calc.go 212 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.15 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/cmplx"
  19. "math/rand"
  20. "net/url"
  21. "reflect"
  22. "regexp"
  23. "sort"
  24. "strconv"
  25. "strings"
  26. "time"
  27. "unicode"
  28. "unsafe"
  29. "github.com/xuri/efp"
  30. "golang.org/x/text/language"
  31. "golang.org/x/text/message"
  32. )
  33. // Excel formula errors
  34. const (
  35. formulaErrorDIV = "#DIV/0!"
  36. formulaErrorNAME = "#NAME?"
  37. formulaErrorNA = "#N/A"
  38. formulaErrorNUM = "#NUM!"
  39. formulaErrorVALUE = "#VALUE!"
  40. formulaErrorREF = "#REF!"
  41. formulaErrorNULL = "#NULL"
  42. formulaErrorSPILL = "#SPILL!"
  43. formulaErrorCALC = "#CALC!"
  44. formulaErrorGETTINGDATA = "#GETTING_DATA"
  45. )
  46. // Numeric precision correct numeric values as legacy Excel application
  47. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  48. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  49. // has a decimal representation that is an infinite string of ones, Excel
  50. // displays only the leading 15 figures. In the second line, the number one
  51. // is added to the fraction, and again Excel displays only 15 figures.
  52. const numericPrecision = 1000000000000000
  53. // cellRef defines the structure of a cell reference.
  54. type cellRef struct {
  55. Col int
  56. Row int
  57. Sheet string
  58. }
  59. // cellRef defines the structure of a cell range.
  60. type cellRange struct {
  61. From cellRef
  62. To cellRef
  63. }
  64. // formula criteria condition enumeration.
  65. const (
  66. _ byte = iota
  67. criteriaEq
  68. criteriaLe
  69. criteriaGe
  70. criteriaL
  71. criteriaG
  72. criteriaBeg
  73. criteriaEnd
  74. criteriaErr
  75. )
  76. // formulaCriteria defined formula criteria parser result.
  77. type formulaCriteria struct {
  78. Type byte
  79. Condition string
  80. }
  81. // ArgType is the type if formula argument type.
  82. type ArgType byte
  83. // Formula argument types enumeration.
  84. const (
  85. ArgUnknown ArgType = iota
  86. ArgNumber
  87. ArgString
  88. ArgList
  89. ArgMatrix
  90. ArgError
  91. ArgEmpty
  92. )
  93. // formulaArg is the argument of a formula or function.
  94. type formulaArg struct {
  95. SheetName string
  96. Number float64
  97. String string
  98. List []formulaArg
  99. Matrix [][]formulaArg
  100. Boolean bool
  101. Error string
  102. Type ArgType
  103. cellRefs, cellRanges *list.List
  104. }
  105. // Value returns a string data type of the formula argument.
  106. func (fa formulaArg) Value() (value string) {
  107. switch fa.Type {
  108. case ArgNumber:
  109. if fa.Boolean {
  110. if fa.Number == 0 {
  111. return "FALSE"
  112. }
  113. return "TRUE"
  114. }
  115. return fmt.Sprintf("%g", fa.Number)
  116. case ArgString:
  117. return fa.String
  118. case ArgError:
  119. return fa.Error
  120. }
  121. return
  122. }
  123. // ToNumber returns a formula argument with number data type.
  124. func (fa formulaArg) ToNumber() formulaArg {
  125. var n float64
  126. var err error
  127. switch fa.Type {
  128. case ArgString:
  129. n, err = strconv.ParseFloat(fa.String, 64)
  130. if err != nil {
  131. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  132. }
  133. case ArgNumber:
  134. n = fa.Number
  135. }
  136. return newNumberFormulaArg(n)
  137. }
  138. // ToBool returns a formula argument with boolean data type.
  139. func (fa formulaArg) ToBool() formulaArg {
  140. var b bool
  141. var err error
  142. switch fa.Type {
  143. case ArgString:
  144. b, err = strconv.ParseBool(fa.String)
  145. if err != nil {
  146. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  147. }
  148. case ArgNumber:
  149. if fa.Boolean && fa.Number == 1 {
  150. b = true
  151. }
  152. }
  153. return newBoolFormulaArg(b)
  154. }
  155. // ToList returns a formula argument with array data type.
  156. func (fa formulaArg) ToList() []formulaArg {
  157. switch fa.Type {
  158. case ArgMatrix:
  159. list := []formulaArg{}
  160. for _, row := range fa.Matrix {
  161. list = append(list, row...)
  162. }
  163. return list
  164. case ArgList:
  165. return fa.List
  166. case ArgNumber, ArgString, ArgError, ArgUnknown:
  167. return []formulaArg{fa}
  168. }
  169. return nil
  170. }
  171. // formulaFuncs is the type of the formula functions.
  172. type formulaFuncs struct {
  173. f *File
  174. sheet, cell string
  175. }
  176. // tokenPriority defined basic arithmetic operator priority.
  177. var tokenPriority = map[string]int{
  178. "^": 5,
  179. "*": 4,
  180. "/": 4,
  181. "+": 3,
  182. "-": 3,
  183. "=": 2,
  184. "<>": 2,
  185. "<": 2,
  186. "<=": 2,
  187. ">": 2,
  188. ">=": 2,
  189. "&": 1,
  190. }
  191. // CalcCellValue provides a function to get calculated cell value. This
  192. // feature is currently in working processing. Array formula, table formula
  193. // and some other formulas are not supported currently.
  194. //
  195. // Supported formula functions:
  196. //
  197. // ABS
  198. // ACOS
  199. // ACOSH
  200. // ACOT
  201. // ACOTH
  202. // AND
  203. // ARABIC
  204. // ASIN
  205. // ASINH
  206. // ATAN
  207. // ATAN2
  208. // ATANH
  209. // AVERAGE
  210. // AVERAGEA
  211. // BASE
  212. // BESSELI
  213. // BESSELJ
  214. // BIN2DEC
  215. // BIN2HEX
  216. // BIN2OCT
  217. // BITAND
  218. // BITLSHIFT
  219. // BITOR
  220. // BITRSHIFT
  221. // BITXOR
  222. // CEILING
  223. // CEILING.MATH
  224. // CEILING.PRECISE
  225. // CHAR
  226. // CHOOSE
  227. // CLEAN
  228. // CODE
  229. // COLUMN
  230. // COLUMNS
  231. // COMBIN
  232. // COMBINA
  233. // COMPLEX
  234. // CONCAT
  235. // CONCATENATE
  236. // COS
  237. // COSH
  238. // COT
  239. // COTH
  240. // COUNT
  241. // COUNTA
  242. // COUNTBLANK
  243. // CSC
  244. // CSCH
  245. // DATE
  246. // DATEDIF
  247. // DEC2BIN
  248. // DEC2HEX
  249. // DEC2OCT
  250. // DECIMAL
  251. // DEGREES
  252. // ENCODEURL
  253. // EVEN
  254. // EXACT
  255. // EXP
  256. // FACT
  257. // FACTDOUBLE
  258. // FALSE
  259. // FIND
  260. // FINDB
  261. // FISHER
  262. // FISHERINV
  263. // FIXED
  264. // FLOOR
  265. // FLOOR.MATH
  266. // FLOOR.PRECISE
  267. // GAMMA
  268. // GAMMALN
  269. // GCD
  270. // HARMEAN
  271. // HEX2BIN
  272. // HEX2DEC
  273. // HEX2OCT
  274. // HLOOKUP
  275. // IF
  276. // IFERROR
  277. // IMABS
  278. // IMAGINARY
  279. // IMARGUMENT
  280. // IMCONJUGATE
  281. // IMCOS
  282. // IMCOSH
  283. // IMCOT
  284. // IMCSC
  285. // IMCSCH
  286. // IMDIV
  287. // IMEXP
  288. // IMLN
  289. // IMLOG10
  290. // IMLOG2
  291. // IMPOWER
  292. // IMPRODUCT
  293. // IMREAL
  294. // IMSEC
  295. // IMSECH
  296. // IMSIN
  297. // IMSINH
  298. // IMSQRT
  299. // IMSUB
  300. // IMSUM
  301. // IMTAN
  302. // INT
  303. // IPMT
  304. // ISBLANK
  305. // ISERR
  306. // ISERROR
  307. // ISEVEN
  308. // ISNA
  309. // ISNONTEXT
  310. // ISNUMBER
  311. // ISODD
  312. // ISTEXT
  313. // ISO.CEILING
  314. // KURT
  315. // LARGE
  316. // LCM
  317. // LEFT
  318. // LEFTB
  319. // LEN
  320. // LENB
  321. // LN
  322. // LOG
  323. // LOG10
  324. // LOOKUP
  325. // LOWER
  326. // MAX
  327. // MDETERM
  328. // MEDIAN
  329. // MID
  330. // MIDB
  331. // MIN
  332. // MINA
  333. // MOD
  334. // MROUND
  335. // MULTINOMIAL
  336. // MUNIT
  337. // N
  338. // NA
  339. // NORM.DIST
  340. // NORMDIST
  341. // NORM.INV
  342. // NORMINV
  343. // NORM.S.DIST
  344. // NORMSDIST
  345. // NORM.S.INV
  346. // NORMSINV
  347. // NOT
  348. // NOW
  349. // OCT2BIN
  350. // OCT2DEC
  351. // OCT2HEX
  352. // ODD
  353. // OR
  354. // PERCENTILE.INC
  355. // PERCENTILE
  356. // PERMUT
  357. // PERMUTATIONA
  358. // PI
  359. // PMT
  360. // POISSON.DIST
  361. // POISSON
  362. // POWER
  363. // PPMT
  364. // PRODUCT
  365. // PROPER
  366. // QUARTILE
  367. // QUARTILE.INC
  368. // QUOTIENT
  369. // RADIANS
  370. // RAND
  371. // RANDBETWEEN
  372. // REPLACE
  373. // REPLACEB
  374. // REPT
  375. // RIGHT
  376. // RIGHTB
  377. // ROMAN
  378. // ROUND
  379. // ROUNDDOWN
  380. // ROUNDUP
  381. // ROW
  382. // ROWS
  383. // SEC
  384. // SECH
  385. // SHEET
  386. // SIGN
  387. // SIN
  388. // SINH
  389. // SKEW
  390. // SMALL
  391. // SQRT
  392. // SQRTPI
  393. // STDEV
  394. // STDEV.S
  395. // STDEVA
  396. // SUBSTITUTE
  397. // SUM
  398. // SUMIF
  399. // SUMSQ
  400. // T
  401. // TAN
  402. // TANH
  403. // TODAY
  404. // TRIM
  405. // TRUE
  406. // TRUNC
  407. // UNICHAR
  408. // UNICODE
  409. // UPPER
  410. // VAR.P
  411. // VARP
  412. // VLOOKUP
  413. //
  414. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  415. var (
  416. formula string
  417. token efp.Token
  418. )
  419. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  420. return
  421. }
  422. ps := efp.ExcelParser()
  423. tokens := ps.Parse(formula)
  424. if tokens == nil {
  425. return
  426. }
  427. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  428. return
  429. }
  430. result = token.TValue
  431. isNum, precision := isNumeric(result)
  432. if isNum && precision > 15 {
  433. num, _ := roundPrecision(result)
  434. result = strings.ToUpper(num)
  435. }
  436. return
  437. }
  438. // getPriority calculate arithmetic operator priority.
  439. func getPriority(token efp.Token) (pri int) {
  440. pri = tokenPriority[token.TValue]
  441. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  442. pri = 6
  443. }
  444. if isBeginParenthesesToken(token) { // (
  445. pri = 0
  446. }
  447. return
  448. }
  449. // newNumberFormulaArg constructs a number formula argument.
  450. func newNumberFormulaArg(n float64) formulaArg {
  451. if math.IsNaN(n) {
  452. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  453. }
  454. return formulaArg{Type: ArgNumber, Number: n}
  455. }
  456. // newStringFormulaArg constructs a string formula argument.
  457. func newStringFormulaArg(s string) formulaArg {
  458. return formulaArg{Type: ArgString, String: s}
  459. }
  460. // newMatrixFormulaArg constructs a matrix formula argument.
  461. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  462. return formulaArg{Type: ArgMatrix, Matrix: m}
  463. }
  464. // newListFormulaArg create a list formula argument.
  465. func newListFormulaArg(l []formulaArg) formulaArg {
  466. return formulaArg{Type: ArgList, List: l}
  467. }
  468. // newBoolFormulaArg constructs a boolean formula argument.
  469. func newBoolFormulaArg(b bool) formulaArg {
  470. var n float64
  471. if b {
  472. n = 1
  473. }
  474. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  475. }
  476. // newErrorFormulaArg create an error formula argument of a given type with a
  477. // specified error message.
  478. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  479. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  480. }
  481. // newEmptyFormulaArg create an empty formula argument.
  482. func newEmptyFormulaArg() formulaArg {
  483. return formulaArg{Type: ArgEmpty}
  484. }
  485. // evalInfixExp evaluate syntax analysis by given infix expression after
  486. // lexical analysis. Evaluate an infix expression containing formulas by
  487. // stacks:
  488. //
  489. // opd - Operand
  490. // opt - Operator
  491. // opf - Operation formula
  492. // opfd - Operand of the operation formula
  493. // opft - Operator of the operation formula
  494. // args - Arguments list of the operation formula
  495. //
  496. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  497. //
  498. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  499. var err error
  500. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  501. for i := 0; i < len(tokens); i++ {
  502. token := tokens[i]
  503. // out of function stack
  504. if opfStack.Len() == 0 {
  505. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  506. return efp.Token{}, err
  507. }
  508. }
  509. // function start
  510. if isFunctionStartToken(token) {
  511. opfStack.Push(token)
  512. argsStack.Push(list.New().Init())
  513. continue
  514. }
  515. // in function stack, walk 2 token at once
  516. if opfStack.Len() > 0 {
  517. var nextToken efp.Token
  518. if i+1 < len(tokens) {
  519. nextToken = tokens[i+1]
  520. }
  521. // current token is args or range, skip next token, order required: parse reference first
  522. if token.TSubType == efp.TokenSubTypeRange {
  523. if !opftStack.Empty() {
  524. // parse reference: must reference at here
  525. result, err := f.parseReference(sheet, token.TValue)
  526. if err != nil {
  527. return efp.Token{TValue: formulaErrorNAME}, err
  528. }
  529. if result.Type != ArgString {
  530. return efp.Token{}, errors.New(formulaErrorVALUE)
  531. }
  532. opfdStack.Push(efp.Token{
  533. TType: efp.TokenTypeOperand,
  534. TSubType: efp.TokenSubTypeNumber,
  535. TValue: result.String,
  536. })
  537. continue
  538. }
  539. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  540. // parse reference: reference or range at here
  541. result, err := f.parseReference(sheet, token.TValue)
  542. if err != nil {
  543. return efp.Token{TValue: formulaErrorNAME}, err
  544. }
  545. if result.Type == ArgUnknown {
  546. return efp.Token{}, errors.New(formulaErrorVALUE)
  547. }
  548. argsStack.Peek().(*list.List).PushBack(result)
  549. continue
  550. }
  551. }
  552. // check current token is opft
  553. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  554. return efp.Token{}, err
  555. }
  556. // current token is arg
  557. if token.TType == efp.TokenTypeArgument {
  558. for !opftStack.Empty() {
  559. // calculate trigger
  560. topOpt := opftStack.Peek().(efp.Token)
  561. if err := calculate(opfdStack, topOpt); err != nil {
  562. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  563. }
  564. opftStack.Pop()
  565. }
  566. if !opfdStack.Empty() {
  567. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  568. }
  569. continue
  570. }
  571. // current token is logical
  572. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  573. }
  574. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  575. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  576. }
  577. // current token is text
  578. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  579. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  580. }
  581. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  582. return efp.Token{}, err
  583. }
  584. }
  585. }
  586. for optStack.Len() != 0 {
  587. topOpt := optStack.Peek().(efp.Token)
  588. if err = calculate(opdStack, topOpt); err != nil {
  589. return efp.Token{}, err
  590. }
  591. optStack.Pop()
  592. }
  593. if opdStack.Len() == 0 {
  594. return efp.Token{}, errors.New("formula not valid")
  595. }
  596. return opdStack.Peek().(efp.Token), err
  597. }
  598. // evalInfixExpFunc evaluate formula function in the infix expression.
  599. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  600. if !isFunctionStopToken(token) {
  601. return nil
  602. }
  603. // current token is function stop
  604. for !opftStack.Empty() {
  605. // calculate trigger
  606. topOpt := opftStack.Peek().(efp.Token)
  607. if err := calculate(opfdStack, topOpt); err != nil {
  608. return err
  609. }
  610. opftStack.Pop()
  611. }
  612. // push opfd to args
  613. if opfdStack.Len() > 0 {
  614. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  615. }
  616. // call formula function to evaluate
  617. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  618. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  619. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  620. if arg.Type == ArgError && opfStack.Len() == 1 {
  621. return errors.New(arg.Value())
  622. }
  623. argsStack.Pop()
  624. opfStack.Pop()
  625. if opfStack.Len() > 0 { // still in function stack
  626. if nextToken.TType == efp.TokenTypeOperatorInfix {
  627. // mathematics calculate in formula function
  628. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  629. } else {
  630. argsStack.Peek().(*list.List).PushBack(arg)
  631. }
  632. } else {
  633. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  634. }
  635. return nil
  636. }
  637. // calcPow evaluate exponentiation arithmetic operations.
  638. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  639. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  640. if err != nil {
  641. return err
  642. }
  643. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  644. if err != nil {
  645. return err
  646. }
  647. result := math.Pow(lOpdVal, rOpdVal)
  648. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  649. return nil
  650. }
  651. // calcEq evaluate equal arithmetic operations.
  652. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  653. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  654. return nil
  655. }
  656. // calcNEq evaluate not equal arithmetic operations.
  657. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  658. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  659. return nil
  660. }
  661. // calcL evaluate less than arithmetic operations.
  662. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  663. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  664. if err != nil {
  665. return err
  666. }
  667. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  668. if err != nil {
  669. return err
  670. }
  671. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  672. return nil
  673. }
  674. // calcLe evaluate less than or equal arithmetic operations.
  675. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  676. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  677. if err != nil {
  678. return err
  679. }
  680. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  681. if err != nil {
  682. return err
  683. }
  684. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  685. return nil
  686. }
  687. // calcG evaluate greater than or equal arithmetic operations.
  688. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  689. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  690. if err != nil {
  691. return err
  692. }
  693. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  694. if err != nil {
  695. return err
  696. }
  697. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  698. return nil
  699. }
  700. // calcGe evaluate greater than or equal arithmetic operations.
  701. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  702. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  703. if err != nil {
  704. return err
  705. }
  706. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  707. if err != nil {
  708. return err
  709. }
  710. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  711. return nil
  712. }
  713. // calcSplice evaluate splice '&' operations.
  714. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  715. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  716. return nil
  717. }
  718. // calcAdd evaluate addition arithmetic operations.
  719. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  720. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  721. if err != nil {
  722. return err
  723. }
  724. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  725. if err != nil {
  726. return err
  727. }
  728. result := lOpdVal + rOpdVal
  729. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  730. return nil
  731. }
  732. // calcSubtract evaluate subtraction arithmetic operations.
  733. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  734. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  735. if err != nil {
  736. return err
  737. }
  738. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  739. if err != nil {
  740. return err
  741. }
  742. result := lOpdVal - rOpdVal
  743. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  744. return nil
  745. }
  746. // calcMultiply evaluate multiplication arithmetic operations.
  747. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  748. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  749. if err != nil {
  750. return err
  751. }
  752. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  753. if err != nil {
  754. return err
  755. }
  756. result := lOpdVal * rOpdVal
  757. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  758. return nil
  759. }
  760. // calcDiv evaluate division arithmetic operations.
  761. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  762. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  763. if err != nil {
  764. return err
  765. }
  766. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  767. if err != nil {
  768. return err
  769. }
  770. result := lOpdVal / rOpdVal
  771. if rOpdVal == 0 {
  772. return errors.New(formulaErrorDIV)
  773. }
  774. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  775. return nil
  776. }
  777. // calculate evaluate basic arithmetic operations.
  778. func calculate(opdStack *Stack, opt efp.Token) error {
  779. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  780. if opdStack.Len() < 1 {
  781. return errors.New("formula not valid")
  782. }
  783. opd := opdStack.Pop().(efp.Token)
  784. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  785. if err != nil {
  786. return err
  787. }
  788. result := 0 - opdVal
  789. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  790. }
  791. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  792. "^": calcPow,
  793. "*": calcMultiply,
  794. "/": calcDiv,
  795. "+": calcAdd,
  796. "=": calcEq,
  797. "<>": calcNEq,
  798. "<": calcL,
  799. "<=": calcLe,
  800. ">": calcG,
  801. ">=": calcGe,
  802. "&": calcSplice,
  803. }
  804. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  805. if opdStack.Len() < 2 {
  806. return errors.New("formula not valid")
  807. }
  808. rOpd := opdStack.Pop().(efp.Token)
  809. lOpd := opdStack.Pop().(efp.Token)
  810. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  811. return err
  812. }
  813. }
  814. fn, ok := tokenCalcFunc[opt.TValue]
  815. if ok {
  816. if opdStack.Len() < 2 {
  817. return errors.New("formula not valid")
  818. }
  819. rOpd := opdStack.Pop().(efp.Token)
  820. lOpd := opdStack.Pop().(efp.Token)
  821. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  822. return err
  823. }
  824. }
  825. return nil
  826. }
  827. // parseOperatorPrefixToken parse operator prefix token.
  828. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  829. if optStack.Len() == 0 {
  830. optStack.Push(token)
  831. } else {
  832. tokenPriority := getPriority(token)
  833. topOpt := optStack.Peek().(efp.Token)
  834. topOptPriority := getPriority(topOpt)
  835. if tokenPriority > topOptPriority {
  836. optStack.Push(token)
  837. } else {
  838. for tokenPriority <= topOptPriority {
  839. optStack.Pop()
  840. if err = calculate(opdStack, topOpt); err != nil {
  841. return
  842. }
  843. if optStack.Len() > 0 {
  844. topOpt = optStack.Peek().(efp.Token)
  845. topOptPriority = getPriority(topOpt)
  846. continue
  847. }
  848. break
  849. }
  850. optStack.Push(token)
  851. }
  852. }
  853. return
  854. }
  855. // isFunctionStartToken determine if the token is function stop.
  856. func isFunctionStartToken(token efp.Token) bool {
  857. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  858. }
  859. // isFunctionStopToken determine if the token is function stop.
  860. func isFunctionStopToken(token efp.Token) bool {
  861. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  862. }
  863. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  864. func isBeginParenthesesToken(token efp.Token) bool {
  865. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  866. }
  867. // isEndParenthesesToken determine if the token is end parentheses: ).
  868. func isEndParenthesesToken(token efp.Token) bool {
  869. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  870. }
  871. // isOperatorPrefixToken determine if the token is parse operator prefix
  872. // token.
  873. func isOperatorPrefixToken(token efp.Token) bool {
  874. _, ok := tokenPriority[token.TValue]
  875. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  876. return true
  877. }
  878. return false
  879. }
  880. // getDefinedNameRefTo convert defined name to reference range.
  881. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  882. for _, definedName := range f.GetDefinedName() {
  883. if definedName.Name == definedNameName {
  884. refTo = definedName.RefersTo
  885. // worksheet scope takes precedence over scope workbook when both definedNames exist
  886. if definedName.Scope == currentSheet {
  887. break
  888. }
  889. }
  890. }
  891. return refTo
  892. }
  893. // parseToken parse basic arithmetic operator priority and evaluate based on
  894. // operators and operands.
  895. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  896. // parse reference: must reference at here
  897. if token.TSubType == efp.TokenSubTypeRange {
  898. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  899. if refTo != "" {
  900. token.TValue = refTo
  901. }
  902. result, err := f.parseReference(sheet, token.TValue)
  903. if err != nil {
  904. return errors.New(formulaErrorNAME)
  905. }
  906. if result.Type != ArgString {
  907. return errors.New(formulaErrorVALUE)
  908. }
  909. token.TValue = result.String
  910. token.TType = efp.TokenTypeOperand
  911. token.TSubType = efp.TokenSubTypeNumber
  912. }
  913. if isOperatorPrefixToken(token) {
  914. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  915. return err
  916. }
  917. }
  918. if isBeginParenthesesToken(token) { // (
  919. optStack.Push(token)
  920. }
  921. if isEndParenthesesToken(token) { // )
  922. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  923. topOpt := optStack.Peek().(efp.Token)
  924. if err := calculate(opdStack, topOpt); err != nil {
  925. return err
  926. }
  927. optStack.Pop()
  928. }
  929. optStack.Pop()
  930. }
  931. // opd
  932. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  933. opdStack.Push(token)
  934. }
  935. return nil
  936. }
  937. // parseReference parse reference and extract values by given reference
  938. // characters and default sheet name.
