calc.go 137 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. )
  30. // Excel formula errors
  31. const (
  32. formulaErrorDIV = "#DIV/0!"
  33. formulaErrorNAME = "#NAME?"
  34. formulaErrorNA = "#N/A"
  35. formulaErrorNUM = "#NUM!"
  36. formulaErrorVALUE = "#VALUE!"
  37. formulaErrorREF = "#REF!"
  38. formulaErrorNULL = "#NULL"
  39. formulaErrorSPILL = "#SPILL!"
  40. formulaErrorCALC = "#CALC!"
  41. formulaErrorGETTINGDATA = "#GETTING_DATA"
  42. )
  43. // Numeric precision correct numeric values as legacy Excel application
  44. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  45. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  46. // has a decimal representation that is an infinite string of ones, Excel
  47. // displays only the leading 15 figures. In the second line, the number one
  48. // is added to the fraction, and again Excel displays only 15 figures.
  49. const numericPrecision = 1000000000000000
  50. // cellRef defines the structure of a cell reference.
  51. type cellRef struct {
  52. Col int
  53. Row int
  54. Sheet string
  55. }
  56. // cellRef defines the structure of a cell range.
  57. type cellRange struct {
  58. From cellRef
  59. To cellRef
  60. }
  61. // formula criteria condition enumeration.
  62. const (
  63. _ byte = iota
  64. criteriaEq
  65. criteriaLe
  66. criteriaGe
  67. criteriaL
  68. criteriaG
  69. criteriaBeg
  70. criteriaEnd
  71. criteriaErr
  72. )
  73. // formulaCriteria defined formula criteria parser result.
  74. type formulaCriteria struct {
  75. Type byte
  76. Condition string
  77. }
  78. // ArgType is the type if formula argument type.
  79. type ArgType byte
  80. // Formula argument types enumeration.
  81. const (
  82. ArgUnknown ArgType = iota
  83. ArgNumber
  84. ArgString
  85. ArgList
  86. ArgMatrix
  87. ArgError
  88. ArgEmpty
  89. )
  90. // formulaArg is the argument of a formula or function.
  91. type formulaArg struct {
  92. SheetName string
  93. Number float64
  94. String string
  95. List []formulaArg
  96. Matrix [][]formulaArg
  97. Boolean bool
  98. Error string
  99. Type ArgType
  100. }
  101. // Value returns a string data type of the formula argument.
  102. func (fa formulaArg) Value() (value string) {
  103. switch fa.Type {
  104. case ArgNumber:
  105. if fa.Boolean {
  106. if fa.Number == 0 {
  107. return "FALSE"
  108. }
  109. return "TRUE"
  110. }
  111. return fmt.Sprintf("%g", fa.Number)
  112. case ArgString:
  113. return fa.String
  114. case ArgError:
  115. return fa.Error
  116. }
  117. return
  118. }
  119. // ToNumber returns a formula argument with number data type.
  120. func (fa formulaArg) ToNumber() formulaArg {
  121. var n float64
  122. var err error
  123. switch fa.Type {
  124. case ArgString:
  125. n, err = strconv.ParseFloat(fa.String, 64)
  126. if err != nil {
  127. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  128. }
  129. case ArgNumber:
  130. n = fa.Number
  131. }
  132. return newNumberFormulaArg(n)
  133. }
  134. // ToBool returns a formula argument with boolean data type.
  135. func (fa formulaArg) ToBool() formulaArg {
  136. var b bool
  137. var err error
  138. switch fa.Type {
  139. case ArgString:
  140. b, err = strconv.ParseBool(fa.String)
  141. if err != nil {
  142. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  143. }
  144. case ArgNumber:
  145. if fa.Boolean && fa.Number == 1 {
  146. b = true
  147. }
  148. }
  149. return newBoolFormulaArg(b)
  150. }
  151. // ToList returns a formula argument with array data type.
  152. func (fa formulaArg) ToList() []formulaArg {
  153. if fa.Type == ArgMatrix {
  154. list := []formulaArg{}
  155. for _, row := range fa.Matrix {
  156. list = append(list, row...)
  157. }
  158. return list
  159. }
  160. if fa.Type == ArgList {
  161. return fa.List
  162. }
  163. return nil
  164. }
  165. // formulaFuncs is the type of the formula functions.
  166. type formulaFuncs struct {
  167. f *File
  168. sheet string
  169. }
  170. // tokenPriority defined basic arithmetic operator priority.
  171. var tokenPriority = map[string]int{
  172. "^": 5,
  173. "*": 4,
  174. "/": 4,
  175. "+": 3,
  176. "-": 3,
  177. "=": 2,
  178. "<>": 2,
  179. "<": 2,
  180. "<=": 2,
  181. ">": 2,
  182. ">=": 2,
  183. "&": 1,
  184. }
  185. // CalcCellValue provides a function to get calculated cell value. This
  186. // feature is currently in working processing. Array formula, table formula
  187. // and some other formulas are not supported currently.
  188. //
  189. // Supported formula functions:
  190. //
  191. // ABS
  192. // ACOS
  193. // ACOSH
  194. // ACOT
  195. // ACOTH
  196. // AND
  197. // ARABIC
  198. // ASIN
  199. // ASINH
  200. // ATAN
  201. // ATAN2
  202. // ATANH
  203. // AVERAGE
  204. // AVERAGEA
  205. // BASE
  206. // CEILING
  207. // CEILING.MATH
  208. // CEILING.PRECISE
  209. // CHOOSE
  210. // CLEAN
  211. // COMBIN
  212. // COMBINA
  213. // CONCAT
  214. // CONCATENATE
  215. // COS
  216. // COSH
  217. // COT
  218. // COTH
  219. // COUNT
  220. // COUNTA
  221. // COUNTBLANK
  222. // CSC
  223. // CSCH
  224. // DATE
  225. // DEC2BIN
  226. // DEC2HEX
  227. // DEC2OCT
  228. // DECIMAL
  229. // DEGREES
  230. // ENCODEURL
  231. // EVEN
  232. // EXACT
  233. // EXP
  234. // FACT
  235. // FACTDOUBLE
  236. // FALSE
  237. // FISHER
  238. // FISHERINV
  239. // FLOOR
  240. // FLOOR.MATH
  241. // FLOOR.PRECISE
  242. // GAMMA
  243. // GAMMALN
  244. // GCD
  245. // HLOOKUP
  246. // IF
  247. // IFERROR
  248. // INT
  249. // ISBLANK
  250. // ISERR
  251. // ISERROR
  252. // ISEVEN
  253. // ISNA
  254. // ISNONTEXT
  255. // ISNUMBER
  256. // ISODD
  257. // ISTEXT
  258. // ISO.CEILING
  259. // KURT
  260. // LCM
  261. // LEN
  262. // LENB
  263. // LN
  264. // LOG
  265. // LOG10
  266. // LOOKUP
  267. // LOWER
  268. // MAX
  269. // MDETERM
  270. // MEDIAN
  271. // MIN
  272. // MINA
  273. // MOD
  274. // MROUND
  275. // MULTINOMIAL
  276. // MUNIT
  277. // NA
  278. // NOT
  279. // ODD
  280. // OR
  281. // PERMUT
  282. // PI
  283. // POWER
  284. // PRODUCT
  285. // PROPER
  286. // QUOTIENT
  287. // RADIANS
  288. // RAND
  289. // RANDBETWEEN
  290. // REPT
  291. // ROMAN
  292. // ROUND
  293. // ROUNDDOWN
  294. // ROUNDUP
  295. // SEC
  296. // SECH
  297. // SHEET
  298. // SIGN
  299. // SIN
  300. // SINH
  301. // SQRT
  302. // SQRTPI
  303. // STDEV
  304. // STDEVA
  305. // SUM
  306. // SUMIF
  307. // SUMSQ
  308. // TAN
  309. // TANH
  310. // TRIM
  311. // TRUE
  312. // TRUNC
  313. // UPPER
  314. // VLOOKUP
  315. //
  316. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  317. var (
  318. formula string
  319. token efp.Token
  320. )
  321. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  322. return
  323. }
  324. ps := efp.ExcelParser()
  325. tokens := ps.Parse(formula)
  326. if tokens == nil {
  327. return
  328. }
  329. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  330. return
  331. }
  332. result = token.TValue
  333. isNum, precision := isNumeric(result)
  334. if isNum && precision > 15 {
  335. num, _ := roundPrecision(result)
  336. result = strings.ToUpper(num)
  337. }
  338. return
  339. }
  340. // getPriority calculate arithmetic operator priority.
  341. func getPriority(token efp.Token) (pri int) {
  342. pri = tokenPriority[token.TValue]
  343. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  344. pri = 6
  345. }
  346. if isBeginParenthesesToken(token) { // (
  347. pri = 0
  348. }
  349. return
  350. }
  351. // newNumberFormulaArg constructs a number formula argument.
  352. func newNumberFormulaArg(n float64) formulaArg {
  353. if math.IsNaN(n) {
  354. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  355. }
  356. return formulaArg{Type: ArgNumber, Number: n}
  357. }
  358. // newStringFormulaArg constructs a string formula argument.
  359. func newStringFormulaArg(s string) formulaArg {
  360. return formulaArg{Type: ArgString, String: s}
  361. }
  362. // newMatrixFormulaArg constructs a matrix formula argument.
  363. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  364. return formulaArg{Type: ArgMatrix, Matrix: m}
  365. }
  366. // newListFormulaArg create a list formula argument.
  367. func newListFormulaArg(l []formulaArg) formulaArg {
  368. return formulaArg{Type: ArgList, List: l}
  369. }
  370. // newBoolFormulaArg constructs a boolean formula argument.
  371. func newBoolFormulaArg(b bool) formulaArg {
  372. var n float64
  373. if b {
  374. n = 1
  375. }
  376. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  377. }
  378. // newErrorFormulaArg create an error formula argument of a given type with a
  379. // specified error message.
  380. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  381. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  382. }
  383. // newEmptyFormulaArg create an empty formula argument.
  384. func newEmptyFormulaArg() formulaArg {
  385. return formulaArg{Type: ArgEmpty}
  386. }
  387. // evalInfixExp evaluate syntax analysis by given infix expression after
  388. // lexical analysis. Evaluate an infix expression containing formulas by
  389. // stacks:
  390. //
  391. // opd - Operand
  392. // opt - Operator
  393. // opf - Operation formula
  394. // opfd - Operand of the operation formula
  395. // opft - Operator of the operation formula
  396. //
  397. // Evaluate arguments of the operation formula by list:
  398. //
  399. // args - Arguments of the operation formula
  400. //
  401. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  402. //
  403. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  404. var err error
  405. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  406. for i := 0; i < len(tokens); i++ {
  407. token := tokens[i]
  408. // out of function stack
  409. if opfStack.Len() == 0 {
  410. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  411. return efp.Token{}, err
  412. }
  413. }
  414. // function start
  415. if isFunctionStartToken(token) {
  416. opfStack.Push(token)
  417. argsStack.Push(list.New().Init())
  418. continue
  419. }
  420. // in function stack, walk 2 token at once
  421. if opfStack.Len() > 0 {
  422. var nextToken efp.Token
  423. if i+1 < len(tokens) {
  424. nextToken = tokens[i+1]
  425. }
  426. // current token is args or range, skip next token, order required: parse reference first
  427. if token.TSubType == efp.TokenSubTypeRange {
  428. if !opftStack.Empty() {
  429. // parse reference: must reference at here
  430. result, err := f.parseReference(sheet, token.TValue)
  431. if err != nil {
  432. return efp.Token{TValue: formulaErrorNAME}, err
  433. }
  434. if result.Type != ArgString {
  435. return efp.Token{}, errors.New(formulaErrorVALUE)
  436. }
  437. opfdStack.Push(efp.Token{
  438. TType: efp.TokenTypeOperand,
  439. TSubType: efp.TokenSubTypeNumber,
  440. TValue: result.String,
  441. })
  442. continue
  443. }
  444. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  445. // parse reference: reference or range at here
  446. result, err := f.parseReference(sheet, token.TValue)
  447. if err != nil {
  448. return efp.Token{TValue: formulaErrorNAME}, err
  449. }
  450. if result.Type == ArgUnknown {
  451. return efp.Token{}, errors.New(formulaErrorVALUE)
  452. }
  453. argsStack.Peek().(*list.List).PushBack(result)
  454. continue
  455. }
  456. }
  457. // check current token is opft
  458. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  459. return efp.Token{}, err
  460. }
  461. // current token is arg
  462. if token.TType == efp.TokenTypeArgument {
  463. for !opftStack.Empty() {
  464. // calculate trigger
  465. topOpt := opftStack.Peek().(efp.Token)
  466. if err := calculate(opfdStack, topOpt); err != nil {
  467. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  468. }
  469. opftStack.Pop()
  470. }
  471. if !opfdStack.Empty() {
  472. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  473. }
  474. continue
  475. }
  476. // current token is logical
  477. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  478. }
  479. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  480. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  481. }
  482. // current token is text
  483. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  484. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  485. }
  486. if err = f.evalInfixExpFunc(sheet, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  487. return efp.Token{}, err
  488. }
  489. }
  490. }
  491. for optStack.Len() != 0 {
  492. topOpt := optStack.Peek().(efp.Token)
  493. if err = calculate(opdStack, topOpt); err != nil {
  494. return efp.Token{}, err
  495. }
  496. optStack.Pop()
  497. }
  498. if opdStack.Len() == 0 {
  499. return efp.Token{}, errors.New("formula not valid")
  500. }
  501. return opdStack.Peek().(efp.Token), err
  502. }
  503. // evalInfixExpFunc evaluate formula function in the infix expression.
  504. func (f *File) evalInfixExpFunc(sheet string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  505. if !isFunctionStopToken(token) {
  506. return nil
  507. }
  508. // current token is function stop
  509. for !opftStack.Empty() {
  510. // calculate trigger
  511. topOpt := opftStack.Peek().(efp.Token)
  512. if err := calculate(opfdStack, topOpt); err != nil {
  513. return err
  514. }
  515. opftStack.Pop()
  516. }
  517. // push opfd to args
  518. if opfdStack.Len() > 0 {
  519. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  520. }
  521. // call formula function to evaluate
  522. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet}, strings.NewReplacer(
  523. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  524. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  525. if arg.Type == ArgError && opfStack.Len() == 1 {
  526. return errors.New(arg.Value())
  527. }
  528. argsStack.Pop()
  529. opfStack.Pop()
  530. if opfStack.Len() > 0 { // still in function stack
  531. if nextToken.TType == efp.TokenTypeOperatorInfix {
  532. // mathematics calculate in formula function
  533. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  534. } else {
  535. argsStack.Peek().(*list.List).PushBack(arg)
  536. }
  537. } else {
  538. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  539. }
  540. return nil
  541. }
  542. // calcPow evaluate exponentiation arithmetic operations.
  543. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  544. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  545. if err != nil {
  546. return err
  547. }
  548. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  549. if err != nil {
  550. return err
  551. }
  552. result := math.Pow(lOpdVal, rOpdVal)
  553. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  554. return nil
  555. }
  556. // calcEq evaluate equal arithmetic operations.
  557. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  558. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  559. return nil
  560. }
  561. // calcNEq evaluate not equal arithmetic operations.
  562. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  563. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  564. return nil
  565. }
  566. // calcL evaluate less than arithmetic operations.
  567. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  568. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  569. if err != nil {
  570. return err
  571. }
  572. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  573. if err != nil {
  574. return err
  575. }
  576. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  577. return nil
  578. }
  579. // calcLe evaluate less than or equal arithmetic operations.
  580. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  581. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  582. if err != nil {
  583. return err
  584. }
  585. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  586. if err != nil {
  587. return err
  588. }
  589. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  590. return nil
  591. }
  592. // calcG evaluate greater than or equal arithmetic operations.
  593. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  594. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  595. if err != nil {
  596. return err
  597. }
  598. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  599. if err != nil {
  600. return err
  601. }
  602. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  603. return nil
  604. }
  605. // calcGe evaluate greater than or equal arithmetic operations.
  606. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  607. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  608. if err != nil {
  609. return err
  610. }
  611. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  612. if err != nil {
  613. return err
  614. }
  615. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  616. return nil
  617. }
  618. // calcSplice evaluate splice '&' operations.
  619. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  620. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  621. return nil
  622. }
  623. // calcAdd evaluate addition arithmetic operations.
