of the function is:
  3236. //
  3237. // GAMMALN(x)
  3238. //
  3239. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3240. if argsList.Len() != 1 {
  3241. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3242. }
  3243. token := argsList.Front().Value.(formulaArg)
  3244. switch token.Type {
  3245. case ArgString:
  3246. arg := token.ToNumber()
  3247. if arg.Type == ArgNumber {
  3248. if arg.Number <= 0 {
  3249. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3250. }
  3251. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3252. }
  3253. case ArgNumber:
  3254. if token.Number <= 0 {
  3255. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3256. }
  3257. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3258. }
  3259. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3260. }
  3261. // KURT function calculates the kurtosis of a supplied set of values. The
  3262. // syntax of the function is:
  3263. //
  3264. // KURT(number1,[number2],...)
  3265. //
  3266. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3267. if argsList.Len() < 1 {
  3268. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3269. }
  3270. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3271. if stdev.Number > 0 {
  3272. count, summer := 0.0, 0.0
  3273. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3274. token := arg.Value.(formulaArg)
  3275. switch token.Type {
  3276. case ArgString, ArgNumber:
  3277. num := token.ToNumber()
  3278. if num.Type == ArgError {
  3279. continue
  3280. }
  3281. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3282. count++
  3283. case ArgList, ArgMatrix:
  3284. for _, row := range token.ToList() {
  3285. if row.Type == ArgNumber || row.Type == ArgString {
  3286. num := row.ToNumber()
  3287. if num.Type == ArgError {
  3288. continue
  3289. }
  3290. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3291. count++
  3292. }
  3293. }
  3294. }
  3295. }
  3296. if count > 3 {
  3297. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3298. }
  3299. }
  3300. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3301. }
  3302. // MAX function returns the largest value from a supplied set of numeric
  3303. // values. The syntax of the function is:
  3304. //
  3305. // MAX(number1,[number2],...)
  3306. //
  3307. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3308. if argsList.Len() == 0 {
  3309. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3310. }
  3311. return fn.max(false, argsList)
  3312. }
  3313. // MAXA function returns the largest value from a supplied set of numeric
  3314. // values, while counting text and the logical value FALSE as the value 0 and
  3315. // counting the logical value TRUE as the value 1. The syntax of the function
  3316. // is:
  3317. //
  3318. // MAXA(number1,[number2],...)
  3319. //
  3320. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3321. if argsList.Len() == 0 {
  3322. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3323. }
  3324. return fn.max(true, argsList)
  3325. }
  3326. // max is an implementation of the formula function MAX and MAXA.
  3327. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3328. max := -math.MaxFloat64
  3329. for token := argsList.Front(); token != nil; token = token.Next() {
  3330. arg := token.Value.(formulaArg)
  3331. switch arg.Type {
  3332. case ArgString:
  3333. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3334. continue
  3335. } else {
  3336. num := arg.ToBool()
  3337. if num.Type == ArgNumber && num.Number > max {
  3338. max = num.Number
  3339. continue
  3340. }
  3341. }
  3342. num := arg.ToNumber()
  3343. if num.Type != ArgError && num.Number > max {
  3344. max = num.Number
  3345. }
  3346. case ArgNumber:
  3347. if arg.Number > max {
  3348. max = arg.Number
  3349. }
  3350. case ArgList, ArgMatrix:
  3351. for _, row := range arg.ToList() {
  3352. switch row.Type {
  3353. case ArgString:
  3354. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3355. continue
  3356. } else {
  3357. num := row.ToBool()
  3358. if num.Type == ArgNumber && num.Number > max {
  3359. max = num.Number
  3360. continue
  3361. }
  3362. }
  3363. num := row.ToNumber()
  3364. if num.Type != ArgError && num.Number > max {
  3365. max = num.Number
  3366. }
  3367. case ArgNumber:
  3368. if row.Number > max {
  3369. max = row.Number
  3370. }
  3371. }
  3372. }
  3373. case ArgError:
  3374. return arg
  3375. }
  3376. }
  3377. if max == -math.MaxFloat64 {
  3378. max = 0
  3379. }
  3380. return newNumberFormulaArg(max)
  3381. }
  3382. // MEDIAN function returns the statistical median (the middle value) of a list
  3383. // of supplied numbers. The syntax of the function is:
  3384. //
  3385. // MEDIAN(number1,[number2],...)
  3386. //
  3387. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3388. if argsList.Len() == 0 {
  3389. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3390. }
  3391. var values = []float64{}
  3392. var median, digits float64
  3393. var err error
  3394. for token := argsList.Front(); token != nil; token = token.Next() {
  3395. arg := token.Value.(formulaArg)
  3396. switch arg.Type {
  3397. case ArgString:
  3398. num := arg.ToNumber()
  3399. if num.Type == ArgError {
  3400. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3401. }
  3402. values = append(values, num.Number)
  3403. case ArgNumber:
  3404. values = append(values, arg.Number)
  3405. case ArgMatrix:
  3406. for _, row := range arg.Matrix {
  3407. for _, value := range row {
  3408. if value.String == "" {
  3409. continue
  3410. }
  3411. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3412. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3413. }
  3414. values = append(values, digits)
  3415. }
  3416. }
  3417. }
  3418. }
  3419. sort.Float64s(values)
  3420. if len(values)%2 == 0 {
  3421. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3422. } else {
  3423. median = values[len(values)/2]
  3424. }
  3425. return newNumberFormulaArg(median)
  3426. }
  3427. // MIN function returns the smallest value from a supplied set of numeric
  3428. // values. The syntax of the function is:
  3429. //
  3430. // MIN(number1,[number2],...)
