calc.go 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. "golang.org/x/text/language"
  30. "golang.org/x/text/message"
  31. )
  32. // Excel formula errors
  33. const (
  34. formulaErrorDIV = "#DIV/0!"
  35. formulaErrorNAME = "#NAME?"
  36. formulaErrorNA = "#N/A"
  37. formulaErrorNUM = "#NUM!"
  38. formulaErrorVALUE = "#VALUE!"
  39. formulaErrorREF = "#REF!"
  40. formulaErrorNULL = "#NULL"
  41. formulaErrorSPILL = "#SPILL!"
  42. formulaErrorCALC = "#CALC!"
  43. formulaErrorGETTINGDATA = "#GETTING_DATA"
  44. )
  45. // Numeric precision correct numeric values as legacy Excel application
  46. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  47. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  48. // has a decimal representation that is an infinite string of ones, Excel
  49. // displays only the leading 15 figures. In the second line, the number one
  50. // is added to the fraction, and again Excel displays only 15 figures.
  51. const numericPrecision = 1000000000000000
  52. // cellRef defines the structure of a cell reference.
  53. type cellRef struct {
  54. Col int
  55. Row int
  56. Sheet string
  57. }
  58. // cellRef defines the structure of a cell range.
  59. type cellRange struct {
  60. From cellRef
  61. To cellRef
  62. }
  63. // formula criteria condition enumeration.
  64. const (
  65. _ byte = iota
  66. criteriaEq
  67. criteriaLe
  68. criteriaGe
  69. criteriaL
  70. criteriaG
  71. criteriaBeg
  72. criteriaEnd
  73. criteriaErr
  74. )
  75. // formulaCriteria defined formula criteria parser result.
  76. type formulaCriteria struct {
  77. Type byte
  78. Condition string
  79. }
  80. // ArgType is the type if formula argument type.
  81. type ArgType byte
  82. // Formula argument types enumeration.
  83. const (
  84. ArgUnknown ArgType = iota
  85. ArgNumber
  86. ArgString
  87. ArgList
  88. ArgMatrix
  89. ArgError
  90. ArgEmpty
  91. )
  92. // formulaArg is the argument of a formula or function.
  93. type formulaArg struct {
  94. SheetName string
  95. Number float64
  96. String string
  97. List []formulaArg
  98. Matrix [][]formulaArg
  99. Boolean bool
  100. Error string
  101. Type ArgType
  102. cellRefs, cellRanges *list.List
  103. }
  104. // Value returns a string data type of the formula argument.
  105. func (fa formulaArg) Value() (value string) {
  106. switch fa.Type {
  107. case ArgNumber:
  108. if fa.Boolean {
  109. if fa.Number == 0 {
  110. return "FALSE"
  111. }
  112. return "TRUE"
  113. }
  114. return fmt.Sprintf("%g", fa.Number)
  115. case ArgString:
  116. return fa.String
  117. case ArgError:
  118. return fa.Error
  119. }
  120. return
  121. }
  122. // ToNumber returns a formula argument with number data type.
  123. func (fa formulaArg) ToNumber() formulaArg {
  124. var n float64
  125. var err error
  126. switch fa.Type {
  127. case ArgString:
  128. n, err = strconv.ParseFloat(fa.String, 64)
  129. if err != nil {
  130. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  131. }
  132. case ArgNumber:
  133. n = fa.Number
  134. }
  135. return newNumberFormulaArg(n)
  136. }
  137. // ToBool returns a formula argument with boolean data type.
  138. func (fa formulaArg) ToBool() formulaArg {
  139. var b bool
  140. var err error
  141. switch fa.Type {
  142. case ArgString:
  143. b, err = strconv.ParseBool(fa.String)
  144. if err != nil {
  145. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  146. }
  147. case ArgNumber:
  148. if fa.Boolean && fa.Number == 1 {
  149. b = true
  150. }
  151. }
  152. return newBoolFormulaArg(b)
  153. }
  154. // ToList returns a formula argument with array data type.
  155. func (fa formulaArg) ToList() []formulaArg {
  156. switch fa.Type {
  157. case ArgMatrix:
  158. list := []formulaArg{}
  159. for _, row := range fa.Matrix {
  160. list = append(list, row...)
  161. }
  162. return list
  163. case ArgList:
  164. return fa.List
  165. case ArgNumber, ArgString, ArgError, ArgUnknown:
  166. return []formulaArg{fa}
  167. }
  168. return nil
  169. }
  170. // formulaFuncs is the type of the formula functions.
  171. type formulaFuncs struct {
  172. f *File
  173. sheet, cell string
  174. }
  175. // tokenPriority defined basic arithmetic operator priority.
  176. var tokenPriority = map[string]int{
  177. "^": 5,
  178. "*": 4,
  179. "/": 4,
  180. "+": 3,
  181. "-": 3,
  182. "=": 2,
  183. "<>": 2,
  184. "<": 2,
  185. "<=": 2,
  186. ">": 2,
  187. ">=": 2,
  188. "&": 1,
  189. }
  190. // CalcCellValue provides a function to get calculated cell value. This
  191. // feature is currently in working processing. Array formula, table formula
  192. // and some other formulas are not supported currently.
  193. //
  194. // Supported formula functions:
  195. //
  196. // ABS
  197. // ACOS
  198. // ACOSH
  199. // ACOT
  200. // ACOTH
  201. // AND
  202. // ARABIC
  203. // ASIN
  204. // ASINH
  205. // ATAN
  206. // ATAN2
  207. // ATANH
  208. // AVERAGE
  209. // AVERAGEA
  210. // BASE
  211. // BIN2DEC
  212. // BIN2HEX
  213. // BIN2OCT
  214. // BITAND
  215. // BITLSHIFT
  216. // BITOR
  217. // BITRSHIFT
  218. // BITXOR
  219. // CEILING
  220. // CEILING.MATH
  221. // CEILING.PRECISE
  222. // CHAR
  223. // CHOOSE
  224. // CLEAN
  225. // CODE
  226. // COLUMN
  227. // COLUMNS
  228. // COMBIN
  229. // COMBINA
  230. // CONCAT
  231. // CONCATENATE
  232. // COS
  233. // COSH
  234. // COT
  235. // COTH
  236. // COUNT
  237. // COUNTA
  238. // COUNTBLANK
  239. // CSC
  240. // CSCH
  241. // DATE
  242. // DATEDIF
  243. // DEC2BIN
  244. // DEC2HEX
  245. // DEC2OCT
  246. // DECIMAL
  247. // DEGREES
  248. // ENCODEURL
  249. // EVEN
  250. // EXACT
  251. // EXP
  252. // FACT
  253. // FACTDOUBLE
  254. // FALSE
  255. // FIND
  256. // FINDB
  257. // FISHER
  258. // FISHERINV
  259. // FIXED
  260. // FLOOR
  261. // FLOOR.MATH
  262. // FLOOR.PRECISE
  263. // GAMMA
  264. // GAMMALN
  265. // GCD
  266. // HARMEAN
  267. // HEX2BIN
  268. // HEX2DEC
  269. // HEX2OCT
  270. // HLOOKUP
  271. // IF
  272. // IFERROR
  273. // INT
  274. // ISBLANK
  275. // ISERR
  276. // ISERROR
  277. // ISEVEN
  278. // ISNA
  279. // ISNONTEXT
  280. // ISNUMBER
  281. // ISODD
  282. // ISTEXT
  283. // ISO.CEILING
  284. // KURT
  285. // LARGE
  286. // LCM
  287. // LEFT
  288. // LEFTB
  289. // LEN
  290. // LENB
  291. // LN
  292. // LOG
  293. // LOG10
  294. // LOOKUP
  295. // LOWER
  296. // MAX
  297. // MDETERM
  298. // MEDIAN
  299. // MID
  300. // MIDB
  301. // MIN
  302. // MINA
  303. // MOD
  304. // MROUND
  305. // MULTINOMIAL
  306. // MUNIT
  307. // N
  308. // NA
  309. // NORM.DIST
  310. // NORMDIST
  311. // NORM.INV
  312. // NORMINV
  313. // NORM.S.DIST
  314. // NORMSDIST
  315. // NORM.S.INV
  316. // NORMSINV
  317. // NOT
  318. // NOW
  319. // OCT2BIN
  320. // OCT2DEC
  321. // OCT2HEX
  322. // ODD
  323. // OR
  324. // PERCENTILE.INC
  325. // PERCENTILE
  326. // PERMUT
  327. // PERMUTATIONA
  328. // PI
  329. // POISSON.DIST
  330. // POISSON
  331. // POWER
  332. // PRODUCT
  333. // PROPER
  334. // QUARTILE
  335. // QUARTILE.INC
  336. // QUOTIENT
  337. // RADIANS
  338. // RAND
  339. // RANDBETWEEN
  340. // REPLACE
  341. // REPLACEB
  342. // REPT
  343. // RIGHT
  344. // RIGHTB
  345. // ROMAN
  346. // ROUND
  347. // ROUNDDOWN
  348. // ROUNDUP
  349. // ROW
  350. // ROWS
  351. // SEC
  352. // SECH
  353. // SHEET
  354. // SIGN
  355. // SIN
  356. // SINH
  357. // SKEW
  358. // SMALL
  359. // SQRT
  360. // SQRTPI
  361. // STDEV
  362. // STDEV.S
  363. // STDEVA
  364. // SUBSTITUTE
  365. // SUM
  366. // SUMIF
  367. // SUMSQ
  368. // T
  369. // TAN
  370. // TANH
  371. // TODAY
  372. // TRIM
  373. // TRUE
  374. // TRUNC
  375. // UNICHAR
  376. // UNICODE
  377. // UPPER
  378. // VAR.P
  379. // VARP
  380. // VLOOKUP
  381. //
  382. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  383. var (
  384. formula string
  385. token efp.Token
  386. )
  387. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  388. return
  389. }
  390. ps := efp.ExcelParser()
  391. tokens := ps.Parse(formula)
  392. if tokens == nil {
  393. return
  394. }
  395. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  396. return
  397. }
  398. result = token.TValue
  399. isNum, precision := isNumeric(result)
  400. if isNum && precision > 15 {
  401. num, _ := roundPrecision(result)
  402. result = strings.ToUpper(num)
  403. }
  404. return
  405. }
  406. // getPriority calculate arithmetic operator priority.
  407. func getPriority(token efp.Token) (pri int) {
  408. pri = tokenPriority[token.TValue]
  409. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  410. pri = 6
  411. }
  412. if isBeginParenthesesToken(token) { // (
  413. pri = 0
  414. }
  415. return
  416. }
  417. // newNumberFormulaArg constructs a number formula argument.
  418. func newNumberFormulaArg(n float64) formulaArg {
  419. if math.IsNaN(n) {
  420. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  421. }
  422. return formulaArg{Type: ArgNumber, Number: n}
  423. }
  424. // newStringFormulaArg constructs a string formula argument.
  425. func newStringFormulaArg(s string) formulaArg {
  426. return formulaArg{Type: ArgString, String: s}
  427. }
  428. // newMatrixFormulaArg constructs a matrix formula argument.
  429. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  430. return formulaArg{Type: ArgMatrix, Matrix: m}
  431. }
  432. // newListFormulaArg create a list formula argument.
  433. func newListFormulaArg(l []formulaArg) formulaArg {
  434. return formulaArg{Type: ArgList, List: l}
  435. }
  436. // newBoolFormulaArg constructs a boolean formula argument.
  437. func newBoolFormulaArg(b bool) formulaArg {
  438. var n float64
  439. if b {
  440. n = 1
  441. }
  442. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  443. }
  444. // newErrorFormulaArg create an error formula argument of a given type with a
  445. // specified error message.
  446. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  447. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  448. }
  449. // newEmptyFormulaArg create an empty formula argument.
  450. func newEmptyFormulaArg() formulaArg {
  451. return formulaArg{Type: ArgEmpty}
  452. }
  453. // evalInfixExp evaluate syntax analysis by given infix expression after
  454. // lexical analysis. Evaluate an infix expression containing formulas by
  455. // stacks:
  456. //
  457. // opd - Operand
  458. // opt - Operator
  459. // opf - Operation formula
  460. // opfd - Operand of the operation formula
  461. // opft - Operator of the operation formula
  462. // args - Arguments list of the operation formula
  463. //
  464. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  465. //
  466. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  467. var err error
  468. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  469. for i := 0; i < len(tokens); i++ {
  470. token := tokens[i]
  471. // out of function stack
  472. if opfStack.Len() == 0 {
  473. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  474. return efp.Token{}, err
  475. }
  476. }
  477. // function start
  478. if isFunctionStartToken(token) {
  479. opfStack.Push(token)
  480. argsStack.Push(list.New().Init())
  481. continue
  482. }
  483. // in function stack, walk 2 token at once
  484. if opfStack.Len() > 0 {
  485. var nextToken efp.Token
  486. if i+1 < len(tokens) {
  487. nextToken = tokens[i+1]
  488. }
  489. // current token is args or range, skip next token, order required: parse reference first
  490. if token.TSubType == efp.TokenSubTypeRange {
  491. if !opftStack.Empty() {
  492. // parse reference: must reference at here
  493. result, err := f.parseReference(sheet, token.TValue)
  494. if err != nil {
  495. return efp.Token{TValue: formulaErrorNAME}, err
  496. }
  497. if result.Type != ArgString {
  498. return efp.Token{}, errors.New(formulaErrorVALUE)
  499. }
  500. opfdStack.Push(efp.Token{
  501. TType: efp.TokenTypeOperand,
  502. TSubType: efp.TokenSubTypeNumber,
  503. TValue: result.String,
  504. })
  505. continue
  506. }
  507. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  508. // parse reference: reference or range at here
  509. result, err := f.parseReference(sheet, token.TValue)
  510. if err != nil {
  511. return efp.Token{TValue: formulaErrorNAME}, err
  512. }
  513. if result.Type == ArgUnknown {
  514. return efp.Token{}, errors.New(formulaErrorVALUE)
  515. }
  516. argsStack.Peek().(*list.List).PushBack(result)
  517. continue
  518. }
  519. }
  520. // check current token is opft
  521. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  522. return efp.Token{}, err
  523. }
  524. // current token is arg
  525. if token.TType == efp.TokenTypeArgument {
  526. for !opftStack.Empty() {
  527. // calculate trigger
  528. topOpt := opftStack.Peek().(efp.Token)
  529. if err := calculate(opfdStack, topOpt); err != nil {
  530. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  531. }
  532. opftStack.Pop()
  533. }
  534. if !opfdStack.Empty() {
  535. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  536. }
  537. continue
  538. }
  539. // current token is logical
  540. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  541. }
  542. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  543. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  544. }
  545. // current token is text
  546. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  547. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  548. }
  549. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  550. return efp.Token{}, err
  551. }
  552. }
  553. }
  554. for optStack.Len() != 0 {
  555. topOpt := optStack.Peek().(efp.Token)
  556. if err = calculate(opdStack, topOpt); err != nil {
  557. return efp.Token{}, err
  558. }
  559. optStack.Pop()
  560. }
  561. if opdStack.Len() == 0 {
  562. return efp.Token{}, errors.New("formula not valid")
  563. }
  564. return opdStack.Peek().(efp.Token), err
  565. }
  566. // evalInfixExpFunc evaluate formula function in the infix expression.
  567. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  568. if !isFunctionStopToken(token) {
  569. return nil
  570. }
  571. // current token is function stop
  572. for !opftStack.Empty() {
  573. // calculate trigger
  574. topOpt := opftStack.Peek().(efp.Token)
  575. if err := calculate(opfdStack, topOpt); err != nil {
  576. return err
  577. }
  578. opftStack.Pop()
  579. }
  580. // push opfd to args
  581. if opfdStack.Len() > 0 {
  582. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  583. }
  584. // call formula function to evaluate
  585. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  586. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  587. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  588. if arg.Type == ArgError && opfStack.Len() == 1 {
  589. return errors.New(arg.Value())
  590. }
  591. argsStack.Pop()
  592. opfStack.Pop()
  593. if opfStack.Len() > 0 { // still in function stack
  594. if nextToken.TType == efp.TokenTypeOperatorInfix {
  595. // mathematics calculate in formula function
  596. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  597. } else {
  598. argsStack.Peek().(*list.List).PushBack(arg)
  599. }
  600. } else {
  601. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  602. }
  603. return nil
  604. }
  605. // calcPow evaluate exponentiation arithmetic operations.
  606. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  607. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  608. if err != nil {
  609. return err
  610. }
  611. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  612. if err != nil {
  613. return err
  614. }
  615. result := math.Pow(lOpdVal, rOpdVal)
  616. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  617. return nil
  618. }
  619. // calcEq evaluate equal arithmetic operations.
  620. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  621. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  622. return nil
  623. }
  624. // calcNEq evaluate not equal arithmetic operations.
  625. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  626. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  627. return nil
  628. }
  629. // calcL evaluate less than arithmetic operations.
  630. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  631. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  632. if err != nil {
  633. return err
  634. }
  635. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  636. if err != nil {
  637. return err
  638. }
  639. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  640. return nil
  641. }
  642. // calcLe evaluate less than or equal arithmetic operations.
  643. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  644. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  645. if err != nil {
  646. return err
  647. }
  648. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  649. if err != nil {
  650. return err
  651. }
  652. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  653. return nil
  654. }
  655. // calcG evaluate greater than or equal arithmetic operations.
  656. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  657. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  658. if err != nil {
  659. return err
  660. }
  661. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  662. if err != nil {
  663. return err
  664. }
  665. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  666. return nil
  667. }
  668. // calcGe evaluate greater than or equal arithmetic operations.
  669. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  670. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  671. if err != nil {
  672. return err
  673. }
  674. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  675. if err != nil {
  676. return err
  677. }
  678. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  679. return nil
  680. }
  681. // calcSplice evaluate splice '&' operations.
  682. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  683. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  684. return nil
  685. }
  686. // calcAdd evaluate addition arithmetic operations.
  687. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  688. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  689. if err != nil {
  690. return err
  691. }
  692. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  693. if err != nil {
  694. return err
  695. }
  696. result := lOpdVal + rOpdVal
  697. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  698. return nil
  699. }
  700. // calcSubtract evaluate subtraction arithmetic operations.
  701. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  702. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  703. if err != nil {
  704. return err
  705. }
  706. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  707. if err != nil {
  708. return err
  709. }
  710. result := lOpdVal - rOpdVal
  711. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  712. return nil
  713. }
  714. // calcMultiply evaluate multiplication arithmetic operations.
  715. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  716. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  717. if err != nil {
  718. return err
  719. }
  720. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  721. if err != nil {
  722. return err
  723. }
  724. result := lOpdVal * rOpdVal
  725. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  726. return nil
  727. }
  728. // calcDiv evaluate division arithmetic operations.
  729. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  730. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  731. if err != nil {
  732. return err
  733. }
  734. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  735. if err != nil {
  736. return err
  737. }
  738. result := lOpdVal / rOpdVal
  739. if rOpdVal == 0 {
  740. return errors.New(formulaErrorDIV)
  741. }
  742. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  743. return nil
  744. }
  745. // calculate evaluate basic arithmetic operations.
  746. func calculate(opdStack *Stack, opt efp.Token) error {
  747. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  748. if opdStack.Len() < 1 {
  749. return errors.New("formula not valid")
  750. }
  751. opd := opdStack.Pop().(efp.Token)
  752. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  753. if err != nil {
  754. return err
  755. }
  756. result := 0 - opdVal
  757. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  758. }
  759. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  760. "^": calcPow,
  761. "*": calcMultiply,
  762. "/": calcDiv,
  763. "+": calcAdd,
  764. "=": calcEq,
  765. "<>": calcNEq,
  766. "<": calcL,
  767. "<=": calcLe,
  768. ">": calcG,
  769. ">=": calcGe,
  770. "&": calcSplice,
  771. }
  772. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  773. if opdStack.Len() < 2 {
  774. return errors.New("formula not valid")
  775. }
  776. rOpd := opdStack.Pop().(efp.Token)
  777. lOpd := opdStack.Pop().(efp.Token)
  778. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  779. return err
  780. }
  781. }
  782. fn, ok := tokenCalcFunc[opt.TValue]
  783. if ok {
  784. if opdStack.Len() < 2 {
  785. return errors.New("formula not valid")
  786. }
  787. rOpd := opdStack.Pop().(efp.Token)
  788. lOpd := opdStack.Pop().(efp.Token)
  789. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  790. return err
  791. }
  792. }
  793. return nil
  794. }
  795. // parseOperatorPrefixToken parse operator prefix token.
  796. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  797. if optStack.Len() == 0 {
  798. optStack.Push(token)
  799. } else {
  800. tokenPriority := getPriority(token)
  801. topOpt := optStack.Peek().(efp.Token)
  802. topOptPriority := getPriority(topOpt)
  803. if tokenPriority > topOptPriority {
  804. optStack.Push(token)
  805. } else {
  806. for tokenPriority <= topOptPriority {
  807. optStack.Pop()
  808. if err = calculate(opdStack, topOpt); err != nil {
  809. return
  810. }
  811. if optStack.Len() > 0 {
  812. topOpt = optStack.Peek().(efp.Token)
  813. topOptPriority = getPriority(topOpt)
  814. continue
  815. }
  816. break
  817. }
  818. optStack.Push(token)
  819. }
  820. }
  821. return
  822. }
  823. // isFunctionStartToken determine if the token is function stop.
  824. func isFunctionStartToken(token efp.Token) bool {
  825. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  826. }
  827. // isFunctionStopToken determine if the token is function stop.
  828. func isFunctionStopToken(token efp.Token) bool {
  829. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  830. }
  831. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  832. func isBeginParenthesesToken(token efp.Token) bool {
  833. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  834. }
  835. // isEndParenthesesToken determine if the token is end parentheses: ).
  836. func isEndParenthesesToken(token efp.Token) bool {
  837. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  838. }
  839. // isOperatorPrefixToken determine if the token is parse operator prefix
  840. // token.