  624. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  625. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  626. if err != nil {
  627. return err
  628. }
  629. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  630. if err != nil {
  631. return err
  632. }
  633. result := lOpdVal + rOpdVal
  634. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  635. return nil
  636. }
  637. // calcSubtract evaluate subtraction arithmetic operations.
  638. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  639. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  640. if err != nil {
  641. return err
  642. }
  643. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  644. if err != nil {
  645. return err
  646. }
  647. result := lOpdVal - rOpdVal
  648. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  649. return nil
  650. }
  651. // calcMultiply evaluate multiplication arithmetic operations.
  652. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  653. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  654. if err != nil {
  655. return err
  656. }
  657. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  658. if err != nil {
  659. return err
  660. }
  661. result := lOpdVal * rOpdVal
  662. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  663. return nil
  664. }
  665. // calcDiv evaluate division arithmetic operations.
  666. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  667. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  668. if err != nil {
  669. return err
  670. }
  671. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  672. if err != nil {
  673. return err
  674. }
  675. result := lOpdVal / rOpdVal
  676. if rOpdVal == 0 {
  677. return errors.New(formulaErrorDIV)
  678. }
  679. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  680. return nil
  681. }
  682. // calculate evaluate basic arithmetic operations.
  683. func calculate(opdStack *Stack, opt efp.Token) error {
  684. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  685. if opdStack.Len() < 1 {
  686. return errors.New("formula not valid")
  687. }
  688. opd := opdStack.Pop().(efp.Token)
  689. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  690. if err != nil {
  691. return err
  692. }
  693. result := 0 - opdVal
  694. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  695. }
  696. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  697. "^": calcPow,
  698. "*": calcMultiply,
  699. "/": calcDiv,
  700. "+": calcAdd,
  701. "=": calcEq,
  702. "<>": calcNEq,
  703. "<": calcL,
  704. "<=": calcLe,
  705. ">": calcG,
  706. ">=": calcGe,
  707. "&": calcSplice,
  708. }
  709. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  710. if opdStack.Len() < 2 {
  711. return errors.New("formula not valid")
  712. }
  713. rOpd := opdStack.Pop().(efp.Token)
  714. lOpd := opdStack.Pop().(efp.Token)
  715. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  716. return err
  717. }
  718. }
  719. fn, ok := tokenCalcFunc[opt.TValue]
  720. if ok {
  721. if opdStack.Len() < 2 {
  722. return errors.New("formula not valid")
  723. }
  724. rOpd := opdStack.Pop().(efp.Token)
  725. lOpd := opdStack.Pop().(efp.Token)
  726. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  727. return err
  728. }
  729. }
  730. return nil
  731. }
  732. // parseOperatorPrefixToken parse operator prefix token.
  733. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  734. if optStack.Len() == 0 {
  735. optStack.Push(token)
  736. } else {
  737. tokenPriority := getPriority(token)
  738. topOpt := optStack.Peek().(efp.Token)
  739. topOptPriority := getPriority(topOpt)
  740. if tokenPriority > topOptPriority {
  741. optStack.Push(token)
  742. } else {
  743. for tokenPriority <= topOptPriority {
  744. optStack.Pop()
  745. if err = calculate(opdStack, topOpt); err != nil {
  746. return
  747. }
  748. if optStack.Len() > 0 {
  749. topOpt = optStack.Peek().(efp.Token)
  750. topOptPriority = getPriority(topOpt)
  751. continue
  752. }
  753. break
  754. }
  755. optStack.Push(token)
  756. }
  757. }
  758. return
  759. }
  760. // isFunctionStartToken determine if the token is function stop.
  761. func isFunctionStartToken(token efp.Token) bool {
  762. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  763. }
  764. // isFunctionStopToken determine if the token is function stop.
  765. func isFunctionStopToken(token efp.Token) bool {
  766. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  767. }
  768. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  769. func isBeginParenthesesToken(token efp.Token) bool {
  770. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  771. }
  772. // isEndParenthesesToken determine if the token is end parentheses: ).
  773. func isEndParenthesesToken(token efp.Token) bool {
  774. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  775. }
  776. // isOperatorPrefixToken determine if the token is parse operator prefix
  777. // token.
  778. func isOperatorPrefixToken(token efp.Token) bool {
  779. _, ok := tokenPriority[token.TValue]
  780. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  781. return true
  782. }
  783. return false
  784. }
  785. // getDefinedNameRefTo convert defined name to reference range.
  786. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  787. for _, definedName := range f.GetDefinedName() {
  788. if definedName.Name == definedNameName {
  789. refTo = definedName.RefersTo
  790. // worksheet scope takes precedence over scope workbook when both definedNames exist
  791. if definedName.Scope == currentSheet {
  792. break
  793. }
  794. }
  795. }
  796. return refTo
  797. }
  798. // parseToken parse basic arithmetic operator priority and evaluate based on
  799. // operators and operands.
  800. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  801. // parse reference: must reference at here
  802. if token.TSubType == efp.TokenSubTypeRange {
  803. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  804. if refTo != "" {
  805. token.TValue = refTo
  806. }
  807. result, err := f.parseReference(sheet, token.TValue)
  808. if err != nil {
  809. return errors.New(formulaErrorNAME)
  810. }
  811. if result.Type != ArgString {
  812. return errors.New(formulaErrorVALUE)
  813. }
  814. token.TValue = result.String
  815. token.TType = efp.TokenTypeOperand
  816. token.TSubType = efp.TokenSubTypeNumber
  817. }
  818. if isOperatorPrefixToken(token) {
  819. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  820. return err
  821. }
  822. }
  823. if isBeginParenthesesToken(token) { // (
  824. optStack.Push(token)
  825. }
  826. if isEndParenthesesToken(token) { // )
  827. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  828. topOpt := optStack.Peek().(efp.Token)
  829. if err := calculate(opdStack, topOpt); err != nil {
  830. return err
  831. }
  832. optStack.Pop()
  833. }
  834. optStack.Pop()
  835. }
  836. // opd
  837. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  838. opdStack.Push(token)
  839. }
  840. return nil
  841. }
  842. // parseReference parse reference and extract values by given reference
  843. // characters and default sheet name.
  844. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  845. reference = strings.Replace(reference, "$", "", -1)
  846. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  847. for _, ref := range strings.Split(reference, ":") {
  848. tokens := strings.Split(ref, "!")
  849. cr := cellRef{}
  850. if len(tokens) == 2 { // have a worksheet name
  851. cr.Sheet = tokens[0]
  852. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  853. return
  854. }
  855. if refs.Len() > 0 {
  856. e := refs.Back()
  857. cellRefs.PushBack(e.Value.(cellRef))
  858. refs.Remove(e)
  859. }
  860. refs.PushBack(cr)
  861. continue
  862. }
  863. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  864. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  865. return
  866. }
  867. cellRanges.PushBack(cellRange{
  868. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  869. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  870. })
  871. cellRefs.Init()
  872. arg, err = f.rangeResolver(cellRefs, cellRanges)
  873. return
  874. }
  875. e := refs.Back()
  876. if e == nil {
  877. cr.Sheet = sheet
  878. refs.PushBack(cr)
  879. continue
  880. }
  881. cellRanges.PushBack(cellRange{
  882. From: e.Value.(cellRef),
  883. To: cr,
  884. })
  885. refs.Remove(e)
  886. }
  887. if refs.Len() > 0 {
  888. e := refs.Back()
  889. cellRefs.PushBack(e.Value.(cellRef))
  890. refs.Remove(e)
  891. }
  892. arg, err = f.rangeResolver(cellRefs, cellRanges)
  893. return
  894. }
  895. // prepareValueRange prepare value range.
  896. func prepareValueRange(cr cellRange, valueRange []int) {
  897. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  898. valueRange[0] = cr.From.Row
  899. }
  900. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  901. valueRange[2] = cr.From.Col
  902. }
  903. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  904. valueRange[1] = cr.To.Row
  905. }
  906. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  907. valueRange[3] = cr.To.Col
  908. }
  909. }
  910. // prepareValueRef prepare value reference.
  911. func prepareValueRef(cr cellRef, valueRange []int) {
  912. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  913. valueRange[0] = cr.Row
  914. }
  915. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  916. valueRange[2] = cr.Col
  917. }
  918. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  919. valueRange[1] = cr.Row
  920. }
  921. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  922. valueRange[3] = cr.Col
  923. }
  924. }
  925. // rangeResolver extract value as string from given reference and range list.
  926. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  927. // be reference A1:B3.
  928. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  929. // value range order: from row, to row, from column, to column
  930. valueRange := []int{0, 0, 0, 0}
  931. var sheet string
  932. // prepare value range
  933. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  934. cr := temp.Value.(cellRange)
  935. if cr.From.Sheet != cr.To.Sheet {
  936. err = errors.New(formulaErrorVALUE)
  937. }
  938. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  939. _ = sortCoordinates(rng)
  940. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  941. prepareValueRange(cr, valueRange)
  942. if cr.From.Sheet != "" {
  943. sheet = cr.From.Sheet
  944. }
  945. }
  946. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  947. cr := temp.Value.(cellRef)
  948. if cr.Sheet != "" {
  949. sheet = cr.Sheet
  950. }
  951. prepareValueRef(cr, valueRange)
  952. }
  953. // extract value from ranges
  954. if cellRanges.Len() > 0 {
  955. arg.Type = ArgMatrix
  956. for row := valueRange[0]; row <= valueRange[1]; row++ {
  957. var matrixRow = []formulaArg{}
  958. for col := valueRange[2]; col <= valueRange[3]; col++ {
  959. var cell, value string
  960. if cell, err = CoordinatesToCellName(col, row); err != nil {
  961. return
  962. }
  963. if value, err = f.GetCellValue(sheet, cell); err != nil {
  964. return
  965. }
  966. matrixRow = append(matrixRow, formulaArg{
  967. String: value,
  968. Type: ArgString,
  969. })
  970. }
  971. arg.Matrix = append(arg.Matrix, matrixRow)
  972. }
  973. return
  974. }
  975. // extract value from references
  976. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  977. cr := temp.Value.(cellRef)
  978. var cell string
  979. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  980. return
  981. }
  982. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  983. return
  984. }
  985. arg.Type = ArgString
  986. }
  987. return
  988. }
  989. // callFuncByName calls the no error or only error return function with
  990. // reflect by given receiver, name and parameters.
  991. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  992. function := reflect.ValueOf(receiver).MethodByName(name)
  993. if function.IsValid() {
  994. rt := function.Call(params)
  995. if len(rt) == 0 {
  996. return
  997. }
  998. arg = rt[0].Interface().(formulaArg)
  999. return
  1000. }
  1001. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1002. }
  1003. // formulaCriteriaParser parse formula criteria.
  1004. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1005. fc = &formulaCriteria{}
  1006. if exp == "" {
  1007. return
  1008. }
  1009. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1010. fc.Type, fc.Condition = criteriaEq, match[1]
  1011. return
  1012. }
  1013. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1014. fc.Type, fc.Condition = criteriaEq, match[1]
  1015. return
  1016. }
  1017. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1018. fc.Type, fc.Condition = criteriaLe, match[1]
  1019. return
  1020. }
  1021. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1022. fc.Type, fc.Condition = criteriaGe, match[1]
  1023. return
  1024. }
  1025. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1026. fc.Type, fc.Condition = criteriaL, match[1]
  1027. return
  1028. }
  1029. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1030. fc.Type, fc.Condition = criteriaG, match[1]
  1031. return
  1032. }
  1033. if strings.Contains(exp, "*") {
  1034. if strings.HasPrefix(exp, "*") {
  1035. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1036. }
  1037. if strings.HasSuffix(exp, "*") {
  1038. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1039. }
  1040. return
  1041. }
  1042. fc.Type, fc.Condition = criteriaEq, exp
  1043. return
  1044. }
  1045. // formulaCriteriaEval evaluate formula criteria expression.
  1046. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1047. var value, expected float64
  1048. var e error
  1049. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1050. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1051. return
  1052. }
  1053. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1054. return
  1055. }
  1056. return
  1057. }
  1058. switch criteria.Type {
  1059. case criteriaEq:
  1060. return val == criteria.Condition, err
  1061. case criteriaLe:
  1062. value, expected, e = prepareValue(val, criteria.Condition)
  1063. return value <= expected && e == nil, err
  1064. case criteriaGe:
  1065. value, expected, e = prepareValue(val, criteria.Condition)
  1066. return value >= expected && e == nil, err
  1067. case criteriaL:
  1068. value, expected, e = prepareValue(val, criteria.Condition)
  1069. return value < expected && e == nil, err
  1070. case criteriaG:
  1071. value, expected, e = prepareValue(val, criteria.Condition)
  1072. return value > expected && e == nil, err
  1073. case criteriaBeg:
  1074. return strings.HasPrefix(val, criteria.Condition), err
  1075. case criteriaEnd:
  1076. return strings.HasSuffix(val, criteria.Condition), err
  1077. }
  1078. return
  1079. }
  1080. // Engineering Functions
  1081. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1082. // The syntax of the function is:
  1083. //
  1084. // DEC2BIN(number,[places])
  1085. //
  1086. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1087. if argsList.Len() < 1 {
  1088. return newErrorFormulaArg(formulaErrorVALUE, "DEC2BIN requires at least 1 argument")
  1089. }
  1090. if argsList.Len() > 2 {
  1091. return newErrorFormulaArg(formulaErrorVALUE, "DEC2BIN allows at most 2 arguments")
  1092. }
  1093. return fn.dec2x("DEC2BIN", argsList)
  1094. }
  1095. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1096. // number. The syntax of the function is:
  1097. //
  1098. // DEC2HEX(number,[places])
  1099. //
  1100. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1101. if argsList.Len() < 1 {
  1102. return newErrorFormulaArg(formulaErrorVALUE, "DEC2HEX requires at least 1 argument")
  1103. }
  1104. if argsList.Len() > 2 {
  1105. return newErrorFormulaArg(formulaErrorVALUE, "DEC2HEX allows at most 2 arguments")
  1106. }
  1107. return fn.dec2x("DEC2HEX", argsList)
  1108. }
  1109. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1110. // The syntax of the function is:
  1111. //
  1112. // DEC2OCT(number,[places])
  1113. //
  1114. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1115. if argsList.Len() < 1 {
  1116. return newErrorFormulaArg(formulaErrorVALUE, "DEC2OCT requires at least 1 argument")
  1117. }
  1118. if argsList.Len() > 2 {
  1119. return newErrorFormulaArg(formulaErrorVALUE, "DEC2OCT allows at most 2 arguments")
  1120. }
  1121. return fn.dec2x("DEC2OCT", argsList)
  1122. }
  1123. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and DEC2OCT.