  3431. //
  3432. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3433. if argsList.Len() == 0 {
  3434. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3435. }
  3436. return fn.min(false, argsList)
  3437. }
  3438. // MINA function returns the smallest value from a supplied set of numeric
  3439. // values, while counting text and the logical value FALSE as the value 0 and
  3440. // counting the logical value TRUE as the value 1. The syntax of the function
  3441. // is:
  3442. //
  3443. // MINA(number1,[number2],...)
  3444. //
  3445. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3446. if argsList.Len() == 0 {
  3447. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3448. }
  3449. return fn.min(true, argsList)
  3450. }
  3451. // min is an implementation of the formula function MIN and MINA.
  3452. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3453. min := math.MaxFloat64
  3454. for token := argsList.Front(); token != nil; token = token.Next() {
  3455. arg := token.Value.(formulaArg)
  3456. switch arg.Type {
  3457. case ArgString:
  3458. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3459. continue
  3460. } else {
  3461. num := arg.ToBool()
  3462. if num.Type == ArgNumber && num.Number < min {
  3463. min = num.Number
  3464. continue
  3465. }
  3466. }
  3467. num := arg.ToNumber()
  3468. if num.Type != ArgError && num.Number < min {
  3469. min = num.Number
  3470. }
  3471. case ArgNumber:
  3472. if arg.Number < min {
  3473. min = arg.Number
  3474. }
  3475. case ArgList, ArgMatrix:
  3476. for _, row := range arg.ToList() {
  3477. switch row.Type {
  3478. case ArgString:
  3479. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3480. continue
  3481. } else {
  3482. num := row.ToBool()
  3483. if num.Type == ArgNumber && num.Number < min {
  3484. min = num.Number
  3485. continue
  3486. }
  3487. }
  3488. num := row.ToNumber()
  3489. if num.Type != ArgError && num.Number < min {
  3490. min = num.Number
  3491. }
  3492. case ArgNumber:
  3493. if row.Number < min {
  3494. min = row.Number
  3495. }
  3496. }
  3497. }
  3498. case ArgError:
  3499. return arg
  3500. }
  3501. }
  3502. if min == math.MaxFloat64 {
  3503. min = 0
  3504. }
  3505. return newNumberFormulaArg(min)
  3506. }
  3507. // PERMUT function calculates the number of permutations of a specified number
  3508. // of objects from a set of objects. The syntax of the function is:
  3509. //
  3510. // PERMUT(number,number_chosen)
  3511. //
  3512. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  3513. if argsList.Len() != 2 {
  3514. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  3515. }
  3516. number := argsList.Front().Value.(formulaArg).ToNumber()
  3517. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  3518. if number.Type != ArgNumber {
  3519. return number
  3520. }
  3521. if chosen.Type != ArgNumber {
  3522. return chosen
  3523. }
  3524. if number.Number < chosen.Number {
  3525. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3526. }
  3527. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  3528. }
  3529. // Information Functions
  3530. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  3531. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  3532. // function is:
  3533. //
  3534. // ISBLANK(value)
  3535. //
  3536. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  3537. if argsList.Len() != 1 {
  3538. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  3539. }
  3540. token := argsList.Front().Value.(formulaArg)
  3541. result := "FALSE"
  3542. switch token.Type {
  3543. case ArgUnknown:
  3544. result = "TRUE"
  3545. case ArgString:
  3546. if token.String == "" {
  3547. result = "TRUE"
  3548. }
  3549. }
  3550. return newStringFormulaArg(result)
  3551. }
  3552. // ISERR function tests if an initial supplied expression (or value) returns
  3553. // any Excel Error, except the #N/A error. If so, the function returns the
  3554. // logical value TRUE; If the supplied value is not an error or is the #N/A
  3555. // error, the ISERR function returns FALSE. The syntax of the function is:
  3556. //
  3557. // ISERR(value)
  3558. //
  3559. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  3560. if argsList.Len() != 1 {
  3561. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  3562. }
  3563. token := argsList.Front().Value.(formulaArg)
  3564. result := "FALSE"
  3565. if token.Type == ArgError {
  3566. for _, errType := range []string{
  3567. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  3568. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  3569. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  3570. } {
  3571. if errType == token.String {
  3572. result = "TRUE"
  3573. }
  3574. }
  3575. }
  3576. return newStringFormulaArg(result)
  3577. }
  3578. // ISERROR function tests if an initial supplied expression (or value) returns
  3579. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  3580. // function returns FALSE. The syntax of the function is:
  3581. //
  3582. // ISERROR(value)
  3583. //
  3584. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  3585. if argsList.Len() != 1 {
  3586. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  3587. }
  3588. token := argsList.Front().Value.(formulaArg)
  3589. result := "FALSE"
  3590. if token.Type == ArgError {
  3591. for _, errType := range []string{
  3592. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  3593. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  3594. formulaErrorCALC, formulaErrorGETTINGDATA,