  841. func isOperatorPrefixToken(token efp.Token) bool {
  842. _, ok := tokenPriority[token.TValue]
  843. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  844. return true
  845. }
  846. return false
  847. }
  848. // getDefinedNameRefTo convert defined name to reference range.
  849. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  850. for _, definedName := range f.GetDefinedName() {
  851. if definedName.Name == definedNameName {
  852. refTo = definedName.RefersTo
  853. // worksheet scope takes precedence over scope workbook when both definedNames exist
  854. if definedName.Scope == currentSheet {
  855. break
  856. }
  857. }
  858. }
  859. return refTo
  860. }
  861. // parseToken parse basic arithmetic operator priority and evaluate based on
  862. // operators and operands.
  863. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  864. // parse reference: must reference at here
  865. if token.TSubType == efp.TokenSubTypeRange {
  866. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  867. if refTo != "" {
  868. token.TValue = refTo
  869. }
  870. result, err := f.parseReference(sheet, token.TValue)
  871. if err != nil {
  872. return errors.New(formulaErrorNAME)
  873. }
  874. if result.Type != ArgString {
  875. return errors.New(formulaErrorVALUE)
  876. }
  877. token.TValue = result.String
  878. token.TType = efp.TokenTypeOperand
  879. token.TSubType = efp.TokenSubTypeNumber
  880. }
  881. if isOperatorPrefixToken(token) {
  882. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  883. return err
  884. }
  885. }
  886. if isBeginParenthesesToken(token) { // (
  887. optStack.Push(token)
  888. }
  889. if isEndParenthesesToken(token) { // )
  890. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  891. topOpt := optStack.Peek().(efp.Token)
  892. if err := calculate(opdStack, topOpt); err != nil {
  893. return err
  894. }
  895. optStack.Pop()
  896. }
  897. optStack.Pop()
  898. }
  899. // opd
  900. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  901. opdStack.Push(token)
  902. }
  903. return nil
  904. }
  905. // parseReference parse reference and extract values by given reference
  906. // characters and default sheet name.
  907. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  908. reference = strings.Replace(reference, "$", "", -1)
  909. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  910. for _, ref := range strings.Split(reference, ":") {
  911. tokens := strings.Split(ref, "!")
  912. cr := cellRef{}
  913. if len(tokens) == 2 { // have a worksheet name
  914. cr.Sheet = tokens[0]
  915. // cast to cell coordinates
  916. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  917. // cast to column
  918. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  919. // cast to row
  920. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  921. err = newInvalidColumnNameError(tokens[1])
  922. return
  923. }
  924. cr.Col = TotalColumns
  925. }
  926. }
  927. if refs.Len() > 0 {
  928. e := refs.Back()
  929. cellRefs.PushBack(e.Value.(cellRef))
  930. refs.Remove(e)
  931. }
  932. refs.PushBack(cr)
  933. continue
  934. }
  935. // cast to cell coordinates
  936. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  937. // cast to column
  938. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  939. // cast to row
  940. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  941. err = newInvalidColumnNameError(tokens[0])
  942. return
  943. }
  944. cr.Col = TotalColumns
  945. }
  946. cellRanges.PushBack(cellRange{
  947. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  948. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  949. })
  950. cellRefs.Init()
  951. arg, err = f.rangeResolver(cellRefs, cellRanges)
  952. return
  953. }
  954. e := refs.Back()
  955. if e == nil {
  956. cr.Sheet = sheet
  957. refs.PushBack(cr)
  958. continue
  959. }
  960. cellRanges.PushBack(cellRange{
  961. From: e.Value.(cellRef),
  962. To: cr,
  963. })
  964. refs.Remove(e)
  965. }
  966. if refs.Len() > 0 {
  967. e := refs.Back()
  968. cellRefs.PushBack(e.Value.(cellRef))
  969. refs.Remove(e)
  970. }
  971. arg, err = f.rangeResolver(cellRefs, cellRanges)
  972. return
  973. }
  974. // prepareValueRange prepare value range.
  975. func prepareValueRange(cr cellRange, valueRange []int) {
  976. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  977. valueRange[0] = cr.From.Row
  978. }
  979. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  980. valueRange[2] = cr.From.Col
  981. }
  982. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  983. valueRange[1] = cr.To.Row
  984. }
  985. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  986. valueRange[3] = cr.To.Col
  987. }
  988. }
  989. // prepareValueRef prepare value reference.
  990. func prepareValueRef(cr cellRef, valueRange []int) {
  991. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  992. valueRange[0] = cr.Row
  993. }
  994. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  995. valueRange[2] = cr.Col
  996. }
  997. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  998. valueRange[1] = cr.Row
  999. }
  1000. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1001. valueRange[3] = cr.Col
  1002. }
  1003. }
  1004. // rangeResolver extract value as string from given reference and range list.
  1005. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1006. // be reference A1:B3.
  1007. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1008. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1009. // value range order: from row, to row, from column, to column
  1010. valueRange := []int{0, 0, 0, 0}
  1011. var sheet string
  1012. // prepare value range
  1013. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1014. cr := temp.Value.(cellRange)
  1015. if cr.From.Sheet != cr.To.Sheet {
  1016. err = errors.New(formulaErrorVALUE)
  1017. }
  1018. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1019. _ = sortCoordinates(rng)
  1020. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1021. prepareValueRange(cr, valueRange)
  1022. if cr.From.Sheet != "" {
  1023. sheet = cr.From.Sheet
  1024. }
  1025. }
  1026. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1027. cr := temp.Value.(cellRef)
  1028. if cr.Sheet != "" {
  1029. sheet = cr.Sheet
  1030. }
  1031. prepareValueRef(cr, valueRange)
  1032. }
  1033. // extract value from ranges
  1034. if cellRanges.Len() > 0 {
  1035. arg.Type = ArgMatrix
  1036. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1037. var matrixRow = []formulaArg{}
  1038. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1039. var cell, value string
  1040. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1041. return
  1042. }
  1043. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1044. return
  1045. }
  1046. matrixRow = append(matrixRow, formulaArg{
  1047. String: value,
  1048. Type: ArgString,
  1049. })
  1050. }
  1051. arg.Matrix = append(arg.Matrix, matrixRow)
  1052. }
  1053. return
  1054. }
  1055. // extract value from references
  1056. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1057. cr := temp.Value.(cellRef)
  1058. var cell string
  1059. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1060. return
  1061. }
  1062. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1063. return
  1064. }
  1065. arg.Type = ArgString
  1066. }
  1067. return
  1068. }
  1069. // callFuncByName calls the no error or only error return function with
  1070. // reflect by given receiver, name and parameters.
  1071. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1072. function := reflect.ValueOf(receiver).MethodByName(name)
  1073. if function.IsValid() {
  1074. rt := function.Call(params)
  1075. if len(rt) == 0 {
  1076. return
  1077. }
  1078. arg = rt[0].Interface().(formulaArg)
  1079. return
  1080. }
  1081. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1082. }
  1083. // formulaCriteriaParser parse formula criteria.
  1084. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1085. fc = &formulaCriteria{}
  1086. if exp == "" {
  1087. return
  1088. }
  1089. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1090. fc.Type, fc.Condition = criteriaEq, match[1]
  1091. return
  1092. }
  1093. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1094. fc.Type, fc.Condition = criteriaEq, match[1]
  1095. return
  1096. }
  1097. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1098. fc.Type, fc.Condition = criteriaLe, match[1]
  1099. return
  1100. }
  1101. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1102. fc.Type, fc.Condition = criteriaGe, match[1]
  1103. return
  1104. }
  1105. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1106. fc.Type, fc.Condition = criteriaL, match[1]
  1107. return
  1108. }
  1109. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1110. fc.Type, fc.Condition = criteriaG, match[1]
  1111. return
  1112. }
  1113. if strings.Contains(exp, "*") {
  1114. if strings.HasPrefix(exp, "*") {
  1115. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1116. }
  1117. if strings.HasSuffix(exp, "*") {
  1118. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1119. }
  1120. return
  1121. }
  1122. fc.Type, fc.Condition = criteriaEq, exp
  1123. return
  1124. }
  1125. // formulaCriteriaEval evaluate formula criteria expression.
  1126. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1127. var value, expected float64
  1128. var e error
  1129. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1130. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1131. return
  1132. }
  1133. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1134. return
  1135. }
  1136. return
  1137. }
  1138. switch criteria.Type {
  1139. case criteriaEq:
  1140. return val == criteria.Condition, err
  1141. case criteriaLe:
  1142. value, expected, e = prepareValue(val, criteria.Condition)
  1143. return value <= expected && e == nil, err
  1144. case criteriaGe:
  1145. value, expected, e = prepareValue(val, criteria.Condition)
  1146. return value >= expected && e == nil, err
  1147. case criteriaL:
  1148. value, expected, e = prepareValue(val, criteria.Condition)
  1149. return value < expected && e == nil, err
  1150. case criteriaG:
  1151. value, expected, e = prepareValue(val, criteria.Condition)
  1152. return value > expected && e == nil, err
  1153. case criteriaBeg:
  1154. return strings.HasPrefix(val, criteria.Condition), err
  1155. case criteriaEnd:
  1156. return strings.HasSuffix(val, criteria.Condition), err
  1157. }
  1158. return
  1159. }
  1160. // Engineering Functions
  1161. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1162. // The syntax of the function is:
  1163. //
  1164. // BIN2DEC(number)
  1165. //
  1166. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1167. if argsList.Len() != 1 {
  1168. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1169. }
  1170. token := argsList.Front().Value.(formulaArg)
  1171. number := token.ToNumber()
  1172. if number.Type != ArgNumber {
  1173. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1174. }
  1175. return fn.bin2dec(token.Value())
  1176. }
  1177. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1178. // (Base 16) number. The syntax of the function is:
  1179. //
  1180. // BIN2HEX(number,[places])
  1181. //
  1182. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1183. if argsList.Len() < 1 {
  1184. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1185. }
  1186. if argsList.Len() > 2 {
  1187. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1188. }
  1189. token := argsList.Front().Value.(formulaArg)
  1190. number := token.ToNumber()
  1191. if number.Type != ArgNumber {
  1192. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1193. }
  1194. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1195. if decimal.Type != ArgNumber {
  1196. return decimal
  1197. }
  1198. newList.PushBack(decimal)
  1199. if argsList.Len() == 2 {
  1200. newList.PushBack(argsList.Back().Value.(formulaArg))
  1201. }
  1202. return fn.dec2x("BIN2HEX", newList)
  1203. }
  1204. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1205. // number. The syntax of the function is:
  1206. //
  1207. // BIN2OCT(number,[places])
  1208. //
  1209. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1210. if argsList.Len() < 1 {
  1211. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1212. }
  1213. if argsList.Len() > 2 {
  1214. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1215. }
  1216. token := argsList.Front().Value.(formulaArg)
  1217. number := token.ToNumber()
  1218. if number.Type != ArgNumber {
  1219. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1220. }
  1221. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1222. if decimal.Type != ArgNumber {
  1223. return decimal
  1224. }
  1225. newList.PushBack(decimal)
  1226. if argsList.Len() == 2 {
  1227. newList.PushBack(argsList.Back().Value.(formulaArg))
  1228. }
  1229. return fn.dec2x("BIN2OCT", newList)
  1230. }
  1231. // bin2dec is an implementation of the formula function BIN2DEC.
  1232. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1233. decimal, length := 0.0, len(number)
  1234. for i := length; i > 0; i-- {
  1235. s := string(number[length-i])
  1236. if i == 10 && s == "1" {
  1237. decimal += math.Pow(-2.0, float64(i-1))
  1238. continue
  1239. }
  1240. if s == "1" {
  1241. decimal += math.Pow(2.0, float64(i-1))
  1242. continue
  1243. }
  1244. if s != "0" {
  1245. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1246. }
  1247. }
  1248. return newNumberFormulaArg(decimal)
  1249. }
  1250. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1251. // syntax of the function is:
  1252. //
  1253. // BITAND(number1,number2)
  1254. //
  1255. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1256. return fn.bitwise("BITAND", argsList)
  1257. }
  1258. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1259. // number of bits. The syntax of the function is:
  1260. //
  1261. // BITLSHIFT(number1,shift_amount)
  1262. //
  1263. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1264. return fn.bitwise("BITLSHIFT", argsList)
  1265. }
  1266. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1267. // syntax of the function is:
  1268. //
  1269. // BITOR(number1,number2)
  1270. //
  1271. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1272. return fn.bitwise("BITOR", argsList)
  1273. }
  1274. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1275. // number of bits. The syntax of the function is:
  1276. //
  1277. // BITRSHIFT(number1,shift_amount)
  1278. //
  1279. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1280. return fn.bitwise("BITRSHIFT", argsList)
  1281. }
  1282. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1283. // integers. The syntax of the function is:
  1284. //
  1285. // BITXOR(number1,number2)
  1286. //
  1287. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1288. return fn.bitwise("BITXOR", argsList)
  1289. }
  1290. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1291. // BITOR, BITRSHIFT and BITXOR.
  1292. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1293. if argsList.Len() != 2 {
  1294. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1295. }
  1296. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1297. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1298. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1299. }
  1300. max := math.Pow(2, 48) - 1
  1301. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1302. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1303. }
  1304. bitwiseFuncMap := map[string]func(a, b int) int{
  1305. "BITAND": func(a, b int) int { return a & b },
  1306. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1307. "BITOR": func(a, b int) int { return a | b },
  1308. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1309. "BITXOR": func(a, b int) int { return a ^ b },
  1310. }
  1311. bitwiseFunc := bitwiseFuncMap[name]
  1312. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1313. }
  1314. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1315. // The syntax of the function is:
  1316. //
  1317. // DEC2BIN(number,[places])
  1318. //
  1319. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1320. return fn.dec2x("DEC2BIN", argsList)
  1321. }
  1322. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1323. // number. The syntax of the function is:
  1324. //
  1325. // DEC2HEX(number,[places])
  1326. //
  1327. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1328. return fn.dec2x("DEC2HEX", argsList)
  1329. }
  1330. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1331. // The syntax of the function is:
  1332. //
  1333. // DEC2OCT(number,[places])
  1334. //
  1335. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1336. return fn.dec2x("DEC2OCT", argsList)
  1337. }
  1338. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1339. // DEC2OCT.
  1340. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1341. if argsList.Len() < 1 {
  1342. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1343. }
  1344. if argsList.Len() > 2 {
  1345. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1346. }
  1347. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1348. if decimal.Type != ArgNumber {
  1349. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1350. }
  1351. maxLimitMap := map[string]float64{
  1352. "DEC2BIN": 511,
  1353. "HEX2BIN": 511,
  1354. "OCT2BIN": 511,
  1355. "BIN2HEX": 549755813887,
  1356. "DEC2HEX": 549755813887,
  1357. "OCT2HEX": 549755813887,
  1358. "BIN2OCT": 536870911,
  1359. "DEC2OCT": 536870911,
  1360. "HEX2OCT": 536870911,
  1361. }
  1362. minLimitMap := map[string]float64{
  1363. "DEC2BIN": -512,
  1364. "HEX2BIN": -512,
  1365. "OCT2BIN": -512,
  1366. "BIN2HEX": -549755813888,
  1367. "DEC2HEX": -549755813888,
  1368. "OCT2HEX": -549755813888,
  1369. "BIN2OCT": -536870912,
  1370. "DEC2OCT": -536870912,
  1371. "HEX2OCT": -536870912,
  1372. }
  1373. baseMap := map[string]int{
  1374. "DEC2BIN": 2,
  1375. "HEX2BIN": 2,
  1376. "OCT2BIN": 2,
  1377. "BIN2HEX": 16,
  1378. "DEC2HEX": 16,
  1379. "OCT2HEX": 16,
  1380. "BIN2OCT": 8,
  1381. "DEC2OCT": 8,
  1382. "HEX2OCT": 8,
  1383. }
  1384. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1385. base := baseMap[name]
  1386. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1387. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1388. }
  1389. n := int64(decimal.Number)
  1390. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1391. if argsList.Len() == 2 {
  1392. places := argsList.Back().Value.(formulaArg).ToNumber()
  1393. if places.Type != ArgNumber {
  1394. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1395. }
  1396. binaryPlaces := len(binary)
  1397. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1398. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1399. }
  1400. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1401. }
  1402. if decimal.Number < 0 && len(binary) > 10 {
  1403. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1404. }
  1405. return newStringFormulaArg(strings.ToUpper(binary))
  1406. }
  1407. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1408. // (Base 2) number. The syntax of the function is:
  1409. //
  1410. // HEX2BIN(number,[places])
  1411. //
  1412. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1413. if argsList.Len() < 1 {
  1414. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1415. }
  1416. if argsList.Len() > 2 {
  1417. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1418. }
  1419. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1420. if decimal.Type != ArgNumber {
  1421. return decimal
  1422. }
  1423. newList.PushBack(decimal)
  1424. if argsList.Len() == 2 {
  1425. newList.PushBack(argsList.Back().Value.(formulaArg))
  1426. }
  1427. return fn.dec2x("HEX2BIN", newList)
  1428. }
  1429. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1430. // number. The syntax of the function is:
  1431. //
  1432. // HEX2DEC(number)
  1433. //
  1434. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1435. if argsList.Len() != 1 {
  1436. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1437. }
  1438. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1439. }
  1440. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1441. // (Base 8) number. The syntax of the function is:
  1442. //
  1443. // HEX2OCT(number,[places])
  1444. //
  1445. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1446. if argsList.Len() < 1 {
  1447. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1448. }
  1449. if argsList.Len() > 2 {
  1450. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1451. }
  1452. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1453. if decimal.Type != ArgNumber {
  1454. return decimal
  1455. }
  1456. newList.PushBack(decimal)
  1457. if argsList.Len() == 2 {
  1458. newList.PushBack(argsList.Back().Value.(formulaArg))
  1459. }
  1460. return fn.dec2x("HEX2OCT", newList)
  1461. }
  1462. // hex2dec is an implementation of the formula function HEX2DEC.
  1463. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1464. decimal, length := 0.0, len(number)
  1465. for i := length; i > 0; i-- {
  1466. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1467. if err != nil {
  1468. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1469. }
  1470. if i == 10 && string(number[length-i]) == "F" {
  1471. decimal += math.Pow(-16.0, float64(i-1))
  1472. continue
  1473. }
  1474. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1475. }
  1476. return newNumberFormulaArg(decimal)
  1477. }
  1478. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1479. // number. The syntax of the function is:
  1480. //
  1481. // OCT2BIN(number,[places])
  1482. //
  1483. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1484. if argsList.Len() < 1 {
  1485. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1486. }
  1487. if argsList.Len() > 2 {
  1488. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1489. }
  1490. token := argsList.Front().Value.(formulaArg)
  1491. number := token.ToNumber()
  1492. if number.Type != ArgNumber {
  1493. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1494. }
  1495. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1496. newList.PushBack(decimal)
  1497. if argsList.Len() == 2 {
  1498. newList.PushBack(argsList.Back().Value.(formulaArg))
  1499. }
  1500. return fn.dec2x("OCT2BIN", newList)
  1501. }
  1502. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1503. // The syntax of the function is:
  1504. //
  1505. // OCT2DEC(number)
  1506. //
  1507. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1508. if argsList.Len() != 1 {
  1509. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1510. }
  1511. token := argsList.Front().Value.(formulaArg)
  1512. number := token.ToNumber()
  1513. if number.Type != ArgNumber {
  1514. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1515. }
  1516. return fn.oct2dec(token.Value())
  1517. }
  1518. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1519. // (Base 16) number. The syntax of the function is:
  1520. //
  1521. // OCT2HEX(number,[places])
  1522. //
  1523. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1524. if argsList.Len() < 1 {
  1525. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1526. }
  1527. if argsList.Len() > 2 {
  1528. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1529. }
  1530. token := argsList.Front().Value.(formulaArg)
  1531. number := token.ToNumber()
  1532. if number.Type != ArgNumber {
  1533. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1534. }
  1535. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1536. newList.PushBack(decimal)
  1537. if argsList.Len() == 2 {
  1538. newList.PushBack(argsList.Back().Value.(formulaArg))
  1539. }
  1540. return fn.dec2x("OCT2HEX", newList)
  1541. }
  1542. // oct2dec is an implementation of the formula function OCT2DEC.
