| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966 |
- // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
- // this source code is governed by a BSD-style license that can be found in
- // the LICENSE file.
- //
- // Package excelize providing a set of functions that allow you to write to
- // and read from XLSX / XLSM / XLTM files. Supports reading and writing
- // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
- // complex components by high compatibility, and provided streaming API for
- // generating or reading data from a worksheet with huge amounts of data. This
- // library needs Go version 1.10 or later.
- package excelize
- import (
- "bytes"
- "container/list"
- "errors"
- "fmt"
- "math"
- "math/rand"
- "net/url"
- "reflect"
- "regexp"
- "sort"
- "strconv"
- "strings"
- "time"
- "unicode"
- "unsafe"
- "github.com/xuri/efp"
- )
- // Excel formula errors
- const (
- formulaErrorDIV = "#DIV/0!"
- formulaErrorNAME = "#NAME?"
- formulaErrorNA = "#N/A"
- formulaErrorNUM = "#NUM!"
- formulaErrorVALUE = "#VALUE!"
- formulaErrorREF = "#REF!"
- formulaErrorNULL = "#NULL"
- formulaErrorSPILL = "#SPILL!"
- formulaErrorCALC = "#CALC!"
- formulaErrorGETTINGDATA = "#GETTING_DATA"
- )
- // Numeric precision correct numeric values as legacy Excel application
- // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
- // top figure the fraction 1/9000 in Excel is displayed. Although this number
- // has a decimal representation that is an infinite string of ones, Excel
- // displays only the leading 15 figures. In the second line, the number one
- // is added to the fraction, and again Excel displays only 15 figures.
- const numericPrecision = 1000000000000000
- // cellRef defines the structure of a cell reference.
- type cellRef struct {
- Col int
- Row int
- Sheet string
- }
- // cellRef defines the structure of a cell range.
- type cellRange struct {
- From cellRef
- To cellRef
- }
- // formula criteria condition enumeration.
- const (
- _ byte = iota
- criteriaEq
- criteriaLe
- criteriaGe
- criteriaL
- criteriaG
- criteriaBeg
- criteriaEnd
- criteriaErr
- )
- // formulaCriteria defined formula criteria parser result.
- type formulaCriteria struct {
- Type byte
- Condition string
- }
- // ArgType is the type if formula argument type.
- type ArgType byte
- // Formula argument types enumeration.
- const (
- ArgUnknown ArgType = iota
- ArgNumber
- ArgString
- ArgList
- ArgMatrix
- ArgError
- ArgEmpty
- )
- // formulaArg is the argument of a formula or function.
- type formulaArg struct {
- SheetName string
- Number float64
- String string
- List []formulaArg
- Matrix [][]formulaArg
- Boolean bool
- Error string
- Type ArgType
- }
- // Value returns a string data type of the formula argument.
- func (fa formulaArg) Value() (value string) {
- switch fa.Type {
- case ArgNumber:
- if fa.Boolean {
- if fa.Number == 0 {
- return "FALSE"
- }
- return "TRUE"
- }
- return fmt.Sprintf("%g", fa.Number)
- case ArgString:
- return fa.String
- case ArgError:
- return fa.Error
- }
- return
- }
- // ToNumber returns a formula argument with number data type.
- func (fa formulaArg) ToNumber() formulaArg {
- var n float64
- var err error
- switch fa.Type {
- case ArgString:
- n, err = strconv.ParseFloat(fa.String, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- case ArgNumber:
- n = fa.Number
- }
- return newNumberFormulaArg(n)
- }
- // ToBool returns a formula argument with boolean data type.
- func (fa formulaArg) ToBool() formulaArg {
- var b bool
- var err error
- switch fa.Type {
- case ArgString:
- b, err = strconv.ParseBool(fa.String)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- case ArgNumber:
- if fa.Boolean && fa.Number == 1 {
- b = true
- }
- }
- return newBoolFormulaArg(b)
- }
- // ToList returns a formula argument with array data type.
- func (fa formulaArg) ToList() []formulaArg {
- if fa.Type == ArgMatrix {
- list := []formulaArg{}
- for _, row := range fa.Matrix {
- list = append(list, row...)
- }
- return list
- }
- if fa.Type == ArgList {
- return fa.List
- }
- return nil
- }
- // formulaFuncs is the type of the formula functions.
- type formulaFuncs struct {
- f *File
- sheet string
- }
- // tokenPriority defined basic arithmetic operator priority.
- var tokenPriority = map[string]int{
- "^": 5,
- "*": 4,
- "/": 4,
- "+": 3,
- "-": 3,
- "=": 2,
- "<>": 2,
- "<": 2,
- "<=": 2,
- ">": 2,
- ">=": 2,
- "&": 1,
- }
- // CalcCellValue provides a function to get calculated cell value. This
- // feature is currently in working processing. Array formula, table formula
- // and some other formulas are not supported currently.
- //
- // Supported formula functions:
- //
- // ABS
- // ACOS
- // ACOSH
- // ACOT
- // ACOTH
- // AND
- // ARABIC
- // ASIN
- // ASINH
- // ATAN
- // ATAN2
- // ATANH
- // AVERAGE
- // AVERAGEA
- // BASE
- // BITAND
- // BITLSHIFT
- // BITOR
- // BITRSHIFT
- // BITXOR
- // CEILING
- // CEILING.MATH
- // CEILING.PRECISE
- // CHOOSE
- // CLEAN
- // COMBIN
- // COMBINA
- // CONCAT
- // CONCATENATE
- // COS
- // COSH
- // COT
- // COTH
- // COUNT
- // COUNTA
- // COUNTBLANK
- // CSC
- // CSCH
- // DATE
- // DEC2BIN
- // DEC2HEX
- // DEC2OCT
- // DECIMAL
- // DEGREES
- // ENCODEURL
- // EVEN
- // EXACT
- // EXP
- // FACT
- // FACTDOUBLE
- // FALSE
- // FISHER
- // FISHERINV
- // FLOOR
- // FLOOR.MATH
- // FLOOR.PRECISE
- // GAMMA
- // GAMMALN
- // GCD
- // HLOOKUP
- // IF
- // IFERROR
- // INT
- // ISBLANK
- // ISERR
- // ISERROR
- // ISEVEN
- // ISNA
- // ISNONTEXT
- // ISNUMBER
- // ISODD
- // ISTEXT
- // ISO.CEILING
- // KURT
- // LCM
- // LEN
- // LENB
- // LN
- // LOG
- // LOG10
- // LOOKUP
- // LOWER
- // MAX
- // MDETERM
- // MEDIAN
- // MIN
- // MINA
- // MOD
- // MROUND
- // MULTINOMIAL
- // MUNIT
- // NA
- // NOT
- // ODD
- // OR
- // PERMUT
- // PI
- // POWER
- // PRODUCT
- // PROPER
- // QUOTIENT
- // RADIANS
- // RAND
- // RANDBETWEEN
- // REPT
- // ROMAN
- // ROUND
- // ROUNDDOWN
- // ROUNDUP
- // SEC
- // SECH
- // SHEET
- // SIGN
- // SIN
- // SINH
- // SQRT
- // SQRTPI
- // STDEV
- // STDEVA
- // SUM
- // SUMIF
- // SUMSQ
- // TAN
- // TANH
- // TRIM
- // TRUE
- // TRUNC
- // UPPER
- // VLOOKUP
- //
- func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
- var (
- formula string
- token efp.Token
- )
- if formula, err = f.GetCellFormula(sheet, cell); err != nil {
- return
- }
- ps := efp.ExcelParser()
- tokens := ps.Parse(formula)
- if tokens == nil {
- return
- }
- if token, err = f.evalInfixExp(sheet, tokens); err != nil {
- return
- }
- result = token.TValue
- isNum, precision := isNumeric(result)
- if isNum && precision > 15 {
- num, _ := roundPrecision(result)
- result = strings.ToUpper(num)
- }
- return
- }
- // getPriority calculate arithmetic operator priority.
- func getPriority(token efp.Token) (pri int) {
- pri = tokenPriority[token.TValue]
- if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
- pri = 6
- }
- if isBeginParenthesesToken(token) { // (
- pri = 0
- }
- return
- }
- // newNumberFormulaArg constructs a number formula argument.
- func newNumberFormulaArg(n float64) formulaArg {
- if math.IsNaN(n) {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return formulaArg{Type: ArgNumber, Number: n}
- }
- // newStringFormulaArg constructs a string formula argument.
- func newStringFormulaArg(s string) formulaArg {
- return formulaArg{Type: ArgString, String: s}
- }
- // newMatrixFormulaArg constructs a matrix formula argument.
- func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
- return formulaArg{Type: ArgMatrix, Matrix: m}
- }
- // newListFormulaArg create a list formula argument.
- func newListFormulaArg(l []formulaArg) formulaArg {
- return formulaArg{Type: ArgList, List: l}
- }
- // newBoolFormulaArg constructs a boolean formula argument.
- func newBoolFormulaArg(b bool) formulaArg {
- var n float64
- if b {
- n = 1
- }
- return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
- }
- // newErrorFormulaArg create an error formula argument of a given type with a
- // specified error message.
- func newErrorFormulaArg(formulaError, msg string) formulaArg {
- return formulaArg{Type: ArgError, String: formulaError, Error: msg}
- }
- // newEmptyFormulaArg create an empty formula argument.
- func newEmptyFormulaArg() formulaArg {
- return formulaArg{Type: ArgEmpty}
- }
- // evalInfixExp evaluate syntax analysis by given infix expression after
- // lexical analysis. Evaluate an infix expression containing formulas by
- // stacks:
- //
- // opd - Operand
- // opt - Operator
- // opf - Operation formula
- // opfd - Operand of the operation formula
- // opft - Operator of the operation formula
- //
- // Evaluate arguments of the operation formula by list:
- //
- // args - Arguments of the operation formula
- //
- // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
- //
- func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
- var err error
- opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
- for i := 0; i < len(tokens); i++ {
- token := tokens[i]
- // out of function stack
- if opfStack.Len() == 0 {
- if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
- return efp.Token{}, err
- }
- }
- // function start
- if isFunctionStartToken(token) {
- opfStack.Push(token)
- argsStack.Push(list.New().Init())
- continue
- }
- // in function stack, walk 2 token at once
- if opfStack.Len() > 0 {
- var nextToken efp.Token
- if i+1 < len(tokens) {
- nextToken = tokens[i+1]
- }
- // current token is args or range, skip next token, order required: parse reference first
- if token.TSubType == efp.TokenSubTypeRange {
- if !opftStack.Empty() {
- // parse reference: must reference at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if result.Type != ArgString {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- opfdStack.Push(efp.Token{
- TType: efp.TokenTypeOperand,
- TSubType: efp.TokenSubTypeNumber,
- TValue: result.String,
- })
- continue
- }
- if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
- // parse reference: reference or range at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if result.Type == ArgUnknown {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- argsStack.Peek().(*list.List).PushBack(result)
- continue
- }
- }
- // check current token is opft
- if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
- return efp.Token{}, err
- }
- // current token is arg
- if token.TType == efp.TokenTypeArgument {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
- }
- opftStack.Pop()
- }
- if !opfdStack.Empty() {
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
- }
- continue
- }
- // current token is logical
- if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
- }
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
- }
- // current token is text
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
- }
- if err = f.evalInfixExpFunc(sheet, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
- return efp.Token{}, err
- }
- }
- }
- for optStack.Len() != 0 {
- topOpt := optStack.Peek().(efp.Token)
- if err = calculate(opdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- optStack.Pop()
- }
- if opdStack.Len() == 0 {
- return efp.Token{}, errors.New("formula not valid")
- }
- return opdStack.Peek().(efp.Token), err
- }
- // evalInfixExpFunc evaluate formula function in the infix expression.