  1124. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1125. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1126. if decimal.Type != ArgNumber {
  1127. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1128. }
  1129. maxLimitMap := map[string]float64{
  1130. "DEC2BIN": 511,
  1131. "DEC2HEX": 549755813887,
  1132. "DEC2OCT": 536870911,
  1133. }
  1134. minLimitMap := map[string]float64{
  1135. "DEC2BIN": -512,
  1136. "DEC2HEX": -549755813888,
  1137. "DEC2OCT": -536870912,
  1138. }
  1139. baseMap := map[string]int{
  1140. "DEC2BIN": 2,
  1141. "DEC2HEX": 16,
  1142. "DEC2OCT": 8,
  1143. }
  1144. maxLimit := maxLimitMap[name]
  1145. minLimit := minLimitMap[name]
  1146. base := baseMap[name]
  1147. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1148. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1149. }
  1150. n := int64(decimal.Number)
  1151. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1152. if argsList.Len() == 2 {
  1153. places := argsList.Back().Value.(formulaArg).ToNumber()
  1154. if places.Type != ArgNumber {
  1155. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1156. }
  1157. binaryPlaces := len(binary)
  1158. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1159. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1160. }
  1161. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1162. }
  1163. if decimal.Number < 0 && len(binary) > 10 {
  1164. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1165. }
  1166. return newStringFormulaArg(strings.ToUpper(binary))
  1167. }
  1168. // Math and Trigonometric Functions
  1169. // ABS function returns the absolute value of any supplied number. The syntax
  1170. // of the function is:
  1171. //
  1172. // ABS(number)
  1173. //
  1174. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1175. if argsList.Len() != 1 {
  1176. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1177. }
  1178. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1179. if arg.Type == ArgError {
  1180. return arg
  1181. }
  1182. return newNumberFormulaArg(math.Abs(arg.Number))
  1183. }
  1184. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1185. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1186. // the function is:
  1187. //
  1188. // ACOS(number)
  1189. //
  1190. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1191. if argsList.Len() != 1 {
  1192. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1193. }
  1194. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1195. if arg.Type == ArgError {
  1196. return arg
  1197. }
  1198. return newNumberFormulaArg(math.Acos(arg.Number))
  1199. }
  1200. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1201. // of the function is:
  1202. //
  1203. // ACOSH(number)
  1204. //
  1205. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1206. if argsList.Len() != 1 {
  1207. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1208. }
  1209. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1210. if arg.Type == ArgError {
  1211. return arg
  1212. }
  1213. return newNumberFormulaArg(math.Acosh(arg.Number))
  1214. }
  1215. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1216. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1217. // of the function is:
  1218. //
  1219. // ACOT(number)
  1220. //
  1221. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1222. if argsList.Len() != 1 {
  1223. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1224. }
  1225. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1226. if arg.Type == ArgError {
  1227. return arg
  1228. }
  1229. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1230. }
  1231. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1232. // value. The syntax of the function is:
  1233. //
  1234. // ACOTH(number)
  1235. //
  1236. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1237. if argsList.Len() != 1 {
  1238. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1239. }
  1240. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1241. if arg.Type == ArgError {
  1242. return arg
  1243. }
  1244. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1245. }
  1246. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1247. // of the function is:
  1248. //
  1249. // ARABIC(text)
  1250. //
  1251. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1252. if argsList.Len() != 1 {
  1253. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1254. }
  1255. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1256. val, last, prefix := 0.0, 0.0, 1.0
  1257. for _, char := range argsList.Front().Value.(formulaArg).String {
  1258. digit := 0.0
  1259. if char == '-' {
  1260. prefix = -1
  1261. continue
  1262. }
  1263. digit = charMap[char]
  1264. val += digit
  1265. switch {
  1266. case last == digit && (last == 5 || last == 50 || last == 500):
  1267. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1268. case 2*last == digit:
  1269. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1270. }
  1271. if last < digit {
  1272. val -= 2 * last
  1273. }
  1274. last = digit
  1275. }
  1276. return newNumberFormulaArg(prefix * val)
  1277. }
  1278. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1279. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1280. // of the function is:
  1281. //
  1282. // ASIN(number)
  1283. //
  1284. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1285. if argsList.Len() != 1 {
  1286. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1287. }
  1288. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1289. if arg.Type == ArgError {
  1290. return arg
  1291. }
  1292. return newNumberFormulaArg(math.Asin(arg.Number))
  1293. }
  1294. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1295. // The syntax of the function is:
  1296. //
  1297. // ASINH(number)
  1298. //
  1299. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1300. if argsList.Len() != 1 {
  1301. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1302. }
  1303. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1304. if arg.Type == ArgError {
  1305. return arg
  1306. }
  1307. return newNumberFormulaArg(math.Asinh(arg.Number))
  1308. }
  1309. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1310. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1311. // syntax of the function is:
  1312. //
  1313. // ATAN(number)
  1314. //
  1315. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1316. if argsList.Len() != 1 {
  1317. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1318. }
  1319. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1320. if arg.Type == ArgError {
  1321. return arg
  1322. }
  1323. return newNumberFormulaArg(math.Atan(arg.Number))
  1324. }
  1325. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1326. // number. The syntax of the function is:
  1327. //
  1328. // ATANH(number)
  1329. //
  1330. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1331. if argsList.Len() != 1 {
  1332. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1333. }
  1334. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1335. if arg.Type == ArgError {
  1336. return arg
  1337. }
  1338. return newNumberFormulaArg(math.Atanh(arg.Number))
  1339. }
  1340. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1341. // given set of x and y coordinates, and returns an angle, in radians, between
  1342. // -π/2 and +π/2. The syntax of the function is:
  1343. //
  1344. // ATAN2(x_num,y_num)
  1345. //
  1346. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1347. if argsList.Len() != 2 {
  1348. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1349. }
  1350. x := argsList.Back().Value.(formulaArg).ToNumber()
  1351. if x.Type == ArgError {
  1352. return x
  1353. }
  1354. y := argsList.Front().Value.(formulaArg).ToNumber()
  1355. if y.Type == ArgError {
  1356. return y
  1357. }
  1358. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1359. }
  1360. // BASE function converts a number into a supplied base (radix), and returns a
  1361. // text representation of the calculated value. The syntax of the function is:
  1362. //
  1363. // BASE(number,radix,[min_length])
  1364. //
  1365. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1366. if argsList.Len() < 2 {
  1367. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1368. }
  1369. if argsList.Len() > 3 {
  1370. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1371. }
  1372. var minLength int
  1373. var err error
  1374. number := argsList.Front().Value.(formulaArg).ToNumber()
  1375. if number.Type == ArgError {
  1376. return number
  1377. }
  1378. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1379. if radix.Type == ArgError {
  1380. return radix
  1381. }
  1382. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1383. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1384. }
  1385. if argsList.Len() > 2 {
  1386. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1387. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1388. }
  1389. }
  1390. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1391. if len(result) < minLength {
  1392. result = strings.Repeat("0", minLength-len(result)) + result
  1393. }
  1394. return newStringFormulaArg(strings.ToUpper(result))
  1395. }
  1396. // CEILING function rounds a supplied number away from zero, to the nearest
  1397. // multiple of a given number. The syntax of the function is:
  1398. //
  1399. // CEILING(number,significance)
  1400. //
  1401. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1402. if argsList.Len() == 0 {
  1403. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1404. }
  1405. if argsList.Len() > 2 {
  1406. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1407. }
  1408. number, significance, res := 0.0, 1.0, 0.0
  1409. n := argsList.Front().Value.(formulaArg).ToNumber()
  1410. if n.Type == ArgError {
  1411. return n
  1412. }
  1413. number = n.Number
  1414. if number < 0 {
  1415. significance = -1
  1416. }
  1417. if argsList.Len() > 1 {
  1418. s := argsList.Back().Value.(formulaArg).ToNumber()
  1419. if s.Type == ArgError {
  1420. return s
  1421. }
  1422. significance = s.Number
  1423. }
  1424. if significance < 0 && number > 0 {
  1425. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1426. }
  1427. if argsList.Len() == 1 {
  1428. return newNumberFormulaArg(math.Ceil(number))
  1429. }
  1430. number, res = math.Modf(number / significance)
  1431. if res > 0 {
  1432. number++
  1433. }
  1434. return newNumberFormulaArg(number * significance)
  1435. }
  1436. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1437. // significance. The syntax of the function is:
  1438. //
  1439. // CEILING.MATH(number,[significance],[mode])
  1440. //
  1441. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1442. if argsList.Len() == 0 {
  1443. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1444. }
  1445. if argsList.Len() > 3 {
  1446. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1447. }
  1448. number, significance, mode := 0.0, 1.0, 1.0
  1449. n := argsList.Front().Value.(formulaArg).ToNumber()
  1450. if n.Type == ArgError {
  1451. return n
  1452. }
  1453. number = n.Number
  1454. if number < 0 {
  1455. significance = -1
  1456. }
  1457. if argsList.Len() > 1 {
  1458. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1459. if s.Type == ArgError {
  1460. return s
  1461. }
  1462. significance = s.Number
  1463. }
  1464. if argsList.Len() == 1 {
  1465. return newNumberFormulaArg(math.Ceil(number))
  1466. }
  1467. if argsList.Len() > 2 {
  1468. m := argsList.Back().Value.(formulaArg).ToNumber()
  1469. if m.Type == ArgError {
  1470. return m
  1471. }
  1472. mode = m.Number
  1473. }
  1474. val, res := math.Modf(number / significance)
  1475. if res != 0 {
  1476. if number > 0 {
  1477. val++
  1478. } else if mode < 0 {
  1479. val--
  1480. }
  1481. }
  1482. return newNumberFormulaArg(val * significance)
  1483. }
  1484. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1485. // number's sign), to the nearest multiple of a given number. The syntax of
  1486. // the function is:
  1487. //
  1488. // CEILING.PRECISE(number,[significance])
  1489. //
  1490. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1491. if argsList.Len() == 0 {
  1492. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1493. }
  1494. if argsList.Len() > 2 {
  1495. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1496. }
  1497. number, significance := 0.0, 1.0
  1498. n := argsList.Front().Value.(formulaArg).ToNumber()
  1499. if n.Type == ArgError {
  1500. return n
  1501. }
  1502. number = n.Number
  1503. if number < 0 {
  1504. significance = -1
  1505. }
  1506. if argsList.Len() == 1 {
  1507. return newNumberFormulaArg(math.Ceil(number))
  1508. }
  1509. if argsList.Len() > 1 {
  1510. s := argsList.Back().Value.(formulaArg).ToNumber()
  1511. if s.Type == ArgError {
  1512. return s
  1513. }
  1514. significance = s.Number
  1515. significance = math.Abs(significance)
  1516. if significance == 0 {
  1517. return newNumberFormulaArg(significance)
  1518. }
  1519. }
  1520. val, res := math.Modf(number / significance)
  1521. if res != 0 {
  1522. if number > 0 {
  1523. val++
  1524. }
  1525. }
  1526. return newNumberFormulaArg(val * significance)
  1527. }
  1528. // COMBIN function calculates the number of combinations (in any order) of a
  1529. // given number objects from a set. The syntax of the function is:
  1530. //
  1531. // COMBIN(number,number_chosen)
  1532. //
  1533. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1534. if argsList.Len() != 2 {
  1535. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1536. }
  1537. number, chosen, val := 0.0, 0.0, 1.0
  1538. n := argsList.Front().Value.(formulaArg).ToNumber()
  1539. if n.Type == ArgError {
  1540. return n
  1541. }
  1542. number = n.Number
  1543. c := argsList.Back().Value.(formulaArg).ToNumber()
  1544. if c.Type == ArgError {
  1545. return c
  1546. }
  1547. chosen = c.Number
  1548. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1549. if chosen > number {
  1550. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1551. }
  1552. if chosen == number || chosen == 0 {
  1553. return newNumberFormulaArg(1)
  1554. }
  1555. for c := float64(1); c <= chosen; c++ {
  1556. val *= (number + 1 - c) / c
  1557. }
  1558. return newNumberFormulaArg(math.Ceil(val))
  1559. }
  1560. // COMBINA function calculates the number of combinations, with repetitions,
  1561. // of a given number objects from a set. The syntax of the function is:
  1562. //
  1563. // COMBINA(number,number_chosen)
  1564. //
  1565. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1566. if argsList.Len() != 2 {
  1567. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1568. }
  1569. var number, chosen float64
  1570. n := argsList.Front().Value.(formulaArg).ToNumber()
  1571. if n.Type == ArgError {
  1572. return n
  1573. }
  1574. number = n.Number
  1575. c := argsList.Back().Value.(formulaArg).ToNumber()
  1576. if c.Type == ArgError {
  1577. return c
  1578. }
  1579. chosen = c.Number
  1580. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1581. if number < chosen {
  1582. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1583. }
  1584. if number == 0 {
  1585. return newNumberFormulaArg(number)
  1586. }
  1587. args := list.New()
  1588. args.PushBack(formulaArg{
  1589. String: fmt.Sprintf("%g", number+chosen-1),
  1590. Type: ArgString,
  1591. })
  1592. args.PushBack(formulaArg{
  1593. String: fmt.Sprintf("%g", number-1),
  1594. Type: ArgString,
  1595. })
  1596. return fn.COMBIN(args)
  1597. }
  1598. // COS function calculates the cosine of a given angle. The syntax of the
  1599. // function is:
  1600. //
  1601. // COS(number)
  1602. //
  1603. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1604. if argsList.Len() != 1 {
  1605. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1606. }
  1607. val := argsList.Front().Value.(formulaArg).ToNumber()
  1608. if val.Type == ArgError {
  1609. return val
  1610. }
  1611. return newNumberFormulaArg(math.Cos(val.Number))
  1612. }
  1613. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1614. // The syntax of the function is:
  1615. //
  1616. // COSH(number)
  1617. //
  1618. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1619. if argsList.Len() != 1 {
  1620. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1621. }
  1622. val := argsList.Front().Value.(formulaArg).ToNumber()
  1623. if val.Type == ArgError {
  1624. return val
  1625. }
  1626. return newNumberFormulaArg(math.Cosh(val.Number))
  1627. }
  1628. // COT function calculates the cotangent of a given angle. The syntax of the
  1629. // function is:
  1630. //
  1631. // COT(number)
  1632. //
  1633. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1634. if argsList.Len() != 1 {
  1635. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1636. }
  1637. val := argsList.Front().Value.(formulaArg).ToNumber()
  1638. if val.Type == ArgError {
  1639. return val
  1640. }
  1641. if val.Number == 0 {
  1642. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1643. }
  1644. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1645. }
  1646. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1647. // angle. The syntax of the function is:
  1648. //
  1649. // COTH(number)
  1650. //
  1651. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1652. if argsList.Len() != 1 {
  1653. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1654. }
  1655. val := argsList.Front().Value.(formulaArg).ToNumber()
  1656. if val.Type == ArgError {
  1657. return val
  1658. }
  1659. if val.Number == 0 {
  1660. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1661. }
  1662. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1663. }
  1664. // CSC function calculates the cosecant of a given angle. The syntax of the
  1665. // function is:
  1666. //
  1667. // CSC(number)
  1668. //
  1669. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1670. if argsList.Len() != 1 {
  1671. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1672. }
  1673. val := argsList.Front().Value.(formulaArg).ToNumber()
  1674. if val.Type == ArgError {
  1675. return val
  1676. }
  1677. if val.Number == 0 {
  1678. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1679. }
  1680. return newNumberFormulaArg(1 / math.Sin(val.Number))
  1681. }
  1682. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1683. // angle. The syntax of the function is:
  1684. //
  1685. // CSCH(number)
  1686. //
  1687. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1688. if argsList.Len() != 1 {
  1689. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1690. }
  1691. val := argsList.Front().Value.(formulaArg).ToNumber()
  1692. if val.Type == ArgError {
  1693. return val
  1694. }
  1695. if val.Number == 0 {
  1696. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1697. }
  1698. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  1699. }
  1700. // DECIMAL function converts a text representation of a number in a specified
  1701. // base, into a decimal value. The syntax of the function is:
  1702. //
  1703. // DECIMAL(text,radix)
  1704. //
  1705. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1706. if argsList.Len() != 2 {
  1707. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1708. }
  1709. var text = argsList.Front().Value.(formulaArg).String
  1710. var radix int
  1711. var err error
  1712. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1713. if err != nil {
  1714. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1715. }
  1716. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1717. text = text[2:]
  1718. }
  1719. val, err := strconv.ParseInt(text, radix, 64)
  1720. if err != nil {
  1721. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1722. }
  1723. return newNumberFormulaArg(float64(val))
  1724. }
  1725. // DEGREES function converts radians into degrees. The syntax of the function
  1726. // is:
  1727. //
  1728. // DEGREES(angle)
  1729. //
  1730. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1731. if argsList.Len() != 1 {
  1732. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1733. }
  1734. val := argsList.Front().Value.(formulaArg).ToNumber()
  1735. if val.Type == ArgError {
  1736. return val
  1737. }
  1738. if val.Number == 0 {
  1739. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1740. }
  1741. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  1742. }
  1743. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1744. // positive number up and a negative number down), to the next even number.
  1745. // The syntax of the function is:
  1746. //
  1747. // EVEN(number)
  1748. //
  1749. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1750. if argsList.Len() != 1 {
  1751. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1752. }
  1753. number := argsList.Front().Value.(formulaArg).ToNumber()
  1754. if number.Type == ArgError {
  1755. return number
  1756. }
  1757. sign := math.Signbit(number.Number)
  1758. m, frac := math.Modf(number.Number / 2)
  1759. val := m * 2
  1760. if frac != 0 {
  1761. if !sign {
  1762. val += 2
  1763. } else {
  1764. val -= 2
  1765. }
  1766. }
  1767. return newNumberFormulaArg(val)
  1768. }
  1769. // EXP function calculates the value of the mathematical constant e, raised to
  1770. // the power of a given number. The syntax of the function is:
  1771. //
  1772. // EXP(number)
  1773. //
  1774. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1775. if argsList.Len() != 1 {
  1776. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1777. }
  1778. number := argsList.Front().Value.(formulaArg).ToNumber()
  1779. if number.Type == ArgError {
  1780. return number
  1781. }
  1782. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  1783. }
  1784. // fact returns the factorial of a supplied number.
