calc.go 205 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.15 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/cmplx"
  19. "math/rand"
  20. "net/url"
  21. "reflect"
  22. "regexp"
  23. "sort"
  24. "strconv"
  25. "strings"
  26. "time"
  27. "unicode"
  28. "unsafe"
  29. "github.com/xuri/efp"
  30. "golang.org/x/text/language"
  31. "golang.org/x/text/message"
  32. )
  33. // Excel formula errors
  34. const (
  35. formulaErrorDIV = "#DIV/0!"
  36. formulaErrorNAME = "#NAME?"
  37. formulaErrorNA = "#N/A"
  38. formulaErrorNUM = "#NUM!"
  39. formulaErrorVALUE = "#VALUE!"
  40. formulaErrorREF = "#REF!"
  41. formulaErrorNULL = "#NULL"
  42. formulaErrorSPILL = "#SPILL!"
  43. formulaErrorCALC = "#CALC!"
  44. formulaErrorGETTINGDATA = "#GETTING_DATA"
  45. )
  46. // Numeric precision correct numeric values as legacy Excel application
  47. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  48. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  49. // has a decimal representation that is an infinite string of ones, Excel
  50. // displays only the leading 15 figures. In the second line, the number one
  51. // is added to the fraction, and again Excel displays only 15 figures.
  52. const numericPrecision = 1000000000000000
  53. // cellRef defines the structure of a cell reference.
  54. type cellRef struct {
  55. Col int
  56. Row int
  57. Sheet string
  58. }
  59. // cellRef defines the structure of a cell range.
  60. type cellRange struct {
  61. From cellRef
  62. To cellRef
  63. }
  64. // formula criteria condition enumeration.
  65. const (
  66. _ byte = iota
  67. criteriaEq
  68. criteriaLe
  69. criteriaGe
  70. criteriaL
  71. criteriaG
  72. criteriaBeg
  73. criteriaEnd
  74. criteriaErr
  75. )
  76. // formulaCriteria defined formula criteria parser result.
  77. type formulaCriteria struct {
  78. Type byte
  79. Condition string
  80. }
  81. // ArgType is the type if formula argument type.
  82. type ArgType byte
  83. // Formula argument types enumeration.
  84. const (
  85. ArgUnknown ArgType = iota
  86. ArgNumber
  87. ArgString
  88. ArgList
  89. ArgMatrix
  90. ArgError
  91. ArgEmpty
  92. )
  93. // formulaArg is the argument of a formula or function.
  94. type formulaArg struct {
  95. SheetName string
  96. Number float64
  97. String string
  98. List []formulaArg
  99. Matrix [][]formulaArg
  100. Boolean bool
  101. Error string
  102. Type ArgType
  103. cellRefs, cellRanges *list.List
  104. }
  105. // Value returns a string data type of the formula argument.
  106. func (fa formulaArg) Value() (value string) {
  107. switch fa.Type {
  108. case ArgNumber:
  109. if fa.Boolean {
  110. if fa.Number == 0 {
  111. return "FALSE"
  112. }
  113. return "TRUE"
  114. }
  115. return fmt.Sprintf("%g", fa.Number)
  116. case ArgString:
  117. return fa.String
  118. case ArgError:
  119. return fa.Error
  120. }
  121. return
  122. }
  123. // ToNumber returns a formula argument with number data type.
  124. func (fa formulaArg) ToNumber() formulaArg {
  125. var n float64
  126. var err error
  127. switch fa.Type {
  128. case ArgString:
  129. n, err = strconv.ParseFloat(fa.String, 64)
  130. if err != nil {
  131. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  132. }
  133. case ArgNumber:
  134. n = fa.Number
  135. }
  136. return newNumberFormulaArg(n)
  137. }
  138. // ToBool returns a formula argument with boolean data type.
  139. func (fa formulaArg) ToBool() formulaArg {
  140. var b bool
  141. var err error
  142. switch fa.Type {
  143. case ArgString:
  144. b, err = strconv.ParseBool(fa.String)
  145. if err != nil {
  146. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  147. }
  148. case ArgNumber:
  149. if fa.Boolean && fa.Number == 1 {
  150. b = true
  151. }
  152. }
  153. return newBoolFormulaArg(b)
  154. }
  155. // ToList returns a formula argument with array data type.
  156. func (fa formulaArg) ToList() []formulaArg {
  157. switch fa.Type {
  158. case ArgMatrix:
  159. list := []formulaArg{}
  160. for _, row := range fa.Matrix {
  161. list = append(list, row...)
  162. }
  163. return list
  164. case ArgList:
  165. return fa.List
  166. case ArgNumber, ArgString, ArgError, ArgUnknown:
  167. return []formulaArg{fa}
  168. }
  169. return nil
  170. }
  171. // formulaFuncs is the type of the formula functions.
  172. type formulaFuncs struct {
  173. f *File
  174. sheet, cell string
  175. }
  176. // tokenPriority defined basic arithmetic operator priority.
  177. var tokenPriority = map[string]int{
  178. "^": 5,
  179. "*": 4,
  180. "/": 4,
  181. "+": 3,
  182. "-": 3,
  183. "=": 2,
  184. "<>": 2,
  185. "<": 2,
  186. "<=": 2,
  187. ">": 2,
  188. ">=": 2,
  189. "&": 1,
  190. }
  191. // CalcCellValue provides a function to get calculated cell value. This
  192. // feature is currently in working processing. Array formula, table formula
  193. // and some other formulas are not supported currently.
  194. //
  195. // Supported formula functions:
  196. //
  197. // ABS
  198. // ACOS
  199. // ACOSH
  200. // ACOT
  201. // ACOTH
  202. // AND
  203. // ARABIC
  204. // ASIN
  205. // ASINH
  206. // ATAN
  207. // ATAN2
  208. // ATANH
  209. // AVERAGE
  210. // AVERAGEA
  211. // BASE
  212. // BESSELI
  213. // BESSELJ
  214. // BIN2DEC
  215. // BIN2HEX
  216. // BIN2OCT
  217. // BITAND
  218. // BITLSHIFT
  219. // BITOR
  220. // BITRSHIFT
  221. // BITXOR
  222. // CEILING
  223. // CEILING.MATH
  224. // CEILING.PRECISE
  225. // CHAR
  226. // CHOOSE
  227. // CLEAN
  228. // CODE
  229. // COLUMN
  230. // COLUMNS
  231. // COMBIN
  232. // COMBINA
  233. // COMPLEX
  234. // CONCAT
  235. // CONCATENATE
  236. // COS
  237. // COSH
  238. // COT
  239. // COTH
  240. // COUNT
  241. // COUNTA
  242. // COUNTBLANK
  243. // CSC
  244. // CSCH
  245. // DATE
  246. // DATEDIF
  247. // DEC2BIN
  248. // DEC2HEX
  249. // DEC2OCT
  250. // DECIMAL
  251. // DEGREES
  252. // ENCODEURL
  253. // EVEN
  254. // EXACT
  255. // EXP
  256. // FACT
  257. // FACTDOUBLE
  258. // FALSE
  259. // FIND
  260. // FINDB
  261. // FISHER
  262. // FISHERINV
  263. // FIXED
  264. // FLOOR
  265. // FLOOR.MATH
  266. // FLOOR.PRECISE
  267. // GAMMA
  268. // GAMMALN
  269. // GCD
  270. // HARMEAN
  271. // HEX2BIN
  272. // HEX2DEC
  273. // HEX2OCT
  274. // HLOOKUP
  275. // IF
  276. // IFERROR
  277. // IMABS
  278. // IMCOS
  279. // IMCOSH
  280. // IMCOT
  281. // IMCSC
  282. // IMCSCH
  283. // IMEXP
  284. // IMLN
  285. // IMLOG10
  286. // IMLOG2
  287. // IMPOWER
  288. // IMPRODUCT
  289. // IMREAL
  290. // IMSEC
  291. // IMSECH
  292. // IMSIN
  293. // IMSINH
  294. // IMSQRT
  295. // IMSUB
  296. // IMSUM
  297. // IMTAN
  298. // INT
  299. // ISBLANK
  300. // ISERR
  301. // ISERROR
  302. // ISEVEN
  303. // ISNA
  304. // ISNONTEXT
  305. // ISNUMBER
  306. // ISODD
  307. // ISTEXT
  308. // ISO.CEILING
  309. // KURT
  310. // LARGE
  311. // LCM
  312. // LEFT
  313. // LEFTB
  314. // LEN
  315. // LENB
  316. // LN
  317. // LOG
  318. // LOG10
  319. // LOOKUP
  320. // LOWER
  321. // MAX
  322. // MDETERM
  323. // MEDIAN
  324. // MID
  325. // MIDB
  326. // MIN
  327. // MINA
  328. // MOD
  329. // MROUND
  330. // MULTINOMIAL
  331. // MUNIT
  332. // N
  333. // NA
  334. // NORM.DIST
  335. // NORMDIST
  336. // NORM.INV
  337. // NORMINV
  338. // NORM.S.DIST
  339. // NORMSDIST
  340. // NORM.S.INV
  341. // NORMSINV
  342. // NOT
  343. // NOW
  344. // OCT2BIN
  345. // OCT2DEC
  346. // OCT2HEX
  347. // ODD
  348. // OR
  349. // PERCENTILE.INC
  350. // PERCENTILE
  351. // PERMUT
  352. // PERMUTATIONA
  353. // PI
  354. // POISSON.DIST
  355. // POISSON
  356. // POWER
  357. // PRODUCT
  358. // PROPER
  359. // QUARTILE
  360. // QUARTILE.INC
  361. // QUOTIENT
  362. // RADIANS
  363. // RAND
  364. // RANDBETWEEN
  365. // REPLACE
  366. // REPLACEB
  367. // REPT
  368. // RIGHT
  369. // RIGHTB
  370. // ROMAN
  371. // ROUND
  372. // ROUNDDOWN
  373. // ROUNDUP
  374. // ROW
  375. // ROWS
  376. // SEC
  377. // SECH
  378. // SHEET
  379. // SIGN
  380. // SIN
  381. // SINH
  382. // SKEW
  383. // SMALL
  384. // SQRT
  385. // SQRTPI
  386. // STDEV
  387. // STDEV.S
  388. // STDEVA
  389. // SUBSTITUTE
  390. // SUM
  391. // SUMIF
  392. // SUMSQ
  393. // T
  394. // TAN
  395. // TANH
  396. // TODAY
  397. // TRIM
  398. // TRUE
  399. // TRUNC
  400. // UNICHAR
  401. // UNICODE
  402. // UPPER
  403. // VAR.P
  404. // VARP
  405. // VLOOKUP
  406. //
  407. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  408. var (
  409. formula string
  410. token efp.Token
  411. )
  412. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  413. return
  414. }
  415. ps := efp.ExcelParser()
  416. tokens := ps.Parse(formula)
  417. if tokens == nil {
  418. return
  419. }
  420. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  421. return
  422. }
  423. result = token.TValue
  424. isNum, precision := isNumeric(result)
  425. if isNum && precision > 15 {
  426. num, _ := roundPrecision(result)
  427. result = strings.ToUpper(num)
  428. }
  429. return
  430. }
  431. // getPriority calculate arithmetic operator priority.
  432. func getPriority(token efp.Token) (pri int) {
  433. pri = tokenPriority[token.TValue]
  434. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  435. pri = 6
  436. }
  437. if isBeginParenthesesToken(token) { // (
  438. pri = 0
  439. }
  440. return
  441. }
  442. // newNumberFormulaArg constructs a number formula argument.
  443. func newNumberFormulaArg(n float64) formulaArg {
  444. if math.IsNaN(n) {
  445. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  446. }
  447. return formulaArg{Type: ArgNumber, Number: n}
  448. }
  449. // newStringFormulaArg constructs a string formula argument.
  450. func newStringFormulaArg(s string) formulaArg {
  451. return formulaArg{Type: ArgString, String: s}
  452. }
  453. // newMatrixFormulaArg constructs a matrix formula argument.
  454. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  455. return formulaArg{Type: ArgMatrix, Matrix: m}
  456. }
  457. // newListFormulaArg create a list formula argument.
  458. func newListFormulaArg(l []formulaArg) formulaArg {
  459. return formulaArg{Type: ArgList, List: l}
  460. }
  461. // newBoolFormulaArg constructs a boolean formula argument.
  462. func newBoolFormulaArg(b bool) formulaArg {
  463. var n float64
  464. if b {
  465. n = 1
  466. }
  467. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  468. }
  469. // newErrorFormulaArg create an error formula argument of a given type with a
  470. // specified error message.
  471. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  472. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  473. }
  474. // newEmptyFormulaArg create an empty formula argument.
  475. func newEmptyFormulaArg() formulaArg {
  476. return formulaArg{Type: ArgEmpty}
  477. }
  478. // evalInfixExp evaluate syntax analysis by given infix expression after
  479. // lexical analysis. Evaluate an infix expression containing formulas by
  480. // stacks:
  481. //
  482. // opd - Operand
  483. // opt - Operator
  484. // opf - Operation formula
  485. // opfd - Operand of the operation formula
  486. // opft - Operator of the operation formula
  487. // args - Arguments list of the operation formula
  488. //
  489. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  490. //
  491. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  492. var err error
  493. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  494. for i := 0; i < len(tokens); i++ {
  495. token := tokens[i]
  496. // out of function stack
  497. if opfStack.Len() == 0 {
  498. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  499. return efp.Token{}, err
  500. }
  501. }
  502. // function start
  503. if isFunctionStartToken(token) {
  504. opfStack.Push(token)
  505. argsStack.Push(list.New().Init())
  506. continue
  507. }
  508. // in function stack, walk 2 token at once
  509. if opfStack.Len() > 0 {
  510. var nextToken efp.Token
  511. if i+1 < len(tokens) {
  512. nextToken = tokens[i+1]
  513. }
  514. // current token is args or range, skip next token, order required: parse reference first
  515. if token.TSubType == efp.TokenSubTypeRange {
  516. if !opftStack.Empty() {
  517. // parse reference: must reference at here
  518. result, err := f.parseReference(sheet, token.TValue)
  519. if err != nil {
  520. return efp.Token{TValue: formulaErrorNAME}, err
  521. }
  522. if result.Type != ArgString {
  523. return efp.Token{}, errors.New(formulaErrorVALUE)
  524. }
  525. opfdStack.Push(efp.Token{
  526. TType: efp.TokenTypeOperand,
  527. TSubType: efp.TokenSubTypeNumber,
  528. TValue: result.String,
  529. })
  530. continue
  531. }
  532. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  533. // parse reference: reference or range at here
  534. result, err := f.parseReference(sheet, token.TValue)
  535. if err != nil {
  536. return efp.Token{TValue: formulaErrorNAME}, err
  537. }
  538. if result.Type == ArgUnknown {
  539. return efp.Token{}, errors.New(formulaErrorVALUE)
  540. }
  541. argsStack.Peek().(*list.List).PushBack(result)
  542. continue
  543. }
  544. }
  545. // check current token is opft
  546. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  547. return efp.Token{}, err
  548. }
  549. // current token is arg
  550. if token.TType == efp.TokenTypeArgument {
  551. for !opftStack.Empty() {
  552. // calculate trigger
  553. topOpt := opftStack.Peek().(efp.Token)
  554. if err := calculate(opfdStack, topOpt); err != nil {
  555. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  556. }
  557. opftStack.Pop()
  558. }
  559. if !opfdStack.Empty() {
  560. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  561. }
  562. continue
  563. }
  564. // current token is logical
  565. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  566. }
  567. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  568. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  569. }
  570. // current token is text
  571. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  572. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  573. }
  574. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  575. return efp.Token{}, err
  576. }
  577. }
  578. }
  579. for optStack.Len() != 0 {
  580. topOpt := optStack.Peek().(efp.Token)
  581. if err = calculate(opdStack, topOpt); err != nil {
  582. return efp.Token{}, err
  583. }
  584. optStack.Pop()
  585. }
  586. if opdStack.Len() == 0 {
  587. return efp.Token{}, errors.New("formula not valid")
  588. }
  589. return opdStack.Peek().(efp.Token), err
  590. }
  591. // evalInfixExpFunc evaluate formula function in the infix expression.
  592. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  593. if !isFunctionStopToken(token) {
  594. return nil
  595. }
  596. // current token is function stop
  597. for !opftStack.Empty() {
  598. // calculate trigger
  599. topOpt := opftStack.Peek().(efp.Token)
  600. if err := calculate(opfdStack, topOpt); err != nil {
  601. return err
  602. }
  603. opftStack.Pop()
  604. }
  605. // push opfd to args
  606. if opfdStack.Len() > 0 {
  607. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  608. }
  609. // call formula function to evaluate
  610. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  611. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  612. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  613. if arg.Type == ArgError && opfStack.Len() == 1 {
  614. return errors.New(arg.Value())
  615. }
  616. argsStack.Pop()
  617. opfStack.Pop()
  618. if opfStack.Len() > 0 { // still in function stack
  619. if nextToken.TType == efp.TokenTypeOperatorInfix {
  620. // mathematics calculate in formula function
  621. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  622. } else {
  623. argsStack.Peek().(*list.List).PushBack(arg)
  624. }
  625. } else {
  626. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  627. }
  628. return nil
  629. }
  630. // calcPow evaluate exponentiation arithmetic operations.
  631. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  632. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  633. if err != nil {
  634. return err
  635. }
  636. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  637. if err != nil {
  638. return err
  639. }
  640. result := math.Pow(lOpdVal, rOpdVal)
  641. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  642. return nil
  643. }
  644. // calcEq evaluate equal arithmetic operations.
  645. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  646. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  647. return nil
  648. }
  649. // calcNEq evaluate not equal arithmetic operations.
  650. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  651. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  652. return nil
  653. }
  654. // calcL evaluate less than arithmetic operations.
  655. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  656. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  657. if err != nil {
  658. return err
  659. }
  660. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  661. if err != nil {
  662. return err
  663. }
  664. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  665. return nil
  666. }
  667. // calcLe evaluate less than or equal arithmetic operations.
  668. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  669. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  670. if err != nil {
  671. return err
  672. }
  673. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  674. if err != nil {
  675. return err
  676. }
  677. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  678. return nil
  679. }
  680. // calcG evaluate greater than or equal arithmetic operations.
  681. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  682. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  683. if err != nil {
  684. return err
  685. }
  686. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  687. if err != nil {
  688. return err
  689. }
  690. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  691. return nil
  692. }
  693. // calcGe evaluate greater than or equal arithmetic operations.
  694. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  695. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  696. if err != nil {
  697. return err
  698. }
  699. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  700. if err != nil {
  701. return err
  702. }
  703. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  704. return nil
  705. }
  706. // calcSplice evaluate splice '&' operations.
  707. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  708. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  709. return nil
  710. }
  711. // calcAdd evaluate addition arithmetic operations.
  712. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  713. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  714. if err != nil {
  715. return err
  716. }
  717. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  718. if err != nil {
  719. return err
  720. }
  721. result := lOpdVal + rOpdVal
  722. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  723. return nil
  724. }
  725. // calcSubtract evaluate subtraction arithmetic operations.
  726. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  727. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  728. if err != nil {
  729. return err
  730. }
  731. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  732. if err != nil {
  733. return err
  734. }
  735. result := lOpdVal - rOpdVal
  736. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  737. return nil
  738. }
  739. // calcMultiply evaluate multiplication arithmetic operations.
  740. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  741. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  742. if err != nil {
  743. return err
  744. }
  745. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  746. if err != nil {
  747. return err
  748. }
  749. result := lOpdVal * rOpdVal
  750. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  751. return nil
  752. }
  753. // calcDiv evaluate division arithmetic operations.
  754. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  755. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  756. if err != nil {
  757. return err
  758. }
  759. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  760. if err != nil {
  761. return err
  762. }
  763. result := lOpdVal / rOpdVal
  764. if rOpdVal == 0 {
  765. return errors.New(formulaErrorDIV)
  766. }
  767. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  768. return nil
  769. }
  770. // calculate evaluate basic arithmetic operations.
  771. func calculate(opdStack *Stack, opt efp.Token) error {
  772. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  773. if opdStack.Len() < 1 {
  774. return errors.New("formula not valid")
  775. }
  776. opd := opdStack.Pop().(efp.Token)
  777. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  778. if err != nil {
  779. return err
  780. }
  781. result := 0 - opdVal
  782. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  783. }
  784. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  785. "^": calcPow,
  786. "*": calcMultiply,
  787. "/": calcDiv,
  788. "+": calcAdd,
  789. "=": calcEq,
  790. "<>": calcNEq,
  791. "<": calcL,
  792. "<=": calcLe,
  793. ">": calcG,
  794. ">=": calcGe,
  795. "&": calcSplice,
  796. }
  797. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  798. if opdStack.Len() < 2 {
  799. return errors.New("formula not valid")
  800. }
  801. rOpd := opdStack.Pop().(efp.Token)
  802. lOpd := opdStack.Pop().(efp.Token)
  803. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  804. return err
  805. }
  806. }
  807. fn, ok := tokenCalcFunc[opt.TValue]
  808. if ok {
  809. if opdStack.Len() < 2 {
  810. return errors.New("formula not valid")
  811. }
  812. rOpd := opdStack.Pop().(efp.Token)
  813. lOpd := opdStack.Pop().(efp.Token)
  814. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  815. return err
  816. }
  817. }
  818. return nil
  819. }
  820. // parseOperatorPrefixToken parse operator prefix token.
  821. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  822. if optStack.Len() == 0 {
  823. optStack.Push(token)
  824. } else {
  825. tokenPriority := getPriority(token)
  826. topOpt := optStack.Peek().(efp.Token)
  827. topOptPriority := getPriority(topOpt)
  828. if tokenPriority > topOptPriority {
  829. optStack.Push(token)
  830. } else {
  831. for tokenPriority <= topOptPriority {
  832. optStack.Pop()
  833. if err = calculate(opdStack, topOpt); err != nil {
  834. return
  835. }
  836. if optStack.Len() > 0 {
  837. topOpt = optStack.Peek().(efp.Token)
  838. topOptPriority = getPriority(topOpt)
  839. continue
  840. }
  841. break
  842. }
  843. optStack.Push(token)
  844. }
  845. }
  846. return
  847. }
  848. // isFunctionStartToken determine if the token is function stop.
  849. func isFunctionStartToken(token efp.Token) bool {
  850. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  851. }
  852. // isFunctionStopToken determine if the token is function stop.
  853. func isFunctionStopToken(token efp.Token) bool {
  854. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  855. }
  856. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  857. func isBeginParenthesesToken(token efp.Token) bool {
  858. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  859. }
  860. // isEndParenthesesToken determine if the token is end parentheses: ).
  861. func isEndParenthesesToken(token efp.Token) bool {
  862. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  863. }
  864. // isOperatorPrefixToken determine if the token is parse operator prefix
  865. // token.
  866. func isOperatorPrefixToken(token efp.Token) bool {
  867. _, ok := tokenPriority[token.TValue]
  868. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  869. return true
  870. }
  871. return false
  872. }
  873. // getDefinedNameRefTo convert defined name to reference range.
  874. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  875. for _, definedName := range f.GetDefinedName() {
  876. if definedName.Name == definedNameName {
  877. refTo = definedName.RefersTo
  878. // worksheet scope takes precedence over scope workbook when both definedNames exist
  879. if definedName.Scope == currentSheet {
  880. break
  881. }
  882. }
  883. }
  884. return refTo
  885. }
  886. // parseToken parse basic arithmetic operator priority and evaluate based on
  887. // operators and operands.
