calc.go 139 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. )
  30. // Excel formula errors
  31. const (
  32. formulaErrorDIV = "#DIV/0!"
  33. formulaErrorNAME = "#NAME?"
  34. formulaErrorNA = "#N/A"
  35. formulaErrorNUM = "#NUM!"
  36. formulaErrorVALUE = "#VALUE!"
  37. formulaErrorREF = "#REF!"
  38. formulaErrorNULL = "#NULL"
  39. formulaErrorSPILL = "#SPILL!"
  40. formulaErrorCALC = "#CALC!"
  41. formulaErrorGETTINGDATA = "#GETTING_DATA"
  42. )
  43. // Numeric precision correct numeric values as legacy Excel application
  44. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  45. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  46. // has a decimal representation that is an infinite string of ones, Excel
  47. // displays only the leading 15 figures. In the second line, the number one
  48. // is added to the fraction, and again Excel displays only 15 figures.
  49. const numericPrecision = 1000000000000000
  50. // cellRef defines the structure of a cell reference.
  51. type cellRef struct {
  52. Col int
  53. Row int
  54. Sheet string
  55. }
  56. // cellRef defines the structure of a cell range.
  57. type cellRange struct {
  58. From cellRef
  59. To cellRef
  60. }
  61. // formula criteria condition enumeration.
  62. const (
  63. _ byte = iota
  64. criteriaEq
  65. criteriaLe
  66. criteriaGe
  67. criteriaL
  68. criteriaG
  69. criteriaBeg
  70. criteriaEnd
  71. criteriaErr
  72. )
  73. // formulaCriteria defined formula criteria parser result.
  74. type formulaCriteria struct {
  75. Type byte
  76. Condition string
  77. }
  78. // ArgType is the type if formula argument type.
  79. type ArgType byte
  80. // Formula argument types enumeration.
  81. const (
  82. ArgUnknown ArgType = iota
  83. ArgNumber
  84. ArgString
  85. ArgList
  86. ArgMatrix
  87. ArgError
  88. ArgEmpty
  89. )
  90. // formulaArg is the argument of a formula or function.
  91. type formulaArg struct {
  92. SheetName string
  93. Number float64
  94. String string
  95. List []formulaArg
  96. Matrix [][]formulaArg
  97. Boolean bool
  98. Error string
  99. Type ArgType
  100. }
  101. // Value returns a string data type of the formula argument.
  102. func (fa formulaArg) Value() (value string) {
  103. switch fa.Type {
  104. case ArgNumber:
  105. if fa.Boolean {
  106. if fa.Number == 0 {
  107. return "FALSE"
  108. }
  109. return "TRUE"
  110. }
  111. return fmt.Sprintf("%g", fa.Number)
  112. case ArgString:
  113. return fa.String
  114. case ArgError:
  115. return fa.Error
  116. }
  117. return
  118. }
  119. // ToNumber returns a formula argument with number data type.
  120. func (fa formulaArg) ToNumber() formulaArg {
  121. var n float64
  122. var err error
  123. switch fa.Type {
  124. case ArgString:
  125. n, err = strconv.ParseFloat(fa.String, 64)
  126. if err != nil {
  127. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  128. }
  129. case ArgNumber:
  130. n = fa.Number
  131. }
  132. return newNumberFormulaArg(n)
  133. }
  134. // ToBool returns a formula argument with boolean data type.
  135. func (fa formulaArg) ToBool() formulaArg {
  136. var b bool
  137. var err error
  138. switch fa.Type {
  139. case ArgString:
  140. b, err = strconv.ParseBool(fa.String)
  141. if err != nil {
  142. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  143. }
  144. case ArgNumber:
  145. if fa.Boolean && fa.Number == 1 {
  146. b = true
  147. }
  148. }
  149. return newBoolFormulaArg(b)
  150. }
  151. // ToList returns a formula argument with array data type.
  152. func (fa formulaArg) ToList() []formulaArg {
  153. if fa.Type == ArgMatrix {
  154. list := []formulaArg{}
  155. for _, row := range fa.Matrix {
  156. list = append(list, row...)
  157. }
  158. return list
  159. }
  160. if fa.Type == ArgList {
  161. return fa.List
  162. }
  163. return nil
  164. }
  165. // formulaFuncs is the type of the formula functions.
  166. type formulaFuncs struct {
  167. f *File
  168. sheet string
  169. }
  170. // tokenPriority defined basic arithmetic operator priority.
  171. var tokenPriority = map[string]int{
  172. "^": 5,
  173. "*": 4,
  174. "/": 4,
  175. "+": 3,
  176. "-": 3,
  177. "=": 2,
  178. "<>": 2,
  179. "<": 2,
  180. "<=": 2,
  181. ">": 2,
  182. ">=": 2,
  183. "&": 1,
  184. }
  185. // CalcCellValue provides a function to get calculated cell value. This
  186. // feature is currently in working processing. Array formula, table formula
  187. // and some other formulas are not supported currently.
  188. //
  189. // Supported formula functions:
  190. //
  191. // ABS
  192. // ACOS
  193. // ACOSH
  194. // ACOT
  195. // ACOTH
  196. // AND
  197. // ARABIC
  198. // ASIN
  199. // ASINH
  200. // ATAN
  201. // ATAN2
  202. // ATANH
  203. // AVERAGE
  204. // AVERAGEA
  205. // BASE
  206. // BITAND
  207. // BITLSHIFT
  208. // BITOR
  209. // BITRSHIFT
  210. // BITXOR
  211. // CEILING
  212. // CEILING.MATH
  213. // CEILING.PRECISE
  214. // CHOOSE
  215. // CLEAN
  216. // COMBIN
  217. // COMBINA
  218. // CONCAT
  219. // CONCATENATE
  220. // COS
  221. // COSH
  222. // COT
  223. // COTH
  224. // COUNT
  225. // COUNTA
  226. // COUNTBLANK
  227. // CSC
  228. // CSCH
  229. // DATE
  230. // DEC2BIN
  231. // DEC2HEX
  232. // DEC2OCT
  233. // DECIMAL
  234. // DEGREES
  235. // ENCODEURL
  236. // EVEN
  237. // EXACT
  238. // EXP
  239. // FACT
  240. // FACTDOUBLE
  241. // FALSE
  242. // FISHER
  243. // FISHERINV
  244. // FLOOR
  245. // FLOOR.MATH
  246. // FLOOR.PRECISE
  247. // GAMMA
  248. // GAMMALN
  249. // GCD
  250. // HLOOKUP
  251. // IF
  252. // IFERROR
  253. // INT
  254. // ISBLANK
  255. // ISERR
  256. // ISERROR
  257. // ISEVEN
  258. // ISNA
  259. // ISNONTEXT
  260. // ISNUMBER
  261. // ISODD
  262. // ISTEXT
  263. // ISO.CEILING
  264. // KURT
  265. // LCM
  266. // LEN
  267. // LENB
  268. // LN
  269. // LOG
  270. // LOG10
  271. // LOOKUP
  272. // LOWER
  273. // MAX
  274. // MDETERM
  275. // MEDIAN
  276. // MIN
  277. // MINA
  278. // MOD
  279. // MROUND
  280. // MULTINOMIAL
  281. // MUNIT
  282. // NA
  283. // NOT
  284. // ODD
  285. // OR
  286. // PERMUT
  287. // PI
  288. // POWER
  289. // PRODUCT
  290. // PROPER
  291. // QUOTIENT
  292. // RADIANS
  293. // RAND
  294. // RANDBETWEEN
  295. // REPT
  296. // ROMAN
  297. // ROUND
  298. // ROUNDDOWN
  299. // ROUNDUP
  300. // SEC
  301. // SECH
  302. // SHEET
  303. // SIGN
  304. // SIN
  305. // SINH
  306. // SQRT
  307. // SQRTPI
  308. // STDEV
  309. // STDEVA
  310. // SUM
  311. // SUMIF
  312. // SUMSQ
  313. // TAN
  314. // TANH
  315. // TRIM
  316. // TRUE
  317. // TRUNC
  318. // UPPER
  319. // VLOOKUP
  320. //
  321. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  322. var (
  323. formula string
  324. token efp.Token
  325. )
  326. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  327. return
  328. }
  329. ps := efp.ExcelParser()
  330. tokens := ps.Parse(formula)
  331. if tokens == nil {
  332. return
  333. }
  334. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  335. return
  336. }
  337. result = token.TValue
  338. isNum, precision := isNumeric(result)
  339. if isNum && precision > 15 {
  340. num, _ := roundPrecision(result)
  341. result = strings.ToUpper(num)
  342. }
  343. return
  344. }
  345. // getPriority calculate arithmetic operator priority.
  346. func getPriority(token efp.Token) (pri int) {
  347. pri = tokenPriority[token.TValue]
  348. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  349. pri = 6
  350. }
  351. if isBeginParenthesesToken(token) { // (
  352. pri = 0
  353. }
  354. return
  355. }
  356. // newNumberFormulaArg constructs a number formula argument.
  357. func newNumberFormulaArg(n float64) formulaArg {
  358. if math.IsNaN(n) {
  359. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  360. }
  361. return formulaArg{Type: ArgNumber, Number: n}
  362. }
  363. // newStringFormulaArg constructs a string formula argument.
  364. func newStringFormulaArg(s string) formulaArg {
  365. return formulaArg{Type: ArgString, String: s}
  366. }
  367. // newMatrixFormulaArg constructs a matrix formula argument.
  368. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  369. return formulaArg{Type: ArgMatrix, Matrix: m}
  370. }
  371. // newListFormulaArg create a list formula argument.
  372. func newListFormulaArg(l []formulaArg) formulaArg {
  373. return formulaArg{Type: ArgList, List: l}
  374. }
  375. // newBoolFormulaArg constructs a boolean formula argument.
  376. func newBoolFormulaArg(b bool) formulaArg {
  377. var n float64
  378. if b {
  379. n = 1
  380. }
  381. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  382. }
  383. // newErrorFormulaArg create an error formula argument of a given type with a
  384. // specified error message.
  385. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  386. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  387. }
  388. // newEmptyFormulaArg create an empty formula argument.
  389. func newEmptyFormulaArg() formulaArg {
  390. return formulaArg{Type: ArgEmpty}
  391. }
  392. // evalInfixExp evaluate syntax analysis by given infix expression after
  393. // lexical analysis. Evaluate an infix expression containing formulas by
  394. // stacks:
  395. //
  396. // opd - Operand
  397. // opt - Operator
  398. // opf - Operation formula
  399. // opfd - Operand of the operation formula
  400. // opft - Operator of the operation formula
  401. //
  402. // Evaluate arguments of the operation formula by list:
  403. //
  404. // args - Arguments of the operation formula
  405. //
  406. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  407. //
  408. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  409. var err error
  410. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  411. for i := 0; i < len(tokens); i++ {
  412. token := tokens[i]
  413. // out of function stack
  414. if opfStack.Len() == 0 {
  415. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  416. return efp.Token{}, err
  417. }
  418. }
  419. // function start
  420. if isFunctionStartToken(token) {
  421. opfStack.Push(token)
  422. argsStack.Push(list.New().Init())
  423. continue
  424. }
  425. // in function stack, walk 2 token at once
  426. if opfStack.Len() > 0 {
  427. var nextToken efp.Token
  428. if i+1 < len(tokens) {
  429. nextToken = tokens[i+1]
  430. }
  431. // current token is args or range, skip next token, order required: parse reference first
  432. if token.TSubType == efp.TokenSubTypeRange {
  433. if !opftStack.Empty() {
  434. // parse reference: must reference at here
  435. result, err := f.parseReference(sheet, token.TValue)
  436. if err != nil {
  437. return efp.Token{TValue: formulaErrorNAME}, err
  438. }
  439. if result.Type != ArgString {
  440. return efp.Token{}, errors.New(formulaErrorVALUE)
  441. }
  442. opfdStack.Push(efp.Token{
  443. TType: efp.TokenTypeOperand,
  444. TSubType: efp.TokenSubTypeNumber,
  445. TValue: result.String,
  446. })
  447. continue
  448. }
  449. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  450. // parse reference: reference or range at here
  451. result, err := f.parseReference(sheet, token.TValue)
  452. if err != nil {
  453. return efp.Token{TValue: formulaErrorNAME}, err
  454. }
  455. if result.Type == ArgUnknown {
  456. return efp.Token{}, errors.New(formulaErrorVALUE)
  457. }
  458. argsStack.Peek().(*list.List).PushBack(result)
  459. continue
  460. }
  461. }
  462. // check current token is opft
  463. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  464. return efp.Token{}, err
  465. }
  466. // current token is arg
  467. if token.TType == efp.TokenTypeArgument {
  468. for !opftStack.Empty() {
  469. // calculate trigger
  470. topOpt := opftStack.Peek().(efp.Token)
  471. if err := calculate(opfdStack, topOpt); err != nil {
  472. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  473. }
  474. opftStack.Pop()
  475. }
  476. if !opfdStack.Empty() {
  477. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  478. }
  479. continue
  480. }
  481. // current token is logical
  482. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  483. }
  484. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  485. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  486. }
  487. // current token is text
  488. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  489. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  490. }
  491. if err = f.evalInfixExpFunc(sheet, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  492. return efp.Token{}, err
  493. }
  494. }
  495. }
  496. for optStack.Len() != 0 {
  497. topOpt := optStack.Peek().(efp.Token)
  498. if err = calculate(opdStack, topOpt); err != nil {
  499. return efp.Token{}, err
  500. }
  501. optStack.Pop()
  502. }
  503. if opdStack.Len() == 0 {
  504. return efp.Token{}, errors.New("formula not valid")
  505. }
  506. return opdStack.Peek().(efp.Token), err
  507. }
  508. // evalInfixExpFunc evaluate formula function in the infix expression.
  509. func (f *File) evalInfixExpFunc(sheet string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  510. if !isFunctionStopToken(token) {
  511. return nil
  512. }
  513. // current token is function stop
  514. for !opftStack.Empty() {
  515. // calculate trigger
  516. topOpt := opftStack.Peek().(efp.Token)
  517. if err := calculate(opfdStack, topOpt); err != nil {
  518. return err
  519. }
  520. opftStack.Pop()
  521. }
  522. // push opfd to args
  523. if opfdStack.Len() > 0 {
  524. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  525. }
  526. // call formula function to evaluate
  527. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet}, strings.NewReplacer(
  528. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  529. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  530. if arg.Type == ArgError && opfStack.Len() == 1 {
  531. return errors.New(arg.Value())
  532. }
  533. argsStack.Pop()
  534. opfStack.Pop()
  535. if opfStack.Len() > 0 { // still in function stack
  536. if nextToken.TType == efp.TokenTypeOperatorInfix {
  537. // mathematics calculate in formula function
  538. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  539. } else {
  540. argsStack.Peek().(*list.List).PushBack(arg)
  541. }
  542. } else {
  543. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  544. }
  545. return nil
  546. }
  547. // calcPow evaluate exponentiation arithmetic operations.
  548. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  549. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  550. if err != nil {
  551. return err
  552. }
  553. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  554. if err != nil {
  555. return err
  556. }
  557. result := math.Pow(lOpdVal, rOpdVal)
  558. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  559. return nil
  560. }
  561. // calcEq evaluate equal arithmetic operations.
  562. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  563. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  564. return nil
  565. }
  566. // calcNEq evaluate not equal arithmetic operations.
  567. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  568. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  569. return nil
  570. }
  571. // calcL evaluate less than arithmetic operations.