  1543. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1544. decimal, length := 0.0, len(number)
  1545. for i := length; i > 0; i-- {
  1546. num, _ := strconv.Atoi(string(number[length-i]))
  1547. if i == 10 && string(number[length-i]) == "7" {
  1548. decimal += math.Pow(-8.0, float64(i-1))
  1549. continue
  1550. }
  1551. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1552. }
  1553. return newNumberFormulaArg(decimal)
  1554. }
  1555. // Math and Trigonometric Functions
  1556. // ABS function returns the absolute value of any supplied number. The syntax
  1557. // of the function is:
  1558. //
  1559. // ABS(number)
  1560. //
  1561. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1562. if argsList.Len() != 1 {
  1563. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1564. }
  1565. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1566. if arg.Type == ArgError {
  1567. return arg
  1568. }
  1569. return newNumberFormulaArg(math.Abs(arg.Number))
  1570. }
  1571. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1572. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1573. // the function is:
  1574. //
  1575. // ACOS(number)
  1576. //
  1577. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1578. if argsList.Len() != 1 {
  1579. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1580. }
  1581. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1582. if arg.Type == ArgError {
  1583. return arg
  1584. }
  1585. return newNumberFormulaArg(math.Acos(arg.Number))
  1586. }
  1587. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1588. // of the function is:
  1589. //
  1590. // ACOSH(number)
  1591. //
  1592. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1593. if argsList.Len() != 1 {
  1594. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1595. }
  1596. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1597. if arg.Type == ArgError {
  1598. return arg
  1599. }
  1600. return newNumberFormulaArg(math.Acosh(arg.Number))
  1601. }
  1602. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1603. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1604. // of the function is:
  1605. //
  1606. // ACOT(number)
  1607. //
  1608. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1609. if argsList.Len() != 1 {
  1610. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1611. }
  1612. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1613. if arg.Type == ArgError {
  1614. return arg
  1615. }
  1616. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1617. }
  1618. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1619. // value. The syntax of the function is:
  1620. //
  1621. // ACOTH(number)
  1622. //
  1623. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1624. if argsList.Len() != 1 {
  1625. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1626. }
  1627. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1628. if arg.Type == ArgError {
  1629. return arg
  1630. }
  1631. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1632. }
  1633. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1634. // of the function is:
  1635. //
  1636. // ARABIC(text)
  1637. //
  1638. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1639. if argsList.Len() != 1 {
  1640. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1641. }
  1642. text := argsList.Front().Value.(formulaArg).Value()
  1643. if len(text) > 255 {
  1644. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1645. }
  1646. text = strings.ToUpper(text)
  1647. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1648. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1649. for index >= 0 && text[index] == ' ' {
  1650. index--
  1651. }
  1652. for actualStart <= index && text[actualStart] == ' ' {
  1653. actualStart++
  1654. }
  1655. if actualStart <= index && text[actualStart] == '-' {
  1656. isNegative = true
  1657. actualStart++
  1658. }
  1659. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1660. for index >= actualStart {
  1661. startIndex = index
  1662. startChar := text[startIndex]
  1663. index--
  1664. for index >= actualStart && (text[index]|' ') == startChar {
  1665. index--
  1666. }
  1667. currentCharValue = charMap[rune(startChar)]
  1668. currentPartValue = (startIndex - index) * currentCharValue
  1669. if currentCharValue >= prevCharValue {
  1670. number += currentPartValue - subtractNumber
  1671. prevCharValue = currentCharValue
  1672. subtractNumber = 0
  1673. continue
  1674. }
  1675. subtractNumber += currentPartValue
  1676. }
  1677. if subtractNumber != 0 {
  1678. number -= subtractNumber
  1679. }
  1680. if isNegative {
  1681. number = -number
  1682. }
  1683. return newNumberFormulaArg(float64(number))
  1684. }
  1685. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1686. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1687. // of the function is:
  1688. //
  1689. // ASIN(number)
  1690. //
  1691. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1692. if argsList.Len() != 1 {
  1693. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1694. }
  1695. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1696. if arg.Type == ArgError {
  1697. return arg
  1698. }
  1699. return newNumberFormulaArg(math.Asin(arg.Number))
  1700. }
  1701. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1702. // The syntax of the function is:
  1703. //
  1704. // ASINH(number)
  1705. //
  1706. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1707. if argsList.Len() != 1 {
  1708. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1709. }
  1710. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1711. if arg.Type == ArgError {
  1712. return arg
  1713. }
  1714. return newNumberFormulaArg(math.Asinh(arg.Number))
  1715. }
  1716. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1717. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1718. // syntax of the function is:
  1719. //
  1720. // ATAN(number)
  1721. //
  1722. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1723. if argsList.Len() != 1 {
  1724. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1725. }
  1726. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1727. if arg.Type == ArgError {
  1728. return arg
  1729. }
  1730. return newNumberFormulaArg(math.Atan(arg.Number))
  1731. }
  1732. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1733. // number. The syntax of the function is:
  1734. //
  1735. // ATANH(number)
  1736. //
  1737. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1738. if argsList.Len() != 1 {
  1739. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1740. }
  1741. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1742. if arg.Type == ArgError {
  1743. return arg
  1744. }
  1745. return newNumberFormulaArg(math.Atanh(arg.Number))
  1746. }
  1747. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1748. // given set of x and y coordinates, and returns an angle, in radians, between
  1749. // -π/2 and +π/2. The syntax of the function is:
  1750. //
  1751. // ATAN2(x_num,y_num)
  1752. //
  1753. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1754. if argsList.Len() != 2 {
  1755. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1756. }
  1757. x := argsList.Back().Value.(formulaArg).ToNumber()
  1758. if x.Type == ArgError {
  1759. return x
  1760. }
  1761. y := argsList.Front().Value.(formulaArg).ToNumber()
  1762. if y.Type == ArgError {
  1763. return y
  1764. }
  1765. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1766. }
  1767. // BASE function converts a number into a supplied base (radix), and returns a
  1768. // text representation of the calculated value. The syntax of the function is:
  1769. //
  1770. // BASE(number,radix,[min_length])
  1771. //
  1772. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1773. if argsList.Len() < 2 {
  1774. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1775. }
  1776. if argsList.Len() > 3 {
  1777. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1778. }
  1779. var minLength int
  1780. var err error
  1781. number := argsList.Front().Value.(formulaArg).ToNumber()
  1782. if number.Type == ArgError {
  1783. return number
  1784. }
  1785. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1786. if radix.Type == ArgError {
  1787. return radix
  1788. }
  1789. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1790. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1791. }
  1792. if argsList.Len() > 2 {
  1793. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1794. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1795. }
  1796. }
  1797. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1798. if len(result) < minLength {
  1799. result = strings.Repeat("0", minLength-len(result)) + result
  1800. }
  1801. return newStringFormulaArg(strings.ToUpper(result))
  1802. }
  1803. // CEILING function rounds a supplied number away from zero, to the nearest
  1804. // multiple of a given number. The syntax of the function is:
  1805. //
  1806. // CEILING(number,significance)
  1807. //
  1808. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1809. if argsList.Len() == 0 {
  1810. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1811. }
  1812. if argsList.Len() > 2 {
  1813. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1814. }
  1815. number, significance, res := 0.0, 1.0, 0.0
  1816. n := argsList.Front().Value.(formulaArg).ToNumber()
  1817. if n.Type == ArgError {
  1818. return n
  1819. }
  1820. number = n.Number
  1821. if number < 0 {
  1822. significance = -1
  1823. }
  1824. if argsList.Len() > 1 {
  1825. s := argsList.Back().Value.(formulaArg).ToNumber()
  1826. if s.Type == ArgError {
  1827. return s
  1828. }
  1829. significance = s.Number
  1830. }
  1831. if significance < 0 && number > 0 {
  1832. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1833. }
  1834. if argsList.Len() == 1 {
  1835. return newNumberFormulaArg(math.Ceil(number))
  1836. }
  1837. number, res = math.Modf(number / significance)
  1838. if res > 0 {
  1839. number++
  1840. }
  1841. return newNumberFormulaArg(number * significance)
  1842. }
  1843. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  1844. // of significance. The syntax of the function is:
  1845. //
  1846. // CEILING.MATH(number,[significance],[mode])
  1847. //
  1848. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  1849. if argsList.Len() == 0 {
  1850. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1851. }
  1852. if argsList.Len() > 3 {
  1853. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1854. }
  1855. number, significance, mode := 0.0, 1.0, 1.0
  1856. n := argsList.Front().Value.(formulaArg).ToNumber()
  1857. if n.Type == ArgError {
  1858. return n
  1859. }
  1860. number = n.Number
  1861. if number < 0 {
  1862. significance = -1
  1863. }
  1864. if argsList.Len() > 1 {
  1865. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1866. if s.Type == ArgError {
  1867. return s
  1868. }
  1869. significance = s.Number
  1870. }
  1871. if argsList.Len() == 1 {
  1872. return newNumberFormulaArg(math.Ceil(number))
  1873. }
  1874. if argsList.Len() > 2 {
  1875. m := argsList.Back().Value.(formulaArg).ToNumber()
  1876. if m.Type == ArgError {
  1877. return m
  1878. }
  1879. mode = m.Number
  1880. }
  1881. val, res := math.Modf(number / significance)
  1882. if res != 0 {
  1883. if number > 0 {
  1884. val++
  1885. } else if mode < 0 {
  1886. val--
  1887. }
  1888. }
  1889. return newNumberFormulaArg(val * significance)
  1890. }
  1891. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  1892. // number's sign), to the nearest multiple of a given number. The syntax of
  1893. // the function is:
  1894. //
  1895. // CEILING.PRECISE(number,[significance])
  1896. //
  1897. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  1898. if argsList.Len() == 0 {
  1899. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1900. }
  1901. if argsList.Len() > 2 {
  1902. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1903. }
  1904. number, significance := 0.0, 1.0
  1905. n := argsList.Front().Value.(formulaArg).ToNumber()
  1906. if n.Type == ArgError {
  1907. return n
  1908. }
  1909. number = n.Number
  1910. if number < 0 {
  1911. significance = -1
  1912. }
  1913. if argsList.Len() == 1 {
  1914. return newNumberFormulaArg(math.Ceil(number))
  1915. }
  1916. if argsList.Len() > 1 {
  1917. s := argsList.Back().Value.(formulaArg).ToNumber()
  1918. if s.Type == ArgError {
  1919. return s
  1920. }
  1921. significance = s.Number
  1922. significance = math.Abs(significance)
  1923. if significance == 0 {
  1924. return newNumberFormulaArg(significance)
  1925. }
  1926. }
  1927. val, res := math.Modf(number / significance)
  1928. if res != 0 {
  1929. if number > 0 {
  1930. val++
  1931. }
  1932. }
  1933. return newNumberFormulaArg(val * significance)
  1934. }
  1935. // COMBIN function calculates the number of combinations (in any order) of a
  1936. // given number objects from a set. The syntax of the function is:
  1937. //
  1938. // COMBIN(number,number_chosen)
  1939. //
  1940. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1941. if argsList.Len() != 2 {
  1942. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1943. }
  1944. number, chosen, val := 0.0, 0.0, 1.0
  1945. n := argsList.Front().Value.(formulaArg).ToNumber()
  1946. if n.Type == ArgError {
  1947. return n
  1948. }
  1949. number = n.Number
  1950. c := argsList.Back().Value.(formulaArg).ToNumber()
  1951. if c.Type == ArgError {
  1952. return c
  1953. }
  1954. chosen = c.Number
  1955. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1956. if chosen > number {
  1957. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1958. }
  1959. if chosen == number || chosen == 0 {
  1960. return newNumberFormulaArg(1)
  1961. }
  1962. for c := float64(1); c <= chosen; c++ {
  1963. val *= (number + 1 - c) / c
  1964. }
  1965. return newNumberFormulaArg(math.Ceil(val))
  1966. }
  1967. // COMBINA function calculates the number of combinations, with repetitions,
  1968. // of a given number objects from a set. The syntax of the function is:
  1969. //
  1970. // COMBINA(number,number_chosen)
  1971. //
  1972. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1973. if argsList.Len() != 2 {
  1974. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1975. }
  1976. var number, chosen float64
  1977. n := argsList.Front().Value.(formulaArg).ToNumber()
  1978. if n.Type == ArgError {
  1979. return n
  1980. }
  1981. number = n.Number
  1982. c := argsList.Back().Value.(formulaArg).ToNumber()
  1983. if c.Type == ArgError {
  1984. return c
  1985. }
  1986. chosen = c.Number
  1987. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1988. if number < chosen {
  1989. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1990. }
  1991. if number == 0 {
  1992. return newNumberFormulaArg(number)
  1993. }
  1994. args := list.New()
  1995. args.PushBack(formulaArg{
  1996. String: fmt.Sprintf("%g", number+chosen-1),
  1997. Type: ArgString,
  1998. })
  1999. args.PushBack(formulaArg{
  2000. String: fmt.Sprintf("%g", number-1),
  2001. Type: ArgString,
  2002. })
  2003. return fn.COMBIN(args)
  2004. }
  2005. // COS function calculates the cosine of a given angle. The syntax of the
  2006. // function is:
  2007. //
  2008. // COS(number)
  2009. //
  2010. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2011. if argsList.Len() != 1 {
  2012. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2013. }
  2014. val := argsList.Front().Value.(formulaArg).ToNumber()
  2015. if val.Type == ArgError {
  2016. return val
  2017. }
  2018. return newNumberFormulaArg(math.Cos(val.Number))
  2019. }
  2020. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2021. // The syntax of the function is:
  2022. //
  2023. // COSH(number)
  2024. //
  2025. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2026. if argsList.Len() != 1 {
  2027. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2028. }
  2029. val := argsList.Front().Value.(formulaArg).ToNumber()
  2030. if val.Type == ArgError {
  2031. return val
  2032. }
  2033. return newNumberFormulaArg(math.Cosh(val.Number))
  2034. }
  2035. // COT function calculates the cotangent of a given angle. The syntax of the
  2036. // function is:
  2037. //
  2038. // COT(number)
  2039. //
  2040. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2041. if argsList.Len() != 1 {
  2042. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2043. }
  2044. val := argsList.Front().Value.(formulaArg).ToNumber()
  2045. if val.Type == ArgError {
  2046. return val
  2047. }
  2048. if val.Number == 0 {
  2049. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2050. }
  2051. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2052. }
  2053. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2054. // angle. The syntax of the function is:
  2055. //
  2056. // COTH(number)
  2057. //
  2058. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2059. if argsList.Len() != 1 {
  2060. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2061. }
  2062. val := argsList.Front().Value.(formulaArg).ToNumber()
  2063. if val.Type == ArgError {
  2064. return val
  2065. }
  2066. if val.Number == 0 {
  2067. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2068. }
  2069. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2070. }
  2071. // CSC function calculates the cosecant of a given angle. The syntax of the
  2072. // function is:
  2073. //
  2074. // CSC(number)
  2075. //
  2076. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2077. if argsList.Len() != 1 {
  2078. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2079. }
  2080. val := argsList.Front().Value.(formulaArg).ToNumber()
  2081. if val.Type == ArgError {
  2082. return val
  2083. }
  2084. if val.Number == 0 {
  2085. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2086. }
  2087. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2088. }
  2089. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2090. // angle. The syntax of the function is:
  2091. //
  2092. // CSCH(number)
  2093. //
  2094. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2095. if argsList.Len() != 1 {
  2096. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2097. }
  2098. val := argsList.Front().Value.(formulaArg).ToNumber()
  2099. if val.Type == ArgError {
  2100. return val
  2101. }
  2102. if val.Number == 0 {
  2103. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2104. }
  2105. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2106. }
  2107. // DECIMAL function converts a text representation of a number in a specified
  2108. // base, into a decimal value. The syntax of the function is:
  2109. //
  2110. // DECIMAL(text,radix)
  2111. //
  2112. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2113. if argsList.Len() != 2 {
  2114. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2115. }
  2116. var text = argsList.Front().Value.(formulaArg).String
  2117. var radix int
  2118. var err error
  2119. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2120. if err != nil {
  2121. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2122. }
  2123. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2124. text = text[2:]
  2125. }
  2126. val, err := strconv.ParseInt(text, radix, 64)
  2127. if err != nil {
  2128. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2129. }
  2130. return newNumberFormulaArg(float64(val))
  2131. }
  2132. // DEGREES function converts radians into degrees. The syntax of the function
  2133. // is:
  2134. //
  2135. // DEGREES(angle)
  2136. //
  2137. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2138. if argsList.Len() != 1 {
  2139. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2140. }
  2141. val := argsList.Front().Value.(formulaArg).ToNumber()
  2142. if val.Type == ArgError {
  2143. return val
  2144. }
  2145. if val.Number == 0 {
  2146. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2147. }
  2148. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2149. }
  2150. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2151. // positive number up and a negative number down), to the next even number.
  2152. // The syntax of the function is:
  2153. //
  2154. // EVEN(number)
  2155. //
  2156. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2157. if argsList.Len() != 1 {
  2158. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2159. }
  2160. number := argsList.Front().Value.(formulaArg).ToNumber()
  2161. if number.Type == ArgError {
  2162. return number
  2163. }
  2164. sign := math.Signbit(number.Number)
  2165. m, frac := math.Modf(number.Number / 2)
  2166. val := m * 2
  2167. if frac != 0 {
  2168. if !sign {
  2169. val += 2
  2170. } else {
  2171. val -= 2
  2172. }
  2173. }
  2174. return newNumberFormulaArg(val)
  2175. }
  2176. // EXP function calculates the value of the mathematical constant e, raised to
  2177. // the power of a given number. The syntax of the function is:
  2178. //
  2179. // EXP(number)
  2180. //
  2181. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2182. if argsList.Len() != 1 {
  2183. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2184. }
  2185. number := argsList.Front().Value.(formulaArg).ToNumber()
  2186. if number.Type == ArgError {
  2187. return number
  2188. }
  2189. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2190. }
  2191. // fact returns the factorial of a supplied number.
  2192. func fact(number float64) float64 {
  2193. val := float64(1)
  2194. for i := float64(2); i <= number; i++ {
  2195. val *= i
  2196. }
  2197. return val
  2198. }
  2199. // FACT function returns the factorial of a supplied number. The syntax of the
  2200. // function is:
  2201. //
  2202. // FACT(number)
  2203. //
  2204. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2205. if argsList.Len() != 1 {
  2206. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2207. }
  2208. number := argsList.Front().Value.(formulaArg).ToNumber()
  2209. if number.Type == ArgError {
  2210. return number
  2211. }
  2212. if number.Number < 0 {
  2213. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2214. }
  2215. return newNumberFormulaArg(fact(number.Number))
  2216. }
  2217. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2218. // syntax of the function is:
  2219. //
  2220. // FACTDOUBLE(number)
  2221. //
  2222. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2223. if argsList.Len() != 1 {
  2224. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2225. }
  2226. val := 1.0
  2227. number := argsList.Front().Value.(formulaArg).ToNumber()
  2228. if number.Type == ArgError {
  2229. return number
  2230. }
  2231. if number.Number < 0 {
  2232. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2233. }
  2234. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2235. val *= i
  2236. }
  2237. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2238. }
  2239. // FLOOR function rounds a supplied number towards zero to the nearest
  2240. // multiple of a specified significance. The syntax of the function is:
  2241. //
  2242. // FLOOR(number,significance)
  2243. //
  2244. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2245. if argsList.Len() != 2 {
  2246. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2247. }
  2248. number := argsList.Front().Value.(formulaArg).ToNumber()
  2249. if number.Type == ArgError {
  2250. return number
  2251. }
  2252. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2253. if significance.Type == ArgError {
  2254. return significance
  2255. }
  2256. if significance.Number < 0 && number.Number >= 0 {
  2257. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2258. }
  2259. val := number.Number
  2260. val, res := math.Modf(val / significance.Number)
  2261. if res != 0 {
  2262. if number.Number < 0 && res < 0 {
  2263. val--
  2264. }
  2265. }
  2266. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2267. }
  2268. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2269. // of significance. The syntax of the function is:
  2270. //
  2271. // FLOOR.MATH(number,[significance],[mode])
  2272. //
  2273. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2274. if argsList.Len() == 0 {
  2275. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2276. }
  2277. if argsList.Len() > 3 {
  2278. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2279. }
  2280. significance, mode := 1.0, 1.0
  2281. number := argsList.Front().Value.(formulaArg).ToNumber()
  2282. if number.Type == ArgError {
  2283. return number
  2284. }
  2285. if number.Number < 0 {
  2286. significance = -1
  2287. }
  2288. if argsList.Len() > 1 {
  2289. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2290. if s.Type == ArgError {
  2291. return s
  2292. }
  2293. significance = s.Number
  2294. }
  2295. if argsList.Len() == 1 {
  2296. return newNumberFormulaArg(math.Floor(number.Number))
  2297. }
  2298. if argsList.Len() > 2 {
  2299. m := argsList.Back().Value.(formulaArg).ToNumber()
  2300. if m.Type == ArgError {
  2301. return m
  2302. }
  2303. mode = m.Number
  2304. }
  2305. val, res := math.Modf(number.Number / significance)
  2306. if res != 0 && number.Number < 0 && mode > 0 {
  2307. val--
  2308. }
  2309. return newNumberFormulaArg(val * significance)
  2310. }
  2311. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2312. // multiple of significance. The syntax of the function is:
  2313. //
  2314. // FLOOR.PRECISE(number,[significance])
  2315. //
  2316. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2317. if argsList.Len() == 0 {
  2318. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2319. }
  2320. if argsList.Len() > 2 {
  2321. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2322. }
  2323. var significance float64
  2324. number := argsList.Front().Value.(formulaArg).ToNumber()
  2325. if number.Type == ArgError {
  2326. return number
  2327. }
  2328. if number.Number < 0 {
  2329. significance = -1
  2330. }
  2331. if argsList.Len() == 1 {
  2332. return newNumberFormulaArg(math.Floor(number.Number))
  2333. }
  2334. if argsList.Len() > 1 {
  2335. s := argsList.Back().Value.(formulaArg).ToNumber()
  2336. if s.Type == ArgError {
  2337. return s
  2338. }
  2339. significance = s.Number
  2340. significance = math.Abs(significance)
  2341. if significance == 0 {
  2342. return newNumberFormulaArg(significance)
  2343. }
  2344. }
  2345. val, res := math.Modf(number.Number / significance)
  2346. if res != 0 {
  2347. if number.Number < 0 {
  2348. val--
  2349. }
  2350. }
  2351. return newNumberFormulaArg(val * significance)
  2352. }
  2353. // gcd returns the greatest common divisor of two supplied integers.
  2354. func gcd(x, y float64) float64 {
  2355. x, y = math.Trunc(x), math.Trunc(y)
  2356. if x == 0 {
  2357. return y
  2358. }
  2359. if y == 0 {
  2360. return x
  2361. }
  2362. for x != y {
  2363. if x > y {
  2364. x = x - y
  2365. } else {
  2366. y = y - x
  2367. }
  2368. }
  2369. return x
  2370. }
  2371. // GCD function returns the greatest common divisor of two or more supplied
  2372. // integers. The syntax of the function is:
  2373. //
  2374. // GCD(number1,[number2],...)