- func (f *File) evalInfixExpFunc(sheet string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
- if !isFunctionStopToken(token) {
- return nil
- }
- // current token is function stop
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return err
- }
- opftStack.Pop()
- }
- // push opfd to args
- if opfdStack.Len() > 0 {
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
- }
- // call formula function to evaluate
- arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet}, strings.NewReplacer(
- "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
- []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
- if arg.Type == ArgError && opfStack.Len() == 1 {
- return errors.New(arg.Value())
- }
- argsStack.Pop()
- opfStack.Pop()
- if opfStack.Len() > 0 { // still in function stack
- if nextToken.TType == efp.TokenTypeOperatorInfix {
- // mathematics calculate in formula function
- opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- } else {
- argsStack.Peek().(*list.List).PushBack(arg)
- }
- } else {
- opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- return nil
- }
- // calcPow evaluate exponentiation arithmetic operations.
- func calcPow(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := math.Pow(lOpdVal, rOpdVal)
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcEq evaluate equal arithmetic operations.
- func calcEq(rOpd, lOpd string, opdStack *Stack) error {
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcNEq evaluate not equal arithmetic operations.
- func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcL evaluate less than arithmetic operations.
- func calcL(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcLe evaluate less than or equal arithmetic operations.
- func calcLe(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcG evaluate greater than or equal arithmetic operations.
- func calcG(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcGe evaluate greater than or equal arithmetic operations.
- func calcGe(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcSplice evaluate splice '&' operations.
- func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
- opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcAdd evaluate addition arithmetic operations.
- func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal + rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcSubtract evaluate subtraction arithmetic operations.
- func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal - rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcMultiply evaluate multiplication arithmetic operations.
- func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal * rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcDiv evaluate division arithmetic operations.
- func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
- if err != nil {
- return err
- }
- result := lOpdVal / rOpdVal
- if rOpdVal == 0 {
- return errors.New(formulaErrorDIV)
- }
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calculate evaluate basic arithmetic operations.
- func calculate(opdStack *Stack, opt efp.Token) error {
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
- if opdStack.Len() < 1 {
- return errors.New("formula not valid")
- }
- opd := opdStack.Pop().(efp.Token)
- opdVal, err := strconv.ParseFloat(opd.TValue, 64)
- if err != nil {
- return err
- }
- result := 0 - opdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
- "^": calcPow,
- "*": calcMultiply,
- "/": calcDiv,
- "+": calcAdd,
- "=": calcEq,
- "<>": calcNEq,
- "<": calcL,
- "<=": calcLe,
- ">": calcG,
- ">=": calcGe,
- "&": calcSplice,
- }
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
- return err
- }
- }
- fn, ok := tokenCalcFunc[opt.TValue]
- if ok {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
- return err
- }
- }
- return nil
- }
- // parseOperatorPrefixToken parse operator prefix token.
- func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
- if optStack.Len() == 0 {
- optStack.Push(token)
- } else {
- tokenPriority := getPriority(token)
- topOpt := optStack.Peek().(efp.Token)
- topOptPriority := getPriority(topOpt)
- if tokenPriority > topOptPriority {
- optStack.Push(token)
- } else {
- for tokenPriority <= topOptPriority {
- optStack.Pop()
- if err = calculate(opdStack, topOpt); err != nil {
- return
- }
- if optStack.Len() > 0 {
- topOpt = optStack.Peek().(efp.Token)
- topOptPriority = getPriority(topOpt)
- continue
- }
- break
- }
- optStack.Push(token)
- }
- }
- return
- }
- // isFunctionStartToken determine if the token is function stop.
- func isFunctionStartToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
- }
- // isFunctionStopToken determine if the token is function stop.
- func isFunctionStopToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
- }
- // isBeginParenthesesToken determine if the token is begin parentheses: (.
- func isBeginParenthesesToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
- }
- // isEndParenthesesToken determine if the token is end parentheses: ).
- func isEndParenthesesToken(token efp.Token) bool {
- return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
- }
- // isOperatorPrefixToken determine if the token is parse operator prefix
- // token.
- func isOperatorPrefixToken(token efp.Token) bool {
- _, ok := tokenPriority[token.TValue]
- if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
- return true
- }
- return false
- }
- // getDefinedNameRefTo convert defined name to reference range.
- func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
- for _, definedName := range f.GetDefinedName() {
- if definedName.Name == definedNameName {
- refTo = definedName.RefersTo
- // worksheet scope takes precedence over scope workbook when both definedNames exist
- if definedName.Scope == currentSheet {
- break
- }
- }
- }
- return refTo
- }
- // parseToken parse basic arithmetic operator priority and evaluate based on
- // operators and operands.
- func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
- // parse reference: must reference at here
- if token.TSubType == efp.TokenSubTypeRange {
- refTo := f.getDefinedNameRefTo(token.TValue, sheet)
- if refTo != "" {
- token.TValue = refTo
- }
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return errors.New(formulaErrorNAME)
- }
- if result.Type != ArgString {
- return errors.New(formulaErrorVALUE)
- }
- token.TValue = result.String
- token.TType = efp.TokenTypeOperand
- token.TSubType = efp.TokenSubTypeNumber
- }
- if isOperatorPrefixToken(token) {
- if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
- return err
- }
- }
- if isBeginParenthesesToken(token) { // (
- optStack.Push(token)
- }
- if isEndParenthesesToken(token) { // )
- for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
- topOpt := optStack.Peek().(efp.Token)
- if err := calculate(opdStack, topOpt); err != nil {
- return err
- }
- optStack.Pop()
- }
- optStack.Pop()
- }
- // opd
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
- opdStack.Push(token)
- }
- return nil
- }
- // parseReference parse reference and extract values by given reference
- // characters and default sheet name.
- func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
- reference = strings.Replace(reference, "$", "", -1)
- refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
- for _, ref := range strings.Split(reference, ":") {
- tokens := strings.Split(ref, "!")
- cr := cellRef{}
- if len(tokens) == 2 { // have a worksheet name
- cr.Sheet = tokens[0]
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
- return
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- refs.PushBack(cr)
- continue
- }
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
- if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
- return
- }
- cellRanges.PushBack(cellRange{
- From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
- To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
- })
- cellRefs.Init()
- arg, err = f.rangeResolver(cellRefs, cellRanges)
- return
- }
- e := refs.Back()
- if e == nil {
- cr.Sheet = sheet
- refs.PushBack(cr)
- continue
- }
- cellRanges.PushBack(cellRange{
- From: e.Value.(cellRef),
- To: cr,
- })
- refs.Remove(e)
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- arg, err = f.rangeResolver(cellRefs, cellRanges)
- return
- }
- // prepareValueRange prepare value range.
- func prepareValueRange(cr cellRange, valueRange []int) {
- if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
- valueRange[0] = cr.From.Row
- }
- if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
- valueRange[2] = cr.From.Col
- }
- if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
- valueRange[1] = cr.To.Row
- }
- if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
- valueRange[3] = cr.To.Col
- }
- }
- // prepareValueRef prepare value reference.
- func prepareValueRef(cr cellRef, valueRange []int) {
- if cr.Row < valueRange[0] || valueRange[0] == 0 {
- valueRange[0] = cr.Row
- }
- if cr.Col < valueRange[2] || valueRange[2] == 0 {
- valueRange[2] = cr.Col
- }
- if cr.Row > valueRange[1] || valueRange[1] == 0 {
- valueRange[1] = cr.Row
- }
- if cr.Col > valueRange[3] || valueRange[3] == 0 {
- valueRange[3] = cr.Col
- }
- }
- // rangeResolver extract value as string from given reference and range list.
- // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
- // be reference A1:B3.
- func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
- // value range order: from row, to row, from column, to column
- valueRange := []int{0, 0, 0, 0}
- var sheet string
- // prepare value range
- for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRange)
- if cr.From.Sheet != cr.To.Sheet {
- err = errors.New(formulaErrorVALUE)
- }
- rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
- _ = sortCoordinates(rng)
- cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
- prepareValueRange(cr, valueRange)
- if cr.From.Sheet != "" {
- sheet = cr.From.Sheet
- }
- }
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- if cr.Sheet != "" {
- sheet = cr.Sheet
- }
- prepareValueRef(cr, valueRange)
- }
- // extract value from ranges
- if cellRanges.Len() > 0 {
- arg.Type = ArgMatrix
- for row := valueRange[0]; row <= valueRange[1]; row++ {
- var matrixRow = []formulaArg{}
- for col := valueRange[2]; col <= valueRange[3]; col++ {
- var cell, value string
- if cell, err = CoordinatesToCellName(col, row); err != nil {
- return
- }
- if value, err = f.GetCellValue(sheet, cell); err != nil {
- return
- }
- matrixRow = append(matrixRow, formulaArg{
- String: value,
- Type: ArgString,
- })
- }
- arg.Matrix = append(arg.Matrix, matrixRow)
- }
- return
- }
- // extract value from references
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- var cell string
- if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
- return
- }
- if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
- return
- }
- arg.Type = ArgString
- }
- return
- }
- // callFuncByName calls the no error or only error return function with
- // reflect by given receiver, name and parameters.
- func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
- function := reflect.ValueOf(receiver).MethodByName(name)
- if function.IsValid() {
- rt := function.Call(params)
- if len(rt) == 0 {
- return
- }
- arg = rt[0].Interface().(formulaArg)
- return
- }
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
- }
- // formulaCriteriaParser parse formula criteria.
- func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
- fc = &formulaCriteria{}
- if exp == "" {
- return
- }
- if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaEq, match[1]
- return
- }
- if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaEq, match[1]
- return
- }
- if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaLe, match[1]
- return
- }
- if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaGe, match[1]
- return
- }
- if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaL, match[1]
- return
- }
- if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaG, match[1]
- return
- }
- if strings.Contains(exp, "*") {
- if strings.HasPrefix(exp, "*") {
- fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
- }
- if strings.HasSuffix(exp, "*") {
- fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
- }
- return
- }
- fc.Type, fc.Condition = criteriaEq, exp
- return
- }
- // formulaCriteriaEval evaluate formula criteria expression.