  939. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  940. reference = strings.Replace(reference, "$", "", -1)
  941. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  942. for _, ref := range strings.Split(reference, ":") {
  943. tokens := strings.Split(ref, "!")
  944. cr := cellRef{}
  945. if len(tokens) == 2 { // have a worksheet name
  946. cr.Sheet = tokens[0]
  947. // cast to cell coordinates
  948. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  949. // cast to column
  950. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  951. // cast to row
  952. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  953. err = newInvalidColumnNameError(tokens[1])
  954. return
  955. }
  956. cr.Col = TotalColumns
  957. }
  958. }
  959. if refs.Len() > 0 {
  960. e := refs.Back()
  961. cellRefs.PushBack(e.Value.(cellRef))
  962. refs.Remove(e)
  963. }
  964. refs.PushBack(cr)
  965. continue
  966. }
  967. // cast to cell coordinates
  968. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  969. // cast to column
  970. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  971. // cast to row
  972. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  973. err = newInvalidColumnNameError(tokens[0])
  974. return
  975. }
  976. cr.Col = TotalColumns
  977. }
  978. cellRanges.PushBack(cellRange{
  979. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  980. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  981. })
  982. cellRefs.Init()
  983. arg, err = f.rangeResolver(cellRefs, cellRanges)
  984. return
  985. }
  986. e := refs.Back()
  987. if e == nil {
  988. cr.Sheet = sheet
  989. refs.PushBack(cr)
  990. continue
  991. }
  992. cellRanges.PushBack(cellRange{
  993. From: e.Value.(cellRef),
  994. To: cr,
  995. })
  996. refs.Remove(e)
  997. }
  998. if refs.Len() > 0 {
  999. e := refs.Back()
  1000. cellRefs.PushBack(e.Value.(cellRef))
  1001. refs.Remove(e)
  1002. }
  1003. arg, err = f.rangeResolver(cellRefs, cellRanges)
  1004. return
  1005. }
  1006. // prepareValueRange prepare value range.
  1007. func prepareValueRange(cr cellRange, valueRange []int) {
  1008. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  1009. valueRange[0] = cr.From.Row
  1010. }
  1011. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  1012. valueRange[2] = cr.From.Col
  1013. }
  1014. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  1015. valueRange[1] = cr.To.Row
  1016. }
  1017. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  1018. valueRange[3] = cr.To.Col
  1019. }
  1020. }
  1021. // prepareValueRef prepare value reference.
  1022. func prepareValueRef(cr cellRef, valueRange []int) {
  1023. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  1024. valueRange[0] = cr.Row
  1025. }
  1026. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  1027. valueRange[2] = cr.Col
  1028. }
  1029. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  1030. valueRange[1] = cr.Row
  1031. }
  1032. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1033. valueRange[3] = cr.Col
  1034. }
  1035. }
  1036. // rangeResolver extract value as string from given reference and range list.
  1037. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1038. // be reference A1:B3.
  1039. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1040. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1041. // value range order: from row, to row, from column, to column
  1042. valueRange := []int{0, 0, 0, 0}
  1043. var sheet string
  1044. // prepare value range
  1045. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1046. cr := temp.Value.(cellRange)
  1047. if cr.From.Sheet != cr.To.Sheet {
  1048. err = errors.New(formulaErrorVALUE)
  1049. }
  1050. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1051. _ = sortCoordinates(rng)
  1052. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1053. prepareValueRange(cr, valueRange)
  1054. if cr.From.Sheet != "" {
  1055. sheet = cr.From.Sheet
  1056. }
  1057. }
  1058. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1059. cr := temp.Value.(cellRef)
  1060. if cr.Sheet != "" {
  1061. sheet = cr.Sheet
  1062. }
  1063. prepareValueRef(cr, valueRange)
  1064. }
  1065. // extract value from ranges
  1066. if cellRanges.Len() > 0 {
  1067. arg.Type = ArgMatrix
  1068. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1069. var matrixRow = []formulaArg{}
  1070. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1071. var cell, value string
  1072. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1073. return
  1074. }
  1075. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1076. return
  1077. }
  1078. matrixRow = append(matrixRow, formulaArg{
  1079. String: value,
  1080. Type: ArgString,
  1081. })
  1082. }
  1083. arg.Matrix = append(arg.Matrix, matrixRow)
  1084. }
  1085. return
  1086. }
  1087. // extract value from references
  1088. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1089. cr := temp.Value.(cellRef)
  1090. var cell string
  1091. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1092. return
  1093. }
  1094. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1095. return
  1096. }
  1097. arg.Type = ArgString
  1098. }
  1099. return
  1100. }
  1101. // callFuncByName calls the no error or only error return function with
  1102. // reflect by given receiver, name and parameters.
  1103. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1104. function := reflect.ValueOf(receiver).MethodByName(name)
  1105. if function.IsValid() {
  1106. rt := function.Call(params)
  1107. if len(rt) == 0 {
  1108. return
  1109. }
  1110. arg = rt[0].Interface().(formulaArg)
  1111. return
  1112. }
  1113. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1114. }
  1115. // formulaCriteriaParser parse formula criteria.
  1116. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1117. fc = &formulaCriteria{}
  1118. if exp == "" {
  1119. return
  1120. }
  1121. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1122. fc.Type, fc.Condition = criteriaEq, match[1]
  1123. return
  1124. }
  1125. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1126. fc.Type, fc.Condition = criteriaEq, match[1]
  1127. return
  1128. }
  1129. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1130. fc.Type, fc.Condition = criteriaLe, match[1]
  1131. return
  1132. }
  1133. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1134. fc.Type, fc.Condition = criteriaGe, match[1]
  1135. return
  1136. }
  1137. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1138. fc.Type, fc.Condition = criteriaL, match[1]
  1139. return
  1140. }
  1141. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1142. fc.Type, fc.Condition = criteriaG, match[1]
  1143. return
  1144. }
  1145. if strings.Contains(exp, "*") {
  1146. if strings.HasPrefix(exp, "*") {
  1147. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1148. }
  1149. if strings.HasSuffix(exp, "*") {
  1150. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1151. }
  1152. return
  1153. }
  1154. fc.Type, fc.Condition = criteriaEq, exp
  1155. return
  1156. }
  1157. // formulaCriteriaEval evaluate formula criteria expression.
  1158. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1159. var value, expected float64
  1160. var e error
  1161. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1162. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1163. return
  1164. }
  1165. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1166. return
  1167. }
  1168. return
  1169. }
  1170. switch criteria.Type {
  1171. case criteriaEq:
  1172. return val == criteria.Condition, err
  1173. case criteriaLe:
  1174. value, expected, e = prepareValue(val, criteria.Condition)
  1175. return value <= expected && e == nil, err
  1176. case criteriaGe:
  1177. value, expected, e = prepareValue(val, criteria.Condition)
  1178. return value >= expected && e == nil, err
  1179. case criteriaL:
  1180. value, expected, e = prepareValue(val, criteria.Condition)
  1181. return value < expected && e == nil, err
  1182. case criteriaG:
  1183. value, expected, e = prepareValue(val, criteria.Condition)
  1184. return value > expected && e == nil, err
  1185. case criteriaBeg:
  1186. return strings.HasPrefix(val, criteria.Condition), err
  1187. case criteriaEnd:
  1188. return strings.HasSuffix(val, criteria.Condition), err
  1189. }
  1190. return
  1191. }
  1192. // Engineering Functions
  1193. // BESSELI function the modified Bessel function, which is equivalent to the
  1194. // Bessel function evaluated for purely imaginary arguments. The syntax of
  1195. // the Besseli function is:
  1196. //
  1197. // BESSELI(x,n)
  1198. //
  1199. func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
  1200. if argsList.Len() != 2 {
  1201. return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
  1202. }
  1203. return fn.bassel(argsList, true)
  1204. }
  1205. // BESSELJ function returns the Bessel function, Jn(x), for a specified order
  1206. // and value of x. The syntax of the function is:
  1207. //
  1208. // BESSELJ(x,n)
  1209. //
  1210. func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
  1211. if argsList.Len() != 2 {
  1212. return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
  1213. }
  1214. return fn.bassel(argsList, false)
  1215. }
  1216. // bassel is an implementation of the formula function BESSELI and BESSELJ.
  1217. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
  1218. x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1219. if x.Type != ArgNumber {
  1220. return x
  1221. }
  1222. if n.Type != ArgNumber {
  1223. return n
  1224. }
  1225. max, x1 := 100, x.Number*0.5
  1226. x2 := x1 * x1
  1227. x1 = math.Pow(x1, n.Number)
  1228. n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
  1229. result := x1 / n1
  1230. t := result * 0.9
  1231. for result != t && max != 0 {
  1232. x1 *= x2
  1233. n3++
  1234. n1 *= n3
  1235. n4++
  1236. n2 *= n4
  1237. t = result
  1238. if modfied || add {
  1239. result += (x1 / n1 / n2)
  1240. } else {
  1241. result -= (x1 / n1 / n2)
  1242. }
  1243. max--
  1244. add = !add
  1245. }
  1246. return newNumberFormulaArg(result)
  1247. }
  1248. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1249. // The syntax of the function is:
  1250. //
  1251. // BIN2DEC(number)
  1252. //
  1253. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1254. if argsList.Len() != 1 {
  1255. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1256. }
  1257. token := argsList.Front().Value.(formulaArg)
  1258. number := token.ToNumber()
  1259. if number.Type != ArgNumber {
  1260. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1261. }
  1262. return fn.bin2dec(token.Value())
  1263. }
  1264. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1265. // (Base 16) number. The syntax of the function is:
  1266. //
  1267. // BIN2HEX(number,[places])
  1268. //
  1269. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1270. if argsList.Len() < 1 {
  1271. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1272. }
  1273. if argsList.Len() > 2 {
  1274. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1275. }
  1276. token := argsList.Front().Value.(formulaArg)
  1277. number := token.ToNumber()
  1278. if number.Type != ArgNumber {
  1279. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1280. }
  1281. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1282. if decimal.Type != ArgNumber {
  1283. return decimal
  1284. }
  1285. newList.PushBack(decimal)
  1286. if argsList.Len() == 2 {
  1287. newList.PushBack(argsList.Back().Value.(formulaArg))
  1288. }
  1289. return fn.dec2x("BIN2HEX", newList)
  1290. }
  1291. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1292. // number. The syntax of the function is:
  1293. //
  1294. // BIN2OCT(number,[places])
  1295. //
  1296. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1297. if argsList.Len() < 1 {
  1298. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1299. }
  1300. if argsList.Len() > 2 {
  1301. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1302. }
  1303. token := argsList.Front().Value.(formulaArg)
  1304. number := token.ToNumber()
  1305. if number.Type != ArgNumber {
  1306. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1307. }
  1308. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1309. if decimal.Type != ArgNumber {
  1310. return decimal
  1311. }
  1312. newList.PushBack(decimal)
  1313. if argsList.Len() == 2 {
  1314. newList.PushBack(argsList.Back().Value.(formulaArg))
  1315. }
  1316. return fn.dec2x("BIN2OCT", newList)
  1317. }
  1318. // bin2dec is an implementation of the formula function BIN2DEC.
  1319. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1320. decimal, length := 0.0, len(number)
  1321. for i := length; i > 0; i-- {
  1322. s := string(number[length-i])
  1323. if i == 10 && s == "1" {
  1324. decimal += math.Pow(-2.0, float64(i-1))
  1325. continue
  1326. }
  1327. if s == "1" {
  1328. decimal += math.Pow(2.0, float64(i-1))
  1329. continue
  1330. }
  1331. if s != "0" {
  1332. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1333. }
  1334. }
  1335. return newNumberFormulaArg(decimal)
  1336. }
  1337. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1338. // syntax of the function is:
  1339. //
  1340. // BITAND(number1,number2)
  1341. //
  1342. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1343. return fn.bitwise("BITAND", argsList)
  1344. }
  1345. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1346. // number of bits. The syntax of the function is:
  1347. //
  1348. // BITLSHIFT(number1,shift_amount)
  1349. //
  1350. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1351. return fn.bitwise("BITLSHIFT", argsList)
  1352. }
  1353. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1354. // syntax of the function is:
  1355. //
  1356. // BITOR(number1,number2)
  1357. //
  1358. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1359. return fn.bitwise("BITOR", argsList)
  1360. }
  1361. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1362. // number of bits. The syntax of the function is:
  1363. //
  1364. // BITRSHIFT(number1,shift_amount)
  1365. //
  1366. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1367. return fn.bitwise("BITRSHIFT", argsList)
  1368. }
  1369. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1370. // integers. The syntax of the function is:
  1371. //
  1372. // BITXOR(number1,number2)
  1373. //
  1374. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1375. return fn.bitwise("BITXOR", argsList)
  1376. }
  1377. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1378. // BITOR, BITRSHIFT and BITXOR.
  1379. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1380. if argsList.Len() != 2 {
  1381. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1382. }
  1383. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1384. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1385. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1386. }
  1387. max := math.Pow(2, 48) - 1
  1388. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1389. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1390. }
  1391. bitwiseFuncMap := map[string]func(a, b int) int{
  1392. "BITAND": func(a, b int) int { return a & b },
  1393. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1394. "BITOR": func(a, b int) int { return a | b },
  1395. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1396. "BITXOR": func(a, b int) int { return a ^ b },
  1397. }
  1398. bitwiseFunc := bitwiseFuncMap[name]
  1399. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1400. }
  1401. // COMPLEX function takes two arguments, representing the real and the
  1402. // imaginary coefficients of a complex number, and from these, creates a
  1403. // complex number. The syntax of the function is:
  1404. //
  1405. // COMPLEX(real_num,i_num,[suffix])
  1406. //
  1407. func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
  1408. if argsList.Len() < 2 {
  1409. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
  1410. }
  1411. if argsList.Len() > 3 {
  1412. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
  1413. }
  1414. real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
  1415. if real.Type != ArgNumber {
  1416. return real
  1417. }
  1418. if i.Type != ArgNumber {
  1419. return i
  1420. }
  1421. if argsList.Len() == 3 {
  1422. if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
  1423. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1424. }
  1425. }
  1426. return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))
  1427. }
  1428. // cmplx2str replace complex number string characters.
  1429. func cmplx2str(c, suffix string) string {
  1430. if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" {
  1431. return "0"
  1432. }
  1433. c = strings.TrimPrefix(c, "(")
  1434. c = strings.TrimPrefix(c, "+0+")
  1435. c = strings.TrimPrefix(c, "-0+")
  1436. c = strings.TrimSuffix(c, ")")
  1437. c = strings.TrimPrefix(c, "0+")
  1438. if strings.HasPrefix(c, "0-") {
  1439. c = "-" + strings.TrimPrefix(c, "0-")
  1440. }
  1441. c = strings.TrimPrefix(c, "0+")
  1442. c = strings.TrimSuffix(c, "+0i")
  1443. c = strings.TrimSuffix(c, "-0i")
  1444. c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c)
  1445. c = strings.Replace(c, "i", suffix, -1)
  1446. return c
  1447. }
  1448. // str2cmplx convert complex number string characters.
  1449. func str2cmplx(c string) string {
  1450. c = strings.Replace(c, "j", "i", -1)
  1451. if c == "i" {
  1452. c = "1i"
  1453. }
  1454. c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)
  1455. return c
  1456. }
  1457. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1458. // The syntax of the function is:
  1459. //
  1460. // DEC2BIN(number,[places])
  1461. //
  1462. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1463. return fn.dec2x("DEC2BIN", argsList)
  1464. }
  1465. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1466. // number. The syntax of the function is:
  1467. //
  1468. // DEC2HEX(number,[places])
  1469. //
  1470. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1471. return fn.dec2x("DEC2HEX", argsList)
  1472. }
  1473. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1474. // The syntax of the function is:
  1475. //
  1476. // DEC2OCT(number,[places])
  1477. //
  1478. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1479. return fn.dec2x("DEC2OCT", argsList)
  1480. }
  1481. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1482. // DEC2OCT.
  1483. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1484. if argsList.Len() < 1 {
  1485. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1486. }
  1487. if argsList.Len() > 2 {
  1488. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1489. }
  1490. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1491. if decimal.Type != ArgNumber {
  1492. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1493. }
  1494. maxLimitMap := map[string]float64{
  1495. "DEC2BIN": 511,
  1496. "HEX2BIN": 511,
  1497. "OCT2BIN": 511,
  1498. "BIN2HEX": 549755813887,
  1499. "DEC2HEX": 549755813887,
  1500. "OCT2HEX": 549755813887,
  1501. "BIN2OCT": 536870911,
  1502. "DEC2OCT": 536870911,
  1503. "HEX2OCT": 536870911,
  1504. }
  1505. minLimitMap := map[string]float64{
  1506. "DEC2BIN": -512,
  1507. "HEX2BIN": -512,
  1508. "OCT2BIN": -512,
  1509. "BIN2HEX": -549755813888,
  1510. "DEC2HEX": -549755813888,
  1511. "OCT2HEX": -549755813888,
  1512. "BIN2OCT": -536870912,
  1513. "DEC2OCT": -536870912,
  1514. "HEX2OCT": -536870912,
  1515. }
  1516. baseMap := map[string]int{
  1517. "DEC2BIN": 2,
  1518. "HEX2BIN": 2,
  1519. "OCT2BIN": 2,
  1520. "BIN2HEX": 16,
  1521. "DEC2HEX": 16,
  1522. "OCT2HEX": 16,
  1523. "BIN2OCT": 8,
  1524. "DEC2OCT": 8,
  1525. "HEX2OCT": 8,
  1526. }
  1527. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1528. base := baseMap[name]
  1529. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1530. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1531. }
  1532. n := int64(decimal.Number)
  1533. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1534. if argsList.Len() == 2 {
  1535. places := argsList.Back().Value.(formulaArg).ToNumber()
  1536. if places.Type != ArgNumber {
  1537. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1538. }
  1539. binaryPlaces := len(binary)
  1540. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1541. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1542. }
  1543. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1544. }
  1545. if decimal.Number < 0 && len(binary) > 10 {
  1546. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1547. }
  1548. return newStringFormulaArg(strings.ToUpper(binary))
  1549. }
  1550. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1551. // (Base 2) number. The syntax of the function is:
  1552. //
  1553. // HEX2BIN(number,[places])
  1554. //
  1555. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1556. if argsList.Len() < 1 {
  1557. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1558. }
  1559. if argsList.Len() > 2 {
  1560. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1561. }
  1562. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1563. if decimal.Type != ArgNumber {
  1564. return decimal
  1565. }
  1566. newList.PushBack(decimal)
  1567. if argsList.Len() == 2 {
  1568. newList.PushBack(argsList.Back().Value.(formulaArg))
  1569. }
  1570. return fn.dec2x("HEX2BIN", newList)
  1571. }
  1572. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1573. // number. The syntax of the function is:
  1574. //
  1575. // HEX2DEC(number)
  1576. //
  1577. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1578. if argsList.Len() != 1 {
  1579. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1580. }
  1581. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1582. }
  1583. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1584. // (Base 8) number. The syntax of the function is:
  1585. //
  1586. // HEX2OCT(number,[places])
  1587. //
  1588. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1589. if argsList.Len() < 1 {
  1590. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1591. }
  1592. if argsList.Len() > 2 {
  1593. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1594. }
  1595. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1596. if decimal.Type != ArgNumber {
  1597. return decimal
  1598. }
  1599. newList.PushBack(decimal)
  1600. if argsList.Len() == 2 {
  1601. newList.PushBack(argsList.Back().Value.(formulaArg))
  1602. }
  1603. return fn.dec2x("HEX2OCT", newList)
  1604. }
  1605. // hex2dec is an implementation of the formula function HEX2DEC.
  1606. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1607. decimal, length := 0.0, len(number)
  1608. for i := length; i > 0; i-- {
  1609. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1610. if err != nil {
  1611. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1612. }
  1613. if i == 10 && string(number[length-i]) == "F" {
  1614. decimal += math.Pow(-16.0, float64(i-1))
  1615. continue
  1616. }
  1617. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1618. }
  1619. return newNumberFormulaArg(decimal)
  1620. }
  1621. // IMABS function returns the absolute value (the modulus) of a complex
  1622. // number. The syntax of the function is:
  1623. //
  1624. // IMABS(inumber)
  1625. //
  1626. func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
  1627. if argsList.Len() != 1 {
  1628. return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
  1629. }
  1630. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1631. if err != nil {
  1632. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1633. }
  1634. return newNumberFormulaArg(cmplx.Abs(inumber))
  1635. }
  1636. // IMAGINARY function returns the imaginary coefficient of a supplied complex
  1637. // number. The syntax of the function is:
  1638. //
  1639. // IMAGINARY(inumber)
  1640. //
  1641. func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg {
  1642. if argsList.Len() != 1 {
  1643. return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument")
  1644. }
  1645. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1646. if err != nil {
  1647. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1648. }
  1649. return newNumberFormulaArg(imag(inumber))
  1650. }
  1651. // IMARGUMENT function returns the phase (also called the argument) of a
  1652. // supplied complex number. The syntax of the function is:
  1653. //
  1654. // IMARGUMENT(inumber)
  1655. //
  1656. func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg {
  1657. if argsList.Len() != 1 {
  1658. return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument")
  1659. }
  1660. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1661. if err != nil {
  1662. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1663. }
  1664. return newNumberFormulaArg(cmplx.Phase(inumber))
  1665. }
  1666. // IMCONJUGATE function returns the complex conjugate of a supplied complex
  1667. // number. The syntax of the function is:
  1668. //
  1669. // IMCONJUGATE(inumber)
  1670. //
  1671. func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg {
  1672. if argsList.Len() != 1 {
  1673. return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument")
  1674. }
  1675. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1676. if err != nil {
  1677. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1678. }
  1679. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i"))
  1680. }
  1681. // IMCOS function returns the cosine of a supplied complex number. The syntax
  1682. // of the function is:
  1683. //
  1684. // IMCOS(inumber)
  1685. //
  1686. func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
  1687. if argsList.Len() != 1 {
  1688. return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
  1689. }
  1690. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1691. if err != nil {
  1692. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1693. }
  1694. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))
  1695. }
  1696. // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax
  1697. // of the function is:
  1698. //
  1699. // IMCOSH(inumber)
  1700. //
  1701. func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {
  1702. if argsList.Len() != 1 {
  1703. return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")
  1704. }
  1705. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1706. if err != nil {
  1707. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1708. }
  1709. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))
  1710. }
  1711. // IMCOT function returns the cotangent of a supplied complex number. The syntax
  1712. // of the function is:
  1713. //
  1714. // IMCOT(inumber)
  1715. //
  1716. func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {
  1717. if argsList.Len() != 1 {
  1718. return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")
  1719. }
  1720. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1721. if err != nil {
  1722. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1723. }
  1724. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))
  1725. }
  1726. // IMCSC function returns the cosecant of a supplied complex number. The syntax
  1727. // of the function is:
  1728. //
  1729. // IMCSC(inumber)
  1730. //
  1731. func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {
  1732. if argsList.Len() != 1 {
  1733. return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")
  1734. }
  1735. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1736. if err != nil {
  1737. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1738. }
  1739. num := 1 / cmplx.Sin(inumber)
  1740. if cmplx.IsInf(num) {
  1741. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1742. }
  1743. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1744. }
  1745. // IMCSCH function returns the hyperbolic cosecant of a supplied complex
  1746. // number. The syntax of the function is:
  1747. //
  1748. // IMCSCH(inumber)
  1749. //
  1750. func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
  1751. if argsList.Len() != 1 {
  1752. return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")
  1753. }
  1754. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1755. if err != nil {
  1756. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1757. }
  1758. num := 1 / cmplx.Sinh(inumber)
  1759. if cmplx.IsInf(num) {
  1760. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1761. }
  1762. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1763. }
  1764. // IMDIV function calculates the quotient of two complex numbers (i.e. divides
  1765. // one complex number by another). The syntax of the function is:
  1766. //
  1767. // IMDIV(inumber1,inumber2)
  1768. //
  1769. func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg {
  1770. if argsList.Len() != 2 {
  1771. return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments")
  1772. }
  1773. inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1774. if err != nil {
  1775. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1776. }
  1777. inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  1778. if err != nil {
  1779. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1780. }
  1781. num := inumber1 / inumber2
  1782. if cmplx.IsInf(num) {
  1783. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1784. }
  1785. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1786. }
  1787. // IMEXP function returns the exponential of a supplied complex number. The
  1788. // syntax of the function is:
  1789. //
  1790. // IMEXP(inumber)
  1791. //
  1792. func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {
  1793. if argsList.Len() != 1 {
  1794. return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")
  1795. }
  1796. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1797. if err != nil {
  1798. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1799. }
  1800. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))
  1801. }
  1802. // IMLN function returns the natural logarithm of a supplied complex number.