  572. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  573. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  574. if err != nil {
  575. return err
  576. }
  577. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  578. if err != nil {
  579. return err
  580. }
  581. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  582. return nil
  583. }
  584. // calcLe evaluate less than or equal arithmetic operations.
  585. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  586. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  587. if err != nil {
  588. return err
  589. }
  590. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  591. if err != nil {
  592. return err
  593. }
  594. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  595. return nil
  596. }
  597. // calcG evaluate greater than or equal arithmetic operations.
  598. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  599. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  600. if err != nil {
  601. return err
  602. }
  603. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  604. if err != nil {
  605. return err
  606. }
  607. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  608. return nil
  609. }
  610. // calcGe evaluate greater than or equal arithmetic operations.
  611. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  612. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  613. if err != nil {
  614. return err
  615. }
  616. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  617. if err != nil {
  618. return err
  619. }
  620. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  621. return nil
  622. }
  623. // calcSplice evaluate splice '&' operations.
  624. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  625. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  626. return nil
  627. }
  628. // calcAdd evaluate addition arithmetic operations.
  629. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  630. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  631. if err != nil {
  632. return err
  633. }
  634. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  635. if err != nil {
  636. return err
  637. }
  638. result := lOpdVal + rOpdVal
  639. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  640. return nil
  641. }
  642. // calcSubtract evaluate subtraction arithmetic operations.
  643. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  644. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  645. if err != nil {
  646. return err
  647. }
  648. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  649. if err != nil {
  650. return err
  651. }
  652. result := lOpdVal - rOpdVal
  653. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  654. return nil
  655. }
  656. // calcMultiply evaluate multiplication arithmetic operations.
  657. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  658. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  659. if err != nil {
  660. return err
  661. }
  662. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  663. if err != nil {
  664. return err
  665. }
  666. result := lOpdVal * rOpdVal
  667. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  668. return nil
  669. }
  670. // calcDiv evaluate division arithmetic operations.
  671. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  672. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  673. if err != nil {
  674. return err
  675. }
  676. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  677. if err != nil {
  678. return err
  679. }
  680. result := lOpdVal / rOpdVal
  681. if rOpdVal == 0 {
  682. return errors.New(formulaErrorDIV)
  683. }
  684. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  685. return nil
  686. }
  687. // calculate evaluate basic arithmetic operations.
  688. func calculate(opdStack *Stack, opt efp.Token) error {
  689. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  690. if opdStack.Len() < 1 {
  691. return errors.New("formula not valid")
  692. }
  693. opd := opdStack.Pop().(efp.Token)
  694. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  695. if err != nil {
  696. return err
  697. }
  698. result := 0 - opdVal
  699. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  700. }
  701. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  702. "^": calcPow,
  703. "*": calcMultiply,
  704. "/": calcDiv,
  705. "+": calcAdd,
  706. "=": calcEq,
  707. "<>": calcNEq,
  708. "<": calcL,
  709. "<=": calcLe,
  710. ">": calcG,
  711. ">=": calcGe,
  712. "&": calcSplice,
  713. }
  714. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  715. if opdStack.Len() < 2 {
  716. return errors.New("formula not valid")
  717. }
  718. rOpd := opdStack.Pop().(efp.Token)
  719. lOpd := opdStack.Pop().(efp.Token)
  720. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  721. return err
  722. }
  723. }
  724. fn, ok := tokenCalcFunc[opt.TValue]
  725. if ok {
  726. if opdStack.Len() < 2 {
  727. return errors.New("formula not valid")
  728. }
  729. rOpd := opdStack.Pop().(efp.Token)
  730. lOpd := opdStack.Pop().(efp.Token)
  731. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  732. return err
  733. }
  734. }
  735. return nil
  736. }
  737. // parseOperatorPrefixToken parse operator prefix token.
  738. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  739. if optStack.Len() == 0 {
  740. optStack.Push(token)
  741. } else {
  742. tokenPriority := getPriority(token)
  743. topOpt := optStack.Peek().(efp.Token)
  744. topOptPriority := getPriority(topOpt)
  745. if tokenPriority > topOptPriority {
  746. optStack.Push(token)
  747. } else {
  748. for tokenPriority <= topOptPriority {
  749. optStack.Pop()
  750. if err = calculate(opdStack, topOpt); err != nil {
  751. return
  752. }
  753. if optStack.Len() > 0 {
  754. topOpt = optStack.Peek().(efp.Token)
  755. topOptPriority = getPriority(topOpt)
  756. continue
  757. }
  758. break
  759. }
  760. optStack.Push(token)
  761. }
  762. }
  763. return
  764. }
  765. // isFunctionStartToken determine if the token is function stop.
  766. func isFunctionStartToken(token efp.Token) bool {
  767. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  768. }
  769. // isFunctionStopToken determine if the token is function stop.
  770. func isFunctionStopToken(token efp.Token) bool {
  771. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  772. }
  773. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  774. func isBeginParenthesesToken(token efp.Token) bool {
  775. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  776. }
  777. // isEndParenthesesToken determine if the token is end parentheses: ).
  778. func isEndParenthesesToken(token efp.Token) bool {
  779. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  780. }
  781. // isOperatorPrefixToken determine if the token is parse operator prefix
  782. // token.
  783. func isOperatorPrefixToken(token efp.Token) bool {
  784. _, ok := tokenPriority[token.TValue]
  785. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  786. return true
  787. }
  788. return false
  789. }
  790. // getDefinedNameRefTo convert defined name to reference range.
  791. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  792. for _, definedName := range f.GetDefinedName() {
  793. if definedName.Name == definedNameName {
  794. refTo = definedName.RefersTo
  795. // worksheet scope takes precedence over scope workbook when both definedNames exist
  796. if definedName.Scope == currentSheet {
  797. break
  798. }
  799. }
  800. }
  801. return refTo
  802. }
  803. // parseToken parse basic arithmetic operator priority and evaluate based on
  804. // operators and operands.
  805. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  806. // parse reference: must reference at here
  807. if token.TSubType == efp.TokenSubTypeRange {
  808. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  809. if refTo != "" {
  810. token.TValue = refTo
  811. }
  812. result, err := f.parseReference(sheet, token.TValue)
  813. if err != nil {
  814. return errors.New(formulaErrorNAME)
  815. }
  816. if result.Type != ArgString {
  817. return errors.New(formulaErrorVALUE)
  818. }
  819. token.TValue = result.String
  820. token.TType = efp.TokenTypeOperand
  821. token.TSubType = efp.TokenSubTypeNumber
  822. }
  823. if isOperatorPrefixToken(token) {
  824. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  825. return err
  826. }
  827. }
  828. if isBeginParenthesesToken(token) { // (
  829. optStack.Push(token)
  830. }
  831. if isEndParenthesesToken(token) { // )
  832. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  833. topOpt := optStack.Peek().(efp.Token)
  834. if err := calculate(opdStack, topOpt); err != nil {
  835. return err
  836. }
  837. optStack.Pop()
  838. }
  839. optStack.Pop()
  840. }
  841. // opd
  842. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  843. opdStack.Push(token)
  844. }
  845. return nil
  846. }
  847. // parseReference parse reference and extract values by given reference
  848. // characters and default sheet name.
  849. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  850. reference = strings.Replace(reference, "$", "", -1)
  851. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  852. for _, ref := range strings.Split(reference, ":") {
  853. tokens := strings.Split(ref, "!")
  854. cr := cellRef{}
  855. if len(tokens) == 2 { // have a worksheet name
  856. cr.Sheet = tokens[0]
  857. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  858. return
  859. }
  860. if refs.Len() > 0 {
  861. e := refs.Back()
  862. cellRefs.PushBack(e.Value.(cellRef))
  863. refs.Remove(e)
  864. }
  865. refs.PushBack(cr)
  866. continue
  867. }
  868. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  869. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  870. return
  871. }
  872. cellRanges.PushBack(cellRange{
  873. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  874. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  875. })
  876. cellRefs.Init()
  877. arg, err = f.rangeResolver(cellRefs, cellRanges)
  878. return
  879. }
  880. e := refs.Back()
  881. if e == nil {
  882. cr.Sheet = sheet
  883. refs.PushBack(cr)
  884. continue
  885. }
  886. cellRanges.PushBack(cellRange{
  887. From: e.Value.(cellRef),
  888. To: cr,
  889. })
  890. refs.Remove(e)
  891. }
  892. if refs.Len() > 0 {
  893. e := refs.Back()
  894. cellRefs.PushBack(e.Value.(cellRef))
  895. refs.Remove(e)
  896. }
  897. arg, err = f.rangeResolver(cellRefs, cellRanges)
  898. return
  899. }
  900. // prepareValueRange prepare value range.
  901. func prepareValueRange(cr cellRange, valueRange []int) {
  902. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  903. valueRange[0] = cr.From.Row
  904. }
  905. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  906. valueRange[2] = cr.From.Col
  907. }
  908. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  909. valueRange[1] = cr.To.Row
  910. }
  911. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  912. valueRange[3] = cr.To.Col
  913. }
  914. }
  915. // prepareValueRef prepare value reference.
  916. func prepareValueRef(cr cellRef, valueRange []int) {
  917. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  918. valueRange[0] = cr.Row
  919. }
  920. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  921. valueRange[2] = cr.Col
  922. }
  923. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  924. valueRange[1] = cr.Row
  925. }
  926. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  927. valueRange[3] = cr.Col
  928. }
  929. }
  930. // rangeResolver extract value as string from given reference and range list.
  931. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  932. // be reference A1:B3.
  933. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  934. // value range order: from row, to row, from column, to column
  935. valueRange := []int{0, 0, 0, 0}
  936. var sheet string
  937. // prepare value range
  938. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  939. cr := temp.Value.(cellRange)
  940. if cr.From.Sheet != cr.To.Sheet {
  941. err = errors.New(formulaErrorVALUE)
  942. }
  943. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  944. _ = sortCoordinates(rng)
  945. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  946. prepareValueRange(cr, valueRange)
  947. if cr.From.Sheet != "" {
  948. sheet = cr.From.Sheet
  949. }
  950. }
  951. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  952. cr := temp.Value.(cellRef)
  953. if cr.Sheet != "" {
  954. sheet = cr.Sheet
  955. }
  956. prepareValueRef(cr, valueRange)
  957. }
  958. // extract value from ranges
  959. if cellRanges.Len() > 0 {
  960. arg.Type = ArgMatrix
  961. for row := valueRange[0]; row <= valueRange[1]; row++ {
  962. var matrixRow = []formulaArg{}
  963. for col := valueRange[2]; col <= valueRange[3]; col++ {
  964. var cell, value string
  965. if cell, err = CoordinatesToCellName(col, row); err != nil {
  966. return
  967. }
  968. if value, err = f.GetCellValue(sheet, cell); err != nil {
  969. return
  970. }
  971. matrixRow = append(matrixRow, formulaArg{
  972. String: value,
  973. Type: ArgString,
  974. })
  975. }
  976. arg.Matrix = append(arg.Matrix, matrixRow)
  977. }
  978. return
  979. }
  980. // extract value from references
  981. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  982. cr := temp.Value.(cellRef)
  983. var cell string
  984. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  985. return
  986. }
  987. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  988. return
  989. }
  990. arg.Type = ArgString
  991. }
  992. return
  993. }
  994. // callFuncByName calls the no error or only error return function with
  995. // reflect by given receiver, name and parameters.
  996. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  997. function := reflect.ValueOf(receiver).MethodByName(name)
  998. if function.IsValid() {
  999. rt := function.Call(params)
  1000. if len(rt) == 0 {
  1001. return
  1002. }
  1003. arg = rt[0].Interface().(formulaArg)
  1004. return
  1005. }
  1006. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1007. }
  1008. // formulaCriteriaParser parse formula criteria.
  1009. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1010. fc = &formulaCriteria{}
  1011. if exp == "" {
  1012. return
  1013. }
  1014. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1015. fc.Type, fc.Condition = criteriaEq, match[1]
  1016. return
  1017. }
  1018. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1019. fc.Type, fc.Condition = criteriaEq, match[1]
  1020. return
  1021. }
  1022. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1023. fc.Type, fc.Condition = criteriaLe, match[1]
  1024. return
  1025. }
  1026. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1027. fc.Type, fc.Condition = criteriaGe, match[1]
  1028. return
  1029. }
  1030. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1031. fc.Type, fc.Condition = criteriaL, match[1]
  1032. return
  1033. }
  1034. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1035. fc.Type, fc.Condition = criteriaG, match[1]
  1036. return
  1037. }
  1038. if strings.Contains(exp, "*") {
  1039. if strings.HasPrefix(exp, "*") {
  1040. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1041. }
  1042. if strings.HasSuffix(exp, "*") {
  1043. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1044. }
  1045. return
  1046. }
  1047. fc.Type, fc.Condition = criteriaEq, exp
  1048. return
  1049. }
  1050. // formulaCriteriaEval evaluate formula criteria expression.
  1051. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1052. var value, expected float64
  1053. var e error
  1054. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1055. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1056. return
  1057. }
  1058. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1059. return
  1060. }
  1061. return
  1062. }
  1063. switch criteria.Type {
  1064. case criteriaEq:
  1065. return val == criteria.Condition, err
  1066. case criteriaLe:
  1067. value, expected, e = prepareValue(val, criteria.Condition)
  1068. return value <= expected && e == nil, err
  1069. case criteriaGe:
  1070. value, expected, e = prepareValue(val, criteria.Condition)
  1071. return value >= expected && e == nil, err
  1072. case criteriaL:
  1073. value, expected, e = prepareValue(val, criteria.Condition)
  1074. return value < expected && e == nil, err
  1075. case criteriaG:
  1076. value, expected, e = prepareValue(val, criteria.Condition)
  1077. return value > expected && e == nil, err
  1078. case criteriaBeg:
  1079. return strings.HasPrefix(val, criteria.Condition), err
  1080. case criteriaEnd:
  1081. return strings.HasSuffix(val, criteria.Condition), err
  1082. }
  1083. return
  1084. }
  1085. // Engineering Functions
  1086. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1087. // syntax of the function is:
  1088. //
  1089. // BITAND(number1,number2)
  1090. //
  1091. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1092. return fn.bitwise("BITAND", argsList)
  1093. }
  1094. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1095. // number of bits. The syntax of the function is:
  1096. //
  1097. // BITLSHIFT(number1,shift_amount)
  1098. //
  1099. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1100. return fn.bitwise("BITLSHIFT", argsList)
  1101. }
  1102. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1103. // syntax of the function is:
  1104. //
  1105. // BITOR(number1,number2)
  1106. //
  1107. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1108. return fn.bitwise("BITOR", argsList)
  1109. }
  1110. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1111. // number of bits. The syntax of the function is:
  1112. //
  1113. // BITRSHIFT(number1,shift_amount)
  1114. //
  1115. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1116. return fn.bitwise("BITRSHIFT", argsList)
  1117. }
  1118. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1119. // integers. The syntax of the function is:
  1120. //
  1121. // BITXOR(number1,number2)
  1122. //
  1123. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1124. return fn.bitwise("BITXOR", argsList)
  1125. }
  1126. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1127. // BITOR, BITRSHIFT and BITXOR.