  3595. } {
  3596. if errType == token.String {
  3597. result = "TRUE"
  3598. }
  3599. }
  3600. }
  3601. return newStringFormulaArg(result)
  3602. }
  3603. // ISEVEN function tests if a supplied number (or numeric expression)
  3604. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  3605. // function returns FALSE. The syntax of the function is:
  3606. //
  3607. // ISEVEN(value)
  3608. //
  3609. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  3610. if argsList.Len() != 1 {
  3611. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  3612. }
  3613. var (
  3614. token = argsList.Front().Value.(formulaArg)
  3615. result = "FALSE"
  3616. numeric int
  3617. err error
  3618. )
  3619. if token.Type == ArgString {
  3620. if numeric, err = strconv.Atoi(token.String); err != nil {
  3621. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3622. }
  3623. if numeric == numeric/2*2 {
  3624. return newStringFormulaArg("TRUE")
  3625. }
  3626. }
  3627. return newStringFormulaArg(result)
  3628. }
  3629. // ISNA function tests if an initial supplied expression (or value) returns
  3630. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  3631. // returns FALSE. The syntax of the function is:
  3632. //
  3633. // ISNA(value)
  3634. //
  3635. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  3636. if argsList.Len() != 1 {
  3637. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  3638. }
  3639. token := argsList.Front().Value.(formulaArg)
  3640. result := "FALSE"
  3641. if token.Type == ArgError && token.String == formulaErrorNA {
  3642. result = "TRUE"
  3643. }
  3644. return newStringFormulaArg(result)
  3645. }
  3646. // ISNONTEXT function function tests if a supplied value is text. If not, the
  3647. // function returns TRUE; If the supplied value is text, the function returns
  3648. // FALSE. The syntax of the function is:
  3649. //
  3650. // ISNONTEXT(value)
  3651. //
  3652. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  3653. if argsList.Len() != 1 {
  3654. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  3655. }
  3656. token := argsList.Front().Value.(formulaArg)
  3657. result := "TRUE"
  3658. if token.Type == ArgString && token.String != "" {
  3659. result = "FALSE"
  3660. }
  3661. return newStringFormulaArg(result)
  3662. }
  3663. // ISNUMBER function function tests if a supplied value is a number. If so,
  3664. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3665. // function is:
  3666. //
  3667. // ISNUMBER(value)
  3668. //
  3669. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  3670. if argsList.Len() != 1 {
  3671. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  3672. }
  3673. token, result := argsList.Front().Value.(formulaArg), false
  3674. if token.Type == ArgString && token.String != "" {
  3675. if _, err := strconv.Atoi(token.String); err == nil {
  3676. result = true
  3677. }
  3678. }
  3679. return newBoolFormulaArg(result)
  3680. }
  3681. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3682. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3683. // FALSE. The syntax of the function is:
  3684. //
  3685. // ISODD(value)
  3686. //
  3687. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  3688. if argsList.Len() != 1 {
  3689. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  3690. }
  3691. var (
  3692. token = argsList.Front().Value.(formulaArg)
  3693. result = "FALSE"
  3694. numeric int
  3695. err error
  3696. )
  3697. if token.Type == ArgString {
  3698. if numeric, err = strconv.Atoi(token.String); err != nil {
  3699. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3700. }
  3701. if numeric != numeric/2*2 {
  3702. return newStringFormulaArg("TRUE")
  3703. }
  3704. }
  3705. return newStringFormulaArg(result)
  3706. }
  3707. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  3708. // Otherwise, the function returns FALSE. The syntax of the function is:
  3709. //
  3710. // ISTEXT(value)
  3711. //
  3712. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  3713. if argsList.Len() != 1 {
  3714. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  3715. }
  3716. token := argsList.Front().Value.(formulaArg)
  3717. if token.ToNumber().Type != ArgError {
  3718. return newBoolFormulaArg(false)
  3719. }
  3720. return newBoolFormulaArg(token.Type == ArgString)
  3721. }
  3722. // NA function returns the Excel #N/A error. This error message has the
  3723. // meaning 'value not available' and is produced when an Excel Formula is
  3724. // unable to find a value that it needs. The syntax of the function is:
  3725. //
  3726. // NA()
  3727. //
  3728. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  3729. if argsList.Len() != 0 {
  3730. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  3731. }
  3732. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3733. }
  3734. // SHEET function returns the Sheet number for a specified reference. The
  3735. // syntax of the function is:
  3736. //
  3737. // SHEET()
  3738. //
  3739. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  3740. if argsList.Len() != 0 {
  3741. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  3742. }
  3743. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  3744. }
  3745. // Logical Functions
  3746. // AND function tests a number of supplied conditions and returns TRUE or
  3747. // FALSE. The syntax of the function is:
  3748. //
  3749. // AND(logical_test1,[logical_test2],...)