  1803. // The syntax of the function is:
  1804. //
  1805. // IMLN(inumber)
  1806. //
  1807. func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {
  1808. if argsList.Len() != 1 {
  1809. return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")
  1810. }
  1811. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1812. if err != nil {
  1813. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1814. }
  1815. num := cmplx.Log(inumber)
  1816. if cmplx.IsInf(num) {
  1817. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1818. }
  1819. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1820. }
  1821. // IMLOG10 function returns the common (base 10) logarithm of a supplied
  1822. // complex number. The syntax of the function is:
  1823. //
  1824. // IMLOG10(inumber)
  1825. //
  1826. func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {
  1827. if argsList.Len() != 1 {
  1828. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")
  1829. }
  1830. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1831. if err != nil {
  1832. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1833. }
  1834. num := cmplx.Log10(inumber)
  1835. if cmplx.IsInf(num) {
  1836. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1837. }
  1838. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1839. }
  1840. // IMLOG2 function calculates the base 2 logarithm of a supplied complex
  1841. // number. The syntax of the function is:
  1842. //
  1843. // IMLOG2(inumber)
  1844. //
  1845. func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg {
  1846. if argsList.Len() != 1 {
  1847. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument")
  1848. }
  1849. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1850. if err != nil {
  1851. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1852. }
  1853. num := cmplx.Log(inumber)
  1854. if cmplx.IsInf(num) {
  1855. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1856. }
  1857. return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i"))
  1858. }
  1859. // IMPOWER function returns a supplied complex number, raised to a given
  1860. // power. The syntax of the function is:
  1861. //
  1862. // IMPOWER(inumber,number)
  1863. //
  1864. func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg {
  1865. if argsList.Len() != 2 {
  1866. return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments")
  1867. }
  1868. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1869. if err != nil {
  1870. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1871. }
  1872. number, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  1873. if err != nil {
  1874. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1875. }
  1876. if inumber == 0 && number == 0 {
  1877. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1878. }
  1879. num := cmplx.Pow(inumber, number)
  1880. if cmplx.IsInf(num) {
  1881. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1882. }
  1883. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1884. }
  1885. // IMPRODUCT function calculates the product of two or more complex numbers.
  1886. // The syntax of the function is:
  1887. //
  1888. // IMPRODUCT(number1,[number2],...)
  1889. //
  1890. func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg {
  1891. product := complex128(1)
  1892. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1893. token := arg.Value.(formulaArg)
  1894. switch token.Type {
  1895. case ArgString:
  1896. if token.Value() == "" {
  1897. continue
  1898. }
  1899. val, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
  1900. if err != nil {
  1901. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1902. }
  1903. product = product * val
  1904. case ArgNumber:
  1905. product = product * complex(token.Number, 0)
  1906. case ArgMatrix:
  1907. for _, row := range token.Matrix {
  1908. for _, value := range row {
  1909. if value.Value() == "" {
  1910. continue
  1911. }
  1912. val, err := strconv.ParseComplex(str2cmplx(value.Value()), 128)
  1913. if err != nil {
  1914. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1915. }
  1916. product = product * val
  1917. }
  1918. }
  1919. }
  1920. }
  1921. return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i"))
  1922. }
  1923. // IMREAL function returns the real coefficient of a supplied complex number.
  1924. // The syntax of the function is:
  1925. //
  1926. // IMREAL(inumber)
  1927. //
  1928. func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg {
  1929. if argsList.Len() != 1 {
  1930. return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument")
  1931. }
  1932. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1933. if err != nil {
  1934. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1935. }
  1936. return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i"))
  1937. }
  1938. // IMSEC function returns the secant of a supplied complex number. The syntax
  1939. // of the function is:
  1940. //
  1941. // IMSEC(inumber)
  1942. //
  1943. func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg {
  1944. if argsList.Len() != 1 {
  1945. return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument")
  1946. }
  1947. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1948. if err != nil {
  1949. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1950. }
  1951. return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i"))
  1952. }
  1953. // IMSECH function returns the hyperbolic secant of a supplied complex number.
  1954. // The syntax of the function is:
  1955. //
  1956. // IMSECH(inumber)
  1957. //
  1958. func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg {
  1959. if argsList.Len() != 1 {
  1960. return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument")
  1961. }
  1962. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1963. if err != nil {
  1964. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1965. }
  1966. return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i"))
  1967. }
  1968. // IMSIN function returns the Sine of a supplied complex number. The syntax of
  1969. // the function is:
  1970. //
  1971. // IMSIN(inumber)
  1972. //
  1973. func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg {
  1974. if argsList.Len() != 1 {
  1975. return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument")
  1976. }
  1977. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1978. if err != nil {
  1979. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1980. }
  1981. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i"))
  1982. }
  1983. // IMSINH function returns the hyperbolic sine of a supplied complex number.
  1984. // The syntax of the function is:
  1985. //
  1986. // IMSINH(inumber)
  1987. //
  1988. func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg {
  1989. if argsList.Len() != 1 {
  1990. return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument")
  1991. }
  1992. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1993. if err != nil {
  1994. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1995. }
  1996. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i"))
  1997. }
  1998. // IMSQRT function returns the square root of a supplied complex number. The
  1999. // syntax of the function is:
  2000. //
  2001. // IMSQRT(inumber)
  2002. //
  2003. func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg {
  2004. if argsList.Len() != 1 {
  2005. return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument")
  2006. }
  2007. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  2008. if err != nil {
  2009. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2010. }
  2011. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i"))
  2012. }
  2013. // IMSUB function calculates the difference between two complex numbers
  2014. // (i.e. subtracts one complex number from another). The syntax of the
  2015. // function is:
  2016. //
  2017. // IMSUB(inumber1,inumber2)
  2018. //
  2019. func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg {
  2020. if argsList.Len() != 2 {
  2021. return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments")
  2022. }
  2023. i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  2024. if err != nil {
  2025. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2026. }
  2027. i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  2028. if err != nil {
  2029. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2030. }
  2031. return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i"))
  2032. }
  2033. // IMSUM function calculates the sum of two or more complex numbers. The
  2034. // syntax of the function is:
  2035. //
  2036. // IMSUM(inumber1,inumber2,...)
  2037. //
  2038. func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg {
  2039. if argsList.Len() < 1 {
  2040. return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument")
  2041. }
  2042. var result complex128
  2043. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2044. token := arg.Value.(formulaArg)
  2045. num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
  2046. if err != nil {
  2047. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2048. }
  2049. result += num
  2050. }
  2051. return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i"))
  2052. }
  2053. // IMTAN function returns the tangent of a supplied complex number. The syntax
  2054. // of the function is:
  2055. //
  2056. // IMTAN(inumber)
  2057. //
  2058. func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg {
  2059. if argsList.Len() != 1 {
  2060. return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument")
  2061. }
  2062. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  2063. if err != nil {
  2064. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2065. }
  2066. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i"))
  2067. }
  2068. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  2069. // number. The syntax of the function is:
  2070. //
  2071. // OCT2BIN(number,[places])
  2072. //
  2073. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  2074. if argsList.Len() < 1 {
  2075. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  2076. }
  2077. if argsList.Len() > 2 {
  2078. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  2079. }
  2080. token := argsList.Front().Value.(formulaArg)
  2081. number := token.ToNumber()
  2082. if number.Type != ArgNumber {
  2083. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2084. }
  2085. decimal, newList := fn.oct2dec(token.Value()), list.New()
  2086. newList.PushBack(decimal)
  2087. if argsList.Len() == 2 {
  2088. newList.PushBack(argsList.Back().Value.(formulaArg))
  2089. }
  2090. return fn.dec2x("OCT2BIN", newList)
  2091. }
  2092. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  2093. // The syntax of the function is:
  2094. //
  2095. // OCT2DEC(number)
  2096. //
  2097. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  2098. if argsList.Len() != 1 {
  2099. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  2100. }
  2101. token := argsList.Front().Value.(formulaArg)
  2102. number := token.ToNumber()
  2103. if number.Type != ArgNumber {
  2104. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2105. }
  2106. return fn.oct2dec(token.Value())
  2107. }
  2108. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  2109. // (Base 16) number. The syntax of the function is:
  2110. //
  2111. // OCT2HEX(number,[places])
  2112. //
  2113. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  2114. if argsList.Len() < 1 {
  2115. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  2116. }
  2117. if argsList.Len() > 2 {
  2118. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  2119. }
  2120. token := argsList.Front().Value.(formulaArg)
  2121. number := token.ToNumber()
  2122. if number.Type != ArgNumber {
  2123. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2124. }
  2125. decimal, newList := fn.oct2dec(token.Value()), list.New()
  2126. newList.PushBack(decimal)
  2127. if argsList.Len() == 2 {
  2128. newList.PushBack(argsList.Back().Value.(formulaArg))
  2129. }
  2130. return fn.dec2x("OCT2HEX", newList)
  2131. }
  2132. // oct2dec is an implementation of the formula function OCT2DEC.
  2133. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  2134. decimal, length := 0.0, len(number)
  2135. for i := length; i > 0; i-- {
  2136. num, _ := strconv.Atoi(string(number[length-i]))
  2137. if i == 10 && string(number[length-i]) == "7" {
  2138. decimal += math.Pow(-8.0, float64(i-1))
  2139. continue
  2140. }
  2141. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  2142. }
  2143. return newNumberFormulaArg(decimal)
  2144. }
  2145. // Math and Trigonometric Functions
  2146. // ABS function returns the absolute value of any supplied number. The syntax
  2147. // of the function is:
  2148. //
  2149. // ABS(number)
  2150. //
  2151. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  2152. if argsList.Len() != 1 {
  2153. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  2154. }
  2155. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2156. if arg.Type == ArgError {
  2157. return arg
  2158. }
  2159. return newNumberFormulaArg(math.Abs(arg.Number))
  2160. }
  2161. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  2162. // number, and returns an angle, in radians, between 0 and π. The syntax of
  2163. // the function is:
  2164. //
  2165. // ACOS(number)
  2166. //
  2167. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  2168. if argsList.Len() != 1 {
  2169. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  2170. }
  2171. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2172. if arg.Type == ArgError {
  2173. return arg
  2174. }
  2175. return newNumberFormulaArg(math.Acos(arg.Number))
  2176. }
  2177. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  2178. // of the function is:
  2179. //
  2180. // ACOSH(number)
  2181. //
  2182. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  2183. if argsList.Len() != 1 {
  2184. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  2185. }
  2186. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2187. if arg.Type == ArgError {
  2188. return arg
  2189. }
  2190. return newNumberFormulaArg(math.Acosh(arg.Number))
  2191. }
  2192. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  2193. // given number, and returns an angle, in radians, between 0 and π. The syntax
  2194. // of the function is:
  2195. //
  2196. // ACOT(number)
  2197. //
  2198. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  2199. if argsList.Len() != 1 {
  2200. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  2201. }
  2202. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2203. if arg.Type == ArgError {
  2204. return arg
  2205. }
  2206. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  2207. }
  2208. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  2209. // value. The syntax of the function is:
  2210. //
  2211. // ACOTH(number)
  2212. //
  2213. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  2214. if argsList.Len() != 1 {
  2215. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  2216. }
  2217. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2218. if arg.Type == ArgError {
  2219. return arg
  2220. }
  2221. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  2222. }
  2223. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  2224. // of the function is:
  2225. //
  2226. // ARABIC(text)
  2227. //
  2228. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  2229. if argsList.Len() != 1 {
  2230. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  2231. }
  2232. text := argsList.Front().Value.(formulaArg).Value()
  2233. if len(text) > 255 {
  2234. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2235. }
  2236. text = strings.ToUpper(text)
  2237. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  2238. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  2239. for index >= 0 && text[index] == ' ' {
  2240. index--
  2241. }
  2242. for actualStart <= index && text[actualStart] == ' ' {
  2243. actualStart++
  2244. }
  2245. if actualStart <= index && text[actualStart] == '-' {
  2246. isNegative = true
  2247. actualStart++
  2248. }
  2249. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  2250. for index >= actualStart {
  2251. startIndex = index
  2252. startChar := text[startIndex]
  2253. index--
  2254. for index >= actualStart && (text[index]|' ') == startChar {
  2255. index--
  2256. }
  2257. currentCharValue = charMap[rune(startChar)]
  2258. currentPartValue = (startIndex - index) * currentCharValue
  2259. if currentCharValue >= prevCharValue {
  2260. number += currentPartValue - subtractNumber
  2261. prevCharValue = currentCharValue
  2262. subtractNumber = 0
  2263. continue
  2264. }
  2265. subtractNumber += currentPartValue
  2266. }
  2267. if subtractNumber != 0 {
  2268. number -= subtractNumber
  2269. }
  2270. if isNegative {
  2271. number = -number
  2272. }
  2273. return newNumberFormulaArg(float64(number))
  2274. }
  2275. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  2276. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  2277. // of the function is:
  2278. //
  2279. // ASIN(number)
  2280. //
  2281. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  2282. if argsList.Len() != 1 {
  2283. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  2284. }
  2285. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2286. if arg.Type == ArgError {
  2287. return arg
  2288. }
  2289. return newNumberFormulaArg(math.Asin(arg.Number))
  2290. }
  2291. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  2292. // The syntax of the function is:
  2293. //
  2294. // ASINH(number)
  2295. //
  2296. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  2297. if argsList.Len() != 1 {
  2298. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  2299. }
  2300. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2301. if arg.Type == ArgError {
  2302. return arg
  2303. }
  2304. return newNumberFormulaArg(math.Asinh(arg.Number))
  2305. }
  2306. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  2307. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  2308. // syntax of the function is:
  2309. //
  2310. // ATAN(number)
  2311. //
  2312. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  2313. if argsList.Len() != 1 {
  2314. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  2315. }
  2316. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2317. if arg.Type == ArgError {
  2318. return arg
  2319. }
  2320. return newNumberFormulaArg(math.Atan(arg.Number))
  2321. }
  2322. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  2323. // number. The syntax of the function is:
  2324. //
  2325. // ATANH(number)
  2326. //
  2327. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  2328. if argsList.Len() != 1 {
  2329. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  2330. }
  2331. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2332. if arg.Type == ArgError {
  2333. return arg
  2334. }
  2335. return newNumberFormulaArg(math.Atanh(arg.Number))
  2336. }
  2337. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  2338. // given set of x and y coordinates, and returns an angle, in radians, between
  2339. // -π/2 and +π/2. The syntax of the function is:
  2340. //
  2341. // ATAN2(x_num,y_num)
  2342. //
  2343. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  2344. if argsList.Len() != 2 {
  2345. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  2346. }
  2347. x := argsList.Back().Value.(formulaArg).ToNumber()
  2348. if x.Type == ArgError {
  2349. return x
  2350. }
  2351. y := argsList.Front().Value.(formulaArg).ToNumber()
  2352. if y.Type == ArgError {
  2353. return y
  2354. }
  2355. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  2356. }
  2357. // BASE function converts a number into a supplied base (radix), and returns a
  2358. // text representation of the calculated value. The syntax of the function is:
  2359. //
  2360. // BASE(number,radix,[min_length])
  2361. //
  2362. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  2363. if argsList.Len() < 2 {
  2364. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  2365. }
  2366. if argsList.Len() > 3 {
  2367. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  2368. }
  2369. var minLength int
  2370. var err error
  2371. number := argsList.Front().Value.(formulaArg).ToNumber()
  2372. if number.Type == ArgError {
  2373. return number
  2374. }
  2375. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2376. if radix.Type == ArgError {
  2377. return radix
  2378. }
  2379. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  2380. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  2381. }
  2382. if argsList.Len() > 2 {
  2383. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2384. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2385. }
  2386. }
  2387. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  2388. if len(result) < minLength {
  2389. result = strings.Repeat("0", minLength-len(result)) + result
  2390. }
  2391. return newStringFormulaArg(strings.ToUpper(result))
  2392. }
  2393. // CEILING function rounds a supplied number away from zero, to the nearest
  2394. // multiple of a given number. The syntax of the function is:
  2395. //
  2396. // CEILING(number,significance)
  2397. //
  2398. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  2399. if argsList.Len() == 0 {
  2400. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  2401. }
  2402. if argsList.Len() > 2 {
  2403. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  2404. }
  2405. number, significance, res := 0.0, 1.0, 0.0
  2406. n := argsList.Front().Value.(formulaArg).ToNumber()
  2407. if n.Type == ArgError {
  2408. return n
  2409. }
  2410. number = n.Number
  2411. if number < 0 {
  2412. significance = -1
  2413. }
  2414. if argsList.Len() > 1 {
  2415. s := argsList.Back().Value.(formulaArg).ToNumber()
  2416. if s.Type == ArgError {
  2417. return s
  2418. }
  2419. significance = s.Number
  2420. }
  2421. if significance < 0 && number > 0 {
  2422. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  2423. }
  2424. if argsList.Len() == 1 {
  2425. return newNumberFormulaArg(math.Ceil(number))
  2426. }
  2427. number, res = math.Modf(number / significance)
  2428. if res > 0 {
  2429. number++
  2430. }
  2431. return newNumberFormulaArg(number * significance)
  2432. }
  2433. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  2434. // of significance. The syntax of the function is:
  2435. //
  2436. // CEILING.MATH(number,[significance],[mode])
  2437. //
  2438. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  2439. if argsList.Len() == 0 {
  2440. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  2441. }
  2442. if argsList.Len() > 3 {
  2443. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  2444. }
  2445. number, significance, mode := 0.0, 1.0, 1.0
  2446. n := argsList.Front().Value.(formulaArg).ToNumber()
  2447. if n.Type == ArgError {
  2448. return n
  2449. }
  2450. number = n.Number
  2451. if number < 0 {
  2452. significance = -1
  2453. }
  2454. if argsList.Len() > 1 {
  2455. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2456. if s.Type == ArgError {
  2457. return s
  2458. }
  2459. significance = s.Number
  2460. }
  2461. if argsList.Len() == 1 {
  2462. return newNumberFormulaArg(math.Ceil(number))
  2463. }
  2464. if argsList.Len() > 2 {
  2465. m := argsList.Back().Value.(formulaArg).ToNumber()
  2466. if m.Type == ArgError {
  2467. return m
  2468. }
  2469. mode = m.Number
  2470. }
  2471. val, res := math.Modf(number / significance)
  2472. if res != 0 {
  2473. if number > 0 {
  2474. val++
  2475. } else if mode < 0 {
  2476. val--
  2477. }
  2478. }
  2479. return newNumberFormulaArg(val * significance)
  2480. }
  2481. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  2482. // number's sign), to the nearest multiple of a given number. The syntax of
  2483. // the function is:
  2484. //
  2485. // CEILING.PRECISE(number,[significance])
  2486. //
  2487. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  2488. if argsList.Len() == 0 {
  2489. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  2490. }
  2491. if argsList.Len() > 2 {
  2492. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  2493. }
  2494. number, significance := 0.0, 1.0
  2495. n := argsList.Front().Value.(formulaArg).ToNumber()
  2496. if n.Type == ArgError {
  2497. return n
  2498. }
  2499. number = n.Number
  2500. if number < 0 {
  2501. significance = -1
  2502. }
  2503. if argsList.Len() == 1 {
  2504. return newNumberFormulaArg(math.Ceil(number))
  2505. }
  2506. if argsList.Len() > 1 {
  2507. s := argsList.Back().Value.(formulaArg).ToNumber()
  2508. if s.Type == ArgError {
  2509. return s
  2510. }
  2511. significance = s.Number
  2512. significance = math.Abs(significance)
  2513. if significance == 0 {
  2514. return newNumberFormulaArg(significance)
  2515. }
  2516. }
  2517. val, res := math.Modf(number / significance)
  2518. if res != 0 {
  2519. if number > 0 {
  2520. val++
  2521. }
  2522. }
  2523. return newNumberFormulaArg(val * significance)
  2524. }
  2525. // COMBIN function calculates the number of combinations (in any order) of a
  2526. // given number objects from a set. The syntax of the function is:
  2527. //
  2528. // COMBIN(number,number_chosen)
  2529. //
  2530. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  2531. if argsList.Len() != 2 {
  2532. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  2533. }
  2534. number, chosen, val := 0.0, 0.0, 1.0
  2535. n := argsList.Front().Value.(formulaArg).ToNumber()
  2536. if n.Type == ArgError {
  2537. return n
  2538. }
  2539. number = n.Number
  2540. c := argsList.Back().Value.(formulaArg).ToNumber()
  2541. if c.Type == ArgError {
  2542. return c
  2543. }
  2544. chosen = c.Number
  2545. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2546. if chosen > number {
  2547. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  2548. }
  2549. if chosen == number || chosen == 0 {
  2550. return newNumberFormulaArg(1)
  2551. }
  2552. for c := float64(1); c <= chosen; c++ {
  2553. val *= (number + 1 - c) / c
  2554. }
  2555. return newNumberFormulaArg(math.Ceil(val))
  2556. }
  2557. // COMBINA function calculates the number of combinations, with repetitions,
  2558. // of a given number objects from a set. The syntax of the function is:
  2559. //
  2560. // COMBINA(number,number_chosen)
  2561. //
  2562. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  2563. if argsList.Len() != 2 {
  2564. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  2565. }
  2566. var number, chosen float64
  2567. n := argsList.Front().Value.(formulaArg).ToNumber()
  2568. if n.Type == ArgError {
  2569. return n
  2570. }
  2571. number = n.Number
  2572. c := argsList.Back().Value.(formulaArg).ToNumber()
  2573. if c.Type == ArgError {
  2574. return c
  2575. }
  2576. chosen = c.Number
  2577. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2578. if number < chosen {
  2579. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  2580. }
  2581. if number == 0 {
  2582. return newNumberFormulaArg(number)
  2583. }
  2584. args := list.New()
  2585. args.PushBack(formulaArg{
  2586. String: fmt.Sprintf("%g", number+chosen-1),
  2587. Type: ArgString,
  2588. })
  2589. args.PushBack(formulaArg{
  2590. String: fmt.Sprintf("%g", number-1),
  2591. Type: ArgString,
  2592. })
  2593. return fn.COMBIN(args)
  2594. }
  2595. // COS function calculates the cosine of a given angle. The syntax of the
  2596. // function is:
  2597. //
  2598. // COS(number)
  2599. //
  2600. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2601. if argsList.Len() != 1 {
  2602. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2603. }
  2604. val := argsList.Front().Value.(formulaArg).ToNumber()
  2605. if val.Type == ArgError {
  2606. return val
  2607. }
  2608. return newNumberFormulaArg(math.Cos(val.Number))
  2609. }
  2610. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2611. // The syntax of the function is:
  2612. //
  2613. // COSH(number)
  2614. //
  2615. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2616. if argsList.Len() != 1 {
  2617. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2618. }
  2619. val := argsList.Front().Value.(formulaArg).ToNumber()
  2620. if val.Type == ArgError {
  2621. return val
  2622. }
  2623. return newNumberFormulaArg(math.Cosh(val.Number))
  2624. }
  2625. // COT function calculates the cotangent of a given angle. The syntax of the
  2626. // function is:
  2627. //
  2628. // COT(number)
  2629. //
  2630. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2631. if argsList.Len() != 1 {
  2632. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2633. }
  2634. val := argsList.Front().Value.(formulaArg).ToNumber()
  2635. if val.Type == ArgError {
  2636. return val
  2637. }
  2638. if val.Number == 0 {
  2639. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2640. }
  2641. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2642. }
  2643. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2644. // angle. The syntax of the function is:
  2645. //
  2646. // COTH(number)
  2647. //
  2648. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2649. if argsList.Len() != 1 {
  2650. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2651. }
  2652. val := argsList.Front().Value.(formulaArg).ToNumber()
  2653. if val.Type == ArgError {
  2654. return val
  2655. }
  2656. if val.Number == 0 {
  2657. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2658. }
  2659. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2660. }
  2661. // CSC function calculates the cosecant of a given angle. The syntax of the
  2662. // function is:
  2663. //
  2664. // CSC(number)
  2665. //
  2666. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2667. if argsList.Len() != 1 {
  2668. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2669. }
  2670. val := argsList.Front().Value.(formulaArg).ToNumber()
  2671. if val.Type == ArgError {
  2672. return val
  2673. }
  2674. if val.Number == 0 {
  2675. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2676. }
  2677. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2678. }
  2679. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2680. // angle. The syntax of the function is:
  2681. //
  2682. // CSCH(number)
  2683. //
  2684. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2685. if argsList.Len() != 1 {
  2686. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2687. }
  2688. val := argsList.Front().Value.(formulaArg).ToNumber()
  2689. if val.Type == ArgError {
  2690. return val
  2691. }
  2692. if val.Number == 0 {
  2693. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2694. }
  2695. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2696. }
  2697. // DECIMAL function converts a text representation of a number in a specified
  2698. // base, into a decimal value. The syntax of the function is:
  2699. //
  2700. // DECIMAL(text,radix)
  2701. //
  2702. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2703. if argsList.Len() != 2 {
  2704. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2705. }
  2706. var text = argsList.Front().Value.(formulaArg).String
  2707. var radix int
  2708. var err error
  2709. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2710. if err != nil {
  2711. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2712. }
  2713. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2714. text = text[2:]
  2715. }
  2716. val, err := strconv.ParseInt(text, radix, 64)
  2717. if err != nil {
  2718. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2719. }
  2720. return newNumberFormulaArg(float64(val))
  2721. }
  2722. // DEGREES function converts radians into degrees. The syntax of the function
  2723. // is:
  2724. //
  2725. // DEGREES(angle)
  2726. //
  2727. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2728. if argsList.Len() != 1 {
  2729. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2730. }
  2731. val := argsList.Front().Value.(formulaArg).ToNumber()
  2732. if val.Type == ArgError {
  2733. return val
  2734. }
  2735. if val.Number == 0 {
  2736. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2737. }
  2738. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2739. }
  2740. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2741. // positive number up and a negative number down), to the next even number.