- func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
- var value, expected float64
- var e error
- var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
- if value, err = strconv.ParseFloat(val, 64); err != nil {
- return
- }
- if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
- return
- }
- return
- }
- switch criteria.Type {
- case criteriaEq:
- return val == criteria.Condition, err
- case criteriaLe:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value <= expected && e == nil, err
- case criteriaGe:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value >= expected && e == nil, err
- case criteriaL:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value < expected && e == nil, err
- case criteriaG:
- value, expected, e = prepareValue(val, criteria.Condition)
- return value > expected && e == nil, err
- case criteriaBeg:
- return strings.HasPrefix(val, criteria.Condition), err
- case criteriaEnd:
- return strings.HasSuffix(val, criteria.Condition), err
- }
- return
- }
- // Engineering Functions
- // BITAND function returns the bitwise 'AND' for two supplied integers. The
- // syntax of the function is:
- //
- // BITAND(number1,number2)
- //
- func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
- return fn.bitwise("BITAND", argsList)
- }
- // BITLSHIFT function returns a supplied integer, shifted left by a specified
- // number of bits. The syntax of the function is:
- //
- // BITLSHIFT(number1,shift_amount)
- //
- func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
- return fn.bitwise("BITLSHIFT", argsList)
- }
- // BITOR function returns the bitwise 'OR' for two supplied integers. The
- // syntax of the function is:
- //
- // BITOR(number1,number2)
- //
- func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
- return fn.bitwise("BITOR", argsList)
- }
- // BITRSHIFT function returns a supplied integer, shifted right by a specified
- // number of bits. The syntax of the function is:
- //
- // BITRSHIFT(number1,shift_amount)
- //
- func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
- return fn.bitwise("BITRSHIFT", argsList)
- }
- // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
- // integers. The syntax of the function is:
- //
- // BITXOR(number1,number2)
- //
- func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
- return fn.bitwise("BITXOR", argsList)
- }
- // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
- // BITOR, BITRSHIFT and BITXOR.
- func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
- }
- num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
- if num1.Type != ArgNumber || num2.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- max := math.Pow(2, 48) - 1
- if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- bitwiseFuncMap := map[string]func(a, b int) int{
- "BITAND": func(a, b int) int { return a & b },
- "BITLSHIFT": func(a, b int) int { return a << uint(b) },
- "BITOR": func(a, b int) int { return a | b },
- "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
- "BITXOR": func(a, b int) int { return a ^ b },
- }
- bitwiseFunc, _ := bitwiseFuncMap[name]
- return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
- }
- // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
- // The syntax of the function is:
- //
- // DEC2BIN(number,[places])
- //
- func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
- return fn.dec2x("DEC2BIN", argsList)
- }
- // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
- // number. The syntax of the function is:
- //
- // DEC2HEX(number,[places])
- //
- func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
- return fn.dec2x("DEC2HEX", argsList)
- }
- // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
- // The syntax of the function is:
- //
- // DEC2OCT(number,[places])
- //
- func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
- return fn.dec2x("DEC2OCT", argsList)
- }
- // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
- // DEC2OCT.
- func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
- if argsList.Len() < 1 {
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
- }
- decimal := argsList.Front().Value.(formulaArg).ToNumber()
- if decimal.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
- }
- maxLimitMap := map[string]float64{
- "DEC2BIN": 511,
- "DEC2HEX": 549755813887,
- "DEC2OCT": 536870911,
- }
- minLimitMap := map[string]float64{
- "DEC2BIN": -512,
- "DEC2HEX": -549755813888,
- "DEC2OCT": -536870912,
- }
- baseMap := map[string]int{
- "DEC2BIN": 2,
- "DEC2HEX": 16,
- "DEC2OCT": 8,
- }
- maxLimit := maxLimitMap[name]
- minLimit := minLimitMap[name]
- base := baseMap[name]
- if decimal.Number < minLimit || decimal.Number > maxLimit {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- n := int64(decimal.Number)
- binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
- if argsList.Len() == 2 {
- places := argsList.Back().Value.(formulaArg).ToNumber()
- if places.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorVALUE, places.Error)
- }
- binaryPlaces := len(binary)
- if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
- }
- if decimal.Number < 0 && len(binary) > 10 {
- return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
- }
- return newStringFormulaArg(strings.ToUpper(binary))
- }
- // Math and Trigonometric Functions
- // ABS function returns the absolute value of any supplied number. The syntax
- // of the function is:
- //
- // ABS(number)
- //
- func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Abs(arg.Number))
- }
- // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
- // number, and returns an angle, in radians, between 0 and π. The syntax of
- // the function is:
- //
- // ACOS(number)
- //
- func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Acos(arg.Number))
- }
- // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
- // of the function is:
- //
- // ACOSH(number)
- //
- func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Acosh(arg.Number))
- }
- // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
- // given number, and returns an angle, in radians, between 0 and π. The syntax
- // of the function is:
- //
- // ACOT(number)
- //
- func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
- }
- // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
- // value. The syntax of the function is:
- //
- // ACOTH(number)
- //
- func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Atanh(1 / arg.Number))
- }
- // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
- // of the function is:
- //
- // ARABIC(text)
- //
- func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
- }
- charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
- val, last, prefix := 0.0, 0.0, 1.0
- for _, char := range argsList.Front().Value.(formulaArg).String {
- digit := 0.0
- if char == '-' {
- prefix = -1
- continue
- }
- digit = charMap[char]
- val += digit
- switch {
- case last == digit && (last == 5 || last == 50 || last == 500):
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- case 2*last == digit:
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- if last < digit {
- val -= 2 * last
- }
- last = digit
- }
- return newNumberFormulaArg(prefix * val)
- }
- // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
- // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
- // of the function is:
- //
- // ASIN(number)
- //
- func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Asin(arg.Number))
- }
- // ASINH function calculates the inverse hyperbolic sine of a supplied number.
- // The syntax of the function is:
- //
- // ASINH(number)
- //
- func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Asinh(arg.Number))
- }
- // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
- // given number, and returns an angle, in radians, between -π/2 and +π/2. The
- // syntax of the function is:
- //
- // ATAN(number)
- //
- func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Atan(arg.Number))
- }
- // ATANH function calculates the inverse hyperbolic tangent of a supplied
- // number. The syntax of the function is:
- //
- // ATANH(number)
- //
- func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
- }
- arg := argsList.Front().Value.(formulaArg).ToNumber()
- if arg.Type == ArgError {
- return arg
- }
- return newNumberFormulaArg(math.Atanh(arg.Number))
- }
- // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
- // given set of x and y coordinates, and returns an angle, in radians, between
- // -π/2 and +π/2. The syntax of the function is:
- //
- // ATAN2(x_num,y_num)
- //
- func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
- }
- x := argsList.Back().Value.(formulaArg).ToNumber()
- if x.Type == ArgError {
- return x
- }
- y := argsList.Front().Value.(formulaArg).ToNumber()
- if y.Type == ArgError {
- return y
- }
- return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
- }
- // BASE function converts a number into a supplied base (radix), and returns a
- // text representation of the calculated value. The syntax of the function is:
- //
- // BASE(number,radix,[min_length])
- //
- func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
- }
- var minLength int
- var err error
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
- if radix.Type == ArgError {
- return radix
- }
- if int(radix.Number) < 2 || int(radix.Number) > 36 {
- return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
- }
- if argsList.Len() > 2 {
- if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- }
- result := strconv.FormatInt(int64(number.Number), int(radix.Number))
- if len(result) < minLength {
- result = strings.Repeat("0", minLength-len(result)) + result
- }
- return newStringFormulaArg(strings.ToUpper(result))
- }
- // CEILING function rounds a supplied number away from zero, to the nearest
- // multiple of a given number. The syntax of the function is:
- //
- // CEILING(number,significance)
- //
- func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
- }
- number, significance, res := 0.0, 1.0, 0.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- }
- if significance < 0 && number > 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number))
- }
- number, res = math.Modf(number / significance)
- if res > 0 {
- number++
- }
- return newNumberFormulaArg(number * significance)
- }
- // CEILINGMATH function rounds a supplied number up to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // CEILING.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
- }
- number, significance, mode := 0.0, 1.0, 1.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- s := argsList.Front().Next().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number))
- }
- if argsList.Len() > 2 {
- m := argsList.Back().Value.(formulaArg).ToNumber()
- if m.Type == ArgError {
- return m
- }
- mode = m.Number
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- } else if mode < 0 {
- val--
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // CEILINGPRECISE function rounds a supplied number up (regardless of the
- // number's sign), to the nearest multiple of a given number. The syntax of
- // the function is:
- //
- // CEILING.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
- }
- number, significance := 0.0, 1.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number))
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- significance = math.Abs(significance)
- if significance == 0 {
- return newNumberFormulaArg(significance)
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // COMBIN function calculates the number of combinations (in any order) of a
- // given number objects from a set. The syntax of the function is:
- //
- // COMBIN(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
- }
- number, chosen, val := 0.0, 0.0, 1.0
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- c := argsList.Back().Value.(formulaArg).ToNumber()
- if c.Type == ArgError {
- return c
- }
- chosen = c.Number
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if chosen > number {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
- }
- if chosen == number || chosen == 0 {
- return newNumberFormulaArg(1)
- }
- for c := float64(1); c <= chosen; c++ {
- val *= (number + 1 - c) / c
- }
- return newNumberFormulaArg(math.Ceil(val))
- }
- // COMBINA function calculates the number of combinations, with repetitions,
- // of a given number objects from a set. The syntax of the function is:
- //
- // COMBINA(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
- }
- var number, chosen float64
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- number = n.Number
- c := argsList.Back().Value.(formulaArg).ToNumber()
- if c.Type == ArgError {
- return c
- }
- chosen = c.Number
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if number < chosen {
- return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
- }
- if number == 0 {
- return newNumberFormulaArg(number)
- }
- args := list.New()
- args.PushBack(formulaArg{
- String: fmt.Sprintf("%g", number+chosen-1),
- Type: ArgString,
- })
- args.PushBack(formulaArg{
- String: fmt.Sprintf("%g", number-1),
- Type: ArgString,
- })
- return fn.COMBIN(args)
- }
- // COS function calculates the cosine of a given angle. The syntax of the
- // function is:
- //
- // COS(number)
- //
- func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- return newNumberFormulaArg(math.Cos(val.Number))
- }
- // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
- // The syntax of the function is:
- //
- // COSH(number)
- //
- func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- return newNumberFormulaArg(math.Cosh(val.Number))
- }
- // COT function calculates the cotangent of a given angle. The syntax of the
- // function is:
- //
- // COT(number)
- //
- func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(1 / math.Tan(val.Number))
- }
- // COTH function calculates the hyperbolic cotangent (coth) of a supplied
- // angle. The syntax of the function is:
- //
- // COTH(number)
- //
- func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
- }
- // CSC function calculates the cosecant of a given angle. The syntax of the
- // function is:
- //
- // CSC(number)
- //
- func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(1 / math.Sin(val.Number))
- }
- // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
- // angle. The syntax of the function is:
- //
- // CSCH(number)
- //
- func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(1 / math.Sinh(val.Number))
- }
- // DECIMAL function converts a text representation of a number in a specified
- // base, into a decimal value. The syntax of the function is:
- //
- // DECIMAL(text,radix)
- //
- func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
- }
- var text = argsList.Front().Value.(formulaArg).String
- var radix int
- var err error
- radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
- text = text[2:]
- }
- val, err := strconv.ParseInt(text, radix, 64)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- return newNumberFormulaArg(float64(val))
- }
- // DEGREES function converts radians into degrees. The syntax of the function
- // is:
- //
- // DEGREES(angle)
- //
- func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(180.0 / math.Pi * val.Number)
- }
- // EVEN function rounds a supplied number away from zero (i.e. rounds a
- // positive number up and a negative number down), to the next even number.
- // The syntax of the function is:
- //
- // EVEN(number)
- //
- func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- sign := math.Signbit(number.Number)
- m, frac := math.Modf(number.Number / 2)
- val := m * 2
- if frac != 0 {
- if !sign {
- val += 2
- } else {
- val -= 2
- }
- }
- return newNumberFormulaArg(val)
- }
- // EXP function calculates the value of the mathematical constant e, raised to
- // the power of a given number. The syntax of the function is:
- //
- // EXP(number)
- //
- func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
- }
- // fact returns the factorial of a supplied number.