  1785. func fact(number float64) float64 {
  1786. val := float64(1)
  1787. for i := float64(2); i <= number; i++ {
  1788. val *= i
  1789. }
  1790. return val
  1791. }
  1792. // FACT function returns the factorial of a supplied number. The syntax of the
  1793. // function is:
  1794. //
  1795. // FACT(number)
  1796. //
  1797. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1798. if argsList.Len() != 1 {
  1799. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1800. }
  1801. number := argsList.Front().Value.(formulaArg).ToNumber()
  1802. if number.Type == ArgError {
  1803. return number
  1804. }
  1805. if number.Number < 0 {
  1806. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1807. }
  1808. return newNumberFormulaArg(fact(number.Number))
  1809. }
  1810. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1811. // syntax of the function is:
  1812. //
  1813. // FACTDOUBLE(number)
  1814. //
  1815. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1816. if argsList.Len() != 1 {
  1817. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1818. }
  1819. val := 1.0
  1820. number := argsList.Front().Value.(formulaArg).ToNumber()
  1821. if number.Type == ArgError {
  1822. return number
  1823. }
  1824. if number.Number < 0 {
  1825. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1826. }
  1827. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  1828. val *= i
  1829. }
  1830. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1831. }
  1832. // FLOOR function rounds a supplied number towards zero to the nearest
  1833. // multiple of a specified significance. The syntax of the function is:
  1834. //
  1835. // FLOOR(number,significance)
  1836. //
  1837. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1838. if argsList.Len() != 2 {
  1839. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1840. }
  1841. number := argsList.Front().Value.(formulaArg).ToNumber()
  1842. if number.Type == ArgError {
  1843. return number
  1844. }
  1845. significance := argsList.Back().Value.(formulaArg).ToNumber()
  1846. if significance.Type == ArgError {
  1847. return significance
  1848. }
  1849. if significance.Number < 0 && number.Number >= 0 {
  1850. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1851. }
  1852. val := number.Number
  1853. val, res := math.Modf(val / significance.Number)
  1854. if res != 0 {
  1855. if number.Number < 0 && res < 0 {
  1856. val--
  1857. }
  1858. }
  1859. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  1860. }
  1861. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1862. // significance. The syntax of the function is:
  1863. //
  1864. // FLOOR.MATH(number,[significance],[mode])
  1865. //
  1866. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1867. if argsList.Len() == 0 {
  1868. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1869. }
  1870. if argsList.Len() > 3 {
  1871. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1872. }
  1873. significance, mode := 1.0, 1.0
  1874. number := argsList.Front().Value.(formulaArg).ToNumber()
  1875. if number.Type == ArgError {
  1876. return number
  1877. }
  1878. if number.Number < 0 {
  1879. significance = -1
  1880. }
  1881. if argsList.Len() > 1 {
  1882. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1883. if s.Type == ArgError {
  1884. return s
  1885. }
  1886. significance = s.Number
  1887. }
  1888. if argsList.Len() == 1 {
  1889. return newNumberFormulaArg(math.Floor(number.Number))
  1890. }
  1891. if argsList.Len() > 2 {
  1892. m := argsList.Back().Value.(formulaArg).ToNumber()
  1893. if m.Type == ArgError {
  1894. return m
  1895. }
  1896. mode = m.Number
  1897. }
  1898. val, res := math.Modf(number.Number / significance)
  1899. if res != 0 && number.Number < 0 && mode > 0 {
  1900. val--
  1901. }
  1902. return newNumberFormulaArg(val * significance)
  1903. }
  1904. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1905. // of significance. The syntax of the function is:
  1906. //
  1907. // FLOOR.PRECISE(number,[significance])
  1908. //
  1909. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1910. if argsList.Len() == 0 {
  1911. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1912. }
  1913. if argsList.Len() > 2 {
  1914. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1915. }
  1916. var significance float64
  1917. number := argsList.Front().Value.(formulaArg).ToNumber()
  1918. if number.Type == ArgError {
  1919. return number
  1920. }
  1921. if number.Number < 0 {
  1922. significance = -1
  1923. }
  1924. if argsList.Len() == 1 {
  1925. return newNumberFormulaArg(math.Floor(number.Number))
  1926. }
  1927. if argsList.Len() > 1 {
  1928. s := argsList.Back().Value.(formulaArg).ToNumber()
  1929. if s.Type == ArgError {
  1930. return s
  1931. }
  1932. significance = s.Number
  1933. significance = math.Abs(significance)
  1934. if significance == 0 {
  1935. return newNumberFormulaArg(significance)
  1936. }
  1937. }
  1938. val, res := math.Modf(number.Number / significance)
  1939. if res != 0 {
  1940. if number.Number < 0 {
  1941. val--
  1942. }
  1943. }
  1944. return newNumberFormulaArg(val * significance)
  1945. }
  1946. // gcd returns the greatest common divisor of two supplied integers.
  1947. func gcd(x, y float64) float64 {
  1948. x, y = math.Trunc(x), math.Trunc(y)
  1949. if x == 0 {
  1950. return y
  1951. }
  1952. if y == 0 {
  1953. return x
  1954. }
  1955. for x != y {
  1956. if x > y {
  1957. x = x - y
  1958. } else {
  1959. y = y - x
  1960. }
  1961. }
  1962. return x
  1963. }
  1964. // GCD function returns the greatest common divisor of two or more supplied
  1965. // integers. The syntax of the function is:
  1966. //
  1967. // GCD(number1,[number2],...)
  1968. //
  1969. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  1970. if argsList.Len() == 0 {
  1971. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  1972. }
  1973. var (
  1974. val float64
  1975. nums = []float64{}
  1976. )
  1977. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1978. token := arg.Value.(formulaArg)
  1979. switch token.Type {
  1980. case ArgString:
  1981. num := token.ToNumber()
  1982. if num.Type == ArgError {
  1983. return num
  1984. }
  1985. val = num.Number
  1986. case ArgNumber:
  1987. val = token.Number
  1988. }
  1989. nums = append(nums, val)
  1990. }
  1991. if nums[0] < 0 {
  1992. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1993. }
  1994. if len(nums) == 1 {
  1995. return newNumberFormulaArg(nums[0])
  1996. }
  1997. cd := nums[0]
  1998. for i := 1; i < len(nums); i++ {
  1999. if nums[i] < 0 {
  2000. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2001. }
  2002. cd = gcd(cd, nums[i])
  2003. }
  2004. return newNumberFormulaArg(cd)
  2005. }
  2006. // INT function truncates a supplied number down to the closest integer. The
  2007. // syntax of the function is:
  2008. //
  2009. // INT(number)
  2010. //
  2011. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2012. if argsList.Len() != 1 {
  2013. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2014. }
  2015. number := argsList.Front().Value.(formulaArg).ToNumber()
  2016. if number.Type == ArgError {
  2017. return number
  2018. }
  2019. val, frac := math.Modf(number.Number)
  2020. if frac < 0 {
  2021. val--
  2022. }
  2023. return newNumberFormulaArg(val)
  2024. }
  2025. // ISOCEILING function rounds a supplied number up (regardless of the number's
  2026. // sign), to the nearest multiple of a supplied significance. The syntax of
  2027. // the function is:
  2028. //
  2029. // ISO.CEILING(number,[significance])
  2030. //
  2031. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  2032. if argsList.Len() == 0 {
  2033. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2034. }
  2035. if argsList.Len() > 2 {
  2036. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2037. }
  2038. var significance float64
  2039. number := argsList.Front().Value.(formulaArg).ToNumber()
  2040. if number.Type == ArgError {
  2041. return number
  2042. }
  2043. if number.Number < 0 {
  2044. significance = -1
  2045. }
  2046. if argsList.Len() == 1 {
  2047. return newNumberFormulaArg(math.Ceil(number.Number))
  2048. }
  2049. if argsList.Len() > 1 {
  2050. s := argsList.Back().Value.(formulaArg).ToNumber()
  2051. if s.Type == ArgError {
  2052. return s
  2053. }
  2054. significance = s.Number
  2055. significance = math.Abs(significance)
  2056. if significance == 0 {
  2057. return newNumberFormulaArg(significance)
  2058. }
  2059. }
  2060. val, res := math.Modf(number.Number / significance)
  2061. if res != 0 {
  2062. if number.Number > 0 {
  2063. val++
  2064. }
  2065. }
  2066. return newNumberFormulaArg(val * significance)
  2067. }
  2068. // lcm returns the least common multiple of two supplied integers.
  2069. func lcm(a, b float64) float64 {
  2070. a = math.Trunc(a)
  2071. b = math.Trunc(b)
  2072. if a == 0 && b == 0 {
  2073. return 0
  2074. }
  2075. return a * b / gcd(a, b)
  2076. }
  2077. // LCM function returns the least common multiple of two or more supplied
  2078. // integers. The syntax of the function is:
  2079. //
  2080. // LCM(number1,[number2],...)
  2081. //
  2082. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2083. if argsList.Len() == 0 {
  2084. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2085. }
  2086. var (
  2087. val float64
  2088. nums = []float64{}
  2089. err error
  2090. )
  2091. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2092. token := arg.Value.(formulaArg)
  2093. switch token.Type {
  2094. case ArgString:
  2095. if token.String == "" {
  2096. continue
  2097. }
  2098. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2099. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2100. }
  2101. case ArgNumber:
  2102. val = token.Number
  2103. }
  2104. nums = append(nums, val)
  2105. }
  2106. if nums[0] < 0 {
  2107. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2108. }
  2109. if len(nums) == 1 {
  2110. return newNumberFormulaArg(nums[0])
  2111. }
  2112. cm := nums[0]
  2113. for i := 1; i < len(nums); i++ {
  2114. if nums[i] < 0 {
  2115. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2116. }
  2117. cm = lcm(cm, nums[i])
  2118. }
  2119. return newNumberFormulaArg(cm)
  2120. }
  2121. // LN function calculates the natural logarithm of a given number. The syntax
  2122. // of the function is:
  2123. //
  2124. // LN(number)
  2125. //
  2126. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2127. if argsList.Len() != 1 {
  2128. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2129. }
  2130. number := argsList.Front().Value.(formulaArg).ToNumber()
  2131. if number.Type == ArgError {
  2132. return number
  2133. }
  2134. return newNumberFormulaArg(math.Log(number.Number))
  2135. }
  2136. // LOG function calculates the logarithm of a given number, to a supplied
  2137. // base. The syntax of the function is:
  2138. //
  2139. // LOG(number,[base])
  2140. //
  2141. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2142. if argsList.Len() == 0 {
  2143. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2144. }
  2145. if argsList.Len() > 2 {
  2146. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2147. }
  2148. base := 10.0
  2149. number := argsList.Front().Value.(formulaArg).ToNumber()
  2150. if number.Type == ArgError {
  2151. return number
  2152. }
  2153. if argsList.Len() > 1 {
  2154. b := argsList.Back().Value.(formulaArg).ToNumber()
  2155. if b.Type == ArgError {
  2156. return b
  2157. }
  2158. base = b.Number
  2159. }
  2160. if number.Number == 0 {
  2161. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2162. }
  2163. if base == 0 {
  2164. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2165. }
  2166. if base == 1 {
  2167. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2168. }
  2169. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2170. }
  2171. // LOG10 function calculates the base 10 logarithm of a given number. The
  2172. // syntax of the function is:
  2173. //
  2174. // LOG10(number)
  2175. //
  2176. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2177. if argsList.Len() != 1 {
  2178. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2179. }
  2180. number := argsList.Front().Value.(formulaArg).ToNumber()
  2181. if number.Type == ArgError {
  2182. return number
  2183. }
  2184. return newNumberFormulaArg(math.Log10(number.Number))
  2185. }
  2186. // minor function implement a minor of a matrix A is the determinant of some
  2187. // smaller square matrix.
  2188. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2189. ret := [][]float64{}
  2190. for i := range sqMtx {
  2191. if i == 0 {
  2192. continue
  2193. }
  2194. row := []float64{}
  2195. for j := range sqMtx {
  2196. if j == idx {
  2197. continue
  2198. }
  2199. row = append(row, sqMtx[i][j])
  2200. }
  2201. ret = append(ret, row)
  2202. }
  2203. return ret
  2204. }
  2205. // det determinant of the 2x2 matrix.
  2206. func det(sqMtx [][]float64) float64 {
  2207. if len(sqMtx) == 2 {
  2208. m00 := sqMtx[0][0]
  2209. m01 := sqMtx[0][1]
  2210. m10 := sqMtx[1][0]
  2211. m11 := sqMtx[1][1]
  2212. return m00*m11 - m10*m01
  2213. }
  2214. var res, sgn float64 = 0, 1
  2215. for j := range sqMtx {
  2216. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2217. sgn *= -1
  2218. }
  2219. return res
  2220. }
  2221. // MDETERM calculates the determinant of a square matrix. The
  2222. // syntax of the function is:
  2223. //
  2224. // MDETERM(array)
  2225. //
  2226. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2227. var (
  2228. num float64
  2229. numMtx = [][]float64{}
  2230. err error
  2231. strMtx [][]formulaArg
  2232. )
  2233. if argsList.Len() < 1 {
  2234. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2235. }
  2236. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2237. var rows = len(strMtx)
  2238. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2239. if len(row) != rows {
  2240. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2241. }
  2242. numRow := []float64{}
  2243. for _, ele := range row {
  2244. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2245. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2246. }
  2247. numRow = append(numRow, num)
  2248. }
  2249. numMtx = append(numMtx, numRow)
  2250. }
  2251. return newNumberFormulaArg(det(numMtx))
  2252. }
  2253. // MOD function returns the remainder of a division between two supplied
  2254. // numbers. The syntax of the function is:
  2255. //
  2256. // MOD(number,divisor)
  2257. //
  2258. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2259. if argsList.Len() != 2 {
  2260. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2261. }
  2262. number := argsList.Front().Value.(formulaArg).ToNumber()
  2263. if number.Type == ArgError {
  2264. return number
  2265. }
  2266. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2267. if divisor.Type == ArgError {
  2268. return divisor
  2269. }
  2270. if divisor.Number == 0 {
  2271. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2272. }
  2273. trunc, rem := math.Modf(number.Number / divisor.Number)
  2274. if rem < 0 {
  2275. trunc--
  2276. }
  2277. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2278. }
  2279. // MROUND function rounds a supplied number up or down to the nearest multiple
  2280. // of a given number. The syntax of the function is:
  2281. //
  2282. // MROUND(number,multiple)
  2283. //
  2284. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2285. if argsList.Len() != 2 {
  2286. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2287. }
  2288. n := argsList.Front().Value.(formulaArg).ToNumber()
  2289. if n.Type == ArgError {
  2290. return n
  2291. }
  2292. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2293. if multiple.Type == ArgError {
  2294. return multiple
  2295. }
  2296. if multiple.Number == 0 {
  2297. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2298. }
  2299. if multiple.Number < 0 && n.Number > 0 ||
  2300. multiple.Number > 0 && n.Number < 0 {
  2301. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2302. }
  2303. number, res := math.Modf(n.Number / multiple.Number)
  2304. if math.Trunc(res+0.5) > 0 {
  2305. number++
  2306. }
  2307. return newNumberFormulaArg(number * multiple.Number)
  2308. }
  2309. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2310. // supplied values to the product of factorials of those values. The syntax of
  2311. // the function is:
  2312. //
  2313. // MULTINOMIAL(number1,[number2],...)