  2742. // The syntax of the function is:
  2743. //
  2744. // EVEN(number)
  2745. //
  2746. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2747. if argsList.Len() != 1 {
  2748. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2749. }
  2750. number := argsList.Front().Value.(formulaArg).ToNumber()
  2751. if number.Type == ArgError {
  2752. return number
  2753. }
  2754. sign := math.Signbit(number.Number)
  2755. m, frac := math.Modf(number.Number / 2)
  2756. val := m * 2
  2757. if frac != 0 {
  2758. if !sign {
  2759. val += 2
  2760. } else {
  2761. val -= 2
  2762. }
  2763. }
  2764. return newNumberFormulaArg(val)
  2765. }
  2766. // EXP function calculates the value of the mathematical constant e, raised to
  2767. // the power of a given number. The syntax of the function is:
  2768. //
  2769. // EXP(number)
  2770. //
  2771. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2772. if argsList.Len() != 1 {
  2773. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2774. }
  2775. number := argsList.Front().Value.(formulaArg).ToNumber()
  2776. if number.Type == ArgError {
  2777. return number
  2778. }
  2779. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2780. }
  2781. // fact returns the factorial of a supplied number.
  2782. func fact(number float64) float64 {
  2783. val := float64(1)
  2784. for i := float64(2); i <= number; i++ {
  2785. val *= i
  2786. }
  2787. return val
  2788. }
  2789. // FACT function returns the factorial of a supplied number. The syntax of the
  2790. // function is:
  2791. //
  2792. // FACT(number)
  2793. //
  2794. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2795. if argsList.Len() != 1 {
  2796. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2797. }
  2798. number := argsList.Front().Value.(formulaArg).ToNumber()
  2799. if number.Type == ArgError {
  2800. return number
  2801. }
  2802. if number.Number < 0 {
  2803. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2804. }
  2805. return newNumberFormulaArg(fact(number.Number))
  2806. }
  2807. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2808. // syntax of the function is:
  2809. //
  2810. // FACTDOUBLE(number)
  2811. //
  2812. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2813. if argsList.Len() != 1 {
  2814. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2815. }
  2816. val := 1.0
  2817. number := argsList.Front().Value.(formulaArg).ToNumber()
  2818. if number.Type == ArgError {
  2819. return number
  2820. }
  2821. if number.Number < 0 {
  2822. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2823. }
  2824. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2825. val *= i
  2826. }
  2827. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2828. }
  2829. // FLOOR function rounds a supplied number towards zero to the nearest
  2830. // multiple of a specified significance. The syntax of the function is:
  2831. //
  2832. // FLOOR(number,significance)
  2833. //
  2834. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2835. if argsList.Len() != 2 {
  2836. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2837. }
  2838. number := argsList.Front().Value.(formulaArg).ToNumber()
  2839. if number.Type == ArgError {
  2840. return number
  2841. }
  2842. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2843. if significance.Type == ArgError {
  2844. return significance
  2845. }
  2846. if significance.Number < 0 && number.Number >= 0 {
  2847. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2848. }
  2849. val := number.Number
  2850. val, res := math.Modf(val / significance.Number)
  2851. if res != 0 {
  2852. if number.Number < 0 && res < 0 {
  2853. val--
  2854. }
  2855. }
  2856. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2857. }
  2858. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2859. // of significance. The syntax of the function is:
  2860. //
  2861. // FLOOR.MATH(number,[significance],[mode])
  2862. //
  2863. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2864. if argsList.Len() == 0 {
  2865. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2866. }
  2867. if argsList.Len() > 3 {
  2868. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2869. }
  2870. significance, mode := 1.0, 1.0
  2871. number := argsList.Front().Value.(formulaArg).ToNumber()
  2872. if number.Type == ArgError {
  2873. return number
  2874. }
  2875. if number.Number < 0 {
  2876. significance = -1
  2877. }
  2878. if argsList.Len() > 1 {
  2879. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2880. if s.Type == ArgError {
  2881. return s
  2882. }
  2883. significance = s.Number
  2884. }
  2885. if argsList.Len() == 1 {
  2886. return newNumberFormulaArg(math.Floor(number.Number))
  2887. }
  2888. if argsList.Len() > 2 {
  2889. m := argsList.Back().Value.(formulaArg).ToNumber()
  2890. if m.Type == ArgError {
  2891. return m
  2892. }
  2893. mode = m.Number
  2894. }
  2895. val, res := math.Modf(number.Number / significance)
  2896. if res != 0 && number.Number < 0 && mode > 0 {
  2897. val--
  2898. }
  2899. return newNumberFormulaArg(val * significance)
  2900. }
  2901. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2902. // multiple of significance. The syntax of the function is:
  2903. //
  2904. // FLOOR.PRECISE(number,[significance])
  2905. //
  2906. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2907. if argsList.Len() == 0 {
  2908. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2909. }
  2910. if argsList.Len() > 2 {
  2911. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2912. }
  2913. var significance float64
  2914. number := argsList.Front().Value.(formulaArg).ToNumber()
  2915. if number.Type == ArgError {
  2916. return number
  2917. }
  2918. if number.Number < 0 {
  2919. significance = -1
  2920. }
  2921. if argsList.Len() == 1 {
  2922. return newNumberFormulaArg(math.Floor(number.Number))
  2923. }
  2924. if argsList.Len() > 1 {
  2925. s := argsList.Back().Value.(formulaArg).ToNumber()
  2926. if s.Type == ArgError {
  2927. return s
  2928. }
  2929. significance = s.Number
  2930. significance = math.Abs(significance)
  2931. if significance == 0 {
  2932. return newNumberFormulaArg(significance)
  2933. }
  2934. }
  2935. val, res := math.Modf(number.Number / significance)
  2936. if res != 0 {
  2937. if number.Number < 0 {
  2938. val--
  2939. }
  2940. }
  2941. return newNumberFormulaArg(val * significance)
  2942. }
  2943. // gcd returns the greatest common divisor of two supplied integers.
  2944. func gcd(x, y float64) float64 {
  2945. x, y = math.Trunc(x), math.Trunc(y)
  2946. if x == 0 {
  2947. return y
  2948. }
  2949. if y == 0 {
  2950. return x
  2951. }
  2952. for x != y {
  2953. if x > y {
  2954. x = x - y
  2955. } else {
  2956. y = y - x
  2957. }
  2958. }
  2959. return x
  2960. }
  2961. // GCD function returns the greatest common divisor of two or more supplied
  2962. // integers. The syntax of the function is:
  2963. //
  2964. // GCD(number1,[number2],...)
  2965. //
  2966. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2967. if argsList.Len() == 0 {
  2968. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2969. }
  2970. var (
  2971. val float64
  2972. nums = []float64{}
  2973. )
  2974. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2975. token := arg.Value.(formulaArg)
  2976. switch token.Type {
  2977. case ArgString:
  2978. num := token.ToNumber()
  2979. if num.Type == ArgError {
  2980. return num
  2981. }
  2982. val = num.Number
  2983. case ArgNumber:
  2984. val = token.Number
  2985. }
  2986. nums = append(nums, val)
  2987. }
  2988. if nums[0] < 0 {
  2989. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2990. }
  2991. if len(nums) == 1 {
  2992. return newNumberFormulaArg(nums[0])
  2993. }
  2994. cd := nums[0]
  2995. for i := 1; i < len(nums); i++ {
  2996. if nums[i] < 0 {
  2997. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2998. }
  2999. cd = gcd(cd, nums[i])
  3000. }
  3001. return newNumberFormulaArg(cd)
  3002. }
  3003. // INT function truncates a supplied number down to the closest integer. The
  3004. // syntax of the function is:
  3005. //
  3006. // INT(number)
  3007. //
  3008. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  3009. if argsList.Len() != 1 {
  3010. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  3011. }
  3012. number := argsList.Front().Value.(formulaArg).ToNumber()
  3013. if number.Type == ArgError {
  3014. return number
  3015. }
  3016. val, frac := math.Modf(number.Number)
  3017. if frac < 0 {
  3018. val--
  3019. }
  3020. return newNumberFormulaArg(val)
  3021. }
  3022. // ISOdotCEILING function rounds a supplied number up (regardless of the
  3023. // number's sign), to the nearest multiple of a supplied significance. The
  3024. // syntax of the function is:
  3025. //
  3026. // ISO.CEILING(number,[significance])
  3027. //
  3028. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  3029. if argsList.Len() == 0 {
  3030. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  3031. }
  3032. if argsList.Len() > 2 {
  3033. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  3034. }
  3035. var significance float64
  3036. number := argsList.Front().Value.(formulaArg).ToNumber()
  3037. if number.Type == ArgError {
  3038. return number
  3039. }
  3040. if number.Number < 0 {
  3041. significance = -1
  3042. }
  3043. if argsList.Len() == 1 {
  3044. return newNumberFormulaArg(math.Ceil(number.Number))
  3045. }
  3046. if argsList.Len() > 1 {
  3047. s := argsList.Back().Value.(formulaArg).ToNumber()
  3048. if s.Type == ArgError {
  3049. return s
  3050. }
  3051. significance = s.Number
  3052. significance = math.Abs(significance)
  3053. if significance == 0 {
  3054. return newNumberFormulaArg(significance)
  3055. }
  3056. }
  3057. val, res := math.Modf(number.Number / significance)
  3058. if res != 0 {
  3059. if number.Number > 0 {
  3060. val++
  3061. }
  3062. }
  3063. return newNumberFormulaArg(val * significance)
  3064. }
  3065. // lcm returns the least common multiple of two supplied integers.
  3066. func lcm(a, b float64) float64 {
  3067. a = math.Trunc(a)
  3068. b = math.Trunc(b)
  3069. if a == 0 && b == 0 {
  3070. return 0
  3071. }
  3072. return a * b / gcd(a, b)
  3073. }
  3074. // LCM function returns the least common multiple of two or more supplied
  3075. // integers. The syntax of the function is:
  3076. //
  3077. // LCM(number1,[number2],...)
  3078. //
  3079. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  3080. if argsList.Len() == 0 {
  3081. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  3082. }
  3083. var (
  3084. val float64
  3085. nums = []float64{}
  3086. err error
  3087. )
  3088. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3089. token := arg.Value.(formulaArg)
  3090. switch token.Type {
  3091. case ArgString:
  3092. if token.String == "" {
  3093. continue
  3094. }
  3095. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3096. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3097. }
  3098. case ArgNumber:
  3099. val = token.Number
  3100. }
  3101. nums = append(nums, val)
  3102. }
  3103. if nums[0] < 0 {
  3104. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  3105. }
  3106. if len(nums) == 1 {
  3107. return newNumberFormulaArg(nums[0])
  3108. }
  3109. cm := nums[0]
  3110. for i := 1; i < len(nums); i++ {
  3111. if nums[i] < 0 {
  3112. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  3113. }
  3114. cm = lcm(cm, nums[i])
  3115. }
  3116. return newNumberFormulaArg(cm)
  3117. }
  3118. // LN function calculates the natural logarithm of a given number. The syntax
  3119. // of the function is:
  3120. //
  3121. // LN(number)
  3122. //
  3123. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  3124. if argsList.Len() != 1 {
  3125. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  3126. }
  3127. number := argsList.Front().Value.(formulaArg).ToNumber()
  3128. if number.Type == ArgError {
  3129. return number
  3130. }
  3131. return newNumberFormulaArg(math.Log(number.Number))
  3132. }
  3133. // LOG function calculates the logarithm of a given number, to a supplied
  3134. // base. The syntax of the function is:
  3135. //
  3136. // LOG(number,[base])
  3137. //
  3138. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  3139. if argsList.Len() == 0 {
  3140. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  3141. }
  3142. if argsList.Len() > 2 {
  3143. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  3144. }
  3145. base := 10.0
  3146. number := argsList.Front().Value.(formulaArg).ToNumber()
  3147. if number.Type == ArgError {
  3148. return number
  3149. }
  3150. if argsList.Len() > 1 {
  3151. b := argsList.Back().Value.(formulaArg).ToNumber()
  3152. if b.Type == ArgError {
  3153. return b
  3154. }
  3155. base = b.Number
  3156. }
  3157. if number.Number == 0 {
  3158. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  3159. }
  3160. if base == 0 {
  3161. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  3162. }
  3163. if base == 1 {
  3164. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3165. }
  3166. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  3167. }
  3168. // LOG10 function calculates the base 10 logarithm of a given number. The
  3169. // syntax of the function is:
  3170. //
  3171. // LOG10(number)
  3172. //
  3173. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  3174. if argsList.Len() != 1 {
  3175. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  3176. }
  3177. number := argsList.Front().Value.(formulaArg).ToNumber()
  3178. if number.Type == ArgError {
  3179. return number
  3180. }
  3181. return newNumberFormulaArg(math.Log10(number.Number))
  3182. }
  3183. // minor function implement a minor of a matrix A is the determinant of some
  3184. // smaller square matrix.
  3185. func minor(sqMtx [][]float64, idx int) [][]float64 {
  3186. ret := [][]float64{}
  3187. for i := range sqMtx {
  3188. if i == 0 {
  3189. continue
  3190. }
  3191. row := []float64{}
  3192. for j := range sqMtx {
  3193. if j == idx {
  3194. continue
  3195. }
  3196. row = append(row, sqMtx[i][j])
  3197. }
  3198. ret = append(ret, row)
  3199. }
  3200. return ret
  3201. }
  3202. // det determinant of the 2x2 matrix.
  3203. func det(sqMtx [][]float64) float64 {
  3204. if len(sqMtx) == 2 {
  3205. m00 := sqMtx[0][0]
  3206. m01 := sqMtx[0][1]
  3207. m10 := sqMtx[1][0]
  3208. m11 := sqMtx[1][1]
  3209. return m00*m11 - m10*m01
  3210. }
  3211. var res, sgn float64 = 0, 1
  3212. for j := range sqMtx {
  3213. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  3214. sgn *= -1
  3215. }
  3216. return res
  3217. }
  3218. // MDETERM calculates the determinant of a square matrix. The
  3219. // syntax of the function is:
  3220. //
  3221. // MDETERM(array)
  3222. //
  3223. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  3224. var (
  3225. num float64
  3226. numMtx = [][]float64{}
  3227. err error
  3228. strMtx [][]formulaArg
  3229. )
  3230. if argsList.Len() < 1 {
  3231. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  3232. }
  3233. strMtx = argsList.Front().Value.(formulaArg).Matrix
  3234. var rows = len(strMtx)
  3235. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  3236. if len(row) != rows {
  3237. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3238. }
  3239. numRow := []float64{}
  3240. for _, ele := range row {
  3241. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  3242. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3243. }
  3244. numRow = append(numRow, num)
  3245. }
  3246. numMtx = append(numMtx, numRow)
  3247. }
  3248. return newNumberFormulaArg(det(numMtx))
  3249. }
  3250. // MOD function returns the remainder of a division between two supplied
  3251. // numbers. The syntax of the function is:
  3252. //
  3253. // MOD(number,divisor)
  3254. //
  3255. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  3256. if argsList.Len() != 2 {
  3257. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  3258. }
  3259. number := argsList.Front().Value.(formulaArg).ToNumber()
  3260. if number.Type == ArgError {
  3261. return number
  3262. }
  3263. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  3264. if divisor.Type == ArgError {
  3265. return divisor
  3266. }
  3267. if divisor.Number == 0 {
  3268. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  3269. }
  3270. trunc, rem := math.Modf(number.Number / divisor.Number)
  3271. if rem < 0 {
  3272. trunc--
  3273. }
  3274. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  3275. }
  3276. // MROUND function rounds a supplied number up or down to the nearest multiple
  3277. // of a given number. The syntax of the function is:
  3278. //
  3279. // MROUND(number,multiple)
  3280. //
  3281. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  3282. if argsList.Len() != 2 {
  3283. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  3284. }
  3285. n := argsList.Front().Value.(formulaArg).ToNumber()
  3286. if n.Type == ArgError {
  3287. return n
  3288. }
  3289. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  3290. if multiple.Type == ArgError {
  3291. return multiple
  3292. }
  3293. if multiple.Number == 0 {
  3294. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3295. }
  3296. if multiple.Number < 0 && n.Number > 0 ||
  3297. multiple.Number > 0 && n.Number < 0 {
  3298. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3299. }
  3300. number, res := math.Modf(n.Number / multiple.Number)
  3301. if math.Trunc(res+0.5) > 0 {
  3302. number++
  3303. }
  3304. return newNumberFormulaArg(number * multiple.Number)
  3305. }
  3306. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  3307. // supplied values to the product of factorials of those values. The syntax of
  3308. // the function is:
  3309. //
  3310. // MULTINOMIAL(number1,[number2],...)
  3311. //
  3312. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  3313. val, num, denom := 0.0, 0.0, 1.0
  3314. var err error
  3315. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3316. token := arg.Value.(formulaArg)
  3317. switch token.Type {
  3318. case ArgString:
  3319. if token.String == "" {
  3320. continue
  3321. }
  3322. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3323. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3324. }
  3325. case ArgNumber:
  3326. val = token.Number
  3327. }
  3328. num += val
  3329. denom *= fact(val)
  3330. }
  3331. return newNumberFormulaArg(fact(num) / denom)
  3332. }
  3333. // MUNIT function returns the unit matrix for a specified dimension. The
  3334. // syntax of the function is:
  3335. //
  3336. // MUNIT(dimension)
  3337. //
  3338. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  3339. if argsList.Len() != 1 {
  3340. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  3341. }
  3342. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  3343. if dimension.Type == ArgError || dimension.Number < 0 {
  3344. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  3345. }
  3346. matrix := make([][]formulaArg, 0, int(dimension.Number))
  3347. for i := 0; i < int(dimension.Number); i++ {
  3348. row := make([]formulaArg, int(dimension.Number))
  3349. for j := 0; j < int(dimension.Number); j++ {
  3350. if i == j {
  3351. row[j] = newNumberFormulaArg(1.0)
  3352. } else {
  3353. row[j] = newNumberFormulaArg(0.0)
  3354. }
  3355. }
  3356. matrix = append(matrix, row)
  3357. }
  3358. return newMatrixFormulaArg(matrix)
  3359. }
  3360. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  3361. // number up and a negative number down), to the next odd number. The syntax
  3362. // of the function is:
  3363. //
  3364. // ODD(number)
  3365. //
  3366. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  3367. if argsList.Len() != 1 {
  3368. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  3369. }
  3370. number := argsList.Back().Value.(formulaArg).ToNumber()
  3371. if number.Type == ArgError {
  3372. return number
  3373. }
  3374. if number.Number == 0 {
  3375. return newNumberFormulaArg(1)
  3376. }
  3377. sign := math.Signbit(number.Number)
  3378. m, frac := math.Modf((number.Number - 1) / 2)
  3379. val := m*2 + 1
  3380. if frac != 0 {
  3381. if !sign {
  3382. val += 2
  3383. } else {
  3384. val -= 2
  3385. }
  3386. }
  3387. return newNumberFormulaArg(val)
  3388. }
  3389. // PI function returns the value of the mathematical constant π (pi), accurate
  3390. // to 15 digits (14 decimal places). The syntax of the function is:
  3391. //
  3392. // PI()
  3393. //
  3394. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  3395. if argsList.Len() != 0 {
  3396. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  3397. }
  3398. return newNumberFormulaArg(math.Pi)
  3399. }
  3400. // POWER function calculates a given number, raised to a supplied power.
  3401. // The syntax of the function is:
  3402. //
  3403. // POWER(number,power)
  3404. //
  3405. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  3406. if argsList.Len() != 2 {
  3407. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  3408. }
  3409. x := argsList.Front().Value.(formulaArg).ToNumber()
  3410. if x.Type == ArgError {
  3411. return x
  3412. }
  3413. y := argsList.Back().Value.(formulaArg).ToNumber()
  3414. if y.Type == ArgError {
  3415. return y
  3416. }
  3417. if x.Number == 0 && y.Number == 0 {
  3418. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3419. }
  3420. if x.Number == 0 && y.Number < 0 {
  3421. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3422. }
  3423. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  3424. }
  3425. // PRODUCT function returns the product (multiplication) of a supplied set of
  3426. // numerical values. The syntax of the function is:
  3427. //
  3428. // PRODUCT(number1,[number2],...)
  3429. //
  3430. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  3431. val, product := 0.0, 1.0
  3432. var err error
  3433. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3434. token := arg.Value.(formulaArg)
  3435. switch token.Type {
  3436. case ArgUnknown:
  3437. continue
  3438. case ArgString:
  3439. if token.String == "" {
  3440. continue
  3441. }
  3442. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3443. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3444. }
  3445. product = product * val
  3446. case ArgNumber:
  3447. product = product * token.Number
  3448. case ArgMatrix:
  3449. for _, row := range token.Matrix {
  3450. for _, value := range row {
  3451. if value.String == "" {
  3452. continue
  3453. }
  3454. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3455. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3456. }
  3457. product = product * val
  3458. }
  3459. }
  3460. }
  3461. }
  3462. return newNumberFormulaArg(product)
  3463. }
  3464. // QUOTIENT function returns the integer portion of a division between two
  3465. // supplied numbers. The syntax of the function is:
  3466. //
  3467. // QUOTIENT(numerator,denominator)
  3468. //
  3469. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  3470. if argsList.Len() != 2 {
  3471. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  3472. }
  3473. x := argsList.Front().Value.(formulaArg).ToNumber()
  3474. if x.Type == ArgError {
  3475. return x
  3476. }
  3477. y := argsList.Back().Value.(formulaArg).ToNumber()
  3478. if y.Type == ArgError {
  3479. return y
  3480. }
  3481. if y.Number == 0 {
  3482. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3483. }
  3484. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  3485. }
  3486. // RADIANS function converts radians into degrees. The syntax of the function is:
  3487. //
  3488. // RADIANS(angle)
  3489. //
  3490. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  3491. if argsList.Len() != 1 {
  3492. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  3493. }
  3494. angle := argsList.Front().Value.(formulaArg).ToNumber()
  3495. if angle.Type == ArgError {
  3496. return angle
  3497. }
  3498. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  3499. }
  3500. // RAND function generates a random real number between 0 and 1. The syntax of
  3501. // the function is:
  3502. //
  3503. // RAND()
  3504. //
  3505. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  3506. if argsList.Len() != 0 {
  3507. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  3508. }
  3509. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  3510. }
  3511. // RANDBETWEEN function generates a random integer between two supplied
  3512. // integers. The syntax of the function is:
  3513. //
  3514. // RANDBETWEEN(bottom,top)
  3515. //
  3516. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  3517. if argsList.Len() != 2 {
  3518. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  3519. }
  3520. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  3521. if bottom.Type == ArgError {
  3522. return bottom
  3523. }
  3524. top := argsList.Back().Value.(formulaArg).ToNumber()
  3525. if top.Type == ArgError {
  3526. return top
  3527. }
  3528. if top.Number < bottom.Number {
  3529. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3530. }
  3531. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  3532. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  3533. }
  3534. // romanNumerals defined a numeral system that originated in ancient Rome and
  3535. // remained the usual way of writing numbers throughout Europe well into the
  3536. // Late Middle Ages.