  1128. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1129. if argsList.Len() != 2 {
  1130. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1131. }
  1132. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1133. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1134. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1135. }
  1136. max := math.Pow(2, 48) - 1
  1137. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1138. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1139. }
  1140. bitwiseFuncMap := map[string]func(a, b int) int{
  1141. "BITAND": func(a, b int) int { return a & b },
  1142. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1143. "BITOR": func(a, b int) int { return a | b },
  1144. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1145. "BITXOR": func(a, b int) int { return a ^ b },
  1146. }
  1147. bitwiseFunc, _ := bitwiseFuncMap[name]
  1148. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1149. }
  1150. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1151. // The syntax of the function is:
  1152. //
  1153. // DEC2BIN(number,[places])
  1154. //
  1155. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1156. return fn.dec2x("DEC2BIN", argsList)
  1157. }
  1158. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1159. // number. The syntax of the function is:
  1160. //
  1161. // DEC2HEX(number,[places])
  1162. //
  1163. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1164. return fn.dec2x("DEC2HEX", argsList)
  1165. }
  1166. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1167. // The syntax of the function is:
  1168. //
  1169. // DEC2OCT(number,[places])
  1170. //
  1171. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1172. return fn.dec2x("DEC2OCT", argsList)
  1173. }
  1174. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1175. // DEC2OCT.
  1176. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1177. if argsList.Len() < 1 {
  1178. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1179. }
  1180. if argsList.Len() > 2 {
  1181. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1182. }
  1183. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1184. if decimal.Type != ArgNumber {
  1185. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1186. }
  1187. maxLimitMap := map[string]float64{
  1188. "DEC2BIN": 511,
  1189. "DEC2HEX": 549755813887,
  1190. "DEC2OCT": 536870911,
  1191. }
  1192. minLimitMap := map[string]float64{
  1193. "DEC2BIN": -512,
  1194. "DEC2HEX": -549755813888,
  1195. "DEC2OCT": -536870912,
  1196. }
  1197. baseMap := map[string]int{
  1198. "DEC2BIN": 2,
  1199. "DEC2HEX": 16,
  1200. "DEC2OCT": 8,
  1201. }
  1202. maxLimit := maxLimitMap[name]
  1203. minLimit := minLimitMap[name]
  1204. base := baseMap[name]
  1205. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1206. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1207. }
  1208. n := int64(decimal.Number)
  1209. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1210. if argsList.Len() == 2 {
  1211. places := argsList.Back().Value.(formulaArg).ToNumber()
  1212. if places.Type != ArgNumber {
  1213. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1214. }
  1215. binaryPlaces := len(binary)
  1216. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1217. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1218. }
  1219. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1220. }
  1221. if decimal.Number < 0 && len(binary) > 10 {
  1222. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1223. }
  1224. return newStringFormulaArg(strings.ToUpper(binary))
  1225. }
  1226. // Math and Trigonometric Functions
  1227. // ABS function returns the absolute value of any supplied number. The syntax
  1228. // of the function is:
  1229. //
  1230. // ABS(number)
  1231. //
  1232. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1233. if argsList.Len() != 1 {
  1234. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1235. }
  1236. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1237. if arg.Type == ArgError {
  1238. return arg
  1239. }
  1240. return newNumberFormulaArg(math.Abs(arg.Number))
  1241. }
  1242. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1243. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1244. // the function is:
  1245. //
  1246. // ACOS(number)
  1247. //
  1248. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1249. if argsList.Len() != 1 {
  1250. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1251. }
  1252. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1253. if arg.Type == ArgError {
  1254. return arg
  1255. }
  1256. return newNumberFormulaArg(math.Acos(arg.Number))
  1257. }
  1258. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1259. // of the function is:
  1260. //
  1261. // ACOSH(number)
  1262. //
  1263. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1264. if argsList.Len() != 1 {
  1265. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1266. }
  1267. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1268. if arg.Type == ArgError {
  1269. return arg
  1270. }
  1271. return newNumberFormulaArg(math.Acosh(arg.Number))
  1272. }
  1273. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1274. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1275. // of the function is:
  1276. //
  1277. // ACOT(number)
  1278. //
  1279. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1280. if argsList.Len() != 1 {
  1281. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1282. }
  1283. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1284. if arg.Type == ArgError {
  1285. return arg
  1286. }
  1287. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1288. }
  1289. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1290. // value. The syntax of the function is:
  1291. //
  1292. // ACOTH(number)
  1293. //
  1294. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1295. if argsList.Len() != 1 {
  1296. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1297. }
  1298. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1299. if arg.Type == ArgError {
  1300. return arg
  1301. }
  1302. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1303. }
  1304. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1305. // of the function is:
  1306. //
  1307. // ARABIC(text)
  1308. //
  1309. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1310. if argsList.Len() != 1 {
  1311. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1312. }
  1313. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1314. val, last, prefix := 0.0, 0.0, 1.0
  1315. for _, char := range argsList.Front().Value.(formulaArg).String {
  1316. digit := 0.0
  1317. if char == '-' {
  1318. prefix = -1
  1319. continue
  1320. }
  1321. digit = charMap[char]
  1322. val += digit
  1323. switch {
  1324. case last == digit && (last == 5 || last == 50 || last == 500):
  1325. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1326. case 2*last == digit:
  1327. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1328. }
  1329. if last < digit {
  1330. val -= 2 * last
  1331. }
  1332. last = digit
  1333. }
  1334. return newNumberFormulaArg(prefix * val)
  1335. }
  1336. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1337. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1338. // of the function is:
  1339. //
  1340. // ASIN(number)
  1341. //
  1342. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1343. if argsList.Len() != 1 {
  1344. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1345. }
  1346. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1347. if arg.Type == ArgError {
  1348. return arg
  1349. }
  1350. return newNumberFormulaArg(math.Asin(arg.Number))
  1351. }
  1352. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1353. // The syntax of the function is:
  1354. //
  1355. // ASINH(number)
  1356. //
  1357. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1358. if argsList.Len() != 1 {
  1359. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1360. }
  1361. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1362. if arg.Type == ArgError {
  1363. return arg
  1364. }
  1365. return newNumberFormulaArg(math.Asinh(arg.Number))
  1366. }
  1367. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1368. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1369. // syntax of the function is:
  1370. //
  1371. // ATAN(number)
  1372. //
  1373. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1374. if argsList.Len() != 1 {
  1375. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1376. }
  1377. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1378. if arg.Type == ArgError {
  1379. return arg
  1380. }
  1381. return newNumberFormulaArg(math.Atan(arg.Number))
  1382. }
  1383. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1384. // number. The syntax of the function is:
  1385. //
  1386. // ATANH(number)
  1387. //
  1388. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1389. if argsList.Len() != 1 {
  1390. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1391. }
  1392. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1393. if arg.Type == ArgError {
  1394. return arg
  1395. }
  1396. return newNumberFormulaArg(math.Atanh(arg.Number))
  1397. }
  1398. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1399. // given set of x and y coordinates, and returns an angle, in radians, between
  1400. // -π/2 and +π/2. The syntax of the function is:
  1401. //
  1402. // ATAN2(x_num,y_num)
  1403. //
  1404. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1405. if argsList.Len() != 2 {
  1406. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1407. }
  1408. x := argsList.Back().Value.(formulaArg).ToNumber()
  1409. if x.Type == ArgError {
  1410. return x
  1411. }
  1412. y := argsList.Front().Value.(formulaArg).ToNumber()
  1413. if y.Type == ArgError {
  1414. return y
  1415. }
  1416. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1417. }
  1418. // BASE function converts a number into a supplied base (radix), and returns a
  1419. // text representation of the calculated value. The syntax of the function is:
  1420. //
  1421. // BASE(number,radix,[min_length])
  1422. //
  1423. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1424. if argsList.Len() < 2 {
  1425. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1426. }
  1427. if argsList.Len() > 3 {
  1428. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1429. }
  1430. var minLength int
  1431. var err error
  1432. number := argsList.Front().Value.(formulaArg).ToNumber()
  1433. if number.Type == ArgError {
  1434. return number
  1435. }
  1436. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1437. if radix.Type == ArgError {
  1438. return radix
  1439. }
  1440. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1441. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1442. }
  1443. if argsList.Len() > 2 {
  1444. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1445. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1446. }
  1447. }
  1448. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1449. if len(result) < minLength {
  1450. result = strings.Repeat("0", minLength-len(result)) + result
  1451. }
  1452. return newStringFormulaArg(strings.ToUpper(result))
  1453. }
  1454. // CEILING function rounds a supplied number away from zero, to the nearest
  1455. // multiple of a given number. The syntax of the function is:
  1456. //
  1457. // CEILING(number,significance)
  1458. //
  1459. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1460. if argsList.Len() == 0 {
  1461. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1462. }
  1463. if argsList.Len() > 2 {
  1464. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1465. }
  1466. number, significance, res := 0.0, 1.0, 0.0
  1467. n := argsList.Front().Value.(formulaArg).ToNumber()
  1468. if n.Type == ArgError {
  1469. return n
  1470. }
  1471. number = n.Number
  1472. if number < 0 {
  1473. significance = -1
  1474. }
  1475. if argsList.Len() > 1 {
  1476. s := argsList.Back().Value.(formulaArg).ToNumber()
  1477. if s.Type == ArgError {
  1478. return s
  1479. }
  1480. significance = s.Number
  1481. }
  1482. if significance < 0 && number > 0 {
  1483. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1484. }
  1485. if argsList.Len() == 1 {
  1486. return newNumberFormulaArg(math.Ceil(number))
  1487. }
  1488. number, res = math.Modf(number / significance)
  1489. if res > 0 {
  1490. number++
  1491. }
  1492. return newNumberFormulaArg(number * significance)
  1493. }
  1494. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1495. // significance. The syntax of the function is:
  1496. //
  1497. // CEILING.MATH(number,[significance],[mode])
  1498. //
  1499. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1500. if argsList.Len() == 0 {
  1501. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1502. }
  1503. if argsList.Len() > 3 {
  1504. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1505. }
  1506. number, significance, mode := 0.0, 1.0, 1.0
  1507. n := argsList.Front().Value.(formulaArg).ToNumber()
  1508. if n.Type == ArgError {
  1509. return n
  1510. }
  1511. number = n.Number
  1512. if number < 0 {
  1513. significance = -1
  1514. }
  1515. if argsList.Len() > 1 {
  1516. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1517. if s.Type == ArgError {
  1518. return s
  1519. }
  1520. significance = s.Number
  1521. }
  1522. if argsList.Len() == 1 {
  1523. return newNumberFormulaArg(math.Ceil(number))
  1524. }
  1525. if argsList.Len() > 2 {
  1526. m := argsList.Back().Value.(formulaArg).ToNumber()
  1527. if m.Type == ArgError {
  1528. return m
  1529. }
  1530. mode = m.Number
  1531. }
  1532. val, res := math.Modf(number / significance)
  1533. if res != 0 {
  1534. if number > 0 {
  1535. val++
  1536. } else if mode < 0 {
  1537. val--
  1538. }
  1539. }
  1540. return newNumberFormulaArg(val * significance)
  1541. }
  1542. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1543. // number's sign), to the nearest multiple of a given number. The syntax of
  1544. // the function is:
  1545. //
  1546. // CEILING.PRECISE(number,[significance])
  1547. //
  1548. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1549. if argsList.Len() == 0 {
  1550. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1551. }
  1552. if argsList.Len() > 2 {
  1553. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1554. }
  1555. number, significance := 0.0, 1.0
  1556. n := argsList.Front().Value.(formulaArg).ToNumber()
  1557. if n.Type == ArgError {
  1558. return n
  1559. }
  1560. number = n.Number
  1561. if number < 0 {
  1562. significance = -1
  1563. }
  1564. if argsList.Len() == 1 {
  1565. return newNumberFormulaArg(math.Ceil(number))
  1566. }
  1567. if argsList.Len() > 1 {
  1568. s := argsList.Back().Value.(formulaArg).ToNumber()
  1569. if s.Type == ArgError {
  1570. return s
  1571. }
  1572. significance = s.Number
  1573. significance = math.Abs(significance)
  1574. if significance == 0 {
  1575. return newNumberFormulaArg(significance)
  1576. }
  1577. }
  1578. val, res := math.Modf(number / significance)
  1579. if res != 0 {
  1580. if number > 0 {
  1581. val++
  1582. }
  1583. }
  1584. return newNumberFormulaArg(val * significance)
  1585. }
  1586. // COMBIN function calculates the number of combinations (in any order) of a
  1587. // given number objects from a set. The syntax of the function is:
  1588. //
  1589. // COMBIN(number,number_chosen)
  1590. //
  1591. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1592. if argsList.Len() != 2 {
  1593. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1594. }
  1595. number, chosen, val := 0.0, 0.0, 1.0
  1596. n := argsList.Front().Value.(formulaArg).ToNumber()
  1597. if n.Type == ArgError {
  1598. return n
  1599. }
  1600. number = n.Number
  1601. c := argsList.Back().Value.(formulaArg).ToNumber()
  1602. if c.Type == ArgError {
  1603. return c
  1604. }
  1605. chosen = c.Number
  1606. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1607. if chosen > number {
  1608. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1609. }
  1610. if chosen == number || chosen == 0 {
  1611. return newNumberFormulaArg(1)
  1612. }
  1613. for c := float64(1); c <= chosen; c++ {
  1614. val *= (number + 1 - c) / c
  1615. }
  1616. return newNumberFormulaArg(math.Ceil(val))
  1617. }
  1618. // COMBINA function calculates the number of combinations, with repetitions,
  1619. // of a given number objects from a set. The syntax of the function is:
  1620. //
  1621. // COMBINA(number,number_chosen)
  1622. //
  1623. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1624. if argsList.Len() != 2 {
  1625. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1626. }
  1627. var number, chosen float64
  1628. n := argsList.Front().Value.(formulaArg).ToNumber()
  1629. if n.Type == ArgError {
  1630. return n
  1631. }
  1632. number = n.Number
  1633. c := argsList.Back().Value.(formulaArg).ToNumber()
  1634. if c.Type == ArgError {
  1635. return c
  1636. }
  1637. chosen = c.Number
  1638. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1639. if number < chosen {
  1640. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1641. }
  1642. if number == 0 {
  1643. return newNumberFormulaArg(number)
  1644. }
  1645. args := list.New()
  1646. args.PushBack(formulaArg{
  1647. String: fmt.Sprintf("%g", number+chosen-1),
  1648. Type: ArgString,
  1649. })
  1650. args.PushBack(formulaArg{
  1651. String: fmt.Sprintf("%g", number-1),
  1652. Type: ArgString,
  1653. })
  1654. return fn.COMBIN(args)
  1655. }
  1656. // COS function calculates the cosine of a given angle. The syntax of the
  1657. // function is:
  1658. //
  1659. // COS(number)
  1660. //
  1661. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1662. if argsList.Len() != 1 {
  1663. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1664. }
  1665. val := argsList.Front().Value.(formulaArg).ToNumber()
  1666. if val.Type == ArgError {
  1667. return val
  1668. }
  1669. return newNumberFormulaArg(math.Cos(val.Number))
  1670. }
  1671. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1672. // The syntax of the function is:
  1673. //
  1674. // COSH(number)
  1675. //
  1676. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1677. if argsList.Len() != 1 {
  1678. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1679. }
  1680. val := argsList.Front().Value.(formulaArg).ToNumber()
  1681. if val.Type == ArgError {
  1682. return val
  1683. }
  1684. return newNumberFormulaArg(math.Cosh(val.Number))
  1685. }
  1686. // COT function calculates the cotangent of a given angle. The syntax of the
  1687. // function is:
  1688. //
  1689. // COT(number)
  1690. //
  1691. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1692. if argsList.Len() != 1 {
  1693. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1694. }
  1695. val := argsList.Front().Value.(formulaArg).ToNumber()
  1696. if val.Type == ArgError {
  1697. return val
  1698. }
  1699. if val.Number == 0 {
  1700. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1701. }
  1702. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1703. }
  1704. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1705. // angle. The syntax of the function is:
  1706. //
  1707. // COTH(number)
  1708. //
  1709. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1710. if argsList.Len() != 1 {
  1711. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1712. }
  1713. val := argsList.Front().Value.(formulaArg).ToNumber()
  1714. if val.Type == ArgError {
  1715. return val
  1716. }
  1717. if val.Number == 0 {
  1718. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1719. }
  1720. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1721. }
  1722. // CSC function calculates the cosecant of a given angle. The syntax of the
  1723. // function is:
  1724. //
  1725. // CSC(number)
  1726. //
  1727. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1728. if argsList.Len() != 1 {
  1729. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1730. }
  1731. val := argsList.Front().Value.(formulaArg).ToNumber()
  1732. if val.Type == ArgError {
  1733. return val
  1734. }
  1735. if val.Number == 0 {
  1736. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1737. }
  1738. return newNumberFormulaArg(1 / math.Sin(val.Number))
  1739. }
  1740. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1741. // angle. The syntax of the function is:
  1742. //
  1743. // CSCH(number)
  1744. //
  1745. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1746. if argsList.Len() != 1 {
  1747. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1748. }
  1749. val := argsList.Front().Value.(formulaArg).ToNumber()
  1750. if val.Type == ArgError {
  1751. return val
  1752. }
  1753. if val.Number == 0 {
  1754. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1755. }
  1756. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  1757. }
  1758. // DECIMAL function converts a text representation of a number in a specified
  1759. // base, into a decimal value. The syntax of the function is:
  1760. //
  1761. // DECIMAL(text,radix)
  1762. //
  1763. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1764. if argsList.Len() != 2 {
  1765. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1766. }
  1767. var text = argsList.Front().Value.(formulaArg).String
  1768. var radix int
  1769. var err error
  1770. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1771. if err != nil {
  1772. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1773. }
  1774. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1775. text = text[2:]
  1776. }
  1777. val, err := strconv.ParseInt(text, radix, 64)
  1778. if err != nil {
  1779. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1780. }
  1781. return newNumberFormulaArg(float64(val))
  1782. }
  1783. // DEGREES function converts radians into degrees. The syntax of the function
  1784. // is:
  1785. //
  1786. // DEGREES(angle)
  1787. //
  1788. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1789. if argsList.Len() != 1 {
  1790. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1791. }
  1792. val := argsList.Front().Value.(formulaArg).ToNumber()
  1793. if val.Type == ArgError {
  1794. return val
  1795. }
  1796. if val.Number == 0 {
  1797. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1798. }
  1799. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  1800. }
  1801. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1802. // positive number up and a negative number down), to the next even number.