  2314. //
  2315. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2316. val, num, denom := 0.0, 0.0, 1.0
  2317. var err error
  2318. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2319. token := arg.Value.(formulaArg)
  2320. switch token.Type {
  2321. case ArgString:
  2322. if token.String == "" {
  2323. continue
  2324. }
  2325. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2326. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2327. }
  2328. case ArgNumber:
  2329. val = token.Number
  2330. }
  2331. num += val
  2332. denom *= fact(val)
  2333. }
  2334. return newNumberFormulaArg(fact(num) / denom)
  2335. }
  2336. // MUNIT function returns the unit matrix for a specified dimension. The
  2337. // syntax of the function is:
  2338. //
  2339. // MUNIT(dimension)
  2340. //
  2341. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2342. if argsList.Len() != 1 {
  2343. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2344. }
  2345. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2346. if dimension.Type == ArgError || dimension.Number < 0 {
  2347. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2348. }
  2349. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2350. for i := 0; i < int(dimension.Number); i++ {
  2351. row := make([]formulaArg, int(dimension.Number))
  2352. for j := 0; j < int(dimension.Number); j++ {
  2353. if i == j {
  2354. row[j] = newNumberFormulaArg(1.0)
  2355. } else {
  2356. row[j] = newNumberFormulaArg(0.0)
  2357. }
  2358. }
  2359. matrix = append(matrix, row)
  2360. }
  2361. return newMatrixFormulaArg(matrix)
  2362. }
  2363. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2364. // number up and a negative number down), to the next odd number. The syntax
  2365. // of the function is:
  2366. //
  2367. // ODD(number)
  2368. //
  2369. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2370. if argsList.Len() != 1 {
  2371. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2372. }
  2373. number := argsList.Back().Value.(formulaArg).ToNumber()
  2374. if number.Type == ArgError {
  2375. return number
  2376. }
  2377. if number.Number == 0 {
  2378. return newNumberFormulaArg(1)
  2379. }
  2380. sign := math.Signbit(number.Number)
  2381. m, frac := math.Modf((number.Number - 1) / 2)
  2382. val := m*2 + 1
  2383. if frac != 0 {
  2384. if !sign {
  2385. val += 2
  2386. } else {
  2387. val -= 2
  2388. }
  2389. }
  2390. return newNumberFormulaArg(val)
  2391. }
  2392. // PI function returns the value of the mathematical constant π (pi), accurate
  2393. // to 15 digits (14 decimal places). The syntax of the function is:
  2394. //
  2395. // PI()
  2396. //
  2397. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2398. if argsList.Len() != 0 {
  2399. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2400. }
  2401. return newNumberFormulaArg(math.Pi)
  2402. }
  2403. // POWER function calculates a given number, raised to a supplied power.
  2404. // The syntax of the function is:
  2405. //
  2406. // POWER(number,power)
  2407. //
  2408. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2409. if argsList.Len() != 2 {
  2410. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2411. }
  2412. x := argsList.Front().Value.(formulaArg).ToNumber()
  2413. if x.Type == ArgError {
  2414. return x
  2415. }
  2416. y := argsList.Back().Value.(formulaArg).ToNumber()
  2417. if y.Type == ArgError {
  2418. return y
  2419. }
  2420. if x.Number == 0 && y.Number == 0 {
  2421. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2422. }
  2423. if x.Number == 0 && y.Number < 0 {
  2424. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2425. }
  2426. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2427. }
  2428. // PRODUCT function returns the product (multiplication) of a supplied set of
  2429. // numerical values. The syntax of the function is:
  2430. //
  2431. // PRODUCT(number1,[number2],...)
  2432. //
  2433. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2434. val, product := 0.0, 1.0
  2435. var err error
  2436. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2437. token := arg.Value.(formulaArg)
  2438. switch token.Type {
  2439. case ArgUnknown:
  2440. continue
  2441. case ArgString:
  2442. if token.String == "" {
  2443. continue
  2444. }
  2445. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2446. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2447. }
  2448. product = product * val
  2449. case ArgNumber:
  2450. product = product * token.Number
  2451. case ArgMatrix:
  2452. for _, row := range token.Matrix {
  2453. for _, value := range row {
  2454. if value.String == "" {
  2455. continue
  2456. }
  2457. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2458. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2459. }
  2460. product = product * val
  2461. }
  2462. }
  2463. }
  2464. }
  2465. return newNumberFormulaArg(product)
  2466. }
  2467. // QUOTIENT function returns the integer portion of a division between two
  2468. // supplied numbers. The syntax of the function is:
  2469. //
  2470. // QUOTIENT(numerator,denominator)
  2471. //
  2472. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2473. if argsList.Len() != 2 {
  2474. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2475. }
  2476. x := argsList.Front().Value.(formulaArg).ToNumber()
  2477. if x.Type == ArgError {
  2478. return x
  2479. }
  2480. y := argsList.Back().Value.(formulaArg).ToNumber()
  2481. if y.Type == ArgError {
  2482. return y
  2483. }
  2484. if y.Number == 0 {
  2485. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2486. }
  2487. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2488. }
  2489. // RADIANS function converts radians into degrees. The syntax of the function is:
  2490. //
  2491. // RADIANS(angle)
  2492. //
  2493. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2494. if argsList.Len() != 1 {
  2495. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2496. }
  2497. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2498. if angle.Type == ArgError {
  2499. return angle
  2500. }
  2501. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2502. }
  2503. // RAND function generates a random real number between 0 and 1. The syntax of
  2504. // the function is:
  2505. //
  2506. // RAND()
  2507. //
  2508. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2509. if argsList.Len() != 0 {
  2510. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2511. }
  2512. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2513. }
  2514. // RANDBETWEEN function generates a random integer between two supplied
  2515. // integers. The syntax of the function is:
  2516. //
  2517. // RANDBETWEEN(bottom,top)
  2518. //
  2519. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2520. if argsList.Len() != 2 {
  2521. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2522. }
  2523. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2524. if bottom.Type == ArgError {
  2525. return bottom
  2526. }
  2527. top := argsList.Back().Value.(formulaArg).ToNumber()
  2528. if top.Type == ArgError {
  2529. return top
  2530. }
  2531. if top.Number < bottom.Number {
  2532. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2533. }
  2534. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2535. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2536. }
  2537. // romanNumerals defined a numeral system that originated in ancient Rome and
  2538. // remained the usual way of writing numbers throughout Europe well into the
  2539. // Late Middle Ages.
  2540. type romanNumerals struct {
  2541. n float64
  2542. s string
  2543. }
  2544. var romanTable = [][]romanNumerals{
  2545. {
  2546. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2547. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2548. },
  2549. {
  2550. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2551. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2552. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2553. },
  2554. {
  2555. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2556. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2557. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2558. },
  2559. {
  2560. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2561. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2562. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2563. {5, "V"}, {4, "IV"}, {1, "I"},
  2564. },
  2565. {
  2566. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2567. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2568. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2569. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2570. },
  2571. }
  2572. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2573. // integer, the function returns a text string depicting the roman numeral
  2574. // form of the number. The syntax of the function is:
  2575. //
  2576. // ROMAN(number,[form])
  2577. //
  2578. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2579. if argsList.Len() == 0 {
  2580. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2581. }
  2582. if argsList.Len() > 2 {
  2583. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2584. }
  2585. var form int
  2586. number := argsList.Front().Value.(formulaArg).ToNumber()
  2587. if number.Type == ArgError {
  2588. return number
  2589. }
  2590. if argsList.Len() > 1 {
  2591. f := argsList.Back().Value.(formulaArg).ToNumber()
  2592. if f.Type == ArgError {
  2593. return f
  2594. }
  2595. form = int(f.Number)
  2596. if form < 0 {
  2597. form = 0
  2598. } else if form > 4 {
  2599. form = 4
  2600. }
  2601. }
  2602. decimalTable := romanTable[0]
  2603. switch form {
  2604. case 1:
  2605. decimalTable = romanTable[1]
  2606. case 2:
  2607. decimalTable = romanTable[2]
  2608. case 3:
  2609. decimalTable = romanTable[3]
  2610. case 4:
  2611. decimalTable = romanTable[4]
  2612. }
  2613. val := math.Trunc(number.Number)
  2614. buf := bytes.Buffer{}
  2615. for _, r := range decimalTable {
  2616. for val >= r.n {
  2617. buf.WriteString(r.s)
  2618. val -= r.n
  2619. }
  2620. }
  2621. return newStringFormulaArg(buf.String())
  2622. }
  2623. type roundMode byte
  2624. const (
  2625. closest roundMode = iota
  2626. down
  2627. up
  2628. )
  2629. // round rounds a supplied number up or down.
  2630. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2631. var significance float64
  2632. if digits > 0 {
  2633. significance = math.Pow(1/10.0, digits)
  2634. } else {
  2635. significance = math.Pow(10.0, -digits)
  2636. }
  2637. val, res := math.Modf(number / significance)
  2638. switch mode {
  2639. case closest:
  2640. const eps = 0.499999999
  2641. if res >= eps {
  2642. val++
  2643. } else if res <= -eps {
  2644. val--
  2645. }
  2646. case down:
  2647. case up:
  2648. if res > 0 {
  2649. val++
  2650. } else if res < 0 {
  2651. val--
  2652. }
  2653. }
  2654. return val * significance
  2655. }
  2656. // ROUND function rounds a supplied number up or down, to a specified number
  2657. // of decimal places. The syntax of the function is:
  2658. //
  2659. // ROUND(number,num_digits)
  2660. //
  2661. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2662. if argsList.Len() != 2 {
  2663. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2664. }
  2665. number := argsList.Front().Value.(formulaArg).ToNumber()
  2666. if number.Type == ArgError {
  2667. return number
  2668. }
  2669. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2670. if digits.Type == ArgError {
  2671. return digits
  2672. }
  2673. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2674. }
  2675. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2676. // specified number of decimal places. The syntax of the function is:
  2677. //
  2678. // ROUNDDOWN(number,num_digits)
  2679. //
  2680. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2681. if argsList.Len() != 2 {
  2682. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2683. }
  2684. number := argsList.Front().Value.(formulaArg).ToNumber()
  2685. if number.Type == ArgError {
  2686. return number
  2687. }
  2688. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2689. if digits.Type == ArgError {
  2690. return digits
  2691. }
  2692. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  2693. }
  2694. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2695. // specified number of decimal places. The syntax of the function is:
  2696. //
  2697. // ROUNDUP(number,num_digits)
  2698. //
  2699. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2700. if argsList.Len() != 2 {
  2701. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2702. }
  2703. number := argsList.Front().Value.(formulaArg).ToNumber()
  2704. if number.Type == ArgError {
  2705. return number
  2706. }
  2707. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2708. if digits.Type == ArgError {
  2709. return digits
  2710. }
  2711. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  2712. }
  2713. // SEC function calculates the secant of a given angle. The syntax of the
  2714. // function is:
  2715. //
  2716. // SEC(number)
  2717. //
  2718. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2719. if argsList.Len() != 1 {
  2720. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2721. }
  2722. number := argsList.Front().Value.(formulaArg).ToNumber()
  2723. if number.Type == ArgError {
  2724. return number
  2725. }
  2726. return newNumberFormulaArg(math.Cos(number.Number))
  2727. }
  2728. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2729. // The syntax of the function is:
  2730. //
  2731. // SECH(number)
  2732. //
  2733. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2734. if argsList.Len() != 1 {
  2735. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2736. }
  2737. number := argsList.Front().Value.(formulaArg).ToNumber()
  2738. if number.Type == ArgError {
  2739. return number
  2740. }
  2741. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  2742. }
  2743. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2744. // number. I.e. if the number is positive, the Sign function returns +1, if
  2745. // the number is negative, the function returns -1 and if the number is 0
  2746. // (zero), the function returns 0. The syntax of the function is:
  2747. //
  2748. // SIGN(number)
  2749. //
  2750. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2751. if argsList.Len() != 1 {
  2752. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2753. }
  2754. val := argsList.Front().Value.(formulaArg).ToNumber()
  2755. if val.Type == ArgError {
  2756. return val
  2757. }
  2758. if val.Number < 0 {
  2759. return newNumberFormulaArg(-1)
  2760. }
  2761. if val.Number > 0 {
  2762. return newNumberFormulaArg(1)
  2763. }
  2764. return newNumberFormulaArg(0)
  2765. }
  2766. // SIN function calculates the sine of a given angle. The syntax of the
  2767. // function is:
  2768. //
  2769. // SIN(number)
  2770. //
  2771. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2772. if argsList.Len() != 1 {
  2773. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2774. }
  2775. number := argsList.Front().Value.(formulaArg).ToNumber()
  2776. if number.Type == ArgError {
  2777. return number
  2778. }
  2779. return newNumberFormulaArg(math.Sin(number.Number))
  2780. }
  2781. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2782. // The syntax of the function is:
  2783. //
  2784. // SINH(number)
  2785. //
  2786. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2787. if argsList.Len() != 1 {
  2788. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2789. }
  2790. number := argsList.Front().Value.(formulaArg).ToNumber()
  2791. if number.Type == ArgError {
  2792. return number
  2793. }
  2794. return newNumberFormulaArg(math.Sinh(number.Number))
  2795. }
  2796. // SQRT function calculates the positive square root of a supplied number. The
  2797. // syntax of the function is:
  2798. //
  2799. // SQRT(number)
  2800. //
  2801. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2802. if argsList.Len() != 1 {
  2803. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2804. }
  2805. value := argsList.Front().Value.(formulaArg).ToNumber()
  2806. if value.Type == ArgError {
  2807. return value
  2808. }
  2809. if value.Number < 0 {
  2810. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2811. }
  2812. return newNumberFormulaArg(math.Sqrt(value.Number))
  2813. }
  2814. // SQRTPI function returns the square root of a supplied number multiplied by
  2815. // the mathematical constant, π. The syntax of the function is:
  2816. //
  2817. // SQRTPI(number)
  2818. //
  2819. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2820. if argsList.Len() != 1 {
  2821. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2822. }
  2823. number := argsList.Front().Value.(formulaArg).ToNumber()
  2824. if number.Type == ArgError {
  2825. return number
  2826. }
  2827. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  2828. }
  2829. // STDEV function calculates the sample standard deviation of a supplied set
  2830. // of values. The syntax of the function is:
  2831. //
  2832. // STDEV(number1,[number2],...)
  2833. //
  2834. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  2835. if argsList.Len() < 1 {
  2836. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  2837. }
  2838. return fn.stdev(false, argsList)
  2839. }
  2840. // STDEVA function estimates standard deviation based on a sample. The
  2841. // standard deviation is a measure of how widely values are dispersed from
  2842. // the average value (the mean). The syntax of the function is:
  2843. //
  2844. // STDEVA(number1,[number2],...)
  2845. //
  2846. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  2847. if argsList.Len() < 1 {
  2848. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  2849. }
  2850. return fn.stdev(true, argsList)
  2851. }
  2852. // stdev is an implementation of the formula function STDEV and STDEVA.
  2853. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  2854. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  2855. if result == -1 {
  2856. result = math.Pow((n.Number - m.Number), 2)
  2857. } else {
  2858. result += math.Pow((n.Number - m.Number), 2)
  2859. }
  2860. count++
  2861. return result, count
  2862. }
  2863. count, result := -1.0, -1.0
  2864. var mean formulaArg
  2865. if stdeva {
  2866. mean = fn.AVERAGEA(argsList)
  2867. } else {
  2868. mean = fn.AVERAGE(argsList)
  2869. }
  2870. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2871. token := arg.Value.(formulaArg)
  2872. switch token.Type {
  2873. case ArgString, ArgNumber:
  2874. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  2875. continue
  2876. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  2877. num := token.ToBool()
  2878. if num.Type == ArgNumber {
  2879. result, count = pow(result, count, num, mean)
  2880. continue
  2881. }
  2882. } else {
  2883. num := token.ToNumber()
  2884. if num.Type == ArgNumber {
  2885. result, count = pow(result, count, num, mean)
  2886. }
  2887. }
  2888. case ArgList, ArgMatrix:
  2889. for _, row := range token.ToList() {
  2890. if row.Type == ArgNumber || row.Type == ArgString {
  2891. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  2892. continue
  2893. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  2894. num := row.ToBool()
  2895. if num.Type == ArgNumber {
  2896. result, count = pow(result, count, num, mean)
  2897. continue
  2898. }
  2899. } else {
  2900. num := row.ToNumber()
  2901. if num.Type == ArgNumber {
  2902. result, count = pow(result, count, num, mean)
  2903. }
  2904. }
  2905. }
  2906. }
  2907. }
  2908. }
  2909. if count > 0 && result >= 0 {
  2910. return newNumberFormulaArg(math.Sqrt(result / count))
  2911. }
  2912. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2913. }
  2914. // SUM function adds together a supplied set of numbers and returns the sum of
  2915. // these values. The syntax of the function is:
  2916. //
  2917. // SUM(number1,[number2],...)