- func fact(number float64) float64 {
- val := float64(1)
- for i := float64(2); i <= number; i++ {
- val *= i
- }
- return val
- }
- // FACT function returns the factorial of a supplied number. The syntax of the
- // function is:
- //
- // FACT(number)
- //
- func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return newNumberFormulaArg(fact(number.Number))
- }
- // FACTDOUBLE function returns the double factorial of a supplied number. The
- // syntax of the function is:
- //
- // FACTDOUBLE(number)
- //
- func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
- }
- val := 1.0
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- for i := math.Trunc(number.Number); i > 1; i -= 2 {
- val *= i
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
- }
- // FLOOR function rounds a supplied number towards zero to the nearest
- // multiple of a specified significance. The syntax of the function is:
- //
- // FLOOR(number,significance)
- //
- func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- significance := argsList.Back().Value.(formulaArg).ToNumber()
- if significance.Type == ArgError {
- return significance
- }
- if significance.Number < 0 && number.Number >= 0 {
- return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
- }
- val := number.Number
- val, res := math.Modf(val / significance.Number)
- if res != 0 {
- if number.Number < 0 && res < 0 {
- val--
- }
- }
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
- }
- // FLOORMATH function rounds a supplied number down to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // FLOOR.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
- }
- significance, mode := 1.0, 1.0
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- s := argsList.Front().Next().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Floor(number.Number))
- }
- if argsList.Len() > 2 {
- m := argsList.Back().Value.(formulaArg).ToNumber()
- if m.Type == ArgError {
- return m
- }
- mode = m.Number
- }
- val, res := math.Modf(number.Number / significance)
- if res != 0 && number.Number < 0 && mode > 0 {
- val--
- }
- return newNumberFormulaArg(val * significance)
- }
- // FLOORPRECISE function rounds a supplied number down to a supplied multiple
- // of significance. The syntax of the function is:
- //
- // FLOOR.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
- }
- var significance float64
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Floor(number.Number))
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- significance = math.Abs(significance)
- if significance == 0 {
- return newNumberFormulaArg(significance)
- }
- }
- val, res := math.Modf(number.Number / significance)
- if res != 0 {
- if number.Number < 0 {
- val--
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // gcd returns the greatest common divisor of two supplied integers.
- func gcd(x, y float64) float64 {
- x, y = math.Trunc(x), math.Trunc(y)
- if x == 0 {
- return y
- }
- if y == 0 {
- return x
- }
- for x != y {
- if x > y {
- x = x - y
- } else {
- y = y - x
- }
- }
- return x
- }
- // GCD function returns the greatest common divisor of two or more supplied
- // integers. The syntax of the function is:
- //
- // GCD(number1,[number2],...)
- //
- func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
- }
- var (
- val float64
- nums = []float64{}
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- num := token.ToNumber()
- if num.Type == ArgError {
- return num
- }
- val = num.Number
- case ArgNumber:
- val = token.Number
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
- }
- if len(nums) == 1 {
- return newNumberFormulaArg(nums[0])
- }
- cd := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
- }
- cd = gcd(cd, nums[i])
- }
- return newNumberFormulaArg(cd)
- }
- // INT function truncates a supplied number down to the closest integer. The
- // syntax of the function is:
- //
- // INT(number)
- //
- func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- val, frac := math.Modf(number.Number)
- if frac < 0 {
- val--
- }
- return newNumberFormulaArg(val)
- }
- // ISOCEILING function rounds a supplied number up (regardless of the number's
- // sign), to the nearest multiple of a supplied significance. The syntax of
- // the function is:
- //
- // ISO.CEILING(number,[significance])
- //
- func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
- }
- var significance float64
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- return newNumberFormulaArg(math.Ceil(number.Number))
- }
- if argsList.Len() > 1 {
- s := argsList.Back().Value.(formulaArg).ToNumber()
- if s.Type == ArgError {
- return s
- }
- significance = s.Number
- significance = math.Abs(significance)
- if significance == 0 {
- return newNumberFormulaArg(significance)
- }
- }
- val, res := math.Modf(number.Number / significance)
- if res != 0 {
- if number.Number > 0 {
- val++
- }
- }
- return newNumberFormulaArg(val * significance)
- }
- // lcm returns the least common multiple of two supplied integers.
- func lcm(a, b float64) float64 {
- a = math.Trunc(a)
- b = math.Trunc(b)
- if a == 0 && b == 0 {
- return 0
- }
- return a * b / gcd(a, b)
- }
- // LCM function returns the least common multiple of two or more supplied
- // integers. The syntax of the function is:
- //
- // LCM(number1,[number2],...)
- //
- func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
- }
- var (
- val float64
- nums = []float64{}
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- case ArgNumber:
- val = token.Number
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
- }
- if len(nums) == 1 {
- return newNumberFormulaArg(nums[0])
- }
- cm := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
- }
- cm = lcm(cm, nums[i])
- }
- return newNumberFormulaArg(cm)
- }
- // LN function calculates the natural logarithm of a given number. The syntax
- // of the function is:
- //
- // LN(number)
- //
- func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Log(number.Number))
- }
- // LOG function calculates the logarithm of a given number, to a supplied
- // base. The syntax of the function is:
- //
- // LOG(number,[base])
- //
- func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
- }
- base := 10.0
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if argsList.Len() > 1 {
- b := argsList.Back().Value.(formulaArg).ToNumber()
- if b.Type == ArgError {
- return b
- }
- base = b.Number
- }
- if number.Number == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
- }
- if base == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
- }
- if base == 1 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
- }
- // LOG10 function calculates the base 10 logarithm of a given number. The
- // syntax of the function is:
- //
- // LOG10(number)
- //
- func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Log10(number.Number))
- }
- // minor function implement a minor of a matrix A is the determinant of some
- // smaller square matrix.
- func minor(sqMtx [][]float64, idx int) [][]float64 {
- ret := [][]float64{}
- for i := range sqMtx {
- if i == 0 {
- continue
- }
- row := []float64{}
- for j := range sqMtx {
- if j == idx {
- continue
- }
- row = append(row, sqMtx[i][j])
- }
- ret = append(ret, row)
- }
- return ret
- }
- // det determinant of the 2x2 matrix.
- func det(sqMtx [][]float64) float64 {
- if len(sqMtx) == 2 {
- m00 := sqMtx[0][0]
- m01 := sqMtx[0][1]
- m10 := sqMtx[1][0]
- m11 := sqMtx[1][1]
- return m00*m11 - m10*m01
- }
- var res, sgn float64 = 0, 1
- for j := range sqMtx {
- res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
- sgn *= -1
- }
- return res
- }
- // MDETERM calculates the determinant of a square matrix. The
- // syntax of the function is:
- //
- // MDETERM(array)
- //
- func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
- var (
- num float64
- numMtx = [][]float64{}
- err error
- strMtx [][]formulaArg
- )
- if argsList.Len() < 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
- }
- strMtx = argsList.Front().Value.(formulaArg).Matrix
- var rows = len(strMtx)
- for _, row := range argsList.Front().Value.(formulaArg).Matrix {
- if len(row) != rows {
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- numRow := []float64{}
- for _, ele := range row {
- if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- numRow = append(numRow, num)
- }
- numMtx = append(numMtx, numRow)
- }
- return newNumberFormulaArg(det(numMtx))
- }
- // MOD function returns the remainder of a division between two supplied
- // numbers. The syntax of the function is:
- //
- // MOD(number,divisor)
- //
- func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- divisor := argsList.Back().Value.(formulaArg).ToNumber()
- if divisor.Type == ArgError {
- return divisor
- }
- if divisor.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
- }
- trunc, rem := math.Modf(number.Number / divisor.Number)
- if rem < 0 {
- trunc--
- }
- return newNumberFormulaArg(number.Number - divisor.Number*trunc)
- }
- // MROUND function rounds a supplied number up or down to the nearest multiple
- // of a given number. The syntax of the function is:
- //
- // MROUND(number,multiple)
- //
- func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
- }
- n := argsList.Front().Value.(formulaArg).ToNumber()
- if n.Type == ArgError {
- return n
- }
- multiple := argsList.Back().Value.(formulaArg).ToNumber()
- if multiple.Type == ArgError {
- return multiple
- }
- if multiple.Number == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- if multiple.Number < 0 && n.Number > 0 ||
- multiple.Number > 0 && n.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- number, res := math.Modf(n.Number / multiple.Number)
- if math.Trunc(res+0.5) > 0 {
- number++
- }
- return newNumberFormulaArg(number * multiple.Number)
- }
- // MULTINOMIAL function calculates the ratio of the factorial of a sum of
- // supplied values to the product of factorials of those values. The syntax of
- // the function is:
- //
- // MULTINOMIAL(number1,[number2],...)
- //
- func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
- val, num, denom := 0.0, 0.0, 1.0
- var err error
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- case ArgNumber:
- val = token.Number
- }
- num += val
- denom *= fact(val)
- }
- return newNumberFormulaArg(fact(num) / denom)
- }
- // MUNIT function returns the unit matrix for a specified dimension. The
- // syntax of the function is:
- //
- // MUNIT(dimension)
- //
- func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
- }
- dimension := argsList.Back().Value.(formulaArg).ToNumber()
- if dimension.Type == ArgError || dimension.Number < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
- }
- matrix := make([][]formulaArg, 0, int(dimension.Number))
- for i := 0; i < int(dimension.Number); i++ {
- row := make([]formulaArg, int(dimension.Number))
- for j := 0; j < int(dimension.Number); j++ {
- if i == j {
- row[j] = newNumberFormulaArg(1.0)
- } else {
- row[j] = newNumberFormulaArg(0.0)
- }
- }
- matrix = append(matrix, row)
- }
- return newMatrixFormulaArg(matrix)
- }
- // ODD function ounds a supplied number away from zero (i.e. rounds a positive
- // number up and a negative number down), to the next odd number. The syntax
- // of the function is:
- //
- // ODD(number)
- //
- func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
- }
- number := argsList.Back().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if number.Number == 0 {
- return newNumberFormulaArg(1)
- }
- sign := math.Signbit(number.Number)
- m, frac := math.Modf((number.Number - 1) / 2)
- val := m*2 + 1
- if frac != 0 {
- if !sign {
- val += 2
- } else {
- val -= 2
- }
- }
- return newNumberFormulaArg(val)
- }
- // PI function returns the value of the mathematical constant π (pi), accurate
- // to 15 digits (14 decimal places). The syntax of the function is:
- //
- // PI()
- //
- func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
- }
- return newNumberFormulaArg(math.Pi)
- }
- // POWER function calculates a given number, raised to a supplied power.
- // The syntax of the function is:
- //
- // POWER(number,power)
- //
- func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
- }
- x := argsList.Front().Value.(formulaArg).ToNumber()
- if x.Type == ArgError {
- return x
- }
- y := argsList.Back().Value.(formulaArg).ToNumber()
- if y.Type == ArgError {
- return y
- }
- if x.Number == 0 && y.Number == 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- if x.Number == 0 && y.Number < 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(math.Pow(x.Number, y.Number))
- }
- // PRODUCT function returns the product (multiplication) of a supplied set of
- // numerical values. The syntax of the function is:
- //
- // PRODUCT(number1,[number2],...)