  1803. // The syntax of the function is:
  1804. //
  1805. // EVEN(number)
  1806. //
  1807. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1808. if argsList.Len() != 1 {
  1809. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1810. }
  1811. number := argsList.Front().Value.(formulaArg).ToNumber()
  1812. if number.Type == ArgError {
  1813. return number
  1814. }
  1815. sign := math.Signbit(number.Number)
  1816. m, frac := math.Modf(number.Number / 2)
  1817. val := m * 2
  1818. if frac != 0 {
  1819. if !sign {
  1820. val += 2
  1821. } else {
  1822. val -= 2
  1823. }
  1824. }
  1825. return newNumberFormulaArg(val)
  1826. }
  1827. // EXP function calculates the value of the mathematical constant e, raised to
  1828. // the power of a given number. The syntax of the function is:
  1829. //
  1830. // EXP(number)
  1831. //
  1832. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1833. if argsList.Len() != 1 {
  1834. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1835. }
  1836. number := argsList.Front().Value.(formulaArg).ToNumber()
  1837. if number.Type == ArgError {
  1838. return number
  1839. }
  1840. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  1841. }
  1842. // fact returns the factorial of a supplied number.
  1843. func fact(number float64) float64 {
  1844. val := float64(1)
  1845. for i := float64(2); i <= number; i++ {
  1846. val *= i
  1847. }
  1848. return val
  1849. }
  1850. // FACT function returns the factorial of a supplied number. The syntax of the
  1851. // function is:
  1852. //
  1853. // FACT(number)
  1854. //
  1855. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1856. if argsList.Len() != 1 {
  1857. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1858. }
  1859. number := argsList.Front().Value.(formulaArg).ToNumber()
  1860. if number.Type == ArgError {
  1861. return number
  1862. }
  1863. if number.Number < 0 {
  1864. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1865. }
  1866. return newNumberFormulaArg(fact(number.Number))
  1867. }
  1868. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1869. // syntax of the function is:
  1870. //
  1871. // FACTDOUBLE(number)
  1872. //
  1873. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1874. if argsList.Len() != 1 {
  1875. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1876. }
  1877. val := 1.0
  1878. number := argsList.Front().Value.(formulaArg).ToNumber()
  1879. if number.Type == ArgError {
  1880. return number
  1881. }
  1882. if number.Number < 0 {
  1883. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1884. }
  1885. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  1886. val *= i
  1887. }
  1888. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1889. }
  1890. // FLOOR function rounds a supplied number towards zero to the nearest
  1891. // multiple of a specified significance. The syntax of the function is:
  1892. //
  1893. // FLOOR(number,significance)
  1894. //
  1895. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1896. if argsList.Len() != 2 {
  1897. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1898. }
  1899. number := argsList.Front().Value.(formulaArg).ToNumber()
  1900. if number.Type == ArgError {
  1901. return number
  1902. }
  1903. significance := argsList.Back().Value.(formulaArg).ToNumber()
  1904. if significance.Type == ArgError {
  1905. return significance
  1906. }
  1907. if significance.Number < 0 && number.Number >= 0 {
  1908. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1909. }
  1910. val := number.Number
  1911. val, res := math.Modf(val / significance.Number)
  1912. if res != 0 {
  1913. if number.Number < 0 && res < 0 {
  1914. val--
  1915. }
  1916. }
  1917. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  1918. }
  1919. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1920. // significance. The syntax of the function is:
  1921. //
  1922. // FLOOR.MATH(number,[significance],[mode])
  1923. //
  1924. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1925. if argsList.Len() == 0 {
  1926. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1927. }
  1928. if argsList.Len() > 3 {
  1929. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1930. }
  1931. significance, mode := 1.0, 1.0
  1932. number := argsList.Front().Value.(formulaArg).ToNumber()
  1933. if number.Type == ArgError {
  1934. return number
  1935. }
  1936. if number.Number < 0 {
  1937. significance = -1
  1938. }
  1939. if argsList.Len() > 1 {
  1940. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1941. if s.Type == ArgError {
  1942. return s
  1943. }
  1944. significance = s.Number
  1945. }
  1946. if argsList.Len() == 1 {
  1947. return newNumberFormulaArg(math.Floor(number.Number))
  1948. }
  1949. if argsList.Len() > 2 {
  1950. m := argsList.Back().Value.(formulaArg).ToNumber()
  1951. if m.Type == ArgError {
  1952. return m
  1953. }
  1954. mode = m.Number
  1955. }
  1956. val, res := math.Modf(number.Number / significance)
  1957. if res != 0 && number.Number < 0 && mode > 0 {
  1958. val--
  1959. }
  1960. return newNumberFormulaArg(val * significance)
  1961. }
  1962. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1963. // of significance. The syntax of the function is:
  1964. //
  1965. // FLOOR.PRECISE(number,[significance])
  1966. //
  1967. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1968. if argsList.Len() == 0 {
  1969. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1970. }
  1971. if argsList.Len() > 2 {
  1972. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1973. }
  1974. var significance float64
  1975. number := argsList.Front().Value.(formulaArg).ToNumber()
  1976. if number.Type == ArgError {
  1977. return number
  1978. }
  1979. if number.Number < 0 {
  1980. significance = -1
  1981. }
  1982. if argsList.Len() == 1 {
  1983. return newNumberFormulaArg(math.Floor(number.Number))
  1984. }
  1985. if argsList.Len() > 1 {
  1986. s := argsList.Back().Value.(formulaArg).ToNumber()
  1987. if s.Type == ArgError {
  1988. return s
  1989. }
  1990. significance = s.Number
  1991. significance = math.Abs(significance)
  1992. if significance == 0 {
  1993. return newNumberFormulaArg(significance)
  1994. }
  1995. }
  1996. val, res := math.Modf(number.Number / significance)
  1997. if res != 0 {
  1998. if number.Number < 0 {
  1999. val--
  2000. }
  2001. }
  2002. return newNumberFormulaArg(val * significance)
  2003. }
  2004. // gcd returns the greatest common divisor of two supplied integers.
  2005. func gcd(x, y float64) float64 {
  2006. x, y = math.Trunc(x), math.Trunc(y)
  2007. if x == 0 {
  2008. return y
  2009. }
  2010. if y == 0 {
  2011. return x
  2012. }
  2013. for x != y {
  2014. if x > y {
  2015. x = x - y
  2016. } else {
  2017. y = y - x
  2018. }
  2019. }
  2020. return x
  2021. }
  2022. // GCD function returns the greatest common divisor of two or more supplied
  2023. // integers. The syntax of the function is:
  2024. //
  2025. // GCD(number1,[number2],...)
  2026. //
  2027. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2028. if argsList.Len() == 0 {
  2029. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2030. }
  2031. var (
  2032. val float64
  2033. nums = []float64{}
  2034. )
  2035. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2036. token := arg.Value.(formulaArg)
  2037. switch token.Type {
  2038. case ArgString:
  2039. num := token.ToNumber()
  2040. if num.Type == ArgError {
  2041. return num
  2042. }
  2043. val = num.Number
  2044. case ArgNumber:
  2045. val = token.Number
  2046. }
  2047. nums = append(nums, val)
  2048. }
  2049. if nums[0] < 0 {
  2050. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2051. }
  2052. if len(nums) == 1 {
  2053. return newNumberFormulaArg(nums[0])
  2054. }
  2055. cd := nums[0]
  2056. for i := 1; i < len(nums); i++ {
  2057. if nums[i] < 0 {
  2058. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2059. }
  2060. cd = gcd(cd, nums[i])
  2061. }
  2062. return newNumberFormulaArg(cd)
  2063. }
  2064. // INT function truncates a supplied number down to the closest integer. The
  2065. // syntax of the function is:
  2066. //
  2067. // INT(number)
  2068. //
  2069. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2070. if argsList.Len() != 1 {
  2071. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2072. }
  2073. number := argsList.Front().Value.(formulaArg).ToNumber()
  2074. if number.Type == ArgError {
  2075. return number
  2076. }
  2077. val, frac := math.Modf(number.Number)
  2078. if frac < 0 {
  2079. val--
  2080. }
  2081. return newNumberFormulaArg(val)
  2082. }
  2083. // ISOCEILING function rounds a supplied number up (regardless of the number's
  2084. // sign), to the nearest multiple of a supplied significance. The syntax of
  2085. // the function is:
  2086. //
  2087. // ISO.CEILING(number,[significance])
  2088. //
  2089. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  2090. if argsList.Len() == 0 {
  2091. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2092. }
  2093. if argsList.Len() > 2 {
  2094. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2095. }
  2096. var significance float64
  2097. number := argsList.Front().Value.(formulaArg).ToNumber()
  2098. if number.Type == ArgError {
  2099. return number
  2100. }
  2101. if number.Number < 0 {
  2102. significance = -1
  2103. }
  2104. if argsList.Len() == 1 {
  2105. return newNumberFormulaArg(math.Ceil(number.Number))
  2106. }
  2107. if argsList.Len() > 1 {
  2108. s := argsList.Back().Value.(formulaArg).ToNumber()
  2109. if s.Type == ArgError {
  2110. return s
  2111. }
  2112. significance = s.Number
  2113. significance = math.Abs(significance)
  2114. if significance == 0 {
  2115. return newNumberFormulaArg(significance)
  2116. }
  2117. }
  2118. val, res := math.Modf(number.Number / significance)
  2119. if res != 0 {
  2120. if number.Number > 0 {
  2121. val++
  2122. }
  2123. }
  2124. return newNumberFormulaArg(val * significance)
  2125. }
  2126. // lcm returns the least common multiple of two supplied integers.
  2127. func lcm(a, b float64) float64 {
  2128. a = math.Trunc(a)
  2129. b = math.Trunc(b)
  2130. if a == 0 && b == 0 {
  2131. return 0
  2132. }
  2133. return a * b / gcd(a, b)
  2134. }
  2135. // LCM function returns the least common multiple of two or more supplied
  2136. // integers. The syntax of the function is:
  2137. //
  2138. // LCM(number1,[number2],...)
  2139. //
  2140. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2141. if argsList.Len() == 0 {
  2142. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2143. }
  2144. var (
  2145. val float64
  2146. nums = []float64{}
  2147. err error
  2148. )
  2149. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2150. token := arg.Value.(formulaArg)
  2151. switch token.Type {
  2152. case ArgString:
  2153. if token.String == "" {
  2154. continue
  2155. }
  2156. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2157. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2158. }
  2159. case ArgNumber:
  2160. val = token.Number
  2161. }
  2162. nums = append(nums, val)
  2163. }
  2164. if nums[0] < 0 {
  2165. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2166. }
  2167. if len(nums) == 1 {
  2168. return newNumberFormulaArg(nums[0])
  2169. }
  2170. cm := nums[0]
  2171. for i := 1; i < len(nums); i++ {
  2172. if nums[i] < 0 {
  2173. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2174. }
  2175. cm = lcm(cm, nums[i])
  2176. }
  2177. return newNumberFormulaArg(cm)
  2178. }
  2179. // LN function calculates the natural logarithm of a given number. The syntax
  2180. // of the function is:
  2181. //
  2182. // LN(number)
  2183. //
  2184. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2185. if argsList.Len() != 1 {
  2186. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2187. }
  2188. number := argsList.Front().Value.(formulaArg).ToNumber()
  2189. if number.Type == ArgError {
  2190. return number
  2191. }
  2192. return newNumberFormulaArg(math.Log(number.Number))
  2193. }
  2194. // LOG function calculates the logarithm of a given number, to a supplied
  2195. // base. The syntax of the function is:
  2196. //
  2197. // LOG(number,[base])
  2198. //
  2199. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2200. if argsList.Len() == 0 {
  2201. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2202. }
  2203. if argsList.Len() > 2 {
  2204. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2205. }
  2206. base := 10.0
  2207. number := argsList.Front().Value.(formulaArg).ToNumber()
  2208. if number.Type == ArgError {
  2209. return number
  2210. }
  2211. if argsList.Len() > 1 {
  2212. b := argsList.Back().Value.(formulaArg).ToNumber()
  2213. if b.Type == ArgError {
  2214. return b
  2215. }
  2216. base = b.Number
  2217. }
  2218. if number.Number == 0 {
  2219. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2220. }
  2221. if base == 0 {
  2222. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2223. }
  2224. if base == 1 {
  2225. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2226. }
  2227. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2228. }
  2229. // LOG10 function calculates the base 10 logarithm of a given number. The
  2230. // syntax of the function is:
  2231. //
  2232. // LOG10(number)
  2233. //
  2234. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2235. if argsList.Len() != 1 {
  2236. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2237. }
  2238. number := argsList.Front().Value.(formulaArg).ToNumber()
  2239. if number.Type == ArgError {
  2240. return number
  2241. }
  2242. return newNumberFormulaArg(math.Log10(number.Number))
  2243. }
  2244. // minor function implement a minor of a matrix A is the determinant of some
  2245. // smaller square matrix.