  888. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  889. // parse reference: must reference at here
  890. if token.TSubType == efp.TokenSubTypeRange {
  891. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  892. if refTo != "" {
  893. token.TValue = refTo
  894. }
  895. result, err := f.parseReference(sheet, token.TValue)
  896. if err != nil {
  897. return errors.New(formulaErrorNAME)
  898. }
  899. if result.Type != ArgString {
  900. return errors.New(formulaErrorVALUE)
  901. }
  902. token.TValue = result.String
  903. token.TType = efp.TokenTypeOperand
  904. token.TSubType = efp.TokenSubTypeNumber
  905. }
  906. if isOperatorPrefixToken(token) {
  907. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  908. return err
  909. }
  910. }
  911. if isBeginParenthesesToken(token) { // (
  912. optStack.Push(token)
  913. }
  914. if isEndParenthesesToken(token) { // )
  915. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  916. topOpt := optStack.Peek().(efp.Token)
  917. if err := calculate(opdStack, topOpt); err != nil {
  918. return err
  919. }
  920. optStack.Pop()
  921. }
  922. optStack.Pop()
  923. }
  924. // opd
  925. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  926. opdStack.Push(token)
  927. }
  928. return nil
  929. }
  930. // parseReference parse reference and extract values by given reference
  931. // characters and default sheet name.
  932. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  933. reference = strings.Replace(reference, "$", "", -1)
  934. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  935. for _, ref := range strings.Split(reference, ":") {
  936. tokens := strings.Split(ref, "!")
  937. cr := cellRef{}
  938. if len(tokens) == 2 { // have a worksheet name
  939. cr.Sheet = tokens[0]
  940. // cast to cell coordinates
  941. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  942. // cast to column
  943. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  944. // cast to row
  945. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  946. err = newInvalidColumnNameError(tokens[1])
  947. return
  948. }
  949. cr.Col = TotalColumns
  950. }
  951. }
  952. if refs.Len() > 0 {
  953. e := refs.Back()
  954. cellRefs.PushBack(e.Value.(cellRef))
  955. refs.Remove(e)
  956. }
  957. refs.PushBack(cr)
  958. continue
  959. }
  960. // cast to cell coordinates
  961. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  962. // cast to column
  963. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  964. // cast to row
  965. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  966. err = newInvalidColumnNameError(tokens[0])
  967. return
  968. }
  969. cr.Col = TotalColumns
  970. }
  971. cellRanges.PushBack(cellRange{
  972. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  973. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  974. })
  975. cellRefs.Init()
  976. arg, err = f.rangeResolver(cellRefs, cellRanges)
  977. return
  978. }
  979. e := refs.Back()
  980. if e == nil {
  981. cr.Sheet = sheet
  982. refs.PushBack(cr)
  983. continue
  984. }
  985. cellRanges.PushBack(cellRange{
  986. From: e.Value.(cellRef),
  987. To: cr,
  988. })
  989. refs.Remove(e)
  990. }
  991. if refs.Len() > 0 {
  992. e := refs.Back()
  993. cellRefs.PushBack(e.Value.(cellRef))
  994. refs.Remove(e)
  995. }
  996. arg, err = f.rangeResolver(cellRefs, cellRanges)
  997. return
  998. }
  999. // prepareValueRange prepare value range.
  1000. func prepareValueRange(cr cellRange, valueRange []int) {
  1001. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  1002. valueRange[0] = cr.From.Row
  1003. }
  1004. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  1005. valueRange[2] = cr.From.Col
  1006. }
  1007. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  1008. valueRange[1] = cr.To.Row
  1009. }
  1010. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  1011. valueRange[3] = cr.To.Col
  1012. }
  1013. }
  1014. // prepareValueRef prepare value reference.
  1015. func prepareValueRef(cr cellRef, valueRange []int) {
  1016. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  1017. valueRange[0] = cr.Row
  1018. }
  1019. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  1020. valueRange[2] = cr.Col
  1021. }
  1022. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  1023. valueRange[1] = cr.Row
  1024. }
  1025. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1026. valueRange[3] = cr.Col
  1027. }
  1028. }
  1029. // rangeResolver extract value as string from given reference and range list.
  1030. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1031. // be reference A1:B3.
  1032. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1033. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1034. // value range order: from row, to row, from column, to column
  1035. valueRange := []int{0, 0, 0, 0}
  1036. var sheet string
  1037. // prepare value range
  1038. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1039. cr := temp.Value.(cellRange)
  1040. if cr.From.Sheet != cr.To.Sheet {
  1041. err = errors.New(formulaErrorVALUE)
  1042. }
  1043. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1044. _ = sortCoordinates(rng)
  1045. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1046. prepareValueRange(cr, valueRange)
  1047. if cr.From.Sheet != "" {
  1048. sheet = cr.From.Sheet
  1049. }
  1050. }
  1051. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1052. cr := temp.Value.(cellRef)
  1053. if cr.Sheet != "" {
  1054. sheet = cr.Sheet
  1055. }
  1056. prepareValueRef(cr, valueRange)
  1057. }
  1058. // extract value from ranges
  1059. if cellRanges.Len() > 0 {
  1060. arg.Type = ArgMatrix
  1061. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1062. var matrixRow = []formulaArg{}
  1063. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1064. var cell, value string
  1065. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1066. return
  1067. }
  1068. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1069. return
  1070. }
  1071. matrixRow = append(matrixRow, formulaArg{
  1072. String: value,
  1073. Type: ArgString,
  1074. })
  1075. }
  1076. arg.Matrix = append(arg.Matrix, matrixRow)
  1077. }
  1078. return
  1079. }
  1080. // extract value from references
  1081. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1082. cr := temp.Value.(cellRef)
  1083. var cell string
  1084. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1085. return
  1086. }
  1087. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1088. return
  1089. }
  1090. arg.Type = ArgString
  1091. }
  1092. return
  1093. }
  1094. // callFuncByName calls the no error or only error return function with
  1095. // reflect by given receiver, name and parameters.
  1096. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1097. function := reflect.ValueOf(receiver).MethodByName(name)
  1098. if function.IsValid() {
  1099. rt := function.Call(params)
  1100. if len(rt) == 0 {
  1101. return
  1102. }
  1103. arg = rt[0].Interface().(formulaArg)
  1104. return
  1105. }
  1106. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1107. }
  1108. // formulaCriteriaParser parse formula criteria.
  1109. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1110. fc = &formulaCriteria{}
  1111. if exp == "" {
  1112. return
  1113. }
  1114. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1115. fc.Type, fc.Condition = criteriaEq, match[1]
  1116. return
  1117. }
  1118. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1119. fc.Type, fc.Condition = criteriaEq, match[1]
  1120. return
  1121. }
  1122. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1123. fc.Type, fc.Condition = criteriaLe, match[1]
  1124. return
  1125. }
  1126. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1127. fc.Type, fc.Condition = criteriaGe, match[1]
  1128. return
  1129. }
  1130. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1131. fc.Type, fc.Condition = criteriaL, match[1]
  1132. return
  1133. }
  1134. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1135. fc.Type, fc.Condition = criteriaG, match[1]
  1136. return
  1137. }
  1138. if strings.Contains(exp, "*") {
  1139. if strings.HasPrefix(exp, "*") {
  1140. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1141. }
  1142. if strings.HasSuffix(exp, "*") {
  1143. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1144. }
  1145. return
  1146. }
  1147. fc.Type, fc.Condition = criteriaEq, exp
  1148. return
  1149. }
  1150. // formulaCriteriaEval evaluate formula criteria expression.
  1151. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1152. var value, expected float64
  1153. var e error
  1154. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1155. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1156. return
  1157. }
  1158. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1159. return
  1160. }
  1161. return
  1162. }
  1163. switch criteria.Type {
  1164. case criteriaEq:
  1165. return val == criteria.Condition, err
  1166. case criteriaLe:
  1167. value, expected, e = prepareValue(val, criteria.Condition)
  1168. return value <= expected && e == nil, err
  1169. case criteriaGe:
  1170. value, expected, e = prepareValue(val, criteria.Condition)
  1171. return value >= expected && e == nil, err
  1172. case criteriaL:
  1173. value, expected, e = prepareValue(val, criteria.Condition)
  1174. return value < expected && e == nil, err
  1175. case criteriaG:
  1176. value, expected, e = prepareValue(val, criteria.Condition)
  1177. return value > expected && e == nil, err
  1178. case criteriaBeg:
  1179. return strings.HasPrefix(val, criteria.Condition), err
  1180. case criteriaEnd:
  1181. return strings.HasSuffix(val, criteria.Condition), err
  1182. }
  1183. return
  1184. }
  1185. // Engineering Functions
  1186. // BESSELI function the modified Bessel function, which is equivalent to the
  1187. // Bessel function evaluated for purely imaginary arguments. The syntax of
  1188. // the Besseli function is:
  1189. //
  1190. // BESSELI(x,n)
  1191. //
  1192. func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
  1193. if argsList.Len() != 2 {
  1194. return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
  1195. }
  1196. return fn.bassel(argsList, true)
  1197. }
  1198. // BESSELJ function returns the Bessel function, Jn(x), for a specified order
  1199. // and value of x. The syntax of the function is:
  1200. //
  1201. // BESSELJ(x,n)
  1202. //
  1203. func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
  1204. if argsList.Len() != 2 {
  1205. return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
  1206. }
  1207. return fn.bassel(argsList, false)
  1208. }
  1209. // bassel is an implementation of the formula function BESSELI and BESSELJ.
  1210. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
  1211. x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1212. if x.Type != ArgNumber {
  1213. return x
  1214. }
  1215. if n.Type != ArgNumber {
  1216. return n
  1217. }
  1218. max, x1 := 100, x.Number*0.5
  1219. x2 := x1 * x1
  1220. x1 = math.Pow(x1, n.Number)
  1221. n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
  1222. result := x1 / n1
  1223. t := result * 0.9
  1224. for result != t && max != 0 {
  1225. x1 *= x2
  1226. n3++
  1227. n1 *= n3
  1228. n4++
  1229. n2 *= n4
  1230. t = result
  1231. if modfied || add {
  1232. result += (x1 / n1 / n2)
  1233. } else {
  1234. result -= (x1 / n1 / n2)
  1235. }
  1236. max--
  1237. add = !add
  1238. }
  1239. return newNumberFormulaArg(result)
  1240. }
  1241. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1242. // The syntax of the function is:
  1243. //
  1244. // BIN2DEC(number)
  1245. //
  1246. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1247. if argsList.Len() != 1 {
  1248. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1249. }
  1250. token := argsList.Front().Value.(formulaArg)
  1251. number := token.ToNumber()
  1252. if number.Type != ArgNumber {
  1253. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1254. }
  1255. return fn.bin2dec(token.Value())
  1256. }
  1257. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1258. // (Base 16) number. The syntax of the function is:
  1259. //
  1260. // BIN2HEX(number,[places])
  1261. //
  1262. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1263. if argsList.Len() < 1 {
  1264. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1265. }
  1266. if argsList.Len() > 2 {
  1267. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1268. }
  1269. token := argsList.Front().Value.(formulaArg)
  1270. number := token.ToNumber()
  1271. if number.Type != ArgNumber {
  1272. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1273. }
  1274. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1275. if decimal.Type != ArgNumber {
  1276. return decimal
  1277. }
  1278. newList.PushBack(decimal)
  1279. if argsList.Len() == 2 {
  1280. newList.PushBack(argsList.Back().Value.(formulaArg))
  1281. }
  1282. return fn.dec2x("BIN2HEX", newList)
  1283. }
  1284. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1285. // number. The syntax of the function is:
  1286. //
  1287. // BIN2OCT(number,[places])
  1288. //
  1289. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1290. if argsList.Len() < 1 {
  1291. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1292. }
  1293. if argsList.Len() > 2 {
  1294. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1295. }
  1296. token := argsList.Front().Value.(formulaArg)
  1297. number := token.ToNumber()
  1298. if number.Type != ArgNumber {
  1299. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1300. }
  1301. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1302. if decimal.Type != ArgNumber {
  1303. return decimal
  1304. }
  1305. newList.PushBack(decimal)
  1306. if argsList.Len() == 2 {
  1307. newList.PushBack(argsList.Back().Value.(formulaArg))
  1308. }
  1309. return fn.dec2x("BIN2OCT", newList)
  1310. }
  1311. // bin2dec is an implementation of the formula function BIN2DEC.
  1312. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1313. decimal, length := 0.0, len(number)
  1314. for i := length; i > 0; i-- {
  1315. s := string(number[length-i])
  1316. if i == 10 && s == "1" {
  1317. decimal += math.Pow(-2.0, float64(i-1))
  1318. continue
  1319. }
  1320. if s == "1" {
  1321. decimal += math.Pow(2.0, float64(i-1))
  1322. continue
  1323. }
  1324. if s != "0" {
  1325. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1326. }
  1327. }
  1328. return newNumberFormulaArg(decimal)
  1329. }
  1330. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1331. // syntax of the function is:
  1332. //
  1333. // BITAND(number1,number2)
  1334. //
  1335. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1336. return fn.bitwise("BITAND", argsList)
  1337. }
  1338. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1339. // number of bits. The syntax of the function is:
  1340. //
  1341. // BITLSHIFT(number1,shift_amount)
  1342. //
  1343. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1344. return fn.bitwise("BITLSHIFT", argsList)
  1345. }
  1346. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1347. // syntax of the function is:
  1348. //
  1349. // BITOR(number1,number2)
  1350. //
  1351. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1352. return fn.bitwise("BITOR", argsList)
  1353. }
  1354. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1355. // number of bits. The syntax of the function is:
  1356. //
  1357. // BITRSHIFT(number1,shift_amount)
  1358. //
  1359. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1360. return fn.bitwise("BITRSHIFT", argsList)
  1361. }
  1362. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1363. // integers. The syntax of the function is:
  1364. //
  1365. // BITXOR(number1,number2)
  1366. //
  1367. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1368. return fn.bitwise("BITXOR", argsList)
  1369. }
  1370. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1371. // BITOR, BITRSHIFT and BITXOR.
  1372. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1373. if argsList.Len() != 2 {
  1374. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1375. }
  1376. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1377. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1378. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1379. }
  1380. max := math.Pow(2, 48) - 1
  1381. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1382. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1383. }
  1384. bitwiseFuncMap := map[string]func(a, b int) int{
  1385. "BITAND": func(a, b int) int { return a & b },
  1386. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1387. "BITOR": func(a, b int) int { return a | b },
  1388. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1389. "BITXOR": func(a, b int) int { return a ^ b },
  1390. }
  1391. bitwiseFunc := bitwiseFuncMap[name]
  1392. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1393. }
  1394. // COMPLEX function takes two arguments, representing the real and the
  1395. // imaginary coefficients of a complex number, and from these, creates a
  1396. // complex number. The syntax of the function is:
  1397. //
  1398. // COMPLEX(real_num,i_num,[suffix])
  1399. //
  1400. func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
  1401. if argsList.Len() < 2 {
  1402. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
  1403. }
  1404. if argsList.Len() > 3 {
  1405. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
  1406. }
  1407. real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
  1408. if real.Type != ArgNumber {
  1409. return real
  1410. }
  1411. if i.Type != ArgNumber {
  1412. return i
  1413. }
  1414. if argsList.Len() == 3 {
  1415. if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
  1416. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1417. }
  1418. }
  1419. return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))
  1420. }
  1421. // cmplx2str replace complex number string characters.
  1422. func cmplx2str(c, suffix string) string {
  1423. if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" {
  1424. return "0"
  1425. }
  1426. c = strings.TrimPrefix(c, "(")
  1427. c = strings.TrimPrefix(c, "+0+")
  1428. c = strings.TrimPrefix(c, "-0+")
  1429. c = strings.TrimSuffix(c, ")")
  1430. c = strings.TrimPrefix(c, "0+")
  1431. if strings.HasPrefix(c, "0-") {
  1432. c = "-" + strings.TrimPrefix(c, "0-")
  1433. }
  1434. c = strings.TrimPrefix(c, "0+")
  1435. c = strings.TrimSuffix(c, "+0i")
  1436. c = strings.TrimSuffix(c, "-0i")
  1437. c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c)
  1438. c = strings.Replace(c, "i", suffix, -1)
  1439. return c
  1440. }
  1441. // str2cmplx convert complex number string characters.
  1442. func str2cmplx(c string) string {
  1443. c = strings.Replace(c, "j", "i", -1)
  1444. if c == "i" {
  1445. c = "1i"
  1446. }
  1447. c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)
  1448. return c
  1449. }
  1450. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1451. // The syntax of the function is:
  1452. //
  1453. // DEC2BIN(number,[places])
  1454. //
  1455. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1456. return fn.dec2x("DEC2BIN", argsList)
  1457. }
  1458. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1459. // number. The syntax of the function is:
  1460. //
  1461. // DEC2HEX(number,[places])
  1462. //
  1463. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1464. return fn.dec2x("DEC2HEX", argsList)
  1465. }
  1466. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1467. // The syntax of the function is:
  1468. //
  1469. // DEC2OCT(number,[places])
  1470. //
  1471. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1472. return fn.dec2x("DEC2OCT", argsList)
  1473. }
  1474. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1475. // DEC2OCT.
  1476. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1477. if argsList.Len() < 1 {
  1478. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1479. }
  1480. if argsList.Len() > 2 {
  1481. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1482. }
  1483. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1484. if decimal.Type != ArgNumber {
  1485. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1486. }
  1487. maxLimitMap := map[string]float64{
  1488. "DEC2BIN": 511,
  1489. "HEX2BIN": 511,
  1490. "OCT2BIN": 511,
  1491. "BIN2HEX": 549755813887,
  1492. "DEC2HEX": 549755813887,
  1493. "OCT2HEX": 549755813887,
  1494. "BIN2OCT": 536870911,
  1495. "DEC2OCT": 536870911,
  1496. "HEX2OCT": 536870911,
  1497. }
  1498. minLimitMap := map[string]float64{
  1499. "DEC2BIN": -512,
  1500. "HEX2BIN": -512,
  1501. "OCT2BIN": -512,
  1502. "BIN2HEX": -549755813888,
  1503. "DEC2HEX": -549755813888,
  1504. "OCT2HEX": -549755813888,
  1505. "BIN2OCT": -536870912,
  1506. "DEC2OCT": -536870912,
  1507. "HEX2OCT": -536870912,
  1508. }
  1509. baseMap := map[string]int{
  1510. "DEC2BIN": 2,
  1511. "HEX2BIN": 2,
  1512. "OCT2BIN": 2,
  1513. "BIN2HEX": 16,
  1514. "DEC2HEX": 16,
  1515. "OCT2HEX": 16,
  1516. "BIN2OCT": 8,
  1517. "DEC2OCT": 8,
  1518. "HEX2OCT": 8,
  1519. }
  1520. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1521. base := baseMap[name]
  1522. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1523. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1524. }
  1525. n := int64(decimal.Number)
  1526. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1527. if argsList.Len() == 2 {
  1528. places := argsList.Back().Value.(formulaArg).ToNumber()
  1529. if places.Type != ArgNumber {
  1530. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1531. }
  1532. binaryPlaces := len(binary)
  1533. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1534. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1535. }
  1536. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1537. }
  1538. if decimal.Number < 0 && len(binary) > 10 {
  1539. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1540. }
  1541. return newStringFormulaArg(strings.ToUpper(binary))
  1542. }
  1543. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1544. // (Base 2) number. The syntax of the function is:
  1545. //
  1546. // HEX2BIN(number,[places])
  1547. //
  1548. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1549. if argsList.Len() < 1 {
  1550. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1551. }
  1552. if argsList.Len() > 2 {
  1553. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1554. }
  1555. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1556. if decimal.Type != ArgNumber {
  1557. return decimal
  1558. }
  1559. newList.PushBack(decimal)
  1560. if argsList.Len() == 2 {
  1561. newList.PushBack(argsList.Back().Value.(formulaArg))
  1562. }
  1563. return fn.dec2x("HEX2BIN", newList)
  1564. }
  1565. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1566. // number. The syntax of the function is:
  1567. //
  1568. // HEX2DEC(number)
  1569. //
  1570. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1571. if argsList.Len() != 1 {
  1572. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1573. }
  1574. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1575. }
  1576. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1577. // (Base 8) number. The syntax of the function is:
  1578. //
  1579. // HEX2OCT(number,[places])
  1580. //
  1581. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1582. if argsList.Len() < 1 {
  1583. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1584. }
  1585. if argsList.Len() > 2 {
  1586. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1587. }
  1588. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1589. if decimal.Type != ArgNumber {
  1590. return decimal
  1591. }
  1592. newList.PushBack(decimal)
  1593. if argsList.Len() == 2 {
  1594. newList.PushBack(argsList.Back().Value.(formulaArg))
  1595. }
  1596. return fn.dec2x("HEX2OCT", newList)
  1597. }
  1598. // hex2dec is an implementation of the formula function HEX2DEC.
  1599. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1600. decimal, length := 0.0, len(number)
  1601. for i := length; i > 0; i-- {
  1602. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1603. if err != nil {
  1604. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1605. }
  1606. if i == 10 && string(number[length-i]) == "F" {
  1607. decimal += math.Pow(-16.0, float64(i-1))
  1608. continue
  1609. }
  1610. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1611. }
  1612. return newNumberFormulaArg(decimal)
  1613. }
  1614. // IMABS function returns the absolute value (the modulus) of a complex
  1615. // number. The syntax of the function is:
  1616. //
  1617. // IMABS(inumber)
  1618. //
  1619. func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
  1620. if argsList.Len() != 1 {
  1621. return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
  1622. }
  1623. inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
  1624. if err != nil {
  1625. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1626. }
  1627. return newNumberFormulaArg(cmplx.Abs(inumber))
  1628. }
  1629. // IMCOS function returns the cosine of a supplied complex number. The syntax
  1630. // of the function is:
  1631. //
  1632. // IMCOS(inumber)
  1633. //
  1634. func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
  1635. if argsList.Len() != 1 {
  1636. return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
  1637. }
  1638. inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
  1639. if err != nil {
  1640. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1641. }
  1642. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))
  1643. }
  1644. // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax
  1645. // of the function is:
  1646. //
  1647. // IMCOSH(inumber)
  1648. //
  1649. func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {
  1650. if argsList.Len() != 1 {
  1651. return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")
  1652. }
  1653. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1654. if err != nil {
  1655. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1656. }
  1657. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))
  1658. }
  1659. // IMCOT function returns the cotangent of a supplied complex number. The syntax
  1660. // of the function is:
  1661. //
  1662. // IMCOT(inumber)
  1663. //
  1664. func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {
  1665. if argsList.Len() != 1 {
  1666. return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")
  1667. }
  1668. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1669. if err != nil {
  1670. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1671. }
  1672. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))
  1673. }
  1674. // IMCSC function returns the cosecant of a supplied complex number. The syntax
  1675. // of the function is:
  1676. //
  1677. // IMCSC(inumber)
  1678. //
  1679. func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {
  1680. if argsList.Len() != 1 {
  1681. return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")
  1682. }
  1683. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1684. if err != nil {
  1685. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1686. }
  1687. num := 1 / cmplx.Sin(inumber)
  1688. if cmplx.IsInf(num) {
  1689. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1690. }
  1691. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1692. }
  1693. // IMCSCH function returns the hyperbolic cosecant of a supplied complex
  1694. // number. The syntax of the function is:
  1695. //
  1696. // IMCSCH(inumber)
  1697. //
  1698. func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
  1699. if argsList.Len() != 1 {
  1700. return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")
  1701. }
  1702. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1703. if err != nil {
  1704. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1705. }
  1706. num := 1 / cmplx.Sinh(inumber)
  1707. if cmplx.IsInf(num) {
  1708. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1709. }
  1710. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1711. }
  1712. // IMEXP function returns the exponential of a supplied complex number. The
  1713. // syntax of the function is:
  1714. //
  1715. // IMEXP(inumber)
  1716. //
  1717. func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {
  1718. if argsList.Len() != 1 {
  1719. return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")
  1720. }
  1721. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1722. if err != nil {
  1723. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1724. }
  1725. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))
  1726. }
  1727. // IMLN function returns the natural logarithm of a supplied complex number.