  3537. type romanNumerals struct {
  3538. n float64
  3539. s string
  3540. }
  3541. var romanTable = [][]romanNumerals{
  3542. {
  3543. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  3544. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3545. },
  3546. {
  3547. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  3548. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3549. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3550. },
  3551. {
  3552. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  3553. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  3554. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3555. },
  3556. {
  3557. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  3558. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  3559. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  3560. {5, "V"}, {4, "IV"}, {1, "I"},
  3561. },
  3562. {
  3563. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  3564. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  3565. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3566. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3567. },
  3568. }
  3569. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  3570. // integer, the function returns a text string depicting the roman numeral
  3571. // form of the number. The syntax of the function is:
  3572. //
  3573. // ROMAN(number,[form])
  3574. //
  3575. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  3576. if argsList.Len() == 0 {
  3577. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  3578. }
  3579. if argsList.Len() > 2 {
  3580. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  3581. }
  3582. var form int
  3583. number := argsList.Front().Value.(formulaArg).ToNumber()
  3584. if number.Type == ArgError {
  3585. return number
  3586. }
  3587. if argsList.Len() > 1 {
  3588. f := argsList.Back().Value.(formulaArg).ToNumber()
  3589. if f.Type == ArgError {
  3590. return f
  3591. }
  3592. form = int(f.Number)
  3593. if form < 0 {
  3594. form = 0
  3595. } else if form > 4 {
  3596. form = 4
  3597. }
  3598. }
  3599. decimalTable := romanTable[0]
  3600. switch form {
  3601. case 1:
  3602. decimalTable = romanTable[1]
  3603. case 2:
  3604. decimalTable = romanTable[2]
  3605. case 3:
  3606. decimalTable = romanTable[3]
  3607. case 4:
  3608. decimalTable = romanTable[4]
  3609. }
  3610. val := math.Trunc(number.Number)
  3611. buf := bytes.Buffer{}
  3612. for _, r := range decimalTable {
  3613. for val >= r.n {
  3614. buf.WriteString(r.s)
  3615. val -= r.n
  3616. }
  3617. }
  3618. return newStringFormulaArg(buf.String())
  3619. }
  3620. type roundMode byte
  3621. const (
  3622. closest roundMode = iota
  3623. down
  3624. up
  3625. )
  3626. // round rounds a supplied number up or down.
  3627. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3628. var significance float64
  3629. if digits > 0 {
  3630. significance = math.Pow(1/10.0, digits)
  3631. } else {
  3632. significance = math.Pow(10.0, -digits)
  3633. }
  3634. val, res := math.Modf(number / significance)
  3635. switch mode {
  3636. case closest:
  3637. const eps = 0.499999999
  3638. if res >= eps {
  3639. val++
  3640. } else if res <= -eps {
  3641. val--
  3642. }
  3643. case down:
  3644. case up:
  3645. if res > 0 {
  3646. val++
  3647. } else if res < 0 {
  3648. val--
  3649. }
  3650. }
  3651. return val * significance
  3652. }
  3653. // ROUND function rounds a supplied number up or down, to a specified number
  3654. // of decimal places. The syntax of the function is:
  3655. //
  3656. // ROUND(number,num_digits)
  3657. //
  3658. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3659. if argsList.Len() != 2 {
  3660. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3661. }
  3662. number := argsList.Front().Value.(formulaArg).ToNumber()
  3663. if number.Type == ArgError {
  3664. return number
  3665. }
  3666. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3667. if digits.Type == ArgError {
  3668. return digits
  3669. }
  3670. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3671. }
  3672. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3673. // specified number of decimal places. The syntax of the function is:
  3674. //
  3675. // ROUNDDOWN(number,num_digits)
  3676. //
  3677. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3678. if argsList.Len() != 2 {
  3679. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3680. }
  3681. number := argsList.Front().Value.(formulaArg).ToNumber()
  3682. if number.Type == ArgError {
  3683. return number
  3684. }
  3685. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3686. if digits.Type == ArgError {
  3687. return digits
  3688. }
  3689. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3690. }
  3691. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3692. // specified number of decimal places. The syntax of the function is:
  3693. //
  3694. // ROUNDUP(number,num_digits)
  3695. //
  3696. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3697. if argsList.Len() != 2 {
  3698. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3699. }
  3700. number := argsList.Front().Value.(formulaArg).ToNumber()
  3701. if number.Type == ArgError {
  3702. return number
  3703. }
  3704. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3705. if digits.Type == ArgError {
  3706. return digits
  3707. }
  3708. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3709. }
  3710. // SEC function calculates the secant of a given angle. The syntax of the
  3711. // function is:
  3712. //
  3713. // SEC(number)
  3714. //
  3715. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3716. if argsList.Len() != 1 {
  3717. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3718. }
  3719. number := argsList.Front().Value.(formulaArg).ToNumber()
  3720. if number.Type == ArgError {
  3721. return number
  3722. }
  3723. return newNumberFormulaArg(math.Cos(number.Number))
  3724. }
  3725. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3726. // The syntax of the function is:
  3727. //
  3728. // SECH(number)
  3729. //
  3730. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3731. if argsList.Len() != 1 {
  3732. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3733. }
  3734. number := argsList.Front().Value.(formulaArg).ToNumber()
  3735. if number.Type == ArgError {
  3736. return number
  3737. }
  3738. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3739. }
  3740. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3741. // number. I.e. if the number is positive, the Sign function returns +1, if
  3742. // the number is negative, the function returns -1 and if the number is 0
  3743. // (zero), the function returns 0. The syntax of the function is:
  3744. //
  3745. // SIGN(number)
  3746. //
  3747. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3748. if argsList.Len() != 1 {
  3749. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3750. }
  3751. val := argsList.Front().Value.(formulaArg).ToNumber()
  3752. if val.Type == ArgError {
  3753. return val
  3754. }
  3755. if val.Number < 0 {
  3756. return newNumberFormulaArg(-1)
  3757. }
  3758. if val.Number > 0 {
  3759. return newNumberFormulaArg(1)
  3760. }
  3761. return newNumberFormulaArg(0)
  3762. }
  3763. // SIN function calculates the sine of a given angle. The syntax of the
  3764. // function is:
  3765. //
  3766. // SIN(number)
  3767. //
  3768. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3769. if argsList.Len() != 1 {
  3770. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3771. }
  3772. number := argsList.Front().Value.(formulaArg).ToNumber()
  3773. if number.Type == ArgError {
  3774. return number
  3775. }
  3776. return newNumberFormulaArg(math.Sin(number.Number))
  3777. }
  3778. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3779. // The syntax of the function is:
  3780. //
  3781. // SINH(number)
  3782. //
  3783. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3784. if argsList.Len() != 1 {
  3785. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3786. }
  3787. number := argsList.Front().Value.(formulaArg).ToNumber()
  3788. if number.Type == ArgError {
  3789. return number
  3790. }
  3791. return newNumberFormulaArg(math.Sinh(number.Number))
  3792. }
  3793. // SQRT function calculates the positive square root of a supplied number. The
  3794. // syntax of the function is:
  3795. //
  3796. // SQRT(number)
  3797. //
  3798. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3799. if argsList.Len() != 1 {
  3800. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3801. }
  3802. value := argsList.Front().Value.(formulaArg).ToNumber()
  3803. if value.Type == ArgError {
  3804. return value
  3805. }
  3806. if value.Number < 0 {
  3807. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3808. }
  3809. return newNumberFormulaArg(math.Sqrt(value.Number))
  3810. }
  3811. // SQRTPI function returns the square root of a supplied number multiplied by
  3812. // the mathematical constant, π. The syntax of the function is:
  3813. //
  3814. // SQRTPI(number)
  3815. //
  3816. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3817. if argsList.Len() != 1 {
  3818. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3819. }
  3820. number := argsList.Front().Value.(formulaArg).ToNumber()
  3821. if number.Type == ArgError {
  3822. return number
  3823. }
  3824. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3825. }
  3826. // STDEV function calculates the sample standard deviation of a supplied set
  3827. // of values. The syntax of the function is:
  3828. //
  3829. // STDEV(number1,[number2],...)
  3830. //
  3831. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3832. if argsList.Len() < 1 {
  3833. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3834. }
  3835. return fn.stdev(false, argsList)
  3836. }
  3837. // STDEVdotS function calculates the sample standard deviation of a supplied
  3838. // set of values. The syntax of the function is:
  3839. //
  3840. // STDEV.S(number1,[number2],...)
  3841. //
  3842. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3843. if argsList.Len() < 1 {
  3844. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3845. }
  3846. return fn.stdev(false, argsList)
  3847. }
  3848. // STDEVA function estimates standard deviation based on a sample. The
  3849. // standard deviation is a measure of how widely values are dispersed from
  3850. // the average value (the mean). The syntax of the function is:
  3851. //
  3852. // STDEVA(number1,[number2],...)
  3853. //
  3854. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3855. if argsList.Len() < 1 {
  3856. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3857. }
  3858. return fn.stdev(true, argsList)
  3859. }
  3860. // stdev is an implementation of the formula function STDEV and STDEVA.
  3861. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3862. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3863. if result == -1 {
  3864. result = math.Pow((n.Number - m.Number), 2)
  3865. } else {
  3866. result += math.Pow((n.Number - m.Number), 2)
  3867. }
  3868. count++
  3869. return result, count
  3870. }
  3871. count, result := -1.0, -1.0
  3872. var mean formulaArg
  3873. if stdeva {
  3874. mean = fn.AVERAGEA(argsList)
  3875. } else {
  3876. mean = fn.AVERAGE(argsList)
  3877. }
  3878. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3879. token := arg.Value.(formulaArg)
  3880. switch token.Type {
  3881. case ArgString, ArgNumber:
  3882. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3883. continue
  3884. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3885. num := token.ToBool()
  3886. if num.Type == ArgNumber {
  3887. result, count = pow(result, count, num, mean)
  3888. continue
  3889. }
  3890. } else {
  3891. num := token.ToNumber()
  3892. if num.Type == ArgNumber {
  3893. result, count = pow(result, count, num, mean)
  3894. }
  3895. }
  3896. case ArgList, ArgMatrix:
  3897. for _, row := range token.ToList() {
  3898. if row.Type == ArgNumber || row.Type == ArgString {
  3899. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3900. continue
  3901. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3902. num := row.ToBool()
  3903. if num.Type == ArgNumber {
  3904. result, count = pow(result, count, num, mean)
  3905. continue
  3906. }
  3907. } else {
  3908. num := row.ToNumber()
  3909. if num.Type == ArgNumber {
  3910. result, count = pow(result, count, num, mean)
  3911. }
  3912. }
  3913. }
  3914. }
  3915. }
  3916. }
  3917. if count > 0 && result >= 0 {
  3918. return newNumberFormulaArg(math.Sqrt(result / count))
  3919. }
  3920. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3921. }
  3922. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3923. // the Cumulative Poisson Probability Function for a supplied set of
  3924. // parameters. The syntax of the function is:
  3925. //
  3926. // POISSON.DIST(x,mean,cumulative)
  3927. //
  3928. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3929. if argsList.Len() != 3 {
  3930. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3931. }
  3932. return fn.POISSON(argsList)
  3933. }
  3934. // POISSON function calculates the Poisson Probability Mass Function or the
  3935. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3936. // The syntax of the function is:
  3937. //
  3938. // POISSON(x,mean,cumulative)
  3939. //
  3940. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3941. if argsList.Len() != 3 {
  3942. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3943. }
  3944. var x, mean, cumulative formulaArg
  3945. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3946. return x
  3947. }
  3948. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3949. return mean
  3950. }
  3951. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3952. return cumulative
  3953. }
  3954. if x.Number < 0 || mean.Number <= 0 {
  3955. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3956. }
  3957. if cumulative.Number == 1 {
  3958. summer := 0.0
  3959. floor := math.Floor(x.Number)
  3960. for i := 0; i <= int(floor); i++ {
  3961. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3962. }
  3963. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3964. }
  3965. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3966. }
  3967. // SUM function adds together a supplied set of numbers and returns the sum of
  3968. // these values. The syntax of the function is:
  3969. //
  3970. // SUM(number1,[number2],...)
  3971. //
  3972. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3973. var sum float64
  3974. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3975. token := arg.Value.(formulaArg)
  3976. switch token.Type {
  3977. case ArgUnknown:
  3978. continue
  3979. case ArgString:
  3980. if num := token.ToNumber(); num.Type == ArgNumber {
  3981. sum += num.Number
  3982. }
  3983. case ArgNumber:
  3984. sum += token.Number
  3985. case ArgMatrix:
  3986. for _, row := range token.Matrix {
  3987. for _, value := range row {
  3988. if num := value.ToNumber(); num.Type == ArgNumber {
  3989. sum += num.Number
  3990. }
  3991. }
  3992. }
  3993. }
  3994. }
  3995. return newNumberFormulaArg(sum)
  3996. }
  3997. // SUMIF function finds the values in a supplied array, that satisfy a given
  3998. // criteria, and returns the sum of the corresponding values in a second
  3999. // supplied array. The syntax of the function is:
  4000. //
  4001. // SUMIF(range,criteria,[sum_range])
  4002. //
  4003. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  4004. if argsList.Len() < 2 {
  4005. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  4006. }
  4007. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  4008. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  4009. var sumRange [][]formulaArg
  4010. if argsList.Len() == 3 {
  4011. sumRange = argsList.Back().Value.(formulaArg).Matrix
  4012. }
  4013. var sum, val float64
  4014. var err error
  4015. for rowIdx, row := range rangeMtx {
  4016. for colIdx, col := range row {
  4017. var ok bool
  4018. fromVal := col.String
  4019. if col.String == "" {
  4020. continue
  4021. }
  4022. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  4023. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4024. }
  4025. if ok {
  4026. if argsList.Len() == 3 {
  4027. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  4028. continue
  4029. }
  4030. fromVal = sumRange[rowIdx][colIdx].String
  4031. }
  4032. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  4033. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4034. }
  4035. sum += val
  4036. }
  4037. }
  4038. }
  4039. return newNumberFormulaArg(sum)
  4040. }
  4041. // SUMSQ function returns the sum of squares of a supplied set of values. The
  4042. // syntax of the function is:
  4043. //
  4044. // SUMSQ(number1,[number2],...)
  4045. //
  4046. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  4047. var val, sq float64
  4048. var err error
  4049. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4050. token := arg.Value.(formulaArg)
  4051. switch token.Type {
  4052. case ArgString:
  4053. if token.String == "" {
  4054. continue
  4055. }
  4056. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4057. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4058. }
  4059. sq += val * val
  4060. case ArgNumber:
  4061. sq += token.Number
  4062. case ArgMatrix:
  4063. for _, row := range token.Matrix {
  4064. for _, value := range row {
  4065. if value.String == "" {
  4066. continue
  4067. }
  4068. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  4069. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4070. }
  4071. sq += val * val
  4072. }
  4073. }
  4074. }
  4075. }
  4076. return newNumberFormulaArg(sq)
  4077. }
  4078. // TAN function calculates the tangent of a given angle. The syntax of the
  4079. // function is:
  4080. //
  4081. // TAN(number)
  4082. //
  4083. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  4084. if argsList.Len() != 1 {
  4085. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  4086. }
  4087. number := argsList.Front().Value.(formulaArg).ToNumber()
  4088. if number.Type == ArgError {
  4089. return number
  4090. }
  4091. return newNumberFormulaArg(math.Tan(number.Number))
  4092. }
  4093. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  4094. // number. The syntax of the function is:
  4095. //
  4096. // TANH(number)
  4097. //
  4098. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  4099. if argsList.Len() != 1 {
  4100. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  4101. }
  4102. number := argsList.Front().Value.(formulaArg).ToNumber()
  4103. if number.Type == ArgError {
  4104. return number
  4105. }
  4106. return newNumberFormulaArg(math.Tanh(number.Number))
  4107. }
  4108. // TRUNC function truncates a supplied number to a specified number of decimal
  4109. // places. The syntax of the function is:
  4110. //
  4111. // TRUNC(number,[number_digits])
  4112. //
  4113. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  4114. if argsList.Len() == 0 {
  4115. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  4116. }
  4117. var digits, adjust, rtrim float64
  4118. var err error
  4119. number := argsList.Front().Value.(formulaArg).ToNumber()
  4120. if number.Type == ArgError {
  4121. return number
  4122. }
  4123. if argsList.Len() > 1 {
  4124. d := argsList.Back().Value.(formulaArg).ToNumber()
  4125. if d.Type == ArgError {
  4126. return d
  4127. }
  4128. digits = d.Number
  4129. digits = math.Floor(digits)
  4130. }
  4131. adjust = math.Pow(10, digits)
  4132. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  4133. if x != 0 {
  4134. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  4135. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4136. }
  4137. }
  4138. if (digits > 0) && (rtrim < adjust/10) {
  4139. return newNumberFormulaArg(number.Number)
  4140. }
  4141. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  4142. }
  4143. // Statistical Functions
  4144. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  4145. // The syntax of the function is:
  4146. //
  4147. // AVERAGE(number1,[number2],...)
  4148. //
  4149. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  4150. args := []formulaArg{}
  4151. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4152. args = append(args, arg.Value.(formulaArg))
  4153. }
  4154. count, sum := fn.countSum(false, args)
  4155. if count == 0 {
  4156. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  4157. }
  4158. return newNumberFormulaArg(sum / count)
  4159. }
  4160. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  4161. // with text cell and zero values. The syntax of the function is:
  4162. //
  4163. // AVERAGEA(number1,[number2],...)
  4164. //
  4165. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  4166. args := []formulaArg{}
  4167. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4168. args = append(args, arg.Value.(formulaArg))
  4169. }
  4170. count, sum := fn.countSum(true, args)
  4171. if count == 0 {
  4172. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  4173. }
  4174. return newNumberFormulaArg(sum / count)
  4175. }
  4176. // countSum get count and sum for a formula arguments array.
  4177. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  4178. for _, arg := range args {
  4179. switch arg.Type {
  4180. case ArgNumber:
  4181. if countText || !arg.Boolean {
  4182. sum += arg.Number
  4183. count++
  4184. }
  4185. case ArgString:
  4186. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4187. continue
  4188. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4189. num := arg.ToBool()
  4190. if num.Type == ArgNumber {
  4191. count++
  4192. sum += num.Number
  4193. continue
  4194. }
  4195. }
  4196. num := arg.ToNumber()
  4197. if countText && num.Type == ArgError && arg.String != "" {
  4198. count++
  4199. }
  4200. if num.Type == ArgNumber {
  4201. sum += num.Number
  4202. count++
  4203. }
  4204. case ArgList, ArgMatrix:
  4205. cnt, summary := fn.countSum(countText, arg.ToList())
  4206. sum += summary
  4207. count += cnt
  4208. }
  4209. }
  4210. return
  4211. }
  4212. // COUNT function returns the count of numeric values in a supplied set of
  4213. // cells or values. This count includes both numbers and dates. The syntax of
  4214. // the function is:
  4215. //
  4216. // COUNT(value1,[value2],...)
  4217. //
  4218. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  4219. var count int
  4220. for token := argsList.Front(); token != nil; token = token.Next() {
  4221. arg := token.Value.(formulaArg)
  4222. switch arg.Type {
  4223. case ArgString:
  4224. if arg.ToNumber().Type != ArgError {
  4225. count++
  4226. }
  4227. case ArgNumber:
  4228. count++
  4229. case ArgMatrix:
  4230. for _, row := range arg.Matrix {
  4231. for _, value := range row {
  4232. if value.ToNumber().Type != ArgError {
  4233. count++
  4234. }
  4235. }
  4236. }
  4237. }
  4238. }
  4239. return newNumberFormulaArg(float64(count))
  4240. }
  4241. // COUNTA function returns the number of non-blanks within a supplied set of
  4242. // cells or values. The syntax of the function is:
  4243. //
  4244. // COUNTA(value1,[value2],...)
  4245. //
  4246. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  4247. var count int
  4248. for token := argsList.Front(); token != nil; token = token.Next() {
  4249. arg := token.Value.(formulaArg)
  4250. switch arg.Type {
  4251. case ArgString:
  4252. if arg.String != "" {
  4253. count++
  4254. }
  4255. case ArgNumber:
  4256. count++
  4257. case ArgMatrix:
  4258. for _, row := range arg.ToList() {
  4259. switch row.Type {
  4260. case ArgString:
  4261. if row.String != "" {
  4262. count++
  4263. }
  4264. case ArgNumber:
  4265. count++
  4266. }
  4267. }
  4268. }
  4269. }
  4270. return newNumberFormulaArg(float64(count))
  4271. }
  4272. // COUNTBLANK function returns the number of blank cells in a supplied range.
  4273. // The syntax of the function is:
  4274. //
  4275. // COUNTBLANK(range)
  4276. //
  4277. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  4278. if argsList.Len() != 1 {
  4279. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  4280. }
  4281. var count int
  4282. token := argsList.Front().Value.(formulaArg)
  4283. switch token.Type {
  4284. case ArgString:
  4285. if token.String == "" {
  4286. count++
  4287. }
  4288. case ArgList, ArgMatrix:
  4289. for _, row := range token.ToList() {
  4290. switch row.Type {
  4291. case ArgString:
  4292. if row.String == "" {
  4293. count++
  4294. }
  4295. case ArgEmpty:
  4296. count++
  4297. }
  4298. }
  4299. case ArgEmpty:
  4300. count++
  4301. }
  4302. return newNumberFormulaArg(float64(count))
  4303. }
  4304. // FISHER function calculates the Fisher Transformation for a supplied value.
  4305. // The syntax of the function is:
  4306. //
  4307. // FISHER(x)
  4308. //
  4309. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  4310. if argsList.Len() != 1 {
  4311. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4312. }
  4313. token := argsList.Front().Value.(formulaArg)
  4314. switch token.Type {
  4315. case ArgString:
  4316. arg := token.ToNumber()
  4317. if arg.Type == ArgNumber {
  4318. if arg.Number <= -1 || arg.Number >= 1 {
  4319. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4320. }
  4321. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  4322. }
  4323. case ArgNumber:
  4324. if token.Number <= -1 || token.Number >= 1 {
  4325. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4326. }
  4327. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  4328. }
  4329. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4330. }
  4331. // FISHERINV function calculates the inverse of the Fisher Transformation and
  4332. // returns a value between -1 and +1. The syntax of the function is:
  4333. //
  4334. // FISHERINV(y)
  4335. //
  4336. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  4337. if argsList.Len() != 1 {
  4338. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4339. }
  4340. token := argsList.Front().Value.(formulaArg)
  4341. switch token.Type {
  4342. case ArgString:
  4343. arg := token.ToNumber()
  4344. if arg.Type == ArgNumber {
  4345. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  4346. }
  4347. case ArgNumber:
  4348. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  4349. }
  4350. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4351. }
  4352. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  4353. // specified number, n. The syntax of the function is:
  4354. //
  4355. // GAMMA(number)
  4356. //
  4357. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  4358. if argsList.Len() != 1 {
  4359. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4360. }
  4361. token := argsList.Front().Value.(formulaArg)
  4362. switch token.Type {
  4363. case ArgString:
  4364. arg := token.ToNumber()
  4365. if arg.Type == ArgNumber {
  4366. if arg.Number <= 0 {
  4367. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4368. }
  4369. return newNumberFormulaArg(math.Gamma(arg.Number))
  4370. }
  4371. case ArgNumber:
  4372. if token.Number <= 0 {
  4373. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4374. }
  4375. return newNumberFormulaArg(math.Gamma(token.Number))
  4376. }
  4377. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4378. }
  4379. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  4380. // (n). The syntax of the function is:
  4381. //
  4382. // GAMMALN(x)
  4383. //
  4384. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  4385. if argsList.Len() != 1 {
  4386. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4387. }
  4388. token := argsList.Front().Value.(formulaArg)
  4389. switch token.Type {
  4390. case ArgString:
  4391. arg := token.ToNumber()
  4392. if arg.Type == ArgNumber {
  4393. if arg.Number <= 0 {
  4394. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4395. }
  4396. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  4397. }
  4398. case ArgNumber:
  4399. if token.Number <= 0 {
  4400. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4401. }
  4402. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  4403. }
  4404. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4405. }
  4406. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  4407. // The syntax of the function is:
  4408. //
  4409. // HARMEAN(number1,[number2],...)
  4410. //
  4411. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  4412. if argsList.Len() < 1 {
  4413. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  4414. }
  4415. if min := fn.MIN(argsList); min.Number < 0 {
  4416. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4417. }
  4418. number, val, cnt := 0.0, 0.0, 0.0
  4419. for token := argsList.Front(); token != nil; token = token.Next() {
  4420. arg := token.Value.(formulaArg)
  4421. switch arg.Type {
  4422. case ArgString:
  4423. num := arg.ToNumber()
  4424. if num.Type != ArgNumber {
  4425. continue
  4426. }
  4427. number = num.Number
  4428. case ArgNumber:
  4429. number = arg.Number
  4430. }
  4431. if number <= 0 {
  4432. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4433. }
  4434. val += (1 / number)
  4435. cnt++
  4436. }
  4437. return newNumberFormulaArg(1 / (val / cnt))
  4438. }
  4439. // KURT function calculates the kurtosis of a supplied set of values. The
  4440. // syntax of the function is:
  4441. //
  4442. // KURT(number1,[number2],...)