  3750. //
  3751. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  3752. if argsList.Len() == 0 {
  3753. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  3754. }
  3755. if argsList.Len() > 30 {
  3756. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  3757. }
  3758. var (
  3759. and = true
  3760. val float64
  3761. err error
  3762. )
  3763. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3764. token := arg.Value.(formulaArg)
  3765. switch token.Type {
  3766. case ArgUnknown:
  3767. continue
  3768. case ArgString:
  3769. if token.String == "TRUE" {
  3770. continue
  3771. }
  3772. if token.String == "FALSE" {
  3773. return newStringFormulaArg(token.String)
  3774. }
  3775. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3776. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3777. }
  3778. and = and && (val != 0)
  3779. case ArgMatrix:
  3780. // TODO
  3781. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3782. }
  3783. }
  3784. return newBoolFormulaArg(and)
  3785. }
  3786. // FALSE function function returns the logical value FALSE. The syntax of the
  3787. // function is:
  3788. //
  3789. // FALSE()
  3790. //
  3791. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  3792. if argsList.Len() != 0 {
  3793. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  3794. }
  3795. return newBoolFormulaArg(false)
  3796. }
  3797. // IFERROR function receives two values (or expressions) and tests if the
  3798. // first of these evaluates to an error. The syntax of the function is:
  3799. //
  3800. // IFERROR(value,value_if_error)
  3801. //
  3802. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  3803. if argsList.Len() != 2 {
  3804. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  3805. }
  3806. value := argsList.Front().Value.(formulaArg)
  3807. if value.Type != ArgError {
  3808. if value.Type == ArgEmpty {
  3809. return newNumberFormulaArg(0)
  3810. }
  3811. return value
  3812. }
  3813. return argsList.Back().Value.(formulaArg)
  3814. }
  3815. // NOT function returns the opposite to a supplied logical value. The syntax
  3816. // of the function is:
  3817. //
  3818. // NOT(logical)
  3819. //
  3820. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  3821. if argsList.Len() != 1 {
  3822. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  3823. }
  3824. token := argsList.Front().Value.(formulaArg)
  3825. switch token.Type {
  3826. case ArgString, ArgList:
  3827. if strings.ToUpper(token.String) == "TRUE" {
  3828. return newBoolFormulaArg(false)
  3829. }
  3830. if strings.ToUpper(token.String) == "FALSE" {
  3831. return newBoolFormulaArg(true)
  3832. }
  3833. case ArgNumber:
  3834. return newBoolFormulaArg(!(token.Number != 0))
  3835. case ArgError:
  3836. return token
  3837. }
  3838. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  3839. }
  3840. // OR function tests a number of supplied conditions and returns either TRUE
  3841. // or FALSE. The syntax of the function is:
  3842. //
  3843. // OR(logical_test1,[logical_test2],...)
  3844. //
  3845. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3846. if argsList.Len() == 0 {
  3847. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3848. }
  3849. if argsList.Len() > 30 {
  3850. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  3851. }
  3852. var (
  3853. or bool
  3854. val float64
  3855. err error
  3856. )
  3857. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3858. token := arg.Value.(formulaArg)
  3859. switch token.Type {
  3860. case ArgUnknown:
  3861. continue
  3862. case ArgString:
  3863. if token.String == "FALSE" {
  3864. continue
  3865. }
  3866. if token.String == "TRUE" {
  3867. or = true
  3868. continue
  3869. }
  3870. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3871. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3872. }
  3873. or = val != 0
  3874. case ArgMatrix:
  3875. // TODO
  3876. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3877. }
  3878. }
  3879. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  3880. }
  3881. // TRUE function returns the logical value TRUE. The syntax of the function
  3882. // is:
  3883. //
  3884. // TRUE()
  3885. //
  3886. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  3887. if argsList.Len() != 0 {
  3888. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  3889. }
  3890. return newBoolFormulaArg(true)
  3891. }
  3892. // Date and Time Functions
  3893. // DATE returns a date, from a user-supplied year, month and day. The syntax
  3894. // of the function is:
  3895. //
  3896. // DATE(year,month,day)
  3897. //
  3898. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  3899. if argsList.Len() != 3 {
  3900. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3901. }
  3902. var year, month, day int
  3903. var err error
  3904. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3905. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3906. }
  3907. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  3908. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3909. }
  3910. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  3911. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3912. }
  3913. d := makeDate(year, time.Month(month), day)
  3914. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  3915. }
  3916. // makeDate return date as a Unix time, the number of seconds elapsed since
  3917. // January 1, 1970 UTC.
  3918. func makeDate(y int, m time.Month, d int) int64 {
  3919. if y == 1900 && int(m) <= 2 {
  3920. d--
  3921. }
  3922. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  3923. return date.Unix()
  3924. }
  3925. // daysBetween return time interval of the given start timestamp and end
  3926. // timestamp.