- //
- func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
- val, product := 0.0, 1.0
- var err error
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- product = product * val
- case ArgNumber:
- product = product * token.Number
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- product = product * val
- }
- }
- }
- }
- return newNumberFormulaArg(product)
- }
- // QUOTIENT function returns the integer portion of a division between two
- // supplied numbers. The syntax of the function is:
- //
- // QUOTIENT(numerator,denominator)
- //
- func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
- }
- x := argsList.Front().Value.(formulaArg).ToNumber()
- if x.Type == ArgError {
- return x
- }
- y := argsList.Back().Value.(formulaArg).ToNumber()
- if y.Type == ArgError {
- return y
- }
- if y.Number == 0 {
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
- }
- // RADIANS function converts radians into degrees. The syntax of the function is:
- //
- // RADIANS(angle)
- //
- func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
- }
- angle := argsList.Front().Value.(formulaArg).ToNumber()
- if angle.Type == ArgError {
- return angle
- }
- return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
- }
- // RAND function generates a random real number between 0 and 1. The syntax of
- // the function is:
- //
- // RAND()
- //
- func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
- }
- return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
- }
- // RANDBETWEEN function generates a random integer between two supplied
- // integers. The syntax of the function is:
- //
- // RANDBETWEEN(bottom,top)
- //
- func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
- }
- bottom := argsList.Front().Value.(formulaArg).ToNumber()
- if bottom.Type == ArgError {
- return bottom
- }
- top := argsList.Back().Value.(formulaArg).ToNumber()
- if top.Type == ArgError {
- return top
- }
- if top.Number < bottom.Number {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
- return newNumberFormulaArg(float64(num + int64(bottom.Number)))
- }
- // romanNumerals defined a numeral system that originated in ancient Rome and
- // remained the usual way of writing numbers throughout Europe well into the
- // Late Middle Ages.
- type romanNumerals struct {
- n float64
- s string
- }
- var romanTable = [][]romanNumerals{
- {
- {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
- {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
- },
- {
- {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
- {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
- {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
- },
- {
- {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
- {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
- {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
- },
- {
- {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
- {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
- {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
- {5, "V"}, {4, "IV"}, {1, "I"},
- },
- {
- {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
- {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
- {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
- {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
- },
- }
- // ROMAN function converts an arabic number to Roman. I.e. for a supplied
- // integer, the function returns a text string depicting the roman numeral
- // form of the number. The syntax of the function is:
- //
- // ROMAN(number,[form])
- //
- func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
- }
- if argsList.Len() > 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
- }
- var form int
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if argsList.Len() > 1 {
- f := argsList.Back().Value.(formulaArg).ToNumber()
- if f.Type == ArgError {
- return f
- }
- form = int(f.Number)
- if form < 0 {
- form = 0
- } else if form > 4 {
- form = 4
- }
- }
- decimalTable := romanTable[0]
- switch form {
- case 1:
- decimalTable = romanTable[1]
- case 2:
- decimalTable = romanTable[2]
- case 3:
- decimalTable = romanTable[3]
- case 4:
- decimalTable = romanTable[4]
- }
- val := math.Trunc(number.Number)
- buf := bytes.Buffer{}
- for _, r := range decimalTable {
- for val >= r.n {
- buf.WriteString(r.s)
- val -= r.n
- }
- }
- return newStringFormulaArg(buf.String())
- }
- type roundMode byte
- const (
- closest roundMode = iota
- down
- up
- )
- // round rounds a supplied number up or down.
- func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
- var significance float64
- if digits > 0 {
- significance = math.Pow(1/10.0, digits)
- } else {
- significance = math.Pow(10.0, -digits)
- }
- val, res := math.Modf(number / significance)
- switch mode {
- case closest:
- const eps = 0.499999999
- if res >= eps {
- val++
- } else if res <= -eps {
- val--
- }
- case down:
- case up:
- if res > 0 {
- val++
- } else if res < 0 {
- val--
- }
- }
- return val * significance
- }
- // ROUND function rounds a supplied number up or down, to a specified number
- // of decimal places. The syntax of the function is:
- //
- // ROUND(number,num_digits)
- //
- func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- digits := argsList.Back().Value.(formulaArg).ToNumber()
- if digits.Type == ArgError {
- return digits
- }
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
- }
- // ROUNDDOWN function rounds a supplied number down towards zero, to a
- // specified number of decimal places. The syntax of the function is:
- //
- // ROUNDDOWN(number,num_digits)
- //
- func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- digits := argsList.Back().Value.(formulaArg).ToNumber()
- if digits.Type == ArgError {
- return digits
- }
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
- }
- // ROUNDUP function rounds a supplied number up, away from zero, to a
- // specified number of decimal places. The syntax of the function is:
- //
- // ROUNDUP(number,num_digits)
- //
- func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- digits := argsList.Back().Value.(formulaArg).ToNumber()
- if digits.Type == ArgError {
- return digits
- }
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
- }
- // SEC function calculates the secant of a given angle. The syntax of the
- // function is:
- //
- // SEC(number)
- //
- func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Cos(number.Number))
- }
- // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
- // The syntax of the function is:
- //
- // SECH(number)
- //
- func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(1 / math.Cosh(number.Number))
- }
- // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
- // number. I.e. if the number is positive, the Sign function returns +1, if
- // the number is negative, the function returns -1 and if the number is 0
- // (zero), the function returns 0. The syntax of the function is:
- //
- // SIGN(number)
- //
- func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
- }
- val := argsList.Front().Value.(formulaArg).ToNumber()
- if val.Type == ArgError {
- return val
- }
- if val.Number < 0 {
- return newNumberFormulaArg(-1)
- }
- if val.Number > 0 {
- return newNumberFormulaArg(1)
- }
- return newNumberFormulaArg(0)
- }
- // SIN function calculates the sine of a given angle. The syntax of the
- // function is:
- //
- // SIN(number)
- //
- func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Sin(number.Number))
- }
- // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
- // The syntax of the function is:
- //
- // SINH(number)
- //
- func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Sinh(number.Number))
- }
- // SQRT function calculates the positive square root of a supplied number. The
- // syntax of the function is:
- //
- // SQRT(number)
- //
- func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
- }
- value := argsList.Front().Value.(formulaArg).ToNumber()
- if value.Type == ArgError {
- return value
- }
- if value.Number < 0 {
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
- }
- return newNumberFormulaArg(math.Sqrt(value.Number))
- }
- // SQRTPI function returns the square root of a supplied number multiplied by
- // the mathematical constant, π. The syntax of the function is:
- //
- // SQRTPI(number)
- //
- func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
- }
- // STDEV function calculates the sample standard deviation of a supplied set
- // of values. The syntax of the function is:
- //
- // STDEV(number1,[number2],...)
- //
- func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
- if argsList.Len() < 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
- }
- return fn.stdev(false, argsList)
- }
- // STDEVA function estimates standard deviation based on a sample. The
- // standard deviation is a measure of how widely values are dispersed from
- // the average value (the mean). The syntax of the function is:
- //
- // STDEVA(number1,[number2],...)
- //
- func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
- if argsList.Len() < 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
- }
- return fn.stdev(true, argsList)
- }
- // stdev is an implementation of the formula function STDEV and STDEVA.
- func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
- pow := func(result, count float64, n, m formulaArg) (float64, float64) {
- if result == -1 {
- result = math.Pow((n.Number - m.Number), 2)
- } else {
- result += math.Pow((n.Number - m.Number), 2)
- }
- count++
- return result, count
- }
- count, result := -1.0, -1.0
- var mean formulaArg
- if stdeva {
- mean = fn.AVERAGEA(argsList)
- } else {
- mean = fn.AVERAGE(argsList)
- }
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString, ArgNumber:
- if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
- continue
- } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
- num := token.ToBool()
- if num.Type == ArgNumber {
- result, count = pow(result, count, num, mean)
- continue
- }
- } else {
- num := token.ToNumber()
- if num.Type == ArgNumber {
- result, count = pow(result, count, num, mean)
- }
- }
- case ArgList, ArgMatrix:
- for _, row := range token.ToList() {
- if row.Type == ArgNumber || row.Type == ArgString {
- if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
- continue
- } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
- num := row.ToBool()
- if num.Type == ArgNumber {
- result, count = pow(result, count, num, mean)
- continue
- }
- } else {
- num := row.ToNumber()
- if num.Type == ArgNumber {
- result, count = pow(result, count, num, mean)
- }
- }
- }
- }
- }
- }
- if count > 0 && result >= 0 {
- return newNumberFormulaArg(math.Sqrt(result / count))
- }
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- // SUM function adds together a supplied set of numbers and returns the sum of
- // these values. The syntax of the function is:
- //
- // SUM(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
- var sum float64
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if num := token.ToNumber(); num.Type == ArgNumber {
- sum += num.Number
- }
- case ArgNumber:
- sum += token.Number
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if num := value.ToNumber(); num.Type == ArgNumber {
- sum += num.Number
- }
- }
- }
- }
- }
- return newNumberFormulaArg(sum)
- }
- // SUMIF function finds the values in a supplied array, that satisfy a given
- // criteria, and returns the sum of the corresponding values in a second
- // supplied array. The syntax of the function is:
- //
- // SUMIF(range,criteria,[sum_range])
- //
- func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
- }
- var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
- var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
- var sumRange [][]formulaArg
- if argsList.Len() == 3 {
- sumRange = argsList.Back().Value.(formulaArg).Matrix
- }
- var sum, val float64
- var err error
- for rowIdx, row := range rangeMtx {
- for colIdx, col := range row {
- var ok bool
- fromVal := col.String
- if col.String == "" {
- continue
- }
- if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if ok {
- if argsList.Len() == 3 {
- if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
- continue
- }
- fromVal = sumRange[rowIdx][colIdx].String
- }
- if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sum += val
- }
- }
- }
- return newNumberFormulaArg(sum)
- }
- // SUMSQ function returns the sum of squares of a supplied set of values. The
- // syntax of the function is:
- //
- // SUMSQ(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
- var val, sq float64
- var err error
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sq += val * val
- case ArgNumber:
- sq += token.Number
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- sq += val * val
- }
- }
- }
- }
- return newNumberFormulaArg(sq)
- }
- // TAN function calculates the tangent of a given angle. The syntax of the
- // function is:
- //
- // TAN(number)
- //
- func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Tan(number.Number))
- }
- // TANH function calculates the hyperbolic tangent (tanh) of a supplied
- // number. The syntax of the function is:
- //
- // TANH(number)
- //
- func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- return newNumberFormulaArg(math.Tanh(number.Number))
- }
- // TRUNC function truncates a supplied number to a specified number of decimal
- // places. The syntax of the function is:
- //
- // TRUNC(number,[number_digits])
- //
- func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
- }
- var digits, adjust, rtrim float64
- var err error
- number := argsList.Front().Value.(formulaArg).ToNumber()
- if number.Type == ArgError {
- return number
- }
- if argsList.Len() > 1 {
- d := argsList.Back().Value.(formulaArg).ToNumber()
- if d.Type == ArgError {
- return d
- }
- digits = d.Number
- digits = math.Floor(digits)
- }
- adjust = math.Pow(10, digits)
- x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
- if x != 0 {
- if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- }
- if (digits > 0) && (rtrim < adjust/10) {
- return newNumberFormulaArg(number.Number)
- }
- return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
- }
- // Statistical Functions
- // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
- // The syntax of the function is:
- //
- // AVERAGE(number1,[number2],...)