  4443. //
  4444. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  4445. if argsList.Len() < 1 {
  4446. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  4447. }
  4448. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  4449. if stdev.Number > 0 {
  4450. count, summer := 0.0, 0.0
  4451. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4452. token := arg.Value.(formulaArg)
  4453. switch token.Type {
  4454. case ArgString, ArgNumber:
  4455. num := token.ToNumber()
  4456. if num.Type == ArgError {
  4457. continue
  4458. }
  4459. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4460. count++
  4461. case ArgList, ArgMatrix:
  4462. for _, row := range token.ToList() {
  4463. if row.Type == ArgNumber || row.Type == ArgString {
  4464. num := row.ToNumber()
  4465. if num.Type == ArgError {
  4466. continue
  4467. }
  4468. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4469. count++
  4470. }
  4471. }
  4472. }
  4473. }
  4474. if count > 3 {
  4475. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  4476. }
  4477. }
  4478. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4479. }
  4480. // NORMdotDIST function calculates the Normal Probability Density Function or
  4481. // the Cumulative Normal Distribution. Function for a supplied set of
  4482. // parameters. The syntax of the function is:
  4483. //
  4484. // NORM.DIST(x,mean,standard_dev,cumulative)
  4485. //
  4486. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  4487. if argsList.Len() != 4 {
  4488. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  4489. }
  4490. return fn.NORMDIST(argsList)
  4491. }
  4492. // NORMDIST function calculates the Normal Probability Density Function or the
  4493. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  4494. // The syntax of the function is:
  4495. //
  4496. // NORMDIST(x,mean,standard_dev,cumulative)
  4497. //
  4498. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  4499. if argsList.Len() != 4 {
  4500. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  4501. }
  4502. var x, mean, stdDev, cumulative formulaArg
  4503. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  4504. return x
  4505. }
  4506. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4507. return mean
  4508. }
  4509. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4510. return stdDev
  4511. }
  4512. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  4513. return cumulative
  4514. }
  4515. if stdDev.Number < 0 {
  4516. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4517. }
  4518. if cumulative.Number == 1 {
  4519. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  4520. }
  4521. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  4522. }
  4523. // NORMdotINV function calculates the inverse of the Cumulative Normal
  4524. // Distribution Function for a supplied value of x, and a supplied
  4525. // distribution mean & standard deviation. The syntax of the function is:
  4526. //
  4527. // NORM.INV(probability,mean,standard_dev)
  4528. //
  4529. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  4530. if argsList.Len() != 3 {
  4531. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  4532. }
  4533. return fn.NORMINV(argsList)
  4534. }
  4535. // NORMINV function calculates the inverse of the Cumulative Normal
  4536. // Distribution Function for a supplied value of x, and a supplied
  4537. // distribution mean & standard deviation. The syntax of the function is:
  4538. //
  4539. // NORMINV(probability,mean,standard_dev)
  4540. //
  4541. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  4542. if argsList.Len() != 3 {
  4543. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  4544. }
  4545. var prob, mean, stdDev formulaArg
  4546. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  4547. return prob
  4548. }
  4549. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4550. return mean
  4551. }
  4552. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4553. return stdDev
  4554. }
  4555. if prob.Number < 0 || prob.Number > 1 {
  4556. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4557. }
  4558. if stdDev.Number < 0 {
  4559. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4560. }
  4561. inv, err := norminv(prob.Number)
  4562. if err != nil {
  4563. return newErrorFormulaArg(err.Error(), err.Error())
  4564. }
  4565. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  4566. }
  4567. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  4568. // Distribution Function for a supplied value. The syntax of the function
  4569. // is:
  4570. //
  4571. // NORM.S.DIST(z)
  4572. //
  4573. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  4574. if argsList.Len() != 2 {
  4575. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  4576. }
  4577. args := list.New().Init()
  4578. args.PushBack(argsList.Front().Value.(formulaArg))
  4579. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4580. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4581. args.PushBack(argsList.Back().Value.(formulaArg))
  4582. return fn.NORMDIST(args)
  4583. }
  4584. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  4585. // Function for a supplied value. The syntax of the function is:
  4586. //
  4587. // NORMSDIST(z)
  4588. //
  4589. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4590. if argsList.Len() != 1 {
  4591. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4592. }
  4593. args := list.New().Init()
  4594. args.PushBack(argsList.Front().Value.(formulaArg))
  4595. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4596. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4597. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4598. return fn.NORMDIST(args)
  4599. }
  4600. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4601. // Distribution Function for a supplied probability value. The syntax of the
  4602. // function is:
  4603. //
  4604. // NORMSINV(probability)
  4605. //
  4606. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4607. if argsList.Len() != 1 {
  4608. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4609. }
  4610. args := list.New().Init()
  4611. args.PushBack(argsList.Front().Value.(formulaArg))
  4612. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4613. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4614. return fn.NORMINV(args)
  4615. }
  4616. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4617. // Cumulative Distribution Function for a supplied probability value. The
  4618. // syntax of the function is:
  4619. //
  4620. // NORM.S.INV(probability)
  4621. //
  4622. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4623. if argsList.Len() != 1 {
  4624. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4625. }
  4626. args := list.New().Init()
  4627. args.PushBack(argsList.Front().Value.(formulaArg))
  4628. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4629. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4630. return fn.NORMINV(args)
  4631. }
  4632. // norminv returns the inverse of the normal cumulative distribution for the
  4633. // specified value.
  4634. func norminv(p float64) (float64, error) {
  4635. a := map[int]float64{
  4636. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4637. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4638. }
  4639. b := map[int]float64{
  4640. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4641. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4642. }
  4643. c := map[int]float64{
  4644. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4645. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4646. }
  4647. d := map[int]float64{
  4648. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4649. 4: 3.754408661907416e+00,
  4650. }
  4651. pLow := 0.02425 // Use lower region approx. below this
  4652. pHigh := 1 - pLow // Use upper region approx. above this
  4653. if 0 < p && p < pLow {
  4654. // Rational approximation for lower region.
  4655. q := math.Sqrt(-2 * math.Log(p))
  4656. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4657. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4658. } else if pLow <= p && p <= pHigh {
  4659. // Rational approximation for central region.
  4660. q := p - 0.5
  4661. r := q * q
  4662. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4663. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4664. } else if pHigh < p && p < 1 {
  4665. // Rational approximation for upper region.
  4666. q := math.Sqrt(-2 * math.Log(1-p))
  4667. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4668. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4669. }
  4670. return 0, errors.New(formulaErrorNUM)
  4671. }
  4672. // kth is an implementation of the formula function LARGE and SMALL.
  4673. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4674. if argsList.Len() != 2 {
  4675. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4676. }
  4677. array := argsList.Front().Value.(formulaArg).ToList()
  4678. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4679. if kArg.Type != ArgNumber {
  4680. return kArg
  4681. }
  4682. k := int(kArg.Number)
  4683. if k < 1 {
  4684. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4685. }
  4686. data := []float64{}
  4687. for _, arg := range array {
  4688. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4689. data = append(data, numArg.Number)
  4690. }
  4691. }
  4692. if len(data) < k {
  4693. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4694. }
  4695. sort.Float64s(data)
  4696. if name == "LARGE" {
  4697. return newNumberFormulaArg(data[len(data)-k])
  4698. }
  4699. return newNumberFormulaArg(data[k-1])
  4700. }
  4701. // LARGE function returns the k'th largest value from an array of numeric
  4702. // values. The syntax of the function is:
  4703. //
  4704. // LARGE(array,k)
  4705. //
  4706. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4707. return fn.kth("LARGE", argsList)
  4708. }
  4709. // MAX function returns the largest value from a supplied set of numeric
  4710. // values. The syntax of the function is:
  4711. //
  4712. // MAX(number1,[number2],...)
  4713. //
  4714. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4715. if argsList.Len() == 0 {
  4716. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4717. }
  4718. return fn.max(false, argsList)
  4719. }
  4720. // MAXA function returns the largest value from a supplied set of numeric
  4721. // values, while counting text and the logical value FALSE as the value 0 and
  4722. // counting the logical value TRUE as the value 1. The syntax of the function
  4723. // is:
  4724. //
  4725. // MAXA(number1,[number2],...)
  4726. //
  4727. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4728. if argsList.Len() == 0 {
  4729. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4730. }
  4731. return fn.max(true, argsList)
  4732. }
  4733. // max is an implementation of the formula function MAX and MAXA.
  4734. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4735. max := -math.MaxFloat64
  4736. for token := argsList.Front(); token != nil; token = token.Next() {
  4737. arg := token.Value.(formulaArg)
  4738. switch arg.Type {
  4739. case ArgString:
  4740. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4741. continue
  4742. } else {
  4743. num := arg.ToBool()
  4744. if num.Type == ArgNumber && num.Number > max {
  4745. max = num.Number
  4746. continue
  4747. }
  4748. }
  4749. num := arg.ToNumber()
  4750. if num.Type != ArgError && num.Number > max {
  4751. max = num.Number
  4752. }
  4753. case ArgNumber:
  4754. if arg.Number > max {
  4755. max = arg.Number
  4756. }
  4757. case ArgList, ArgMatrix:
  4758. for _, row := range arg.ToList() {
  4759. switch row.Type {
  4760. case ArgString:
  4761. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4762. continue
  4763. } else {
  4764. num := row.ToBool()
  4765. if num.Type == ArgNumber && num.Number > max {
  4766. max = num.Number
  4767. continue
  4768. }
  4769. }
  4770. num := row.ToNumber()
  4771. if num.Type != ArgError && num.Number > max {
  4772. max = num.Number
  4773. }
  4774. case ArgNumber:
  4775. if row.Number > max {
  4776. max = row.Number
  4777. }
  4778. }
  4779. }
  4780. case ArgError:
  4781. return arg
  4782. }
  4783. }
  4784. if max == -math.MaxFloat64 {
  4785. max = 0
  4786. }
  4787. return newNumberFormulaArg(max)
  4788. }
  4789. // MEDIAN function returns the statistical median (the middle value) of a list
  4790. // of supplied numbers. The syntax of the function is:
  4791. //
  4792. // MEDIAN(number1,[number2],...)
  4793. //
  4794. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4795. if argsList.Len() == 0 {
  4796. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4797. }
  4798. var values = []float64{}
  4799. var median, digits float64
  4800. var err error
  4801. for token := argsList.Front(); token != nil; token = token.Next() {
  4802. arg := token.Value.(formulaArg)
  4803. switch arg.Type {
  4804. case ArgString:
  4805. num := arg.ToNumber()
  4806. if num.Type == ArgError {
  4807. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4808. }
  4809. values = append(values, num.Number)
  4810. case ArgNumber:
  4811. values = append(values, arg.Number)
  4812. case ArgMatrix:
  4813. for _, row := range arg.Matrix {
  4814. for _, value := range row {
  4815. if value.String == "" {
  4816. continue
  4817. }
  4818. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4819. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4820. }
  4821. values = append(values, digits)
  4822. }
  4823. }
  4824. }
  4825. }
  4826. sort.Float64s(values)
  4827. if len(values)%2 == 0 {
  4828. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4829. } else {
  4830. median = values[len(values)/2]
  4831. }
  4832. return newNumberFormulaArg(median)
  4833. }
  4834. // MIN function returns the smallest value from a supplied set of numeric
  4835. // values. The syntax of the function is:
  4836. //
  4837. // MIN(number1,[number2],...)
  4838. //
  4839. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4840. if argsList.Len() == 0 {
  4841. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4842. }
  4843. return fn.min(false, argsList)
  4844. }
  4845. // MINA function returns the smallest value from a supplied set of numeric
  4846. // values, while counting text and the logical value FALSE as the value 0 and
  4847. // counting the logical value TRUE as the value 1. The syntax of the function
  4848. // is:
  4849. //
  4850. // MINA(number1,[number2],...)
  4851. //
  4852. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4853. if argsList.Len() == 0 {
  4854. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4855. }
  4856. return fn.min(true, argsList)
  4857. }
  4858. // min is an implementation of the formula function MIN and MINA.
  4859. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4860. min := math.MaxFloat64
  4861. for token := argsList.Front(); token != nil; token = token.Next() {
  4862. arg := token.Value.(formulaArg)
  4863. switch arg.Type {
  4864. case ArgString:
  4865. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4866. continue
  4867. } else {
  4868. num := arg.ToBool()
  4869. if num.Type == ArgNumber && num.Number < min {
  4870. min = num.Number
  4871. continue
  4872. }
  4873. }
  4874. num := arg.ToNumber()
  4875. if num.Type != ArgError && num.Number < min {
  4876. min = num.Number
  4877. }
  4878. case ArgNumber:
  4879. if arg.Number < min {
  4880. min = arg.Number
  4881. }
  4882. case ArgList, ArgMatrix:
  4883. for _, row := range arg.ToList() {
  4884. switch row.Type {
  4885. case ArgString:
  4886. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4887. continue
  4888. } else {
  4889. num := row.ToBool()
  4890. if num.Type == ArgNumber && num.Number < min {
  4891. min = num.Number
  4892. continue
  4893. }
  4894. }
  4895. num := row.ToNumber()
  4896. if num.Type != ArgError && num.Number < min {
  4897. min = num.Number
  4898. }
  4899. case ArgNumber:
  4900. if row.Number < min {
  4901. min = row.Number
  4902. }
  4903. }
  4904. }
  4905. case ArgError:
  4906. return arg
  4907. }
  4908. }
  4909. if min == math.MaxFloat64 {
  4910. min = 0
  4911. }
  4912. return newNumberFormulaArg(min)
  4913. }
  4914. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4915. // which k% of the data values fall) for a supplied range of values and a
  4916. // supplied k. The syntax of the function is:
  4917. //
  4918. // PERCENTILE.INC(array,k)
  4919. //
  4920. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4921. if argsList.Len() != 2 {
  4922. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4923. }
  4924. return fn.PERCENTILE(argsList)
  4925. }
  4926. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4927. // k% of the data values fall) for a supplied range of values and a supplied
  4928. // k. The syntax of the function is:
  4929. //
  4930. // PERCENTILE(array,k)
  4931. //
  4932. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4933. if argsList.Len() != 2 {
  4934. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4935. }
  4936. array := argsList.Front().Value.(formulaArg).ToList()
  4937. k := argsList.Back().Value.(formulaArg).ToNumber()
  4938. if k.Type != ArgNumber {
  4939. return k
  4940. }
  4941. if k.Number < 0 || k.Number > 1 {
  4942. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4943. }
  4944. numbers := []float64{}
  4945. for _, arg := range array {
  4946. if arg.Type == ArgError {
  4947. return arg
  4948. }
  4949. num := arg.ToNumber()
  4950. if num.Type == ArgNumber {
  4951. numbers = append(numbers, num.Number)
  4952. }
  4953. }
  4954. cnt := len(numbers)
  4955. sort.Float64s(numbers)
  4956. idx := k.Number * (float64(cnt) - 1)
  4957. base := math.Floor(idx)
  4958. if idx == base {
  4959. return newNumberFormulaArg(numbers[int(idx)])
  4960. }
  4961. next := base + 1
  4962. proportion := idx - base
  4963. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4964. }
  4965. // PERMUT function calculates the number of permutations of a specified number
  4966. // of objects from a set of objects. The syntax of the function is:
  4967. //
  4968. // PERMUT(number,number_chosen)
  4969. //
  4970. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4971. if argsList.Len() != 2 {
  4972. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4973. }
  4974. number := argsList.Front().Value.(formulaArg).ToNumber()
  4975. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4976. if number.Type != ArgNumber {
  4977. return number
  4978. }
  4979. if chosen.Type != ArgNumber {
  4980. return chosen
  4981. }
  4982. if number.Number < chosen.Number {
  4983. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4984. }
  4985. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4986. }
  4987. // PERMUTATIONA function calculates the number of permutations, with
  4988. // repetitions, of a specified number of objects from a set. The syntax of
  4989. // the function is:
  4990. //
  4991. // PERMUTATIONA(number,number_chosen)
  4992. //
  4993. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4994. if argsList.Len() < 1 {
  4995. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4996. }
  4997. number := argsList.Front().Value.(formulaArg).ToNumber()
  4998. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4999. if number.Type != ArgNumber {
  5000. return number
  5001. }
  5002. if chosen.Type != ArgNumber {
  5003. return chosen
  5004. }
  5005. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  5006. if num < 0 || numChosen < 0 {
  5007. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  5008. }
  5009. return newNumberFormulaArg(math.Pow(num, numChosen))
  5010. }
  5011. // QUARTILE function returns a requested quartile of a supplied range of
  5012. // values. The syntax of the function is:
  5013. //
  5014. // QUARTILE(array,quart)
  5015. //
  5016. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  5017. if argsList.Len() != 2 {
  5018. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  5019. }
  5020. quart := argsList.Back().Value.(formulaArg).ToNumber()
  5021. if quart.Type != ArgNumber {
  5022. return quart
  5023. }
  5024. if quart.Number < 0 || quart.Number > 4 {
  5025. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  5026. }
  5027. args := list.New().Init()
  5028. args.PushBack(argsList.Front().Value.(formulaArg))
  5029. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  5030. return fn.PERCENTILE(args)
  5031. }
  5032. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  5033. // values. The syntax of the function is:
  5034. //
  5035. // QUARTILE.INC(array,quart)
  5036. //
  5037. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  5038. if argsList.Len() != 2 {
  5039. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  5040. }
  5041. return fn.QUARTILE(argsList)
  5042. }
  5043. // SKEW function calculates the skewness of the distribution of a supplied set
  5044. // of values. The syntax of the function is:
  5045. //
  5046. // SKEW(number1,[number2],...)
  5047. //
  5048. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  5049. if argsList.Len() < 1 {
  5050. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  5051. }
  5052. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  5053. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5054. token := arg.Value.(formulaArg)
  5055. switch token.Type {
  5056. case ArgNumber, ArgString:
  5057. num := token.ToNumber()
  5058. if num.Type == ArgError {
  5059. return num
  5060. }
  5061. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  5062. count++
  5063. case ArgList, ArgMatrix:
  5064. for _, row := range token.ToList() {
  5065. numArg := row.ToNumber()
  5066. if numArg.Type != ArgNumber {
  5067. continue
  5068. }
  5069. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  5070. count++
  5071. }
  5072. }
  5073. }
  5074. if count > 2 {
  5075. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  5076. }
  5077. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  5078. }
  5079. // SMALL function returns the k'th smallest value from an array of numeric
  5080. // values. The syntax of the function is:
  5081. //
  5082. // SMALL(array,k)
  5083. //
  5084. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  5085. return fn.kth("SMALL", argsList)
  5086. }
  5087. // VARP function returns the Variance of a given set of values. The syntax of
  5088. // the function is:
  5089. //
  5090. // VARP(number1,[number2],...)
  5091. //
  5092. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  5093. if argsList.Len() < 1 {
  5094. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  5095. }
  5096. summerA, summerB, count := 0.0, 0.0, 0.0
  5097. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5098. for _, token := range arg.Value.(formulaArg).ToList() {
  5099. if num := token.ToNumber(); num.Type == ArgNumber {
  5100. summerA += (num.Number * num.Number)
  5101. summerB += num.Number
  5102. count++
  5103. }
  5104. }
  5105. }
  5106. if count > 0 {
  5107. summerA *= count
  5108. summerB *= summerB
  5109. return newNumberFormulaArg((summerA - summerB) / (count * count))
  5110. }
  5111. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  5112. }
  5113. // VARdotP function returns the Variance of a given set of values. The syntax
  5114. // of the function is:
  5115. //
  5116. // VAR.P(number1,[number2],...)
  5117. //
  5118. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  5119. if argsList.Len() < 1 {
  5120. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  5121. }
  5122. return fn.VARP(argsList)
  5123. }
  5124. // Information Functions
  5125. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  5126. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  5127. // function is:
  5128. //
  5129. // ISBLANK(value)
  5130. //
  5131. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  5132. if argsList.Len() != 1 {
  5133. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  5134. }
  5135. token := argsList.Front().Value.(formulaArg)
  5136. result := "FALSE"
  5137. switch token.Type {
  5138. case ArgUnknown:
  5139. result = "TRUE"
  5140. case ArgString:
  5141. if token.String == "" {
  5142. result = "TRUE"
  5143. }
  5144. }
  5145. return newStringFormulaArg(result)
  5146. }
  5147. // ISERR function tests if an initial supplied expression (or value) returns
  5148. // any Excel Error, except the #N/A error. If so, the function returns the
  5149. // logical value TRUE; If the supplied value is not an error or is the #N/A
  5150. // error, the ISERR function returns FALSE. The syntax of the function is:
  5151. //
  5152. // ISERR(value)
  5153. //
  5154. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  5155. if argsList.Len() != 1 {
  5156. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  5157. }
  5158. token := argsList.Front().Value.(formulaArg)
  5159. result := "FALSE"
  5160. if token.Type == ArgError {
  5161. for _, errType := range []string{
  5162. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  5163. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  5164. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  5165. } {
  5166. if errType == token.String {
  5167. result = "TRUE"
  5168. }
  5169. }
  5170. }
  5171. return newStringFormulaArg(result)
  5172. }
  5173. // ISERROR function tests if an initial supplied expression (or value) returns
  5174. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  5175. // function returns FALSE. The syntax of the function is:
  5176. //
  5177. // ISERROR(value)
  5178. //
  5179. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  5180. if argsList.Len() != 1 {
  5181. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  5182. }
  5183. token := argsList.Front().Value.(formulaArg)
  5184. result := "FALSE"
  5185. if token.Type == ArgError {
  5186. for _, errType := range []string{
  5187. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  5188. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  5189. formulaErrorCALC, formulaErrorGETTINGDATA,
  5190. } {
  5191. if errType == token.String {
  5192. result = "TRUE"
  5193. }
  5194. }
  5195. }
  5196. return newStringFormulaArg(result)
  5197. }
  5198. // ISEVEN function tests if a supplied number (or numeric expression)
  5199. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  5200. // function returns FALSE. The syntax of the function is:
  5201. //
  5202. // ISEVEN(value)
  5203. //
  5204. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  5205. if argsList.Len() != 1 {
  5206. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  5207. }
  5208. var (
  5209. token = argsList.Front().Value.(formulaArg)
  5210. result = "FALSE"
  5211. numeric int
  5212. err error
  5213. )
  5214. if token.Type == ArgString {
  5215. if numeric, err = strconv.Atoi(token.String); err != nil {
  5216. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5217. }
  5218. if numeric == numeric/2*2 {
  5219. return newStringFormulaArg("TRUE")
  5220. }
  5221. }
  5222. return newStringFormulaArg(result)
  5223. }
  5224. // ISNA function tests if an initial supplied expression (or value) returns
  5225. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  5226. // returns FALSE. The syntax of the function is:
  5227. //
  5228. // ISNA(value)
  5229. //
  5230. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  5231. if argsList.Len() != 1 {
  5232. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  5233. }
  5234. token := argsList.Front().Value.(formulaArg)
  5235. result := "FALSE"
  5236. if token.Type == ArgError && token.String == formulaErrorNA {
  5237. result = "TRUE"
  5238. }
  5239. return newStringFormulaArg(result)
  5240. }
  5241. // ISNONTEXT function function tests if a supplied value is text. If not, the
  5242. // function returns TRUE; If the supplied value is text, the function returns
  5243. // FALSE. The syntax of the function is:
  5244. //
  5245. // ISNONTEXT(value)
  5246. //
  5247. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  5248. if argsList.Len() != 1 {
  5249. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  5250. }
  5251. token := argsList.Front().Value.(formulaArg)
  5252. result := "TRUE"
  5253. if token.Type == ArgString && token.String != "" {
  5254. result = "FALSE"
  5255. }
  5256. return newStringFormulaArg(result)
  5257. }
  5258. // ISNUMBER function function tests if a supplied value is a number. If so,
  5259. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  5260. // function is:
  5261. //
  5262. // ISNUMBER(value)
  5263. //
  5264. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  5265. if argsList.Len() != 1 {
  5266. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  5267. }
  5268. token, result := argsList.Front().Value.(formulaArg), false
  5269. if token.Type == ArgString && token.String != "" {
  5270. if _, err := strconv.Atoi(token.String); err == nil {
  5271. result = true
  5272. }
  5273. }
  5274. return newBoolFormulaArg(result)
  5275. }
  5276. // ISODD function tests if a supplied number (or numeric expression) evaluates
  5277. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  5278. // FALSE. The syntax of the function is:
  5279. //
  5280. // ISODD(value)
  5281. //
  5282. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  5283. if argsList.Len() != 1 {
  5284. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  5285. }
  5286. var (
  5287. token = argsList.Front().Value.(formulaArg)
  5288. result = "FALSE"
  5289. numeric int
  5290. err error
  5291. )
  5292. if token.Type == ArgString {
  5293. if numeric, err = strconv.Atoi(token.String); err != nil {
  5294. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5295. }
  5296. if numeric != numeric/2*2 {
  5297. return newStringFormulaArg("TRUE")
  5298. }
  5299. }
  5300. return newStringFormulaArg(result)
  5301. }
  5302. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  5303. // Otherwise, the function returns FALSE. The syntax of the function is:
  5304. //
  5305. // ISTEXT(value)
  5306. //
  5307. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  5308. if argsList.Len() != 1 {
  5309. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  5310. }
  5311. token := argsList.Front().Value.(formulaArg)
  5312. if token.ToNumber().Type != ArgError {
  5313. return newBoolFormulaArg(false)
  5314. }
  5315. return newBoolFormulaArg(token.Type == ArgString)
  5316. }
  5317. // N function converts data into a numeric value. The syntax of the function
  5318. // is:
  5319. //
  5320. // N(value)
  5321. //
  5322. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  5323. if argsList.Len() != 1 {
  5324. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  5325. }
  5326. token, num := argsList.Front().Value.(formulaArg), 0.0
  5327. if token.Type == ArgError {
  5328. return token
  5329. }
  5330. if arg := token.ToNumber(); arg.Type == ArgNumber {
  5331. num = arg.Number
  5332. }
  5333. if token.Value() == "TRUE" {
  5334. num = 1
  5335. }
  5336. return newNumberFormulaArg(num)
  5337. }
  5338. // NA function returns the Excel #N/A error. This error message has the
  5339. // meaning 'value not available' and is produced when an Excel Formula is
  5340. // unable to find a value that it needs. The syntax of the function is:
  5341. //
  5342. // NA()
  5343. //
  5344. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  5345. if argsList.Len() != 0 {
  5346. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  5347. }
  5348. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  5349. }
  5350. // SHEET function returns the Sheet number for a specified reference. The
  5351. // syntax of the function is:
  5352. //
  5353. // SHEET()
  5354. //
  5355. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  5356. if argsList.Len() != 0 {
  5357. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  5358. }
  5359. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  5360. }
  5361. // T function tests if a supplied value is text and if so, returns the
  5362. // supplied text; Otherwise, the function returns an empty text string. The
  5363. // syntax of the function is:
  5364. //
  5365. // T(value)
  5366. //
  5367. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  5368. if argsList.Len() != 1 {
  5369. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  5370. }
  5371. token := argsList.Front().Value.(formulaArg)
  5372. if token.Type == ArgError {
  5373. return token
  5374. }
  5375. if token.Type == ArgNumber {
  5376. return newStringFormulaArg("")
  5377. }
  5378. return newStringFormulaArg(token.Value())
  5379. }
  5380. // Logical Functions
  5381. // AND function tests a number of supplied conditions and returns TRUE or
  5382. // FALSE. The syntax of the function is:
  5383. //
  5384. // AND(logical_test1,[logical_test2],...)