  3927. func daysBetween(startDate, endDate int64) float64 {
  3928. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  3929. }
  3930. // Text Functions
  3931. // CLEAN removes all non-printable characters from a supplied text string. The
  3932. // syntax of the function is:
  3933. //
  3934. // CLEAN(text)
  3935. //
  3936. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  3937. if argsList.Len() != 1 {
  3938. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  3939. }
  3940. b := bytes.Buffer{}
  3941. for _, c := range argsList.Front().Value.(formulaArg).String {
  3942. if c > 31 {
  3943. b.WriteRune(c)
  3944. }
  3945. }
  3946. return newStringFormulaArg(b.String())
  3947. }
  3948. // CONCAT function joins together a series of supplied text strings into one
  3949. // combined text string.
  3950. //
  3951. // CONCAT(text1,[text2],...)
  3952. //
  3953. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  3954. return fn.concat("CONCAT", argsList)
  3955. }
  3956. // CONCATENATE function joins together a series of supplied text strings into
  3957. // one combined text string.
  3958. //
  3959. // CONCATENATE(text1,[text2],...)
  3960. //
  3961. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  3962. return fn.concat("CONCATENATE", argsList)
  3963. }
  3964. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  3965. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  3966. buf := bytes.Buffer{}
  3967. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3968. token := arg.Value.(formulaArg)
  3969. switch token.Type {
  3970. case ArgString:
  3971. buf.WriteString(token.String)
  3972. case ArgNumber:
  3973. if token.Boolean {
  3974. if token.Number == 0 {
  3975. buf.WriteString("FALSE")
  3976. } else {
  3977. buf.WriteString("TRUE")
  3978. }
  3979. } else {
  3980. buf.WriteString(token.Value())
  3981. }
  3982. default:
  3983. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  3984. }
  3985. }
  3986. return newStringFormulaArg(buf.String())
  3987. }
  3988. // EXACT function tests if two supplied text strings or values are exactly
  3989. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  3990. // function is case-sensitive. The syntax of the function is:
  3991. //
  3992. // EXACT(text1,text2)
  3993. //
  3994. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  3995. if argsList.Len() != 2 {
  3996. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  3997. }
  3998. text1 := argsList.Front().Value.(formulaArg).Value()
  3999. text2 := argsList.Back().Value.(formulaArg).Value()
  4000. return newBoolFormulaArg(text1 == text2)
  4001. }
  4002. // LEN returns the length of a supplied text string. The syntax of the
  4003. // function is:
  4004. //
  4005. // LEN(text)
  4006. //
  4007. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4008. if argsList.Len() != 1 {
  4009. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4010. }
  4011. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4012. }
  4013. // LENB returns the number of bytes used to represent the characters in a text
  4014. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4015. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4016. // 1 byte per character. The syntax of the function is:
  4017. //
  4018. // LENB(text)
  4019. //
  4020. // TODO: the languages that support DBCS include Japanese, Chinese
  4021. // (Simplified), Chinese (Traditional), and Korean.
  4022. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4023. if argsList.Len() != 1 {
  4024. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4025. }
  4026. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4027. }
  4028. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  4029. // words or characters) from a supplied text string. The syntax of the
  4030. // function is:
  4031. //
  4032. // TRIM(text)
  4033. //
  4034. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  4035. if argsList.Len() != 1 {
  4036. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  4037. }
  4038. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  4039. }
  4040. // LOWER converts all characters in a supplied text string to lower case. The
  4041. // syntax of the function is:
  4042. //
  4043. // LOWER(text)
  4044. //
  4045. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4046. if argsList.Len() != 1 {
  4047. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4048. }
  4049. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4050. }
  4051. // PROPER converts all characters in a supplied text string to proper case
  4052. // (i.e. all letters that do not immediately follow another letter are set to
  4053. // upper case and all other characters are lower case). The syntax of the
  4054. // function is:
  4055. //
  4056. // PROPER(text)
  4057. //
  4058. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4059. if argsList.Len() != 1 {
  4060. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4061. }
  4062. buf := bytes.Buffer{}
  4063. isLetter := false
  4064. for _, char := range argsList.Front().Value.(formulaArg).String {
  4065. if !isLetter && unicode.IsLetter(char) {
  4066. buf.WriteRune(unicode.ToUpper(char))
  4067. } else {
  4068. buf.WriteRune(unicode.ToLower(char))
  4069. }
  4070. isLetter = unicode.IsLetter(char)
  4071. }
  4072. return newStringFormulaArg(buf.String())
  4073. }
  4074. // REPT function returns a supplied text string, repeated a specified number
  4075. // of times. The syntax of the function is:
  4076. //
  4077. // REPT(text,number_times)
  4078. //
  4079. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4080. if argsList.Len() != 2 {
  4081. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4082. }
  4083. text := argsList.Front().Value.(formulaArg)
  4084. if text.Type != ArgString {
  4085. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4086. }
  4087. times := argsList.Back().Value.(formulaArg).ToNumber()