  2918. //
  2919. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2920. var sum float64
  2921. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2922. token := arg.Value.(formulaArg)
  2923. switch token.Type {
  2924. case ArgUnknown:
  2925. continue
  2926. case ArgString:
  2927. if num := token.ToNumber(); num.Type == ArgNumber {
  2928. sum += num.Number
  2929. }
  2930. case ArgNumber:
  2931. sum += token.Number
  2932. case ArgMatrix:
  2933. for _, row := range token.Matrix {
  2934. for _, value := range row {
  2935. if num := value.ToNumber(); num.Type == ArgNumber {
  2936. sum += num.Number
  2937. }
  2938. }
  2939. }
  2940. }
  2941. }
  2942. return newNumberFormulaArg(sum)
  2943. }
  2944. // SUMIF function finds the values in a supplied array, that satisfy a given
  2945. // criteria, and returns the sum of the corresponding values in a second
  2946. // supplied array. The syntax of the function is:
  2947. //
  2948. // SUMIF(range,criteria,[sum_range])
  2949. //
  2950. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  2951. if argsList.Len() < 2 {
  2952. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  2953. }
  2954. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2955. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2956. var sumRange [][]formulaArg
  2957. if argsList.Len() == 3 {
  2958. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2959. }
  2960. var sum, val float64
  2961. var err error
  2962. for rowIdx, row := range rangeMtx {
  2963. for colIdx, col := range row {
  2964. var ok bool
  2965. fromVal := col.String
  2966. if col.String == "" {
  2967. continue
  2968. }
  2969. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2970. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2971. }
  2972. if ok {
  2973. if argsList.Len() == 3 {
  2974. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2975. continue
  2976. }
  2977. fromVal = sumRange[rowIdx][colIdx].String
  2978. }
  2979. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2980. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2981. }
  2982. sum += val
  2983. }
  2984. }
  2985. }
  2986. return newNumberFormulaArg(sum)
  2987. }
  2988. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2989. // syntax of the function is:
  2990. //
  2991. // SUMSQ(number1,[number2],...)
  2992. //
  2993. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  2994. var val, sq float64
  2995. var err error
  2996. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2997. token := arg.Value.(formulaArg)
  2998. switch token.Type {
  2999. case ArgString:
  3000. if token.String == "" {
  3001. continue
  3002. }
  3003. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3004. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3005. }
  3006. sq += val * val
  3007. case ArgNumber:
  3008. sq += token.Number
  3009. case ArgMatrix:
  3010. for _, row := range token.Matrix {
  3011. for _, value := range row {
  3012. if value.String == "" {
  3013. continue
  3014. }
  3015. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3016. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3017. }
  3018. sq += val * val
  3019. }
  3020. }
  3021. }
  3022. }
  3023. return newNumberFormulaArg(sq)
  3024. }
  3025. // TAN function calculates the tangent of a given angle. The syntax of the
  3026. // function is:
  3027. //
  3028. // TAN(number)
  3029. //
  3030. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3031. if argsList.Len() != 1 {
  3032. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3033. }
  3034. number := argsList.Front().Value.(formulaArg).ToNumber()
  3035. if number.Type == ArgError {
  3036. return number
  3037. }
  3038. return newNumberFormulaArg(math.Tan(number.Number))
  3039. }
  3040. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3041. // number. The syntax of the function is:
  3042. //
  3043. // TANH(number)
  3044. //
  3045. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3046. if argsList.Len() != 1 {
  3047. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3048. }
  3049. number := argsList.Front().Value.(formulaArg).ToNumber()
  3050. if number.Type == ArgError {
  3051. return number
  3052. }
  3053. return newNumberFormulaArg(math.Tanh(number.Number))
  3054. }
  3055. // TRUNC function truncates a supplied number to a specified number of decimal
  3056. // places. The syntax of the function is:
  3057. //
  3058. // TRUNC(number,[number_digits])
  3059. //
  3060. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3061. if argsList.Len() == 0 {
  3062. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3063. }
  3064. var digits, adjust, rtrim float64
  3065. var err error
  3066. number := argsList.Front().Value.(formulaArg).ToNumber()
  3067. if number.Type == ArgError {
  3068. return number
  3069. }
  3070. if argsList.Len() > 1 {
  3071. d := argsList.Back().Value.(formulaArg).ToNumber()
  3072. if d.Type == ArgError {
  3073. return d
  3074. }
  3075. digits = d.Number
  3076. digits = math.Floor(digits)
  3077. }
  3078. adjust = math.Pow(10, digits)
  3079. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3080. if x != 0 {
  3081. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3082. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3083. }
  3084. }
  3085. if (digits > 0) && (rtrim < adjust/10) {
  3086. return newNumberFormulaArg(number.Number)
  3087. }
  3088. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3089. }
  3090. // Statistical Functions
  3091. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3092. // The syntax of the function is:
  3093. //
  3094. // AVERAGE(number1,[number2],...)
  3095. //
  3096. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3097. args := []formulaArg{}
  3098. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3099. args = append(args, arg.Value.(formulaArg))
  3100. }
  3101. count, sum := fn.countSum(false, args)
  3102. if count == 0 {
  3103. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3104. }
  3105. return newNumberFormulaArg(sum / count)
  3106. }
  3107. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3108. // with text cell and zero values. The syntax of the function is:
  3109. //
  3110. // AVERAGEA(number1,[number2],...)
  3111. //
  3112. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3113. args := []formulaArg{}
  3114. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3115. args = append(args, arg.Value.(formulaArg))
  3116. }
  3117. count, sum := fn.countSum(true, args)
  3118. if count == 0 {
  3119. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3120. }
  3121. return newNumberFormulaArg(sum / count)
  3122. }
  3123. // countSum get count and sum for a formula arguments array.
  3124. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3125. for _, arg := range args {
  3126. switch arg.Type {
  3127. case ArgNumber:
  3128. if countText || !arg.Boolean {
  3129. sum += arg.Number
  3130. count++
  3131. }
  3132. case ArgString:
  3133. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3134. continue
  3135. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3136. num := arg.ToBool()
  3137. if num.Type == ArgNumber {
  3138. count++
  3139. sum += num.Number
  3140. continue
  3141. }
  3142. }
  3143. num := arg.ToNumber()
  3144. if countText && num.Type == ArgError && arg.String != "" {
  3145. count++
  3146. }
  3147. if num.Type == ArgNumber {
  3148. sum += num.Number
  3149. count++
  3150. }
  3151. case ArgList, ArgMatrix:
  3152. cnt, summary := fn.countSum(countText, arg.ToList())
  3153. sum += summary
  3154. count += cnt
  3155. }
  3156. }
  3157. return
  3158. }
  3159. // COUNT function returns the count of numeric values in a supplied set of
  3160. // cells or values. This count includes both numbers and dates. The syntax of
  3161. // the function is:
  3162. //
  3163. // COUNT(value1,[value2],...)
  3164. //
  3165. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3166. var count int
  3167. for token := argsList.Front(); token != nil; token = token.Next() {
  3168. arg := token.Value.(formulaArg)
  3169. switch arg.Type {
  3170. case ArgString:
  3171. if arg.ToNumber().Type != ArgError {
  3172. count++
  3173. }
  3174. case ArgNumber:
  3175. count++
  3176. case ArgMatrix:
  3177. for _, row := range arg.Matrix {
  3178. for _, value := range row {
  3179. if value.ToNumber().Type != ArgError {
  3180. count++
  3181. }
  3182. }
  3183. }
  3184. }
  3185. }
  3186. return newNumberFormulaArg(float64(count))
  3187. }
  3188. // COUNTA function returns the number of non-blanks within a supplied set of
  3189. // cells or values. The syntax of the function is:
  3190. //
  3191. // COUNTA(value1,[value2],...)
  3192. //
  3193. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3194. var count int
  3195. for token := argsList.Front(); token != nil; token = token.Next() {
  3196. arg := token.Value.(formulaArg)
  3197. switch arg.Type {
  3198. case ArgString:
  3199. if arg.String != "" {
  3200. count++
  3201. }
  3202. case ArgNumber:
  3203. count++
  3204. case ArgMatrix:
  3205. for _, row := range arg.ToList() {
  3206. switch row.Type {
  3207. case ArgString:
  3208. if row.String != "" {
  3209. count++
  3210. }
  3211. case ArgNumber:
  3212. count++
  3213. }
  3214. }
  3215. }
  3216. }
  3217. return newNumberFormulaArg(float64(count))
  3218. }
  3219. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3220. // The syntax of the function is:
  3221. //
  3222. // COUNTBLANK(range)
  3223. //
  3224. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3225. if argsList.Len() != 1 {
  3226. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3227. }
  3228. var count int
  3229. token := argsList.Front().Value.(formulaArg)
  3230. switch token.Type {
  3231. case ArgString:
  3232. if token.String == "" {
  3233. count++
  3234. }
  3235. case ArgList, ArgMatrix:
  3236. for _, row := range token.ToList() {
  3237. switch row.Type {
  3238. case ArgString:
  3239. if row.String == "" {
  3240. count++
  3241. }
  3242. case ArgEmpty:
  3243. count++
  3244. }
  3245. }
  3246. case ArgEmpty:
  3247. count++
  3248. }
  3249. return newNumberFormulaArg(float64(count))
  3250. }
  3251. // FISHER function calculates the Fisher Transformation for a supplied value.
  3252. // The syntax of the function is:
  3253. //
  3254. // FISHER(x)
  3255. //
  3256. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3257. if argsList.Len() != 1 {
  3258. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3259. }
  3260. token := argsList.Front().Value.(formulaArg)
  3261. switch token.Type {
  3262. case ArgString:
  3263. arg := token.ToNumber()
  3264. if arg.Type == ArgNumber {
  3265. if arg.Number <= -1 || arg.Number >= 1 {
  3266. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3267. }
  3268. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3269. }
  3270. case ArgNumber:
  3271. if token.Number <= -1 || token.Number >= 1 {
  3272. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3273. }
  3274. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3275. }
  3276. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3277. }
  3278. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3279. // returns a value between -1 and +1. The syntax of the function is:
  3280. //
  3281. // FISHERINV(y)
  3282. //
  3283. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3284. if argsList.Len() != 1 {
  3285. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3286. }
  3287. token := argsList.Front().Value.(formulaArg)
  3288. switch token.Type {
  3289. case ArgString:
  3290. arg := token.ToNumber()
  3291. if arg.Type == ArgNumber {
  3292. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3293. }
  3294. case ArgNumber:
  3295. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3296. }
  3297. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3298. }
  3299. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3300. // specified number, n. The syntax of the function is:
  3301. //
  3302. // GAMMA(number)
  3303. //
  3304. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3305. if argsList.Len() != 1 {
  3306. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3307. }
  3308. token := argsList.Front().Value.(formulaArg)
  3309. switch token.Type {
  3310. case ArgString:
  3311. arg := token.ToNumber()
  3312. if arg.Type == ArgNumber {
  3313. if arg.Number <= 0 {
  3314. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3315. }
  3316. return newNumberFormulaArg(math.Gamma(arg.Number))
  3317. }
  3318. case ArgNumber:
  3319. if token.Number <= 0 {
  3320. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3321. }
  3322. return newNumberFormulaArg(math.Gamma(token.Number))
  3323. }
  3324. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3325. }
  3326. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3327. // (n). The syntax of the function is:
  3328. //
  3329. // GAMMALN(x)
  3330. //
  3331. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3332. if argsList.Len() != 1 {
  3333. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3334. }
  3335. token := argsList.Front().Value.(formulaArg)
  3336. switch token.Type {
  3337. case ArgString:
  3338. arg := token.ToNumber()
  3339. if arg.Type == ArgNumber {
  3340. if arg.Number <= 0 {
  3341. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3342. }
  3343. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3344. }
  3345. case ArgNumber:
  3346. if token.Number <= 0 {
  3347. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3348. }
  3349. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3350. }
  3351. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3352. }
  3353. // KURT function calculates the kurtosis of a supplied set of values. The
  3354. // syntax of the function is:
  3355. //
  3356. // KURT(number1,[number2],...)
  3357. //
  3358. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3359. if argsList.Len() < 1 {
  3360. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3361. }
  3362. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3363. if stdev.Number > 0 {
  3364. count, summer := 0.0, 0.0
  3365. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3366. token := arg.Value.(formulaArg)
  3367. switch token.Type {
  3368. case ArgString, ArgNumber:
  3369. num := token.ToNumber()
  3370. if num.Type == ArgError {
  3371. continue
  3372. }
  3373. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3374. count++
  3375. case ArgList, ArgMatrix:
  3376. for _, row := range token.ToList() {
  3377. if row.Type == ArgNumber || row.Type == ArgString {
  3378. num := row.ToNumber()
  3379. if num.Type == ArgError {
  3380. continue
  3381. }
  3382. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3383. count++
  3384. }
  3385. }
  3386. }
  3387. }
  3388. if count > 3 {
  3389. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3390. }
  3391. }
  3392. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3393. }
  3394. // MAX function returns the largest value from a supplied set of numeric
  3395. // values. The syntax of the function is:
  3396. //
  3397. // MAX(number1,[number2],...)
  3398. //
  3399. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3400. if argsList.Len() == 0 {
  3401. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3402. }
  3403. return fn.max(false, argsList)
  3404. }
  3405. // MAXA function returns the largest value from a supplied set of numeric
  3406. // values, while counting text and the logical value FALSE as the value 0 and
  3407. // counting the logical value TRUE as the value 1. The syntax of the function
  3408. // is:
  3409. //
  3410. // MAXA(number1,[number2],...)
  3411. //
  3412. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3413. if argsList.Len() == 0 {
  3414. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3415. }
  3416. return fn.max(true, argsList)
  3417. }
  3418. // max is an implementation of the formula function MAX and MAXA.
  3419. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3420. max := -math.MaxFloat64
  3421. for token := argsList.Front(); token != nil; token = token.Next() {
  3422. arg := token.Value.(formulaArg)
  3423. switch arg.Type {
  3424. case ArgString:
  3425. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3426. continue
  3427. } else {
  3428. num := arg.ToBool()
  3429. if num.Type == ArgNumber && num.Number > max {
  3430. max = num.Number
  3431. continue
  3432. }
  3433. }
  3434. num := arg.ToNumber()
  3435. if num.Type != ArgError && num.Number > max {
  3436. max = num.Number
  3437. }
  3438. case ArgNumber:
  3439. if arg.Number > max {
  3440. max = arg.Number
  3441. }
  3442. case ArgList, ArgMatrix:
  3443. for _, row := range arg.ToList() {
  3444. switch row.Type {
  3445. case ArgString:
  3446. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3447. continue
  3448. } else {
  3449. num := row.ToBool()
  3450. if num.Type == ArgNumber && num.Number > max {
  3451. max = num.Number
  3452. continue
  3453. }
  3454. }
  3455. num := row.ToNumber()
  3456. if num.Type != ArgError && num.Number > max {
  3457. max = num.Number
  3458. }
  3459. case ArgNumber:
  3460. if row.Number > max {
  3461. max = row.Number
  3462. }
  3463. }
  3464. }
  3465. case ArgError:
  3466. return arg
  3467. }
  3468. }
  3469. if max == -math.MaxFloat64 {
  3470. max = 0
  3471. }
  3472. return newNumberFormulaArg(max)
  3473. }
  3474. // MEDIAN function returns the statistical median (the middle value) of a list
  3475. // of supplied numbers. The syntax of the function is:
  3476. //
  3477. // MEDIAN(number1,[number2],...)
  3478. //
  3479. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3480. if argsList.Len() == 0 {
  3481. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3482. }
  3483. var values = []float64{}
  3484. var median, digits float64
  3485. var err error
  3486. for token := argsList.Front(); token != nil; token = token.Next() {
  3487. arg := token.Value.(formulaArg)
  3488. switch arg.Type {
  3489. case ArgString:
  3490. num := arg.ToNumber()
  3491. if num.Type == ArgError {
  3492. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3493. }
  3494. values = append(values, num.Number)
  3495. case ArgNumber:
  3496. values = append(values, arg.Number)
  3497. case ArgMatrix:
  3498. for _, row := range arg.Matrix {
  3499. for _, value := range row {
  3500. if value.String == "" {
  3501. continue
  3502. }
  3503. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3504. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3505. }
  3506. values = append(values, digits)
  3507. }
  3508. }
  3509. }
  3510. }
  3511. sort.Float64s(values)
  3512. if len(values)%2 == 0 {
  3513. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3514. } else {
  3515. median = values[len(values)/2]
  3516. }
  3517. return newNumberFormulaArg(median)
  3518. }
  3519. // MIN function returns the smallest value from a supplied set of numeric
  3520. // values. The syntax of the function is:
  3521. //
  3522. // MIN(number1,[number2],...)
  3523. //
  3524. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3525. if argsList.Len() == 0 {
  3526. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3527. }
  3528. return fn.min(false, argsList)
  3529. }
  3530. // MINA function returns the smallest value from a supplied set of numeric
  3531. // values, while counting text and the logical value FALSE as the value 0 and
  3532. // counting the logical value TRUE as the value 1. The syntax of the function
  3533. // is:
  3534. //
  3535. // MINA(number1,[number2],...)
  3536. //
  3537. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3538. if argsList.Len() == 0 {
  3539. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3540. }
  3541. return fn.min(true, argsList)
  3542. }
  3543. // min is an implementation of the formula function MIN and MINA.