  1728. // The syntax of the function is:
  1729. //
  1730. // IMLN(inumber)
  1731. //
  1732. func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {
  1733. if argsList.Len() != 1 {
  1734. return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")
  1735. }
  1736. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1737. if err != nil {
  1738. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1739. }
  1740. num := cmplx.Log(inumber)
  1741. if cmplx.IsInf(num) {
  1742. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1743. }
  1744. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1745. }
  1746. // IMLOG10 function returns the common (base 10) logarithm of a supplied
  1747. // complex number. The syntax of the function is:
  1748. //
  1749. // IMLOG10(inumber)
  1750. //
  1751. func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {
  1752. if argsList.Len() != 1 {
  1753. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")
  1754. }
  1755. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1756. if err != nil {
  1757. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1758. }
  1759. num := cmplx.Log10(inumber)
  1760. if cmplx.IsInf(num) {
  1761. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1762. }
  1763. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1764. }
  1765. // IMLOG2 function calculates the base 2 logarithm of a supplied complex
  1766. // number. The syntax of the function is:
  1767. //
  1768. // IMLOG2(inumber)
  1769. //
  1770. func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg {
  1771. if argsList.Len() != 1 {
  1772. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument")
  1773. }
  1774. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1775. if err != nil {
  1776. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1777. }
  1778. num := cmplx.Log(inumber)
  1779. if cmplx.IsInf(num) {
  1780. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1781. }
  1782. return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i"))
  1783. }
  1784. // IMPOWER function returns a supplied complex number, raised to a given
  1785. // power. The syntax of the function is:
  1786. //
  1787. // IMPOWER(inumber,number)
  1788. //
  1789. func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg {
  1790. if argsList.Len() != 2 {
  1791. return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments")
  1792. }
  1793. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1794. if err != nil {
  1795. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1796. }
  1797. number, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  1798. if err != nil {
  1799. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1800. }
  1801. if inumber == 0 && number == 0 {
  1802. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1803. }
  1804. num := cmplx.Pow(inumber, number)
  1805. if cmplx.IsInf(num) {
  1806. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1807. }
  1808. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1809. }
  1810. // IMPRODUCT function calculates the product of two or more complex numbers.
  1811. // The syntax of the function is:
  1812. //
  1813. // IMPRODUCT(number1,[number2],...)
  1814. //
  1815. func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg {
  1816. product := complex128(1)
  1817. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1818. token := arg.Value.(formulaArg)
  1819. switch token.Type {
  1820. case ArgString:
  1821. if token.Value() == "" {
  1822. continue
  1823. }
  1824. val, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
  1825. if err != nil {
  1826. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1827. }
  1828. product = product * val
  1829. case ArgNumber:
  1830. product = product * complex(token.Number, 0)
  1831. case ArgMatrix:
  1832. for _, row := range token.Matrix {
  1833. for _, value := range row {
  1834. if value.Value() == "" {
  1835. continue
  1836. }
  1837. val, err := strconv.ParseComplex(str2cmplx(value.Value()), 128)
  1838. if err != nil {
  1839. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1840. }
  1841. product = product * val
  1842. }
  1843. }
  1844. }
  1845. }
  1846. return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i"))
  1847. }
  1848. // IMREAL function returns the real coefficient of a supplied complex number.
  1849. // The syntax of the function is:
  1850. //
  1851. // IMREAL(inumber)
  1852. //
  1853. func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg {
  1854. if argsList.Len() != 1 {
  1855. return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument")
  1856. }
  1857. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1858. if err != nil {
  1859. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1860. }
  1861. return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i"))
  1862. }
  1863. // IMSEC function returns the secant of a supplied complex number. The syntax
  1864. // of the function is:
  1865. //
  1866. // IMSEC(inumber)
  1867. //
  1868. func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg {
  1869. if argsList.Len() != 1 {
  1870. return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument")
  1871. }
  1872. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1873. if err != nil {
  1874. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1875. }
  1876. return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i"))
  1877. }
  1878. // IMSECH function returns the hyperbolic secant of a supplied complex number.
  1879. // The syntax of the function is:
  1880. //
  1881. // IMSECH(inumber)
  1882. //
  1883. func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg {
  1884. if argsList.Len() != 1 {
  1885. return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument")
  1886. }
  1887. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1888. if err != nil {
  1889. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1890. }
  1891. return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i"))
  1892. }
  1893. // IMSIN function returns the Sine of a supplied complex number. The syntax of
  1894. // the function is:
  1895. //
  1896. // IMSIN(inumber)
  1897. //
  1898. func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg {
  1899. if argsList.Len() != 1 {
  1900. return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument")
  1901. }
  1902. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1903. if err != nil {
  1904. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1905. }
  1906. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i"))
  1907. }
  1908. // IMSINH function returns the hyperbolic sine of a supplied complex number.
  1909. // The syntax of the function is:
  1910. //
  1911. // IMSINH(inumber)
  1912. //
  1913. func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg {
  1914. if argsList.Len() != 1 {
  1915. return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument")
  1916. }
  1917. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1918. if err != nil {
  1919. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1920. }
  1921. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i"))
  1922. }
  1923. // IMSQRT function returns the square root of a supplied complex number. The
  1924. // syntax of the function is:
  1925. //
  1926. // IMSQRT(inumber)
  1927. //
  1928. func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg {
  1929. if argsList.Len() != 1 {
  1930. return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument")
  1931. }
  1932. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1933. if err != nil {
  1934. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1935. }
  1936. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i"))
  1937. }
  1938. // IMSUB function calculates the difference between two complex numbers
  1939. // (i.e. subtracts one complex number from another). The syntax of the
  1940. // function is:
  1941. //
  1942. // IMSUB(inumber1,inumber2)
  1943. //
  1944. func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg {
  1945. if argsList.Len() != 2 {
  1946. return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments")
  1947. }
  1948. i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1949. if err != nil {
  1950. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1951. }
  1952. i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  1953. if err != nil {
  1954. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1955. }
  1956. return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i"))
  1957. }
  1958. // IMSUM function calculates the sum of two or more complex numbers. The
  1959. // syntax of the function is:
  1960. //
  1961. // IMSUM(inumber1,inumber2,...)
  1962. //
  1963. func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg {
  1964. if argsList.Len() < 1 {
  1965. return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument")
  1966. }
  1967. var result complex128
  1968. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1969. token := arg.Value.(formulaArg)
  1970. num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
  1971. if err != nil {
  1972. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1973. }
  1974. result += num
  1975. }
  1976. return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i"))
  1977. }
  1978. // IMTAN function returns the tangent of a supplied complex number. The syntax
  1979. // of the function is:
  1980. //
  1981. // IMTAN(inumber)
  1982. //
  1983. func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg {
  1984. if argsList.Len() != 1 {
  1985. return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument")
  1986. }
  1987. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1988. if err != nil {
  1989. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1990. }
  1991. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i"))
  1992. }
  1993. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1994. // number. The syntax of the function is:
  1995. //
  1996. // OCT2BIN(number,[places])
  1997. //
  1998. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1999. if argsList.Len() < 1 {
  2000. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  2001. }
  2002. if argsList.Len() > 2 {
  2003. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  2004. }
  2005. token := argsList.Front().Value.(formulaArg)
  2006. number := token.ToNumber()
  2007. if number.Type != ArgNumber {
  2008. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2009. }
  2010. decimal, newList := fn.oct2dec(token.Value()), list.New()
  2011. newList.PushBack(decimal)
  2012. if argsList.Len() == 2 {
  2013. newList.PushBack(argsList.Back().Value.(formulaArg))
  2014. }
  2015. return fn.dec2x("OCT2BIN", newList)
  2016. }
  2017. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  2018. // The syntax of the function is:
  2019. //
  2020. // OCT2DEC(number)
  2021. //
  2022. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  2023. if argsList.Len() != 1 {
  2024. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  2025. }
  2026. token := argsList.Front().Value.(formulaArg)
  2027. number := token.ToNumber()
  2028. if number.Type != ArgNumber {
  2029. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2030. }
  2031. return fn.oct2dec(token.Value())
  2032. }
  2033. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  2034. // (Base 16) number. The syntax of the function is:
  2035. //
  2036. // OCT2HEX(number,[places])
  2037. //
  2038. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  2039. if argsList.Len() < 1 {
  2040. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  2041. }
  2042. if argsList.Len() > 2 {
  2043. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  2044. }
  2045. token := argsList.Front().Value.(formulaArg)
  2046. number := token.ToNumber()
  2047. if number.Type != ArgNumber {
  2048. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2049. }
  2050. decimal, newList := fn.oct2dec(token.Value()), list.New()
  2051. newList.PushBack(decimal)
  2052. if argsList.Len() == 2 {
  2053. newList.PushBack(argsList.Back().Value.(formulaArg))
  2054. }
  2055. return fn.dec2x("OCT2HEX", newList)
  2056. }
  2057. // oct2dec is an implementation of the formula function OCT2DEC.
  2058. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  2059. decimal, length := 0.0, len(number)
  2060. for i := length; i > 0; i-- {
  2061. num, _ := strconv.Atoi(string(number[length-i]))
  2062. if i == 10 && string(number[length-i]) == "7" {
  2063. decimal += math.Pow(-8.0, float64(i-1))
  2064. continue
  2065. }
  2066. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  2067. }
  2068. return newNumberFormulaArg(decimal)
  2069. }
  2070. // Math and Trigonometric Functions
  2071. // ABS function returns the absolute value of any supplied number. The syntax
  2072. // of the function is:
  2073. //
  2074. // ABS(number)
  2075. //
  2076. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  2077. if argsList.Len() != 1 {
  2078. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  2079. }
  2080. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2081. if arg.Type == ArgError {
  2082. return arg
  2083. }
  2084. return newNumberFormulaArg(math.Abs(arg.Number))
  2085. }
  2086. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  2087. // number, and returns an angle, in radians, between 0 and π. The syntax of
  2088. // the function is:
  2089. //
  2090. // ACOS(number)
  2091. //
  2092. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  2093. if argsList.Len() != 1 {
  2094. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  2095. }
  2096. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2097. if arg.Type == ArgError {
  2098. return arg
  2099. }
  2100. return newNumberFormulaArg(math.Acos(arg.Number))
  2101. }
  2102. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  2103. // of the function is:
  2104. //
  2105. // ACOSH(number)
  2106. //
  2107. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  2108. if argsList.Len() != 1 {
  2109. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  2110. }
  2111. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2112. if arg.Type == ArgError {
  2113. return arg
  2114. }
  2115. return newNumberFormulaArg(math.Acosh(arg.Number))
  2116. }
  2117. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  2118. // given number, and returns an angle, in radians, between 0 and π. The syntax
  2119. // of the function is:
  2120. //
  2121. // ACOT(number)
  2122. //
  2123. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  2124. if argsList.Len() != 1 {
  2125. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  2126. }
  2127. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2128. if arg.Type == ArgError {
  2129. return arg
  2130. }
  2131. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  2132. }
  2133. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  2134. // value. The syntax of the function is:
  2135. //
  2136. // ACOTH(number)
  2137. //
  2138. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  2139. if argsList.Len() != 1 {
  2140. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  2141. }
  2142. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2143. if arg.Type == ArgError {
  2144. return arg
  2145. }
  2146. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  2147. }
  2148. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  2149. // of the function is:
  2150. //
  2151. // ARABIC(text)
  2152. //
  2153. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  2154. if argsList.Len() != 1 {
  2155. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  2156. }
  2157. text := argsList.Front().Value.(formulaArg).Value()
  2158. if len(text) > 255 {
  2159. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2160. }
  2161. text = strings.ToUpper(text)
  2162. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  2163. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  2164. for index >= 0 && text[index] == ' ' {
  2165. index--
  2166. }
  2167. for actualStart <= index && text[actualStart] == ' ' {
  2168. actualStart++
  2169. }
  2170. if actualStart <= index && text[actualStart] == '-' {
  2171. isNegative = true
  2172. actualStart++
  2173. }
  2174. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  2175. for index >= actualStart {
  2176. startIndex = index
  2177. startChar := text[startIndex]
  2178. index--
  2179. for index >= actualStart && (text[index]|' ') == startChar {
  2180. index--
  2181. }
  2182. currentCharValue = charMap[rune(startChar)]
  2183. currentPartValue = (startIndex - index) * currentCharValue
  2184. if currentCharValue >= prevCharValue {
  2185. number += currentPartValue - subtractNumber
  2186. prevCharValue = currentCharValue
  2187. subtractNumber = 0
  2188. continue
  2189. }
  2190. subtractNumber += currentPartValue
  2191. }
  2192. if subtractNumber != 0 {
  2193. number -= subtractNumber
  2194. }
  2195. if isNegative {
  2196. number = -number
  2197. }
  2198. return newNumberFormulaArg(float64(number))
  2199. }
  2200. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  2201. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  2202. // of the function is:
  2203. //
  2204. // ASIN(number)
  2205. //
  2206. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  2207. if argsList.Len() != 1 {
  2208. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  2209. }
  2210. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2211. if arg.Type == ArgError {
  2212. return arg
  2213. }
  2214. return newNumberFormulaArg(math.Asin(arg.Number))
  2215. }
  2216. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  2217. // The syntax of the function is:
  2218. //
  2219. // ASINH(number)
  2220. //
  2221. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  2222. if argsList.Len() != 1 {
  2223. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  2224. }
  2225. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2226. if arg.Type == ArgError {
  2227. return arg
  2228. }
  2229. return newNumberFormulaArg(math.Asinh(arg.Number))
  2230. }
  2231. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  2232. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  2233. // syntax of the function is:
  2234. //
  2235. // ATAN(number)
  2236. //
  2237. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  2238. if argsList.Len() != 1 {
  2239. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  2240. }
  2241. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2242. if arg.Type == ArgError {
  2243. return arg
  2244. }
  2245. return newNumberFormulaArg(math.Atan(arg.Number))
  2246. }
  2247. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  2248. // number. The syntax of the function is:
  2249. //
  2250. // ATANH(number)
  2251. //
  2252. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  2253. if argsList.Len() != 1 {
  2254. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  2255. }
  2256. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2257. if arg.Type == ArgError {
  2258. return arg
  2259. }
  2260. return newNumberFormulaArg(math.Atanh(arg.Number))
  2261. }
  2262. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  2263. // given set of x and y coordinates, and returns an angle, in radians, between
  2264. // -π/2 and +π/2. The syntax of the function is:
  2265. //
  2266. // ATAN2(x_num,y_num)
  2267. //
  2268. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  2269. if argsList.Len() != 2 {
  2270. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  2271. }
  2272. x := argsList.Back().Value.(formulaArg).ToNumber()
  2273. if x.Type == ArgError {
  2274. return x
  2275. }
  2276. y := argsList.Front().Value.(formulaArg).ToNumber()
  2277. if y.Type == ArgError {
  2278. return y
  2279. }
  2280. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  2281. }
  2282. // BASE function converts a number into a supplied base (radix), and returns a
  2283. // text representation of the calculated value. The syntax of the function is:
  2284. //
  2285. // BASE(number,radix,[min_length])
  2286. //
  2287. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  2288. if argsList.Len() < 2 {
  2289. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  2290. }
  2291. if argsList.Len() > 3 {
  2292. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  2293. }
  2294. var minLength int
  2295. var err error
  2296. number := argsList.Front().Value.(formulaArg).ToNumber()
  2297. if number.Type == ArgError {
  2298. return number
  2299. }
  2300. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2301. if radix.Type == ArgError {
  2302. return radix
  2303. }
  2304. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  2305. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  2306. }
  2307. if argsList.Len() > 2 {
  2308. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2309. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2310. }
  2311. }
  2312. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  2313. if len(result) < minLength {
  2314. result = strings.Repeat("0", minLength-len(result)) + result
  2315. }
  2316. return newStringFormulaArg(strings.ToUpper(result))
  2317. }
  2318. // CEILING function rounds a supplied number away from zero, to the nearest
  2319. // multiple of a given number. The syntax of the function is:
  2320. //
  2321. // CEILING(number,significance)
  2322. //
  2323. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  2324. if argsList.Len() == 0 {
  2325. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  2326. }
  2327. if argsList.Len() > 2 {
  2328. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  2329. }
  2330. number, significance, res := 0.0, 1.0, 0.0
  2331. n := argsList.Front().Value.(formulaArg).ToNumber()
  2332. if n.Type == ArgError {
  2333. return n
  2334. }
  2335. number = n.Number
  2336. if number < 0 {
  2337. significance = -1
  2338. }
  2339. if argsList.Len() > 1 {
  2340. s := argsList.Back().Value.(formulaArg).ToNumber()
  2341. if s.Type == ArgError {
  2342. return s
  2343. }
  2344. significance = s.Number
  2345. }
  2346. if significance < 0 && number > 0 {
  2347. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  2348. }
  2349. if argsList.Len() == 1 {
  2350. return newNumberFormulaArg(math.Ceil(number))
  2351. }
  2352. number, res = math.Modf(number / significance)
  2353. if res > 0 {
  2354. number++
  2355. }
  2356. return newNumberFormulaArg(number * significance)
  2357. }
  2358. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  2359. // of significance. The syntax of the function is:
  2360. //
  2361. // CEILING.MATH(number,[significance],[mode])
  2362. //
  2363. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  2364. if argsList.Len() == 0 {
  2365. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  2366. }
  2367. if argsList.Len() > 3 {
  2368. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  2369. }
  2370. number, significance, mode := 0.0, 1.0, 1.0
  2371. n := argsList.Front().Value.(formulaArg).ToNumber()
  2372. if n.Type == ArgError {
  2373. return n
  2374. }
  2375. number = n.Number
  2376. if number < 0 {
  2377. significance = -1
  2378. }
  2379. if argsList.Len() > 1 {
  2380. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2381. if s.Type == ArgError {
  2382. return s
  2383. }
  2384. significance = s.Number
  2385. }
  2386. if argsList.Len() == 1 {
  2387. return newNumberFormulaArg(math.Ceil(number))
  2388. }
  2389. if argsList.Len() > 2 {
  2390. m := argsList.Back().Value.(formulaArg).ToNumber()
  2391. if m.Type == ArgError {
  2392. return m
  2393. }
  2394. mode = m.Number
  2395. }
  2396. val, res := math.Modf(number / significance)
  2397. if res != 0 {
  2398. if number > 0 {
  2399. val++
  2400. } else if mode < 0 {
  2401. val--
  2402. }
  2403. }
  2404. return newNumberFormulaArg(val * significance)
  2405. }
  2406. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  2407. // number's sign), to the nearest multiple of a given number. The syntax of
  2408. // the function is:
  2409. //
  2410. // CEILING.PRECISE(number,[significance])
  2411. //
  2412. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  2413. if argsList.Len() == 0 {
  2414. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  2415. }
  2416. if argsList.Len() > 2 {
  2417. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  2418. }
  2419. number, significance := 0.0, 1.0
  2420. n := argsList.Front().Value.(formulaArg).ToNumber()
  2421. if n.Type == ArgError {
  2422. return n
  2423. }
  2424. number = n.Number
  2425. if number < 0 {
  2426. significance = -1
  2427. }
  2428. if argsList.Len() == 1 {
  2429. return newNumberFormulaArg(math.Ceil(number))
  2430. }
  2431. if argsList.Len() > 1 {
  2432. s := argsList.Back().Value.(formulaArg).ToNumber()
  2433. if s.Type == ArgError {
  2434. return s
  2435. }
  2436. significance = s.Number
  2437. significance = math.Abs(significance)
  2438. if significance == 0 {
  2439. return newNumberFormulaArg(significance)
  2440. }
  2441. }
  2442. val, res := math.Modf(number / significance)
  2443. if res != 0 {
  2444. if number > 0 {
  2445. val++
  2446. }
  2447. }
  2448. return newNumberFormulaArg(val * significance)
  2449. }
  2450. // COMBIN function calculates the number of combinations (in any order) of a
  2451. // given number objects from a set. The syntax of the function is:
  2452. //
  2453. // COMBIN(number,number_chosen)
  2454. //
  2455. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  2456. if argsList.Len() != 2 {
  2457. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  2458. }
  2459. number, chosen, val := 0.0, 0.0, 1.0
  2460. n := argsList.Front().Value.(formulaArg).ToNumber()
  2461. if n.Type == ArgError {
  2462. return n
  2463. }
  2464. number = n.Number
  2465. c := argsList.Back().Value.(formulaArg).ToNumber()
  2466. if c.Type == ArgError {
  2467. return c
  2468. }
  2469. chosen = c.Number
  2470. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2471. if chosen > number {
  2472. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  2473. }
  2474. if chosen == number || chosen == 0 {
  2475. return newNumberFormulaArg(1)
  2476. }
  2477. for c := float64(1); c <= chosen; c++ {
  2478. val *= (number + 1 - c) / c
  2479. }
  2480. return newNumberFormulaArg(math.Ceil(val))
  2481. }
  2482. // COMBINA function calculates the number of combinations, with repetitions,
  2483. // of a given number objects from a set. The syntax of the function is:
  2484. //
  2485. // COMBINA(number,number_chosen)
  2486. //
  2487. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  2488. if argsList.Len() != 2 {
  2489. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  2490. }
  2491. var number, chosen float64
  2492. n := argsList.Front().Value.(formulaArg).ToNumber()
  2493. if n.Type == ArgError {
  2494. return n
  2495. }
  2496. number = n.Number
  2497. c := argsList.Back().Value.(formulaArg).ToNumber()
  2498. if c.Type == ArgError {
  2499. return c
  2500. }
  2501. chosen = c.Number
  2502. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2503. if number < chosen {
  2504. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  2505. }
  2506. if number == 0 {
  2507. return newNumberFormulaArg(number)
  2508. }
  2509. args := list.New()
  2510. args.PushBack(formulaArg{
  2511. String: fmt.Sprintf("%g", number+chosen-1),
  2512. Type: ArgString,
  2513. })
  2514. args.PushBack(formulaArg{
  2515. String: fmt.Sprintf("%g", number-1),
  2516. Type: ArgString,
  2517. })
  2518. return fn.COMBIN(args)
  2519. }
  2520. // COS function calculates the cosine of a given angle. The syntax of the
  2521. // function is:
  2522. //
  2523. // COS(number)
  2524. //
  2525. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2526. if argsList.Len() != 1 {
  2527. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2528. }
  2529. val := argsList.Front().Value.(formulaArg).ToNumber()
  2530. if val.Type == ArgError {
  2531. return val
  2532. }
  2533. return newNumberFormulaArg(math.Cos(val.Number))
  2534. }
  2535. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2536. // The syntax of the function is:
  2537. //
  2538. // COSH(number)
  2539. //
  2540. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2541. if argsList.Len() != 1 {
  2542. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2543. }
  2544. val := argsList.Front().Value.(formulaArg).ToNumber()
  2545. if val.Type == ArgError {
  2546. return val
  2547. }
  2548. return newNumberFormulaArg(math.Cosh(val.Number))
  2549. }
  2550. // COT function calculates the cotangent of a given angle. The syntax of the
  2551. // function is:
  2552. //
  2553. // COT(number)
  2554. //
  2555. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2556. if argsList.Len() != 1 {
  2557. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2558. }
  2559. val := argsList.Front().Value.(formulaArg).ToNumber()
  2560. if val.Type == ArgError {
  2561. return val
  2562. }
  2563. if val.Number == 0 {
  2564. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2565. }
  2566. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2567. }
  2568. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2569. // angle. The syntax of the function is:
  2570. //
  2571. // COTH(number)
  2572. //
  2573. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2574. if argsList.Len() != 1 {
  2575. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2576. }
  2577. val := argsList.Front().Value.(formulaArg).ToNumber()
  2578. if val.Type == ArgError {
  2579. return val
  2580. }
  2581. if val.Number == 0 {
  2582. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2583. }
  2584. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2585. }
  2586. // CSC function calculates the cosecant of a given angle. The syntax of the
  2587. // function is:
  2588. //
  2589. // CSC(number)
  2590. //
  2591. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2592. if argsList.Len() != 1 {
  2593. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2594. }
  2595. val := argsList.Front().Value.(formulaArg).ToNumber()
  2596. if val.Type == ArgError {
  2597. return val
  2598. }
  2599. if val.Number == 0 {
  2600. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2601. }
  2602. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2603. }
  2604. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2605. // angle. The syntax of the function is:
  2606. //
  2607. // CSCH(number)
  2608. //
  2609. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2610. if argsList.Len() != 1 {
  2611. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2612. }
  2613. val := argsList.Front().Value.(formulaArg).ToNumber()
  2614. if val.Type == ArgError {
  2615. return val
  2616. }
  2617. if val.Number == 0 {
  2618. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2619. }
  2620. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2621. }
  2622. // DECIMAL function converts a text representation of a number in a specified
  2623. // base, into a decimal value. The syntax of the function is:
  2624. //
  2625. // DECIMAL(text,radix)
  2626. //
  2627. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2628. if argsList.Len() != 2 {
  2629. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2630. }
  2631. var text = argsList.Front().Value.(formulaArg).String
  2632. var radix int
  2633. var err error
  2634. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2635. if err != nil {
  2636. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2637. }
  2638. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2639. text = text[2:]
  2640. }
  2641. val, err := strconv.ParseInt(text, radix, 64)
  2642. if err != nil {
  2643. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2644. }
  2645. return newNumberFormulaArg(float64(val))
  2646. }
  2647. // DEGREES function converts radians into degrees. The syntax of the function
  2648. // is:
  2649. //
  2650. // DEGREES(angle)
  2651. //
  2652. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2653. if argsList.Len() != 1 {
  2654. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2655. }
  2656. val := argsList.Front().Value.(formulaArg).ToNumber()
  2657. if val.Type == ArgError {
  2658. return val
  2659. }
  2660. if val.Number == 0 {
  2661. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2662. }
  2663. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2664. }
  2665. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2666. // positive number up and a negative number down), to the next even number.