  2375. //
  2376. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2377. if argsList.Len() == 0 {
  2378. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2379. }
  2380. var (
  2381. val float64
  2382. nums = []float64{}
  2383. )
  2384. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2385. token := arg.Value.(formulaArg)
  2386. switch token.Type {
  2387. case ArgString:
  2388. num := token.ToNumber()
  2389. if num.Type == ArgError {
  2390. return num
  2391. }
  2392. val = num.Number
  2393. case ArgNumber:
  2394. val = token.Number
  2395. }
  2396. nums = append(nums, val)
  2397. }
  2398. if nums[0] < 0 {
  2399. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2400. }
  2401. if len(nums) == 1 {
  2402. return newNumberFormulaArg(nums[0])
  2403. }
  2404. cd := nums[0]
  2405. for i := 1; i < len(nums); i++ {
  2406. if nums[i] < 0 {
  2407. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2408. }
  2409. cd = gcd(cd, nums[i])
  2410. }
  2411. return newNumberFormulaArg(cd)
  2412. }
  2413. // INT function truncates a supplied number down to the closest integer. The
  2414. // syntax of the function is:
  2415. //
  2416. // INT(number)
  2417. //
  2418. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2419. if argsList.Len() != 1 {
  2420. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2421. }
  2422. number := argsList.Front().Value.(formulaArg).ToNumber()
  2423. if number.Type == ArgError {
  2424. return number
  2425. }
  2426. val, frac := math.Modf(number.Number)
  2427. if frac < 0 {
  2428. val--
  2429. }
  2430. return newNumberFormulaArg(val)
  2431. }
  2432. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2433. // number's sign), to the nearest multiple of a supplied significance. The
  2434. // syntax of the function is:
  2435. //
  2436. // ISO.CEILING(number,[significance])
  2437. //
  2438. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2439. if argsList.Len() == 0 {
  2440. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2441. }
  2442. if argsList.Len() > 2 {
  2443. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2444. }
  2445. var significance float64
  2446. number := argsList.Front().Value.(formulaArg).ToNumber()
  2447. if number.Type == ArgError {
  2448. return number
  2449. }
  2450. if number.Number < 0 {
  2451. significance = -1
  2452. }
  2453. if argsList.Len() == 1 {
  2454. return newNumberFormulaArg(math.Ceil(number.Number))
  2455. }
  2456. if argsList.Len() > 1 {
  2457. s := argsList.Back().Value.(formulaArg).ToNumber()
  2458. if s.Type == ArgError {
  2459. return s
  2460. }
  2461. significance = s.Number
  2462. significance = math.Abs(significance)
  2463. if significance == 0 {
  2464. return newNumberFormulaArg(significance)
  2465. }
  2466. }
  2467. val, res := math.Modf(number.Number / significance)
  2468. if res != 0 {
  2469. if number.Number > 0 {
  2470. val++
  2471. }
  2472. }
  2473. return newNumberFormulaArg(val * significance)
  2474. }
  2475. // lcm returns the least common multiple of two supplied integers.
  2476. func lcm(a, b float64) float64 {
  2477. a = math.Trunc(a)
  2478. b = math.Trunc(b)
  2479. if a == 0 && b == 0 {
  2480. return 0
  2481. }
  2482. return a * b / gcd(a, b)
  2483. }
  2484. // LCM function returns the least common multiple of two or more supplied
  2485. // integers. The syntax of the function is:
  2486. //
  2487. // LCM(number1,[number2],...)
  2488. //
  2489. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2490. if argsList.Len() == 0 {
  2491. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2492. }
  2493. var (
  2494. val float64
  2495. nums = []float64{}
  2496. err error
  2497. )
  2498. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2499. token := arg.Value.(formulaArg)
  2500. switch token.Type {
  2501. case ArgString:
  2502. if token.String == "" {
  2503. continue
  2504. }
  2505. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2506. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2507. }
  2508. case ArgNumber:
  2509. val = token.Number
  2510. }
  2511. nums = append(nums, val)
  2512. }
  2513. if nums[0] < 0 {
  2514. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2515. }
  2516. if len(nums) == 1 {
  2517. return newNumberFormulaArg(nums[0])
  2518. }
  2519. cm := nums[0]
  2520. for i := 1; i < len(nums); i++ {
  2521. if nums[i] < 0 {
  2522. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2523. }
  2524. cm = lcm(cm, nums[i])
  2525. }
  2526. return newNumberFormulaArg(cm)
  2527. }
  2528. // LN function calculates the natural logarithm of a given number. The syntax
  2529. // of the function is:
  2530. //
  2531. // LN(number)
  2532. //
  2533. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2534. if argsList.Len() != 1 {
  2535. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2536. }
  2537. number := argsList.Front().Value.(formulaArg).ToNumber()
  2538. if number.Type == ArgError {
  2539. return number
  2540. }
  2541. return newNumberFormulaArg(math.Log(number.Number))
  2542. }
  2543. // LOG function calculates the logarithm of a given number, to a supplied
  2544. // base. The syntax of the function is:
  2545. //
  2546. // LOG(number,[base])
  2547. //
  2548. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2549. if argsList.Len() == 0 {
  2550. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2551. }
  2552. if argsList.Len() > 2 {
  2553. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2554. }
  2555. base := 10.0
  2556. number := argsList.Front().Value.(formulaArg).ToNumber()
  2557. if number.Type == ArgError {
  2558. return number
  2559. }
  2560. if argsList.Len() > 1 {
  2561. b := argsList.Back().Value.(formulaArg).ToNumber()
  2562. if b.Type == ArgError {
  2563. return b
  2564. }
  2565. base = b.Number
  2566. }
  2567. if number.Number == 0 {
  2568. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2569. }
  2570. if base == 0 {
  2571. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2572. }
  2573. if base == 1 {
  2574. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2575. }
  2576. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2577. }
  2578. // LOG10 function calculates the base 10 logarithm of a given number. The
  2579. // syntax of the function is:
  2580. //
  2581. // LOG10(number)
  2582. //
  2583. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2584. if argsList.Len() != 1 {
  2585. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2586. }
  2587. number := argsList.Front().Value.(formulaArg).ToNumber()
  2588. if number.Type == ArgError {
  2589. return number
  2590. }
  2591. return newNumberFormulaArg(math.Log10(number.Number))
  2592. }
  2593. // minor function implement a minor of a matrix A is the determinant of some
  2594. // smaller square matrix.
  2595. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2596. ret := [][]float64{}
  2597. for i := range sqMtx {
  2598. if i == 0 {
  2599. continue
  2600. }
  2601. row := []float64{}
  2602. for j := range sqMtx {
  2603. if j == idx {
  2604. continue
  2605. }
  2606. row = append(row, sqMtx[i][j])
  2607. }
  2608. ret = append(ret, row)
  2609. }
  2610. return ret
  2611. }
  2612. // det determinant of the 2x2 matrix.
  2613. func det(sqMtx [][]float64) float64 {
  2614. if len(sqMtx) == 2 {
  2615. m00 := sqMtx[0][0]
  2616. m01 := sqMtx[0][1]
  2617. m10 := sqMtx[1][0]
  2618. m11 := sqMtx[1][1]
  2619. return m00*m11 - m10*m01
  2620. }
  2621. var res, sgn float64 = 0, 1
  2622. for j := range sqMtx {
  2623. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2624. sgn *= -1
  2625. }
  2626. return res
  2627. }
  2628. // MDETERM calculates the determinant of a square matrix. The
  2629. // syntax of the function is:
  2630. //
  2631. // MDETERM(array)
  2632. //
  2633. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2634. var (
  2635. num float64
  2636. numMtx = [][]float64{}
  2637. err error
  2638. strMtx [][]formulaArg
  2639. )
  2640. if argsList.Len() < 1 {
  2641. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2642. }
  2643. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2644. var rows = len(strMtx)
  2645. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2646. if len(row) != rows {
  2647. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2648. }
  2649. numRow := []float64{}
  2650. for _, ele := range row {
  2651. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2652. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2653. }
  2654. numRow = append(numRow, num)
  2655. }
  2656. numMtx = append(numMtx, numRow)
  2657. }
  2658. return newNumberFormulaArg(det(numMtx))
  2659. }
  2660. // MOD function returns the remainder of a division between two supplied
  2661. // numbers. The syntax of the function is:
  2662. //
  2663. // MOD(number,divisor)
  2664. //
  2665. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2666. if argsList.Len() != 2 {
  2667. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2668. }
  2669. number := argsList.Front().Value.(formulaArg).ToNumber()
  2670. if number.Type == ArgError {
  2671. return number
  2672. }
  2673. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2674. if divisor.Type == ArgError {
  2675. return divisor
  2676. }
  2677. if divisor.Number == 0 {
  2678. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2679. }
  2680. trunc, rem := math.Modf(number.Number / divisor.Number)
  2681. if rem < 0 {
  2682. trunc--
  2683. }
  2684. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2685. }
  2686. // MROUND function rounds a supplied number up or down to the nearest multiple
  2687. // of a given number. The syntax of the function is:
  2688. //
  2689. // MROUND(number,multiple)
  2690. //
  2691. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2692. if argsList.Len() != 2 {
  2693. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2694. }
  2695. n := argsList.Front().Value.(formulaArg).ToNumber()
  2696. if n.Type == ArgError {
  2697. return n
  2698. }
  2699. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2700. if multiple.Type == ArgError {
  2701. return multiple
  2702. }
  2703. if multiple.Number == 0 {
  2704. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2705. }
  2706. if multiple.Number < 0 && n.Number > 0 ||
  2707. multiple.Number > 0 && n.Number < 0 {
  2708. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2709. }
  2710. number, res := math.Modf(n.Number / multiple.Number)
  2711. if math.Trunc(res+0.5) > 0 {
  2712. number++
  2713. }
  2714. return newNumberFormulaArg(number * multiple.Number)
  2715. }
  2716. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2717. // supplied values to the product of factorials of those values. The syntax of
  2718. // the function is:
  2719. //
  2720. // MULTINOMIAL(number1,[number2],...)
  2721. //
  2722. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2723. val, num, denom := 0.0, 0.0, 1.0
  2724. var err error
  2725. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2726. token := arg.Value.(formulaArg)
  2727. switch token.Type {
  2728. case ArgString:
  2729. if token.String == "" {
  2730. continue
  2731. }
  2732. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2733. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2734. }
  2735. case ArgNumber:
  2736. val = token.Number
  2737. }
  2738. num += val
  2739. denom *= fact(val)
  2740. }
  2741. return newNumberFormulaArg(fact(num) / denom)
  2742. }
  2743. // MUNIT function returns the unit matrix for a specified dimension. The
  2744. // syntax of the function is:
  2745. //
  2746. // MUNIT(dimension)
  2747. //
  2748. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2749. if argsList.Len() != 1 {
  2750. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2751. }
  2752. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2753. if dimension.Type == ArgError || dimension.Number < 0 {
  2754. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2755. }
  2756. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2757. for i := 0; i < int(dimension.Number); i++ {
  2758. row := make([]formulaArg, int(dimension.Number))
  2759. for j := 0; j < int(dimension.Number); j++ {
  2760. if i == j {
  2761. row[j] = newNumberFormulaArg(1.0)
  2762. } else {
  2763. row[j] = newNumberFormulaArg(0.0)
  2764. }
  2765. }
  2766. matrix = append(matrix, row)
  2767. }
  2768. return newMatrixFormulaArg(matrix)
  2769. }
  2770. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2771. // number up and a negative number down), to the next odd number. The syntax
  2772. // of the function is:
  2773. //
  2774. // ODD(number)
  2775. //
  2776. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2777. if argsList.Len() != 1 {
  2778. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2779. }
  2780. number := argsList.Back().Value.(formulaArg).ToNumber()
  2781. if number.Type == ArgError {
  2782. return number
  2783. }
  2784. if number.Number == 0 {
  2785. return newNumberFormulaArg(1)
  2786. }
  2787. sign := math.Signbit(number.Number)
  2788. m, frac := math.Modf((number.Number - 1) / 2)
  2789. val := m*2 + 1
  2790. if frac != 0 {
  2791. if !sign {
  2792. val += 2
  2793. } else {
  2794. val -= 2
  2795. }
  2796. }
  2797. return newNumberFormulaArg(val)
  2798. }
  2799. // PI function returns the value of the mathematical constant π (pi), accurate
  2800. // to 15 digits (14 decimal places). The syntax of the function is:
  2801. //
  2802. // PI()
  2803. //
  2804. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2805. if argsList.Len() != 0 {
  2806. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2807. }
  2808. return newNumberFormulaArg(math.Pi)
  2809. }
  2810. // POWER function calculates a given number, raised to a supplied power.
  2811. // The syntax of the function is:
  2812. //
  2813. // POWER(number,power)
  2814. //
  2815. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2816. if argsList.Len() != 2 {
  2817. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2818. }
  2819. x := argsList.Front().Value.(formulaArg).ToNumber()
  2820. if x.Type == ArgError {
  2821. return x
  2822. }
  2823. y := argsList.Back().Value.(formulaArg).ToNumber()
  2824. if y.Type == ArgError {
  2825. return y
  2826. }
  2827. if x.Number == 0 && y.Number == 0 {
  2828. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2829. }
  2830. if x.Number == 0 && y.Number < 0 {
  2831. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2832. }
  2833. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2834. }
  2835. // PRODUCT function returns the product (multiplication) of a supplied set of
  2836. // numerical values. The syntax of the function is:
  2837. //
  2838. // PRODUCT(number1,[number2],...)
  2839. //
  2840. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2841. val, product := 0.0, 1.0
  2842. var err error
  2843. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2844. token := arg.Value.(formulaArg)
  2845. switch token.Type {
  2846. case ArgUnknown:
  2847. continue
  2848. case ArgString:
  2849. if token.String == "" {
  2850. continue
  2851. }
  2852. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2853. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2854. }
  2855. product = product * val
  2856. case ArgNumber:
  2857. product = product * token.Number
  2858. case ArgMatrix:
  2859. for _, row := range token.Matrix {
  2860. for _, value := range row {
  2861. if value.String == "" {
  2862. continue
  2863. }
  2864. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2865. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2866. }
  2867. product = product * val
  2868. }
  2869. }
  2870. }
  2871. }
  2872. return newNumberFormulaArg(product)
  2873. }
  2874. // QUOTIENT function returns the integer portion of a division between two
  2875. // supplied numbers. The syntax of the function is:
  2876. //
  2877. // QUOTIENT(numerator,denominator)
  2878. //
  2879. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2880. if argsList.Len() != 2 {
  2881. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2882. }
  2883. x := argsList.Front().Value.(formulaArg).ToNumber()
  2884. if x.Type == ArgError {
  2885. return x
  2886. }
  2887. y := argsList.Back().Value.(formulaArg).ToNumber()
  2888. if y.Type == ArgError {
  2889. return y
  2890. }
  2891. if y.Number == 0 {
  2892. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2893. }
  2894. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2895. }
  2896. // RADIANS function converts radians into degrees. The syntax of the function is:
  2897. //
  2898. // RADIANS(angle)
  2899. //
  2900. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2901. if argsList.Len() != 1 {
  2902. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2903. }
  2904. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2905. if angle.Type == ArgError {
  2906. return angle
  2907. }
  2908. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2909. }
  2910. // RAND function generates a random real number between 0 and 1. The syntax of
  2911. // the function is:
  2912. //
  2913. // RAND()
  2914. //
  2915. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2916. if argsList.Len() != 0 {
  2917. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2918. }
  2919. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2920. }
  2921. // RANDBETWEEN function generates a random integer between two supplied
  2922. // integers. The syntax of the function is:
  2923. //
  2924. // RANDBETWEEN(bottom,top)
  2925. //
  2926. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2927. if argsList.Len() != 2 {
  2928. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2929. }
  2930. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2931. if bottom.Type == ArgError {
  2932. return bottom
  2933. }
  2934. top := argsList.Back().Value.(formulaArg).ToNumber()
  2935. if top.Type == ArgError {
  2936. return top
  2937. }
  2938. if top.Number < bottom.Number {
  2939. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2940. }
  2941. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2942. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2943. }
  2944. // romanNumerals defined a numeral system that originated in ancient Rome and
  2945. // remained the usual way of writing numbers throughout Europe well into the
  2946. // Late Middle Ages.
  2947. type romanNumerals struct {
  2948. n float64
  2949. s string
  2950. }
  2951. var romanTable = [][]romanNumerals{
  2952. {
  2953. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2954. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2955. },
  2956. {
  2957. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2958. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2959. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2960. },
  2961. {
  2962. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2963. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2964. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2965. },
  2966. {
  2967. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2968. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2969. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2970. {5, "V"}, {4, "IV"}, {1, "I"},
  2971. },
  2972. {
  2973. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2974. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2975. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2976. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2977. },
  2978. }
  2979. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2980. // integer, the function returns a text string depicting the roman numeral
  2981. // form of the number. The syntax of the function is:
  2982. //
  2983. // ROMAN(number,[form])
  2984. //
  2985. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2986. if argsList.Len() == 0 {
  2987. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2988. }
  2989. if argsList.Len() > 2 {
  2990. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2991. }
  2992. var form int
  2993. number := argsList.Front().Value.(formulaArg).ToNumber()
  2994. if number.Type == ArgError {
  2995. return number
  2996. }
  2997. if argsList.Len() > 1 {
  2998. f := argsList.Back().Value.(formulaArg).ToNumber()
  2999. if f.Type == ArgError {
  3000. return f
  3001. }
  3002. form = int(f.Number)
  3003. if form < 0 {
  3004. form = 0
  3005. } else if form > 4 {
  3006. form = 4
  3007. }
  3008. }
  3009. decimalTable := romanTable[0]
  3010. switch form {
  3011. case 1:
  3012. decimalTable = romanTable[1]
  3013. case 2:
  3014. decimalTable = romanTable[2]
  3015. case 3:
  3016. decimalTable = romanTable[3]
  3017. case 4:
  3018. decimalTable = romanTable[4]
  3019. }
  3020. val := math.Trunc(number.Number)
  3021. buf := bytes.Buffer{}
  3022. for _, r := range decimalTable {
  3023. for val >= r.n {
  3024. buf.WriteString(r.s)
  3025. val -= r.n
  3026. }
  3027. }
  3028. return newStringFormulaArg(buf.String())
  3029. }
  3030. type roundMode byte
  3031. const (
  3032. closest roundMode = iota
  3033. down
  3034. up
  3035. )
  3036. // round rounds a supplied number up or down.
  3037. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3038. var significance float64
  3039. if digits > 0 {
  3040. significance = math.Pow(1/10.0, digits)
  3041. } else {
  3042. significance = math.Pow(10.0, -digits)
  3043. }
  3044. val, res := math.Modf(number / significance)
  3045. switch mode {
  3046. case closest:
  3047. const eps = 0.499999999
  3048. if res >= eps {
  3049. val++
  3050. } else if res <= -eps {
  3051. val--
  3052. }
  3053. case down:
  3054. case up:
  3055. if res > 0 {
  3056. val++
  3057. } else if res < 0 {
  3058. val--
  3059. }
  3060. }
  3061. return val * significance
  3062. }
  3063. // ROUND function rounds a supplied number up or down, to a specified number
  3064. // of decimal places. The syntax of the function is:
  3065. //
  3066. // ROUND(number,num_digits)
  3067. //
  3068. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3069. if argsList.Len() != 2 {
  3070. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3071. }
  3072. number := argsList.Front().Value.(formulaArg).ToNumber()
  3073. if number.Type == ArgError {
  3074. return number
  3075. }
  3076. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3077. if digits.Type == ArgError {
  3078. return digits
  3079. }
  3080. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3081. }
  3082. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3083. // specified number of decimal places. The syntax of the function is:
  3084. //
  3085. // ROUNDDOWN(number,num_digits)
  3086. //
  3087. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3088. if argsList.Len() != 2 {
  3089. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3090. }
  3091. number := argsList.Front().Value.(formulaArg).ToNumber()
  3092. if number.Type == ArgError {
  3093. return number
  3094. }
  3095. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3096. if digits.Type == ArgError {
  3097. return digits
  3098. }
  3099. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3100. }
  3101. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3102. // specified number of decimal places. The syntax of the function is:
  3103. //
  3104. // ROUNDUP(number,num_digits)
  3105. //
  3106. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3107. if argsList.Len() != 2 {
  3108. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3109. }
  3110. number := argsList.Front().Value.(formulaArg).ToNumber()
  3111. if number.Type == ArgError {
  3112. return number
  3113. }
  3114. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3115. if digits.Type == ArgError {
  3116. return digits
  3117. }
  3118. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3119. }
  3120. // SEC function calculates the secant of a given angle. The syntax of the
  3121. // function is:
  3122. //
  3123. // SEC(number)
  3124. //
  3125. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3126. if argsList.Len() != 1 {
  3127. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3128. }
  3129. number := argsList.Front().Value.(formulaArg).ToNumber()
  3130. if number.Type == ArgError {
  3131. return number
  3132. }
  3133. return newNumberFormulaArg(math.Cos(number.Number))
  3134. }
  3135. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3136. // The syntax of the function is:
  3137. //
  3138. // SECH(number)
  3139. //
  3140. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3141. if argsList.Len() != 1 {
  3142. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3143. }
  3144. number := argsList.Front().Value.(formulaArg).ToNumber()
  3145. if number.Type == ArgError {
  3146. return number
  3147. }
  3148. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3149. }
  3150. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3151. // number. I.e. if the number is positive, the Sign function returns +1, if
  3152. // the number is negative, the function returns -1 and if the number is 0
  3153. // (zero), the function returns 0. The syntax of the function is:
  3154. //
  3155. // SIGN(number)
  3156. //
  3157. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3158. if argsList.Len() != 1 {
  3159. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3160. }
  3161. val := argsList.Front().Value.(formulaArg).ToNumber()
  3162. if val.Type == ArgError {
  3163. return val
  3164. }
  3165. if val.Number < 0 {
  3166. return newNumberFormulaArg(-1)
  3167. }
  3168. if val.Number > 0 {
  3169. return newNumberFormulaArg(1)
  3170. }
  3171. return newNumberFormulaArg(0)
  3172. }
  3173. // SIN function calculates the sine of a given angle. The syntax of the
  3174. // function is:
  3175. //
  3176. // SIN(number)
  3177. //
  3178. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3179. if argsList.Len() != 1 {
  3180. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3181. }
  3182. number := argsList.Front().Value.(formulaArg).ToNumber()
  3183. if number.Type == ArgError {
  3184. return number
  3185. }
  3186. return newNumberFormulaArg(math.Sin(number.Number))
  3187. }
  3188. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3189. // The syntax of the function is:
  3190. //
  3191. // SINH(number)
  3192. //
  3193. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3194. if argsList.Len() != 1 {
  3195. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3196. }
  3197. number := argsList.Front().Value.(formulaArg).ToNumber()
  3198. if number.Type == ArgError {
  3199. return number
  3200. }
  3201. return newNumberFormulaArg(math.Sinh(number.Number))
  3202. }
  3203. // SQRT function calculates the positive square root of a supplied number. The
  3204. // syntax of the function is:
  3205. //
  3206. // SQRT(number)
  3207. //
  3208. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3209. if argsList.Len() != 1 {
  3210. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3211. }
  3212. value := argsList.Front().Value.(formulaArg).ToNumber()
  3213. if value.Type == ArgError {
  3214. return value
  3215. }
  3216. if value.Number < 0 {
  3217. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3218. }
  3219. return newNumberFormulaArg(math.Sqrt(value.Number))
  3220. }
  3221. // SQRTPI function returns the square root of a supplied number multiplied by
  3222. // the mathematical constant, π. The syntax of the function is:
  3223. //
  3224. // SQRTPI(number)
  3225. //
  3226. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3227. if argsList.Len() != 1 {
  3228. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3229. }
  3230. number := argsList.Front().Value.(formulaArg).ToNumber()
  3231. if number.Type == ArgError {
  3232. return number
  3233. }
  3234. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3235. }
  3236. // STDEV function calculates the sample standard deviation of a supplied set
  3237. // of values. The syntax of the function is:
  3238. //
  3239. // STDEV(number1,[number2],...)