  2246. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2247. ret := [][]float64{}
  2248. for i := range sqMtx {
  2249. if i == 0 {
  2250. continue
  2251. }
  2252. row := []float64{}
  2253. for j := range sqMtx {
  2254. if j == idx {
  2255. continue
  2256. }
  2257. row = append(row, sqMtx[i][j])
  2258. }
  2259. ret = append(ret, row)
  2260. }
  2261. return ret
  2262. }
  2263. // det determinant of the 2x2 matrix.
  2264. func det(sqMtx [][]float64) float64 {
  2265. if len(sqMtx) == 2 {
  2266. m00 := sqMtx[0][0]
  2267. m01 := sqMtx[0][1]
  2268. m10 := sqMtx[1][0]
  2269. m11 := sqMtx[1][1]
  2270. return m00*m11 - m10*m01
  2271. }
  2272. var res, sgn float64 = 0, 1
  2273. for j := range sqMtx {
  2274. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2275. sgn *= -1
  2276. }
  2277. return res
  2278. }
  2279. // MDETERM calculates the determinant of a square matrix. The
  2280. // syntax of the function is:
  2281. //
  2282. // MDETERM(array)
  2283. //
  2284. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2285. var (
  2286. num float64
  2287. numMtx = [][]float64{}
  2288. err error
  2289. strMtx [][]formulaArg
  2290. )
  2291. if argsList.Len() < 1 {
  2292. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2293. }
  2294. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2295. var rows = len(strMtx)
  2296. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2297. if len(row) != rows {
  2298. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2299. }
  2300. numRow := []float64{}
  2301. for _, ele := range row {
  2302. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2303. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2304. }
  2305. numRow = append(numRow, num)
  2306. }
  2307. numMtx = append(numMtx, numRow)
  2308. }
  2309. return newNumberFormulaArg(det(numMtx))
  2310. }
  2311. // MOD function returns the remainder of a division between two supplied
  2312. // numbers. The syntax of the function is:
  2313. //
  2314. // MOD(number,divisor)
  2315. //
  2316. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2317. if argsList.Len() != 2 {
  2318. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2319. }
  2320. number := argsList.Front().Value.(formulaArg).ToNumber()
  2321. if number.Type == ArgError {
  2322. return number
  2323. }
  2324. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2325. if divisor.Type == ArgError {
  2326. return divisor
  2327. }
  2328. if divisor.Number == 0 {
  2329. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2330. }
  2331. trunc, rem := math.Modf(number.Number / divisor.Number)
  2332. if rem < 0 {
  2333. trunc--
  2334. }
  2335. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2336. }
  2337. // MROUND function rounds a supplied number up or down to the nearest multiple
  2338. // of a given number. The syntax of the function is:
  2339. //
  2340. // MROUND(number,multiple)
  2341. //
  2342. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2343. if argsList.Len() != 2 {
  2344. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2345. }
  2346. n := argsList.Front().Value.(formulaArg).ToNumber()
  2347. if n.Type == ArgError {
  2348. return n
  2349. }
  2350. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2351. if multiple.Type == ArgError {
  2352. return multiple
  2353. }
  2354. if multiple.Number == 0 {
  2355. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2356. }
  2357. if multiple.Number < 0 && n.Number > 0 ||
  2358. multiple.Number > 0 && n.Number < 0 {
  2359. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2360. }
  2361. number, res := math.Modf(n.Number / multiple.Number)
  2362. if math.Trunc(res+0.5) > 0 {
  2363. number++
  2364. }
  2365. return newNumberFormulaArg(number * multiple.Number)
  2366. }
  2367. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2368. // supplied values to the product of factorials of those values. The syntax of
  2369. // the function is:
  2370. //
  2371. // MULTINOMIAL(number1,[number2],...)
  2372. //
  2373. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2374. val, num, denom := 0.0, 0.0, 1.0
  2375. var err error
  2376. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2377. token := arg.Value.(formulaArg)
  2378. switch token.Type {
  2379. case ArgString:
  2380. if token.String == "" {
  2381. continue
  2382. }
  2383. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2384. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2385. }
  2386. case ArgNumber:
  2387. val = token.Number
  2388. }
  2389. num += val
  2390. denom *= fact(val)
  2391. }
  2392. return newNumberFormulaArg(fact(num) / denom)
  2393. }
  2394. // MUNIT function returns the unit matrix for a specified dimension. The
  2395. // syntax of the function is:
  2396. //
  2397. // MUNIT(dimension)
  2398. //
  2399. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2400. if argsList.Len() != 1 {
  2401. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2402. }
  2403. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2404. if dimension.Type == ArgError || dimension.Number < 0 {
  2405. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2406. }
  2407. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2408. for i := 0; i < int(dimension.Number); i++ {
  2409. row := make([]formulaArg, int(dimension.Number))
  2410. for j := 0; j < int(dimension.Number); j++ {
  2411. if i == j {
  2412. row[j] = newNumberFormulaArg(1.0)
  2413. } else {
  2414. row[j] = newNumberFormulaArg(0.0)
  2415. }
  2416. }
  2417. matrix = append(matrix, row)
  2418. }
  2419. return newMatrixFormulaArg(matrix)
  2420. }
  2421. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2422. // number up and a negative number down), to the next odd number. The syntax
  2423. // of the function is:
  2424. //
  2425. // ODD(number)
  2426. //
  2427. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2428. if argsList.Len() != 1 {
  2429. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2430. }
  2431. number := argsList.Back().Value.(formulaArg).ToNumber()
  2432. if number.Type == ArgError {
  2433. return number
  2434. }
  2435. if number.Number == 0 {
  2436. return newNumberFormulaArg(1)
  2437. }
  2438. sign := math.Signbit(number.Number)
  2439. m, frac := math.Modf((number.Number - 1) / 2)
  2440. val := m*2 + 1
  2441. if frac != 0 {
  2442. if !sign {
  2443. val += 2
  2444. } else {
  2445. val -= 2
  2446. }
  2447. }
  2448. return newNumberFormulaArg(val)
  2449. }
  2450. // PI function returns the value of the mathematical constant π (pi), accurate
  2451. // to 15 digits (14 decimal places). The syntax of the function is:
  2452. //
  2453. // PI()
  2454. //
  2455. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2456. if argsList.Len() != 0 {
  2457. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2458. }
  2459. return newNumberFormulaArg(math.Pi)
  2460. }
  2461. // POWER function calculates a given number, raised to a supplied power.
  2462. // The syntax of the function is:
  2463. //
  2464. // POWER(number,power)
  2465. //
  2466. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2467. if argsList.Len() != 2 {
  2468. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2469. }
  2470. x := argsList.Front().Value.(formulaArg).ToNumber()
  2471. if x.Type == ArgError {
  2472. return x
  2473. }
  2474. y := argsList.Back().Value.(formulaArg).ToNumber()
  2475. if y.Type == ArgError {
  2476. return y
  2477. }
  2478. if x.Number == 0 && y.Number == 0 {
  2479. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2480. }
  2481. if x.Number == 0 && y.Number < 0 {
  2482. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2483. }
  2484. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2485. }
  2486. // PRODUCT function returns the product (multiplication) of a supplied set of
  2487. // numerical values. The syntax of the function is:
  2488. //
  2489. // PRODUCT(number1,[number2],...)
  2490. //
  2491. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2492. val, product := 0.0, 1.0
  2493. var err error
  2494. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2495. token := arg.Value.(formulaArg)
  2496. switch token.Type {
  2497. case ArgUnknown:
  2498. continue
  2499. case ArgString:
  2500. if token.String == "" {
  2501. continue
  2502. }
  2503. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2504. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2505. }
  2506. product = product * val
  2507. case ArgNumber:
  2508. product = product * token.Number
  2509. case ArgMatrix:
  2510. for _, row := range token.Matrix {
  2511. for _, value := range row {
  2512. if value.String == "" {
  2513. continue
  2514. }
  2515. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2516. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2517. }
  2518. product = product * val
  2519. }
  2520. }
  2521. }
  2522. }
  2523. return newNumberFormulaArg(product)
  2524. }
  2525. // QUOTIENT function returns the integer portion of a division between two
  2526. // supplied numbers. The syntax of the function is:
  2527. //
  2528. // QUOTIENT(numerator,denominator)
  2529. //
  2530. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2531. if argsList.Len() != 2 {
  2532. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2533. }
  2534. x := argsList.Front().Value.(formulaArg).ToNumber()
  2535. if x.Type == ArgError {
  2536. return x
  2537. }
  2538. y := argsList.Back().Value.(formulaArg).ToNumber()
  2539. if y.Type == ArgError {
  2540. return y
  2541. }
  2542. if y.Number == 0 {
  2543. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2544. }
  2545. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2546. }
  2547. // RADIANS function converts radians into degrees. The syntax of the function is:
  2548. //
  2549. // RADIANS(angle)
  2550. //
  2551. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2552. if argsList.Len() != 1 {
  2553. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2554. }
  2555. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2556. if angle.Type == ArgError {
  2557. return angle
  2558. }
  2559. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2560. }
  2561. // RAND function generates a random real number between 0 and 1. The syntax of
  2562. // the function is:
  2563. //
  2564. // RAND()
  2565. //
  2566. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2567. if argsList.Len() != 0 {
  2568. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2569. }
  2570. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2571. }
  2572. // RANDBETWEEN function generates a random integer between two supplied
  2573. // integers. The syntax of the function is:
  2574. //
  2575. // RANDBETWEEN(bottom,top)
  2576. //
  2577. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2578. if argsList.Len() != 2 {
  2579. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2580. }
  2581. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2582. if bottom.Type == ArgError {
  2583. return bottom
  2584. }
  2585. top := argsList.Back().Value.(formulaArg).ToNumber()
  2586. if top.Type == ArgError {
  2587. return top
  2588. }
  2589. if top.Number < bottom.Number {
  2590. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2591. }
  2592. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2593. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2594. }
  2595. // romanNumerals defined a numeral system that originated in ancient Rome and
  2596. // remained the usual way of writing numbers throughout Europe well into the
  2597. // Late Middle Ages.
  2598. type romanNumerals struct {
  2599. n float64
  2600. s string
  2601. }
  2602. var romanTable = [][]romanNumerals{
  2603. {
  2604. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2605. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2606. },
  2607. {
  2608. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2609. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2610. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2611. },
  2612. {
  2613. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2614. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2615. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2616. },
  2617. {
  2618. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2619. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2620. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2621. {5, "V"}, {4, "IV"}, {1, "I"},
  2622. },
  2623. {
  2624. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2625. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2626. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2627. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2628. },
  2629. }
  2630. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2631. // integer, the function returns a text string depicting the roman numeral
  2632. // form of the number. The syntax of the function is:
  2633. //
  2634. // ROMAN(number,[form])
  2635. //
  2636. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2637. if argsList.Len() == 0 {
  2638. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2639. }
  2640. if argsList.Len() > 2 {
  2641. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2642. }
  2643. var form int
  2644. number := argsList.Front().Value.(formulaArg).ToNumber()
  2645. if number.Type == ArgError {
  2646. return number
  2647. }
  2648. if argsList.Len() > 1 {
  2649. f := argsList.Back().Value.(formulaArg).ToNumber()
  2650. if f.Type == ArgError {
  2651. return f
  2652. }
  2653. form = int(f.Number)
  2654. if form < 0 {
  2655. form = 0
  2656. } else if form > 4 {
  2657. form = 4
  2658. }
  2659. }
  2660. decimalTable := romanTable[0]
  2661. switch form {
  2662. case 1:
  2663. decimalTable = romanTable[1]
  2664. case 2:
  2665. decimalTable = romanTable[2]
  2666. case 3:
  2667. decimalTable = romanTable[3]
  2668. case 4:
  2669. decimalTable = romanTable[4]
  2670. }
  2671. val := math.Trunc(number.Number)
  2672. buf := bytes.Buffer{}
  2673. for _, r := range decimalTable {
  2674. for val >= r.n {
  2675. buf.WriteString(r.s)
  2676. val -= r.n
  2677. }
  2678. }
  2679. return newStringFormulaArg(buf.String())
  2680. }
  2681. type roundMode byte
  2682. const (
  2683. closest roundMode = iota
  2684. down
  2685. up
  2686. )
  2687. // round rounds a supplied number up or down.