  2667. // The syntax of the function is:
  2668. //
  2669. // EVEN(number)
  2670. //
  2671. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2672. if argsList.Len() != 1 {
  2673. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2674. }
  2675. number := argsList.Front().Value.(formulaArg).ToNumber()
  2676. if number.Type == ArgError {
  2677. return number
  2678. }
  2679. sign := math.Signbit(number.Number)
  2680. m, frac := math.Modf(number.Number / 2)
  2681. val := m * 2
  2682. if frac != 0 {
  2683. if !sign {
  2684. val += 2
  2685. } else {
  2686. val -= 2
  2687. }
  2688. }
  2689. return newNumberFormulaArg(val)
  2690. }
  2691. // EXP function calculates the value of the mathematical constant e, raised to
  2692. // the power of a given number. The syntax of the function is:
  2693. //
  2694. // EXP(number)
  2695. //
  2696. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2697. if argsList.Len() != 1 {
  2698. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2699. }
  2700. number := argsList.Front().Value.(formulaArg).ToNumber()
  2701. if number.Type == ArgError {
  2702. return number
  2703. }
  2704. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2705. }
  2706. // fact returns the factorial of a supplied number.
  2707. func fact(number float64) float64 {
  2708. val := float64(1)
  2709. for i := float64(2); i <= number; i++ {
  2710. val *= i
  2711. }
  2712. return val
  2713. }
  2714. // FACT function returns the factorial of a supplied number. The syntax of the
  2715. // function is:
  2716. //
  2717. // FACT(number)
  2718. //
  2719. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2720. if argsList.Len() != 1 {
  2721. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2722. }
  2723. number := argsList.Front().Value.(formulaArg).ToNumber()
  2724. if number.Type == ArgError {
  2725. return number
  2726. }
  2727. if number.Number < 0 {
  2728. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2729. }
  2730. return newNumberFormulaArg(fact(number.Number))
  2731. }
  2732. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2733. // syntax of the function is:
  2734. //
  2735. // FACTDOUBLE(number)
  2736. //
  2737. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2738. if argsList.Len() != 1 {
  2739. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2740. }
  2741. val := 1.0
  2742. number := argsList.Front().Value.(formulaArg).ToNumber()
  2743. if number.Type == ArgError {
  2744. return number
  2745. }
  2746. if number.Number < 0 {
  2747. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2748. }
  2749. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2750. val *= i
  2751. }
  2752. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2753. }
  2754. // FLOOR function rounds a supplied number towards zero to the nearest
  2755. // multiple of a specified significance. The syntax of the function is:
  2756. //
  2757. // FLOOR(number,significance)
  2758. //
  2759. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2760. if argsList.Len() != 2 {
  2761. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2762. }
  2763. number := argsList.Front().Value.(formulaArg).ToNumber()
  2764. if number.Type == ArgError {
  2765. return number
  2766. }
  2767. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2768. if significance.Type == ArgError {
  2769. return significance
  2770. }
  2771. if significance.Number < 0 && number.Number >= 0 {
  2772. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2773. }
  2774. val := number.Number
  2775. val, res := math.Modf(val / significance.Number)
  2776. if res != 0 {
  2777. if number.Number < 0 && res < 0 {
  2778. val--
  2779. }
  2780. }
  2781. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2782. }
  2783. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2784. // of significance. The syntax of the function is:
  2785. //
  2786. // FLOOR.MATH(number,[significance],[mode])
  2787. //
  2788. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2789. if argsList.Len() == 0 {
  2790. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2791. }
  2792. if argsList.Len() > 3 {
  2793. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2794. }
  2795. significance, mode := 1.0, 1.0
  2796. number := argsList.Front().Value.(formulaArg).ToNumber()
  2797. if number.Type == ArgError {
  2798. return number
  2799. }
  2800. if number.Number < 0 {
  2801. significance = -1
  2802. }
  2803. if argsList.Len() > 1 {
  2804. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2805. if s.Type == ArgError {
  2806. return s
  2807. }
  2808. significance = s.Number
  2809. }
  2810. if argsList.Len() == 1 {
  2811. return newNumberFormulaArg(math.Floor(number.Number))
  2812. }
  2813. if argsList.Len() > 2 {
  2814. m := argsList.Back().Value.(formulaArg).ToNumber()
  2815. if m.Type == ArgError {
  2816. return m
  2817. }
  2818. mode = m.Number
  2819. }
  2820. val, res := math.Modf(number.Number / significance)
  2821. if res != 0 && number.Number < 0 && mode > 0 {
  2822. val--
  2823. }
  2824. return newNumberFormulaArg(val * significance)
  2825. }
  2826. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2827. // multiple of significance. The syntax of the function is:
  2828. //
  2829. // FLOOR.PRECISE(number,[significance])
  2830. //
  2831. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2832. if argsList.Len() == 0 {
  2833. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2834. }
  2835. if argsList.Len() > 2 {
  2836. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2837. }
  2838. var significance float64
  2839. number := argsList.Front().Value.(formulaArg).ToNumber()
  2840. if number.Type == ArgError {
  2841. return number
  2842. }
  2843. if number.Number < 0 {
  2844. significance = -1
  2845. }
  2846. if argsList.Len() == 1 {
  2847. return newNumberFormulaArg(math.Floor(number.Number))
  2848. }
  2849. if argsList.Len() > 1 {
  2850. s := argsList.Back().Value.(formulaArg).ToNumber()
  2851. if s.Type == ArgError {
  2852. return s
  2853. }
  2854. significance = s.Number
  2855. significance = math.Abs(significance)
  2856. if significance == 0 {
  2857. return newNumberFormulaArg(significance)
  2858. }
  2859. }
  2860. val, res := math.Modf(number.Number / significance)
  2861. if res != 0 {
  2862. if number.Number < 0 {
  2863. val--
  2864. }
  2865. }
  2866. return newNumberFormulaArg(val * significance)
  2867. }
  2868. // gcd returns the greatest common divisor of two supplied integers.
  2869. func gcd(x, y float64) float64 {
  2870. x, y = math.Trunc(x), math.Trunc(y)
  2871. if x == 0 {
  2872. return y
  2873. }
  2874. if y == 0 {
  2875. return x
  2876. }
  2877. for x != y {
  2878. if x > y {
  2879. x = x - y
  2880. } else {
  2881. y = y - x
  2882. }
  2883. }
  2884. return x
  2885. }
  2886. // GCD function returns the greatest common divisor of two or more supplied
  2887. // integers. The syntax of the function is:
  2888. //
  2889. // GCD(number1,[number2],...)
  2890. //
  2891. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2892. if argsList.Len() == 0 {
  2893. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2894. }
  2895. var (
  2896. val float64
  2897. nums = []float64{}
  2898. )
  2899. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2900. token := arg.Value.(formulaArg)
  2901. switch token.Type {
  2902. case ArgString:
  2903. num := token.ToNumber()
  2904. if num.Type == ArgError {
  2905. return num
  2906. }
  2907. val = num.Number
  2908. case ArgNumber:
  2909. val = token.Number
  2910. }
  2911. nums = append(nums, val)
  2912. }
  2913. if nums[0] < 0 {
  2914. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2915. }
  2916. if len(nums) == 1 {
  2917. return newNumberFormulaArg(nums[0])
  2918. }
  2919. cd := nums[0]
  2920. for i := 1; i < len(nums); i++ {
  2921. if nums[i] < 0 {
  2922. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2923. }
  2924. cd = gcd(cd, nums[i])
  2925. }
  2926. return newNumberFormulaArg(cd)
  2927. }
  2928. // INT function truncates a supplied number down to the closest integer. The
  2929. // syntax of the function is:
  2930. //
  2931. // INT(number)
  2932. //
  2933. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2934. if argsList.Len() != 1 {
  2935. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2936. }
  2937. number := argsList.Front().Value.(formulaArg).ToNumber()
  2938. if number.Type == ArgError {
  2939. return number
  2940. }
  2941. val, frac := math.Modf(number.Number)
  2942. if frac < 0 {
  2943. val--
  2944. }
  2945. return newNumberFormulaArg(val)
  2946. }
  2947. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2948. // number's sign), to the nearest multiple of a supplied significance. The
  2949. // syntax of the function is:
  2950. //
  2951. // ISO.CEILING(number,[significance])
  2952. //
  2953. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2954. if argsList.Len() == 0 {
  2955. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2956. }
  2957. if argsList.Len() > 2 {
  2958. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2959. }
  2960. var significance float64
  2961. number := argsList.Front().Value.(formulaArg).ToNumber()
  2962. if number.Type == ArgError {
  2963. return number
  2964. }
  2965. if number.Number < 0 {
  2966. significance = -1
  2967. }
  2968. if argsList.Len() == 1 {
  2969. return newNumberFormulaArg(math.Ceil(number.Number))
  2970. }
  2971. if argsList.Len() > 1 {
  2972. s := argsList.Back().Value.(formulaArg).ToNumber()
  2973. if s.Type == ArgError {
  2974. return s
  2975. }
  2976. significance = s.Number
  2977. significance = math.Abs(significance)
  2978. if significance == 0 {
  2979. return newNumberFormulaArg(significance)
  2980. }
  2981. }
  2982. val, res := math.Modf(number.Number / significance)
  2983. if res != 0 {
  2984. if number.Number > 0 {
  2985. val++
  2986. }
  2987. }
  2988. return newNumberFormulaArg(val * significance)
  2989. }
  2990. // lcm returns the least common multiple of two supplied integers.
  2991. func lcm(a, b float64) float64 {
  2992. a = math.Trunc(a)
  2993. b = math.Trunc(b)
  2994. if a == 0 && b == 0 {
  2995. return 0
  2996. }
  2997. return a * b / gcd(a, b)
  2998. }
  2999. // LCM function returns the least common multiple of two or more supplied
  3000. // integers. The syntax of the function is:
  3001. //
  3002. // LCM(number1,[number2],...)
  3003. //
  3004. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  3005. if argsList.Len() == 0 {
  3006. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  3007. }
  3008. var (
  3009. val float64
  3010. nums = []float64{}
  3011. err error
  3012. )
  3013. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3014. token := arg.Value.(formulaArg)
  3015. switch token.Type {
  3016. case ArgString:
  3017. if token.String == "" {
  3018. continue
  3019. }
  3020. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3021. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3022. }
  3023. case ArgNumber:
  3024. val = token.Number
  3025. }
  3026. nums = append(nums, val)
  3027. }
  3028. if nums[0] < 0 {
  3029. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  3030. }
  3031. if len(nums) == 1 {
  3032. return newNumberFormulaArg(nums[0])
  3033. }
  3034. cm := nums[0]
  3035. for i := 1; i < len(nums); i++ {
  3036. if nums[i] < 0 {
  3037. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  3038. }
  3039. cm = lcm(cm, nums[i])
  3040. }
  3041. return newNumberFormulaArg(cm)
  3042. }
  3043. // LN function calculates the natural logarithm of a given number. The syntax
  3044. // of the function is:
  3045. //
  3046. // LN(number)
  3047. //
  3048. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  3049. if argsList.Len() != 1 {
  3050. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  3051. }
  3052. number := argsList.Front().Value.(formulaArg).ToNumber()
  3053. if number.Type == ArgError {
  3054. return number
  3055. }
  3056. return newNumberFormulaArg(math.Log(number.Number))
  3057. }
  3058. // LOG function calculates the logarithm of a given number, to a supplied
  3059. // base. The syntax of the function is:
  3060. //
  3061. // LOG(number,[base])
  3062. //
  3063. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  3064. if argsList.Len() == 0 {
  3065. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  3066. }
  3067. if argsList.Len() > 2 {
  3068. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  3069. }
  3070. base := 10.0
  3071. number := argsList.Front().Value.(formulaArg).ToNumber()
  3072. if number.Type == ArgError {
  3073. return number
  3074. }
  3075. if argsList.Len() > 1 {
  3076. b := argsList.Back().Value.(formulaArg).ToNumber()
  3077. if b.Type == ArgError {
  3078. return b
  3079. }
  3080. base = b.Number
  3081. }
  3082. if number.Number == 0 {
  3083. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  3084. }
  3085. if base == 0 {
  3086. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  3087. }
  3088. if base == 1 {
  3089. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3090. }
  3091. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  3092. }
  3093. // LOG10 function calculates the base 10 logarithm of a given number. The
  3094. // syntax of the function is:
  3095. //
  3096. // LOG10(number)
  3097. //
  3098. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  3099. if argsList.Len() != 1 {
  3100. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  3101. }
  3102. number := argsList.Front().Value.(formulaArg).ToNumber()
  3103. if number.Type == ArgError {
  3104. return number
  3105. }
  3106. return newNumberFormulaArg(math.Log10(number.Number))
  3107. }
  3108. // minor function implement a minor of a matrix A is the determinant of some
  3109. // smaller square matrix.
  3110. func minor(sqMtx [][]float64, idx int) [][]float64 {
  3111. ret := [][]float64{}
  3112. for i := range sqMtx {
  3113. if i == 0 {
  3114. continue
  3115. }
  3116. row := []float64{}
  3117. for j := range sqMtx {
  3118. if j == idx {
  3119. continue
  3120. }
  3121. row = append(row, sqMtx[i][j])
  3122. }
  3123. ret = append(ret, row)
  3124. }
  3125. return ret
  3126. }
  3127. // det determinant of the 2x2 matrix.
  3128. func det(sqMtx [][]float64) float64 {
  3129. if len(sqMtx) == 2 {
  3130. m00 := sqMtx[0][0]
  3131. m01 := sqMtx[0][1]
  3132. m10 := sqMtx[1][0]
  3133. m11 := sqMtx[1][1]
  3134. return m00*m11 - m10*m01
  3135. }
  3136. var res, sgn float64 = 0, 1
  3137. for j := range sqMtx {
  3138. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  3139. sgn *= -1
  3140. }
  3141. return res
  3142. }
  3143. // MDETERM calculates the determinant of a square matrix. The
  3144. // syntax of the function is:
  3145. //
  3146. // MDETERM(array)
  3147. //
  3148. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  3149. var (
  3150. num float64
  3151. numMtx = [][]float64{}
  3152. err error
  3153. strMtx [][]formulaArg
  3154. )
  3155. if argsList.Len() < 1 {
  3156. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  3157. }
  3158. strMtx = argsList.Front().Value.(formulaArg).Matrix
  3159. var rows = len(strMtx)
  3160. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  3161. if len(row) != rows {
  3162. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3163. }
  3164. numRow := []float64{}
  3165. for _, ele := range row {
  3166. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  3167. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3168. }
  3169. numRow = append(numRow, num)
  3170. }
  3171. numMtx = append(numMtx, numRow)
  3172. }
  3173. return newNumberFormulaArg(det(numMtx))
  3174. }
  3175. // MOD function returns the remainder of a division between two supplied
  3176. // numbers. The syntax of the function is:
  3177. //
  3178. // MOD(number,divisor)
  3179. //
  3180. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  3181. if argsList.Len() != 2 {
  3182. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  3183. }
  3184. number := argsList.Front().Value.(formulaArg).ToNumber()
  3185. if number.Type == ArgError {
  3186. return number
  3187. }
  3188. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  3189. if divisor.Type == ArgError {
  3190. return divisor
  3191. }
  3192. if divisor.Number == 0 {
  3193. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  3194. }
  3195. trunc, rem := math.Modf(number.Number / divisor.Number)
  3196. if rem < 0 {
  3197. trunc--
  3198. }
  3199. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  3200. }
  3201. // MROUND function rounds a supplied number up or down to the nearest multiple
  3202. // of a given number. The syntax of the function is:
  3203. //
  3204. // MROUND(number,multiple)
  3205. //
  3206. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  3207. if argsList.Len() != 2 {
  3208. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  3209. }
  3210. n := argsList.Front().Value.(formulaArg).ToNumber()
  3211. if n.Type == ArgError {
  3212. return n
  3213. }
  3214. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  3215. if multiple.Type == ArgError {
  3216. return multiple
  3217. }
  3218. if multiple.Number == 0 {
  3219. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3220. }
  3221. if multiple.Number < 0 && n.Number > 0 ||
  3222. multiple.Number > 0 && n.Number < 0 {
  3223. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3224. }
  3225. number, res := math.Modf(n.Number / multiple.Number)
  3226. if math.Trunc(res+0.5) > 0 {
  3227. number++
  3228. }
  3229. return newNumberFormulaArg(number * multiple.Number)
  3230. }
  3231. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  3232. // supplied values to the product of factorials of those values. The syntax of
  3233. // the function is:
  3234. //
  3235. // MULTINOMIAL(number1,[number2],...)
  3236. //
  3237. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  3238. val, num, denom := 0.0, 0.0, 1.0
  3239. var err error
  3240. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3241. token := arg.Value.(formulaArg)
  3242. switch token.Type {
  3243. case ArgString:
  3244. if token.String == "" {
  3245. continue
  3246. }
  3247. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3248. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3249. }
  3250. case ArgNumber:
  3251. val = token.Number
  3252. }
  3253. num += val
  3254. denom *= fact(val)
  3255. }
  3256. return newNumberFormulaArg(fact(num) / denom)
  3257. }
  3258. // MUNIT function returns the unit matrix for a specified dimension. The
  3259. // syntax of the function is:
  3260. //
  3261. // MUNIT(dimension)
  3262. //
  3263. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  3264. if argsList.Len() != 1 {
  3265. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  3266. }
  3267. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  3268. if dimension.Type == ArgError || dimension.Number < 0 {
  3269. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  3270. }
  3271. matrix := make([][]formulaArg, 0, int(dimension.Number))
  3272. for i := 0; i < int(dimension.Number); i++ {
  3273. row := make([]formulaArg, int(dimension.Number))
  3274. for j := 0; j < int(dimension.Number); j++ {
  3275. if i == j {
  3276. row[j] = newNumberFormulaArg(1.0)
  3277. } else {
  3278. row[j] = newNumberFormulaArg(0.0)
  3279. }
  3280. }
  3281. matrix = append(matrix, row)
  3282. }
  3283. return newMatrixFormulaArg(matrix)
  3284. }
  3285. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  3286. // number up and a negative number down), to the next odd number. The syntax
  3287. // of the function is:
  3288. //
  3289. // ODD(number)
  3290. //
  3291. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  3292. if argsList.Len() != 1 {
  3293. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  3294. }
  3295. number := argsList.Back().Value.(formulaArg).ToNumber()
  3296. if number.Type == ArgError {
  3297. return number
  3298. }
  3299. if number.Number == 0 {
  3300. return newNumberFormulaArg(1)
  3301. }
  3302. sign := math.Signbit(number.Number)
  3303. m, frac := math.Modf((number.Number - 1) / 2)
  3304. val := m*2 + 1
  3305. if frac != 0 {
  3306. if !sign {
  3307. val += 2
  3308. } else {
  3309. val -= 2
  3310. }
  3311. }
  3312. return newNumberFormulaArg(val)
  3313. }
  3314. // PI function returns the value of the mathematical constant π (pi), accurate
  3315. // to 15 digits (14 decimal places). The syntax of the function is:
  3316. //
  3317. // PI()
  3318. //
  3319. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  3320. if argsList.Len() != 0 {
  3321. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  3322. }
  3323. return newNumberFormulaArg(math.Pi)
  3324. }
  3325. // POWER function calculates a given number, raised to a supplied power.
  3326. // The syntax of the function is:
  3327. //
  3328. // POWER(number,power)
  3329. //
  3330. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  3331. if argsList.Len() != 2 {
  3332. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  3333. }
  3334. x := argsList.Front().Value.(formulaArg).ToNumber()
  3335. if x.Type == ArgError {
  3336. return x
  3337. }
  3338. y := argsList.Back().Value.(formulaArg).ToNumber()
  3339. if y.Type == ArgError {
  3340. return y
  3341. }
  3342. if x.Number == 0 && y.Number == 0 {
  3343. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3344. }
  3345. if x.Number == 0 && y.Number < 0 {
  3346. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3347. }
  3348. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  3349. }
  3350. // PRODUCT function returns the product (multiplication) of a supplied set of
  3351. // numerical values. The syntax of the function is:
  3352. //
  3353. // PRODUCT(number1,[number2],...)
  3354. //
  3355. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  3356. val, product := 0.0, 1.0
  3357. var err error
  3358. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3359. token := arg.Value.(formulaArg)
  3360. switch token.Type {
  3361. case ArgUnknown:
  3362. continue
  3363. case ArgString:
  3364. if token.String == "" {
  3365. continue
  3366. }
  3367. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3368. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3369. }
  3370. product = product * val
  3371. case ArgNumber:
  3372. product = product * token.Number
  3373. case ArgMatrix:
  3374. for _, row := range token.Matrix {
  3375. for _, value := range row {
  3376. if value.String == "" {
  3377. continue
  3378. }
  3379. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3380. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3381. }
  3382. product = product * val
  3383. }
  3384. }
  3385. }
  3386. }
  3387. return newNumberFormulaArg(product)
  3388. }
  3389. // QUOTIENT function returns the integer portion of a division between two
  3390. // supplied numbers. The syntax of the function is:
  3391. //
  3392. // QUOTIENT(numerator,denominator)
  3393. //
  3394. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  3395. if argsList.Len() != 2 {
  3396. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  3397. }
  3398. x := argsList.Front().Value.(formulaArg).ToNumber()
  3399. if x.Type == ArgError {
  3400. return x
  3401. }
  3402. y := argsList.Back().Value.(formulaArg).ToNumber()
  3403. if y.Type == ArgError {
  3404. return y
  3405. }
  3406. if y.Number == 0 {
  3407. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3408. }
  3409. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  3410. }
  3411. // RADIANS function converts radians into degrees. The syntax of the function is:
  3412. //
  3413. // RADIANS(angle)
  3414. //
  3415. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  3416. if argsList.Len() != 1 {
  3417. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  3418. }
  3419. angle := argsList.Front().Value.(formulaArg).ToNumber()
  3420. if angle.Type == ArgError {
  3421. return angle
  3422. }
  3423. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  3424. }
  3425. // RAND function generates a random real number between 0 and 1. The syntax of
  3426. // the function is:
  3427. //
  3428. // RAND()
  3429. //
  3430. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  3431. if argsList.Len() != 0 {
  3432. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  3433. }
  3434. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  3435. }
  3436. // RANDBETWEEN function generates a random integer between two supplied
  3437. // integers. The syntax of the function is:
  3438. //
  3439. // RANDBETWEEN(bottom,top)
  3440. //
  3441. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  3442. if argsList.Len() != 2 {
  3443. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  3444. }
  3445. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  3446. if bottom.Type == ArgError {
  3447. return bottom
  3448. }
  3449. top := argsList.Back().Value.(formulaArg).ToNumber()
  3450. if top.Type == ArgError {
  3451. return top
  3452. }
  3453. if top.Number < bottom.Number {
  3454. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3455. }
  3456. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  3457. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  3458. }
  3459. // romanNumerals defined a numeral system that originated in ancient Rome and
  3460. // remained the usual way of writing numbers throughout Europe well into the
  3461. // Late Middle Ages.