  3544. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3545. min := math.MaxFloat64
  3546. for token := argsList.Front(); token != nil; token = token.Next() {
  3547. arg := token.Value.(formulaArg)
  3548. switch arg.Type {
  3549. case ArgString:
  3550. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3551. continue
  3552. } else {
  3553. num := arg.ToBool()
  3554. if num.Type == ArgNumber && num.Number < min {
  3555. min = num.Number
  3556. continue
  3557. }
  3558. }
  3559. num := arg.ToNumber()
  3560. if num.Type != ArgError && num.Number < min {
  3561. min = num.Number
  3562. }
  3563. case ArgNumber:
  3564. if arg.Number < min {
  3565. min = arg.Number
  3566. }
  3567. case ArgList, ArgMatrix:
  3568. for _, row := range arg.ToList() {
  3569. switch row.Type {
  3570. case ArgString:
  3571. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3572. continue
  3573. } else {
  3574. num := row.ToBool()
  3575. if num.Type == ArgNumber && num.Number < min {
  3576. min = num.Number
  3577. continue
  3578. }
  3579. }
  3580. num := row.ToNumber()
  3581. if num.Type != ArgError && num.Number < min {
  3582. min = num.Number
  3583. }
  3584. case ArgNumber:
  3585. if row.Number < min {
  3586. min = row.Number
  3587. }
  3588. }
  3589. }
  3590. case ArgError:
  3591. return arg
  3592. }
  3593. }
  3594. if min == math.MaxFloat64 {
  3595. min = 0
  3596. }
  3597. return newNumberFormulaArg(min)
  3598. }
  3599. // PERMUT function calculates the number of permutations of a specified number
  3600. // of objects from a set of objects. The syntax of the function is:
  3601. //
  3602. // PERMUT(number,number_chosen)
  3603. //
  3604. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  3605. if argsList.Len() != 2 {
  3606. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  3607. }
  3608. number := argsList.Front().Value.(formulaArg).ToNumber()
  3609. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  3610. if number.Type != ArgNumber {
  3611. return number
  3612. }
  3613. if chosen.Type != ArgNumber {
  3614. return chosen
  3615. }
  3616. if number.Number < chosen.Number {
  3617. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3618. }
  3619. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  3620. }
  3621. // Information Functions
  3622. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  3623. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  3624. // function is:
  3625. //
  3626. // ISBLANK(value)
  3627. //
  3628. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  3629. if argsList.Len() != 1 {
  3630. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  3631. }
  3632. token := argsList.Front().Value.(formulaArg)
  3633. result := "FALSE"
  3634. switch token.Type {
  3635. case ArgUnknown:
  3636. result = "TRUE"
  3637. case ArgString:
  3638. if token.String == "" {
  3639. result = "TRUE"
  3640. }
  3641. }
  3642. return newStringFormulaArg(result)
  3643. }
  3644. // ISERR function tests if an initial supplied expression (or value) returns
  3645. // any Excel Error, except the #N/A error. If so, the function returns the
  3646. // logical value TRUE; If the supplied value is not an error or is the #N/A
  3647. // error, the ISERR function returns FALSE. The syntax of the function is:
  3648. //
  3649. // ISERR(value)
  3650. //
  3651. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  3652. if argsList.Len() != 1 {
  3653. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  3654. }
  3655. token := argsList.Front().Value.(formulaArg)
  3656. result := "FALSE"
  3657. if token.Type == ArgError {
  3658. for _, errType := range []string{
  3659. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  3660. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  3661. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  3662. } {
  3663. if errType == token.String {
  3664. result = "TRUE"
  3665. }
  3666. }
  3667. }
  3668. return newStringFormulaArg(result)
  3669. }
  3670. // ISERROR function tests if an initial supplied expression (or value) returns
  3671. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  3672. // function returns FALSE. The syntax of the function is:
  3673. //
  3674. // ISERROR(value)
  3675. //
  3676. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  3677. if argsList.Len() != 1 {
  3678. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  3679. }
  3680. token := argsList.Front().Value.(formulaArg)
  3681. result := "FALSE"
  3682. if token.Type == ArgError {
  3683. for _, errType := range []string{
  3684. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  3685. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  3686. formulaErrorCALC, formulaErrorGETTINGDATA,
  3687. } {
  3688. if errType == token.String {
  3689. result = "TRUE"
  3690. }
  3691. }
  3692. }
  3693. return newStringFormulaArg(result)
  3694. }
  3695. // ISEVEN function tests if a supplied number (or numeric expression)
  3696. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  3697. // function returns FALSE. The syntax of the function is:
  3698. //
  3699. // ISEVEN(value)
  3700. //
  3701. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  3702. if argsList.Len() != 1 {
  3703. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  3704. }
  3705. var (
  3706. token = argsList.Front().Value.(formulaArg)
  3707. result = "FALSE"
  3708. numeric int
  3709. err error
  3710. )
  3711. if token.Type == ArgString {
  3712. if numeric, err = strconv.Atoi(token.String); err != nil {
  3713. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3714. }
  3715. if numeric == numeric/2*2 {
  3716. return newStringFormulaArg("TRUE")
  3717. }
  3718. }
  3719. return newStringFormulaArg(result)
  3720. }
  3721. // ISNA function tests if an initial supplied expression (or value) returns
  3722. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  3723. // returns FALSE. The syntax of the function is:
  3724. //
  3725. // ISNA(value)
  3726. //
  3727. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  3728. if argsList.Len() != 1 {
  3729. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  3730. }
  3731. token := argsList.Front().Value.(formulaArg)
  3732. result := "FALSE"
  3733. if token.Type == ArgError && token.String == formulaErrorNA {
  3734. result = "TRUE"
  3735. }
  3736. return newStringFormulaArg(result)
  3737. }
  3738. // ISNONTEXT function function tests if a supplied value is text. If not, the
  3739. // function returns TRUE; If the supplied value is text, the function returns
  3740. // FALSE. The syntax of the function is:
  3741. //
  3742. // ISNONTEXT(value)
  3743. //
  3744. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  3745. if argsList.Len() != 1 {
  3746. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  3747. }
  3748. token := argsList.Front().Value.(formulaArg)
  3749. result := "TRUE"
  3750. if token.Type == ArgString && token.String != "" {
  3751. result = "FALSE"
  3752. }
  3753. return newStringFormulaArg(result)
  3754. }
  3755. // ISNUMBER function function tests if a supplied value is a number. If so,
  3756. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3757. // function is:
  3758. //
  3759. // ISNUMBER(value)
  3760. //
  3761. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  3762. if argsList.Len() != 1 {
  3763. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  3764. }
  3765. token, result := argsList.Front().Value.(formulaArg), false
  3766. if token.Type == ArgString && token.String != "" {
  3767. if _, err := strconv.Atoi(token.String); err == nil {
  3768. result = true
  3769. }
  3770. }
  3771. return newBoolFormulaArg(result)
  3772. }
  3773. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3774. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3775. // FALSE. The syntax of the function is:
  3776. //
  3777. // ISODD(value)
  3778. //
  3779. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  3780. if argsList.Len() != 1 {
  3781. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  3782. }
  3783. var (
  3784. token = argsList.Front().Value.(formulaArg)
  3785. result = "FALSE"
  3786. numeric int
  3787. err error
  3788. )
  3789. if token.Type == ArgString {
  3790. if numeric, err = strconv.Atoi(token.String); err != nil {
  3791. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3792. }
  3793. if numeric != numeric/2*2 {
  3794. return newStringFormulaArg("TRUE")
  3795. }
  3796. }
  3797. return newStringFormulaArg(result)
  3798. }
  3799. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  3800. // Otherwise, the function returns FALSE. The syntax of the function is:
  3801. //
  3802. // ISTEXT(value)
  3803. //
  3804. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  3805. if argsList.Len() != 1 {
  3806. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  3807. }
  3808. token := argsList.Front().Value.(formulaArg)
  3809. if token.ToNumber().Type != ArgError {
  3810. return newBoolFormulaArg(false)
  3811. }
  3812. return newBoolFormulaArg(token.Type == ArgString)
  3813. }
  3814. // NA function returns the Excel #N/A error. This error message has the
  3815. // meaning 'value not available' and is produced when an Excel Formula is
  3816. // unable to find a value that it needs. The syntax of the function is:
  3817. //
  3818. // NA()
  3819. //
  3820. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  3821. if argsList.Len() != 0 {
  3822. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  3823. }
  3824. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3825. }
  3826. // SHEET function returns the Sheet number for a specified reference. The
  3827. // syntax of the function is:
  3828. //
  3829. // SHEET()
  3830. //
  3831. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  3832. if argsList.Len() != 0 {
  3833. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  3834. }
  3835. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  3836. }
  3837. // Logical Functions
  3838. // AND function tests a number of supplied conditions and returns TRUE or
  3839. // FALSE. The syntax of the function is:
  3840. //
  3841. // AND(logical_test1,[logical_test2],...)
  3842. //
  3843. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  3844. if argsList.Len() == 0 {
  3845. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  3846. }
  3847. if argsList.Len() > 30 {
  3848. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  3849. }
  3850. var (
  3851. and = true
  3852. val float64
  3853. err error
  3854. )
  3855. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3856. token := arg.Value.(formulaArg)
  3857. switch token.Type {
  3858. case ArgUnknown:
  3859. continue
  3860. case ArgString:
  3861. if token.String == "TRUE" {
  3862. continue
  3863. }
  3864. if token.String == "FALSE" {
  3865. return newStringFormulaArg(token.String)
  3866. }
  3867. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3868. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3869. }
  3870. and = and && (val != 0)
  3871. case ArgMatrix:
  3872. // TODO
  3873. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3874. }
  3875. }
  3876. return newBoolFormulaArg(and)
  3877. }
  3878. // FALSE function function returns the logical value FALSE. The syntax of the
  3879. // function is:
  3880. //
  3881. // FALSE()
  3882. //
  3883. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  3884. if argsList.Len() != 0 {
  3885. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  3886. }
  3887. return newBoolFormulaArg(false)
  3888. }
  3889. // IFERROR function receives two values (or expressions) and tests if the
  3890. // first of these evaluates to an error. The syntax of the function is:
  3891. //
  3892. // IFERROR(value,value_if_error)
  3893. //
  3894. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  3895. if argsList.Len() != 2 {
  3896. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  3897. }
  3898. value := argsList.Front().Value.(formulaArg)
  3899. if value.Type != ArgError {
  3900. if value.Type == ArgEmpty {
  3901. return newNumberFormulaArg(0)
  3902. }
  3903. return value
  3904. }
  3905. return argsList.Back().Value.(formulaArg)
  3906. }
  3907. // NOT function returns the opposite to a supplied logical value. The syntax
  3908. // of the function is:
  3909. //
  3910. // NOT(logical)
  3911. //
  3912. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  3913. if argsList.Len() != 1 {
  3914. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  3915. }
  3916. token := argsList.Front().Value.(formulaArg)
  3917. switch token.Type {
  3918. case ArgString, ArgList:
  3919. if strings.ToUpper(token.String) == "TRUE" {
  3920. return newBoolFormulaArg(false)
  3921. }
  3922. if strings.ToUpper(token.String) == "FALSE" {
  3923. return newBoolFormulaArg(true)
  3924. }
  3925. case ArgNumber:
  3926. return newBoolFormulaArg(!(token.Number != 0))
  3927. case ArgError:
  3928. return token
  3929. }
  3930. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  3931. }
  3932. // OR function tests a number of supplied conditions and returns either TRUE
  3933. // or FALSE. The syntax of the function is:
  3934. //
  3935. // OR(logical_test1,[logical_test2],...)
  3936. //
  3937. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3938. if argsList.Len() == 0 {
  3939. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3940. }
  3941. if argsList.Len() > 30 {
  3942. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  3943. }
  3944. var (
  3945. or bool
  3946. val float64
  3947. err error
  3948. )
  3949. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3950. token := arg.Value.(formulaArg)
  3951. switch token.Type {
  3952. case ArgUnknown:
  3953. continue
  3954. case ArgString:
  3955. if token.String == "FALSE" {
  3956. continue
  3957. }
  3958. if token.String == "TRUE" {
  3959. or = true
  3960. continue
  3961. }
  3962. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3963. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3964. }
  3965. or = val != 0
  3966. case ArgMatrix:
  3967. // TODO
  3968. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3969. }
  3970. }
  3971. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  3972. }
  3973. // TRUE function returns the logical value TRUE. The syntax of the function
  3974. // is:
  3975. //
  3976. // TRUE()
  3977. //
  3978. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  3979. if argsList.Len() != 0 {
  3980. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  3981. }
  3982. return newBoolFormulaArg(true)
  3983. }
  3984. // Date and Time Functions
  3985. // DATE returns a date, from a user-supplied year, month and day. The syntax
  3986. // of the function is:
  3987. //
  3988. // DATE(year,month,day)
  3989. //
  3990. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  3991. if argsList.Len() != 3 {
  3992. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3993. }
  3994. var year, month, day int
  3995. var err error
  3996. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3997. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3998. }
  3999. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  4000. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4001. }
  4002. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  4003. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4004. }
  4005. d := makeDate(year, time.Month(month), day)
  4006. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4007. }
  4008. // makeDate return date as a Unix time, the number of seconds elapsed since
  4009. // January 1, 1970 UTC.
  4010. func makeDate(y int, m time.Month, d int) int64 {
  4011. if y == 1900 && int(m) <= 2 {
  4012. d--
  4013. }
  4014. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4015. return date.Unix()
  4016. }
  4017. // daysBetween return time interval of the given start timestamp and end
  4018. // timestamp.
  4019. func daysBetween(startDate, endDate int64) float64 {
  4020. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4021. }
  4022. // Text Functions
  4023. // CLEAN removes all non-printable characters from a supplied text string. The
  4024. // syntax of the function is:
  4025. //
  4026. // CLEAN(text)
  4027. //
  4028. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4029. if argsList.Len() != 1 {
  4030. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4031. }
  4032. b := bytes.Buffer{}
  4033. for _, c := range argsList.Front().Value.(formulaArg).String {
  4034. if c > 31 {
  4035. b.WriteRune(c)
  4036. }
  4037. }
  4038. return newStringFormulaArg(b.String())
  4039. }
  4040. // CONCAT function joins together a series of supplied text strings into one
  4041. // combined text string.
  4042. //
  4043. // CONCAT(text1,[text2],...)
  4044. //
  4045. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4046. return fn.concat("CONCAT", argsList)
  4047. }
  4048. // CONCATENATE function joins together a series of supplied text strings into
  4049. // one combined text string.
  4050. //
  4051. // CONCATENATE(text1,[text2],...)
  4052. //
  4053. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4054. return fn.concat("CONCATENATE", argsList)
  4055. }
  4056. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4057. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4058. buf := bytes.Buffer{}
  4059. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4060. token := arg.Value.(formulaArg)
  4061. switch token.Type {
  4062. case ArgString:
  4063. buf.WriteString(token.String)
  4064. case ArgNumber:
  4065. if token.Boolean {
  4066. if token.Number == 0 {
  4067. buf.WriteString("FALSE")
  4068. } else {
  4069. buf.WriteString("TRUE")
  4070. }
  4071. } else {
  4072. buf.WriteString(token.Value())
  4073. }
  4074. default:
  4075. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4076. }
  4077. }
  4078. return newStringFormulaArg(buf.String())
  4079. }
  4080. // EXACT function tests if two supplied text strings or values are exactly
  4081. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4082. // function is case-sensitive. The syntax of the function is:
  4083. //
  4084. // EXACT(text1,text2)
  4085. //
  4086. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4087. if argsList.Len() != 2 {
  4088. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4089. }
  4090. text1 := argsList.Front().Value.(formulaArg).Value()
  4091. text2 := argsList.Back().Value.(formulaArg).Value()
  4092. return newBoolFormulaArg(text1 == text2)
  4093. }
  4094. // LEN returns the length of a supplied text string. The syntax of the
  4095. // function is:
  4096. //
  4097. // LEN(text)
  4098. //
  4099. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4100. if argsList.Len() != 1 {
  4101. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4102. }
  4103. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4104. }
  4105. // LENB returns the number of bytes used to represent the characters in a text
  4106. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4107. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4108. // 1 byte per character. The syntax of the function is:
  4109. //
  4110. // LENB(text)
  4111. //
  4112. // TODO: the languages that support DBCS include Japanese, Chinese
  4113. // (Simplified), Chinese (Traditional), and Korean.