  5385. //
  5386. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  5387. if argsList.Len() == 0 {
  5388. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  5389. }
  5390. if argsList.Len() > 30 {
  5391. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  5392. }
  5393. var (
  5394. and = true
  5395. val float64
  5396. err error
  5397. )
  5398. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5399. token := arg.Value.(formulaArg)
  5400. switch token.Type {
  5401. case ArgUnknown:
  5402. continue
  5403. case ArgString:
  5404. if token.String == "TRUE" {
  5405. continue
  5406. }
  5407. if token.String == "FALSE" {
  5408. return newStringFormulaArg(token.String)
  5409. }
  5410. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5411. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5412. }
  5413. and = and && (val != 0)
  5414. case ArgMatrix:
  5415. // TODO
  5416. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5417. }
  5418. }
  5419. return newBoolFormulaArg(and)
  5420. }
  5421. // FALSE function function returns the logical value FALSE. The syntax of the
  5422. // function is:
  5423. //
  5424. // FALSE()
  5425. //
  5426. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  5427. if argsList.Len() != 0 {
  5428. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  5429. }
  5430. return newBoolFormulaArg(false)
  5431. }
  5432. // IFERROR function receives two values (or expressions) and tests if the
  5433. // first of these evaluates to an error. The syntax of the function is:
  5434. //
  5435. // IFERROR(value,value_if_error)
  5436. //
  5437. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  5438. if argsList.Len() != 2 {
  5439. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  5440. }
  5441. value := argsList.Front().Value.(formulaArg)
  5442. if value.Type != ArgError {
  5443. if value.Type == ArgEmpty {
  5444. return newNumberFormulaArg(0)
  5445. }
  5446. return value
  5447. }
  5448. return argsList.Back().Value.(formulaArg)
  5449. }
  5450. // NOT function returns the opposite to a supplied logical value. The syntax
  5451. // of the function is:
  5452. //
  5453. // NOT(logical)
  5454. //
  5455. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  5456. if argsList.Len() != 1 {
  5457. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  5458. }
  5459. token := argsList.Front().Value.(formulaArg)
  5460. switch token.Type {
  5461. case ArgString, ArgList:
  5462. if strings.ToUpper(token.String) == "TRUE" {
  5463. return newBoolFormulaArg(false)
  5464. }
  5465. if strings.ToUpper(token.String) == "FALSE" {
  5466. return newBoolFormulaArg(true)
  5467. }
  5468. case ArgNumber:
  5469. return newBoolFormulaArg(!(token.Number != 0))
  5470. case ArgError:
  5471. return token
  5472. }
  5473. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  5474. }
  5475. // OR function tests a number of supplied conditions and returns either TRUE
  5476. // or FALSE. The syntax of the function is:
  5477. //
  5478. // OR(logical_test1,[logical_test2],...)
  5479. //
  5480. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  5481. if argsList.Len() == 0 {
  5482. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  5483. }
  5484. if argsList.Len() > 30 {
  5485. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  5486. }
  5487. var (
  5488. or bool
  5489. val float64
  5490. err error
  5491. )
  5492. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5493. token := arg.Value.(formulaArg)
  5494. switch token.Type {
  5495. case ArgUnknown:
  5496. continue
  5497. case ArgString:
  5498. if token.String == "FALSE" {
  5499. continue
  5500. }
  5501. if token.String == "TRUE" {
  5502. or = true
  5503. continue
  5504. }
  5505. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5506. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5507. }
  5508. or = val != 0
  5509. case ArgMatrix:
  5510. // TODO
  5511. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5512. }
  5513. }
  5514. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  5515. }
  5516. // TRUE function returns the logical value TRUE. The syntax of the function
  5517. // is:
  5518. //
  5519. // TRUE()
  5520. //
  5521. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  5522. if argsList.Len() != 0 {
  5523. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  5524. }
  5525. return newBoolFormulaArg(true)
  5526. }
  5527. // Date and Time Functions
  5528. // DATE returns a date, from a user-supplied year, month and day. The syntax
  5529. // of the function is:
  5530. //
  5531. // DATE(year,month,day)
  5532. //
  5533. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  5534. if argsList.Len() != 3 {
  5535. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5536. }
  5537. year := argsList.Front().Value.(formulaArg).ToNumber()
  5538. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5539. day := argsList.Back().Value.(formulaArg).ToNumber()
  5540. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  5541. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5542. }
  5543. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  5544. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  5545. }
  5546. // DATEDIF function calculates the number of days, months, or years between
  5547. // two dates. The syntax of the function is:
  5548. //
  5549. // DATEDIF(start_date,end_date,unit)
  5550. //
  5551. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  5552. if argsList.Len() != 3 {
  5553. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  5554. }
  5555. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  5556. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  5557. return startArg
  5558. }
  5559. if startArg.Number > endArg.Number {
  5560. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  5561. }
  5562. if startArg.Number == endArg.Number {
  5563. return newNumberFormulaArg(0)
  5564. }
  5565. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  5566. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  5567. sy, smm, sd := startDate.Date()
  5568. ey, emm, ed := endDate.Date()
  5569. sm, em, diff := int(smm), int(emm), 0.0
  5570. switch unit {
  5571. case "d":
  5572. return newNumberFormulaArg(endArg.Number - startArg.Number)
  5573. case "y":
  5574. diff = float64(ey - sy)
  5575. if em < sm || (em == sm && ed < sd) {
  5576. diff--
  5577. }
  5578. case "m":
  5579. ydiff := ey - sy
  5580. mdiff := em - sm
  5581. if ed < sd {
  5582. mdiff--
  5583. }
  5584. if mdiff < 0 {
  5585. ydiff--
  5586. mdiff += 12
  5587. }
  5588. diff = float64(ydiff*12 + mdiff)
  5589. case "md":
  5590. smMD := em
  5591. if ed < sd {
  5592. smMD--
  5593. }
  5594. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5595. case "ym":
  5596. diff = float64(em - sm)
  5597. if ed < sd {
  5598. diff--
  5599. }
  5600. if diff < 0 {
  5601. diff += 12
  5602. }
  5603. case "yd":
  5604. syYD := sy
  5605. if em < sm || (em == sm && ed < sd) {
  5606. syYD++
  5607. }
  5608. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5609. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5610. diff = s - e
  5611. default:
  5612. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5613. }
  5614. return newNumberFormulaArg(diff)
  5615. }
  5616. // NOW function returns the current date and time. The function receives no
  5617. // arguments and therefore. The syntax of the function is:
  5618. //
  5619. // NOW()
  5620. //
  5621. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5622. if argsList.Len() != 0 {
  5623. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5624. }
  5625. now := time.Now()
  5626. _, offset := now.Zone()
  5627. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5628. }
  5629. // TODAY function returns the current date. The function has no arguments and
  5630. // therefore. The syntax of the function is:
  5631. //
  5632. // TODAY()
  5633. //
  5634. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5635. if argsList.Len() != 0 {
  5636. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5637. }
  5638. now := time.Now()
  5639. _, offset := now.Zone()
  5640. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5641. }
  5642. // makeDate return date as a Unix time, the number of seconds elapsed since
  5643. // January 1, 1970 UTC.
  5644. func makeDate(y int, m time.Month, d int) int64 {
  5645. if y == 1900 && int(m) <= 2 {
  5646. d--
  5647. }
  5648. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5649. return date.Unix()
  5650. }
  5651. // daysBetween return time interval of the given start timestamp and end
  5652. // timestamp.
  5653. func daysBetween(startDate, endDate int64) float64 {
  5654. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5655. }
  5656. // Text Functions
  5657. // CHAR function returns the character relating to a supplied character set
  5658. // number (from 1 to 255). syntax of the function is:
  5659. //
  5660. // CHAR(number)
  5661. //
  5662. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5663. if argsList.Len() != 1 {
  5664. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5665. }
  5666. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5667. if arg.Type != ArgNumber {
  5668. return arg
  5669. }
  5670. num := int(arg.Number)
  5671. if num < 0 || num > 255 {
  5672. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5673. }
  5674. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5675. }
  5676. // CLEAN removes all non-printable characters from a supplied text string. The
  5677. // syntax of the function is:
  5678. //
  5679. // CLEAN(text)
  5680. //
  5681. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5682. if argsList.Len() != 1 {
  5683. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5684. }
  5685. b := bytes.Buffer{}
  5686. for _, c := range argsList.Front().Value.(formulaArg).String {
  5687. if c > 31 {
  5688. b.WriteRune(c)
  5689. }
  5690. }
  5691. return newStringFormulaArg(b.String())
  5692. }
  5693. // CODE function converts the first character of a supplied text string into
  5694. // the associated numeric character set code used by your computer. The
  5695. // syntax of the function is:
  5696. //
  5697. // CODE(text)
  5698. //
  5699. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5700. return fn.code("CODE", argsList)
  5701. }
  5702. // code is an implementation of the formula function CODE and UNICODE.
  5703. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5704. if argsList.Len() != 1 {
  5705. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5706. }
  5707. text := argsList.Front().Value.(formulaArg).Value()
  5708. if len(text) == 0 {
  5709. if name == "CODE" {
  5710. return newNumberFormulaArg(0)
  5711. }
  5712. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5713. }
  5714. return newNumberFormulaArg(float64(text[0]))
  5715. }
  5716. // CONCAT function joins together a series of supplied text strings into one
  5717. // combined text string.
  5718. //
  5719. // CONCAT(text1,[text2],...)
  5720. //
  5721. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5722. return fn.concat("CONCAT", argsList)
  5723. }
  5724. // CONCATENATE function joins together a series of supplied text strings into
  5725. // one combined text string.
  5726. //
  5727. // CONCATENATE(text1,[text2],...)
  5728. //
  5729. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5730. return fn.concat("CONCATENATE", argsList)
  5731. }
  5732. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5733. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5734. buf := bytes.Buffer{}
  5735. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5736. token := arg.Value.(formulaArg)
  5737. switch token.Type {
  5738. case ArgString:
  5739. buf.WriteString(token.String)
  5740. case ArgNumber:
  5741. if token.Boolean {
  5742. if token.Number == 0 {
  5743. buf.WriteString("FALSE")
  5744. } else {
  5745. buf.WriteString("TRUE")
  5746. }
  5747. } else {
  5748. buf.WriteString(token.Value())
  5749. }
  5750. default:
  5751. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5752. }
  5753. }
  5754. return newStringFormulaArg(buf.String())
  5755. }
  5756. // EXACT function tests if two supplied text strings or values are exactly
  5757. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5758. // function is case-sensitive. The syntax of the function is:
  5759. //
  5760. // EXACT(text1,text2)
  5761. //
  5762. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5763. if argsList.Len() != 2 {
  5764. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5765. }
  5766. text1 := argsList.Front().Value.(formulaArg).Value()
  5767. text2 := argsList.Back().Value.(formulaArg).Value()
  5768. return newBoolFormulaArg(text1 == text2)
  5769. }
  5770. // FIXED function rounds a supplied number to a specified number of decimal
  5771. // places and then converts this into text. The syntax of the function is:
  5772. //
  5773. // FIXED(number,[decimals],[no_commas])
  5774. //
  5775. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5776. if argsList.Len() < 1 {
  5777. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5778. }
  5779. if argsList.Len() > 3 {
  5780. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5781. }
  5782. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5783. if numArg.Type != ArgNumber {
  5784. return numArg
  5785. }
  5786. precision, decimals, noCommas := 0, 0, false
  5787. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5788. if argsList.Len() == 1 && len(s) == 2 {
  5789. precision = len(s[1])
  5790. decimals = len(s[1])
  5791. }
  5792. if argsList.Len() >= 2 {
  5793. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5794. if decimalsArg.Type != ArgNumber {
  5795. return decimalsArg
  5796. }
  5797. decimals = int(decimalsArg.Number)
  5798. }
  5799. if argsList.Len() == 3 {
  5800. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5801. if noCommasArg.Type == ArgError {
  5802. return noCommasArg
  5803. }
  5804. noCommas = noCommasArg.Boolean
  5805. }
  5806. n := math.Pow(10, float64(decimals))
  5807. r := numArg.Number * n
  5808. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5809. if decimals > 0 {
  5810. precision = decimals
  5811. }
  5812. if noCommas {
  5813. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5814. }
  5815. p := message.NewPrinter(language.English)
  5816. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5817. }
  5818. // FIND function returns the position of a specified character or sub-string
  5819. // within a supplied text string. The function is case-sensitive. The syntax
  5820. // of the function is:
  5821. //
  5822. // FIND(find_text,within_text,[start_num])
  5823. //
  5824. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5825. return fn.find("FIND", argsList)
  5826. }
  5827. // FINDB counts each double-byte character as 2 when you have enabled the
  5828. // editing of a language that supports DBCS and then set it as the default
  5829. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5830. // function is:
  5831. //
  5832. // FINDB(find_text,within_text,[start_num])
  5833. //
  5834. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5835. return fn.find("FINDB", argsList)
  5836. }
  5837. // find is an implementation of the formula function FIND and FINDB.
  5838. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5839. if argsList.Len() < 2 {
  5840. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5841. }
  5842. if argsList.Len() > 3 {
  5843. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5844. }
  5845. findText := argsList.Front().Value.(formulaArg).Value()
  5846. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5847. startNum, result := 1, 1
  5848. if argsList.Len() == 3 {
  5849. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5850. if numArg.Type != ArgNumber {
  5851. return numArg
  5852. }
  5853. if numArg.Number < 0 {
  5854. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5855. }
  5856. startNum = int(numArg.Number)
  5857. }
  5858. if findText == "" {
  5859. return newNumberFormulaArg(float64(startNum))
  5860. }
  5861. for idx := range withinText {
  5862. if result < startNum {
  5863. result++
  5864. }
  5865. if strings.Index(withinText[idx:], findText) == 0 {
  5866. return newNumberFormulaArg(float64(result))
  5867. }
  5868. result++
  5869. }
  5870. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5871. }
  5872. // LEFT function returns a specified number of characters from the start of a
  5873. // supplied text string. The syntax of the function is:
  5874. //
  5875. // LEFT(text,[num_chars])
  5876. //
  5877. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5878. return fn.leftRight("LEFT", argsList)
  5879. }
  5880. // LEFTB returns the first character or characters in a text string, based on
  5881. // the number of bytes you specify. The syntax of the function is:
  5882. //
  5883. // LEFTB(text,[num_bytes])
  5884. //
  5885. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5886. return fn.leftRight("LEFTB", argsList)
  5887. }
  5888. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5889. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5890. // (Traditional), and Korean.
  5891. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5892. if argsList.Len() < 1 {
  5893. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5894. }
  5895. if argsList.Len() > 2 {
  5896. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5897. }
  5898. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5899. if argsList.Len() == 2 {
  5900. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5901. if numArg.Type != ArgNumber {
  5902. return numArg
  5903. }
  5904. if numArg.Number < 0 {
  5905. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5906. }
  5907. numChars = int(numArg.Number)
  5908. }
  5909. if len(text) > numChars {
  5910. if name == "LEFT" || name == "LEFTB" {
  5911. return newStringFormulaArg(text[:numChars])
  5912. }
  5913. return newStringFormulaArg(text[len(text)-numChars:])
  5914. }
  5915. return newStringFormulaArg(text)
  5916. }
  5917. // LEN returns the length of a supplied text string. The syntax of the
  5918. // function is:
  5919. //
  5920. // LEN(text)
  5921. //
  5922. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5923. if argsList.Len() != 1 {
  5924. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5925. }
  5926. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5927. }
  5928. // LENB returns the number of bytes used to represent the characters in a text
  5929. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5930. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5931. // 1 byte per character. The syntax of the function is:
  5932. //
  5933. // LENB(text)
  5934. //
  5935. // TODO: the languages that support DBCS include Japanese, Chinese
  5936. // (Simplified), Chinese (Traditional), and Korean.
  5937. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5938. if argsList.Len() != 1 {
  5939. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5940. }
  5941. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5942. }
  5943. // LOWER converts all characters in a supplied text string to lower case. The
  5944. // syntax of the function is:
  5945. //
  5946. // LOWER(text)
  5947. //
  5948. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5949. if argsList.Len() != 1 {
  5950. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5951. }
  5952. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5953. }
  5954. // MID function returns a specified number of characters from the middle of a
  5955. // supplied text string. The syntax of the function is:
  5956. //
  5957. // MID(text,start_num,num_chars)
  5958. //
  5959. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5960. return fn.mid("MID", argsList)
  5961. }
  5962. // MIDB returns a specific number of characters from a text string, starting
  5963. // at the position you specify, based on the number of bytes you specify. The
  5964. // syntax of the function is:
  5965. //
  5966. // MID(text,start_num,num_chars)
  5967. //
  5968. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5969. return fn.mid("MIDB", argsList)
  5970. }
  5971. // mid is an implementation of the formula function MID and MIDB. TODO:
  5972. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5973. // (Traditional), and Korean.
  5974. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5975. if argsList.Len() != 3 {
  5976. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5977. }
  5978. text := argsList.Front().Value.(formulaArg).Value()
  5979. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5980. if startNumArg.Type != ArgNumber {
  5981. return startNumArg
  5982. }
  5983. if numCharsArg.Type != ArgNumber {
  5984. return numCharsArg
  5985. }
  5986. startNum := int(startNumArg.Number)
  5987. if startNum < 0 {
  5988. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5989. }
  5990. textLen := len(text)
  5991. if startNum > textLen {
  5992. return newStringFormulaArg("")
  5993. }
  5994. startNum--
  5995. endNum := startNum + int(numCharsArg.Number)
  5996. if endNum > textLen+1 {
  5997. return newStringFormulaArg(text[startNum:])
  5998. }
  5999. return newStringFormulaArg(text[startNum:endNum])
  6000. }
  6001. // PROPER converts all characters in a supplied text string to proper case
  6002. // (i.e. all letters that do not immediately follow another letter are set to
  6003. // upper case and all other characters are lower case). The syntax of the
  6004. // function is:
  6005. //
  6006. // PROPER(text)
  6007. //
  6008. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  6009. if argsList.Len() != 1 {
  6010. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  6011. }
  6012. buf := bytes.Buffer{}
  6013. isLetter := false
  6014. for _, char := range argsList.Front().Value.(formulaArg).String {
  6015. if !isLetter && unicode.IsLetter(char) {
  6016. buf.WriteRune(unicode.ToUpper(char))
  6017. } else {
  6018. buf.WriteRune(unicode.ToLower(char))
  6019. }
  6020. isLetter = unicode.IsLetter(char)
  6021. }
  6022. return newStringFormulaArg(buf.String())
  6023. }
  6024. // REPLACE function replaces all or part of a text string with another string.
  6025. // The syntax of the function is:
  6026. //
  6027. // REPLACE(old_text,start_num,num_chars,new_text)
  6028. //
  6029. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  6030. return fn.replace("REPLACE", argsList)
  6031. }
  6032. // REPLACEB replaces part of a text string, based on the number of bytes you
  6033. // specify, with a different text string.
  6034. //
  6035. // REPLACEB(old_text,start_num,num_chars,new_text)
  6036. //
  6037. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  6038. return fn.replace("REPLACEB", argsList)
  6039. }
  6040. // replace is an implementation of the formula function REPLACE and REPLACEB.
  6041. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  6042. // (Traditional), and Korean.
  6043. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  6044. if argsList.Len() != 4 {
  6045. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  6046. }
  6047. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  6048. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6049. if startNumArg.Type != ArgNumber {
  6050. return startNumArg
  6051. }
  6052. if numCharsArg.Type != ArgNumber {
  6053. return numCharsArg
  6054. }
  6055. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  6056. if startIdx > oldTextLen {
  6057. startIdx = oldTextLen + 1
  6058. }
  6059. endIdx := startIdx + int(numCharsArg.Number)
  6060. if endIdx > oldTextLen {
  6061. endIdx = oldTextLen + 1
  6062. }
  6063. if startIdx < 1 || endIdx < 1 {
  6064. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  6065. }
  6066. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  6067. return newStringFormulaArg(result)
  6068. }
  6069. // REPT function returns a supplied text string, repeated a specified number
  6070. // of times. The syntax of the function is:
  6071. //
  6072. // REPT(text,number_times)
  6073. //
  6074. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  6075. if argsList.Len() != 2 {
  6076. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  6077. }
  6078. text := argsList.Front().Value.(formulaArg)
  6079. if text.Type != ArgString {
  6080. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  6081. }
  6082. times := argsList.Back().Value.(formulaArg).ToNumber()
  6083. if times.Type != ArgNumber {
  6084. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  6085. }
  6086. if times.Number < 0 {
  6087. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  6088. }
  6089. if times.Number == 0 {
  6090. return newStringFormulaArg("")
  6091. }
  6092. buf := bytes.Buffer{}
  6093. for i := 0; i < int(times.Number); i++ {
  6094. buf.WriteString(text.String)
  6095. }
  6096. return newStringFormulaArg(buf.String())
  6097. }
  6098. // RIGHT function returns a specified number of characters from the end of a
  6099. // supplied text string. The syntax of the function is:
  6100. //
  6101. // RIGHT(text,[num_chars])
  6102. //
  6103. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  6104. return fn.leftRight("RIGHT", argsList)
  6105. }
  6106. // RIGHTB returns the last character or characters in a text string, based on
  6107. // the number of bytes you specify. The syntax of the function is:
  6108. //
  6109. // RIGHTB(text,[num_bytes])
  6110. //
  6111. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  6112. return fn.leftRight("RIGHTB", argsList)
  6113. }
  6114. // SUBSTITUTE function replaces one or more instances of a given text string,
  6115. // within an original text string. The syntax of the function is:
  6116. //
  6117. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  6118. //
  6119. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  6120. if argsList.Len() != 3 && argsList.Len() != 4 {
  6121. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  6122. }
  6123. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  6124. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  6125. if argsList.Len() == 3 {
  6126. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  6127. }
  6128. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  6129. if instanceNumArg.Type != ArgNumber {
  6130. return instanceNumArg
  6131. }
  6132. instanceNum = int(instanceNumArg.Number)
  6133. if instanceNum < 1 {
  6134. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  6135. }
  6136. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  6137. for {
  6138. count--
  6139. index := strings.Index(str, oldText.Value())
  6140. if index == -1 {
  6141. pos = -1
  6142. break
  6143. } else {
  6144. pos = index + chars
  6145. if count == 0 {
  6146. break
  6147. }
  6148. idx := oldTextLen + index
  6149. chars += idx
  6150. str = str[idx:]
  6151. }
  6152. }
  6153. if pos == -1 {
  6154. return newStringFormulaArg(text.Value())
  6155. }
  6156. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  6157. return newStringFormulaArg(pre + newText.Value() + post)
  6158. }
  6159. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  6160. // words or characters) from a supplied text string. The syntax of the
  6161. // function is:
  6162. //
  6163. // TRIM(text)
  6164. //
  6165. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  6166. if argsList.Len() != 1 {
  6167. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  6168. }
  6169. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  6170. }
  6171. // UNICHAR returns the Unicode character that is referenced by the given
  6172. // numeric value. The syntax of the function is:
  6173. //
  6174. // UNICHAR(number)
  6175. //
  6176. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  6177. if argsList.Len() != 1 {
  6178. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  6179. }
  6180. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  6181. if numArg.Type != ArgNumber {
  6182. return numArg
  6183. }
  6184. if numArg.Number <= 0 || numArg.Number > 55295 {
  6185. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  6186. }
  6187. return newStringFormulaArg(string(rune(numArg.Number)))
  6188. }
  6189. // UNICODE function returns the code point for the first character of a
  6190. // supplied text string. The syntax of the function is:
  6191. //
  6192. // UNICODE(text)
  6193. //
  6194. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  6195. return fn.code("UNICODE", argsList)
  6196. }
  6197. // UPPER converts all characters in a supplied text string to upper case. The
  6198. // syntax of the function is:
  6199. //
  6200. // UPPER(text)
  6201. //
  6202. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  6203. if argsList.Len() != 1 {
  6204. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  6205. }
  6206. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  6207. }
  6208. // Conditional Functions
  6209. // IF function tests a supplied condition and returns one result if the
  6210. // condition evaluates to TRUE, and another result if the condition evaluates
  6211. // to FALSE. The syntax of the function is:
  6212. //
  6213. // IF(logical_test,value_if_true,value_if_false)
  6214. //
  6215. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  6216. if argsList.Len() == 0 {
  6217. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  6218. }
  6219. if argsList.Len() > 3 {
  6220. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  6221. }
  6222. token := argsList.Front().Value.(formulaArg)
  6223. var (
  6224. cond bool
  6225. err error
  6226. result string
  6227. )
  6228. switch token.Type {
  6229. case ArgString:
  6230. if cond, err = strconv.ParseBool(token.String); err != nil {
  6231. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  6232. }
  6233. if argsList.Len() == 1 {
  6234. return newBoolFormulaArg(cond)
  6235. }
  6236. if cond {
  6237. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  6238. }
  6239. if argsList.Len() == 3 {
  6240. result = argsList.Back().Value.(formulaArg).String
  6241. }
  6242. }
  6243. return newStringFormulaArg(result)
  6244. }
  6245. // Lookup and Reference Functions
  6246. // CHOOSE function returns a value from an array, that corresponds to a
  6247. // supplied index number (position). The syntax of the function is:
  6248. //
  6249. // CHOOSE(index_num,value1,[value2],...)