  3462. type romanNumerals struct {
  3463. n float64
  3464. s string
  3465. }
  3466. var romanTable = [][]romanNumerals{
  3467. {
  3468. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  3469. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3470. },
  3471. {
  3472. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  3473. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3474. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3475. },
  3476. {
  3477. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  3478. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  3479. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3480. },
  3481. {
  3482. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  3483. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  3484. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  3485. {5, "V"}, {4, "IV"}, {1, "I"},
  3486. },
  3487. {
  3488. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  3489. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  3490. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3491. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3492. },
  3493. }
  3494. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  3495. // integer, the function returns a text string depicting the roman numeral
  3496. // form of the number. The syntax of the function is:
  3497. //
  3498. // ROMAN(number,[form])
  3499. //
  3500. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  3501. if argsList.Len() == 0 {
  3502. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  3503. }
  3504. if argsList.Len() > 2 {
  3505. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  3506. }
  3507. var form int
  3508. number := argsList.Front().Value.(formulaArg).ToNumber()
  3509. if number.Type == ArgError {
  3510. return number
  3511. }
  3512. if argsList.Len() > 1 {
  3513. f := argsList.Back().Value.(formulaArg).ToNumber()
  3514. if f.Type == ArgError {
  3515. return f
  3516. }
  3517. form = int(f.Number)
  3518. if form < 0 {
  3519. form = 0
  3520. } else if form > 4 {
  3521. form = 4
  3522. }
  3523. }
  3524. decimalTable := romanTable[0]
  3525. switch form {
  3526. case 1:
  3527. decimalTable = romanTable[1]
  3528. case 2:
  3529. decimalTable = romanTable[2]
  3530. case 3:
  3531. decimalTable = romanTable[3]
  3532. case 4:
  3533. decimalTable = romanTable[4]
  3534. }
  3535. val := math.Trunc(number.Number)
  3536. buf := bytes.Buffer{}
  3537. for _, r := range decimalTable {
  3538. for val >= r.n {
  3539. buf.WriteString(r.s)
  3540. val -= r.n
  3541. }
  3542. }
  3543. return newStringFormulaArg(buf.String())
  3544. }
  3545. type roundMode byte
  3546. const (
  3547. closest roundMode = iota
  3548. down
  3549. up
  3550. )
  3551. // round rounds a supplied number up or down.
  3552. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3553. var significance float64
  3554. if digits > 0 {
  3555. significance = math.Pow(1/10.0, digits)
  3556. } else {
  3557. significance = math.Pow(10.0, -digits)
  3558. }
  3559. val, res := math.Modf(number / significance)
  3560. switch mode {
  3561. case closest:
  3562. const eps = 0.499999999
  3563. if res >= eps {
  3564. val++
  3565. } else if res <= -eps {
  3566. val--
  3567. }
  3568. case down:
  3569. case up:
  3570. if res > 0 {
  3571. val++
  3572. } else if res < 0 {
  3573. val--
  3574. }
  3575. }
  3576. return val * significance
  3577. }
  3578. // ROUND function rounds a supplied number up or down, to a specified number
  3579. // of decimal places. The syntax of the function is:
  3580. //
  3581. // ROUND(number,num_digits)
  3582. //
  3583. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3584. if argsList.Len() != 2 {
  3585. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3586. }
  3587. number := argsList.Front().Value.(formulaArg).ToNumber()
  3588. if number.Type == ArgError {
  3589. return number
  3590. }
  3591. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3592. if digits.Type == ArgError {
  3593. return digits
  3594. }
  3595. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3596. }
  3597. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3598. // specified number of decimal places. The syntax of the function is:
  3599. //
  3600. // ROUNDDOWN(number,num_digits)
  3601. //
  3602. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3603. if argsList.Len() != 2 {
  3604. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3605. }
  3606. number := argsList.Front().Value.(formulaArg).ToNumber()
  3607. if number.Type == ArgError {
  3608. return number
  3609. }
  3610. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3611. if digits.Type == ArgError {
  3612. return digits
  3613. }
  3614. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3615. }
  3616. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3617. // specified number of decimal places. The syntax of the function is:
  3618. //
  3619. // ROUNDUP(number,num_digits)
  3620. //
  3621. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3622. if argsList.Len() != 2 {
  3623. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3624. }
  3625. number := argsList.Front().Value.(formulaArg).ToNumber()
  3626. if number.Type == ArgError {
  3627. return number
  3628. }
  3629. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3630. if digits.Type == ArgError {
  3631. return digits
  3632. }
  3633. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3634. }
  3635. // SEC function calculates the secant of a given angle. The syntax of the
  3636. // function is:
  3637. //
  3638. // SEC(number)
  3639. //
  3640. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3641. if argsList.Len() != 1 {
  3642. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3643. }
  3644. number := argsList.Front().Value.(formulaArg).ToNumber()
  3645. if number.Type == ArgError {
  3646. return number
  3647. }
  3648. return newNumberFormulaArg(math.Cos(number.Number))
  3649. }
  3650. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3651. // The syntax of the function is:
  3652. //
  3653. // SECH(number)
  3654. //
  3655. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3656. if argsList.Len() != 1 {
  3657. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3658. }
  3659. number := argsList.Front().Value.(formulaArg).ToNumber()
  3660. if number.Type == ArgError {
  3661. return number
  3662. }
  3663. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3664. }
  3665. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3666. // number. I.e. if the number is positive, the Sign function returns +1, if
  3667. // the number is negative, the function returns -1 and if the number is 0
  3668. // (zero), the function returns 0. The syntax of the function is:
  3669. //
  3670. // SIGN(number)
  3671. //
  3672. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3673. if argsList.Len() != 1 {
  3674. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3675. }
  3676. val := argsList.Front().Value.(formulaArg).ToNumber()
  3677. if val.Type == ArgError {
  3678. return val
  3679. }
  3680. if val.Number < 0 {
  3681. return newNumberFormulaArg(-1)
  3682. }
  3683. if val.Number > 0 {
  3684. return newNumberFormulaArg(1)
  3685. }
  3686. return newNumberFormulaArg(0)
  3687. }
  3688. // SIN function calculates the sine of a given angle. The syntax of the
  3689. // function is:
  3690. //
  3691. // SIN(number)
  3692. //
  3693. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3694. if argsList.Len() != 1 {
  3695. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3696. }
  3697. number := argsList.Front().Value.(formulaArg).ToNumber()
  3698. if number.Type == ArgError {
  3699. return number
  3700. }
  3701. return newNumberFormulaArg(math.Sin(number.Number))
  3702. }
  3703. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3704. // The syntax of the function is:
  3705. //
  3706. // SINH(number)
  3707. //
  3708. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3709. if argsList.Len() != 1 {
  3710. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3711. }
  3712. number := argsList.Front().Value.(formulaArg).ToNumber()
  3713. if number.Type == ArgError {
  3714. return number
  3715. }
  3716. return newNumberFormulaArg(math.Sinh(number.Number))
  3717. }
  3718. // SQRT function calculates the positive square root of a supplied number. The
  3719. // syntax of the function is:
  3720. //
  3721. // SQRT(number)
  3722. //
  3723. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3724. if argsList.Len() != 1 {
  3725. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3726. }
  3727. value := argsList.Front().Value.(formulaArg).ToNumber()
  3728. if value.Type == ArgError {
  3729. return value
  3730. }
  3731. if value.Number < 0 {
  3732. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3733. }
  3734. return newNumberFormulaArg(math.Sqrt(value.Number))
  3735. }
  3736. // SQRTPI function returns the square root of a supplied number multiplied by
  3737. // the mathematical constant, π. The syntax of the function is:
  3738. //
  3739. // SQRTPI(number)
  3740. //
  3741. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3742. if argsList.Len() != 1 {
  3743. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3744. }
  3745. number := argsList.Front().Value.(formulaArg).ToNumber()
  3746. if number.Type == ArgError {
  3747. return number
  3748. }
  3749. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3750. }
  3751. // STDEV function calculates the sample standard deviation of a supplied set
  3752. // of values. The syntax of the function is:
  3753. //
  3754. // STDEV(number1,[number2],...)
  3755. //
  3756. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3757. if argsList.Len() < 1 {
  3758. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3759. }
  3760. return fn.stdev(false, argsList)
  3761. }
  3762. // STDEVdotS function calculates the sample standard deviation of a supplied
  3763. // set of values. The syntax of the function is:
  3764. //
  3765. // STDEV.S(number1,[number2],...)
  3766. //
  3767. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3768. if argsList.Len() < 1 {
  3769. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3770. }
  3771. return fn.stdev(false, argsList)
  3772. }
  3773. // STDEVA function estimates standard deviation based on a sample. The
  3774. // standard deviation is a measure of how widely values are dispersed from
  3775. // the average value (the mean). The syntax of the function is:
  3776. //
  3777. // STDEVA(number1,[number2],...)
  3778. //
  3779. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3780. if argsList.Len() < 1 {
  3781. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3782. }
  3783. return fn.stdev(true, argsList)
  3784. }
  3785. // stdev is an implementation of the formula function STDEV and STDEVA.
  3786. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3787. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3788. if result == -1 {
  3789. result = math.Pow((n.Number - m.Number), 2)
  3790. } else {
  3791. result += math.Pow((n.Number - m.Number), 2)
  3792. }
  3793. count++
  3794. return result, count
  3795. }
  3796. count, result := -1.0, -1.0
  3797. var mean formulaArg
  3798. if stdeva {
  3799. mean = fn.AVERAGEA(argsList)
  3800. } else {
  3801. mean = fn.AVERAGE(argsList)
  3802. }
  3803. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3804. token := arg.Value.(formulaArg)
  3805. switch token.Type {
  3806. case ArgString, ArgNumber:
  3807. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3808. continue
  3809. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3810. num := token.ToBool()
  3811. if num.Type == ArgNumber {
  3812. result, count = pow(result, count, num, mean)
  3813. continue
  3814. }
  3815. } else {
  3816. num := token.ToNumber()
  3817. if num.Type == ArgNumber {
  3818. result, count = pow(result, count, num, mean)
  3819. }
  3820. }
  3821. case ArgList, ArgMatrix:
  3822. for _, row := range token.ToList() {
  3823. if row.Type == ArgNumber || row.Type == ArgString {
  3824. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3825. continue
  3826. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3827. num := row.ToBool()
  3828. if num.Type == ArgNumber {
  3829. result, count = pow(result, count, num, mean)
  3830. continue
  3831. }
  3832. } else {
  3833. num := row.ToNumber()
  3834. if num.Type == ArgNumber {
  3835. result, count = pow(result, count, num, mean)
  3836. }
  3837. }
  3838. }
  3839. }
  3840. }
  3841. }
  3842. if count > 0 && result >= 0 {
  3843. return newNumberFormulaArg(math.Sqrt(result / count))
  3844. }
  3845. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3846. }
  3847. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3848. // the Cumulative Poisson Probability Function for a supplied set of
  3849. // parameters. The syntax of the function is:
  3850. //
  3851. // POISSON.DIST(x,mean,cumulative)
  3852. //
  3853. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3854. if argsList.Len() != 3 {
  3855. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3856. }
  3857. return fn.POISSON(argsList)
  3858. }
  3859. // POISSON function calculates the Poisson Probability Mass Function or the
  3860. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3861. // The syntax of the function is:
  3862. //
  3863. // POISSON(x,mean,cumulative)
  3864. //
  3865. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3866. if argsList.Len() != 3 {
  3867. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3868. }
  3869. var x, mean, cumulative formulaArg
  3870. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3871. return x
  3872. }
  3873. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3874. return mean
  3875. }
  3876. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3877. return cumulative
  3878. }
  3879. if x.Number < 0 || mean.Number <= 0 {
  3880. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3881. }
  3882. if cumulative.Number == 1 {
  3883. summer := 0.0
  3884. floor := math.Floor(x.Number)
  3885. for i := 0; i <= int(floor); i++ {
  3886. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3887. }
  3888. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3889. }
  3890. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3891. }
  3892. // SUM function adds together a supplied set of numbers and returns the sum of
  3893. // these values. The syntax of the function is:
  3894. //
  3895. // SUM(number1,[number2],...)
  3896. //
  3897. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3898. var sum float64
  3899. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3900. token := arg.Value.(formulaArg)
  3901. switch token.Type {
  3902. case ArgUnknown:
  3903. continue
  3904. case ArgString:
  3905. if num := token.ToNumber(); num.Type == ArgNumber {
  3906. sum += num.Number
  3907. }
  3908. case ArgNumber:
  3909. sum += token.Number
  3910. case ArgMatrix:
  3911. for _, row := range token.Matrix {
  3912. for _, value := range row {
  3913. if num := value.ToNumber(); num.Type == ArgNumber {
  3914. sum += num.Number
  3915. }
  3916. }
  3917. }
  3918. }
  3919. }
  3920. return newNumberFormulaArg(sum)
  3921. }
  3922. // SUMIF function finds the values in a supplied array, that satisfy a given
  3923. // criteria, and returns the sum of the corresponding values in a second
  3924. // supplied array. The syntax of the function is:
  3925. //
  3926. // SUMIF(range,criteria,[sum_range])
  3927. //
  3928. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3929. if argsList.Len() < 2 {
  3930. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3931. }
  3932. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3933. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3934. var sumRange [][]formulaArg
  3935. if argsList.Len() == 3 {
  3936. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3937. }
  3938. var sum, val float64
  3939. var err error
  3940. for rowIdx, row := range rangeMtx {
  3941. for colIdx, col := range row {
  3942. var ok bool
  3943. fromVal := col.String
  3944. if col.String == "" {
  3945. continue
  3946. }
  3947. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3948. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3949. }
  3950. if ok {
  3951. if argsList.Len() == 3 {
  3952. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3953. continue
  3954. }
  3955. fromVal = sumRange[rowIdx][colIdx].String
  3956. }
  3957. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3958. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3959. }
  3960. sum += val
  3961. }
  3962. }
  3963. }
  3964. return newNumberFormulaArg(sum)
  3965. }
  3966. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3967. // syntax of the function is:
  3968. //
  3969. // SUMSQ(number1,[number2],...)
  3970. //
  3971. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3972. var val, sq float64
  3973. var err error
  3974. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3975. token := arg.Value.(formulaArg)
  3976. switch token.Type {
  3977. case ArgString:
  3978. if token.String == "" {
  3979. continue
  3980. }
  3981. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3982. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3983. }
  3984. sq += val * val
  3985. case ArgNumber:
  3986. sq += token.Number
  3987. case ArgMatrix:
  3988. for _, row := range token.Matrix {
  3989. for _, value := range row {
  3990. if value.String == "" {
  3991. continue
  3992. }
  3993. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3994. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3995. }
  3996. sq += val * val
  3997. }
  3998. }
  3999. }
  4000. }
  4001. return newNumberFormulaArg(sq)
  4002. }
  4003. // TAN function calculates the tangent of a given angle. The syntax of the
  4004. // function is:
  4005. //
  4006. // TAN(number)
  4007. //
  4008. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  4009. if argsList.Len() != 1 {
  4010. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  4011. }
  4012. number := argsList.Front().Value.(formulaArg).ToNumber()
  4013. if number.Type == ArgError {
  4014. return number
  4015. }
  4016. return newNumberFormulaArg(math.Tan(number.Number))
  4017. }
  4018. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  4019. // number. The syntax of the function is:
  4020. //
  4021. // TANH(number)
  4022. //
  4023. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  4024. if argsList.Len() != 1 {
  4025. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  4026. }
  4027. number := argsList.Front().Value.(formulaArg).ToNumber()
  4028. if number.Type == ArgError {
  4029. return number
  4030. }
  4031. return newNumberFormulaArg(math.Tanh(number.Number))
  4032. }
  4033. // TRUNC function truncates a supplied number to a specified number of decimal
  4034. // places. The syntax of the function is:
  4035. //
  4036. // TRUNC(number,[number_digits])
  4037. //
  4038. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  4039. if argsList.Len() == 0 {
  4040. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  4041. }
  4042. var digits, adjust, rtrim float64
  4043. var err error
  4044. number := argsList.Front().Value.(formulaArg).ToNumber()
  4045. if number.Type == ArgError {
  4046. return number
  4047. }
  4048. if argsList.Len() > 1 {
  4049. d := argsList.Back().Value.(formulaArg).ToNumber()
  4050. if d.Type == ArgError {
  4051. return d
  4052. }
  4053. digits = d.Number
  4054. digits = math.Floor(digits)
  4055. }
  4056. adjust = math.Pow(10, digits)
  4057. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  4058. if x != 0 {
  4059. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  4060. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4061. }
  4062. }
  4063. if (digits > 0) && (rtrim < adjust/10) {
  4064. return newNumberFormulaArg(number.Number)
  4065. }
  4066. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  4067. }
  4068. // Statistical Functions
  4069. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  4070. // The syntax of the function is:
  4071. //
  4072. // AVERAGE(number1,[number2],...)
  4073. //
  4074. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  4075. args := []formulaArg{}
  4076. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4077. args = append(args, arg.Value.(formulaArg))
  4078. }
  4079. count, sum := fn.countSum(false, args)
  4080. if count == 0 {
  4081. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  4082. }
  4083. return newNumberFormulaArg(sum / count)
  4084. }
  4085. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  4086. // with text cell and zero values. The syntax of the function is:
  4087. //
  4088. // AVERAGEA(number1,[number2],...)
  4089. //
  4090. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  4091. args := []formulaArg{}
  4092. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4093. args = append(args, arg.Value.(formulaArg))
  4094. }
  4095. count, sum := fn.countSum(true, args)
  4096. if count == 0 {
  4097. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  4098. }
  4099. return newNumberFormulaArg(sum / count)
  4100. }
  4101. // countSum get count and sum for a formula arguments array.
  4102. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  4103. for _, arg := range args {
  4104. switch arg.Type {
  4105. case ArgNumber:
  4106. if countText || !arg.Boolean {
  4107. sum += arg.Number
  4108. count++
  4109. }
  4110. case ArgString:
  4111. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4112. continue
  4113. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4114. num := arg.ToBool()
  4115. if num.Type == ArgNumber {
  4116. count++
  4117. sum += num.Number
  4118. continue
  4119. }
  4120. }
  4121. num := arg.ToNumber()
  4122. if countText && num.Type == ArgError && arg.String != "" {
  4123. count++
  4124. }
  4125. if num.Type == ArgNumber {
  4126. sum += num.Number
  4127. count++
  4128. }
  4129. case ArgList, ArgMatrix:
  4130. cnt, summary := fn.countSum(countText, arg.ToList())
  4131. sum += summary
  4132. count += cnt
  4133. }
  4134. }
  4135. return
  4136. }
  4137. // COUNT function returns the count of numeric values in a supplied set of
  4138. // cells or values. This count includes both numbers and dates. The syntax of
  4139. // the function is:
  4140. //
  4141. // COUNT(value1,[value2],...)
  4142. //
  4143. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  4144. var count int
  4145. for token := argsList.Front(); token != nil; token = token.Next() {
  4146. arg := token.Value.(formulaArg)
  4147. switch arg.Type {
  4148. case ArgString:
  4149. if arg.ToNumber().Type != ArgError {
  4150. count++
  4151. }
  4152. case ArgNumber:
  4153. count++
  4154. case ArgMatrix:
  4155. for _, row := range arg.Matrix {
  4156. for _, value := range row {
  4157. if value.ToNumber().Type != ArgError {
  4158. count++
  4159. }
  4160. }
  4161. }
  4162. }
  4163. }
  4164. return newNumberFormulaArg(float64(count))
  4165. }
  4166. // COUNTA function returns the number of non-blanks within a supplied set of
  4167. // cells or values. The syntax of the function is:
  4168. //
  4169. // COUNTA(value1,[value2],...)
  4170. //
  4171. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  4172. var count int
  4173. for token := argsList.Front(); token != nil; token = token.Next() {
  4174. arg := token.Value.(formulaArg)
  4175. switch arg.Type {
  4176. case ArgString:
  4177. if arg.String != "" {
  4178. count++
  4179. }
  4180. case ArgNumber:
  4181. count++
  4182. case ArgMatrix:
  4183. for _, row := range arg.ToList() {
  4184. switch row.Type {
  4185. case ArgString:
  4186. if row.String != "" {
  4187. count++
  4188. }
  4189. case ArgNumber:
  4190. count++
  4191. }
  4192. }
  4193. }
  4194. }
  4195. return newNumberFormulaArg(float64(count))
  4196. }
  4197. // COUNTBLANK function returns the number of blank cells in a supplied range.
  4198. // The syntax of the function is:
  4199. //
  4200. // COUNTBLANK(range)
  4201. //
  4202. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  4203. if argsList.Len() != 1 {
  4204. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  4205. }
  4206. var count int
  4207. token := argsList.Front().Value.(formulaArg)
  4208. switch token.Type {
  4209. case ArgString:
  4210. if token.String == "" {
  4211. count++
  4212. }
  4213. case ArgList, ArgMatrix:
  4214. for _, row := range token.ToList() {
  4215. switch row.Type {
  4216. case ArgString:
  4217. if row.String == "" {
  4218. count++
  4219. }
  4220. case ArgEmpty:
  4221. count++
  4222. }
  4223. }
  4224. case ArgEmpty:
  4225. count++
  4226. }
  4227. return newNumberFormulaArg(float64(count))
  4228. }
  4229. // FISHER function calculates the Fisher Transformation for a supplied value.
  4230. // The syntax of the function is:
  4231. //
  4232. // FISHER(x)
  4233. //
  4234. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  4235. if argsList.Len() != 1 {
  4236. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4237. }
  4238. token := argsList.Front().Value.(formulaArg)
  4239. switch token.Type {
  4240. case ArgString:
  4241. arg := token.ToNumber()
  4242. if arg.Type == ArgNumber {
  4243. if arg.Number <= -1 || arg.Number >= 1 {
  4244. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4245. }
  4246. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  4247. }
  4248. case ArgNumber:
  4249. if token.Number <= -1 || token.Number >= 1 {
  4250. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4251. }
  4252. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  4253. }
  4254. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4255. }
  4256. // FISHERINV function calculates the inverse of the Fisher Transformation and
  4257. // returns a value between -1 and +1. The syntax of the function is:
  4258. //
  4259. // FISHERINV(y)
  4260. //
  4261. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  4262. if argsList.Len() != 1 {
  4263. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4264. }
  4265. token := argsList.Front().Value.(formulaArg)
  4266. switch token.Type {
  4267. case ArgString:
  4268. arg := token.ToNumber()
  4269. if arg.Type == ArgNumber {
  4270. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  4271. }
  4272. case ArgNumber:
  4273. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  4274. }
  4275. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4276. }
  4277. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  4278. // specified number, n. The syntax of the function is:
  4279. //
  4280. // GAMMA(number)
  4281. //
  4282. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  4283. if argsList.Len() != 1 {
  4284. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4285. }
  4286. token := argsList.Front().Value.(formulaArg)
  4287. switch token.Type {
  4288. case ArgString:
  4289. arg := token.ToNumber()
  4290. if arg.Type == ArgNumber {
  4291. if arg.Number <= 0 {
  4292. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4293. }
  4294. return newNumberFormulaArg(math.Gamma(arg.Number))
  4295. }
  4296. case ArgNumber:
  4297. if token.Number <= 0 {
  4298. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4299. }
  4300. return newNumberFormulaArg(math.Gamma(token.Number))
  4301. }
  4302. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4303. }
  4304. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  4305. // (n). The syntax of the function is:
  4306. //
  4307. // GAMMALN(x)
  4308. //
  4309. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  4310. if argsList.Len() != 1 {
  4311. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4312. }
  4313. token := argsList.Front().Value.(formulaArg)
  4314. switch token.Type {
  4315. case ArgString:
  4316. arg := token.ToNumber()
  4317. if arg.Type == ArgNumber {
  4318. if arg.Number <= 0 {
  4319. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4320. }
  4321. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  4322. }
  4323. case ArgNumber:
  4324. if token.Number <= 0 {
  4325. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4326. }
  4327. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  4328. }
  4329. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4330. }
  4331. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  4332. // The syntax of the function is:
  4333. //
  4334. // HARMEAN(number1,[number2],...)