  4114. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4115. if argsList.Len() != 1 {
  4116. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4117. }
  4118. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4119. }
  4120. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  4121. // words or characters) from a supplied text string. The syntax of the
  4122. // function is:
  4123. //
  4124. // TRIM(text)
  4125. //
  4126. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  4127. if argsList.Len() != 1 {
  4128. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  4129. }
  4130. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  4131. }
  4132. // LOWER converts all characters in a supplied text string to lower case. The
  4133. // syntax of the function is:
  4134. //
  4135. // LOWER(text)
  4136. //
  4137. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4138. if argsList.Len() != 1 {
  4139. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4140. }
  4141. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4142. }
  4143. // PROPER converts all characters in a supplied text string to proper case
  4144. // (i.e. all letters that do not immediately follow another letter are set to
  4145. // upper case and all other characters are lower case). The syntax of the
  4146. // function is:
  4147. //
  4148. // PROPER(text)
  4149. //
  4150. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4151. if argsList.Len() != 1 {
  4152. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4153. }
  4154. buf := bytes.Buffer{}
  4155. isLetter := false
  4156. for _, char := range argsList.Front().Value.(formulaArg).String {
  4157. if !isLetter && unicode.IsLetter(char) {
  4158. buf.WriteRune(unicode.ToUpper(char))
  4159. } else {
  4160. buf.WriteRune(unicode.ToLower(char))
  4161. }
  4162. isLetter = unicode.IsLetter(char)
  4163. }
  4164. return newStringFormulaArg(buf.String())
  4165. }
  4166. // REPT function returns a supplied text string, repeated a specified number
  4167. // of times. The syntax of the function is:
  4168. //
  4169. // REPT(text,number_times)
  4170. //
  4171. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4172. if argsList.Len() != 2 {
  4173. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4174. }
  4175. text := argsList.Front().Value.(formulaArg)
  4176. if text.Type != ArgString {
  4177. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4178. }
  4179. times := argsList.Back().Value.(formulaArg).ToNumber()
  4180. if times.Type != ArgNumber {
  4181. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4182. }
  4183. if times.Number < 0 {
  4184. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4185. }
  4186. if times.Number == 0 {
  4187. return newStringFormulaArg("")
  4188. }
  4189. buf := bytes.Buffer{}
  4190. for i := 0; i < int(times.Number); i++ {
  4191. buf.WriteString(text.String)
  4192. }
  4193. return newStringFormulaArg(buf.String())
  4194. }
  4195. // UPPER converts all characters in a supplied text string to upper case. The
  4196. // syntax of the function is:
  4197. //
  4198. // UPPER(text)
  4199. //
  4200. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  4201. if argsList.Len() != 1 {
  4202. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  4203. }
  4204. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  4205. }
  4206. // Conditional Functions
  4207. // IF function tests a supplied condition and returns one result if the
  4208. // condition evaluates to TRUE, and another result if the condition evaluates
  4209. // to FALSE. The syntax of the function is:
  4210. //
  4211. // IF(logical_test,value_if_true,value_if_false)
  4212. //
  4213. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  4214. if argsList.Len() == 0 {
  4215. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  4216. }
  4217. if argsList.Len() > 3 {
  4218. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  4219. }
  4220. token := argsList.Front().Value.(formulaArg)
  4221. var (
  4222. cond bool
  4223. err error
  4224. result string
  4225. )
  4226. switch token.Type {
  4227. case ArgString:
  4228. if cond, err = strconv.ParseBool(token.String); err != nil {
  4229. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4230. }
  4231. if argsList.Len() == 1 {
  4232. return newBoolFormulaArg(cond)
  4233. }
  4234. if cond {
  4235. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  4236. }
  4237. if argsList.Len() == 3 {
  4238. result = argsList.Back().Value.(formulaArg).String
  4239. }
  4240. }
  4241. return newStringFormulaArg(result)
  4242. }
  4243. // Lookup and Reference Functions
  4244. // CHOOSE function returns a value from an array, that corresponds to a
  4245. // supplied index number (position). The syntax of the function is:
  4246. //
  4247. // CHOOSE(index_num,value1,[value2],...)
  4248. //
  4249. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  4250. if argsList.Len() < 2 {
  4251. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  4252. }
  4253. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  4254. if err != nil {
  4255. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  4256. }
  4257. if argsList.Len() <= idx {
  4258. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  4259. }
  4260. arg := argsList.Front()
  4261. for i := 0; i < idx; i++ {
  4262. arg = arg.Next()
  4263. }
  4264. var result formulaArg
  4265. switch arg.Value.(formulaArg).Type {
  4266. case ArgString:
  4267. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  4268. case ArgMatrix:
  4269. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  4270. }
  4271. return result
  4272. }
  4273. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  4274. // string.
  4275. func deepMatchRune(str, pattern []rune, simple bool) bool {
  4276. for len(pattern) > 0 {
  4277. switch pattern[0] {
  4278. default:
  4279. if len(str) == 0 || str[0] != pattern[0] {
  4280. return false
  4281. }
  4282. case '?':
  4283. if len(str) == 0 && !simple {
  4284. return false
  4285. }
  4286. case '*':
  4287. return deepMatchRune(str, pattern[1:], simple) ||
  4288. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  4289. }
  4290. str = str[1:]
  4291. pattern = pattern[1:]
  4292. }
  4293. return len(str) == 0 && len(pattern) == 0
  4294. }
  4295. // matchPattern finds whether the text matches or satisfies the pattern
  4296. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  4297. func matchPattern(pattern, name string) (matched bool) {
  4298. if pattern == "" {
  4299. return name == pattern
  4300. }
  4301. if pattern == "*" {
  4302. return true
  4303. }
  4304. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  4305. for _, r := range name {
  4306. rname = append(rname, r)
  4307. }
  4308. for _, r := range pattern {
  4309. rpattern = append(rpattern, r)
  4310. }
  4311. simple := false // Does extended wildcard '*' and '?' match.
  4312. return deepMatchRune(rname, rpattern, simple)
  4313. }
  4314. // compareFormulaArg compares the left-hand sides and the right-hand sides
  4315. // formula arguments by given conditions such as case sensitive, if exact
  4316. // match, and make compare result as formula criteria condition type.
  4317. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4318. if lhs.Type != rhs.Type {
  4319. return criteriaErr
  4320. }
  4321. switch lhs.Type {
  4322. case ArgNumber:
  4323. if lhs.Number == rhs.Number {
  4324. return criteriaEq
  4325. }
  4326. if lhs.Number < rhs.Number {
  4327. return criteriaL
  4328. }
  4329. return criteriaG
  4330. case ArgString:
  4331. ls, rs := lhs.String, rhs.String
  4332. if !caseSensitive {
  4333. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  4334. }
  4335. if exactMatch {
  4336. match := matchPattern(rs, ls)
  4337. if match {
  4338. return criteriaEq
  4339. }
  4340. return criteriaG
  4341. }
  4342. switch strings.Compare(ls, rs) {
  4343. case 1:
  4344. return criteriaG
  4345. case -1:
  4346. return criteriaL
  4347. case 0:
  4348. return criteriaEq
  4349. }
  4350. return criteriaErr
  4351. case ArgEmpty:
  4352. return criteriaEq
  4353. case ArgList:
  4354. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  4355. case ArgMatrix:
  4356. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  4357. }
  4358. return criteriaErr
  4359. }
  4360. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  4361. // list type formula arguments.
  4362. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4363. if len(lhs.List) < len(rhs.List) {
  4364. return criteriaL
  4365. }
  4366. if len(lhs.List) > len(rhs.List) {
  4367. return criteriaG
  4368. }
  4369. for arg := range lhs.List {
  4370. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  4371. if criteria != criteriaEq {
  4372. return criteria
  4373. }
  4374. }
  4375. return criteriaEq
  4376. }
  4377. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  4378. // matrix type formula arguments.
  4379. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4380. if len(lhs.Matrix) < len(rhs.Matrix) {
  4381. return criteriaL
  4382. }
  4383. if len(lhs.Matrix) > len(rhs.Matrix) {
  4384. return criteriaG
  4385. }
  4386. for i := range lhs.Matrix {
  4387. left := lhs.Matrix[i]
  4388. right := lhs.Matrix[i]
  4389. if len(left) < len(right) {
  4390. return criteriaL
  4391. }
  4392. if len(left) > len(right) {
  4393. return criteriaG
  4394. }
  4395. for arg := range left {
  4396. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  4397. if criteria != criteriaEq {
  4398. return criteria
  4399. }
  4400. }
  4401. }
  4402. return criteriaEq
  4403. }
  4404. // HLOOKUP function 'looks up' a given value in the top row of a data array
  4405. // (or table), and returns the corresponding value from another row of the
  4406. // array. The syntax of the function is:
  4407. //
  4408. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  4409. //
  4410. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  4411. if argsList.Len() < 3 {
  4412. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  4413. }
  4414. if argsList.Len() > 4 {
  4415. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  4416. }
  4417. lookupValue := argsList.Front().Value.(formulaArg)
  4418. tableArray := argsList.Front().Next().Value.(formulaArg)
  4419. if tableArray.Type != ArgMatrix {
  4420. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  4421. }
  4422. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4423. if rowArg.Type != ArgNumber {
  4424. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  4425. }
  4426. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  4427. if argsList.Len() == 4 {
  4428. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4429. if rangeLookup.Type == ArgError {
  4430. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4431. }
  4432. if rangeLookup.Number == 0 {
  4433. exactMatch = true
  4434. }
  4435. }
  4436. row := tableArray.Matrix[0]
  4437. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4438. start:
  4439. for idx, mtx := range row {
  4440. lhs := mtx
  4441. switch lookupValue.Type {
  4442. case ArgNumber:
  4443. if !lookupValue.Boolean {
  4444. lhs = mtx.ToNumber()
  4445. if lhs.Type == ArgError {
  4446. lhs = mtx
  4447. }
  4448. }
  4449. case ArgMatrix:
  4450. lhs = tableArray
  4451. }
  4452. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4453. matchIdx = idx
  4454. wasExact = true
  4455. break start
  4456. }
  4457. }
  4458. } else {
  4459. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  4460. }
  4461. if matchIdx == -1 {
  4462. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4463. }
  4464. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  4465. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  4466. }
  4467. row = tableArray.Matrix[rowIdx]
  4468. if wasExact || !exactMatch {
  4469. return row[matchIdx]
  4470. }
  4471. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4472. }
  4473. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  4474. // data array (or table), and returns the corresponding value from another
  4475. // column of the array. The syntax of the function is:
  4476. //
  4477. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  4478. //
  4479. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  4480. if argsList.Len() < 3 {
  4481. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  4482. }
  4483. if argsList.Len() > 4 {
  4484. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  4485. }
  4486. lookupValue := argsList.Front().Value.(formulaArg)
  4487. tableArray := argsList.Front().Next().Value.(formulaArg)
  4488. if tableArray.Type != ArgMatrix {
  4489. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  4490. }
  4491. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4492. if colIdx.Type != ArgNumber {
  4493. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  4494. }
  4495. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  4496. if argsList.Len() == 4 {
  4497. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4498. if rangeLookup.Type == ArgError {
  4499. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4500. }
  4501. if rangeLookup.Number == 0 {
  4502. exactMatch = true
  4503. }
  4504. }
  4505. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4506. start:
  4507. for idx, mtx := range tableArray.Matrix {
  4508. lhs := mtx[0]
  4509. switch lookupValue.Type {
  4510. case ArgNumber:
  4511. if !lookupValue.Boolean {
  4512. lhs = mtx[0].ToNumber()
  4513. if lhs.Type == ArgError {
  4514. lhs = mtx[0]
  4515. }
  4516. }
  4517. case ArgMatrix:
  4518. lhs = tableArray
  4519. }
  4520. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4521. matchIdx = idx
  4522. wasExact = true
  4523. break start
  4524. }
  4525. }
  4526. } else {
  4527. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  4528. }
  4529. if matchIdx == -1 {
  4530. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4531. }
  4532. mtx := tableArray.Matrix[matchIdx]
  4533. if col < 0 || col >= len(mtx) {
  4534. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  4535. }
  4536. if wasExact || !exactMatch {
  4537. return mtx[col]
  4538. }
  4539. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4540. }
  4541. // vlookupBinarySearch finds the position of a target value when range lookup
  4542. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4543. // return wrong result.
  4544. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4545. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  4546. for low <= high {
  4547. var mid int = low + (high-low)/2
  4548. mtx := tableArray.Matrix[mid]
  4549. lhs := mtx[0]
  4550. switch lookupValue.Type {
  4551. case ArgNumber:
  4552. if !lookupValue.Boolean {
  4553. lhs = mtx[0].ToNumber()
  4554. if lhs.Type == ArgError {
  4555. lhs = mtx[0]
  4556. }
  4557. }
  4558. case ArgMatrix:
  4559. lhs = tableArray
  4560. }
  4561. result := compareFormulaArg(lhs, lookupValue, false, false)
  4562. if result == criteriaEq {
  4563. matchIdx, wasExact = mid, true
  4564. return
  4565. } else if result == criteriaG {
  4566. high = mid - 1
  4567. } else if result == criteriaL {
  4568. matchIdx, low = mid, mid+1
  4569. if lhs.Value() != "" {
  4570. lastMatchIdx = matchIdx
  4571. }
  4572. } else {
  4573. return -1, false
  4574. }
  4575. }
  4576. matchIdx, wasExact = lastMatchIdx, true
  4577. return
  4578. }
  4579. // vlookupBinarySearch finds the position of a target value when range lookup
  4580. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4581. // return wrong result.
  4582. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4583. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  4584. for low <= high {
  4585. var mid int = low + (high-low)/2
  4586. mtx := row[mid]
  4587. result := compareFormulaArg(mtx, lookupValue, false, false)
  4588. if result == criteriaEq {
  4589. matchIdx, wasExact = mid, true
  4590. return
  4591. } else if result == criteriaG {
  4592. high = mid - 1
  4593. } else if result == criteriaL {
  4594. low, lastMatchIdx = mid+1, mid
  4595. } else {
  4596. return -1, false
  4597. }
  4598. }
  4599. matchIdx, wasExact = lastMatchIdx, true
  4600. return
  4601. }
  4602. // LOOKUP function performs an approximate match lookup in a one-column or
  4603. // one-row range, and returns the corresponding value from another one-column
  4604. // or one-row range. The syntax of the function is:
  4605. //
  4606. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  4607. //
  4608. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  4609. if argsList.Len() < 2 {
  4610. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  4611. }
  4612. if argsList.Len() > 3 {
  4613. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  4614. }
  4615. lookupValue := argsList.Front().Value.(formulaArg)
  4616. lookupVector := argsList.Front().Next().Value.(formulaArg)
  4617. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  4618. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  4619. }
  4620. cols, matchIdx := lookupCol(lookupVector), -1
  4621. for idx, col := range cols {
  4622. lhs := lookupValue
  4623. switch col.Type {
  4624. case ArgNumber:
  4625. lhs = lhs.ToNumber()
  4626. if !col.Boolean {
  4627. if lhs.Type == ArgError {
  4628. lhs = lookupValue
  4629. }
  4630. }
  4631. }
  4632. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  4633. matchIdx = idx
  4634. break
  4635. }
  4636. }
  4637. column := cols
  4638. if argsList.Len() == 3 {
  4639. column = lookupCol(argsList.Back().Value.(formulaArg))
  4640. }
  4641. if matchIdx < 0 || matchIdx >= len(column) {
  4642. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  4643. }
  4644. return column[matchIdx]
  4645. }
  4646. // lookupCol extract columns for LOOKUP.
  4647. func lookupCol(arr formulaArg) []formulaArg {
  4648. col := arr.List
  4649. if arr.Type == ArgMatrix {
  4650. col = nil
  4651. for _, r := range arr.Matrix {
  4652. if len(r) > 0 {
  4653. col = append(col, r[0])
  4654. continue
  4655. }
  4656. col = append(col, newEmptyFormulaArg())
  4657. }
  4658. }
  4659. return col
  4660. }
  4661. // Web Functions
  4662. // ENCODEURL function returns a URL-encoded string, replacing certain
  4663. // non-alphanumeric characters with the percentage symbol (%) and a
  4664. // hexadecimal number. The syntax of the function is:
  4665. //
  4666. // ENCODEURL(url)
  4667. //
  4668. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  4669. if argsList.Len() != 1 {
  4670. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  4671. }
  4672. token := argsList.Front().Value.(formulaArg).Value()
  4673. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  4674. }