  4088. if times.Type != ArgNumber {
  4089. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4090. }
  4091. if times.Number < 0 {
  4092. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4093. }
  4094. if times.Number == 0 {
  4095. return newStringFormulaArg("")
  4096. }
  4097. buf := bytes.Buffer{}
  4098. for i := 0; i < int(times.Number); i++ {
  4099. buf.WriteString(text.String)
  4100. }
  4101. return newStringFormulaArg(buf.String())
  4102. }
  4103. // UPPER converts all characters in a supplied text string to upper case. The
  4104. // syntax of the function is:
  4105. //
  4106. // UPPER(text)
  4107. //
  4108. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  4109. if argsList.Len() != 1 {
  4110. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  4111. }
  4112. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  4113. }
  4114. // Conditional Functions
  4115. // IF function tests a supplied condition and returns one result if the
  4116. // condition evaluates to TRUE, and another result if the condition evaluates
  4117. // to FALSE. The syntax of the function is:
  4118. //
  4119. // IF(logical_test,value_if_true,value_if_false)
  4120. //
  4121. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  4122. if argsList.Len() == 0 {
  4123. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  4124. }
  4125. if argsList.Len() > 3 {
  4126. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  4127. }
  4128. token := argsList.Front().Value.(formulaArg)
  4129. var (
  4130. cond bool
  4131. err error
  4132. result string
  4133. )
  4134. switch token.Type {
  4135. case ArgString:
  4136. if cond, err = strconv.ParseBool(token.String); err != nil {
  4137. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4138. }
  4139. if argsList.Len() == 1 {
  4140. return newBoolFormulaArg(cond)
  4141. }
  4142. if cond {
  4143. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  4144. }
  4145. if argsList.Len() == 3 {
  4146. result = argsList.Back().Value.(formulaArg).String
  4147. }
  4148. }
  4149. return newStringFormulaArg(result)
  4150. }
  4151. // Excel Lookup and Reference Functions
  4152. // CHOOSE function returns a value from an array, that corresponds to a
  4153. // supplied index number (position). The syntax of the function is:
  4154. //
  4155. // CHOOSE(index_num,value1,[value2],...)
  4156. //
  4157. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  4158. if argsList.Len() < 2 {
  4159. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  4160. }
  4161. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  4162. if err != nil {
  4163. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  4164. }
  4165. if argsList.Len() <= idx {
  4166. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  4167. }
  4168. arg := argsList.Front()
  4169. for i := 0; i < idx; i++ {
  4170. arg = arg.Next()
  4171. }
  4172. var result formulaArg
  4173. switch arg.Value.(formulaArg).Type {
  4174. case ArgString:
  4175. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  4176. case ArgMatrix:
  4177. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  4178. }
  4179. return result
  4180. }
  4181. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  4182. // string.
  4183. func deepMatchRune(str, pattern []rune, simple bool) bool {
  4184. for len(pattern) > 0 {
  4185. switch pattern[0] {
  4186. default:
  4187. if len(str) == 0 || str[0] != pattern[0] {
  4188. return false
  4189. }
  4190. case '?':
  4191. if len(str) == 0 && !simple {
  4192. return false
  4193. }
  4194. case '*':
  4195. return deepMatchRune(str, pattern[1:], simple) ||
  4196. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  4197. }
  4198. str = str[1:]
  4199. pattern = pattern[1:]
  4200. }
  4201. return len(str) == 0 && len(pattern) == 0
  4202. }
  4203. // matchPattern finds whether the text matches or satisfies the pattern
  4204. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  4205. func matchPattern(pattern, name string) (matched bool) {
  4206. if pattern == "" {
  4207. return name == pattern
  4208. }
  4209. if pattern == "*" {
  4210. return true
  4211. }
  4212. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  4213. for _, r := range name {
  4214. rname = append(rname, r)
  4215. }
  4216. for _, r := range pattern {
  4217. rpattern = append(rpattern, r)
  4218. }
  4219. simple := false // Does extended wildcard '*' and '?' match.
  4220. return deepMatchRune(rname, rpattern, simple)
  4221. }
  4222. // compareFormulaArg compares the left-hand sides and the right-hand sides
  4223. // formula arguments by given conditions such as case sensitive, if exact
  4224. // match, and make compare result as formula criteria condition type.
  4225. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4226. if lhs.Type != rhs.Type {
  4227. return criteriaErr
  4228. }
  4229. switch lhs.Type {
  4230. case ArgNumber:
  4231. if lhs.Number == rhs.Number {
  4232. return criteriaEq
  4233. }
  4234. if lhs.Number < rhs.Number {
  4235. return criteriaL
  4236. }
  4237. return criteriaG
  4238. case ArgString:
  4239. ls, rs := lhs.String, rhs.String
  4240. if !caseSensitive {
  4241. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  4242. }
  4243. if exactMatch {
  4244. match := matchPattern(rs, ls)
  4245. if match {
  4246. return criteriaEq
  4247. }
  4248. return criteriaG
  4249. }
  4250. switch strings.Compare(ls, rs) {
  4251. case 1:
  4252. return criteriaG
  4253. case -1:
  4254. return criteriaL
  4255. case 0:
  4256. return criteriaEq
  4257. }
  4258. return criteriaErr
  4259. case ArgEmpty:
  4260. return criteriaEq
  4261. case ArgList:
  4262. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  4263. case ArgMatrix:
  4264. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  4265. }
  4266. return criteriaErr
  4267. }
  4268. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  4269. // list type formula arguments.