  4335. //
  4336. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  4337. if argsList.Len() < 1 {
  4338. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  4339. }
  4340. if min := fn.MIN(argsList); min.Number < 0 {
  4341. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4342. }
  4343. number, val, cnt := 0.0, 0.0, 0.0
  4344. for token := argsList.Front(); token != nil; token = token.Next() {
  4345. arg := token.Value.(formulaArg)
  4346. switch arg.Type {
  4347. case ArgString:
  4348. num := arg.ToNumber()
  4349. if num.Type != ArgNumber {
  4350. continue
  4351. }
  4352. number = num.Number
  4353. case ArgNumber:
  4354. number = arg.Number
  4355. }
  4356. if number <= 0 {
  4357. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4358. }
  4359. val += (1 / number)
  4360. cnt++
  4361. }
  4362. return newNumberFormulaArg(1 / (val / cnt))
  4363. }
  4364. // KURT function calculates the kurtosis of a supplied set of values. The
  4365. // syntax of the function is:
  4366. //
  4367. // KURT(number1,[number2],...)
  4368. //
  4369. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  4370. if argsList.Len() < 1 {
  4371. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  4372. }
  4373. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  4374. if stdev.Number > 0 {
  4375. count, summer := 0.0, 0.0
  4376. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4377. token := arg.Value.(formulaArg)
  4378. switch token.Type {
  4379. case ArgString, ArgNumber:
  4380. num := token.ToNumber()
  4381. if num.Type == ArgError {
  4382. continue
  4383. }
  4384. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4385. count++
  4386. case ArgList, ArgMatrix:
  4387. for _, row := range token.ToList() {
  4388. if row.Type == ArgNumber || row.Type == ArgString {
  4389. num := row.ToNumber()
  4390. if num.Type == ArgError {
  4391. continue
  4392. }
  4393. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4394. count++
  4395. }
  4396. }
  4397. }
  4398. }
  4399. if count > 3 {
  4400. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  4401. }
  4402. }
  4403. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4404. }
  4405. // NORMdotDIST function calculates the Normal Probability Density Function or
  4406. // the Cumulative Normal Distribution. Function for a supplied set of
  4407. // parameters. The syntax of the function is:
  4408. //
  4409. // NORM.DIST(x,mean,standard_dev,cumulative)
  4410. //
  4411. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  4412. if argsList.Len() != 4 {
  4413. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  4414. }
  4415. return fn.NORMDIST(argsList)
  4416. }
  4417. // NORMDIST function calculates the Normal Probability Density Function or the
  4418. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  4419. // The syntax of the function is:
  4420. //
  4421. // NORMDIST(x,mean,standard_dev,cumulative)
  4422. //
  4423. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  4424. if argsList.Len() != 4 {
  4425. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  4426. }
  4427. var x, mean, stdDev, cumulative formulaArg
  4428. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  4429. return x
  4430. }
  4431. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4432. return mean
  4433. }
  4434. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4435. return stdDev
  4436. }
  4437. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  4438. return cumulative
  4439. }
  4440. if stdDev.Number < 0 {
  4441. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4442. }
  4443. if cumulative.Number == 1 {
  4444. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  4445. }
  4446. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  4447. }
  4448. // NORMdotINV function calculates the inverse of the Cumulative Normal
  4449. // Distribution Function for a supplied value of x, and a supplied
  4450. // distribution mean & standard deviation. The syntax of the function is:
  4451. //
  4452. // NORM.INV(probability,mean,standard_dev)
  4453. //
  4454. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  4455. if argsList.Len() != 3 {
  4456. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  4457. }
  4458. return fn.NORMINV(argsList)
  4459. }
  4460. // NORMINV function calculates the inverse of the Cumulative Normal
  4461. // Distribution Function for a supplied value of x, and a supplied
  4462. // distribution mean & standard deviation. The syntax of the function is:
  4463. //
  4464. // NORMINV(probability,mean,standard_dev)
  4465. //
  4466. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  4467. if argsList.Len() != 3 {
  4468. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  4469. }
  4470. var prob, mean, stdDev formulaArg
  4471. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  4472. return prob
  4473. }
  4474. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4475. return mean
  4476. }
  4477. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4478. return stdDev
  4479. }
  4480. if prob.Number < 0 || prob.Number > 1 {
  4481. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4482. }
  4483. if stdDev.Number < 0 {
  4484. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4485. }
  4486. inv, err := norminv(prob.Number)
  4487. if err != nil {
  4488. return newErrorFormulaArg(err.Error(), err.Error())
  4489. }
  4490. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  4491. }
  4492. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  4493. // Distribution Function for a supplied value. The syntax of the function
  4494. // is:
  4495. //
  4496. // NORM.S.DIST(z)
  4497. //
  4498. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  4499. if argsList.Len() != 2 {
  4500. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  4501. }
  4502. args := list.New().Init()
  4503. args.PushBack(argsList.Front().Value.(formulaArg))
  4504. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4505. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4506. args.PushBack(argsList.Back().Value.(formulaArg))
  4507. return fn.NORMDIST(args)
  4508. }
  4509. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  4510. // Function for a supplied value. The syntax of the function is:
  4511. //
  4512. // NORMSDIST(z)
  4513. //
  4514. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4515. if argsList.Len() != 1 {
  4516. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4517. }
  4518. args := list.New().Init()
  4519. args.PushBack(argsList.Front().Value.(formulaArg))
  4520. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4521. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4522. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4523. return fn.NORMDIST(args)
  4524. }
  4525. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4526. // Distribution Function for a supplied probability value. The syntax of the
  4527. // function is:
  4528. //
  4529. // NORMSINV(probability)
  4530. //
  4531. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4532. if argsList.Len() != 1 {
  4533. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4534. }
  4535. args := list.New().Init()
  4536. args.PushBack(argsList.Front().Value.(formulaArg))
  4537. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4538. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4539. return fn.NORMINV(args)
  4540. }
  4541. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4542. // Cumulative Distribution Function for a supplied probability value. The
  4543. // syntax of the function is:
  4544. //
  4545. // NORM.S.INV(probability)
  4546. //
  4547. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4548. if argsList.Len() != 1 {
  4549. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4550. }
  4551. args := list.New().Init()
  4552. args.PushBack(argsList.Front().Value.(formulaArg))
  4553. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4554. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4555. return fn.NORMINV(args)
  4556. }
  4557. // norminv returns the inverse of the normal cumulative distribution for the
  4558. // specified value.
  4559. func norminv(p float64) (float64, error) {
  4560. a := map[int]float64{
  4561. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4562. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4563. }
  4564. b := map[int]float64{
  4565. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4566. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4567. }
  4568. c := map[int]float64{
  4569. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4570. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4571. }
  4572. d := map[int]float64{
  4573. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4574. 4: 3.754408661907416e+00,
  4575. }
  4576. pLow := 0.02425 // Use lower region approx. below this
  4577. pHigh := 1 - pLow // Use upper region approx. above this
  4578. if 0 < p && p < pLow {
  4579. // Rational approximation for lower region.
  4580. q := math.Sqrt(-2 * math.Log(p))
  4581. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4582. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4583. } else if pLow <= p && p <= pHigh {
  4584. // Rational approximation for central region.
  4585. q := p - 0.5
  4586. r := q * q
  4587. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4588. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4589. } else if pHigh < p && p < 1 {
  4590. // Rational approximation for upper region.
  4591. q := math.Sqrt(-2 * math.Log(1-p))
  4592. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4593. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4594. }
  4595. return 0, errors.New(formulaErrorNUM)
  4596. }
  4597. // kth is an implementation of the formula function LARGE and SMALL.
  4598. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4599. if argsList.Len() != 2 {
  4600. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4601. }
  4602. array := argsList.Front().Value.(formulaArg).ToList()
  4603. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4604. if kArg.Type != ArgNumber {
  4605. return kArg
  4606. }
  4607. k := int(kArg.Number)
  4608. if k < 1 {
  4609. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4610. }
  4611. data := []float64{}
  4612. for _, arg := range array {
  4613. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4614. data = append(data, numArg.Number)
  4615. }
  4616. }
  4617. if len(data) < k {
  4618. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4619. }
  4620. sort.Float64s(data)
  4621. if name == "LARGE" {
  4622. return newNumberFormulaArg(data[len(data)-k])
  4623. }
  4624. return newNumberFormulaArg(data[k-1])
  4625. }
  4626. // LARGE function returns the k'th largest value from an array of numeric
  4627. // values. The syntax of the function is:
  4628. //
  4629. // LARGE(array,k)
  4630. //
  4631. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4632. return fn.kth("LARGE", argsList)
  4633. }
  4634. // MAX function returns the largest value from a supplied set of numeric
  4635. // values. The syntax of the function is:
  4636. //
  4637. // MAX(number1,[number2],...)
  4638. //
  4639. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4640. if argsList.Len() == 0 {
  4641. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4642. }
  4643. return fn.max(false, argsList)
  4644. }
  4645. // MAXA function returns the largest value from a supplied set of numeric
  4646. // values, while counting text and the logical value FALSE as the value 0 and
  4647. // counting the logical value TRUE as the value 1. The syntax of the function
  4648. // is:
  4649. //
  4650. // MAXA(number1,[number2],...)
  4651. //
  4652. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4653. if argsList.Len() == 0 {
  4654. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4655. }
  4656. return fn.max(true, argsList)
  4657. }
  4658. // max is an implementation of the formula function MAX and MAXA.
  4659. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4660. max := -math.MaxFloat64
  4661. for token := argsList.Front(); token != nil; token = token.Next() {
  4662. arg := token.Value.(formulaArg)
  4663. switch arg.Type {
  4664. case ArgString:
  4665. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4666. continue
  4667. } else {
  4668. num := arg.ToBool()
  4669. if num.Type == ArgNumber && num.Number > max {
  4670. max = num.Number
  4671. continue
  4672. }
  4673. }
  4674. num := arg.ToNumber()
  4675. if num.Type != ArgError && num.Number > max {
  4676. max = num.Number
  4677. }
  4678. case ArgNumber:
  4679. if arg.Number > max {
  4680. max = arg.Number
  4681. }
  4682. case ArgList, ArgMatrix:
  4683. for _, row := range arg.ToList() {
  4684. switch row.Type {
  4685. case ArgString:
  4686. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4687. continue
  4688. } else {
  4689. num := row.ToBool()
  4690. if num.Type == ArgNumber && num.Number > max {
  4691. max = num.Number
  4692. continue
  4693. }
  4694. }
  4695. num := row.ToNumber()
  4696. if num.Type != ArgError && num.Number > max {
  4697. max = num.Number
  4698. }
  4699. case ArgNumber:
  4700. if row.Number > max {
  4701. max = row.Number
  4702. }
  4703. }
  4704. }
  4705. case ArgError:
  4706. return arg
  4707. }
  4708. }
  4709. if max == -math.MaxFloat64 {
  4710. max = 0
  4711. }
  4712. return newNumberFormulaArg(max)
  4713. }
  4714. // MEDIAN function returns the statistical median (the middle value) of a list
  4715. // of supplied numbers. The syntax of the function is:
  4716. //
  4717. // MEDIAN(number1,[number2],...)
  4718. //
  4719. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4720. if argsList.Len() == 0 {
  4721. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4722. }
  4723. var values = []float64{}
  4724. var median, digits float64
  4725. var err error
  4726. for token := argsList.Front(); token != nil; token = token.Next() {
  4727. arg := token.Value.(formulaArg)
  4728. switch arg.Type {
  4729. case ArgString:
  4730. num := arg.ToNumber()
  4731. if num.Type == ArgError {
  4732. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4733. }
  4734. values = append(values, num.Number)
  4735. case ArgNumber:
  4736. values = append(values, arg.Number)
  4737. case ArgMatrix:
  4738. for _, row := range arg.Matrix {
  4739. for _, value := range row {
  4740. if value.String == "" {
  4741. continue
  4742. }
  4743. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4744. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4745. }
  4746. values = append(values, digits)
  4747. }
  4748. }
  4749. }
  4750. }
  4751. sort.Float64s(values)
  4752. if len(values)%2 == 0 {
  4753. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4754. } else {
  4755. median = values[len(values)/2]
  4756. }
  4757. return newNumberFormulaArg(median)
  4758. }
  4759. // MIN function returns the smallest value from a supplied set of numeric
  4760. // values. The syntax of the function is:
  4761. //
  4762. // MIN(number1,[number2],...)
  4763. //
  4764. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4765. if argsList.Len() == 0 {
  4766. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4767. }
  4768. return fn.min(false, argsList)
  4769. }
  4770. // MINA function returns the smallest value from a supplied set of numeric
  4771. // values, while counting text and the logical value FALSE as the value 0 and
  4772. // counting the logical value TRUE as the value 1. The syntax of the function
  4773. // is:
  4774. //
  4775. // MINA(number1,[number2],...)
  4776. //
  4777. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4778. if argsList.Len() == 0 {
  4779. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4780. }
  4781. return fn.min(true, argsList)
  4782. }
  4783. // min is an implementation of the formula function MIN and MINA.
  4784. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4785. min := math.MaxFloat64
  4786. for token := argsList.Front(); token != nil; token = token.Next() {
  4787. arg := token.Value.(formulaArg)
  4788. switch arg.Type {
  4789. case ArgString:
  4790. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4791. continue
  4792. } else {
  4793. num := arg.ToBool()
  4794. if num.Type == ArgNumber && num.Number < min {
  4795. min = num.Number
  4796. continue
  4797. }
  4798. }
  4799. num := arg.ToNumber()
  4800. if num.Type != ArgError && num.Number < min {
  4801. min = num.Number
  4802. }
  4803. case ArgNumber:
  4804. if arg.Number < min {
  4805. min = arg.Number
  4806. }
  4807. case ArgList, ArgMatrix:
  4808. for _, row := range arg.ToList() {
  4809. switch row.Type {
  4810. case ArgString:
  4811. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4812. continue
  4813. } else {
  4814. num := row.ToBool()
  4815. if num.Type == ArgNumber && num.Number < min {
  4816. min = num.Number
  4817. continue
  4818. }
  4819. }
  4820. num := row.ToNumber()
  4821. if num.Type != ArgError && num.Number < min {
  4822. min = num.Number
  4823. }
  4824. case ArgNumber:
  4825. if row.Number < min {
  4826. min = row.Number
  4827. }
  4828. }
  4829. }
  4830. case ArgError:
  4831. return arg
  4832. }
  4833. }
  4834. if min == math.MaxFloat64 {
  4835. min = 0
  4836. }
  4837. return newNumberFormulaArg(min)
  4838. }
  4839. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4840. // which k% of the data values fall) for a supplied range of values and a
  4841. // supplied k. The syntax of the function is:
  4842. //
  4843. // PERCENTILE.INC(array,k)
  4844. //
  4845. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4846. if argsList.Len() != 2 {
  4847. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4848. }
  4849. return fn.PERCENTILE(argsList)
  4850. }
  4851. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4852. // k% of the data values fall) for a supplied range of values and a supplied
  4853. // k. The syntax of the function is:
  4854. //
  4855. // PERCENTILE(array,k)
  4856. //
  4857. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4858. if argsList.Len() != 2 {
  4859. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4860. }
  4861. array := argsList.Front().Value.(formulaArg).ToList()
  4862. k := argsList.Back().Value.(formulaArg).ToNumber()
  4863. if k.Type != ArgNumber {
  4864. return k
  4865. }
  4866. if k.Number < 0 || k.Number > 1 {
  4867. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4868. }
  4869. numbers := []float64{}
  4870. for _, arg := range array {
  4871. if arg.Type == ArgError {
  4872. return arg
  4873. }
  4874. num := arg.ToNumber()
  4875. if num.Type == ArgNumber {
  4876. numbers = append(numbers, num.Number)
  4877. }
  4878. }
  4879. cnt := len(numbers)
  4880. sort.Float64s(numbers)
  4881. idx := k.Number * (float64(cnt) - 1)
  4882. base := math.Floor(idx)
  4883. if idx == base {
  4884. return newNumberFormulaArg(numbers[int(idx)])
  4885. }
  4886. next := base + 1
  4887. proportion := idx - base
  4888. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4889. }
  4890. // PERMUT function calculates the number of permutations of a specified number
  4891. // of objects from a set of objects. The syntax of the function is:
  4892. //
  4893. // PERMUT(number,number_chosen)
  4894. //
  4895. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4896. if argsList.Len() != 2 {
  4897. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4898. }
  4899. number := argsList.Front().Value.(formulaArg).ToNumber()
  4900. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4901. if number.Type != ArgNumber {
  4902. return number
  4903. }
  4904. if chosen.Type != ArgNumber {
  4905. return chosen
  4906. }
  4907. if number.Number < chosen.Number {
  4908. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4909. }
  4910. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4911. }
  4912. // PERMUTATIONA function calculates the number of permutations, with
  4913. // repetitions, of a specified number of objects from a set. The syntax of
  4914. // the function is:
  4915. //
  4916. // PERMUTATIONA(number,number_chosen)
  4917. //
  4918. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4919. if argsList.Len() < 1 {
  4920. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4921. }
  4922. number := argsList.Front().Value.(formulaArg).ToNumber()
  4923. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4924. if number.Type != ArgNumber {
  4925. return number
  4926. }
  4927. if chosen.Type != ArgNumber {
  4928. return chosen
  4929. }
  4930. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4931. if num < 0 || numChosen < 0 {
  4932. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4933. }
  4934. return newNumberFormulaArg(math.Pow(num, numChosen))
  4935. }
  4936. // QUARTILE function returns a requested quartile of a supplied range of
  4937. // values. The syntax of the function is:
  4938. //
  4939. // QUARTILE(array,quart)
  4940. //
  4941. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  4942. if argsList.Len() != 2 {
  4943. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  4944. }
  4945. quart := argsList.Back().Value.(formulaArg).ToNumber()
  4946. if quart.Type != ArgNumber {
  4947. return quart
  4948. }
  4949. if quart.Number < 0 || quart.Number > 4 {
  4950. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  4951. }
  4952. args := list.New().Init()
  4953. args.PushBack(argsList.Front().Value.(formulaArg))
  4954. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  4955. return fn.PERCENTILE(args)
  4956. }
  4957. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  4958. // values. The syntax of the function is:
  4959. //
  4960. // QUARTILE.INC(array,quart)
  4961. //
  4962. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  4963. if argsList.Len() != 2 {
  4964. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  4965. }
  4966. return fn.QUARTILE(argsList)
  4967. }
  4968. // SKEW function calculates the skewness of the distribution of a supplied set
  4969. // of values. The syntax of the function is:
  4970. //
  4971. // SKEW(number1,[number2],...)
  4972. //
  4973. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4974. if argsList.Len() < 1 {
  4975. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4976. }
  4977. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4978. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4979. token := arg.Value.(formulaArg)
  4980. switch token.Type {
  4981. case ArgNumber, ArgString:
  4982. num := token.ToNumber()
  4983. if num.Type == ArgError {
  4984. return num
  4985. }
  4986. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4987. count++
  4988. case ArgList, ArgMatrix:
  4989. for _, row := range token.ToList() {
  4990. numArg := row.ToNumber()
  4991. if numArg.Type != ArgNumber {
  4992. continue
  4993. }
  4994. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4995. count++
  4996. }
  4997. }
  4998. }
  4999. if count > 2 {
  5000. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  5001. }
  5002. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  5003. }
  5004. // SMALL function returns the k'th smallest value from an array of numeric
  5005. // values. The syntax of the function is:
  5006. //
  5007. // SMALL(array,k)
  5008. //
  5009. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  5010. return fn.kth("SMALL", argsList)
  5011. }
  5012. // VARP function returns the Variance of a given set of values. The syntax of
  5013. // the function is:
  5014. //
  5015. // VARP(number1,[number2],...)
  5016. //
  5017. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  5018. if argsList.Len() < 1 {
  5019. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  5020. }
  5021. summerA, summerB, count := 0.0, 0.0, 0.0
  5022. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5023. for _, token := range arg.Value.(formulaArg).ToList() {
  5024. if num := token.ToNumber(); num.Type == ArgNumber {
  5025. summerA += (num.Number * num.Number)
  5026. summerB += num.Number
  5027. count++
  5028. }
  5029. }
  5030. }
  5031. if count > 0 {
  5032. summerA *= count
  5033. summerB *= summerB
  5034. return newNumberFormulaArg((summerA - summerB) / (count * count))
  5035. }
  5036. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  5037. }
  5038. // VARdotP function returns the Variance of a given set of values. The syntax
  5039. // of the function is:
  5040. //
  5041. // VAR.P(number1,[number2],...)