  6250. //
  6251. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  6252. if argsList.Len() < 2 {
  6253. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  6254. }
  6255. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  6256. if err != nil {
  6257. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  6258. }
  6259. if argsList.Len() <= idx {
  6260. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  6261. }
  6262. arg := argsList.Front()
  6263. for i := 0; i < idx; i++ {
  6264. arg = arg.Next()
  6265. }
  6266. var result formulaArg
  6267. switch arg.Value.(formulaArg).Type {
  6268. case ArgString:
  6269. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  6270. case ArgMatrix:
  6271. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  6272. }
  6273. return result
  6274. }
  6275. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  6276. // string.
  6277. func deepMatchRune(str, pattern []rune, simple bool) bool {
  6278. for len(pattern) > 0 {
  6279. switch pattern[0] {
  6280. default:
  6281. if len(str) == 0 || str[0] != pattern[0] {
  6282. return false
  6283. }
  6284. case '?':
  6285. if len(str) == 0 && !simple {
  6286. return false
  6287. }
  6288. case '*':
  6289. return deepMatchRune(str, pattern[1:], simple) ||
  6290. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  6291. }
  6292. str = str[1:]
  6293. pattern = pattern[1:]
  6294. }
  6295. return len(str) == 0 && len(pattern) == 0
  6296. }
  6297. // matchPattern finds whether the text matches or satisfies the pattern
  6298. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  6299. func matchPattern(pattern, name string) (matched bool) {
  6300. if pattern == "" {
  6301. return name == pattern
  6302. }
  6303. if pattern == "*" {
  6304. return true
  6305. }
  6306. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  6307. for _, r := range name {
  6308. rname = append(rname, r)
  6309. }
  6310. for _, r := range pattern {
  6311. rpattern = append(rpattern, r)
  6312. }
  6313. simple := false // Does extended wildcard '*' and '?' match.
  6314. return deepMatchRune(rname, rpattern, simple)
  6315. }
  6316. // compareFormulaArg compares the left-hand sides and the right-hand sides
  6317. // formula arguments by given conditions such as case sensitive, if exact
  6318. // match, and make compare result as formula criteria condition type.
  6319. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6320. if lhs.Type != rhs.Type {
  6321. return criteriaErr
  6322. }
  6323. switch lhs.Type {
  6324. case ArgNumber:
  6325. if lhs.Number == rhs.Number {
  6326. return criteriaEq
  6327. }
  6328. if lhs.Number < rhs.Number {
  6329. return criteriaL
  6330. }
  6331. return criteriaG
  6332. case ArgString:
  6333. ls, rs := lhs.String, rhs.String
  6334. if !caseSensitive {
  6335. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  6336. }
  6337. if exactMatch {
  6338. match := matchPattern(rs, ls)
  6339. if match {
  6340. return criteriaEq
  6341. }
  6342. return criteriaG
  6343. }
  6344. switch strings.Compare(ls, rs) {
  6345. case 1:
  6346. return criteriaG
  6347. case -1:
  6348. return criteriaL
  6349. case 0:
  6350. return criteriaEq
  6351. }
  6352. return criteriaErr
  6353. case ArgEmpty:
  6354. return criteriaEq
  6355. case ArgList:
  6356. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  6357. case ArgMatrix:
  6358. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  6359. }
  6360. return criteriaErr
  6361. }
  6362. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  6363. // list type formula arguments.
  6364. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6365. if len(lhs.List) < len(rhs.List) {
  6366. return criteriaL
  6367. }
  6368. if len(lhs.List) > len(rhs.List) {
  6369. return criteriaG
  6370. }
  6371. for arg := range lhs.List {
  6372. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  6373. if criteria != criteriaEq {
  6374. return criteria
  6375. }
  6376. }
  6377. return criteriaEq
  6378. }
  6379. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  6380. // matrix type formula arguments.
  6381. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6382. if len(lhs.Matrix) < len(rhs.Matrix) {
  6383. return criteriaL
  6384. }
  6385. if len(lhs.Matrix) > len(rhs.Matrix) {
  6386. return criteriaG
  6387. }
  6388. for i := range lhs.Matrix {
  6389. left := lhs.Matrix[i]
  6390. right := lhs.Matrix[i]
  6391. if len(left) < len(right) {
  6392. return criteriaL
  6393. }
  6394. if len(left) > len(right) {
  6395. return criteriaG
  6396. }
  6397. for arg := range left {
  6398. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  6399. if criteria != criteriaEq {
  6400. return criteria
  6401. }
  6402. }
  6403. }
  6404. return criteriaEq
  6405. }
  6406. // COLUMN function returns the first column number within a supplied reference
  6407. // or the number of the current column. The syntax of the function is:
  6408. //
  6409. // COLUMN([reference])
  6410. //
  6411. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  6412. if argsList.Len() > 1 {
  6413. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  6414. }
  6415. if argsList.Len() == 1 {
  6416. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6417. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  6418. }
  6419. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6420. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  6421. }
  6422. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6423. }
  6424. col, _, _ := CellNameToCoordinates(fn.cell)
  6425. return newNumberFormulaArg(float64(col))
  6426. }
  6427. // COLUMNS function receives an Excel range and returns the number of columns
  6428. // that are contained within the range. The syntax of the function is:
  6429. //
  6430. // COLUMNS(array)
  6431. //
  6432. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  6433. if argsList.Len() != 1 {
  6434. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  6435. }
  6436. var min, max int
  6437. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6438. crs := argsList.Front().Value.(formulaArg).cellRanges
  6439. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6440. if min == 0 {
  6441. min = cr.Value.(cellRange).From.Col
  6442. }
  6443. if min > cr.Value.(cellRange).From.Col {
  6444. min = cr.Value.(cellRange).From.Col
  6445. }
  6446. if min > cr.Value.(cellRange).To.Col {
  6447. min = cr.Value.(cellRange).To.Col
  6448. }
  6449. if max < cr.Value.(cellRange).To.Col {
  6450. max = cr.Value.(cellRange).To.Col
  6451. }
  6452. if max < cr.Value.(cellRange).From.Col {
  6453. max = cr.Value.(cellRange).From.Col
  6454. }
  6455. }
  6456. }
  6457. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6458. cr := argsList.Front().Value.(formulaArg).cellRefs
  6459. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6460. if min == 0 {
  6461. min = refs.Value.(cellRef).Col
  6462. }
  6463. if min > refs.Value.(cellRef).Col {
  6464. min = refs.Value.(cellRef).Col
  6465. }
  6466. if max < refs.Value.(cellRef).Col {
  6467. max = refs.Value.(cellRef).Col
  6468. }
  6469. }
  6470. }
  6471. if max == TotalColumns {
  6472. return newNumberFormulaArg(float64(TotalColumns))
  6473. }
  6474. result := max - min + 1
  6475. if max == min {
  6476. if min == 0 {
  6477. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6478. }
  6479. return newNumberFormulaArg(float64(1))
  6480. }
  6481. return newNumberFormulaArg(float64(result))
  6482. }
  6483. // HLOOKUP function 'looks up' a given value in the top row of a data array
  6484. // (or table), and returns the corresponding value from another row of the
  6485. // array. The syntax of the function is:
  6486. //
  6487. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  6488. //
  6489. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  6490. if argsList.Len() < 3 {
  6491. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  6492. }
  6493. if argsList.Len() > 4 {
  6494. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  6495. }
  6496. lookupValue := argsList.Front().Value.(formulaArg)
  6497. tableArray := argsList.Front().Next().Value.(formulaArg)
  6498. if tableArray.Type != ArgMatrix {
  6499. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  6500. }
  6501. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6502. if rowArg.Type != ArgNumber {
  6503. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  6504. }
  6505. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  6506. if argsList.Len() == 4 {
  6507. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6508. if rangeLookup.Type == ArgError {
  6509. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6510. }
  6511. if rangeLookup.Number == 0 {
  6512. exactMatch = true
  6513. }
  6514. }
  6515. row := tableArray.Matrix[0]
  6516. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6517. start:
  6518. for idx, mtx := range row {
  6519. lhs := mtx
  6520. switch lookupValue.Type {
  6521. case ArgNumber:
  6522. if !lookupValue.Boolean {
  6523. lhs = mtx.ToNumber()
  6524. if lhs.Type == ArgError {
  6525. lhs = mtx
  6526. }
  6527. }
  6528. case ArgMatrix:
  6529. lhs = tableArray
  6530. }
  6531. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6532. matchIdx = idx
  6533. wasExact = true
  6534. break start
  6535. }
  6536. }
  6537. } else {
  6538. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  6539. }
  6540. if matchIdx == -1 {
  6541. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6542. }
  6543. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  6544. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  6545. }
  6546. row = tableArray.Matrix[rowIdx]
  6547. if wasExact || !exactMatch {
  6548. return row[matchIdx]
  6549. }
  6550. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6551. }
  6552. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  6553. // data array (or table), and returns the corresponding value from another
  6554. // column of the array. The syntax of the function is:
  6555. //
  6556. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  6557. //
  6558. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  6559. if argsList.Len() < 3 {
  6560. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  6561. }
  6562. if argsList.Len() > 4 {
  6563. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  6564. }
  6565. lookupValue := argsList.Front().Value.(formulaArg)
  6566. tableArray := argsList.Front().Next().Value.(formulaArg)
  6567. if tableArray.Type != ArgMatrix {
  6568. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  6569. }
  6570. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6571. if colIdx.Type != ArgNumber {
  6572. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  6573. }
  6574. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  6575. if argsList.Len() == 4 {
  6576. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6577. if rangeLookup.Type == ArgError {
  6578. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6579. }
  6580. if rangeLookup.Number == 0 {
  6581. exactMatch = true
  6582. }
  6583. }
  6584. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6585. start:
  6586. for idx, mtx := range tableArray.Matrix {
  6587. lhs := mtx[0]
  6588. switch lookupValue.Type {
  6589. case ArgNumber:
  6590. if !lookupValue.Boolean {
  6591. lhs = mtx[0].ToNumber()
  6592. if lhs.Type == ArgError {
  6593. lhs = mtx[0]
  6594. }
  6595. }
  6596. case ArgMatrix:
  6597. lhs = tableArray
  6598. }
  6599. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6600. matchIdx = idx
  6601. wasExact = true
  6602. break start
  6603. }
  6604. }
  6605. } else {
  6606. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6607. }
  6608. if matchIdx == -1 {
  6609. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6610. }
  6611. mtx := tableArray.Matrix[matchIdx]
  6612. if col < 0 || col >= len(mtx) {
  6613. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6614. }
  6615. if wasExact || !exactMatch {
  6616. return mtx[col]
  6617. }
  6618. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6619. }
  6620. // vlookupBinarySearch finds the position of a target value when range lookup
  6621. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6622. // return wrong result.
  6623. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6624. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6625. for low <= high {
  6626. var mid int = low + (high-low)/2
  6627. mtx := tableArray.Matrix[mid]
  6628. lhs := mtx[0]
  6629. switch lookupValue.Type {
  6630. case ArgNumber:
  6631. if !lookupValue.Boolean {
  6632. lhs = mtx[0].ToNumber()
  6633. if lhs.Type == ArgError {
  6634. lhs = mtx[0]
  6635. }
  6636. }
  6637. case ArgMatrix:
  6638. lhs = tableArray
  6639. }
  6640. result := compareFormulaArg(lhs, lookupValue, false, false)
  6641. if result == criteriaEq {
  6642. matchIdx, wasExact = mid, true
  6643. return
  6644. } else if result == criteriaG {
  6645. high = mid - 1
  6646. } else if result == criteriaL {
  6647. matchIdx, low = mid, mid+1
  6648. if lhs.Value() != "" {
  6649. lastMatchIdx = matchIdx
  6650. }
  6651. } else {
  6652. return -1, false
  6653. }
  6654. }
  6655. matchIdx, wasExact = lastMatchIdx, true
  6656. return
  6657. }
  6658. // vlookupBinarySearch finds the position of a target value when range lookup
  6659. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6660. // return wrong result.
  6661. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6662. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6663. for low <= high {
  6664. var mid int = low + (high-low)/2
  6665. mtx := row[mid]
  6666. result := compareFormulaArg(mtx, lookupValue, false, false)
  6667. if result == criteriaEq {
  6668. matchIdx, wasExact = mid, true
  6669. return
  6670. } else if result == criteriaG {
  6671. high = mid - 1
  6672. } else if result == criteriaL {
  6673. low, lastMatchIdx = mid+1, mid
  6674. } else {
  6675. return -1, false
  6676. }
  6677. }
  6678. matchIdx, wasExact = lastMatchIdx, true
  6679. return
  6680. }
  6681. // LOOKUP function performs an approximate match lookup in a one-column or
  6682. // one-row range, and returns the corresponding value from another one-column
  6683. // or one-row range. The syntax of the function is:
  6684. //
  6685. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6686. //
  6687. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6688. if argsList.Len() < 2 {
  6689. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6690. }
  6691. if argsList.Len() > 3 {
  6692. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6693. }
  6694. lookupValue := argsList.Front().Value.(formulaArg)
  6695. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6696. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6697. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6698. }
  6699. cols, matchIdx := lookupCol(lookupVector), -1
  6700. for idx, col := range cols {
  6701. lhs := lookupValue
  6702. switch col.Type {
  6703. case ArgNumber:
  6704. lhs = lhs.ToNumber()
  6705. if !col.Boolean {
  6706. if lhs.Type == ArgError {
  6707. lhs = lookupValue
  6708. }
  6709. }
  6710. }
  6711. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6712. matchIdx = idx
  6713. break
  6714. }
  6715. }
  6716. column := cols
  6717. if argsList.Len() == 3 {
  6718. column = lookupCol(argsList.Back().Value.(formulaArg))
  6719. }
  6720. if matchIdx < 0 || matchIdx >= len(column) {
  6721. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6722. }
  6723. return column[matchIdx]
  6724. }
  6725. // lookupCol extract columns for LOOKUP.
  6726. func lookupCol(arr formulaArg) []formulaArg {
  6727. col := arr.List
  6728. if arr.Type == ArgMatrix {
  6729. col = nil
  6730. for _, r := range arr.Matrix {
  6731. if len(r) > 0 {
  6732. col = append(col, r[0])
  6733. continue
  6734. }
  6735. col = append(col, newEmptyFormulaArg())
  6736. }
  6737. }
  6738. return col
  6739. }
  6740. // ROW function returns the first row number within a supplied reference or
  6741. // the number of the current row. The syntax of the function is:
  6742. //
  6743. // ROW([reference])
  6744. //
  6745. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6746. if argsList.Len() > 1 {
  6747. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6748. }
  6749. if argsList.Len() == 1 {
  6750. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6751. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6752. }
  6753. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6754. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6755. }
  6756. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6757. }
  6758. _, row, _ := CellNameToCoordinates(fn.cell)
  6759. return newNumberFormulaArg(float64(row))
  6760. }
  6761. // ROWS function takes an Excel range and returns the number of rows that are
  6762. // contained within the range. The syntax of the function is:
  6763. //
  6764. // ROWS(array)
  6765. //
  6766. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6767. if argsList.Len() != 1 {
  6768. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6769. }
  6770. var min, max int
  6771. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6772. crs := argsList.Front().Value.(formulaArg).cellRanges
  6773. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6774. if min == 0 {
  6775. min = cr.Value.(cellRange).From.Row
  6776. }
  6777. if min > cr.Value.(cellRange).From.Row {
  6778. min = cr.Value.(cellRange).From.Row
  6779. }
  6780. if min > cr.Value.(cellRange).To.Row {
  6781. min = cr.Value.(cellRange).To.Row
  6782. }
  6783. if max < cr.Value.(cellRange).To.Row {
  6784. max = cr.Value.(cellRange).To.Row
  6785. }
  6786. if max < cr.Value.(cellRange).From.Row {
  6787. max = cr.Value.(cellRange).From.Row
  6788. }
  6789. }
  6790. }
  6791. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6792. cr := argsList.Front().Value.(formulaArg).cellRefs
  6793. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6794. if min == 0 {
  6795. min = refs.Value.(cellRef).Row
  6796. }
  6797. if min > refs.Value.(cellRef).Row {
  6798. min = refs.Value.(cellRef).Row
  6799. }
  6800. if max < refs.Value.(cellRef).Row {
  6801. max = refs.Value.(cellRef).Row
  6802. }
  6803. }
  6804. }
  6805. if max == TotalRows {
  6806. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6807. }
  6808. result := max - min + 1
  6809. if max == min {
  6810. if min == 0 {
  6811. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6812. }
  6813. return newNumberFormulaArg(float64(1))
  6814. }
  6815. return newStringFormulaArg(strconv.Itoa(result))
  6816. }
  6817. // Web Functions
  6818. // ENCODEURL function returns a URL-encoded string, replacing certain
  6819. // non-alphanumeric characters with the percentage symbol (%) and a
  6820. // hexadecimal number. The syntax of the function is:
  6821. //
  6822. // ENCODEURL(url)
  6823. //
  6824. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6825. if argsList.Len() != 1 {
  6826. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6827. }
  6828. token := argsList.Front().Value.(formulaArg).Value()
  6829. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6830. }
  6831. // Financial Functions
  6832. // IPMT function calculates the interest payment, during a specific period of a
  6833. // loan or investment that is paid in constant periodic payments, with a
  6834. // constant interest rate. The syntax of the function is:
  6835. //
  6836. // IPMT(rate,per,nper,pv,[fv],[type])
  6837. //
  6838. func (fn *formulaFuncs) IPMT(argsList *list.List) formulaArg {
  6839. return fn.ipmt("IPMT", argsList)
  6840. }
  6841. // ipmt is an implementation of the formula function IPMT and PPMT.
  6842. func (fn *formulaFuncs) ipmt(name string, argsList *list.List) formulaArg {
  6843. if argsList.Len() < 4 {
  6844. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 4 arguments", name))
  6845. }
  6846. if argsList.Len() > 6 {
  6847. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 6 arguments", name))
  6848. }
  6849. rate := argsList.Front().Value.(formulaArg).ToNumber()
  6850. if rate.Type != ArgNumber {
  6851. return rate
  6852. }
  6853. per := argsList.Front().Next().Value.(formulaArg).ToNumber()
  6854. if per.Type != ArgNumber {
  6855. return per
  6856. }
  6857. nper := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6858. if nper.Type != ArgNumber {
  6859. return nper
  6860. }
  6861. pv := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
  6862. if pv.Type != ArgNumber {
  6863. return pv
  6864. }
  6865. fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
  6866. if argsList.Len() >= 5 {
  6867. if fv = argsList.Front().Next().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
  6868. return fv
  6869. }
  6870. }
  6871. if argsList.Len() == 6 {
  6872. if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
  6873. return typ
  6874. }
  6875. }
  6876. if typ.Number != 0 && typ.Number != 1 {
  6877. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  6878. }
  6879. if per.Number <= 0 || per.Number > nper.Number {
  6880. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  6881. }
  6882. args := list.New().Init()
  6883. args.PushBack(rate)
  6884. args.PushBack(nper)
  6885. args.PushBack(pv)
  6886. args.PushBack(fv)
  6887. args.PushBack(typ)
  6888. pmt, capital, interest, principal := fn.PMT(args), pv.Number, 0.0, 0.0
  6889. for i := 1; i <= int(per.Number); i++ {
  6890. if typ.Number != 0 && i == 1 {
  6891. interest = 0
  6892. } else {
  6893. interest = -capital * rate.Number
  6894. }
  6895. principal = pmt.Number - interest
  6896. capital += principal
  6897. }
  6898. if name == "IPMT" {
  6899. return newNumberFormulaArg(interest)
  6900. }
  6901. return newNumberFormulaArg(principal)
  6902. }
  6903. // PMT function calculates the constant periodic payment required to pay off
  6904. // (or partially pay off) a loan or investment, with a constant interest
  6905. // rate, over a specified period. The syntax of the function is:
  6906. //
  6907. // PMT(rate,nper,pv,[fv],[type])
  6908. //
  6909. func (fn *formulaFuncs) PMT(argsList *list.List) formulaArg {
  6910. if argsList.Len() < 3 {
  6911. return newErrorFormulaArg(formulaErrorVALUE, "PMT requires at least 3 arguments")
  6912. }
  6913. if argsList.Len() > 5 {
  6914. return newErrorFormulaArg(formulaErrorVALUE, "PMT allows at most 5 arguments")
  6915. }
  6916. rate := argsList.Front().Value.(formulaArg).ToNumber()
  6917. if rate.Type != ArgNumber {
  6918. return rate
  6919. }
  6920. nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
  6921. if nper.Type != ArgNumber {
  6922. return nper
  6923. }
  6924. pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6925. if pv.Type != ArgNumber {
  6926. return pv
  6927. }
  6928. fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
  6929. if argsList.Len() >= 4 {
  6930. if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
  6931. return fv
  6932. }
  6933. }
  6934. if argsList.Len() == 5 {
  6935. if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
  6936. return typ
  6937. }
  6938. }
  6939. if typ.Number != 0 && typ.Number != 1 {
  6940. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  6941. }
  6942. if rate.Number != 0 {
  6943. p := (-fv.Number - pv.Number*math.Pow((1+rate.Number), nper.Number)) / (1 + rate.Number*typ.Number) / ((math.Pow((1+rate.Number), nper.Number) - 1) / rate.Number)
  6944. return newNumberFormulaArg(p)
  6945. }
  6946. return newNumberFormulaArg((-pv.Number - fv.Number) / nper.Number)
  6947. }
  6948. // PPMT function calculates the payment on the principal, during a specific
  6949. // period of a loan or investment that is paid in constant periodic payments,
  6950. // with a constant interest rate. The syntax of the function is:
  6951. //
  6952. // PPMT(rate,per,nper,pv,[fv],[type])
  6953. //
  6954. func (fn *formulaFuncs) PPMT(argsList *list.List) formulaArg {
  6955. return fn.ipmt("PPMT", argsList)
  6956. }