  4270. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4271. if len(lhs.List) < len(rhs.List) {
  4272. return criteriaL
  4273. }
  4274. if len(lhs.List) > len(rhs.List) {
  4275. return criteriaG
  4276. }
  4277. for arg := range lhs.List {
  4278. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  4279. if criteria != criteriaEq {
  4280. return criteria
  4281. }
  4282. }
  4283. return criteriaEq
  4284. }
  4285. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  4286. // matrix type formula arguments.
  4287. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4288. if len(lhs.Matrix) < len(rhs.Matrix) {
  4289. return criteriaL
  4290. }
  4291. if len(lhs.Matrix) > len(rhs.Matrix) {
  4292. return criteriaG
  4293. }
  4294. for i := range lhs.Matrix {
  4295. left := lhs.Matrix[i]
  4296. right := lhs.Matrix[i]
  4297. if len(left) < len(right) {
  4298. return criteriaL
  4299. }
  4300. if len(left) > len(right) {
  4301. return criteriaG
  4302. }
  4303. for arg := range left {
  4304. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  4305. if criteria != criteriaEq {
  4306. return criteria
  4307. }
  4308. }
  4309. }
  4310. return criteriaEq
  4311. }
  4312. // HLOOKUP function 'looks up' a given value in the top row of a data array
  4313. // (or table), and returns the corresponding value from another row of the
  4314. // array. The syntax of the function is:
  4315. //
  4316. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  4317. //
  4318. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  4319. if argsList.Len() < 3 {
  4320. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  4321. }
  4322. if argsList.Len() > 4 {
  4323. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  4324. }
  4325. lookupValue := argsList.Front().Value.(formulaArg)
  4326. tableArray := argsList.Front().Next().Value.(formulaArg)
  4327. if tableArray.Type != ArgMatrix {
  4328. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  4329. }
  4330. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4331. if rowArg.Type != ArgNumber {
  4332. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  4333. }
  4334. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  4335. if argsList.Len() == 4 {
  4336. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4337. if rangeLookup.Type == ArgError {
  4338. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4339. }
  4340. if rangeLookup.Number == 0 {
  4341. exactMatch = true
  4342. }
  4343. }
  4344. row := tableArray.Matrix[0]
  4345. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4346. start:
  4347. for idx, mtx := range row {
  4348. lhs := mtx
  4349. switch lookupValue.Type {
  4350. case ArgNumber:
  4351. if !lookupValue.Boolean {
  4352. lhs = mtx.ToNumber()
  4353. if lhs.Type == ArgError {
  4354. lhs = mtx
  4355. }
  4356. }
  4357. case ArgMatrix:
  4358. lhs = tableArray
  4359. }
  4360. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4361. matchIdx = idx
  4362. wasExact = true
  4363. break start
  4364. }
  4365. }
  4366. } else {
  4367. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  4368. }
  4369. if matchIdx == -1 {
  4370. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4371. }
  4372. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  4373. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  4374. }
  4375. row = tableArray.Matrix[rowIdx]
  4376. if wasExact || !exactMatch {
  4377. return row[matchIdx]
  4378. }
  4379. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4380. }
  4381. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  4382. // data array (or table), and returns the corresponding value from another
  4383. // column of the array. The syntax of the function is:
  4384. //
  4385. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  4386. //
  4387. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  4388. if argsList.Len() < 3 {
  4389. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  4390. }
  4391. if argsList.Len() > 4 {
  4392. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  4393. }
  4394. lookupValue := argsList.Front().Value.(formulaArg)
  4395. tableArray := argsList.Front().Next().Value.(formulaArg)
  4396. if tableArray.Type != ArgMatrix {
  4397. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  4398. }
  4399. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4400. if colIdx.Type != ArgNumber {
  4401. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  4402. }
  4403. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  4404. if argsList.Len() == 4 {
  4405. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4406. if rangeLookup.Type == ArgError {
  4407. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4408. }
  4409. if rangeLookup.Number == 0 {
  4410. exactMatch = true
  4411. }
  4412. }
  4413. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4414. start:
  4415. for idx, mtx := range tableArray.Matrix {
  4416. lhs := mtx[0]
  4417. switch lookupValue.Type {
  4418. case ArgNumber:
  4419. if !lookupValue.Boolean {
  4420. lhs = mtx[0].ToNumber()
  4421. if lhs.Type == ArgError {
  4422. lhs = mtx[0]
  4423. }
  4424. }
  4425. case ArgMatrix:
  4426. lhs = tableArray
  4427. }
  4428. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4429. matchIdx = idx
  4430. wasExact = true
  4431. break start
  4432. }
  4433. }
  4434. } else {
  4435. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  4436. }
  4437. if matchIdx == -1 {
  4438. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4439. }
  4440. mtx := tableArray.Matrix[matchIdx]
  4441. if col < 0 || col >= len(mtx) {
  4442. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  4443. }
  4444. if wasExact || !exactMatch {
  4445. return mtx[col]
  4446. }
  4447. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4448. }
  4449. // vlookupBinarySearch finds the position of a target value when range lookup
  4450. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4451. // return wrong result.