  5042. //
  5043. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  5044. if argsList.Len() < 1 {
  5045. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  5046. }
  5047. return fn.VARP(argsList)
  5048. }
  5049. // Information Functions
  5050. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  5051. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  5052. // function is:
  5053. //
  5054. // ISBLANK(value)
  5055. //
  5056. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  5057. if argsList.Len() != 1 {
  5058. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  5059. }
  5060. token := argsList.Front().Value.(formulaArg)
  5061. result := "FALSE"
  5062. switch token.Type {
  5063. case ArgUnknown:
  5064. result = "TRUE"
  5065. case ArgString:
  5066. if token.String == "" {
  5067. result = "TRUE"
  5068. }
  5069. }
  5070. return newStringFormulaArg(result)
  5071. }
  5072. // ISERR function tests if an initial supplied expression (or value) returns
  5073. // any Excel Error, except the #N/A error. If so, the function returns the
  5074. // logical value TRUE; If the supplied value is not an error or is the #N/A
  5075. // error, the ISERR function returns FALSE. The syntax of the function is:
  5076. //
  5077. // ISERR(value)
  5078. //
  5079. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  5080. if argsList.Len() != 1 {
  5081. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  5082. }
  5083. token := argsList.Front().Value.(formulaArg)
  5084. result := "FALSE"
  5085. if token.Type == ArgError {
  5086. for _, errType := range []string{
  5087. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  5088. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  5089. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  5090. } {
  5091. if errType == token.String {
  5092. result = "TRUE"
  5093. }
  5094. }
  5095. }
  5096. return newStringFormulaArg(result)
  5097. }
  5098. // ISERROR function tests if an initial supplied expression (or value) returns
  5099. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  5100. // function returns FALSE. The syntax of the function is:
  5101. //
  5102. // ISERROR(value)
  5103. //
  5104. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  5105. if argsList.Len() != 1 {
  5106. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  5107. }
  5108. token := argsList.Front().Value.(formulaArg)
  5109. result := "FALSE"
  5110. if token.Type == ArgError {
  5111. for _, errType := range []string{
  5112. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  5113. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  5114. formulaErrorCALC, formulaErrorGETTINGDATA,
  5115. } {
  5116. if errType == token.String {
  5117. result = "TRUE"
  5118. }
  5119. }
  5120. }
  5121. return newStringFormulaArg(result)
  5122. }
  5123. // ISEVEN function tests if a supplied number (or numeric expression)
  5124. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  5125. // function returns FALSE. The syntax of the function is:
  5126. //
  5127. // ISEVEN(value)
  5128. //
  5129. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  5130. if argsList.Len() != 1 {
  5131. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  5132. }
  5133. var (
  5134. token = argsList.Front().Value.(formulaArg)
  5135. result = "FALSE"
  5136. numeric int
  5137. err error
  5138. )
  5139. if token.Type == ArgString {
  5140. if numeric, err = strconv.Atoi(token.String); err != nil {
  5141. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5142. }
  5143. if numeric == numeric/2*2 {
  5144. return newStringFormulaArg("TRUE")
  5145. }
  5146. }
  5147. return newStringFormulaArg(result)
  5148. }
  5149. // ISNA function tests if an initial supplied expression (or value) returns
  5150. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  5151. // returns FALSE. The syntax of the function is:
  5152. //
  5153. // ISNA(value)
  5154. //
  5155. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  5156. if argsList.Len() != 1 {
  5157. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  5158. }
  5159. token := argsList.Front().Value.(formulaArg)
  5160. result := "FALSE"
  5161. if token.Type == ArgError && token.String == formulaErrorNA {
  5162. result = "TRUE"
  5163. }
  5164. return newStringFormulaArg(result)
  5165. }
  5166. // ISNONTEXT function function tests if a supplied value is text. If not, the
  5167. // function returns TRUE; If the supplied value is text, the function returns
  5168. // FALSE. The syntax of the function is:
  5169. //
  5170. // ISNONTEXT(value)
  5171. //
  5172. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  5173. if argsList.Len() != 1 {
  5174. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  5175. }
  5176. token := argsList.Front().Value.(formulaArg)
  5177. result := "TRUE"
  5178. if token.Type == ArgString && token.String != "" {
  5179. result = "FALSE"
  5180. }
  5181. return newStringFormulaArg(result)
  5182. }
  5183. // ISNUMBER function function tests if a supplied value is a number. If so,
  5184. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  5185. // function is:
  5186. //
  5187. // ISNUMBER(value)
  5188. //
  5189. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  5190. if argsList.Len() != 1 {
  5191. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  5192. }
  5193. token, result := argsList.Front().Value.(formulaArg), false
  5194. if token.Type == ArgString && token.String != "" {
  5195. if _, err := strconv.Atoi(token.String); err == nil {
  5196. result = true
  5197. }
  5198. }
  5199. return newBoolFormulaArg(result)
  5200. }
  5201. // ISODD function tests if a supplied number (or numeric expression) evaluates
  5202. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  5203. // FALSE. The syntax of the function is:
  5204. //
  5205. // ISODD(value)
  5206. //
  5207. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  5208. if argsList.Len() != 1 {
  5209. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  5210. }
  5211. var (
  5212. token = argsList.Front().Value.(formulaArg)
  5213. result = "FALSE"
  5214. numeric int
  5215. err error
  5216. )
  5217. if token.Type == ArgString {
  5218. if numeric, err = strconv.Atoi(token.String); err != nil {
  5219. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5220. }
  5221. if numeric != numeric/2*2 {
  5222. return newStringFormulaArg("TRUE")
  5223. }
  5224. }
  5225. return newStringFormulaArg(result)
  5226. }
  5227. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  5228. // Otherwise, the function returns FALSE. The syntax of the function is:
  5229. //
  5230. // ISTEXT(value)
  5231. //
  5232. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  5233. if argsList.Len() != 1 {
  5234. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  5235. }
  5236. token := argsList.Front().Value.(formulaArg)
  5237. if token.ToNumber().Type != ArgError {
  5238. return newBoolFormulaArg(false)
  5239. }
  5240. return newBoolFormulaArg(token.Type == ArgString)
  5241. }
  5242. // N function converts data into a numeric value. The syntax of the function
  5243. // is:
  5244. //
  5245. // N(value)
  5246. //
  5247. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  5248. if argsList.Len() != 1 {
  5249. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  5250. }
  5251. token, num := argsList.Front().Value.(formulaArg), 0.0
  5252. if token.Type == ArgError {
  5253. return token
  5254. }
  5255. if arg := token.ToNumber(); arg.Type == ArgNumber {
  5256. num = arg.Number
  5257. }
  5258. if token.Value() == "TRUE" {
  5259. num = 1
  5260. }
  5261. return newNumberFormulaArg(num)
  5262. }
  5263. // NA function returns the Excel #N/A error. This error message has the
  5264. // meaning 'value not available' and is produced when an Excel Formula is
  5265. // unable to find a value that it needs. The syntax of the function is:
  5266. //
  5267. // NA()
  5268. //
  5269. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  5270. if argsList.Len() != 0 {
  5271. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  5272. }
  5273. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  5274. }
  5275. // SHEET function returns the Sheet number for a specified reference. The
  5276. // syntax of the function is:
  5277. //
  5278. // SHEET()
  5279. //
  5280. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  5281. if argsList.Len() != 0 {
  5282. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  5283. }
  5284. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  5285. }
  5286. // T function tests if a supplied value is text and if so, returns the
  5287. // supplied text; Otherwise, the function returns an empty text string. The
  5288. // syntax of the function is:
  5289. //
  5290. // T(value)
  5291. //
  5292. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  5293. if argsList.Len() != 1 {
  5294. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  5295. }
  5296. token := argsList.Front().Value.(formulaArg)
  5297. if token.Type == ArgError {
  5298. return token
  5299. }
  5300. if token.Type == ArgNumber {
  5301. return newStringFormulaArg("")
  5302. }
  5303. return newStringFormulaArg(token.Value())
  5304. }
  5305. // Logical Functions
  5306. // AND function tests a number of supplied conditions and returns TRUE or
  5307. // FALSE. The syntax of the function is:
  5308. //
  5309. // AND(logical_test1,[logical_test2],...)
  5310. //
  5311. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  5312. if argsList.Len() == 0 {
  5313. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  5314. }
  5315. if argsList.Len() > 30 {
  5316. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  5317. }
  5318. var (
  5319. and = true
  5320. val float64
  5321. err error
  5322. )
  5323. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5324. token := arg.Value.(formulaArg)
  5325. switch token.Type {
  5326. case ArgUnknown:
  5327. continue
  5328. case ArgString:
  5329. if token.String == "TRUE" {
  5330. continue
  5331. }
  5332. if token.String == "FALSE" {
  5333. return newStringFormulaArg(token.String)
  5334. }
  5335. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5336. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5337. }
  5338. and = and && (val != 0)
  5339. case ArgMatrix:
  5340. // TODO
  5341. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5342. }
  5343. }
  5344. return newBoolFormulaArg(and)
  5345. }
  5346. // FALSE function function returns the logical value FALSE. The syntax of the
  5347. // function is:
  5348. //
  5349. // FALSE()
  5350. //
  5351. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  5352. if argsList.Len() != 0 {
  5353. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  5354. }
  5355. return newBoolFormulaArg(false)
  5356. }
  5357. // IFERROR function receives two values (or expressions) and tests if the
  5358. // first of these evaluates to an error. The syntax of the function is:
  5359. //
  5360. // IFERROR(value,value_if_error)
  5361. //
  5362. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  5363. if argsList.Len() != 2 {
  5364. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  5365. }
  5366. value := argsList.Front().Value.(formulaArg)
  5367. if value.Type != ArgError {
  5368. if value.Type == ArgEmpty {
  5369. return newNumberFormulaArg(0)
  5370. }
  5371. return value
  5372. }
  5373. return argsList.Back().Value.(formulaArg)
  5374. }
  5375. // NOT function returns the opposite to a supplied logical value. The syntax
  5376. // of the function is:
  5377. //
  5378. // NOT(logical)
  5379. //
  5380. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  5381. if argsList.Len() != 1 {
  5382. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  5383. }
  5384. token := argsList.Front().Value.(formulaArg)
  5385. switch token.Type {
  5386. case ArgString, ArgList:
  5387. if strings.ToUpper(token.String) == "TRUE" {
  5388. return newBoolFormulaArg(false)
  5389. }
  5390. if strings.ToUpper(token.String) == "FALSE" {
  5391. return newBoolFormulaArg(true)
  5392. }
  5393. case ArgNumber:
  5394. return newBoolFormulaArg(!(token.Number != 0))
  5395. case ArgError:
  5396. return token
  5397. }
  5398. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  5399. }
  5400. // OR function tests a number of supplied conditions and returns either TRUE
  5401. // or FALSE. The syntax of the function is:
  5402. //
  5403. // OR(logical_test1,[logical_test2],...)
  5404. //
  5405. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  5406. if argsList.Len() == 0 {
  5407. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  5408. }
  5409. if argsList.Len() > 30 {
  5410. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  5411. }
  5412. var (
  5413. or bool
  5414. val float64
  5415. err error
  5416. )
  5417. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5418. token := arg.Value.(formulaArg)
  5419. switch token.Type {
  5420. case ArgUnknown:
  5421. continue
  5422. case ArgString:
  5423. if token.String == "FALSE" {
  5424. continue
  5425. }
  5426. if token.String == "TRUE" {
  5427. or = true
  5428. continue
  5429. }
  5430. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5431. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5432. }
  5433. or = val != 0
  5434. case ArgMatrix:
  5435. // TODO
  5436. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5437. }
  5438. }
  5439. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  5440. }
  5441. // TRUE function returns the logical value TRUE. The syntax of the function
  5442. // is:
  5443. //
  5444. // TRUE()
  5445. //
  5446. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  5447. if argsList.Len() != 0 {
  5448. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  5449. }
  5450. return newBoolFormulaArg(true)
  5451. }
  5452. // Date and Time Functions
  5453. // DATE returns a date, from a user-supplied year, month and day. The syntax
  5454. // of the function is:
  5455. //
  5456. // DATE(year,month,day)
  5457. //
  5458. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  5459. if argsList.Len() != 3 {
  5460. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5461. }
  5462. year := argsList.Front().Value.(formulaArg).ToNumber()
  5463. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5464. day := argsList.Back().Value.(formulaArg).ToNumber()
  5465. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  5466. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5467. }
  5468. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  5469. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  5470. }
  5471. // DATEDIF function calculates the number of days, months, or years between
  5472. // two dates. The syntax of the function is:
  5473. //
  5474. // DATEDIF(start_date,end_date,unit)
  5475. //
  5476. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  5477. if argsList.Len() != 3 {
  5478. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  5479. }
  5480. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  5481. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  5482. return startArg
  5483. }
  5484. if startArg.Number > endArg.Number {
  5485. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  5486. }
  5487. if startArg.Number == endArg.Number {
  5488. return newNumberFormulaArg(0)
  5489. }
  5490. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  5491. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  5492. sy, smm, sd := startDate.Date()
  5493. ey, emm, ed := endDate.Date()
  5494. sm, em, diff := int(smm), int(emm), 0.0
  5495. switch unit {
  5496. case "d":
  5497. return newNumberFormulaArg(endArg.Number - startArg.Number)
  5498. case "y":
  5499. diff = float64(ey - sy)
  5500. if em < sm || (em == sm && ed < sd) {
  5501. diff--
  5502. }
  5503. case "m":
  5504. ydiff := ey - sy
  5505. mdiff := em - sm
  5506. if ed < sd {
  5507. mdiff--
  5508. }
  5509. if mdiff < 0 {
  5510. ydiff--
  5511. mdiff += 12
  5512. }
  5513. diff = float64(ydiff*12 + mdiff)
  5514. case "md":
  5515. smMD := em
  5516. if ed < sd {
  5517. smMD--
  5518. }
  5519. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5520. case "ym":
  5521. diff = float64(em - sm)
  5522. if ed < sd {
  5523. diff--
  5524. }
  5525. if diff < 0 {
  5526. diff += 12
  5527. }
  5528. case "yd":
  5529. syYD := sy
  5530. if em < sm || (em == sm && ed < sd) {
  5531. syYD++
  5532. }
  5533. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5534. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5535. diff = s - e
  5536. default:
  5537. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5538. }
  5539. return newNumberFormulaArg(diff)
  5540. }
  5541. // NOW function returns the current date and time. The function receives no
  5542. // arguments and therefore. The syntax of the function is:
  5543. //
  5544. // NOW()
  5545. //
  5546. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5547. if argsList.Len() != 0 {
  5548. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5549. }
  5550. now := time.Now()
  5551. _, offset := now.Zone()
  5552. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5553. }
  5554. // TODAY function returns the current date. The function has no arguments and
  5555. // therefore. The syntax of the function is:
  5556. //
  5557. // TODAY()
  5558. //
  5559. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5560. if argsList.Len() != 0 {
  5561. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5562. }
  5563. now := time.Now()
  5564. _, offset := now.Zone()
  5565. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5566. }
  5567. // makeDate return date as a Unix time, the number of seconds elapsed since
  5568. // January 1, 1970 UTC.
  5569. func makeDate(y int, m time.Month, d int) int64 {
  5570. if y == 1900 && int(m) <= 2 {
  5571. d--
  5572. }
  5573. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5574. return date.Unix()
  5575. }
  5576. // daysBetween return time interval of the given start timestamp and end
  5577. // timestamp.
  5578. func daysBetween(startDate, endDate int64) float64 {
  5579. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5580. }
  5581. // Text Functions
  5582. // CHAR function returns the character relating to a supplied character set
  5583. // number (from 1 to 255). syntax of the function is:
  5584. //
  5585. // CHAR(number)
  5586. //
  5587. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5588. if argsList.Len() != 1 {
  5589. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5590. }
  5591. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5592. if arg.Type != ArgNumber {
  5593. return arg
  5594. }
  5595. num := int(arg.Number)
  5596. if num < 0 || num > 255 {
  5597. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5598. }
  5599. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5600. }
  5601. // CLEAN removes all non-printable characters from a supplied text string. The
  5602. // syntax of the function is:
  5603. //
  5604. // CLEAN(text)
  5605. //
  5606. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5607. if argsList.Len() != 1 {
  5608. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5609. }
  5610. b := bytes.Buffer{}
  5611. for _, c := range argsList.Front().Value.(formulaArg).String {
  5612. if c > 31 {
  5613. b.WriteRune(c)
  5614. }
  5615. }
  5616. return newStringFormulaArg(b.String())
  5617. }
  5618. // CODE function converts the first character of a supplied text string into
  5619. // the associated numeric character set code used by your computer. The
  5620. // syntax of the function is:
  5621. //
  5622. // CODE(text)
  5623. //
  5624. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5625. return fn.code("CODE", argsList)
  5626. }
  5627. // code is an implementation of the formula function CODE and UNICODE.
  5628. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5629. if argsList.Len() != 1 {
  5630. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5631. }
  5632. text := argsList.Front().Value.(formulaArg).Value()
  5633. if len(text) == 0 {
  5634. if name == "CODE" {
  5635. return newNumberFormulaArg(0)
  5636. }
  5637. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5638. }
  5639. return newNumberFormulaArg(float64(text[0]))
  5640. }
  5641. // CONCAT function joins together a series of supplied text strings into one
  5642. // combined text string.
  5643. //
  5644. // CONCAT(text1,[text2],...)
  5645. //
  5646. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5647. return fn.concat("CONCAT", argsList)
  5648. }
  5649. // CONCATENATE function joins together a series of supplied text strings into
  5650. // one combined text string.
  5651. //
  5652. // CONCATENATE(text1,[text2],...)
  5653. //
  5654. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5655. return fn.concat("CONCATENATE", argsList)
  5656. }
  5657. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5658. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5659. buf := bytes.Buffer{}
  5660. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5661. token := arg.Value.(formulaArg)
  5662. switch token.Type {
  5663. case ArgString:
  5664. buf.WriteString(token.String)
  5665. case ArgNumber:
  5666. if token.Boolean {
  5667. if token.Number == 0 {
  5668. buf.WriteString("FALSE")
  5669. } else {
  5670. buf.WriteString("TRUE")
  5671. }
  5672. } else {
  5673. buf.WriteString(token.Value())
  5674. }
  5675. default:
  5676. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5677. }
  5678. }
  5679. return newStringFormulaArg(buf.String())
  5680. }
  5681. // EXACT function tests if two supplied text strings or values are exactly
  5682. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5683. // function is case-sensitive. The syntax of the function is:
  5684. //
  5685. // EXACT(text1,text2)
  5686. //
  5687. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5688. if argsList.Len() != 2 {
  5689. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5690. }
  5691. text1 := argsList.Front().Value.(formulaArg).Value()
  5692. text2 := argsList.Back().Value.(formulaArg).Value()
  5693. return newBoolFormulaArg(text1 == text2)
  5694. }
  5695. // FIXED function rounds a supplied number to a specified number of decimal
  5696. // places and then converts this into text. The syntax of the function is:
  5697. //
  5698. // FIXED(number,[decimals],[no_commas])
  5699. //
  5700. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5701. if argsList.Len() < 1 {
  5702. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5703. }
  5704. if argsList.Len() > 3 {
  5705. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5706. }
  5707. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5708. if numArg.Type != ArgNumber {
  5709. return numArg
  5710. }
  5711. precision, decimals, noCommas := 0, 0, false
  5712. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5713. if argsList.Len() == 1 && len(s) == 2 {
  5714. precision = len(s[1])
  5715. decimals = len(s[1])
  5716. }
  5717. if argsList.Len() >= 2 {
  5718. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5719. if decimalsArg.Type != ArgNumber {
  5720. return decimalsArg
  5721. }
  5722. decimals = int(decimalsArg.Number)
  5723. }
  5724. if argsList.Len() == 3 {
  5725. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5726. if noCommasArg.Type == ArgError {
  5727. return noCommasArg
  5728. }
  5729. noCommas = noCommasArg.Boolean
  5730. }
  5731. n := math.Pow(10, float64(decimals))
  5732. r := numArg.Number * n
  5733. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5734. if decimals > 0 {
  5735. precision = decimals
  5736. }
  5737. if noCommas {
  5738. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5739. }
  5740. p := message.NewPrinter(language.English)
  5741. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5742. }
  5743. // FIND function returns the position of a specified character or sub-string
  5744. // within a supplied text string. The function is case-sensitive. The syntax
  5745. // of the function is:
  5746. //
  5747. // FIND(find_text,within_text,[start_num])
  5748. //
  5749. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5750. return fn.find("FIND", argsList)
  5751. }
  5752. // FINDB counts each double-byte character as 2 when you have enabled the
  5753. // editing of a language that supports DBCS and then set it as the default
  5754. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5755. // function is:
  5756. //
  5757. // FINDB(find_text,within_text,[start_num])
  5758. //
  5759. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5760. return fn.find("FINDB", argsList)
  5761. }
  5762. // find is an implementation of the formula function FIND and FINDB.
  5763. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5764. if argsList.Len() < 2 {
  5765. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5766. }
  5767. if argsList.Len() > 3 {
  5768. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5769. }
  5770. findText := argsList.Front().Value.(formulaArg).Value()
  5771. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5772. startNum, result := 1, 1
  5773. if argsList.Len() == 3 {
  5774. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5775. if numArg.Type != ArgNumber {
  5776. return numArg
  5777. }
  5778. if numArg.Number < 0 {
  5779. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5780. }
  5781. startNum = int(numArg.Number)
  5782. }
  5783. if findText == "" {
  5784. return newNumberFormulaArg(float64(startNum))
  5785. }
  5786. for idx := range withinText {
  5787. if result < startNum {
  5788. result++
  5789. }
  5790. if strings.Index(withinText[idx:], findText) == 0 {
  5791. return newNumberFormulaArg(float64(result))
  5792. }
  5793. result++
  5794. }
  5795. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5796. }
  5797. // LEFT function returns a specified number of characters from the start of a
  5798. // supplied text string. The syntax of the function is:
  5799. //
  5800. // LEFT(text,[num_chars])
  5801. //
  5802. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5803. return fn.leftRight("LEFT", argsList)
  5804. }
  5805. // LEFTB returns the first character or characters in a text string, based on
  5806. // the number of bytes you specify. The syntax of the function is:
  5807. //
  5808. // LEFTB(text,[num_bytes])
  5809. //
  5810. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5811. return fn.leftRight("LEFTB", argsList)
  5812. }
  5813. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5814. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5815. // (Traditional), and Korean.
  5816. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5817. if argsList.Len() < 1 {
  5818. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5819. }
  5820. if argsList.Len() > 2 {
  5821. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5822. }
  5823. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5824. if argsList.Len() == 2 {
  5825. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5826. if numArg.Type != ArgNumber {
  5827. return numArg
  5828. }
  5829. if numArg.Number < 0 {
  5830. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5831. }
  5832. numChars = int(numArg.Number)
  5833. }
  5834. if len(text) > numChars {
  5835. if name == "LEFT" || name == "LEFTB" {
  5836. return newStringFormulaArg(text[:numChars])
  5837. }
  5838. return newStringFormulaArg(text[len(text)-numChars:])
  5839. }
  5840. return newStringFormulaArg(text)
  5841. }
  5842. // LEN returns the length of a supplied text string. The syntax of the
  5843. // function is:
  5844. //
  5845. // LEN(text)
  5846. //
  5847. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5848. if argsList.Len() != 1 {
  5849. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5850. }
  5851. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5852. }
  5853. // LENB returns the number of bytes used to represent the characters in a text
  5854. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5855. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5856. // 1 byte per character. The syntax of the function is:
  5857. //
  5858. // LENB(text)
  5859. //
  5860. // TODO: the languages that support DBCS include Japanese, Chinese
  5861. // (Simplified), Chinese (Traditional), and Korean.
  5862. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5863. if argsList.Len() != 1 {
  5864. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5865. }
  5866. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5867. }
  5868. // LOWER converts all characters in a supplied text string to lower case. The
  5869. // syntax of the function is:
  5870. //
  5871. // LOWER(text)
  5872. //
  5873. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5874. if argsList.Len() != 1 {
  5875. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5876. }
  5877. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5878. }
  5879. // MID function returns a specified number of characters from the middle of a
  5880. // supplied text string. The syntax of the function is:
  5881. //
  5882. // MID(text,start_num,num_chars)
  5883. //
  5884. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5885. return fn.mid("MID", argsList)
  5886. }
  5887. // MIDB returns a specific number of characters from a text string, starting
  5888. // at the position you specify, based on the number of bytes you specify. The
  5889. // syntax of the function is:
  5890. //
  5891. // MID(text,start_num,num_chars)
  5892. //
  5893. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5894. return fn.mid("MIDB", argsList)
  5895. }
  5896. // mid is an implementation of the formula function MID and MIDB. TODO:
  5897. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5898. // (Traditional), and Korean.
  5899. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5900. if argsList.Len() != 3 {
  5901. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5902. }
  5903. text := argsList.Front().Value.(formulaArg).Value()
  5904. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5905. if startNumArg.Type != ArgNumber {
  5906. return startNumArg
  5907. }
  5908. if numCharsArg.Type != ArgNumber {
  5909. return numCharsArg
  5910. }
  5911. startNum := int(startNumArg.Number)
  5912. if startNum < 0 {
  5913. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5914. }
  5915. textLen := len(text)
  5916. if startNum > textLen {
  5917. return newStringFormulaArg("")
  5918. }
  5919. startNum--
  5920. endNum := startNum + int(numCharsArg.Number)
  5921. if endNum > textLen+1 {
  5922. return newStringFormulaArg(text[startNum:])
  5923. }
  5924. return newStringFormulaArg(text[startNum:endNum])
  5925. }
  5926. // PROPER converts all characters in a supplied text string to proper case
  5927. // (i.e. all letters that do not immediately follow another letter are set to
  5928. // upper case and all other characters are lower case). The syntax of the
  5929. // function is:
  5930. //
  5931. // PROPER(text)
  5932. //
  5933. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5934. if argsList.Len() != 1 {
  5935. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5936. }
  5937. buf := bytes.Buffer{}
  5938. isLetter := false
  5939. for _, char := range argsList.Front().Value.(formulaArg).String {
  5940. if !isLetter && unicode.IsLetter(char) {
  5941. buf.WriteRune(unicode.ToUpper(char))
  5942. } else {
  5943. buf.WriteRune(unicode.ToLower(char))
  5944. }
  5945. isLetter = unicode.IsLetter(char)
  5946. }
  5947. return newStringFormulaArg(buf.String())
  5948. }
  5949. // REPLACE function replaces all or part of a text string with another string.