  2688. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2689. var significance float64
  2690. if digits > 0 {
  2691. significance = math.Pow(1/10.0, digits)
  2692. } else {
  2693. significance = math.Pow(10.0, -digits)
  2694. }
  2695. val, res := math.Modf(number / significance)
  2696. switch mode {
  2697. case closest:
  2698. const eps = 0.499999999
  2699. if res >= eps {
  2700. val++
  2701. } else if res <= -eps {
  2702. val--
  2703. }
  2704. case down:
  2705. case up:
  2706. if res > 0 {
  2707. val++
  2708. } else if res < 0 {
  2709. val--
  2710. }
  2711. }
  2712. return val * significance
  2713. }
  2714. // ROUND function rounds a supplied number up or down, to a specified number
  2715. // of decimal places. The syntax of the function is:
  2716. //
  2717. // ROUND(number,num_digits)
  2718. //
  2719. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2720. if argsList.Len() != 2 {
  2721. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2722. }
  2723. number := argsList.Front().Value.(formulaArg).ToNumber()
  2724. if number.Type == ArgError {
  2725. return number
  2726. }
  2727. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2728. if digits.Type == ArgError {
  2729. return digits
  2730. }
  2731. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2732. }
  2733. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2734. // specified number of decimal places. The syntax of the function is:
  2735. //
  2736. // ROUNDDOWN(number,num_digits)
  2737. //
  2738. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2739. if argsList.Len() != 2 {
  2740. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2741. }
  2742. number := argsList.Front().Value.(formulaArg).ToNumber()
  2743. if number.Type == ArgError {
  2744. return number
  2745. }
  2746. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2747. if digits.Type == ArgError {
  2748. return digits
  2749. }
  2750. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  2751. }
  2752. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2753. // specified number of decimal places. The syntax of the function is:
  2754. //
  2755. // ROUNDUP(number,num_digits)
  2756. //
  2757. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2758. if argsList.Len() != 2 {
  2759. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2760. }
  2761. number := argsList.Front().Value.(formulaArg).ToNumber()
  2762. if number.Type == ArgError {
  2763. return number
  2764. }
  2765. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2766. if digits.Type == ArgError {
  2767. return digits
  2768. }
  2769. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  2770. }
  2771. // SEC function calculates the secant of a given angle. The syntax of the
  2772. // function is:
  2773. //
  2774. // SEC(number)
  2775. //
  2776. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2777. if argsList.Len() != 1 {
  2778. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2779. }
  2780. number := argsList.Front().Value.(formulaArg).ToNumber()
  2781. if number.Type == ArgError {
  2782. return number
  2783. }
  2784. return newNumberFormulaArg(math.Cos(number.Number))
  2785. }
  2786. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2787. // The syntax of the function is:
  2788. //
  2789. // SECH(number)
  2790. //
  2791. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2792. if argsList.Len() != 1 {
  2793. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2794. }
  2795. number := argsList.Front().Value.(formulaArg).ToNumber()
  2796. if number.Type == ArgError {
  2797. return number
  2798. }
  2799. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  2800. }
  2801. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2802. // number. I.e. if the number is positive, the Sign function returns +1, if
  2803. // the number is negative, the function returns -1 and if the number is 0
  2804. // (zero), the function returns 0. The syntax of the function is:
  2805. //
  2806. // SIGN(number)
  2807. //
  2808. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2809. if argsList.Len() != 1 {
  2810. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2811. }
  2812. val := argsList.Front().Value.(formulaArg).ToNumber()
  2813. if val.Type == ArgError {
  2814. return val
  2815. }
  2816. if val.Number < 0 {
  2817. return newNumberFormulaArg(-1)
  2818. }
  2819. if val.Number > 0 {
  2820. return newNumberFormulaArg(1)
  2821. }
  2822. return newNumberFormulaArg(0)
  2823. }
  2824. // SIN function calculates the sine of a given angle. The syntax of the
  2825. // function is:
  2826. //
  2827. // SIN(number)
  2828. //
  2829. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2830. if argsList.Len() != 1 {
  2831. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2832. }
  2833. number := argsList.Front().Value.(formulaArg).ToNumber()
  2834. if number.Type == ArgError {
  2835. return number
  2836. }
  2837. return newNumberFormulaArg(math.Sin(number.Number))
  2838. }
  2839. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2840. // The syntax of the function is:
  2841. //
  2842. // SINH(number)
  2843. //
  2844. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2845. if argsList.Len() != 1 {
  2846. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2847. }
  2848. number := argsList.Front().Value.(formulaArg).ToNumber()
  2849. if number.Type == ArgError {
  2850. return number
  2851. }
  2852. return newNumberFormulaArg(math.Sinh(number.Number))
  2853. }
  2854. // SQRT function calculates the positive square root of a supplied number. The
  2855. // syntax of the function is:
  2856. //
  2857. // SQRT(number)
  2858. //
  2859. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2860. if argsList.Len() != 1 {
  2861. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2862. }
  2863. value := argsList.Front().Value.(formulaArg).ToNumber()
  2864. if value.Type == ArgError {
  2865. return value
  2866. }
  2867. if value.Number < 0 {
  2868. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2869. }
  2870. return newNumberFormulaArg(math.Sqrt(value.Number))
  2871. }
  2872. // SQRTPI function returns the square root of a supplied number multiplied by
  2873. // the mathematical constant, π. The syntax of the function is:
  2874. //
  2875. // SQRTPI(number)
  2876. //
  2877. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2878. if argsList.Len() != 1 {
  2879. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2880. }
  2881. number := argsList.Front().Value.(formulaArg).ToNumber()
  2882. if number.Type == ArgError {
  2883. return number
  2884. }
  2885. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  2886. }
  2887. // STDEV function calculates the sample standard deviation of a supplied set
  2888. // of values. The syntax of the function is:
  2889. //
  2890. // STDEV(number1,[number2],...)
  2891. //
  2892. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  2893. if argsList.Len() < 1 {
  2894. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  2895. }
  2896. return fn.stdev(false, argsList)
  2897. }
  2898. // STDEVA function estimates standard deviation based on a sample. The
  2899. // standard deviation is a measure of how widely values are dispersed from
  2900. // the average value (the mean). The syntax of the function is:
  2901. //
  2902. // STDEVA(number1,[number2],...)
  2903. //
  2904. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  2905. if argsList.Len() < 1 {
  2906. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  2907. }
  2908. return fn.stdev(true, argsList)
  2909. }
  2910. // stdev is an implementation of the formula function STDEV and STDEVA.
  2911. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  2912. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  2913. if result == -1 {
  2914. result = math.Pow((n.Number - m.Number), 2)
  2915. } else {
  2916. result += math.Pow((n.Number - m.Number), 2)
  2917. }
  2918. count++
  2919. return result, count
  2920. }
  2921. count, result := -1.0, -1.0
  2922. var mean formulaArg
  2923. if stdeva {
  2924. mean = fn.AVERAGEA(argsList)
  2925. } else {
  2926. mean = fn.AVERAGE(argsList)
  2927. }
  2928. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2929. token := arg.Value.(formulaArg)
  2930. switch token.Type {
  2931. case ArgString, ArgNumber:
  2932. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  2933. continue
  2934. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  2935. num := token.ToBool()
  2936. if num.Type == ArgNumber {
  2937. result, count = pow(result, count, num, mean)
  2938. continue
  2939. }
  2940. } else {
  2941. num := token.ToNumber()
  2942. if num.Type == ArgNumber {
  2943. result, count = pow(result, count, num, mean)
  2944. }
  2945. }
  2946. case ArgList, ArgMatrix:
  2947. for _, row := range token.ToList() {
  2948. if row.Type == ArgNumber || row.Type == ArgString {
  2949. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  2950. continue
  2951. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  2952. num := row.ToBool()
  2953. if num.Type == ArgNumber {
  2954. result, count = pow(result, count, num, mean)
  2955. continue
  2956. }
  2957. } else {
  2958. num := row.ToNumber()
  2959. if num.Type == ArgNumber {
  2960. result, count = pow(result, count, num, mean)
  2961. }
  2962. }
  2963. }
  2964. }
  2965. }
  2966. }
  2967. if count > 0 && result >= 0 {
  2968. return newNumberFormulaArg(math.Sqrt(result / count))
  2969. }
  2970. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2971. }
  2972. // SUM function adds together a supplied set of numbers and returns the sum of
  2973. // these values. The syntax of the function is:
  2974. //
  2975. // SUM(number1,[number2],...)
  2976. //
  2977. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2978. var sum float64
  2979. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2980. token := arg.Value.(formulaArg)
  2981. switch token.Type {
  2982. case ArgUnknown:
  2983. continue
  2984. case ArgString:
  2985. if num := token.ToNumber(); num.Type == ArgNumber {
  2986. sum += num.Number
  2987. }
  2988. case ArgNumber:
  2989. sum += token.Number
  2990. case ArgMatrix:
  2991. for _, row := range token.Matrix {
  2992. for _, value := range row {
  2993. if num := value.ToNumber(); num.Type == ArgNumber {
  2994. sum += num.Number
  2995. }
  2996. }
  2997. }
  2998. }
  2999. }
  3000. return newNumberFormulaArg(sum)
  3001. }
  3002. // SUMIF function finds the values in a supplied array, that satisfy a given
  3003. // criteria, and returns the sum of the corresponding values in a second
  3004. // supplied array. The syntax of the function is:
  3005. //
  3006. // SUMIF(range,criteria,[sum_range])
  3007. //
  3008. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3009. if argsList.Len() < 2 {
  3010. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3011. }
  3012. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3013. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3014. var sumRange [][]formulaArg
  3015. if argsList.Len() == 3 {
  3016. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3017. }
  3018. var sum, val float64
  3019. var err error
  3020. for rowIdx, row := range rangeMtx {
  3021. for colIdx, col := range row {
  3022. var ok bool
  3023. fromVal := col.String
  3024. if col.String == "" {
  3025. continue
  3026. }
  3027. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3028. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3029. }
  3030. if ok {
  3031. if argsList.Len() == 3 {
  3032. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3033. continue
  3034. }
  3035. fromVal = sumRange[rowIdx][colIdx].String
  3036. }
  3037. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3038. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3039. }
  3040. sum += val
  3041. }
  3042. }
  3043. }
  3044. return newNumberFormulaArg(sum)
  3045. }
  3046. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3047. // syntax of the function is:
  3048. //
  3049. // SUMSQ(number1,[number2],...)
  3050. //
  3051. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3052. var val, sq float64
  3053. var err error
  3054. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3055. token := arg.Value.(formulaArg)
  3056. switch token.Type {
  3057. case ArgString:
  3058. if token.String == "" {
  3059. continue
  3060. }
  3061. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3062. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3063. }
  3064. sq += val * val
  3065. case ArgNumber:
  3066. sq += token.Number
  3067. case ArgMatrix:
  3068. for _, row := range token.Matrix {
  3069. for _, value := range row {
  3070. if value.String == "" {
  3071. continue
  3072. }
  3073. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3074. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3075. }
  3076. sq += val * val
  3077. }
  3078. }
  3079. }
  3080. }
  3081. return newNumberFormulaArg(sq)
  3082. }
  3083. // TAN function calculates the tangent of a given angle. The syntax of the
  3084. // function is:
  3085. //
  3086. // TAN(number)
  3087. //
  3088. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3089. if argsList.Len() != 1 {
  3090. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3091. }
  3092. number := argsList.Front().Value.(formulaArg).ToNumber()
  3093. if number.Type == ArgError {
  3094. return number
  3095. }
  3096. return newNumberFormulaArg(math.Tan(number.Number))
  3097. }
  3098. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3099. // number. The syntax of the function is:
  3100. //
  3101. // TANH(number)
  3102. //
  3103. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3104. if argsList.Len() != 1 {
  3105. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3106. }
  3107. number := argsList.Front().Value.(formulaArg).ToNumber()
  3108. if number.Type == ArgError {
  3109. return number
  3110. }
  3111. return newNumberFormulaArg(math.Tanh(number.Number))
  3112. }
  3113. // TRUNC function truncates a supplied number to a specified number of decimal
  3114. // places. The syntax of the function is:
  3115. //
  3116. // TRUNC(number,[number_digits])
  3117. //
  3118. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3119. if argsList.Len() == 0 {
  3120. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3121. }
  3122. var digits, adjust, rtrim float64
  3123. var err error
  3124. number := argsList.Front().Value.(formulaArg).ToNumber()
  3125. if number.Type == ArgError {
  3126. return number
  3127. }
  3128. if argsList.Len() > 1 {
  3129. d := argsList.Back().Value.(formulaArg).ToNumber()
  3130. if d.Type == ArgError {
  3131. return d
  3132. }
  3133. digits = d.Number
  3134. digits = math.Floor(digits)
  3135. }
  3136. adjust = math.Pow(10, digits)
  3137. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3138. if x != 0 {
  3139. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3140. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3141. }
  3142. }
  3143. if (digits > 0) && (rtrim < adjust/10) {
  3144. return newNumberFormulaArg(number.Number)
  3145. }
  3146. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3147. }
  3148. // Statistical Functions
  3149. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3150. // The syntax of the function is:
  3151. //
  3152. // AVERAGE(number1,[number2],...)
  3153. //
  3154. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3155. args := []formulaArg{}
  3156. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3157. args = append(args, arg.Value.(formulaArg))
  3158. }
  3159. count, sum := fn.countSum(false, args)
  3160. if count == 0 {
  3161. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3162. }
  3163. return newNumberFormulaArg(sum / count)
  3164. }
  3165. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3166. // with text cell and zero values. The syntax of the function is:
  3167. //
  3168. // AVERAGEA(number1,[number2],...)
  3169. //
  3170. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3171. args := []formulaArg{}
  3172. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3173. args = append(args, arg.Value.(formulaArg))
  3174. }
  3175. count, sum := fn.countSum(true, args)
  3176. if count == 0 {
  3177. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3178. }
  3179. return newNumberFormulaArg(sum / count)
  3180. }
  3181. // countSum get count and sum for a formula arguments array.
  3182. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3183. for _, arg := range args {
  3184. switch arg.Type {
  3185. case ArgNumber:
  3186. if countText || !arg.Boolean {
  3187. sum += arg.Number
  3188. count++
  3189. }
  3190. case ArgString:
  3191. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3192. continue
  3193. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3194. num := arg.ToBool()
  3195. if num.Type == ArgNumber {
  3196. count++
  3197. sum += num.Number
  3198. continue
  3199. }
  3200. }
  3201. num := arg.ToNumber()
  3202. if countText && num.Type == ArgError && arg.String != "" {
  3203. count++
  3204. }
  3205. if num.Type == ArgNumber {
  3206. sum += num.Number
  3207. count++
  3208. }
  3209. case ArgList, ArgMatrix:
  3210. cnt, summary := fn.countSum(countText, arg.ToList())
  3211. sum += summary
  3212. count += cnt
  3213. }
  3214. }
  3215. return
  3216. }
  3217. // COUNT function returns the count of numeric values in a supplied set of
  3218. // cells or values. This count includes both numbers and dates. The syntax of
  3219. // the function is:
  3220. //
  3221. // COUNT(value1,[value2],...)
  3222. //
  3223. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3224. var count int
  3225. for token := argsList.Front(); token != nil; token = token.Next() {
  3226. arg := token.Value.(formulaArg)
  3227. switch arg.Type {
  3228. case ArgString:
  3229. if arg.ToNumber().Type != ArgError {
  3230. count++
  3231. }
  3232. case ArgNumber:
  3233. count++
  3234. case ArgMatrix:
  3235. for _, row := range arg.Matrix {
  3236. for _, value := range row {
  3237. if value.ToNumber().Type != ArgError {
  3238. count++
  3239. }
  3240. }
  3241. }
  3242. }
  3243. }
  3244. return newNumberFormulaArg(float64(count))
  3245. }
  3246. // COUNTA function returns the number of non-blanks within a supplied set of
  3247. // cells or values. The syntax of the function is:
  3248. //
  3249. // COUNTA(value1,[value2],...)
  3250. //
  3251. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3252. var count int
  3253. for token := argsList.Front(); token != nil; token = token.Next() {
  3254. arg := token.Value.(formulaArg)
  3255. switch arg.Type {
  3256. case ArgString:
  3257. if arg.String != "" {
  3258. count++
  3259. }
  3260. case ArgNumber:
  3261. count++
  3262. case ArgMatrix:
  3263. for _, row := range arg.ToList() {
  3264. switch row.Type {
  3265. case ArgString:
  3266. if row.String != "" {
  3267. count++
  3268. }
  3269. case ArgNumber:
  3270. count++
  3271. }
  3272. }
  3273. }
  3274. }
  3275. return newNumberFormulaArg(float64(count))
  3276. }
  3277. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3278. // The syntax of the function is:
  3279. //
  3280. // COUNTBLANK(range)
  3281. //
  3282. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3283. if argsList.Len() != 1 {
  3284. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3285. }
  3286. var count int
  3287. token := argsList.Front().Value.(formulaArg)
  3288. switch token.Type {
  3289. case ArgString:
  3290. if token.String == "" {
  3291. count++
  3292. }
  3293. case ArgList, ArgMatrix:
  3294. for _, row := range token.ToList() {
  3295. switch row.Type {
  3296. case ArgString:
  3297. if row.String == "" {
  3298. count++
  3299. }
  3300. case ArgEmpty:
  3301. count++
  3302. }
  3303. }
  3304. case ArgEmpty:
  3305. count++
  3306. }
  3307. return newNumberFormulaArg(float64(count))
  3308. }
  3309. // FISHER function calculates the Fisher Transformation for a supplied value.