- //
- func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
- args := []formulaArg{}
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- args = append(args, arg.Value.(formulaArg))
- }
- count, sum := fn.countSum(false, args)
- if count == 0 {
- return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
- }
- return newNumberFormulaArg(sum / count)
- }
- // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
- // with text cell and zero values. The syntax of the function is:
- //
- // AVERAGEA(number1,[number2],...)
- //
- func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
- args := []formulaArg{}
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- args = append(args, arg.Value.(formulaArg))
- }
- count, sum := fn.countSum(true, args)
- if count == 0 {
- return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
- }
- return newNumberFormulaArg(sum / count)
- }
- // countSum get count and sum for a formula arguments array.
- func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
- for _, arg := range args {
- switch arg.Type {
- case ArgNumber:
- if countText || !arg.Boolean {
- sum += arg.Number
- count++
- }
- case ArgString:
- if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
- continue
- } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
- num := arg.ToBool()
- if num.Type == ArgNumber {
- count++
- sum += num.Number
- continue
- }
- }
- num := arg.ToNumber()
- if countText && num.Type == ArgError && arg.String != "" {
- count++
- }
- if num.Type == ArgNumber {
- sum += num.Number
- count++
- }
- case ArgList, ArgMatrix:
- cnt, summary := fn.countSum(countText, arg.ToList())
- sum += summary
- count += cnt
- }
- }
- return
- }
- // COUNT function returns the count of numeric values in a supplied set of
- // cells or values. This count includes both numbers and dates. The syntax of
- // the function is:
- //
- // COUNT(value1,[value2],...)
- //
- func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
- var count int
- for token := argsList.Front(); token != nil; token = token.Next() {
- arg := token.Value.(formulaArg)
- switch arg.Type {
- case ArgString:
- if arg.ToNumber().Type != ArgError {
- count++
- }
- case ArgNumber:
- count++
- case ArgMatrix:
- for _, row := range arg.Matrix {
- for _, value := range row {
- if value.ToNumber().Type != ArgError {
- count++
- }
- }
- }
- }
- }
- return newNumberFormulaArg(float64(count))
- }
- // COUNTA function returns the number of non-blanks within a supplied set of
- // cells or values. The syntax of the function is:
- //
- // COUNTA(value1,[value2],...)
- //
- func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
- var count int
- for token := argsList.Front(); token != nil; token = token.Next() {
- arg := token.Value.(formulaArg)
- switch arg.Type {
- case ArgString:
- if arg.String != "" {
- count++
- }
- case ArgNumber:
- count++
- case ArgMatrix:
- for _, row := range arg.ToList() {
- switch row.Type {
- case ArgString:
- if row.String != "" {
- count++
- }
- case ArgNumber:
- count++
- }
- }
- }
- }
- return newNumberFormulaArg(float64(count))
- }
- // COUNTBLANK function returns the number of blank cells in a supplied range.
- // The syntax of the function is:
- //
- // COUNTBLANK(range)
- //
- func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
- }
- var count int
- token := argsList.Front().Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- count++
- }
- case ArgList, ArgMatrix:
- for _, row := range token.ToList() {
- switch row.Type {
- case ArgString:
- if row.String == "" {
- count++
- }
- case ArgEmpty:
- count++
- }
- }
- case ArgEmpty:
- count++
- }
- return newNumberFormulaArg(float64(count))
- }
- // FISHER function calculates the Fisher Transformation for a supplied value.
- // The syntax of the function is:
- //
- // FISHER(x)
- //
- func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
- }
- token := argsList.Front().Value.(formulaArg)
- switch token.Type {
- case ArgString:
- arg := token.ToNumber()
- if arg.Type == ArgNumber {
- if arg.Number <= -1 || arg.Number >= 1 {
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
- }
- case ArgNumber:
- if token.Number <= -1 || token.Number >= 1 {
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
- }
- return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
- }
- // FISHERINV function calculates the inverse of the Fisher Transformation and
- // returns a value between -1 and +1. The syntax of the function is:
- //
- // FISHERINV(y)
- //
- func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
- }
- token := argsList.Front().Value.(formulaArg)
- switch token.Type {
- case ArgString:
- arg := token.ToNumber()
- if arg.Type == ArgNumber {
- return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
- }
- case ArgNumber:
- return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
- }
- return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
- }
- // GAMMA function returns the value of the Gamma Function, Γ(n), for a
- // specified number, n. The syntax of the function is:
- //
- // GAMMA(number)
- //
- func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
- }
- token := argsList.Front().Value.(formulaArg)
- switch token.Type {
- case ArgString:
- arg := token.ToNumber()
- if arg.Type == ArgNumber {
- if arg.Number <= 0 {
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- return newNumberFormulaArg(math.Gamma(arg.Number))
- }
- case ArgNumber:
- if token.Number <= 0 {
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- return newNumberFormulaArg(math.Gamma(token.Number))
- }
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
- }
- // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
- // (n). The syntax of the function is:
- //
- // GAMMALN(x)
- //
- func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
- }
- token := argsList.Front().Value.(formulaArg)
- switch token.Type {
- case ArgString:
- arg := token.ToNumber()
- if arg.Type == ArgNumber {
- if arg.Number <= 0 {
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
- }
- case ArgNumber:
- if token.Number <= 0 {
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
- }
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
- }
- // KURT function calculates the kurtosis of a supplied set of values. The
- // syntax of the function is:
- //
- // KURT(number1,[number2],...)
- //
- func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
- if argsList.Len() < 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
- }
- mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
- if stdev.Number > 0 {
- count, summer := 0.0, 0.0
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString, ArgNumber:
- num := token.ToNumber()
- if num.Type == ArgError {
- continue
- }
- summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
- count++
- case ArgList, ArgMatrix:
- for _, row := range token.ToList() {
- if row.Type == ArgNumber || row.Type == ArgString {
- num := row.ToNumber()
- if num.Type == ArgError {
- continue
- }
- summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
- count++
- }
- }
- }
- }
- if count > 3 {
- return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
- }
- }
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
- }
- // MAX function returns the largest value from a supplied set of numeric
- // values. The syntax of the function is:
- //
- // MAX(number1,[number2],...)
- //
- func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
- }
- return fn.max(false, argsList)
- }
- // MAXA function returns the largest value from a supplied set of numeric
- // values, while counting text and the logical value FALSE as the value 0 and
- // counting the logical value TRUE as the value 1. The syntax of the function
- // is:
- //
- // MAXA(number1,[number2],...)
- //
- func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
- }
- return fn.max(true, argsList)
- }
- // max is an implementation of the formula function MAX and MAXA.
- func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
- max := -math.MaxFloat64
- for token := argsList.Front(); token != nil; token = token.Next() {
- arg := token.Value.(formulaArg)
- switch arg.Type {
- case ArgString:
- if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
- continue
- } else {
- num := arg.ToBool()
- if num.Type == ArgNumber && num.Number > max {
- max = num.Number
- continue
- }
- }
- num := arg.ToNumber()
- if num.Type != ArgError && num.Number > max {
- max = num.Number
- }
- case ArgNumber:
- if arg.Number > max {
- max = arg.Number
- }
- case ArgList, ArgMatrix:
- for _, row := range arg.ToList() {
- switch row.Type {
- case ArgString:
- if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
- continue
- } else {
- num := row.ToBool()
- if num.Type == ArgNumber && num.Number > max {
- max = num.Number
- continue
- }
- }
- num := row.ToNumber()
- if num.Type != ArgError && num.Number > max {
- max = num.Number
- }
- case ArgNumber:
- if row.Number > max {
- max = row.Number
- }
- }
- }
- case ArgError:
- return arg
- }
- }
- if max == -math.MaxFloat64 {
- max = 0
- }
- return newNumberFormulaArg(max)
- }
- // MEDIAN function returns the statistical median (the middle value) of a list
- // of supplied numbers. The syntax of the function is:
- //
- // MEDIAN(number1,[number2],...)
- //
- func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
- }
- var values = []float64{}
- var median, digits float64
- var err error
- for token := argsList.Front(); token != nil; token = token.Next() {
- arg := token.Value.(formulaArg)
- switch arg.Type {
- case ArgString:
- num := arg.ToNumber()
- if num.Type == ArgError {
- return newErrorFormulaArg(formulaErrorVALUE, num.Error)
- }
- values = append(values, num.Number)
- case ArgNumber:
- values = append(values, arg.Number)
- case ArgMatrix:
- for _, row := range arg.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- values = append(values, digits)
- }
- }
- }
- }
- sort.Float64s(values)
- if len(values)%2 == 0 {
- median = (values[len(values)/2-1] + values[len(values)/2]) / 2
- } else {
- median = values[len(values)/2]
- }
- return newNumberFormulaArg(median)
- }
- // MIN function returns the smallest value from a supplied set of numeric
- // values. The syntax of the function is:
- //
- // MIN(number1,[number2],...)
- //
- func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
- }
- return fn.min(false, argsList)
- }
- // MINA function returns the smallest value from a supplied set of numeric
- // values, while counting text and the logical value FALSE as the value 0 and
- // counting the logical value TRUE as the value 1. The syntax of the function
- // is:
- //
- // MINA(number1,[number2],...)
- //
- func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
- }
- return fn.min(true, argsList)
- }
- // min is an implementation of the formula function MIN and MINA.