  3240. //
  3241. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3242. if argsList.Len() < 1 {
  3243. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3244. }
  3245. return fn.stdev(false, argsList)
  3246. }
  3247. // STDEVdotS function calculates the sample standard deviation of a supplied
  3248. // set of values. The syntax of the function is:
  3249. //
  3250. // STDEV.S(number1,[number2],...)
  3251. //
  3252. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3253. if argsList.Len() < 1 {
  3254. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3255. }
  3256. return fn.stdev(false, argsList)
  3257. }
  3258. // STDEVA function estimates standard deviation based on a sample. The
  3259. // standard deviation is a measure of how widely values are dispersed from
  3260. // the average value (the mean). The syntax of the function is:
  3261. //
  3262. // STDEVA(number1,[number2],...)
  3263. //
  3264. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3265. if argsList.Len() < 1 {
  3266. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3267. }
  3268. return fn.stdev(true, argsList)
  3269. }
  3270. // stdev is an implementation of the formula function STDEV and STDEVA.
  3271. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3272. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3273. if result == -1 {
  3274. result = math.Pow((n.Number - m.Number), 2)
  3275. } else {
  3276. result += math.Pow((n.Number - m.Number), 2)
  3277. }
  3278. count++
  3279. return result, count
  3280. }
  3281. count, result := -1.0, -1.0
  3282. var mean formulaArg
  3283. if stdeva {
  3284. mean = fn.AVERAGEA(argsList)
  3285. } else {
  3286. mean = fn.AVERAGE(argsList)
  3287. }
  3288. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3289. token := arg.Value.(formulaArg)
  3290. switch token.Type {
  3291. case ArgString, ArgNumber:
  3292. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3293. continue
  3294. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3295. num := token.ToBool()
  3296. if num.Type == ArgNumber {
  3297. result, count = pow(result, count, num, mean)
  3298. continue
  3299. }
  3300. } else {
  3301. num := token.ToNumber()
  3302. if num.Type == ArgNumber {
  3303. result, count = pow(result, count, num, mean)
  3304. }
  3305. }
  3306. case ArgList, ArgMatrix:
  3307. for _, row := range token.ToList() {
  3308. if row.Type == ArgNumber || row.Type == ArgString {
  3309. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3310. continue
  3311. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3312. num := row.ToBool()
  3313. if num.Type == ArgNumber {
  3314. result, count = pow(result, count, num, mean)
  3315. continue
  3316. }
  3317. } else {
  3318. num := row.ToNumber()
  3319. if num.Type == ArgNumber {
  3320. result, count = pow(result, count, num, mean)
  3321. }
  3322. }
  3323. }
  3324. }
  3325. }
  3326. }
  3327. if count > 0 && result >= 0 {
  3328. return newNumberFormulaArg(math.Sqrt(result / count))
  3329. }
  3330. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3331. }
  3332. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3333. // the Cumulative Poisson Probability Function for a supplied set of
  3334. // parameters. The syntax of the function is:
  3335. //
  3336. // POISSON.DIST(x,mean,cumulative)
  3337. //
  3338. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3339. if argsList.Len() != 3 {
  3340. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3341. }
  3342. return fn.POISSON(argsList)
  3343. }
  3344. // POISSON function calculates the Poisson Probability Mass Function or the
  3345. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3346. // The syntax of the function is:
  3347. //
  3348. // POISSON(x,mean,cumulative)
  3349. //
  3350. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3351. if argsList.Len() != 3 {
  3352. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3353. }
  3354. var x, mean, cumulative formulaArg
  3355. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3356. return x
  3357. }
  3358. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3359. return mean
  3360. }
  3361. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3362. return cumulative
  3363. }
  3364. if x.Number < 0 || mean.Number <= 0 {
  3365. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3366. }
  3367. if cumulative.Number == 1 {
  3368. summer := 0.0
  3369. floor := math.Floor(x.Number)
  3370. for i := 0; i <= int(floor); i++ {
  3371. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3372. }
  3373. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3374. }
  3375. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3376. }
  3377. // SUM function adds together a supplied set of numbers and returns the sum of
  3378. // these values. The syntax of the function is:
  3379. //
  3380. // SUM(number1,[number2],...)
  3381. //
  3382. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3383. var sum float64
  3384. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3385. token := arg.Value.(formulaArg)
  3386. switch token.Type {
  3387. case ArgUnknown:
  3388. continue
  3389. case ArgString:
  3390. if num := token.ToNumber(); num.Type == ArgNumber {
  3391. sum += num.Number
  3392. }
  3393. case ArgNumber:
  3394. sum += token.Number
  3395. case ArgMatrix:
  3396. for _, row := range token.Matrix {
  3397. for _, value := range row {
  3398. if num := value.ToNumber(); num.Type == ArgNumber {
  3399. sum += num.Number
  3400. }
  3401. }
  3402. }
  3403. }
  3404. }
  3405. return newNumberFormulaArg(sum)
  3406. }
  3407. // SUMIF function finds the values in a supplied array, that satisfy a given
  3408. // criteria, and returns the sum of the corresponding values in a second
  3409. // supplied array. The syntax of the function is:
  3410. //
  3411. // SUMIF(range,criteria,[sum_range])
  3412. //
  3413. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3414. if argsList.Len() < 2 {
  3415. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3416. }
  3417. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3418. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3419. var sumRange [][]formulaArg
  3420. if argsList.Len() == 3 {
  3421. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3422. }
  3423. var sum, val float64
  3424. var err error
  3425. for rowIdx, row := range rangeMtx {
  3426. for colIdx, col := range row {
  3427. var ok bool
  3428. fromVal := col.String
  3429. if col.String == "" {
  3430. continue
  3431. }
  3432. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3433. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3434. }
  3435. if ok {
  3436. if argsList.Len() == 3 {
  3437. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3438. continue
  3439. }
  3440. fromVal = sumRange[rowIdx][colIdx].String
  3441. }
  3442. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3443. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3444. }
  3445. sum += val
  3446. }
  3447. }
  3448. }
  3449. return newNumberFormulaArg(sum)
  3450. }
  3451. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3452. // syntax of the function is:
  3453. //
  3454. // SUMSQ(number1,[number2],...)
  3455. //
  3456. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3457. var val, sq float64
  3458. var err error
  3459. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3460. token := arg.Value.(formulaArg)
  3461. switch token.Type {
  3462. case ArgString:
  3463. if token.String == "" {
  3464. continue
  3465. }
  3466. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3467. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3468. }
  3469. sq += val * val
  3470. case ArgNumber:
  3471. sq += token.Number
  3472. case ArgMatrix:
  3473. for _, row := range token.Matrix {
  3474. for _, value := range row {
  3475. if value.String == "" {
  3476. continue
  3477. }
  3478. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3479. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3480. }
  3481. sq += val * val
  3482. }
  3483. }
  3484. }
  3485. }
  3486. return newNumberFormulaArg(sq)
  3487. }
  3488. // TAN function calculates the tangent of a given angle. The syntax of the
  3489. // function is:
  3490. //
  3491. // TAN(number)
  3492. //
  3493. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3494. if argsList.Len() != 1 {
  3495. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3496. }
  3497. number := argsList.Front().Value.(formulaArg).ToNumber()
  3498. if number.Type == ArgError {
  3499. return number
  3500. }
  3501. return newNumberFormulaArg(math.Tan(number.Number))
  3502. }
  3503. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3504. // number. The syntax of the function is:
  3505. //
  3506. // TANH(number)
  3507. //
  3508. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3509. if argsList.Len() != 1 {
  3510. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3511. }
  3512. number := argsList.Front().Value.(formulaArg).ToNumber()
  3513. if number.Type == ArgError {
  3514. return number
  3515. }
  3516. return newNumberFormulaArg(math.Tanh(number.Number))
  3517. }
  3518. // TRUNC function truncates a supplied number to a specified number of decimal
  3519. // places. The syntax of the function is:
  3520. //
  3521. // TRUNC(number,[number_digits])
  3522. //
  3523. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3524. if argsList.Len() == 0 {
  3525. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3526. }
  3527. var digits, adjust, rtrim float64
  3528. var err error
  3529. number := argsList.Front().Value.(formulaArg).ToNumber()
  3530. if number.Type == ArgError {
  3531. return number
  3532. }
  3533. if argsList.Len() > 1 {
  3534. d := argsList.Back().Value.(formulaArg).ToNumber()
  3535. if d.Type == ArgError {
  3536. return d
  3537. }
  3538. digits = d.Number
  3539. digits = math.Floor(digits)
  3540. }
  3541. adjust = math.Pow(10, digits)
  3542. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3543. if x != 0 {
  3544. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3545. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3546. }
  3547. }
  3548. if (digits > 0) && (rtrim < adjust/10) {
  3549. return newNumberFormulaArg(number.Number)
  3550. }
  3551. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3552. }
  3553. // Statistical Functions
  3554. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3555. // The syntax of the function is:
  3556. //
  3557. // AVERAGE(number1,[number2],...)
  3558. //
  3559. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3560. args := []formulaArg{}
  3561. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3562. args = append(args, arg.Value.(formulaArg))
  3563. }
  3564. count, sum := fn.countSum(false, args)
  3565. if count == 0 {
  3566. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3567. }
  3568. return newNumberFormulaArg(sum / count)
  3569. }
  3570. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3571. // with text cell and zero values. The syntax of the function is:
  3572. //
  3573. // AVERAGEA(number1,[number2],...)
  3574. //
  3575. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3576. args := []formulaArg{}
  3577. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3578. args = append(args, arg.Value.(formulaArg))
  3579. }
  3580. count, sum := fn.countSum(true, args)
  3581. if count == 0 {
  3582. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3583. }
  3584. return newNumberFormulaArg(sum / count)
  3585. }
  3586. // countSum get count and sum for a formula arguments array.
  3587. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3588. for _, arg := range args {
  3589. switch arg.Type {
  3590. case ArgNumber:
  3591. if countText || !arg.Boolean {
  3592. sum += arg.Number
  3593. count++
  3594. }
  3595. case ArgString:
  3596. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3597. continue
  3598. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3599. num := arg.ToBool()
  3600. if num.Type == ArgNumber {
  3601. count++
  3602. sum += num.Number
  3603. continue
  3604. }
  3605. }
  3606. num := arg.ToNumber()
  3607. if countText && num.Type == ArgError && arg.String != "" {
  3608. count++
  3609. }
  3610. if num.Type == ArgNumber {
  3611. sum += num.Number
  3612. count++
  3613. }
  3614. case ArgList, ArgMatrix:
  3615. cnt, summary := fn.countSum(countText, arg.ToList())
  3616. sum += summary
  3617. count += cnt
  3618. }
  3619. }
  3620. return
  3621. }
  3622. // COUNT function returns the count of numeric values in a supplied set of
  3623. // cells or values. This count includes both numbers and dates. The syntax of
  3624. // the function is:
  3625. //
  3626. // COUNT(value1,[value2],...)
  3627. //
  3628. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3629. var count int
  3630. for token := argsList.Front(); token != nil; token = token.Next() {
  3631. arg := token.Value.(formulaArg)
  3632. switch arg.Type {
  3633. case ArgString:
  3634. if arg.ToNumber().Type != ArgError {
  3635. count++
  3636. }
  3637. case ArgNumber:
  3638. count++
  3639. case ArgMatrix:
  3640. for _, row := range arg.Matrix {
  3641. for _, value := range row {
  3642. if value.ToNumber().Type != ArgError {
  3643. count++
  3644. }
  3645. }
  3646. }
  3647. }
  3648. }
  3649. return newNumberFormulaArg(float64(count))
  3650. }
  3651. // COUNTA function returns the number of non-blanks within a supplied set of
  3652. // cells or values. The syntax of the function is:
  3653. //
  3654. // COUNTA(value1,[value2],...)
  3655. //
  3656. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3657. var count int
  3658. for token := argsList.Front(); token != nil; token = token.Next() {
  3659. arg := token.Value.(formulaArg)
  3660. switch arg.Type {
  3661. case ArgString:
  3662. if arg.String != "" {
  3663. count++
  3664. }
  3665. case ArgNumber:
  3666. count++
  3667. case ArgMatrix:
  3668. for _, row := range arg.ToList() {
  3669. switch row.Type {
  3670. case ArgString:
  3671. if row.String != "" {
  3672. count++
  3673. }
  3674. case ArgNumber:
  3675. count++
  3676. }
  3677. }
  3678. }
  3679. }
  3680. return newNumberFormulaArg(float64(count))
  3681. }
  3682. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3683. // The syntax of the function is:
  3684. //
  3685. // COUNTBLANK(range)
  3686. //
  3687. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3688. if argsList.Len() != 1 {
  3689. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3690. }
  3691. var count int
  3692. token := argsList.Front().Value.(formulaArg)
  3693. switch token.Type {
  3694. case ArgString:
  3695. if token.String == "" {
  3696. count++
  3697. }
  3698. case ArgList, ArgMatrix:
  3699. for _, row := range token.ToList() {
  3700. switch row.Type {
  3701. case ArgString:
  3702. if row.String == "" {
  3703. count++
  3704. }
  3705. case ArgEmpty:
  3706. count++
  3707. }
  3708. }
  3709. case ArgEmpty:
  3710. count++
  3711. }
  3712. return newNumberFormulaArg(float64(count))
  3713. }
  3714. // FISHER function calculates the Fisher Transformation for a supplied value.
  3715. // The syntax of the function is:
  3716. //
  3717. // FISHER(x)
  3718. //
  3719. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3720. if argsList.Len() != 1 {
  3721. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3722. }
  3723. token := argsList.Front().Value.(formulaArg)
  3724. switch token.Type {
  3725. case ArgString:
  3726. arg := token.ToNumber()
  3727. if arg.Type == ArgNumber {
  3728. if arg.Number <= -1 || arg.Number >= 1 {
  3729. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3730. }
  3731. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3732. }
  3733. case ArgNumber:
  3734. if token.Number <= -1 || token.Number >= 1 {
  3735. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3736. }
  3737. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3738. }
  3739. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3740. }
  3741. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3742. // returns a value between -1 and +1. The syntax of the function is:
  3743. //
  3744. // FISHERINV(y)
  3745. //
  3746. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3747. if argsList.Len() != 1 {
  3748. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3749. }
  3750. token := argsList.Front().Value.(formulaArg)
  3751. switch token.Type {
  3752. case ArgString:
  3753. arg := token.ToNumber()
  3754. if arg.Type == ArgNumber {
  3755. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3756. }
  3757. case ArgNumber:
  3758. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3759. }
  3760. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3761. }
  3762. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3763. // specified number, n. The syntax of the function is:
  3764. //
  3765. // GAMMA(number)
  3766. //
  3767. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3768. if argsList.Len() != 1 {
  3769. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3770. }
  3771. token := argsList.Front().Value.(formulaArg)
  3772. switch token.Type {
  3773. case ArgString:
  3774. arg := token.ToNumber()
  3775. if arg.Type == ArgNumber {
  3776. if arg.Number <= 0 {
  3777. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3778. }
  3779. return newNumberFormulaArg(math.Gamma(arg.Number))
  3780. }
  3781. case ArgNumber:
  3782. if token.Number <= 0 {
  3783. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3784. }
  3785. return newNumberFormulaArg(math.Gamma(token.Number))
  3786. }
  3787. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3788. }
  3789. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3790. // (n). The syntax of the function is:
  3791. //
  3792. // GAMMALN(x)
  3793. //
  3794. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3795. if argsList.Len() != 1 {
  3796. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3797. }
  3798. token := argsList.Front().Value.(formulaArg)
  3799. switch token.Type {
  3800. case ArgString:
  3801. arg := token.ToNumber()
  3802. if arg.Type == ArgNumber {
  3803. if arg.Number <= 0 {
  3804. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3805. }
  3806. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3807. }
  3808. case ArgNumber:
  3809. if token.Number <= 0 {
  3810. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3811. }
  3812. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3813. }
  3814. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3815. }
  3816. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  3817. // The syntax of the function is:
  3818. //
  3819. // HARMEAN(number1,[number2],...)
  3820. //
  3821. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  3822. if argsList.Len() < 1 {
  3823. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  3824. }
  3825. if min := fn.MIN(argsList); min.Number < 0 {
  3826. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3827. }
  3828. number, val, cnt := 0.0, 0.0, 0.0
  3829. for token := argsList.Front(); token != nil; token = token.Next() {
  3830. arg := token.Value.(formulaArg)
  3831. switch arg.Type {
  3832. case ArgString:
  3833. num := arg.ToNumber()
  3834. if num.Type != ArgNumber {
  3835. continue
  3836. }
  3837. number = num.Number
  3838. case ArgNumber:
  3839. number = arg.Number
  3840. }
  3841. if number <= 0 {
  3842. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3843. }
  3844. val += (1 / number)
  3845. cnt++
  3846. }
  3847. return newNumberFormulaArg(1 / (val / cnt))
  3848. }
  3849. // KURT function calculates the kurtosis of a supplied set of values. The
  3850. // syntax of the function is:
  3851. //
  3852. // KURT(number1,[number2],...)
  3853. //
  3854. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3855. if argsList.Len() < 1 {
  3856. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3857. }
  3858. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3859. if stdev.Number > 0 {
  3860. count, summer := 0.0, 0.0
  3861. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3862. token := arg.Value.(formulaArg)
  3863. switch token.Type {
  3864. case ArgString, ArgNumber:
  3865. num := token.ToNumber()
  3866. if num.Type == ArgError {
  3867. continue
  3868. }
  3869. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3870. count++
  3871. case ArgList, ArgMatrix:
  3872. for _, row := range token.ToList() {
  3873. if row.Type == ArgNumber || row.Type == ArgString {
  3874. num := row.ToNumber()
  3875. if num.Type == ArgError {
  3876. continue
  3877. }
  3878. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3879. count++
  3880. }
  3881. }
  3882. }
  3883. }
  3884. if count > 3 {
  3885. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3886. }
  3887. }
  3888. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3889. }
  3890. // NORMdotDIST function calculates the Normal Probability Density Function or
  3891. // the Cumulative Normal Distribution. Function for a supplied set of
  3892. // parameters. The syntax of the function is:
  3893. //
  3894. // NORM.DIST(x,mean,standard_dev,cumulative)
  3895. //
  3896. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  3897. if argsList.Len() != 4 {
  3898. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  3899. }
  3900. return fn.NORMDIST(argsList)
  3901. }
  3902. // NORMDIST function calculates the Normal Probability Density Function or the
  3903. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  3904. // The syntax of the function is:
  3905. //
  3906. // NORMDIST(x,mean,standard_dev,cumulative)
  3907. //
  3908. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  3909. if argsList.Len() != 4 {
  3910. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  3911. }
  3912. var x, mean, stdDev, cumulative formulaArg
  3913. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3914. return x
  3915. }
  3916. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3917. return mean
  3918. }
  3919. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3920. return stdDev
  3921. }
  3922. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3923. return cumulative
  3924. }
  3925. if stdDev.Number < 0 {
  3926. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3927. }
  3928. if cumulative.Number == 1 {
  3929. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  3930. }
  3931. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  3932. }
  3933. // NORMdotINV function calculates the inverse of the Cumulative Normal
  3934. // Distribution Function for a supplied value of x, and a supplied
  3935. // distribution mean & standard deviation. The syntax of the function is:
  3936. //
  3937. // NORM.INV(probability,mean,standard_dev)
  3938. //
  3939. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  3940. if argsList.Len() != 3 {
  3941. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  3942. }
  3943. return fn.NORMINV(argsList)
  3944. }
  3945. // NORMINV function calculates the inverse of the Cumulative Normal
  3946. // Distribution Function for a supplied value of x, and a supplied
  3947. // distribution mean & standard deviation. The syntax of the function is:
  3948. //
  3949. // NORMINV(probability,mean,standard_dev)
  3950. //
  3951. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  3952. if argsList.Len() != 3 {
  3953. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  3954. }
  3955. var prob, mean, stdDev formulaArg
  3956. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  3957. return prob
  3958. }
  3959. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3960. return mean
  3961. }
  3962. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3963. return stdDev
  3964. }
  3965. if prob.Number < 0 || prob.Number > 1 {
  3966. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3967. }
  3968. if stdDev.Number < 0 {
  3969. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3970. }
  3971. inv, err := norminv(prob.Number)
  3972. if err != nil {
  3973. return newErrorFormulaArg(err.Error(), err.Error())
  3974. }
  3975. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  3976. }
  3977. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  3978. // Distribution Function for a supplied value. The syntax of the function
  3979. // is:
  3980. //
  3981. // NORM.S.DIST(z)
  3982. //
  3983. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  3984. if argsList.Len() != 2 {
  3985. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  3986. }
  3987. args := list.New().Init()
  3988. args.PushBack(argsList.Front().Value.(formulaArg))
  3989. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3990. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  3991. args.PushBack(argsList.Back().Value.(formulaArg))
  3992. return fn.NORMDIST(args)
  3993. }
  3994. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  3995. // Function for a supplied value. The syntax of the function is:
  3996. //
  3997. // NORMSDIST(z)
  3998. //
  3999. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4000. if argsList.Len() != 1 {
  4001. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4002. }
  4003. args := list.New().Init()
  4004. args.PushBack(argsList.Front().Value.(formulaArg))
  4005. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4006. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4007. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4008. return fn.NORMDIST(args)
  4009. }
  4010. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4011. // Distribution Function for a supplied probability value. The syntax of the
  4012. // function is:
  4013. //
  4014. // NORMSINV(probability)
  4015. //
  4016. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4017. if argsList.Len() != 1 {
  4018. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4019. }
  4020. args := list.New().Init()
  4021. args.PushBack(argsList.Front().Value.(formulaArg))
  4022. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4023. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4024. return fn.NORMINV(args)
  4025. }
  4026. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4027. // Cumulative Distribution Function for a supplied probability value. The
  4028. // syntax of the function is:
  4029. //
  4030. // NORM.S.INV(probability)
  4031. //
  4032. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4033. if argsList.Len() != 1 {
  4034. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4035. }
  4036. args := list.New().Init()
  4037. args.PushBack(argsList.Front().Value.(formulaArg))
  4038. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4039. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4040. return fn.NORMINV(args)
  4041. }
  4042. // norminv returns the inverse of the normal cumulative distribution for the
  4043. // specified value.