  3310. // The syntax of the function is:
  3311. //
  3312. // FISHER(x)
  3313. //
  3314. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3315. if argsList.Len() != 1 {
  3316. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3317. }
  3318. token := argsList.Front().Value.(formulaArg)
  3319. switch token.Type {
  3320. case ArgString:
  3321. arg := token.ToNumber()
  3322. if arg.Type == ArgNumber {
  3323. if arg.Number <= -1 || arg.Number >= 1 {
  3324. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3325. }
  3326. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3327. }
  3328. case ArgNumber:
  3329. if token.Number <= -1 || token.Number >= 1 {
  3330. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3331. }
  3332. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3333. }
  3334. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3335. }
  3336. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3337. // returns a value between -1 and +1. The syntax of the function is:
  3338. //
  3339. // FISHERINV(y)
  3340. //
  3341. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3342. if argsList.Len() != 1 {
  3343. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3344. }
  3345. token := argsList.Front().Value.(formulaArg)
  3346. switch token.Type {
  3347. case ArgString:
  3348. arg := token.ToNumber()
  3349. if arg.Type == ArgNumber {
  3350. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3351. }
  3352. case ArgNumber:
  3353. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3354. }
  3355. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3356. }
  3357. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3358. // specified number, n. The syntax of the function is:
  3359. //
  3360. // GAMMA(number)
  3361. //
  3362. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3363. if argsList.Len() != 1 {
  3364. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3365. }
  3366. token := argsList.Front().Value.(formulaArg)
  3367. switch token.Type {
  3368. case ArgString:
  3369. arg := token.ToNumber()
  3370. if arg.Type == ArgNumber {
  3371. if arg.Number <= 0 {
  3372. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3373. }
  3374. return newNumberFormulaArg(math.Gamma(arg.Number))
  3375. }
  3376. case ArgNumber:
  3377. if token.Number <= 0 {
  3378. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3379. }
  3380. return newNumberFormulaArg(math.Gamma(token.Number))
  3381. }
  3382. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3383. }
  3384. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3385. // (n). The syntax of the function is:
  3386. //
  3387. // GAMMALN(x)
  3388. //
  3389. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3390. if argsList.Len() != 1 {
  3391. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3392. }
  3393. token := argsList.Front().Value.(formulaArg)
  3394. switch token.Type {
  3395. case ArgString:
  3396. arg := token.ToNumber()
  3397. if arg.Type == ArgNumber {
  3398. if arg.Number <= 0 {
  3399. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3400. }
  3401. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3402. }
  3403. case ArgNumber:
  3404. if token.Number <= 0 {
  3405. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3406. }
  3407. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3408. }
  3409. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3410. }
  3411. // KURT function calculates the kurtosis of a supplied set of values. The
  3412. // syntax of the function is:
  3413. //
  3414. // KURT(number1,[number2],...)
  3415. //
  3416. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3417. if argsList.Len() < 1 {
  3418. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3419. }
  3420. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3421. if stdev.Number > 0 {
  3422. count, summer := 0.0, 0.0
  3423. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3424. token := arg.Value.(formulaArg)
  3425. switch token.Type {
  3426. case ArgString, ArgNumber:
  3427. num := token.ToNumber()
  3428. if num.Type == ArgError {
  3429. continue
  3430. }
  3431. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3432. count++
  3433. case ArgList, ArgMatrix:
  3434. for _, row := range token.ToList() {
  3435. if row.Type == ArgNumber || row.Type == ArgString {
  3436. num := row.ToNumber()
  3437. if num.Type == ArgError {
  3438. continue
  3439. }
  3440. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3441. count++
  3442. }
  3443. }
  3444. }
  3445. }
  3446. if count > 3 {
  3447. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3448. }
  3449. }
  3450. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3451. }
  3452. // MAX function returns the largest value from a supplied set of numeric
  3453. // values. The syntax of the function is:
  3454. //
  3455. // MAX(number1,[number2],...)
  3456. //
  3457. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3458. if argsList.Len() == 0 {
  3459. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3460. }
  3461. return fn.max(false, argsList)
  3462. }
  3463. // MAXA function returns the largest value from a supplied set of numeric
  3464. // values, while counting text and the logical value FALSE as the value 0 and
  3465. // counting the logical value TRUE as the value 1. The syntax of the function
  3466. // is:
  3467. //
  3468. // MAXA(number1,[number2],...)
  3469. //
  3470. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3471. if argsList.Len() == 0 {
  3472. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3473. }
  3474. return fn.max(true, argsList)
  3475. }
  3476. // max is an implementation of the formula function MAX and MAXA.
  3477. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3478. max := -math.MaxFloat64
  3479. for token := argsList.Front(); token != nil; token = token.Next() {
  3480. arg := token.Value.(formulaArg)
  3481. switch arg.Type {
  3482. case ArgString:
  3483. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3484. continue
  3485. } else {
  3486. num := arg.ToBool()
  3487. if num.Type == ArgNumber && num.Number > max {
  3488. max = num.Number
  3489. continue
  3490. }
  3491. }
  3492. num := arg.ToNumber()
  3493. if num.Type != ArgError && num.Number > max {
  3494. max = num.Number
  3495. }
  3496. case ArgNumber:
  3497. if arg.Number > max {
  3498. max = arg.Number
  3499. }
  3500. case ArgList, ArgMatrix:
  3501. for _, row := range arg.ToList() {
  3502. switch row.Type {
  3503. case ArgString:
  3504. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3505. continue
  3506. } else {
  3507. num := row.ToBool()
  3508. if num.Type == ArgNumber && num.Number > max {
  3509. max = num.Number
  3510. continue
  3511. }
  3512. }
  3513. num := row.ToNumber()
  3514. if num.Type != ArgError && num.Number > max {
  3515. max = num.Number
  3516. }
  3517. case ArgNumber:
  3518. if row.Number > max {
  3519. max = row.Number
  3520. }
  3521. }
  3522. }
  3523. case ArgError:
  3524. return arg
  3525. }
  3526. }
  3527. if max == -math.MaxFloat64 {
  3528. max = 0
  3529. }
  3530. return newNumberFormulaArg(max)
  3531. }
  3532. // MEDIAN function returns the statistical median (the middle value) of a list
  3533. // of supplied numbers. The syntax of the function is:
  3534. //
  3535. // MEDIAN(number1,[number2],...)
  3536. //
  3537. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3538. if argsList.Len() == 0 {
  3539. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3540. }
  3541. var values = []float64{}
  3542. var median, digits float64
  3543. var err error
  3544. for token := argsList.Front(); token != nil; token = token.Next() {
  3545. arg := token.Value.(formulaArg)
  3546. switch arg.Type {
  3547. case ArgString:
  3548. num := arg.ToNumber()
  3549. if num.Type == ArgError {
  3550. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3551. }
  3552. values = append(values, num.Number)
  3553. case ArgNumber:
  3554. values = append(values, arg.Number)
  3555. case ArgMatrix:
  3556. for _, row := range arg.Matrix {
  3557. for _, value := range row {
  3558. if value.String == "" {
  3559. continue
  3560. }
  3561. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3562. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3563. }
  3564. values = append(values, digits)
  3565. }
  3566. }
  3567. }
  3568. }
  3569. sort.Float64s(values)
  3570. if len(values)%2 == 0 {
  3571. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3572. } else {
  3573. median = values[len(values)/2]
  3574. }
  3575. return newNumberFormulaArg(median)
  3576. }
  3577. // MIN function returns the smallest value from a supplied set of numeric
  3578. // values. The syntax of the function is:
  3579. //
  3580. // MIN(number1,[number2],...)
  3581. //
  3582. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3583. if argsList.Len() == 0 {
  3584. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3585. }
  3586. return fn.min(false, argsList)
  3587. }
  3588. // MINA function returns the smallest value from a supplied set of numeric
  3589. // values, while counting text and the logical value FALSE as the value 0 and
  3590. // counting the logical value TRUE as the value 1. The syntax of the function
  3591. // is:
  3592. //
  3593. // MINA(number1,[number2],...)
  3594. //
  3595. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3596. if argsList.Len() == 0 {
  3597. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3598. }
  3599. return fn.min(true, argsList)
  3600. }
  3601. // min is an implementation of the formula function MIN and MINA.
  3602. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3603. min := math.MaxFloat64
  3604. for token := argsList.Front(); token != nil; token = token.Next() {
  3605. arg := token.Value.(formulaArg)
  3606. switch arg.Type {
  3607. case ArgString:
  3608. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3609. continue
  3610. } else {
  3611. num := arg.ToBool()
  3612. if num.Type == ArgNumber && num.Number < min {
  3613. min = num.Number
  3614. continue
  3615. }
  3616. }
  3617. num := arg.ToNumber()
  3618. if num.Type != ArgError && num.Number < min {
  3619. min = num.Number
  3620. }
  3621. case ArgNumber:
  3622. if arg.Number < min {
  3623. min = arg.Number
  3624. }
  3625. case ArgList, ArgMatrix:
  3626. for _, row := range arg.ToList() {
  3627. switch row.Type {
  3628. case ArgString:
  3629. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3630. continue
  3631. } else {
  3632. num := row.ToBool()
  3633. if num.Type == ArgNumber && num.Number < min {
  3634. min = num.Number
  3635. continue
  3636. }
  3637. }
  3638. num := row.ToNumber()
  3639. if num.Type != ArgError && num.Number < min {
  3640. min = num.Number
  3641. }
  3642. case ArgNumber:
  3643. if row.Number < min {
  3644. min = row.Number
  3645. }
  3646. }
  3647. }
  3648. case ArgError:
  3649. return arg
  3650. }
  3651. }
  3652. if min == math.MaxFloat64 {
  3653. min = 0
  3654. }
  3655. return newNumberFormulaArg(min)
  3656. }
  3657. // PERMUT function calculates the number of permutations of a specified number
  3658. // of objects from a set of objects. The syntax of the function is:
  3659. //
  3660. // PERMUT(number,number_chosen)
  3661. //
  3662. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  3663. if argsList.Len() != 2 {
  3664. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  3665. }
  3666. number := argsList.Front().Value.(formulaArg).ToNumber()
  3667. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  3668. if number.Type != ArgNumber {
  3669. return number
  3670. }
  3671. if chosen.Type != ArgNumber {
  3672. return chosen
  3673. }
  3674. if number.Number < chosen.Number {
  3675. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3676. }
  3677. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  3678. }
  3679. // Information Functions
  3680. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  3681. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  3682. // function is:
  3683. //
  3684. // ISBLANK(value)
  3685. //
  3686. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  3687. if argsList.Len() != 1 {
  3688. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  3689. }
  3690. token := argsList.Front().Value.(formulaArg)
  3691. result := "FALSE"
  3692. switch token.Type {
  3693. case ArgUnknown:
  3694. result = "TRUE"
  3695. case ArgString:
  3696. if token.String == "" {
  3697. result = "TRUE"
  3698. }
  3699. }
  3700. return newStringFormulaArg(result)
  3701. }
  3702. // ISERR function tests if an initial supplied expression (or value) returns
  3703. // any Excel Error, except the #N/A error. If so, the function returns the
  3704. // logical value TRUE; If the supplied value is not an error or is the #N/A
  3705. // error, the ISERR function returns FALSE. The syntax of the function is:
  3706. //
  3707. // ISERR(value)
  3708. //
  3709. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  3710. if argsList.Len() != 1 {
  3711. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  3712. }
  3713. token := argsList.Front().Value.(formulaArg)
  3714. result := "FALSE"
  3715. if token.Type == ArgError {
  3716. for _, errType := range []string{
  3717. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  3718. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  3719. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  3720. } {
  3721. if errType == token.String {
  3722. result = "TRUE"
  3723. }
  3724. }
  3725. }
  3726. return newStringFormulaArg(result)
  3727. }
  3728. // ISERROR function tests if an initial supplied expression (or value) returns
  3729. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  3730. // function returns FALSE. The syntax of the function is:
  3731. //
  3732. // ISERROR(value)
  3733. //
  3734. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  3735. if argsList.Len() != 1 {
  3736. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  3737. }
  3738. token := argsList.Front().Value.(formulaArg)
  3739. result := "FALSE"
  3740. if token.Type == ArgError {
  3741. for _, errType := range []string{
  3742. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  3743. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  3744. formulaErrorCALC, formulaErrorGETTINGDATA,
  3745. } {
  3746. if errType == token.String {
  3747. result = "TRUE"
  3748. }
  3749. }
  3750. }
  3751. return newStringFormulaArg(result)
  3752. }
  3753. // ISEVEN function tests if a supplied number (or numeric expression)
  3754. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  3755. // function returns FALSE. The syntax of the function is:
  3756. //
  3757. // ISEVEN(value)
  3758. //
  3759. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  3760. if argsList.Len() != 1 {
  3761. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  3762. }
  3763. var (
  3764. token = argsList.Front().Value.(formulaArg)
  3765. result = "FALSE"
  3766. numeric int
  3767. err error
  3768. )
  3769. if token.Type == ArgString {
  3770. if numeric, err = strconv.Atoi(token.String); err != nil {
  3771. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3772. }
  3773. if numeric == numeric/2*2 {
  3774. return newStringFormulaArg("TRUE")
  3775. }
  3776. }
  3777. return newStringFormulaArg(result)
  3778. }
  3779. // ISNA function tests if an initial supplied expression (or value) returns
  3780. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  3781. // returns FALSE. The syntax of the function is:
  3782. //
  3783. // ISNA(value)
  3784. //
  3785. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  3786. if argsList.Len() != 1 {
  3787. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  3788. }
  3789. token := argsList.Front().Value.(formulaArg)
  3790. result := "FALSE"
  3791. if token.Type == ArgError && token.String == formulaErrorNA {
  3792. result = "TRUE"
  3793. }
  3794. return newStringFormulaArg(result)
  3795. }
  3796. // ISNONTEXT function function tests if a supplied value is text. If not, the
  3797. // function returns TRUE; If the supplied value is text, the function returns
  3798. // FALSE. The syntax of the function is:
  3799. //
  3800. // ISNONTEXT(value)
  3801. //
  3802. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  3803. if argsList.Len() != 1 {
  3804. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  3805. }
  3806. token := argsList.Front().Value.(formulaArg)
  3807. result := "TRUE"
  3808. if token.Type == ArgString && token.String != "" {
  3809. result = "FALSE"
  3810. }
  3811. return newStringFormulaArg(result)
  3812. }
  3813. // ISNUMBER function function tests if a supplied value is a number. If so,
  3814. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3815. // function is:
  3816. //
  3817. // ISNUMBER(value)
  3818. //
  3819. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  3820. if argsList.Len() != 1 {
  3821. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  3822. }
  3823. token, result := argsList.Front().Value.(formulaArg), false
  3824. if token.Type == ArgString && token.String != "" {
  3825. if _, err := strconv.Atoi(token.String); err == nil {
  3826. result = true
  3827. }
  3828. }
  3829. return newBoolFormulaArg(result)
  3830. }
  3831. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3832. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3833. // FALSE. The syntax of the function is:
  3834. //
  3835. // ISODD(value)
  3836. //
  3837. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  3838. if argsList.Len() != 1 {
  3839. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  3840. }
  3841. var (
  3842. token = argsList.Front().Value.(formulaArg)
  3843. result = "FALSE"
  3844. numeric int
  3845. err error
  3846. )
  3847. if token.Type == ArgString {
  3848. if numeric, err = strconv.Atoi(token.String); err != nil {
  3849. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3850. }
  3851. if numeric != numeric/2*2 {
  3852. return newStringFormulaArg("TRUE")
  3853. }
  3854. }
  3855. return newStringFormulaArg(result)
  3856. }
  3857. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  3858. // Otherwise, the function returns FALSE. The syntax of the function is:
  3859. //
  3860. // ISTEXT(value)
  3861. //
  3862. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  3863. if argsList.Len() != 1 {
  3864. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  3865. }
  3866. token := argsList.Front().Value.(formulaArg)
  3867. if token.ToNumber().Type != ArgError {
  3868. return newBoolFormulaArg(false)
  3869. }
  3870. return newBoolFormulaArg(token.Type == ArgString)
  3871. }
  3872. // NA function returns the Excel #N/A error. This error message has the
  3873. // meaning 'value not available' and is produced when an Excel Formula is
  3874. // unable to find a value that it needs. The syntax of the function is:
  3875. //
  3876. // NA()
  3877. //
  3878. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  3879. if argsList.Len() != 0 {
  3880. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  3881. }
  3882. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3883. }
  3884. // SHEET function returns the Sheet number for a specified reference. The
  3885. // syntax of the function is:
  3886. //
  3887. // SHEET()
  3888. //
  3889. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  3890. if argsList.Len() != 0 {
  3891. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  3892. }
  3893. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  3894. }
  3895. // Logical Functions
  3896. // AND function tests a number of supplied conditions and returns TRUE or
  3897. // FALSE. The syntax of the function is:
  3898. //
  3899. // AND(logical_test1,[logical_test2],...)