- func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
- min := math.MaxFloat64
- for token := argsList.Front(); token != nil; token = token.Next() {
- arg := token.Value.(formulaArg)
- switch arg.Type {
- case ArgString:
- if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
- continue
- } else {
- num := arg.ToBool()
- if num.Type == ArgNumber && num.Number < min {
- min = num.Number
- continue
- }
- }
- num := arg.ToNumber()
- if num.Type != ArgError && num.Number < min {
- min = num.Number
- }
- case ArgNumber:
- if arg.Number < min {
- min = arg.Number
- }
- case ArgList, ArgMatrix:
- for _, row := range arg.ToList() {
- switch row.Type {
- case ArgString:
- if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
- continue
- } else {
- num := row.ToBool()
- if num.Type == ArgNumber && num.Number < min {
- min = num.Number
- continue
- }
- }
- num := row.ToNumber()
- if num.Type != ArgError && num.Number < min {
- min = num.Number
- }
- case ArgNumber:
- if row.Number < min {
- min = row.Number
- }
- }
- }
- case ArgError:
- return arg
- }
- }
- if min == math.MaxFloat64 {
- min = 0
- }
- return newNumberFormulaArg(min)
- }
- // PERMUT function calculates the number of permutations of a specified number
- // of objects from a set of objects. The syntax of the function is:
- //
- // PERMUT(number,number_chosen)
- //
- func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
- }
- number := argsList.Front().Value.(formulaArg).ToNumber()
- chosen := argsList.Back().Value.(formulaArg).ToNumber()
- if number.Type != ArgNumber {
- return number
- }
- if chosen.Type != ArgNumber {
- return chosen
- }
- if number.Number < chosen.Number {
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
- }
- // Information Functions
- // ISBLANK function tests if a specified cell is blank (empty) and if so,
- // returns TRUE; Otherwise the function returns FALSE. The syntax of the
- // function is:
- //
- // ISBLANK(value)
- //
- func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- switch token.Type {
- case ArgUnknown:
- result = "TRUE"
- case ArgString:
- if token.String == "" {
- result = "TRUE"
- }
- }
- return newStringFormulaArg(result)
- }
- // ISERR function tests if an initial supplied expression (or value) returns
- // any Excel Error, except the #N/A error. If so, the function returns the
- // logical value TRUE; If the supplied value is not an error or is the #N/A
- // error, the ISERR function returns FALSE. The syntax of the function is:
- //
- // ISERR(value)
- //
- func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- if token.Type == ArgError {
- for _, errType := range []string{
- formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
- formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
- formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
- } {
- if errType == token.String {
- result = "TRUE"
- }
- }
- }
- return newStringFormulaArg(result)
- }
- // ISERROR function tests if an initial supplied expression (or value) returns
- // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
- // function returns FALSE. The syntax of the function is:
- //
- // ISERROR(value)
- //
- func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- if token.Type == ArgError {
- for _, errType := range []string{
- formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
- formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
- formulaErrorCALC, formulaErrorGETTINGDATA,
- } {
- if errType == token.String {
- result = "TRUE"
- }
- }
- }
- return newStringFormulaArg(result)
- }
- // ISEVEN function tests if a supplied number (or numeric expression)
- // evaluates to an even number, and if so, returns TRUE; Otherwise, the
- // function returns FALSE. The syntax of the function is:
- //
- // ISEVEN(value)
- //
- func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
- }
- var (
- token = argsList.Front().Value.(formulaArg)
- result = "FALSE"
- numeric int
- err error
- )
- if token.Type == ArgString {
- if numeric, err = strconv.Atoi(token.String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if numeric == numeric/2*2 {
- return newStringFormulaArg("TRUE")
- }
- }
- return newStringFormulaArg(result)
- }
- // ISNA function tests if an initial supplied expression (or value) returns
- // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
- // returns FALSE. The syntax of the function is:
- //
- // ISNA(value)
- //
- func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "FALSE"
- if token.Type == ArgError && token.String == formulaErrorNA {
- result = "TRUE"
- }
- return newStringFormulaArg(result)
- }
- // ISNONTEXT function function tests if a supplied value is text. If not, the
- // function returns TRUE; If the supplied value is text, the function returns
- // FALSE. The syntax of the function is:
- //
- // ISNONTEXT(value)
- //
- func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- result := "TRUE"
- if token.Type == ArgString && token.String != "" {
- result = "FALSE"
- }
- return newStringFormulaArg(result)
- }
- // ISNUMBER function function tests if a supplied value is a number. If so,
- // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
- // function is:
- //
- // ISNUMBER(value)
- //
- func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
- }
- token, result := argsList.Front().Value.(formulaArg), false
- if token.Type == ArgString && token.String != "" {
- if _, err := strconv.Atoi(token.String); err == nil {
- result = true
- }
- }
- return newBoolFormulaArg(result)
- }
- // ISODD function tests if a supplied number (or numeric expression) evaluates
- // to an odd number, and if so, returns TRUE; Otherwise, the function returns
- // FALSE. The syntax of the function is:
- //
- // ISODD(value)
- //
- func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
- }
- var (
- token = argsList.Front().Value.(formulaArg)
- result = "FALSE"
- numeric int
- err error
- )
- if token.Type == ArgString {
- if numeric, err = strconv.Atoi(token.String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if numeric != numeric/2*2 {
- return newStringFormulaArg("TRUE")
- }
- }
- return newStringFormulaArg(result)
- }
- // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
- // Otherwise, the function returns FALSE. The syntax of the function is:
- //
- // ISTEXT(value)
- //
- func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- if token.ToNumber().Type != ArgError {
- return newBoolFormulaArg(false)
- }
- return newBoolFormulaArg(token.Type == ArgString)
- }
- // NA function returns the Excel #N/A error. This error message has the
- // meaning 'value not available' and is produced when an Excel Formula is
- // unable to find a value that it needs. The syntax of the function is:
- //
- // NA()
- //
- func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
- }
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
- }
- // SHEET function returns the Sheet number for a specified reference. The
- // syntax of the function is:
- //
- // SHEET()
- //
- func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
- }
- return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
- }
- // Logical Functions
- // AND function tests a number of supplied conditions and returns TRUE or
- // FALSE. The syntax of the function is:
- //
- // AND(logical_test1,[logical_test2],...)
- //
- func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
- }
- if argsList.Len() > 30 {
- return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
- }
- var (
- and = true
- val float64
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "TRUE" {
- continue
- }
- if token.String == "FALSE" {
- return newStringFormulaArg(token.String)
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- and = and && (val != 0)
- case ArgMatrix:
- // TODO
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- }
- return newBoolFormulaArg(and)
- }
- // FALSE function function returns the logical value FALSE. The syntax of the
- // function is:
- //
- // FALSE()
- //
- func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
- }
- return newBoolFormulaArg(false)
- }
- // IFERROR function receives two values (or expressions) and tests if the
- // first of these evaluates to an error. The syntax of the function is:
- //
- // IFERROR(value,value_if_error)
- //
- func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
- }
- value := argsList.Front().Value.(formulaArg)
- if value.Type != ArgError {
- if value.Type == ArgEmpty {
- return newNumberFormulaArg(0)
- }
- return value
- }
- return argsList.Back().Value.(formulaArg)
- }
- // NOT function returns the opposite to a supplied logical value. The syntax
- // of the function is:
- //
- // NOT(logical)
- //
- func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg)
- switch token.Type {
- case ArgString, ArgList:
- if strings.ToUpper(token.String) == "TRUE" {
- return newBoolFormulaArg(false)
- }
- if strings.ToUpper(token.String) == "FALSE" {
- return newBoolFormulaArg(true)
- }
- case ArgNumber:
- return newBoolFormulaArg(!(token.Number != 0))
- case ArgError:
- return token
- }
- return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
- }
- // OR function tests a number of supplied conditions and returns either TRUE
- // or FALSE. The syntax of the function is:
- //
- // OR(logical_test1,[logical_test2],...)
- //
- func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
- }
- if argsList.Len() > 30 {
- return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
- }
- var (
- or bool
- val float64
- err error
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "FALSE" {
- continue
- }
- if token.String == "TRUE" {
- or = true
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- or = val != 0
- case ArgMatrix:
- // TODO
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
- }
- }
- return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
- }
- // TRUE function returns the logical value TRUE. The syntax of the function
- // is:
- //
- // TRUE()
- //
- func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
- if argsList.Len() != 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
- }
- return newBoolFormulaArg(true)
- }
- // Date and Time Functions
- // DATE returns a date, from a user-supplied year, month and day. The syntax
- // of the function is:
- //
- // DATE(year,month,day)
- //
- func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
- if argsList.Len() != 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- var year, month, day int
- var err error
- if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
- }
- d := makeDate(year, time.Month(month), day)
- return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
- }
- // makeDate return date as a Unix time, the number of seconds elapsed since
- // January 1, 1970 UTC.
- func makeDate(y int, m time.Month, d int) int64 {
- if y == 1900 && int(m) <= 2 {
- d--
- }
- date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
- return date.Unix()
- }
- // daysBetween return time interval of the given start timestamp and end
- // timestamp.
- func daysBetween(startDate, endDate int64) float64 {
- return float64(int(0.5 + float64((endDate-startDate)/86400)))
- }
- // Text Functions
- // CLEAN removes all non-printable characters from a supplied text string. The
- // syntax of the function is:
- //
- // CLEAN(text)
- //
- func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
- }
- b := bytes.Buffer{}
- for _, c := range argsList.Front().Value.(formulaArg).String {
- if c > 31 {
- b.WriteRune(c)
- }
- }
- return newStringFormulaArg(b.String())
- }
- // CONCAT function joins together a series of supplied text strings into one
- // combined text string.
- //
- // CONCAT(text1,[text2],...)
- //
- func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
- return fn.concat("CONCAT", argsList)
- }
- // CONCATENATE function joins together a series of supplied text strings into
- // one combined text string.
- //
- // CONCATENATE(text1,[text2],...)
- //
- func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
- return fn.concat("CONCATENATE", argsList)
- }
- // concat is an implementation of the formula function CONCAT and CONCATENATE.
- func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
- buf := bytes.Buffer{}
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- buf.WriteString(token.String)
- case ArgNumber:
- if token.Boolean {
- if token.Number == 0 {
- buf.WriteString("FALSE")
- } else {
- buf.WriteString("TRUE")
- }
- } else {
- buf.WriteString(token.Value())
- }
- default:
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
- }
- }
- return newStringFormulaArg(buf.String())
- }
- // EXACT function tests if two supplied text strings or values are exactly
- // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
- // function is case-sensitive. The syntax of the function is:
- //
- // EXACT(text1,text2)
- //
- func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
- }
- text1 := argsList.Front().Value.(formulaArg).Value()
- text2 := argsList.Back().Value.(formulaArg).Value()
- return newBoolFormulaArg(text1 == text2)
- }
- // LEN returns the length of a supplied text string. The syntax of the
- // function is:
- //
- // LEN(text)
- //
- func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
- }
- return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
- }
- // LENB returns the number of bytes used to represent the characters in a text
- // string. LENB counts 2 bytes per character only when a DBCS language is set
- // as the default language. Otherwise LENB behaves the same as LEN, counting
- // 1 byte per character. The syntax of the function is:
- //
- // LENB(text)
- //
- // TODO: the languages that support DBCS include Japanese, Chinese
- // (Simplified), Chinese (Traditional), and Korean.
- func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
- }
- return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
- }
- // TRIM removes extra spaces (i.e. all spaces except for single spaces between
- // words or characters) from a supplied text string. The syntax of the
- // function is:
- //
- // TRIM(text)
- //
- func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
- }
- return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
- }
- // LOWER converts all characters in a supplied text string to lower case. The
- // syntax of the function is:
- //
- // LOWER(text)
- //
- func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
- }
- return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
- }
- // PROPER converts all characters in a supplied text string to proper case
- // (i.e. all letters that do not immediately follow another letter are set to
- // upper case and all other characters are lower case). The syntax of the
- // function is:
- //
- // PROPER(text)
- //
- func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
- }
- buf := bytes.Buffer{}
- isLetter := false
- for _, char := range argsList.Front().Value.(formulaArg).String {
- if !isLetter && unicode.IsLetter(char) {
- buf.WriteRune(unicode.ToUpper(char))
- } else {
- buf.WriteRune(unicode.ToLower(char))
- }
- isLetter = unicode.IsLetter(char)
- }
- return newStringFormulaArg(buf.String())
- }
- // REPT function returns a supplied text string, repeated a specified number
- // of times. The syntax of the function is:
- //
- // REPT(text,number_times)
- //
- func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
- if argsList.Len() != 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
- }
- text := argsList.Front().Value.(formulaArg)
- if text.Type != ArgString {
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
- }
- times := argsList.Back().Value.(formulaArg).ToNumber()
- if times.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
- }
- if times.Number < 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
- }
- if times.Number == 0 {
- return newStringFormulaArg("")
- }
- buf := bytes.Buffer{}
- for i := 0; i < int(times.Number); i++ {
- buf.WriteString(text.String)
- }
- return newStringFormulaArg(buf.String())
- }
- // UPPER converts all characters in a supplied text string to upper case. The
- // syntax of the function is:
- //
- // UPPER(text)
- //
- func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
- }
- return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
- }
- // Conditional Functions
- // IF function tests a supplied condition and returns one result if the
- // condition evaluates to TRUE, and another result if the condition evaluates
- // to FALSE. The syntax of the function is:
- //
- // IF(logical_test,value_if_true,value_if_false)
- //
- func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
- if argsList.Len() == 0 {
- return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
- }
- token := argsList.Front().Value.(formulaArg)
- var (
- cond bool
- err error
- result string
- )
- switch token.Type {
- case ArgString:
- if cond, err = strconv.ParseBool(token.String); err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
- }
- if argsList.Len() == 1 {
- return newBoolFormulaArg(cond)
- }
- if cond {
- return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
- }
- if argsList.Len() == 3 {
- result = argsList.Back().Value.(formulaArg).String
- }
- }
- return newStringFormulaArg(result)
- }
- // Lookup and Reference Functions
- // CHOOSE function returns a value from an array, that corresponds to a
- // supplied index number (position). The syntax of the function is:
- //
- // CHOOSE(index_num,value1,[value2],...)