  5950. // The syntax of the function is:
  5951. //
  5952. // REPLACE(old_text,start_num,num_chars,new_text)
  5953. //
  5954. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5955. return fn.replace("REPLACE", argsList)
  5956. }
  5957. // REPLACEB replaces part of a text string, based on the number of bytes you
  5958. // specify, with a different text string.
  5959. //
  5960. // REPLACEB(old_text,start_num,num_chars,new_text)
  5961. //
  5962. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5963. return fn.replace("REPLACEB", argsList)
  5964. }
  5965. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5966. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5967. // (Traditional), and Korean.
  5968. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5969. if argsList.Len() != 4 {
  5970. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5971. }
  5972. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5973. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5974. if startNumArg.Type != ArgNumber {
  5975. return startNumArg
  5976. }
  5977. if numCharsArg.Type != ArgNumber {
  5978. return numCharsArg
  5979. }
  5980. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5981. if startIdx > oldTextLen {
  5982. startIdx = oldTextLen + 1
  5983. }
  5984. endIdx := startIdx + int(numCharsArg.Number)
  5985. if endIdx > oldTextLen {
  5986. endIdx = oldTextLen + 1
  5987. }
  5988. if startIdx < 1 || endIdx < 1 {
  5989. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5990. }
  5991. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5992. return newStringFormulaArg(result)
  5993. }
  5994. // REPT function returns a supplied text string, repeated a specified number
  5995. // of times. The syntax of the function is:
  5996. //
  5997. // REPT(text,number_times)
  5998. //
  5999. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  6000. if argsList.Len() != 2 {
  6001. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  6002. }
  6003. text := argsList.Front().Value.(formulaArg)
  6004. if text.Type != ArgString {
  6005. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  6006. }
  6007. times := argsList.Back().Value.(formulaArg).ToNumber()
  6008. if times.Type != ArgNumber {
  6009. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  6010. }
  6011. if times.Number < 0 {
  6012. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  6013. }
  6014. if times.Number == 0 {
  6015. return newStringFormulaArg("")
  6016. }
  6017. buf := bytes.Buffer{}
  6018. for i := 0; i < int(times.Number); i++ {
  6019. buf.WriteString(text.String)
  6020. }
  6021. return newStringFormulaArg(buf.String())
  6022. }
  6023. // RIGHT function returns a specified number of characters from the end of a
  6024. // supplied text string. The syntax of the function is:
  6025. //
  6026. // RIGHT(text,[num_chars])
  6027. //
  6028. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  6029. return fn.leftRight("RIGHT", argsList)
  6030. }
  6031. // RIGHTB returns the last character or characters in a text string, based on
  6032. // the number of bytes you specify. The syntax of the function is:
  6033. //
  6034. // RIGHTB(text,[num_bytes])
  6035. //
  6036. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  6037. return fn.leftRight("RIGHTB", argsList)
  6038. }
  6039. // SUBSTITUTE function replaces one or more instances of a given text string,
  6040. // within an original text string. The syntax of the function is:
  6041. //
  6042. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  6043. //
  6044. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  6045. if argsList.Len() != 3 && argsList.Len() != 4 {
  6046. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  6047. }
  6048. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  6049. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  6050. if argsList.Len() == 3 {
  6051. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  6052. }
  6053. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  6054. if instanceNumArg.Type != ArgNumber {
  6055. return instanceNumArg
  6056. }
  6057. instanceNum = int(instanceNumArg.Number)
  6058. if instanceNum < 1 {
  6059. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  6060. }
  6061. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  6062. for {
  6063. count--
  6064. index := strings.Index(str, oldText.Value())
  6065. if index == -1 {
  6066. pos = -1
  6067. break
  6068. } else {
  6069. pos = index + chars
  6070. if count == 0 {
  6071. break
  6072. }
  6073. idx := oldTextLen + index
  6074. chars += idx
  6075. str = str[idx:]
  6076. }
  6077. }
  6078. if pos == -1 {
  6079. return newStringFormulaArg(text.Value())
  6080. }
  6081. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  6082. return newStringFormulaArg(pre + newText.Value() + post)
  6083. }
  6084. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  6085. // words or characters) from a supplied text string. The syntax of the
  6086. // function is:
  6087. //
  6088. // TRIM(text)
  6089. //
  6090. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  6091. if argsList.Len() != 1 {
  6092. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  6093. }
  6094. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  6095. }
  6096. // UNICHAR returns the Unicode character that is referenced by the given
  6097. // numeric value. The syntax of the function is:
  6098. //
  6099. // UNICHAR(number)
  6100. //
  6101. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  6102. if argsList.Len() != 1 {
  6103. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  6104. }
  6105. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  6106. if numArg.Type != ArgNumber {
  6107. return numArg
  6108. }
  6109. if numArg.Number <= 0 || numArg.Number > 55295 {
  6110. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  6111. }
  6112. return newStringFormulaArg(string(rune(numArg.Number)))
  6113. }
  6114. // UNICODE function returns the code point for the first character of a
  6115. // supplied text string. The syntax of the function is:
  6116. //
  6117. // UNICODE(text)
  6118. //
  6119. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  6120. return fn.code("UNICODE", argsList)
  6121. }
  6122. // UPPER converts all characters in a supplied text string to upper case. The
  6123. // syntax of the function is:
  6124. //
  6125. // UPPER(text)
  6126. //
  6127. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  6128. if argsList.Len() != 1 {
  6129. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  6130. }
  6131. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  6132. }
  6133. // Conditional Functions
  6134. // IF function tests a supplied condition and returns one result if the
  6135. // condition evaluates to TRUE, and another result if the condition evaluates
  6136. // to FALSE. The syntax of the function is:
  6137. //
  6138. // IF(logical_test,value_if_true,value_if_false)
  6139. //
  6140. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  6141. if argsList.Len() == 0 {
  6142. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  6143. }
  6144. if argsList.Len() > 3 {
  6145. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  6146. }
  6147. token := argsList.Front().Value.(formulaArg)
  6148. var (
  6149. cond bool
  6150. err error
  6151. result string
  6152. )
  6153. switch token.Type {
  6154. case ArgString:
  6155. if cond, err = strconv.ParseBool(token.String); err != nil {
  6156. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  6157. }
  6158. if argsList.Len() == 1 {
  6159. return newBoolFormulaArg(cond)
  6160. }
  6161. if cond {
  6162. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  6163. }
  6164. if argsList.Len() == 3 {
  6165. result = argsList.Back().Value.(formulaArg).String
  6166. }
  6167. }
  6168. return newStringFormulaArg(result)
  6169. }
  6170. // Lookup and Reference Functions
  6171. // CHOOSE function returns a value from an array, that corresponds to a
  6172. // supplied index number (position). The syntax of the function is:
  6173. //
  6174. // CHOOSE(index_num,value1,[value2],...)
  6175. //
  6176. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  6177. if argsList.Len() < 2 {
  6178. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  6179. }
  6180. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  6181. if err != nil {
  6182. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  6183. }
  6184. if argsList.Len() <= idx {
  6185. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  6186. }
  6187. arg := argsList.Front()
  6188. for i := 0; i < idx; i++ {
  6189. arg = arg.Next()
  6190. }
  6191. var result formulaArg
  6192. switch arg.Value.(formulaArg).Type {
  6193. case ArgString:
  6194. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  6195. case ArgMatrix:
  6196. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  6197. }
  6198. return result
  6199. }
  6200. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  6201. // string.
  6202. func deepMatchRune(str, pattern []rune, simple bool) bool {
  6203. for len(pattern) > 0 {
  6204. switch pattern[0] {
  6205. default:
  6206. if len(str) == 0 || str[0] != pattern[0] {
  6207. return false
  6208. }
  6209. case '?':
  6210. if len(str) == 0 && !simple {
  6211. return false
  6212. }
  6213. case '*':
  6214. return deepMatchRune(str, pattern[1:], simple) ||
  6215. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  6216. }
  6217. str = str[1:]
  6218. pattern = pattern[1:]
  6219. }
  6220. return len(str) == 0 && len(pattern) == 0
  6221. }
  6222. // matchPattern finds whether the text matches or satisfies the pattern
  6223. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  6224. func matchPattern(pattern, name string) (matched bool) {
  6225. if pattern == "" {
  6226. return name == pattern
  6227. }
  6228. if pattern == "*" {
  6229. return true
  6230. }
  6231. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  6232. for _, r := range name {
  6233. rname = append(rname, r)
  6234. }
  6235. for _, r := range pattern {
  6236. rpattern = append(rpattern, r)
  6237. }
  6238. simple := false // Does extended wildcard '*' and '?' match.
  6239. return deepMatchRune(rname, rpattern, simple)
  6240. }
  6241. // compareFormulaArg compares the left-hand sides and the right-hand sides
  6242. // formula arguments by given conditions such as case sensitive, if exact
  6243. // match, and make compare result as formula criteria condition type.
  6244. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6245. if lhs.Type != rhs.Type {
  6246. return criteriaErr
  6247. }
  6248. switch lhs.Type {
  6249. case ArgNumber:
  6250. if lhs.Number == rhs.Number {
  6251. return criteriaEq
  6252. }
  6253. if lhs.Number < rhs.Number {
  6254. return criteriaL
  6255. }
  6256. return criteriaG
  6257. case ArgString:
  6258. ls, rs := lhs.String, rhs.String
  6259. if !caseSensitive {
  6260. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  6261. }
  6262. if exactMatch {
  6263. match := matchPattern(rs, ls)
  6264. if match {
  6265. return criteriaEq
  6266. }
  6267. return criteriaG
  6268. }
  6269. switch strings.Compare(ls, rs) {
  6270. case 1:
  6271. return criteriaG
  6272. case -1:
  6273. return criteriaL
  6274. case 0:
  6275. return criteriaEq
  6276. }
  6277. return criteriaErr
  6278. case ArgEmpty:
  6279. return criteriaEq
  6280. case ArgList:
  6281. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  6282. case ArgMatrix:
  6283. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  6284. }
  6285. return criteriaErr
  6286. }
  6287. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  6288. // list type formula arguments.
  6289. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6290. if len(lhs.List) < len(rhs.List) {
  6291. return criteriaL
  6292. }
  6293. if len(lhs.List) > len(rhs.List) {
  6294. return criteriaG
  6295. }
  6296. for arg := range lhs.List {
  6297. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  6298. if criteria != criteriaEq {
  6299. return criteria
  6300. }
  6301. }
  6302. return criteriaEq
  6303. }
  6304. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  6305. // matrix type formula arguments.
  6306. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6307. if len(lhs.Matrix) < len(rhs.Matrix) {
  6308. return criteriaL
  6309. }
  6310. if len(lhs.Matrix) > len(rhs.Matrix) {
  6311. return criteriaG
  6312. }
  6313. for i := range lhs.Matrix {
  6314. left := lhs.Matrix[i]
  6315. right := lhs.Matrix[i]
  6316. if len(left) < len(right) {
  6317. return criteriaL
  6318. }
  6319. if len(left) > len(right) {
  6320. return criteriaG
  6321. }
  6322. for arg := range left {
  6323. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  6324. if criteria != criteriaEq {
  6325. return criteria
  6326. }
  6327. }
  6328. }
  6329. return criteriaEq
  6330. }
  6331. // COLUMN function returns the first column number within a supplied reference
  6332. // or the number of the current column. The syntax of the function is:
  6333. //
  6334. // COLUMN([reference])
  6335. //
  6336. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  6337. if argsList.Len() > 1 {
  6338. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  6339. }
  6340. if argsList.Len() == 1 {
  6341. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6342. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  6343. }
  6344. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6345. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  6346. }
  6347. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6348. }
  6349. col, _, _ := CellNameToCoordinates(fn.cell)
  6350. return newNumberFormulaArg(float64(col))
  6351. }
  6352. // COLUMNS function receives an Excel range and returns the number of columns
  6353. // that are contained within the range. The syntax of the function is:
  6354. //
  6355. // COLUMNS(array)
  6356. //
  6357. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  6358. if argsList.Len() != 1 {
  6359. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  6360. }
  6361. var min, max int
  6362. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6363. crs := argsList.Front().Value.(formulaArg).cellRanges
  6364. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6365. if min == 0 {
  6366. min = cr.Value.(cellRange).From.Col
  6367. }
  6368. if min > cr.Value.(cellRange).From.Col {
  6369. min = cr.Value.(cellRange).From.Col
  6370. }
  6371. if min > cr.Value.(cellRange).To.Col {
  6372. min = cr.Value.(cellRange).To.Col
  6373. }
  6374. if max < cr.Value.(cellRange).To.Col {
  6375. max = cr.Value.(cellRange).To.Col
  6376. }
  6377. if max < cr.Value.(cellRange).From.Col {
  6378. max = cr.Value.(cellRange).From.Col
  6379. }
  6380. }
  6381. }
  6382. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6383. cr := argsList.Front().Value.(formulaArg).cellRefs
  6384. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6385. if min == 0 {
  6386. min = refs.Value.(cellRef).Col
  6387. }
  6388. if min > refs.Value.(cellRef).Col {
  6389. min = refs.Value.(cellRef).Col
  6390. }
  6391. if max < refs.Value.(cellRef).Col {
  6392. max = refs.Value.(cellRef).Col
  6393. }
  6394. }
  6395. }
  6396. if max == TotalColumns {
  6397. return newNumberFormulaArg(float64(TotalColumns))
  6398. }
  6399. result := max - min + 1
  6400. if max == min {
  6401. if min == 0 {
  6402. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6403. }
  6404. return newNumberFormulaArg(float64(1))
  6405. }
  6406. return newNumberFormulaArg(float64(result))
  6407. }
  6408. // HLOOKUP function 'looks up' a given value in the top row of a data array
  6409. // (or table), and returns the corresponding value from another row of the
  6410. // array. The syntax of the function is:
  6411. //
  6412. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  6413. //
  6414. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  6415. if argsList.Len() < 3 {
  6416. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  6417. }
  6418. if argsList.Len() > 4 {
  6419. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  6420. }
  6421. lookupValue := argsList.Front().Value.(formulaArg)
  6422. tableArray := argsList.Front().Next().Value.(formulaArg)
  6423. if tableArray.Type != ArgMatrix {
  6424. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  6425. }
  6426. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6427. if rowArg.Type != ArgNumber {
  6428. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  6429. }
  6430. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  6431. if argsList.Len() == 4 {
  6432. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6433. if rangeLookup.Type == ArgError {
  6434. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6435. }
  6436. if rangeLookup.Number == 0 {
  6437. exactMatch = true
  6438. }
  6439. }
  6440. row := tableArray.Matrix[0]
  6441. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6442. start:
  6443. for idx, mtx := range row {
  6444. lhs := mtx
  6445. switch lookupValue.Type {
  6446. case ArgNumber:
  6447. if !lookupValue.Boolean {
  6448. lhs = mtx.ToNumber()
  6449. if lhs.Type == ArgError {
  6450. lhs = mtx
  6451. }
  6452. }
  6453. case ArgMatrix:
  6454. lhs = tableArray
  6455. }
  6456. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6457. matchIdx = idx
  6458. wasExact = true
  6459. break start
  6460. }
  6461. }
  6462. } else {
  6463. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  6464. }
  6465. if matchIdx == -1 {
  6466. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6467. }
  6468. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  6469. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  6470. }
  6471. row = tableArray.Matrix[rowIdx]
  6472. if wasExact || !exactMatch {
  6473. return row[matchIdx]
  6474. }
  6475. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6476. }
  6477. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  6478. // data array (or table), and returns the corresponding value from another
  6479. // column of the array. The syntax of the function is:
  6480. //
  6481. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  6482. //
  6483. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  6484. if argsList.Len() < 3 {
  6485. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  6486. }
  6487. if argsList.Len() > 4 {
  6488. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  6489. }
  6490. lookupValue := argsList.Front().Value.(formulaArg)
  6491. tableArray := argsList.Front().Next().Value.(formulaArg)
  6492. if tableArray.Type != ArgMatrix {
  6493. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  6494. }
  6495. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6496. if colIdx.Type != ArgNumber {
  6497. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  6498. }
  6499. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  6500. if argsList.Len() == 4 {
  6501. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6502. if rangeLookup.Type == ArgError {
  6503. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6504. }
  6505. if rangeLookup.Number == 0 {
  6506. exactMatch = true
  6507. }
  6508. }
  6509. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6510. start:
  6511. for idx, mtx := range tableArray.Matrix {
  6512. lhs := mtx[0]
  6513. switch lookupValue.Type {
  6514. case ArgNumber:
  6515. if !lookupValue.Boolean {
  6516. lhs = mtx[0].ToNumber()
  6517. if lhs.Type == ArgError {
  6518. lhs = mtx[0]
  6519. }
  6520. }
  6521. case ArgMatrix:
  6522. lhs = tableArray
  6523. }
  6524. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6525. matchIdx = idx
  6526. wasExact = true
  6527. break start
  6528. }
  6529. }
  6530. } else {
  6531. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6532. }
  6533. if matchIdx == -1 {
  6534. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6535. }
  6536. mtx := tableArray.Matrix[matchIdx]
  6537. if col < 0 || col >= len(mtx) {
  6538. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6539. }
  6540. if wasExact || !exactMatch {
  6541. return mtx[col]
  6542. }
  6543. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6544. }
  6545. // vlookupBinarySearch finds the position of a target value when range lookup
  6546. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6547. // return wrong result.
  6548. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6549. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6550. for low <= high {
  6551. var mid int = low + (high-low)/2
  6552. mtx := tableArray.Matrix[mid]
  6553. lhs := mtx[0]
  6554. switch lookupValue.Type {
  6555. case ArgNumber:
  6556. if !lookupValue.Boolean {
  6557. lhs = mtx[0].ToNumber()
  6558. if lhs.Type == ArgError {
  6559. lhs = mtx[0]
  6560. }
  6561. }
  6562. case ArgMatrix:
  6563. lhs = tableArray
  6564. }
  6565. result := compareFormulaArg(lhs, lookupValue, false, false)
  6566. if result == criteriaEq {
  6567. matchIdx, wasExact = mid, true
  6568. return
  6569. } else if result == criteriaG {
  6570. high = mid - 1
  6571. } else if result == criteriaL {
  6572. matchIdx, low = mid, mid+1
  6573. if lhs.Value() != "" {
  6574. lastMatchIdx = matchIdx
  6575. }
  6576. } else {
  6577. return -1, false
  6578. }
  6579. }
  6580. matchIdx, wasExact = lastMatchIdx, true
  6581. return
  6582. }
  6583. // vlookupBinarySearch finds the position of a target value when range lookup
  6584. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6585. // return wrong result.
  6586. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6587. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6588. for low <= high {
  6589. var mid int = low + (high-low)/2
  6590. mtx := row[mid]
  6591. result := compareFormulaArg(mtx, lookupValue, false, false)
  6592. if result == criteriaEq {
  6593. matchIdx, wasExact = mid, true
  6594. return
  6595. } else if result == criteriaG {
  6596. high = mid - 1
  6597. } else if result == criteriaL {
  6598. low, lastMatchIdx = mid+1, mid
  6599. } else {
  6600. return -1, false
  6601. }
  6602. }
  6603. matchIdx, wasExact = lastMatchIdx, true
  6604. return
  6605. }
  6606. // LOOKUP function performs an approximate match lookup in a one-column or
  6607. // one-row range, and returns the corresponding value from another one-column
  6608. // or one-row range. The syntax of the function is:
  6609. //
  6610. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6611. //
  6612. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6613. if argsList.Len() < 2 {
  6614. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6615. }
  6616. if argsList.Len() > 3 {
  6617. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6618. }
  6619. lookupValue := argsList.Front().Value.(formulaArg)
  6620. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6621. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6622. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6623. }
  6624. cols, matchIdx := lookupCol(lookupVector), -1
  6625. for idx, col := range cols {
  6626. lhs := lookupValue
  6627. switch col.Type {
  6628. case ArgNumber:
  6629. lhs = lhs.ToNumber()
  6630. if !col.Boolean {
  6631. if lhs.Type == ArgError {
  6632. lhs = lookupValue
  6633. }
  6634. }
  6635. }
  6636. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6637. matchIdx = idx
  6638. break
  6639. }
  6640. }
  6641. column := cols
  6642. if argsList.Len() == 3 {
  6643. column = lookupCol(argsList.Back().Value.(formulaArg))
  6644. }
  6645. if matchIdx < 0 || matchIdx >= len(column) {
  6646. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6647. }
  6648. return column[matchIdx]
  6649. }
  6650. // lookupCol extract columns for LOOKUP.
  6651. func lookupCol(arr formulaArg) []formulaArg {
  6652. col := arr.List
  6653. if arr.Type == ArgMatrix {
  6654. col = nil
  6655. for _, r := range arr.Matrix {
  6656. if len(r) > 0 {
  6657. col = append(col, r[0])
  6658. continue
  6659. }
  6660. col = append(col, newEmptyFormulaArg())
  6661. }
  6662. }
  6663. return col
  6664. }
  6665. // ROW function returns the first row number within a supplied reference or
  6666. // the number of the current row. The syntax of the function is:
  6667. //
  6668. // ROW([reference])
  6669. //
  6670. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6671. if argsList.Len() > 1 {
  6672. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6673. }
  6674. if argsList.Len() == 1 {
  6675. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6676. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6677. }
  6678. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6679. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6680. }
  6681. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6682. }
  6683. _, row, _ := CellNameToCoordinates(fn.cell)
  6684. return newNumberFormulaArg(float64(row))
  6685. }
  6686. // ROWS function takes an Excel range and returns the number of rows that are
  6687. // contained within the range. The syntax of the function is:
  6688. //
  6689. // ROWS(array)
  6690. //
  6691. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6692. if argsList.Len() != 1 {
  6693. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6694. }
  6695. var min, max int
  6696. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6697. crs := argsList.Front().Value.(formulaArg).cellRanges
  6698. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6699. if min == 0 {
  6700. min = cr.Value.(cellRange).From.Row
  6701. }
  6702. if min > cr.Value.(cellRange).From.Row {
  6703. min = cr.Value.(cellRange).From.Row
  6704. }
  6705. if min > cr.Value.(cellRange).To.Row {
  6706. min = cr.Value.(cellRange).To.Row
  6707. }
  6708. if max < cr.Value.(cellRange).To.Row {
  6709. max = cr.Value.(cellRange).To.Row
  6710. }
  6711. if max < cr.Value.(cellRange).From.Row {
  6712. max = cr.Value.(cellRange).From.Row
  6713. }
  6714. }
  6715. }
  6716. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6717. cr := argsList.Front().Value.(formulaArg).cellRefs
  6718. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6719. if min == 0 {
  6720. min = refs.Value.(cellRef).Row
  6721. }
  6722. if min > refs.Value.(cellRef).Row {
  6723. min = refs.Value.(cellRef).Row
  6724. }
  6725. if max < refs.Value.(cellRef).Row {
  6726. max = refs.Value.(cellRef).Row
  6727. }
  6728. }
  6729. }
  6730. if max == TotalRows {
  6731. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6732. }
  6733. result := max - min + 1
  6734. if max == min {
  6735. if min == 0 {
  6736. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6737. }
  6738. return newNumberFormulaArg(float64(1))
  6739. }
  6740. return newStringFormulaArg(strconv.Itoa(result))
  6741. }
  6742. // Web Functions
  6743. // ENCODEURL function returns a URL-encoded string, replacing certain
  6744. // non-alphanumeric characters with the percentage symbol (%) and a
  6745. // hexadecimal number. The syntax of the function is:
  6746. //
  6747. // ENCODEURL(url)
  6748. //
  6749. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6750. if argsList.Len() != 1 {
  6751. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6752. }
  6753. token := argsList.Front().Value.(formulaArg).Value()
  6754. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6755. }