  4452. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4453. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  4454. for low <= high {
  4455. var mid int = low + (high-low)/2
  4456. mtx := tableArray.Matrix[mid]
  4457. lhs := mtx[0]
  4458. switch lookupValue.Type {
  4459. case ArgNumber:
  4460. if !lookupValue.Boolean {
  4461. lhs = mtx[0].ToNumber()
  4462. if lhs.Type == ArgError {
  4463. lhs = mtx[0]
  4464. }
  4465. }
  4466. case ArgMatrix:
  4467. lhs = tableArray
  4468. }
  4469. result := compareFormulaArg(lhs, lookupValue, false, false)
  4470. if result == criteriaEq {
  4471. matchIdx, wasExact = mid, true
  4472. return
  4473. } else if result == criteriaG {
  4474. high = mid - 1
  4475. } else if result == criteriaL {
  4476. matchIdx, low = mid, mid+1
  4477. if lhs.Value() != "" {
  4478. lastMatchIdx = matchIdx
  4479. }
  4480. } else {
  4481. return -1, false
  4482. }
  4483. }
  4484. matchIdx, wasExact = lastMatchIdx, true
  4485. return
  4486. }
  4487. // vlookupBinarySearch finds the position of a target value when range lookup
  4488. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4489. // return wrong result.
  4490. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4491. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  4492. for low <= high {
  4493. var mid int = low + (high-low)/2
  4494. mtx := row[mid]
  4495. result := compareFormulaArg(mtx, lookupValue, false, false)
  4496. if result == criteriaEq {
  4497. matchIdx, wasExact = mid, true
  4498. return
  4499. } else if result == criteriaG {
  4500. high = mid - 1
  4501. } else if result == criteriaL {
  4502. low, lastMatchIdx = mid+1, mid
  4503. } else {
  4504. return -1, false
  4505. }
  4506. }
  4507. matchIdx, wasExact = lastMatchIdx, true
  4508. return
  4509. }
  4510. // LOOKUP function performs an approximate match lookup in a one-column or
  4511. // one-row range, and returns the corresponding value from another one-column
  4512. // or one-row range. The syntax of the function is:
  4513. //
  4514. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  4515. //
  4516. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  4517. if argsList.Len() < 2 {
  4518. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  4519. }
  4520. if argsList.Len() > 3 {
  4521. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  4522. }
  4523. lookupValue := argsList.Front().Value.(formulaArg)
  4524. lookupVector := argsList.Front().Next().Value.(formulaArg)
  4525. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  4526. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  4527. }
  4528. cols, matchIdx := lookupCol(lookupVector), -1
  4529. for idx, col := range cols {
  4530. lhs := lookupValue
  4531. switch col.Type {
  4532. case ArgNumber:
  4533. lhs = lhs.ToNumber()
  4534. if !col.Boolean {
  4535. if lhs.Type == ArgError {
  4536. lhs = lookupValue
  4537. }
  4538. }
  4539. }
  4540. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  4541. matchIdx = idx
  4542. break
  4543. }
  4544. }
  4545. column := cols
  4546. if argsList.Len() == 3 {
  4547. column = lookupCol(argsList.Back().Value.(formulaArg))
  4548. }
  4549. if matchIdx < 0 || matchIdx >= len(column) {
  4550. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  4551. }
  4552. return column[matchIdx]
  4553. }
  4554. // lookupCol extract columns for LOOKUP.
  4555. func lookupCol(arr formulaArg) []formulaArg {
  4556. col := arr.List
  4557. if arr.Type == ArgMatrix {
  4558. col = nil
  4559. for _, r := range arr.Matrix {
  4560. if len(r) > 0 {
  4561. col = append(col, r[0])
  4562. continue
  4563. }
  4564. col = append(col, newEmptyFormulaArg())
  4565. }
  4566. }
  4567. return col
  4568. }
  4569. // Web Functions
  4570. // ENCODEURL function returns a URL-encoded string, replacing certain
  4571. // non-alphanumeric characters with the percentage symbol (%) and a
  4572. // hexadecimal number. The syntax of the function is:
  4573. //
  4574. // ENCODEURL(url)
  4575. //
  4576. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  4577. if argsList.Len() != 1 {
  4578. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  4579. }
  4580. token := argsList.Front().Value.(formulaArg).Value()
  4581. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  4582. }