  4044. func norminv(p float64) (float64, error) {
  4045. a := map[int]float64{
  4046. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4047. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4048. }
  4049. b := map[int]float64{
  4050. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4051. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4052. }
  4053. c := map[int]float64{
  4054. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4055. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4056. }
  4057. d := map[int]float64{
  4058. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4059. 4: 3.754408661907416e+00,
  4060. }
  4061. pLow := 0.02425 // Use lower region approx. below this
  4062. pHigh := 1 - pLow // Use upper region approx. above this
  4063. if 0 < p && p < pLow {
  4064. // Rational approximation for lower region.
  4065. q := math.Sqrt(-2 * math.Log(p))
  4066. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4067. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4068. } else if pLow <= p && p <= pHigh {
  4069. // Rational approximation for central region.
  4070. q := p - 0.5
  4071. r := q * q
  4072. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4073. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4074. } else if pHigh < p && p < 1 {
  4075. // Rational approximation for upper region.
  4076. q := math.Sqrt(-2 * math.Log(1-p))
  4077. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4078. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4079. }
  4080. return 0, errors.New(formulaErrorNUM)
  4081. }
  4082. // kth is an implementation of the formula function LARGE and SMALL.
  4083. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4084. if argsList.Len() != 2 {
  4085. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4086. }
  4087. array := argsList.Front().Value.(formulaArg).ToList()
  4088. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4089. if kArg.Type != ArgNumber {
  4090. return kArg
  4091. }
  4092. k := int(kArg.Number)
  4093. if k < 1 {
  4094. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4095. }
  4096. data := []float64{}
  4097. for _, arg := range array {
  4098. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4099. data = append(data, numArg.Number)
  4100. }
  4101. }
  4102. if len(data) < k {
  4103. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4104. }
  4105. sort.Float64s(data)
  4106. if name == "LARGE" {
  4107. return newNumberFormulaArg(data[len(data)-k])
  4108. }
  4109. return newNumberFormulaArg(data[k-1])
  4110. }
  4111. // LARGE function returns the k'th largest value from an array of numeric
  4112. // values. The syntax of the function is:
  4113. //
  4114. // LARGE(array,k)
  4115. //
  4116. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4117. return fn.kth("LARGE", argsList)
  4118. }
  4119. // MAX function returns the largest value from a supplied set of numeric
  4120. // values. The syntax of the function is:
  4121. //
  4122. // MAX(number1,[number2],...)
  4123. //
  4124. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4125. if argsList.Len() == 0 {
  4126. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4127. }
  4128. return fn.max(false, argsList)
  4129. }
  4130. // MAXA function returns the largest value from a supplied set of numeric
  4131. // values, while counting text and the logical value FALSE as the value 0 and
  4132. // counting the logical value TRUE as the value 1. The syntax of the function
  4133. // is:
  4134. //
  4135. // MAXA(number1,[number2],...)
  4136. //
  4137. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4138. if argsList.Len() == 0 {
  4139. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4140. }
  4141. return fn.max(true, argsList)
  4142. }
  4143. // max is an implementation of the formula function MAX and MAXA.
  4144. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4145. max := -math.MaxFloat64
  4146. for token := argsList.Front(); token != nil; token = token.Next() {
  4147. arg := token.Value.(formulaArg)
  4148. switch arg.Type {
  4149. case ArgString:
  4150. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4151. continue
  4152. } else {
  4153. num := arg.ToBool()
  4154. if num.Type == ArgNumber && num.Number > max {
  4155. max = num.Number
  4156. continue
  4157. }
  4158. }
  4159. num := arg.ToNumber()
  4160. if num.Type != ArgError && num.Number > max {
  4161. max = num.Number
  4162. }
  4163. case ArgNumber:
  4164. if arg.Number > max {
  4165. max = arg.Number
  4166. }
  4167. case ArgList, ArgMatrix:
  4168. for _, row := range arg.ToList() {
  4169. switch row.Type {
  4170. case ArgString:
  4171. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4172. continue
  4173. } else {
  4174. num := row.ToBool()
  4175. if num.Type == ArgNumber && num.Number > max {
  4176. max = num.Number
  4177. continue
  4178. }
  4179. }
  4180. num := row.ToNumber()
  4181. if num.Type != ArgError && num.Number > max {
  4182. max = num.Number
  4183. }
  4184. case ArgNumber:
  4185. if row.Number > max {
  4186. max = row.Number
  4187. }
  4188. }
  4189. }
  4190. case ArgError:
  4191. return arg
  4192. }
  4193. }
  4194. if max == -math.MaxFloat64 {
  4195. max = 0
  4196. }
  4197. return newNumberFormulaArg(max)
  4198. }
  4199. // MEDIAN function returns the statistical median (the middle value) of a list
  4200. // of supplied numbers. The syntax of the function is:
  4201. //
  4202. // MEDIAN(number1,[number2],...)
  4203. //
  4204. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4205. if argsList.Len() == 0 {
  4206. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4207. }
  4208. var values = []float64{}
  4209. var median, digits float64
  4210. var err error
  4211. for token := argsList.Front(); token != nil; token = token.Next() {
  4212. arg := token.Value.(formulaArg)
  4213. switch arg.Type {
  4214. case ArgString:
  4215. num := arg.ToNumber()
  4216. if num.Type == ArgError {
  4217. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4218. }
  4219. values = append(values, num.Number)
  4220. case ArgNumber:
  4221. values = append(values, arg.Number)
  4222. case ArgMatrix:
  4223. for _, row := range arg.Matrix {
  4224. for _, value := range row {
  4225. if value.String == "" {
  4226. continue
  4227. }
  4228. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4229. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4230. }
  4231. values = append(values, digits)
  4232. }
  4233. }
  4234. }
  4235. }
  4236. sort.Float64s(values)
  4237. if len(values)%2 == 0 {
  4238. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4239. } else {
  4240. median = values[len(values)/2]
  4241. }
  4242. return newNumberFormulaArg(median)
  4243. }
  4244. // MIN function returns the smallest value from a supplied set of numeric
  4245. // values. The syntax of the function is:
  4246. //
  4247. // MIN(number1,[number2],...)
  4248. //
  4249. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4250. if argsList.Len() == 0 {
  4251. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4252. }
  4253. return fn.min(false, argsList)
  4254. }
  4255. // MINA function returns the smallest value from a supplied set of numeric
  4256. // values, while counting text and the logical value FALSE as the value 0 and
  4257. // counting the logical value TRUE as the value 1. The syntax of the function
  4258. // is:
  4259. //
  4260. // MINA(number1,[number2],...)
  4261. //
  4262. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4263. if argsList.Len() == 0 {
  4264. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4265. }
  4266. return fn.min(true, argsList)
  4267. }
  4268. // min is an implementation of the formula function MIN and MINA.
  4269. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4270. min := math.MaxFloat64
  4271. for token := argsList.Front(); token != nil; token = token.Next() {
  4272. arg := token.Value.(formulaArg)
  4273. switch arg.Type {
  4274. case ArgString:
  4275. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4276. continue
  4277. } else {
  4278. num := arg.ToBool()
  4279. if num.Type == ArgNumber && num.Number < min {
  4280. min = num.Number
  4281. continue
  4282. }
  4283. }
  4284. num := arg.ToNumber()
  4285. if num.Type != ArgError && num.Number < min {
  4286. min = num.Number
  4287. }
  4288. case ArgNumber:
  4289. if arg.Number < min {
  4290. min = arg.Number
  4291. }
  4292. case ArgList, ArgMatrix:
  4293. for _, row := range arg.ToList() {
  4294. switch row.Type {
  4295. case ArgString:
  4296. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4297. continue
  4298. } else {
  4299. num := row.ToBool()
  4300. if num.Type == ArgNumber && num.Number < min {
  4301. min = num.Number
  4302. continue
  4303. }
  4304. }
  4305. num := row.ToNumber()
  4306. if num.Type != ArgError && num.Number < min {
  4307. min = num.Number
  4308. }
  4309. case ArgNumber:
  4310. if row.Number < min {
  4311. min = row.Number
  4312. }
  4313. }
  4314. }
  4315. case ArgError:
  4316. return arg
  4317. }
  4318. }
  4319. if min == math.MaxFloat64 {
  4320. min = 0
  4321. }
  4322. return newNumberFormulaArg(min)
  4323. }
  4324. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4325. // which k% of the data values fall) for a supplied range of values and a
  4326. // supplied k. The syntax of the function is:
  4327. //
  4328. // PERCENTILE.INC(array,k)
  4329. //
  4330. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4331. if argsList.Len() != 2 {
  4332. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4333. }
  4334. return fn.PERCENTILE(argsList)
  4335. }
  4336. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4337. // k% of the data values fall) for a supplied range of values and a supplied
  4338. // k. The syntax of the function is:
  4339. //
  4340. // PERCENTILE(array,k)
  4341. //
  4342. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4343. if argsList.Len() != 2 {
  4344. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4345. }
  4346. array := argsList.Front().Value.(formulaArg).ToList()
  4347. k := argsList.Back().Value.(formulaArg).ToNumber()
  4348. if k.Type != ArgNumber {
  4349. return k
  4350. }
  4351. if k.Number < 0 || k.Number > 1 {
  4352. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4353. }
  4354. numbers := []float64{}
  4355. for _, arg := range array {
  4356. if arg.Type == ArgError {
  4357. return arg
  4358. }
  4359. num := arg.ToNumber()
  4360. if num.Type == ArgNumber {
  4361. numbers = append(numbers, num.Number)
  4362. }
  4363. }
  4364. cnt := len(numbers)
  4365. sort.Float64s(numbers)
  4366. idx := k.Number * (float64(cnt) - 1)
  4367. base := math.Floor(idx)
  4368. if idx == base {
  4369. return newNumberFormulaArg(numbers[int(idx)])
  4370. }
  4371. next := base + 1
  4372. proportion := idx - base
  4373. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4374. }
  4375. // PERMUT function calculates the number of permutations of a specified number
  4376. // of objects from a set of objects. The syntax of the function is:
  4377. //
  4378. // PERMUT(number,number_chosen)
  4379. //
  4380. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4381. if argsList.Len() != 2 {
  4382. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4383. }
  4384. number := argsList.Front().Value.(formulaArg).ToNumber()
  4385. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4386. if number.Type != ArgNumber {
  4387. return number
  4388. }
  4389. if chosen.Type != ArgNumber {
  4390. return chosen
  4391. }
  4392. if number.Number < chosen.Number {
  4393. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4394. }
  4395. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4396. }
  4397. // PERMUTATIONA function calculates the number of permutations, with
  4398. // repetitions, of a specified number of objects from a set. The syntax of
  4399. // the function is:
  4400. //
  4401. // PERMUTATIONA(number,number_chosen)
  4402. //
  4403. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4404. if argsList.Len() < 1 {
  4405. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4406. }
  4407. number := argsList.Front().Value.(formulaArg).ToNumber()
  4408. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4409. if number.Type != ArgNumber {
  4410. return number
  4411. }
  4412. if chosen.Type != ArgNumber {
  4413. return chosen
  4414. }
  4415. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4416. if num < 0 || numChosen < 0 {
  4417. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4418. }
  4419. return newNumberFormulaArg(math.Pow(num, numChosen))
  4420. }
  4421. // QUARTILE function returns a requested quartile of a supplied range of
  4422. // values. The syntax of the function is:
  4423. //
  4424. // QUARTILE(array,quart)
  4425. //
  4426. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  4427. if argsList.Len() != 2 {
  4428. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  4429. }
  4430. quart := argsList.Back().Value.(formulaArg).ToNumber()
  4431. if quart.Type != ArgNumber {
  4432. return quart
  4433. }
  4434. if quart.Number < 0 || quart.Number > 4 {
  4435. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  4436. }
  4437. args := list.New().Init()
  4438. args.PushBack(argsList.Front().Value.(formulaArg))
  4439. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  4440. return fn.PERCENTILE(args)
  4441. }
  4442. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  4443. // values. The syntax of the function is:
  4444. //
  4445. // QUARTILE.INC(array,quart)
  4446. //
  4447. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  4448. if argsList.Len() != 2 {
  4449. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  4450. }
  4451. return fn.QUARTILE(argsList)
  4452. }
  4453. // SKEW function calculates the skewness of the distribution of a supplied set
  4454. // of values. The syntax of the function is:
  4455. //
  4456. // SKEW(number1,[number2],...)
  4457. //
  4458. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4459. if argsList.Len() < 1 {
  4460. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4461. }
  4462. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4463. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4464. token := arg.Value.(formulaArg)
  4465. switch token.Type {
  4466. case ArgNumber, ArgString:
  4467. num := token.ToNumber()
  4468. if num.Type == ArgError {
  4469. return num
  4470. }
  4471. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4472. count++
  4473. case ArgList, ArgMatrix:
  4474. for _, row := range token.ToList() {
  4475. numArg := row.ToNumber()
  4476. if numArg.Type != ArgNumber {
  4477. continue
  4478. }
  4479. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4480. count++
  4481. }
  4482. }
  4483. }
  4484. if count > 2 {
  4485. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  4486. }
  4487. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4488. }
  4489. // SMALL function returns the k'th smallest value from an array of numeric
  4490. // values. The syntax of the function is:
  4491. //
  4492. // SMALL(array,k)
  4493. //
  4494. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4495. return fn.kth("SMALL", argsList)
  4496. }
  4497. // VARP function returns the Variance of a given set of values. The syntax of
  4498. // the function is:
  4499. //
  4500. // VARP(number1,[number2],...)
  4501. //
  4502. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  4503. if argsList.Len() < 1 {
  4504. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  4505. }
  4506. summerA, summerB, count := 0.0, 0.0, 0.0
  4507. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4508. for _, token := range arg.Value.(formulaArg).ToList() {
  4509. if num := token.ToNumber(); num.Type == ArgNumber {
  4510. summerA += (num.Number * num.Number)
  4511. summerB += num.Number
  4512. count++
  4513. }
  4514. }
  4515. }
  4516. if count > 0 {
  4517. summerA *= count
  4518. summerB *= summerB
  4519. return newNumberFormulaArg((summerA - summerB) / (count * count))
  4520. }
  4521. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4522. }
  4523. // VARdotP function returns the Variance of a given set of values. The syntax
  4524. // of the function is:
  4525. //
  4526. // VAR.P(number1,[number2],...)
  4527. //
  4528. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  4529. if argsList.Len() < 1 {
  4530. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  4531. }
  4532. return fn.VARP(argsList)
  4533. }
  4534. // Information Functions
  4535. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4536. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4537. // function is:
  4538. //
  4539. // ISBLANK(value)
  4540. //
  4541. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4542. if argsList.Len() != 1 {
  4543. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4544. }
  4545. token := argsList.Front().Value.(formulaArg)
  4546. result := "FALSE"
  4547. switch token.Type {
  4548. case ArgUnknown:
  4549. result = "TRUE"
  4550. case ArgString:
  4551. if token.String == "" {
  4552. result = "TRUE"
  4553. }
  4554. }
  4555. return newStringFormulaArg(result)
  4556. }
  4557. // ISERR function tests if an initial supplied expression (or value) returns
  4558. // any Excel Error, except the #N/A error. If so, the function returns the
  4559. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4560. // error, the ISERR function returns FALSE. The syntax of the function is:
  4561. //
  4562. // ISERR(value)
  4563. //
  4564. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4565. if argsList.Len() != 1 {
  4566. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4567. }
  4568. token := argsList.Front().Value.(formulaArg)
  4569. result := "FALSE"
  4570. if token.Type == ArgError {
  4571. for _, errType := range []string{
  4572. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4573. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4574. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4575. } {
  4576. if errType == token.String {
  4577. result = "TRUE"
  4578. }
  4579. }
  4580. }
  4581. return newStringFormulaArg(result)
  4582. }
  4583. // ISERROR function tests if an initial supplied expression (or value) returns
  4584. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4585. // function returns FALSE. The syntax of the function is:
  4586. //
  4587. // ISERROR(value)
  4588. //
  4589. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4590. if argsList.Len() != 1 {
  4591. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4592. }
  4593. token := argsList.Front().Value.(formulaArg)
  4594. result := "FALSE"
  4595. if token.Type == ArgError {
  4596. for _, errType := range []string{
  4597. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4598. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4599. formulaErrorCALC, formulaErrorGETTINGDATA,
  4600. } {
  4601. if errType == token.String {
  4602. result = "TRUE"
  4603. }
  4604. }
  4605. }
  4606. return newStringFormulaArg(result)
  4607. }
  4608. // ISEVEN function tests if a supplied number (or numeric expression)
  4609. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4610. // function returns FALSE. The syntax of the function is:
  4611. //
  4612. // ISEVEN(value)
  4613. //
  4614. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4615. if argsList.Len() != 1 {
  4616. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4617. }
  4618. var (
  4619. token = argsList.Front().Value.(formulaArg)
  4620. result = "FALSE"
  4621. numeric int
  4622. err error
  4623. )
  4624. if token.Type == ArgString {
  4625. if numeric, err = strconv.Atoi(token.String); err != nil {
  4626. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4627. }
  4628. if numeric == numeric/2*2 {
  4629. return newStringFormulaArg("TRUE")
  4630. }
  4631. }
  4632. return newStringFormulaArg(result)
  4633. }
  4634. // ISNA function tests if an initial supplied expression (or value) returns
  4635. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4636. // returns FALSE. The syntax of the function is:
  4637. //
  4638. // ISNA(value)
  4639. //
  4640. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4641. if argsList.Len() != 1 {
  4642. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4643. }
  4644. token := argsList.Front().Value.(formulaArg)
  4645. result := "FALSE"
  4646. if token.Type == ArgError && token.String == formulaErrorNA {
  4647. result = "TRUE"
  4648. }
  4649. return newStringFormulaArg(result)
  4650. }
  4651. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4652. // function returns TRUE; If the supplied value is text, the function returns
  4653. // FALSE. The syntax of the function is:
  4654. //
  4655. // ISNONTEXT(value)
  4656. //
  4657. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4658. if argsList.Len() != 1 {
  4659. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4660. }
  4661. token := argsList.Front().Value.(formulaArg)
  4662. result := "TRUE"
  4663. if token.Type == ArgString && token.String != "" {
  4664. result = "FALSE"
  4665. }
  4666. return newStringFormulaArg(result)
  4667. }
  4668. // ISNUMBER function function tests if a supplied value is a number. If so,
  4669. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4670. // function is:
  4671. //
  4672. // ISNUMBER(value)
  4673. //
  4674. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4675. if argsList.Len() != 1 {
  4676. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4677. }
  4678. token, result := argsList.Front().Value.(formulaArg), false
  4679. if token.Type == ArgString && token.String != "" {
  4680. if _, err := strconv.Atoi(token.String); err == nil {
  4681. result = true
  4682. }
  4683. }
  4684. return newBoolFormulaArg(result)
  4685. }
  4686. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4687. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4688. // FALSE. The syntax of the function is:
  4689. //
  4690. // ISODD(value)
  4691. //
  4692. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4693. if argsList.Len() != 1 {
  4694. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4695. }
  4696. var (
  4697. token = argsList.Front().Value.(formulaArg)
  4698. result = "FALSE"
  4699. numeric int
  4700. err error
  4701. )
  4702. if token.Type == ArgString {
  4703. if numeric, err = strconv.Atoi(token.String); err != nil {
  4704. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4705. }
  4706. if numeric != numeric/2*2 {
  4707. return newStringFormulaArg("TRUE")
  4708. }
  4709. }
  4710. return newStringFormulaArg(result)
  4711. }
  4712. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4713. // Otherwise, the function returns FALSE. The syntax of the function is:
  4714. //
  4715. // ISTEXT(value)
  4716. //
  4717. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4718. if argsList.Len() != 1 {
  4719. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4720. }
  4721. token := argsList.Front().Value.(formulaArg)
  4722. if token.ToNumber().Type != ArgError {
  4723. return newBoolFormulaArg(false)
  4724. }
  4725. return newBoolFormulaArg(token.Type == ArgString)
  4726. }
  4727. // N function converts data into a numeric value. The syntax of the function
  4728. // is:
  4729. //
  4730. // N(value)
  4731. //
  4732. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  4733. if argsList.Len() != 1 {
  4734. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  4735. }
  4736. token, num := argsList.Front().Value.(formulaArg), 0.0
  4737. if token.Type == ArgError {
  4738. return token
  4739. }
  4740. if arg := token.ToNumber(); arg.Type == ArgNumber {
  4741. num = arg.Number
  4742. }
  4743. if token.Value() == "TRUE" {
  4744. num = 1
  4745. }
  4746. return newNumberFormulaArg(num)
  4747. }
  4748. // NA function returns the Excel #N/A error. This error message has the
  4749. // meaning 'value not available' and is produced when an Excel Formula is
  4750. // unable to find a value that it needs. The syntax of the function is:
  4751. //
  4752. // NA()
  4753. //
  4754. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4755. if argsList.Len() != 0 {
  4756. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4757. }
  4758. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4759. }
  4760. // SHEET function returns the Sheet number for a specified reference. The
  4761. // syntax of the function is:
  4762. //
  4763. // SHEET()
  4764. //
  4765. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4766. if argsList.Len() != 0 {
  4767. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4768. }
  4769. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4770. }
  4771. // T function tests if a supplied value is text and if so, returns the
  4772. // supplied text; Otherwise, the function returns an empty text string. The
  4773. // syntax of the function is:
  4774. //
  4775. // T(value)
  4776. //
  4777. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  4778. if argsList.Len() != 1 {
  4779. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  4780. }
  4781. token := argsList.Front().Value.(formulaArg)
  4782. if token.Type == ArgError {
  4783. return token
  4784. }
  4785. if token.Type == ArgNumber {
  4786. return newStringFormulaArg("")
  4787. }
  4788. return newStringFormulaArg(token.Value())
  4789. }
  4790. // Logical Functions
  4791. // AND function tests a number of supplied conditions and returns TRUE or
  4792. // FALSE. The syntax of the function is:
  4793. //
  4794. // AND(logical_test1,[logical_test2],...)