- //
- func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
- }
- idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
- if err != nil {
- return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
- }
- if argsList.Len() <= idx {
- return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
- }
- arg := argsList.Front()
- for i := 0; i < idx; i++ {
- arg = arg.Next()
- }
- var result formulaArg
- switch arg.Value.(formulaArg).Type {
- case ArgString:
- result = newStringFormulaArg(arg.Value.(formulaArg).String)
- case ArgMatrix:
- result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
- }
- return result
- }
- // deepMatchRune finds whether the text deep matches/satisfies the pattern
- // string.
- func deepMatchRune(str, pattern []rune, simple bool) bool {
- for len(pattern) > 0 {
- switch pattern[0] {
- default:
- if len(str) == 0 || str[0] != pattern[0] {
- return false
- }
- case '?':
- if len(str) == 0 && !simple {
- return false
- }
- case '*':
- return deepMatchRune(str, pattern[1:], simple) ||
- (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
- }
- str = str[1:]
- pattern = pattern[1:]
- }
- return len(str) == 0 && len(pattern) == 0
- }
- // matchPattern finds whether the text matches or satisfies the pattern
- // string. The pattern supports '*' and '?' wildcards in the pattern string.
- func matchPattern(pattern, name string) (matched bool) {
- if pattern == "" {
- return name == pattern
- }
- if pattern == "*" {
- return true
- }
- rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
- for _, r := range name {
- rname = append(rname, r)
- }
- for _, r := range pattern {
- rpattern = append(rpattern, r)
- }
- simple := false // Does extended wildcard '*' and '?' match.
- return deepMatchRune(rname, rpattern, simple)
- }
- // compareFormulaArg compares the left-hand sides and the right-hand sides
- // formula arguments by given conditions such as case sensitive, if exact
- // match, and make compare result as formula criteria condition type.
- func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
- if lhs.Type != rhs.Type {
- return criteriaErr
- }
- switch lhs.Type {
- case ArgNumber:
- if lhs.Number == rhs.Number {
- return criteriaEq
- }
- if lhs.Number < rhs.Number {
- return criteriaL
- }
- return criteriaG
- case ArgString:
- ls, rs := lhs.String, rhs.String
- if !caseSensitive {
- ls, rs = strings.ToLower(ls), strings.ToLower(rs)
- }
- if exactMatch {
- match := matchPattern(rs, ls)
- if match {
- return criteriaEq
- }
- return criteriaG
- }
- switch strings.Compare(ls, rs) {
- case 1:
- return criteriaG
- case -1:
- return criteriaL
- case 0:
- return criteriaEq
- }
- return criteriaErr
- case ArgEmpty:
- return criteriaEq
- case ArgList:
- return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
- case ArgMatrix:
- return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
- }
- return criteriaErr
- }
- // compareFormulaArgList compares the left-hand sides and the right-hand sides
- // list type formula arguments.
- func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
- if len(lhs.List) < len(rhs.List) {
- return criteriaL
- }
- if len(lhs.List) > len(rhs.List) {
- return criteriaG
- }
- for arg := range lhs.List {
- criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
- if criteria != criteriaEq {
- return criteria
- }
- }
- return criteriaEq
- }
- // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
- // matrix type formula arguments.
- func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
- if len(lhs.Matrix) < len(rhs.Matrix) {
- return criteriaL
- }
- if len(lhs.Matrix) > len(rhs.Matrix) {
- return criteriaG
- }
- for i := range lhs.Matrix {
- left := lhs.Matrix[i]
- right := lhs.Matrix[i]
- if len(left) < len(right) {
- return criteriaL
- }
- if len(left) > len(right) {
- return criteriaG
- }
- for arg := range left {
- criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
- if criteria != criteriaEq {
- return criteria
- }
- }
- }
- return criteriaEq
- }
- // HLOOKUP function 'looks up' a given value in the top row of a data array
- // (or table), and returns the corresponding value from another row of the
- // array. The syntax of the function is:
- //
- // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
- //
- func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
- if argsList.Len() < 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
- }
- if argsList.Len() > 4 {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
- }
- lookupValue := argsList.Front().Value.(formulaArg)
- tableArray := argsList.Front().Next().Value.(formulaArg)
- if tableArray.Type != ArgMatrix {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
- }
- rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
- if rowArg.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
- }
- rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
- if argsList.Len() == 4 {
- rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
- if rangeLookup.Type == ArgError {
- return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
- }
- if rangeLookup.Number == 0 {
- exactMatch = true
- }
- }
- row := tableArray.Matrix[0]
- if exactMatch || len(tableArray.Matrix) == TotalRows {
- start:
- for idx, mtx := range row {
- lhs := mtx
- switch lookupValue.Type {
- case ArgNumber:
- if !lookupValue.Boolean {
- lhs = mtx.ToNumber()
- if lhs.Type == ArgError {
- lhs = mtx
- }
- }
- case ArgMatrix:
- lhs = tableArray
- }
- if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
- matchIdx = idx
- wasExact = true
- break start
- }
- }
- } else {
- matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
- }
- if matchIdx == -1 {
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
- }
- if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
- }
- row = tableArray.Matrix[rowIdx]
- if wasExact || !exactMatch {
- return row[matchIdx]
- }
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
- }
- // VLOOKUP function 'looks up' a given value in the left-hand column of a
- // data array (or table), and returns the corresponding value from another
- // column of the array. The syntax of the function is:
- //
- // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
- //
- func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
- if argsList.Len() < 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
- }
- if argsList.Len() > 4 {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
- }
- lookupValue := argsList.Front().Value.(formulaArg)
- tableArray := argsList.Front().Next().Value.(formulaArg)
- if tableArray.Type != ArgMatrix {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
- }
- colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
- if colIdx.Type != ArgNumber {
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
- }
- col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
- if argsList.Len() == 4 {
- rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
- if rangeLookup.Type == ArgError {
- return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
- }
- if rangeLookup.Number == 0 {
- exactMatch = true
- }
- }
- if exactMatch || len(tableArray.Matrix) == TotalRows {
- start:
- for idx, mtx := range tableArray.Matrix {
- lhs := mtx[0]
- switch lookupValue.Type {
- case ArgNumber:
- if !lookupValue.Boolean {
- lhs = mtx[0].ToNumber()
- if lhs.Type == ArgError {
- lhs = mtx[0]
- }
- }
- case ArgMatrix:
- lhs = tableArray
- }
- if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
- matchIdx = idx
- wasExact = true
- break start
- }
- }
- } else {
- matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
- }
- if matchIdx == -1 {
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
- }
- mtx := tableArray.Matrix[matchIdx]
- if col < 0 || col >= len(mtx) {
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
- }
- if wasExact || !exactMatch {
- return mtx[col]
- }
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
- }
- // vlookupBinarySearch finds the position of a target value when range lookup
- // is TRUE, if the data of table array can't guarantee be sorted, it will
- // return wrong result.
- func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
- var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
- for low <= high {
- var mid int = low + (high-low)/2
- mtx := tableArray.Matrix[mid]
- lhs := mtx[0]
- switch lookupValue.Type {
- case ArgNumber:
- if !lookupValue.Boolean {
- lhs = mtx[0].ToNumber()
- if lhs.Type == ArgError {
- lhs = mtx[0]
- }
- }
- case ArgMatrix:
- lhs = tableArray
- }
- result := compareFormulaArg(lhs, lookupValue, false, false)
- if result == criteriaEq {
- matchIdx, wasExact = mid, true
- return
- } else if result == criteriaG {
- high = mid - 1
- } else if result == criteriaL {
- matchIdx, low = mid, mid+1
- if lhs.Value() != "" {
- lastMatchIdx = matchIdx
- }
- } else {
- return -1, false
- }
- }
- matchIdx, wasExact = lastMatchIdx, true
- return
- }
- // vlookupBinarySearch finds the position of a target value when range lookup
- // is TRUE, if the data of table array can't guarantee be sorted, it will
- // return wrong result.
- func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
- var low, high, lastMatchIdx int = 0, len(row) - 1, -1
- for low <= high {
- var mid int = low + (high-low)/2
- mtx := row[mid]
- result := compareFormulaArg(mtx, lookupValue, false, false)
- if result == criteriaEq {
- matchIdx, wasExact = mid, true
- return
- } else if result == criteriaG {
- high = mid - 1
- } else if result == criteriaL {
- low, lastMatchIdx = mid+1, mid
- } else {
- return -1, false
- }
- }
- matchIdx, wasExact = lastMatchIdx, true
- return
- }
- // LOOKUP function performs an approximate match lookup in a one-column or
- // one-row range, and returns the corresponding value from another one-column
- // or one-row range. The syntax of the function is:
- //
- // LOOKUP(lookup_value,lookup_vector,[result_vector])
- //
- func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
- if argsList.Len() < 2 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
- }
- if argsList.Len() > 3 {
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
- }
- lookupValue := argsList.Front().Value.(formulaArg)
- lookupVector := argsList.Front().Next().Value.(formulaArg)
- if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
- }
- cols, matchIdx := lookupCol(lookupVector), -1
- for idx, col := range cols {
- lhs := lookupValue
- switch col.Type {
- case ArgNumber:
- lhs = lhs.ToNumber()
- if !col.Boolean {
- if lhs.Type == ArgError {
- lhs = lookupValue
- }
- }
- }
- if compareFormulaArg(lhs, col, false, false) == criteriaEq {
- matchIdx = idx
- break
- }
- }
- column := cols
- if argsList.Len() == 3 {
- column = lookupCol(argsList.Back().Value.(formulaArg))
- }
- if matchIdx < 0 || matchIdx >= len(column) {
- return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
- }
- return column[matchIdx]
- }
- // lookupCol extract columns for LOOKUP.
- func lookupCol(arr formulaArg) []formulaArg {
- col := arr.List
- if arr.Type == ArgMatrix {
- col = nil
- for _, r := range arr.Matrix {
- if len(r) > 0 {
- col = append(col, r[0])
- continue
- }
- col = append(col, newEmptyFormulaArg())
- }
- }
- return col
- }
- // Web Functions
- // ENCODEURL function returns a URL-encoded string, replacing certain
- // non-alphanumeric characters with the percentage symbol (%) and a
- // hexadecimal number. The syntax of the function is:
- //
- // ENCODEURL(url)
- //
- func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
- if argsList.Len() != 1 {
- return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
- }
- token := argsList.Front().Value.(formulaArg).Value()
- return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
- }
|