  4795. //
  4796. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4797. if argsList.Len() == 0 {
  4798. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4799. }
  4800. if argsList.Len() > 30 {
  4801. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4802. }
  4803. var (
  4804. and = true
  4805. val float64
  4806. err error
  4807. )
  4808. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4809. token := arg.Value.(formulaArg)
  4810. switch token.Type {
  4811. case ArgUnknown:
  4812. continue
  4813. case ArgString:
  4814. if token.String == "TRUE" {
  4815. continue
  4816. }
  4817. if token.String == "FALSE" {
  4818. return newStringFormulaArg(token.String)
  4819. }
  4820. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4821. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4822. }
  4823. and = and && (val != 0)
  4824. case ArgMatrix:
  4825. // TODO
  4826. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4827. }
  4828. }
  4829. return newBoolFormulaArg(and)
  4830. }
  4831. // FALSE function function returns the logical value FALSE. The syntax of the
  4832. // function is:
  4833. //
  4834. // FALSE()
  4835. //
  4836. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4837. if argsList.Len() != 0 {
  4838. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4839. }
  4840. return newBoolFormulaArg(false)
  4841. }
  4842. // IFERROR function receives two values (or expressions) and tests if the
  4843. // first of these evaluates to an error. The syntax of the function is:
  4844. //
  4845. // IFERROR(value,value_if_error)
  4846. //
  4847. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4848. if argsList.Len() != 2 {
  4849. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4850. }
  4851. value := argsList.Front().Value.(formulaArg)
  4852. if value.Type != ArgError {
  4853. if value.Type == ArgEmpty {
  4854. return newNumberFormulaArg(0)
  4855. }
  4856. return value
  4857. }
  4858. return argsList.Back().Value.(formulaArg)
  4859. }
  4860. // NOT function returns the opposite to a supplied logical value. The syntax
  4861. // of the function is:
  4862. //
  4863. // NOT(logical)
  4864. //
  4865. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4866. if argsList.Len() != 1 {
  4867. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4868. }
  4869. token := argsList.Front().Value.(formulaArg)
  4870. switch token.Type {
  4871. case ArgString, ArgList:
  4872. if strings.ToUpper(token.String) == "TRUE" {
  4873. return newBoolFormulaArg(false)
  4874. }
  4875. if strings.ToUpper(token.String) == "FALSE" {
  4876. return newBoolFormulaArg(true)
  4877. }
  4878. case ArgNumber:
  4879. return newBoolFormulaArg(!(token.Number != 0))
  4880. case ArgError:
  4881. return token
  4882. }
  4883. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4884. }
  4885. // OR function tests a number of supplied conditions and returns either TRUE
  4886. // or FALSE. The syntax of the function is:
  4887. //
  4888. // OR(logical_test1,[logical_test2],...)
  4889. //
  4890. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4891. if argsList.Len() == 0 {
  4892. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4893. }
  4894. if argsList.Len() > 30 {
  4895. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4896. }
  4897. var (
  4898. or bool
  4899. val float64
  4900. err error
  4901. )
  4902. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4903. token := arg.Value.(formulaArg)
  4904. switch token.Type {
  4905. case ArgUnknown:
  4906. continue
  4907. case ArgString:
  4908. if token.String == "FALSE" {
  4909. continue
  4910. }
  4911. if token.String == "TRUE" {
  4912. or = true
  4913. continue
  4914. }
  4915. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4916. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4917. }
  4918. or = val != 0
  4919. case ArgMatrix:
  4920. // TODO
  4921. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4922. }
  4923. }
  4924. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4925. }
  4926. // TRUE function returns the logical value TRUE. The syntax of the function
  4927. // is:
  4928. //
  4929. // TRUE()
  4930. //
  4931. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4932. if argsList.Len() != 0 {
  4933. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4934. }
  4935. return newBoolFormulaArg(true)
  4936. }
  4937. // Date and Time Functions
  4938. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4939. // of the function is:
  4940. //
  4941. // DATE(year,month,day)
  4942. //
  4943. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4944. if argsList.Len() != 3 {
  4945. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4946. }
  4947. year := argsList.Front().Value.(formulaArg).ToNumber()
  4948. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  4949. day := argsList.Back().Value.(formulaArg).ToNumber()
  4950. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  4951. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4952. }
  4953. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  4954. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4955. }
  4956. // DATEDIF function calculates the number of days, months, or years between
  4957. // two dates. The syntax of the function is:
  4958. //
  4959. // DATEDIF(start_date,end_date,unit)
  4960. //
  4961. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  4962. if argsList.Len() != 3 {
  4963. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  4964. }
  4965. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  4966. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  4967. return startArg
  4968. }
  4969. if startArg.Number > endArg.Number {
  4970. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  4971. }
  4972. if startArg.Number == endArg.Number {
  4973. return newNumberFormulaArg(0)
  4974. }
  4975. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  4976. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  4977. sy, smm, sd := startDate.Date()
  4978. ey, emm, ed := endDate.Date()
  4979. sm, em, diff := int(smm), int(emm), 0.0
  4980. switch unit {
  4981. case "d":
  4982. return newNumberFormulaArg(endArg.Number - startArg.Number)
  4983. case "y":
  4984. diff = float64(ey - sy)
  4985. if em < sm || (em == sm && ed < sd) {
  4986. diff--
  4987. }
  4988. case "m":
  4989. ydiff := ey - sy
  4990. mdiff := em - sm
  4991. if ed < sd {
  4992. mdiff--
  4993. }
  4994. if mdiff < 0 {
  4995. ydiff--
  4996. mdiff += 12
  4997. }
  4998. diff = float64(ydiff*12 + mdiff)
  4999. case "md":
  5000. smMD := em
  5001. if ed < sd {
  5002. smMD--
  5003. }
  5004. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5005. case "ym":
  5006. diff = float64(em - sm)
  5007. if ed < sd {
  5008. diff--
  5009. }
  5010. if diff < 0 {
  5011. diff += 12
  5012. }
  5013. case "yd":
  5014. syYD := sy
  5015. if em < sm || (em == sm && ed < sd) {
  5016. syYD++
  5017. }
  5018. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5019. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5020. diff = s - e
  5021. default:
  5022. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5023. }
  5024. return newNumberFormulaArg(diff)
  5025. }
  5026. // NOW function returns the current date and time. The function receives no
  5027. // arguments and therefore. The syntax of the function is:
  5028. //
  5029. // NOW()
  5030. //
  5031. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5032. if argsList.Len() != 0 {
  5033. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5034. }
  5035. now := time.Now()
  5036. _, offset := now.Zone()
  5037. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5038. }
  5039. // TODAY function returns the current date. The function has no arguments and
  5040. // therefore. The syntax of the function is:
  5041. //
  5042. // TODAY()
  5043. //
  5044. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5045. if argsList.Len() != 0 {
  5046. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5047. }
  5048. now := time.Now()
  5049. _, offset := now.Zone()
  5050. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5051. }
  5052. // makeDate return date as a Unix time, the number of seconds elapsed since
  5053. // January 1, 1970 UTC.
  5054. func makeDate(y int, m time.Month, d int) int64 {
  5055. if y == 1900 && int(m) <= 2 {
  5056. d--
  5057. }
  5058. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5059. return date.Unix()
  5060. }
  5061. // daysBetween return time interval of the given start timestamp and end
  5062. // timestamp.
  5063. func daysBetween(startDate, endDate int64) float64 {
  5064. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5065. }
  5066. // Text Functions
  5067. // CHAR function returns the character relating to a supplied character set
  5068. // number (from 1 to 255). syntax of the function is:
  5069. //
  5070. // CHAR(number)
  5071. //
  5072. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5073. if argsList.Len() != 1 {
  5074. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5075. }
  5076. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5077. if arg.Type != ArgNumber {
  5078. return arg
  5079. }
  5080. num := int(arg.Number)
  5081. if num < 0 || num > 255 {
  5082. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5083. }
  5084. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5085. }
  5086. // CLEAN removes all non-printable characters from a supplied text string. The
  5087. // syntax of the function is:
  5088. //
  5089. // CLEAN(text)
  5090. //
  5091. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5092. if argsList.Len() != 1 {
  5093. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5094. }
  5095. b := bytes.Buffer{}
  5096. for _, c := range argsList.Front().Value.(formulaArg).String {
  5097. if c > 31 {
  5098. b.WriteRune(c)
  5099. }
  5100. }
  5101. return newStringFormulaArg(b.String())
  5102. }
  5103. // CODE function converts the first character of a supplied text string into
  5104. // the associated numeric character set code used by your computer. The
  5105. // syntax of the function is:
  5106. //
  5107. // CODE(text)
  5108. //
  5109. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5110. return fn.code("CODE", argsList)
  5111. }
  5112. // code is an implementation of the formula function CODE and UNICODE.
  5113. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5114. if argsList.Len() != 1 {
  5115. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5116. }
  5117. text := argsList.Front().Value.(formulaArg).Value()
  5118. if len(text) == 0 {
  5119. if name == "CODE" {
  5120. return newNumberFormulaArg(0)
  5121. }
  5122. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5123. }
  5124. return newNumberFormulaArg(float64(text[0]))
  5125. }
  5126. // CONCAT function joins together a series of supplied text strings into one
  5127. // combined text string.
  5128. //
  5129. // CONCAT(text1,[text2],...)
  5130. //
  5131. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5132. return fn.concat("CONCAT", argsList)
  5133. }
  5134. // CONCATENATE function joins together a series of supplied text strings into
  5135. // one combined text string.
  5136. //
  5137. // CONCATENATE(text1,[text2],...)
  5138. //
  5139. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5140. return fn.concat("CONCATENATE", argsList)
  5141. }
  5142. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5143. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5144. buf := bytes.Buffer{}
  5145. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5146. token := arg.Value.(formulaArg)
  5147. switch token.Type {
  5148. case ArgString:
  5149. buf.WriteString(token.String)
  5150. case ArgNumber:
  5151. if token.Boolean {
  5152. if token.Number == 0 {
  5153. buf.WriteString("FALSE")
  5154. } else {
  5155. buf.WriteString("TRUE")
  5156. }
  5157. } else {
  5158. buf.WriteString(token.Value())
  5159. }
  5160. default:
  5161. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5162. }
  5163. }
  5164. return newStringFormulaArg(buf.String())
  5165. }
  5166. // EXACT function tests if two supplied text strings or values are exactly
  5167. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5168. // function is case-sensitive. The syntax of the function is:
  5169. //
  5170. // EXACT(text1,text2)
  5171. //
  5172. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5173. if argsList.Len() != 2 {
  5174. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5175. }
  5176. text1 := argsList.Front().Value.(formulaArg).Value()
  5177. text2 := argsList.Back().Value.(formulaArg).Value()
  5178. return newBoolFormulaArg(text1 == text2)
  5179. }
  5180. // FIXED function rounds a supplied number to a specified number of decimal
  5181. // places and then converts this into text. The syntax of the function is:
  5182. //
  5183. // FIXED(number,[decimals],[no_commas])
  5184. //
  5185. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5186. if argsList.Len() < 1 {
  5187. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5188. }
  5189. if argsList.Len() > 3 {
  5190. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5191. }
  5192. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5193. if numArg.Type != ArgNumber {
  5194. return numArg
  5195. }
  5196. precision, decimals, noCommas := 0, 0, false
  5197. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5198. if argsList.Len() == 1 && len(s) == 2 {
  5199. precision = len(s[1])
  5200. decimals = len(s[1])
  5201. }
  5202. if argsList.Len() >= 2 {
  5203. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5204. if decimalsArg.Type != ArgNumber {
  5205. return decimalsArg
  5206. }
  5207. decimals = int(decimalsArg.Number)
  5208. }
  5209. if argsList.Len() == 3 {
  5210. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5211. if noCommasArg.Type == ArgError {
  5212. return noCommasArg
  5213. }
  5214. noCommas = noCommasArg.Boolean
  5215. }
  5216. n := math.Pow(10, float64(decimals))
  5217. r := numArg.Number * n
  5218. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5219. if decimals > 0 {
  5220. precision = decimals
  5221. }
  5222. if noCommas {
  5223. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5224. }
  5225. p := message.NewPrinter(language.English)
  5226. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5227. }
  5228. // FIND function returns the position of a specified character or sub-string
  5229. // within a supplied text string. The function is case-sensitive. The syntax
  5230. // of the function is:
  5231. //
  5232. // FIND(find_text,within_text,[start_num])
  5233. //
  5234. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5235. return fn.find("FIND", argsList)
  5236. }
  5237. // FINDB counts each double-byte character as 2 when you have enabled the
  5238. // editing of a language that supports DBCS and then set it as the default
  5239. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5240. // function is:
  5241. //
  5242. // FINDB(find_text,within_text,[start_num])
  5243. //
  5244. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5245. return fn.find("FINDB", argsList)
  5246. }
  5247. // find is an implementation of the formula function FIND and FINDB.
  5248. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5249. if argsList.Len() < 2 {
  5250. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5251. }
  5252. if argsList.Len() > 3 {
  5253. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5254. }
  5255. findText := argsList.Front().Value.(formulaArg).Value()
  5256. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5257. startNum, result := 1, 1
  5258. if argsList.Len() == 3 {
  5259. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5260. if numArg.Type != ArgNumber {
  5261. return numArg
  5262. }
  5263. if numArg.Number < 0 {
  5264. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5265. }
  5266. startNum = int(numArg.Number)
  5267. }
  5268. if findText == "" {
  5269. return newNumberFormulaArg(float64(startNum))
  5270. }
  5271. for idx := range withinText {
  5272. if result < startNum {
  5273. result++
  5274. }
  5275. if strings.Index(withinText[idx:], findText) == 0 {
  5276. return newNumberFormulaArg(float64(result))
  5277. }
  5278. result++
  5279. }
  5280. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5281. }
  5282. // LEFT function returns a specified number of characters from the start of a
  5283. // supplied text string. The syntax of the function is:
  5284. //
  5285. // LEFT(text,[num_chars])
  5286. //
  5287. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5288. return fn.leftRight("LEFT", argsList)
  5289. }
  5290. // LEFTB returns the first character or characters in a text string, based on
  5291. // the number of bytes you specify. The syntax of the function is:
  5292. //
  5293. // LEFTB(text,[num_bytes])
  5294. //
  5295. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5296. return fn.leftRight("LEFTB", argsList)
  5297. }
  5298. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5299. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5300. // (Traditional), and Korean.
  5301. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5302. if argsList.Len() < 1 {
  5303. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5304. }
  5305. if argsList.Len() > 2 {
  5306. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5307. }
  5308. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5309. if argsList.Len() == 2 {
  5310. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5311. if numArg.Type != ArgNumber {
  5312. return numArg
  5313. }
  5314. if numArg.Number < 0 {
  5315. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5316. }
  5317. numChars = int(numArg.Number)
  5318. }
  5319. if len(text) > numChars {
  5320. if name == "LEFT" || name == "LEFTB" {
  5321. return newStringFormulaArg(text[:numChars])
  5322. }
  5323. return newStringFormulaArg(text[len(text)-numChars:])
  5324. }
  5325. return newStringFormulaArg(text)
  5326. }
  5327. // LEN returns the length of a supplied text string. The syntax of the
  5328. // function is:
  5329. //
  5330. // LEN(text)
  5331. //
  5332. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5333. if argsList.Len() != 1 {
  5334. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5335. }
  5336. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5337. }
  5338. // LENB returns the number of bytes used to represent the characters in a text
  5339. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5340. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5341. // 1 byte per character. The syntax of the function is:
  5342. //
  5343. // LENB(text)
  5344. //
  5345. // TODO: the languages that support DBCS include Japanese, Chinese
  5346. // (Simplified), Chinese (Traditional), and Korean.
  5347. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5348. if argsList.Len() != 1 {
  5349. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5350. }
  5351. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5352. }
  5353. // LOWER converts all characters in a supplied text string to lower case. The
  5354. // syntax of the function is:
  5355. //
  5356. // LOWER(text)
  5357. //
  5358. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5359. if argsList.Len() != 1 {
  5360. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5361. }
  5362. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5363. }
  5364. // MID function returns a specified number of characters from the middle of a
  5365. // supplied text string. The syntax of the function is:
  5366. //
  5367. // MID(text,start_num,num_chars)
  5368. //
  5369. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5370. return fn.mid("MID", argsList)
  5371. }
  5372. // MIDB returns a specific number of characters from a text string, starting
  5373. // at the position you specify, based on the number of bytes you specify. The
  5374. // syntax of the function is:
  5375. //
  5376. // MID(text,start_num,num_chars)
  5377. //
  5378. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5379. return fn.mid("MIDB", argsList)
  5380. }
  5381. // mid is an implementation of the formula function MID and MIDB. TODO:
  5382. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5383. // (Traditional), and Korean.
  5384. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5385. if argsList.Len() != 3 {
  5386. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5387. }
  5388. text := argsList.Front().Value.(formulaArg).Value()
  5389. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5390. if startNumArg.Type != ArgNumber {
  5391. return startNumArg
  5392. }
  5393. if numCharsArg.Type != ArgNumber {
  5394. return numCharsArg
  5395. }
  5396. startNum := int(startNumArg.Number)
  5397. if startNum < 0 {
  5398. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5399. }
  5400. textLen := len(text)
  5401. if startNum > textLen {
  5402. return newStringFormulaArg("")
  5403. }
  5404. startNum--
  5405. endNum := startNum + int(numCharsArg.Number)
  5406. if endNum > textLen+1 {
  5407. return newStringFormulaArg(text[startNum:])
  5408. }
  5409. return newStringFormulaArg(text[startNum:endNum])
  5410. }
  5411. // PROPER converts all characters in a supplied text string to proper case
  5412. // (i.e. all letters that do not immediately follow another letter are set to
  5413. // upper case and all other characters are lower case). The syntax of the
  5414. // function is:
  5415. //
  5416. // PROPER(text)
  5417. //
  5418. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5419. if argsList.Len() != 1 {
  5420. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5421. }
  5422. buf := bytes.Buffer{}
  5423. isLetter := false
  5424. for _, char := range argsList.Front().Value.(formulaArg).String {
  5425. if !isLetter && unicode.IsLetter(char) {
  5426. buf.WriteRune(unicode.ToUpper(char))
  5427. } else {
  5428. buf.WriteRune(unicode.ToLower(char))
  5429. }
  5430. isLetter = unicode.IsLetter(char)
  5431. }
  5432. return newStringFormulaArg(buf.String())
  5433. }
  5434. // REPLACE function replaces all or part of a text string with another string.
  5435. // The syntax of the function is:
  5436. //
  5437. // REPLACE(old_text,start_num,num_chars,new_text)
  5438. //
  5439. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5440. return fn.replace("REPLACE", argsList)
  5441. }
  5442. // REPLACEB replaces part of a text string, based on the number of bytes you
  5443. // specify, with a different text string.
  5444. //
  5445. // REPLACEB(old_text,start_num,num_chars,new_text)
  5446. //
  5447. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5448. return fn.replace("REPLACEB", argsList)
  5449. }
  5450. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5451. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5452. // (Traditional), and Korean.
  5453. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5454. if argsList.Len() != 4 {
  5455. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5456. }
  5457. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5458. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5459. if startNumArg.Type != ArgNumber {
  5460. return startNumArg
  5461. }
  5462. if numCharsArg.Type != ArgNumber {
  5463. return numCharsArg
  5464. }
  5465. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5466. if startIdx > oldTextLen {
  5467. startIdx = oldTextLen + 1
  5468. }
  5469. endIdx := startIdx + int(numCharsArg.Number)
  5470. if endIdx > oldTextLen {
  5471. endIdx = oldTextLen + 1
  5472. }
  5473. if startIdx < 1 || endIdx < 1 {
  5474. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5475. }
  5476. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5477. return newStringFormulaArg(result)
  5478. }
  5479. // REPT function returns a supplied text string, repeated a specified number
  5480. // of times. The syntax of the function is:
  5481. //
  5482. // REPT(text,number_times)
  5483. //
  5484. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5485. if argsList.Len() != 2 {
  5486. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5487. }
  5488. text := argsList.Front().Value.(formulaArg)
  5489. if text.Type != ArgString {
  5490. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5491. }
  5492. times := argsList.Back().Value.(formulaArg).ToNumber()
  5493. if times.Type != ArgNumber {
  5494. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5495. }
  5496. if times.Number < 0 {
  5497. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5498. }
  5499. if times.Number == 0 {
  5500. return newStringFormulaArg("")
  5501. }
  5502. buf := bytes.Buffer{}
  5503. for i := 0; i < int(times.Number); i++ {
  5504. buf.WriteString(text.String)
  5505. }
  5506. return newStringFormulaArg(buf.String())
  5507. }
  5508. // RIGHT function returns a specified number of characters from the end of a
  5509. // supplied text string. The syntax of the function is:
  5510. //
  5511. // RIGHT(text,[num_chars])
  5512. //
  5513. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5514. return fn.leftRight("RIGHT", argsList)
  5515. }
  5516. // RIGHTB returns the last character or characters in a text string, based on
  5517. // the number of bytes you specify. The syntax of the function is:
  5518. //
  5519. // RIGHTB(text,[num_bytes])
  5520. //
  5521. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5522. return fn.leftRight("RIGHTB", argsList)
  5523. }
  5524. // SUBSTITUTE function replaces one or more instances of a given text string,
  5525. // within an original text string. The syntax of the function is:
  5526. //
  5527. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5528. //
  5529. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5530. if argsList.Len() != 3 && argsList.Len() != 4 {
  5531. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5532. }
  5533. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5534. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5535. if argsList.Len() == 3 {
  5536. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5537. }
  5538. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5539. if instanceNumArg.Type != ArgNumber {
  5540. return instanceNumArg
  5541. }
  5542. instanceNum = int(instanceNumArg.Number)
  5543. if instanceNum < 1 {
  5544. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5545. }
  5546. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5547. for {
  5548. count--
  5549. index := strings.Index(str, oldText.Value())
  5550. if index == -1 {
  5551. pos = -1
  5552. break
  5553. } else {
  5554. pos = index + chars
  5555. if count == 0 {
  5556. break
  5557. }
  5558. idx := oldTextLen + index
  5559. chars += idx
  5560. str = str[idx:]
  5561. }
  5562. }
  5563. if pos == -1 {
  5564. return newStringFormulaArg(text.Value())
  5565. }
  5566. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5567. return newStringFormulaArg(pre + newText.Value() + post)
  5568. }
  5569. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5570. // words or characters) from a supplied text string. The syntax of the
  5571. // function is:
  5572. //
  5573. // TRIM(text)
  5574. //
  5575. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5576. if argsList.Len() != 1 {
  5577. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5578. }
  5579. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5580. }
  5581. // UNICHAR returns the Unicode character that is referenced by the given
  5582. // numeric value. The syntax of the function is:
  5583. //
  5584. // UNICHAR(number)
  5585. //
  5586. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5587. if argsList.Len() != 1 {
  5588. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5589. }
  5590. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5591. if numArg.Type != ArgNumber {
  5592. return numArg
  5593. }
  5594. if numArg.Number <= 0 || numArg.Number > 55295 {
  5595. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5596. }
  5597. return newStringFormulaArg(string(rune(numArg.Number)))
  5598. }
  5599. // UNICODE function returns the code point for the first character of a
  5600. // supplied text string. The syntax of the function is:
  5601. //
  5602. // UNICODE(text)
  5603. //
  5604. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5605. return fn.code("UNICODE", argsList)
  5606. }
  5607. // UPPER converts all characters in a supplied text string to upper case. The
  5608. // syntax of the function is:
  5609. //
  5610. // UPPER(text)
  5611. //
  5612. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5613. if argsList.Len() != 1 {
  5614. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5615. }
  5616. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5617. }
  5618. // Conditional Functions
  5619. // IF function tests a supplied condition and returns one result if the
  5620. // condition evaluates to TRUE, and another result if the condition evaluates
  5621. // to FALSE. The syntax of the function is:
  5622. //
  5623. // IF(logical_test,value_if_true,value_if_false)
  5624. //
  5625. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5626. if argsList.Len() == 0 {
  5627. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5628. }
  5629. if argsList.Len() > 3 {
  5630. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5631. }
  5632. token := argsList.Front().Value.(formulaArg)
  5633. var (
  5634. cond bool
  5635. err error
  5636. result string
  5637. )
  5638. switch token.Type {
  5639. case ArgString:
  5640. if cond, err = strconv.ParseBool(token.String); err != nil {
  5641. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5642. }
  5643. if argsList.Len() == 1 {
  5644. return newBoolFormulaArg(cond)
  5645. }
  5646. if cond {
  5647. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5648. }
  5649. if argsList.Len() == 3 {
  5650. result = argsList.Back().Value.(formulaArg).String
  5651. }
  5652. }
  5653. return newStringFormulaArg(result)
  5654. }
  5655. // Lookup and Reference Functions
  5656. // CHOOSE function returns a value from an array, that corresponds to a
  5657. // supplied index number (position). The syntax of the function is:
  5658. //
  5659. // CHOOSE(index_num,value1,[value2],...)
  5660. //
  5661. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5662. if argsList.Len() < 2 {
  5663. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5664. }
  5665. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5666. if err != nil {
  5667. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5668. }
  5669. if argsList.Len() <= idx {
  5670. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5671. }
  5672. arg := argsList.Front()
  5673. for i := 0; i < idx; i++ {
  5674. arg = arg.Next()
  5675. }
  5676. var result formulaArg
  5677. switch arg.Value.(formulaArg).Type {
  5678. case ArgString:
  5679. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5680. case ArgMatrix:
  5681. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5682. }
  5683. return result
  5684. }
  5685. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5686. // string.
  5687. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5688. for len(pattern) > 0 {
  5689. switch pattern[0] {
  5690. default:
  5691. if len(str) == 0 || str[0] != pattern[0] {
  5692. return false
  5693. }
  5694. case '?':
  5695. if len(str) == 0 && !simple {
  5696. return false
  5697. }
  5698. case '*':
  5699. return deepMatchRune(str, pattern[1:], simple) ||
  5700. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5701. }
  5702. str = str[1:]
  5703. pattern = pattern[1:]
  5704. }
  5705. return len(str) == 0 && len(pattern) == 0
  5706. }
  5707. // matchPattern finds whether the text matches or satisfies the pattern
  5708. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5709. func matchPattern(pattern, name string) (matched bool) {
  5710. if pattern == "" {
  5711. return name == pattern
  5712. }
  5713. if pattern == "*" {
  5714. return true
  5715. }
  5716. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5717. for _, r := range name {
  5718. rname = append(rname, r)
  5719. }
  5720. for _, r := range pattern {
  5721. rpattern = append(rpattern, r)
  5722. }
  5723. simple := false // Does extended wildcard '*' and '?' match.
  5724. return deepMatchRune(rname, rpattern, simple)
  5725. }
  5726. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5727. // formula arguments by given conditions such as case sensitive, if exact
  5728. // match, and make compare result as formula criteria condition type.
  5729. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5730. if lhs.Type != rhs.Type {
  5731. return criteriaErr
  5732. }
  5733. switch lhs.Type {
  5734. case ArgNumber:
  5735. if lhs.Number == rhs.Number {
  5736. return criteriaEq
  5737. }
  5738. if lhs.Number < rhs.Number {
  5739. return criteriaL
  5740. }
  5741. return criteriaG
  5742. case ArgString:
  5743. ls, rs := lhs.String, rhs.String
  5744. if !caseSensitive {
  5745. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5746. }
  5747. if exactMatch {
  5748. match := matchPattern(rs, ls)
  5749. if match {
  5750. return criteriaEq
  5751. }
  5752. return criteriaG
  5753. }
  5754. switch strings.Compare(ls, rs) {
  5755. case 1:
  5756. return criteriaG
  5757. case -1:
  5758. return criteriaL
  5759. case 0:
  5760. return criteriaEq
  5761. }
  5762. return criteriaErr
  5763. case ArgEmpty:
  5764. return criteriaEq
  5765. case ArgList:
  5766. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5767. case ArgMatrix:
  5768. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5769. }
  5770. return criteriaErr
  5771. }
  5772. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5773. // list type formula arguments.
  5774. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5775. if len(lhs.List) < len(rhs.List) {
  5776. return criteriaL
  5777. }
  5778. if len(lhs.List) > len(rhs.List) {
  5779. return criteriaG
  5780. }
  5781. for arg := range lhs.List {
  5782. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5783. if criteria != criteriaEq {
  5784. return criteria
  5785. }
  5786. }
  5787. return criteriaEq
  5788. }
  5789. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5790. // matrix type formula arguments.
  5791. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5792. if len(lhs.Matrix) < len(rhs.Matrix) {
  5793. return criteriaL
  5794. }
  5795. if len(lhs.Matrix) > len(rhs.Matrix) {
  5796. return criteriaG
  5797. }
  5798. for i := range lhs.Matrix {
  5799. left := lhs.Matrix[i]
  5800. right := lhs.Matrix[i]
  5801. if len(left) < len(right) {
  5802. return criteriaL
  5803. }
  5804. if len(left) > len(right) {
  5805. return criteriaG
  5806. }
  5807. for arg := range left {
  5808. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5809. if criteria != criteriaEq {
  5810. return criteria
  5811. }
  5812. }
  5813. }
  5814. return criteriaEq
  5815. }
  5816. // COLUMN function returns the first column number within a supplied reference
  5817. // or the number of the current column. The syntax of the function is:
  5818. //
  5819. // COLUMN([reference])
  5820. //
  5821. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5822. if argsList.Len() > 1 {
  5823. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5824. }
  5825. if argsList.Len() == 1 {
  5826. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5827. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5828. }
  5829. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5830. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5831. }
  5832. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5833. }
  5834. col, _, _ := CellNameToCoordinates(fn.cell)
  5835. return newNumberFormulaArg(float64(col))
  5836. }
  5837. // COLUMNS function receives an Excel range and returns the number of columns
  5838. // that are contained within the range. The syntax of the function is:
  5839. //
  5840. // COLUMNS(array)
  5841. //
  5842. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5843. if argsList.Len() != 1 {
  5844. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5845. }
  5846. var min, max int
  5847. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5848. crs := argsList.Front().Value.(formulaArg).cellRanges
  5849. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5850. if min == 0 {
  5851. min = cr.Value.(cellRange).From.Col
  5852. }
  5853. if min > cr.Value.(cellRange).From.Col {
  5854. min = cr.Value.(cellRange).From.Col
  5855. }
  5856. if min > cr.Value.(cellRange).To.Col {
  5857. min = cr.Value.(cellRange).To.Col
  5858. }
  5859. if max < cr.Value.(cellRange).To.Col {
  5860. max = cr.Value.(cellRange).To.Col
  5861. }
  5862. if max < cr.Value.(cellRange).From.Col {
  5863. max = cr.Value.(cellRange).From.Col
  5864. }
  5865. }
  5866. }
  5867. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5868. cr := argsList.Front().Value.(formulaArg).cellRefs
  5869. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5870. if min == 0 {
  5871. min = refs.Value.(cellRef).Col
  5872. }
  5873. if min > refs.Value.(cellRef).Col {
  5874. min = refs.Value.(cellRef).Col
  5875. }
  5876. if max < refs.Value.(cellRef).Col {
  5877. max = refs.Value.(cellRef).Col
  5878. }
  5879. }
  5880. }
  5881. if max == TotalColumns {
  5882. return newNumberFormulaArg(float64(TotalColumns))
  5883. }
  5884. result := max - min + 1
  5885. if max == min {
  5886. if min == 0 {
  5887. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5888. }
  5889. return newNumberFormulaArg(float64(1))
  5890. }
  5891. return newNumberFormulaArg(float64(result))
  5892. }
  5893. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5894. // (or table), and returns the corresponding value from another row of the
  5895. // array. The syntax of the function is:
  5896. //
  5897. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5898. //
  5899. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5900. if argsList.Len() < 3 {
  5901. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5902. }
  5903. if argsList.Len() > 4 {
  5904. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5905. }
  5906. lookupValue := argsList.Front().Value.(formulaArg)
  5907. tableArray := argsList.Front().Next().Value.(formulaArg)
  5908. if tableArray.Type != ArgMatrix {
  5909. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5910. }
  5911. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5912. if rowArg.Type != ArgNumber {
  5913. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5914. }
  5915. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5916. if argsList.Len() == 4 {
  5917. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5918. if rangeLookup.Type == ArgError {
  5919. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5920. }
  5921. if rangeLookup.Number == 0 {
  5922. exactMatch = true
  5923. }
  5924. }
  5925. row := tableArray.Matrix[0]
  5926. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5927. start:
  5928. for idx, mtx := range row {
  5929. lhs := mtx
  5930. switch lookupValue.Type {
  5931. case ArgNumber:
  5932. if !lookupValue.Boolean {
  5933. lhs = mtx.ToNumber()
  5934. if lhs.Type == ArgError {
  5935. lhs = mtx
  5936. }
  5937. }
  5938. case ArgMatrix:
  5939. lhs = tableArray
  5940. }
  5941. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5942. matchIdx = idx
  5943. wasExact = true
  5944. break start
  5945. }
  5946. }
  5947. } else {
  5948. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  5949. }
  5950. if matchIdx == -1 {
  5951. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5952. }
  5953. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  5954. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  5955. }
  5956. row = tableArray.Matrix[rowIdx]
  5957. if wasExact || !exactMatch {
  5958. return row[matchIdx]
  5959. }
  5960. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5961. }
  5962. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  5963. // data array (or table), and returns the corresponding value from another
  5964. // column of the array. The syntax of the function is:
  5965. //
  5966. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  5967. //
  5968. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  5969. if argsList.Len() < 3 {
  5970. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  5971. }
  5972. if argsList.Len() > 4 {
  5973. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  5974. }
  5975. lookupValue := argsList.Front().Value.(formulaArg)
  5976. tableArray := argsList.Front().Next().Value.(formulaArg)
  5977. if tableArray.Type != ArgMatrix {
  5978. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  5979. }
  5980. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5981. if colIdx.Type != ArgNumber {
  5982. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  5983. }
  5984. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  5985. if argsList.Len() == 4 {
  5986. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5987. if rangeLookup.Type == ArgError {
  5988. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5989. }
  5990. if rangeLookup.Number == 0 {
  5991. exactMatch = true
  5992. }
  5993. }
  5994. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5995. start:
  5996. for idx, mtx := range tableArray.Matrix {
  5997. lhs := mtx[0]
  5998. switch lookupValue.Type {
  5999. case ArgNumber:
  6000. if !lookupValue.Boolean {
  6001. lhs = mtx[0].ToNumber()
  6002. if lhs.Type == ArgError {
  6003. lhs = mtx[0]
  6004. }
  6005. }
  6006. case ArgMatrix:
  6007. lhs = tableArray
  6008. }
  6009. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6010. matchIdx = idx
  6011. wasExact = true
  6012. break start
  6013. }
  6014. }
  6015. } else {
  6016. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6017. }
  6018. if matchIdx == -1 {
  6019. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6020. }
  6021. mtx := tableArray.Matrix[matchIdx]
  6022. if col < 0 || col >= len(mtx) {
  6023. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6024. }
  6025. if wasExact || !exactMatch {
  6026. return mtx[col]
  6027. }
  6028. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6029. }
  6030. // vlookupBinarySearch finds the position of a target value when range lookup
  6031. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6032. // return wrong result.
  6033. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6034. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6035. for low <= high {
  6036. var mid int = low + (high-low)/2
  6037. mtx := tableArray.Matrix[mid]
  6038. lhs := mtx[0]
  6039. switch lookupValue.Type {
  6040. case ArgNumber:
  6041. if !lookupValue.Boolean {
  6042. lhs = mtx[0].ToNumber()
  6043. if lhs.Type == ArgError {
  6044. lhs = mtx[0]
  6045. }
  6046. }
  6047. case ArgMatrix:
  6048. lhs = tableArray
  6049. }
  6050. result := compareFormulaArg(lhs, lookupValue, false, false)
  6051. if result == criteriaEq {
  6052. matchIdx, wasExact = mid, true
  6053. return
  6054. } else if result == criteriaG {
  6055. high = mid - 1
  6056. } else if result == criteriaL {
  6057. matchIdx, low = mid, mid+1
  6058. if lhs.Value() != "" {
  6059. lastMatchIdx = matchIdx
  6060. }
  6061. } else {
  6062. return -1, false
  6063. }
  6064. }
  6065. matchIdx, wasExact = lastMatchIdx, true
  6066. return
  6067. }
  6068. // vlookupBinarySearch finds the position of a target value when range lookup
  6069. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6070. // return wrong result.
  6071. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6072. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6073. for low <= high {
  6074. var mid int = low + (high-low)/2
  6075. mtx := row[mid]
  6076. result := compareFormulaArg(mtx, lookupValue, false, false)
  6077. if result == criteriaEq {
  6078. matchIdx, wasExact = mid, true
  6079. return
  6080. } else if result == criteriaG {
  6081. high = mid - 1
  6082. } else if result == criteriaL {
  6083. low, lastMatchIdx = mid+1, mid
  6084. } else {
  6085. return -1, false
  6086. }
  6087. }
  6088. matchIdx, wasExact = lastMatchIdx, true
  6089. return
  6090. }
  6091. // LOOKUP function performs an approximate match lookup in a one-column or
  6092. // one-row range, and returns the corresponding value from another one-column
  6093. // or one-row range. The syntax of the function is:
  6094. //
  6095. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6096. //
  6097. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6098. if argsList.Len() < 2 {
  6099. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6100. }
  6101. if argsList.Len() > 3 {
  6102. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6103. }
  6104. lookupValue := argsList.Front().Value.(formulaArg)
  6105. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6106. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6107. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6108. }
  6109. cols, matchIdx := lookupCol(lookupVector), -1
  6110. for idx, col := range cols {
  6111. lhs := lookupValue
  6112. switch col.Type {
  6113. case ArgNumber:
  6114. lhs = lhs.ToNumber()
  6115. if !col.Boolean {
  6116. if lhs.Type == ArgError {
  6117. lhs = lookupValue
  6118. }
  6119. }
  6120. }
  6121. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6122. matchIdx = idx
  6123. break
  6124. }
  6125. }
  6126. column := cols
  6127. if argsList.Len() == 3 {
  6128. column = lookupCol(argsList.Back().Value.(formulaArg))
  6129. }
  6130. if matchIdx < 0 || matchIdx >= len(column) {
  6131. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6132. }
  6133. return column[matchIdx]
  6134. }
  6135. // lookupCol extract columns for LOOKUP.
  6136. func lookupCol(arr formulaArg) []formulaArg {
  6137. col := arr.List
  6138. if arr.Type == ArgMatrix {
  6139. col = nil
  6140. for _, r := range arr.Matrix {
  6141. if len(r) > 0 {
  6142. col = append(col, r[0])
  6143. continue
  6144. }
  6145. col = append(col, newEmptyFormulaArg())
  6146. }
  6147. }
  6148. return col
  6149. }
  6150. // ROW function returns the first row number within a supplied reference or
  6151. // the number of the current row. The syntax of the function is:
  6152. //
  6153. // ROW([reference])
  6154. //
  6155. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6156. if argsList.Len() > 1 {
  6157. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6158. }
  6159. if argsList.Len() == 1 {
  6160. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6161. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6162. }
  6163. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6164. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6165. }
  6166. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6167. }
  6168. _, row, _ := CellNameToCoordinates(fn.cell)
  6169. return newNumberFormulaArg(float64(row))
  6170. }
  6171. // ROWS function takes an Excel range and returns the number of rows that are
  6172. // contained within the range. The syntax of the function is:
  6173. //
  6174. // ROWS(array)
  6175. //
  6176. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6177. if argsList.Len() != 1 {
  6178. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6179. }
  6180. var min, max int
  6181. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6182. crs := argsList.Front().Value.(formulaArg).cellRanges
  6183. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6184. if min == 0 {
  6185. min = cr.Value.(cellRange).From.Row
  6186. }
  6187. if min > cr.Value.(cellRange).From.Row {
  6188. min = cr.Value.(cellRange).From.Row
  6189. }
  6190. if min > cr.Value.(cellRange).To.Row {
  6191. min = cr.Value.(cellRange).To.Row
  6192. }
  6193. if max < cr.Value.(cellRange).To.Row {
  6194. max = cr.Value.(cellRange).To.Row
  6195. }
  6196. if max < cr.Value.(cellRange).From.Row {
  6197. max = cr.Value.(cellRange).From.Row
  6198. }
  6199. }
  6200. }
  6201. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6202. cr := argsList.Front().Value.(formulaArg).cellRefs
  6203. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6204. if min == 0 {
  6205. min = refs.Value.(cellRef).Row
  6206. }
  6207. if min > refs.Value.(cellRef).Row {
  6208. min = refs.Value.(cellRef).Row
  6209. }
  6210. if max < refs.Value.(cellRef).Row {
  6211. max = refs.Value.(cellRef).Row
  6212. }
  6213. }
  6214. }
  6215. if max == TotalRows {
  6216. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6217. }
  6218. result := max - min + 1
  6219. if max == min {
  6220. if min == 0 {
  6221. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6222. }
  6223. return newNumberFormulaArg(float64(1))
  6224. }
  6225. return newStringFormulaArg(strconv.Itoa(result))
  6226. }
  6227. // Web Functions
  6228. // ENCODEURL function returns a URL-encoded string, replacing certain
  6229. // non-alphanumeric characters with the percentage symbol (%) and a
  6230. // hexadecimal number. The syntax of the function is:
  6231. //
  6232. // ENCODEURL(url)
  6233. //
  6234. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6235. if argsList.Len() != 1 {
  6236. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6237. }
  6238. token := argsList.Front().Value.(formulaArg).Value()
  6239. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6240. }