  3900. //
  3901. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  3902. if argsList.Len() == 0 {
  3903. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  3904. }
  3905. if argsList.Len() > 30 {
  3906. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  3907. }
  3908. var (
  3909. and = true
  3910. val float64
  3911. err error
  3912. )
  3913. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3914. token := arg.Value.(formulaArg)
  3915. switch token.Type {
  3916. case ArgUnknown:
  3917. continue
  3918. case ArgString:
  3919. if token.String == "TRUE" {
  3920. continue
  3921. }
  3922. if token.String == "FALSE" {
  3923. return newStringFormulaArg(token.String)
  3924. }
  3925. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3926. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3927. }
  3928. and = and && (val != 0)
  3929. case ArgMatrix:
  3930. // TODO
  3931. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3932. }
  3933. }
  3934. return newBoolFormulaArg(and)
  3935. }
  3936. // FALSE function function returns the logical value FALSE. The syntax of the
  3937. // function is:
  3938. //
  3939. // FALSE()
  3940. //
  3941. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  3942. if argsList.Len() != 0 {
  3943. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  3944. }
  3945. return newBoolFormulaArg(false)
  3946. }
  3947. // IFERROR function receives two values (or expressions) and tests if the
  3948. // first of these evaluates to an error. The syntax of the function is:
  3949. //
  3950. // IFERROR(value,value_if_error)
  3951. //
  3952. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  3953. if argsList.Len() != 2 {
  3954. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  3955. }
  3956. value := argsList.Front().Value.(formulaArg)
  3957. if value.Type != ArgError {
  3958. if value.Type == ArgEmpty {
  3959. return newNumberFormulaArg(0)
  3960. }
  3961. return value
  3962. }
  3963. return argsList.Back().Value.(formulaArg)
  3964. }
  3965. // NOT function returns the opposite to a supplied logical value. The syntax
  3966. // of the function is:
  3967. //
  3968. // NOT(logical)
  3969. //
  3970. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  3971. if argsList.Len() != 1 {
  3972. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  3973. }
  3974. token := argsList.Front().Value.(formulaArg)
  3975. switch token.Type {
  3976. case ArgString, ArgList:
  3977. if strings.ToUpper(token.String) == "TRUE" {
  3978. return newBoolFormulaArg(false)
  3979. }
  3980. if strings.ToUpper(token.String) == "FALSE" {
  3981. return newBoolFormulaArg(true)
  3982. }
  3983. case ArgNumber:
  3984. return newBoolFormulaArg(!(token.Number != 0))
  3985. case ArgError:
  3986. return token
  3987. }
  3988. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  3989. }
  3990. // OR function tests a number of supplied conditions and returns either TRUE
  3991. // or FALSE. The syntax of the function is:
  3992. //
  3993. // OR(logical_test1,[logical_test2],...)
  3994. //
  3995. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3996. if argsList.Len() == 0 {
  3997. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3998. }
  3999. if argsList.Len() > 30 {
  4000. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4001. }
  4002. var (
  4003. or bool
  4004. val float64
  4005. err error
  4006. )
  4007. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4008. token := arg.Value.(formulaArg)
  4009. switch token.Type {
  4010. case ArgUnknown:
  4011. continue
  4012. case ArgString:
  4013. if token.String == "FALSE" {
  4014. continue
  4015. }
  4016. if token.String == "TRUE" {
  4017. or = true
  4018. continue
  4019. }
  4020. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4021. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4022. }
  4023. or = val != 0
  4024. case ArgMatrix:
  4025. // TODO
  4026. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4027. }
  4028. }
  4029. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4030. }
  4031. // TRUE function returns the logical value TRUE. The syntax of the function
  4032. // is:
  4033. //
  4034. // TRUE()
  4035. //
  4036. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4037. if argsList.Len() != 0 {
  4038. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4039. }
  4040. return newBoolFormulaArg(true)
  4041. }
  4042. // Date and Time Functions
  4043. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4044. // of the function is:
  4045. //
  4046. // DATE(year,month,day)
  4047. //
  4048. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4049. if argsList.Len() != 3 {
  4050. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4051. }
  4052. var year, month, day int
  4053. var err error
  4054. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  4055. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4056. }
  4057. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  4058. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4059. }
  4060. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  4061. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4062. }
  4063. d := makeDate(year, time.Month(month), day)
  4064. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4065. }
  4066. // makeDate return date as a Unix time, the number of seconds elapsed since
  4067. // January 1, 1970 UTC.
  4068. func makeDate(y int, m time.Month, d int) int64 {
  4069. if y == 1900 && int(m) <= 2 {
  4070. d--
  4071. }
  4072. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4073. return date.Unix()
  4074. }
  4075. // daysBetween return time interval of the given start timestamp and end
  4076. // timestamp.
  4077. func daysBetween(startDate, endDate int64) float64 {
  4078. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4079. }
  4080. // Text Functions
  4081. // CLEAN removes all non-printable characters from a supplied text string. The
  4082. // syntax of the function is:
  4083. //
  4084. // CLEAN(text)
  4085. //
  4086. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4087. if argsList.Len() != 1 {
  4088. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4089. }
  4090. b := bytes.Buffer{}
  4091. for _, c := range argsList.Front().Value.(formulaArg).String {
  4092. if c > 31 {
  4093. b.WriteRune(c)
  4094. }
  4095. }
  4096. return newStringFormulaArg(b.String())
  4097. }
  4098. // CONCAT function joins together a series of supplied text strings into one
  4099. // combined text string.
  4100. //
  4101. // CONCAT(text1,[text2],...)
  4102. //
  4103. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4104. return fn.concat("CONCAT", argsList)
  4105. }
  4106. // CONCATENATE function joins together a series of supplied text strings into
  4107. // one combined text string.
  4108. //
  4109. // CONCATENATE(text1,[text2],...)
  4110. //
  4111. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4112. return fn.concat("CONCATENATE", argsList)
  4113. }
  4114. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4115. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4116. buf := bytes.Buffer{}
  4117. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4118. token := arg.Value.(formulaArg)
  4119. switch token.Type {
  4120. case ArgString:
  4121. buf.WriteString(token.String)
  4122. case ArgNumber:
  4123. if token.Boolean {
  4124. if token.Number == 0 {
  4125. buf.WriteString("FALSE")
  4126. } else {
  4127. buf.WriteString("TRUE")
  4128. }
  4129. } else {
  4130. buf.WriteString(token.Value())
  4131. }
  4132. default:
  4133. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4134. }
  4135. }
  4136. return newStringFormulaArg(buf.String())
  4137. }
  4138. // EXACT function tests if two supplied text strings or values are exactly
  4139. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4140. // function is case-sensitive. The syntax of the function is:
  4141. //
  4142. // EXACT(text1,text2)
  4143. //
  4144. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4145. if argsList.Len() != 2 {
  4146. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4147. }
  4148. text1 := argsList.Front().Value.(formulaArg).Value()
  4149. text2 := argsList.Back().Value.(formulaArg).Value()
  4150. return newBoolFormulaArg(text1 == text2)
  4151. }
  4152. // LEN returns the length of a supplied text string. The syntax of the
  4153. // function is:
  4154. //
  4155. // LEN(text)
  4156. //
  4157. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4158. if argsList.Len() != 1 {
  4159. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4160. }
  4161. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4162. }
  4163. // LENB returns the number of bytes used to represent the characters in a text
  4164. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4165. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4166. // 1 byte per character. The syntax of the function is:
  4167. //
  4168. // LENB(text)
  4169. //
  4170. // TODO: the languages that support DBCS include Japanese, Chinese
  4171. // (Simplified), Chinese (Traditional), and Korean.
  4172. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4173. if argsList.Len() != 1 {
  4174. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4175. }
  4176. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4177. }
  4178. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  4179. // words or characters) from a supplied text string. The syntax of the
  4180. // function is:
  4181. //
  4182. // TRIM(text)
  4183. //
  4184. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  4185. if argsList.Len() != 1 {
  4186. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  4187. }
  4188. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  4189. }
  4190. // LOWER converts all characters in a supplied text string to lower case. The
  4191. // syntax of the function is:
  4192. //
  4193. // LOWER(text)
  4194. //
  4195. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4196. if argsList.Len() != 1 {
  4197. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4198. }
  4199. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4200. }
  4201. // PROPER converts all characters in a supplied text string to proper case
  4202. // (i.e. all letters that do not immediately follow another letter are set to
  4203. // upper case and all other characters are lower case). The syntax of the
  4204. // function is:
  4205. //
  4206. // PROPER(text)
  4207. //
  4208. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4209. if argsList.Len() != 1 {
  4210. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4211. }
  4212. buf := bytes.Buffer{}
  4213. isLetter := false
  4214. for _, char := range argsList.Front().Value.(formulaArg).String {
  4215. if !isLetter && unicode.IsLetter(char) {
  4216. buf.WriteRune(unicode.ToUpper(char))
  4217. } else {
  4218. buf.WriteRune(unicode.ToLower(char))
  4219. }
  4220. isLetter = unicode.IsLetter(char)
  4221. }
  4222. return newStringFormulaArg(buf.String())
  4223. }
  4224. // REPT function returns a supplied text string, repeated a specified number
  4225. // of times. The syntax of the function is:
  4226. //
  4227. // REPT(text,number_times)
  4228. //
  4229. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4230. if argsList.Len() != 2 {
  4231. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4232. }
  4233. text := argsList.Front().Value.(formulaArg)
  4234. if text.Type != ArgString {
  4235. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4236. }
  4237. times := argsList.Back().Value.(formulaArg).ToNumber()
  4238. if times.Type != ArgNumber {
  4239. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4240. }
  4241. if times.Number < 0 {
  4242. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4243. }
  4244. if times.Number == 0 {
  4245. return newStringFormulaArg("")
  4246. }
  4247. buf := bytes.Buffer{}
  4248. for i := 0; i < int(times.Number); i++ {
  4249. buf.WriteString(text.String)
  4250. }
  4251. return newStringFormulaArg(buf.String())
  4252. }
  4253. // UPPER converts all characters in a supplied text string to upper case. The
  4254. // syntax of the function is:
  4255. //
  4256. // UPPER(text)
  4257. //
  4258. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  4259. if argsList.Len() != 1 {
  4260. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  4261. }
  4262. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  4263. }
  4264. // Conditional Functions
  4265. // IF function tests a supplied condition and returns one result if the
  4266. // condition evaluates to TRUE, and another result if the condition evaluates
  4267. // to FALSE. The syntax of the function is:
  4268. //
  4269. // IF(logical_test,value_if_true,value_if_false)
  4270. //
  4271. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  4272. if argsList.Len() == 0 {
  4273. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  4274. }
  4275. if argsList.Len() > 3 {
  4276. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  4277. }
  4278. token := argsList.Front().Value.(formulaArg)
  4279. var (
  4280. cond bool
  4281. err error
  4282. result string
  4283. )
  4284. switch token.Type {
  4285. case ArgString:
  4286. if cond, err = strconv.ParseBool(token.String); err != nil {
  4287. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4288. }
  4289. if argsList.Len() == 1 {
  4290. return newBoolFormulaArg(cond)
  4291. }
  4292. if cond {
  4293. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  4294. }
  4295. if argsList.Len() == 3 {
  4296. result = argsList.Back().Value.(formulaArg).String
  4297. }
  4298. }
  4299. return newStringFormulaArg(result)
  4300. }
  4301. // Lookup and Reference Functions
  4302. // CHOOSE function returns a value from an array, that corresponds to a
  4303. // supplied index number (position). The syntax of the function is:
  4304. //
  4305. // CHOOSE(index_num,value1,[value2],...)
  4306. //
  4307. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  4308. if argsList.Len() < 2 {
  4309. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  4310. }
  4311. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  4312. if err != nil {
  4313. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  4314. }
  4315. if argsList.Len() <= idx {
  4316. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  4317. }
  4318. arg := argsList.Front()
  4319. for i := 0; i < idx; i++ {
  4320. arg = arg.Next()
  4321. }
  4322. var result formulaArg
  4323. switch arg.Value.(formulaArg).Type {
  4324. case ArgString:
  4325. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  4326. case ArgMatrix:
  4327. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  4328. }
  4329. return result
  4330. }
  4331. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  4332. // string.
  4333. func deepMatchRune(str, pattern []rune, simple bool) bool {
  4334. for len(pattern) > 0 {
  4335. switch pattern[0] {
  4336. default:
  4337. if len(str) == 0 || str[0] != pattern[0] {
  4338. return false
  4339. }
  4340. case '?':
  4341. if len(str) == 0 && !simple {
  4342. return false
  4343. }
  4344. case '*':
  4345. return deepMatchRune(str, pattern[1:], simple) ||
  4346. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  4347. }
  4348. str = str[1:]
  4349. pattern = pattern[1:]
  4350. }
  4351. return len(str) == 0 && len(pattern) == 0
  4352. }
  4353. // matchPattern finds whether the text matches or satisfies the pattern
  4354. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  4355. func matchPattern(pattern, name string) (matched bool) {
  4356. if pattern == "" {
  4357. return name == pattern
  4358. }
  4359. if pattern == "*" {
  4360. return true
  4361. }
  4362. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  4363. for _, r := range name {
  4364. rname = append(rname, r)
  4365. }
  4366. for _, r := range pattern {
  4367. rpattern = append(rpattern, r)
  4368. }
  4369. simple := false // Does extended wildcard '*' and '?' match.
  4370. return deepMatchRune(rname, rpattern, simple)
  4371. }
  4372. // compareFormulaArg compares the left-hand sides and the right-hand sides
  4373. // formula arguments by given conditions such as case sensitive, if exact
  4374. // match, and make compare result as formula criteria condition type.
  4375. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4376. if lhs.Type != rhs.Type {
  4377. return criteriaErr
  4378. }
  4379. switch lhs.Type {
  4380. case ArgNumber:
  4381. if lhs.Number == rhs.Number {
  4382. return criteriaEq
  4383. }
  4384. if lhs.Number < rhs.Number {
  4385. return criteriaL
  4386. }
  4387. return criteriaG
  4388. case ArgString:
  4389. ls, rs := lhs.String, rhs.String
  4390. if !caseSensitive {
  4391. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  4392. }
  4393. if exactMatch {
  4394. match := matchPattern(rs, ls)
  4395. if match {
  4396. return criteriaEq
  4397. }
  4398. return criteriaG
  4399. }
  4400. switch strings.Compare(ls, rs) {
  4401. case 1:
  4402. return criteriaG
  4403. case -1:
  4404. return criteriaL
  4405. case 0:
  4406. return criteriaEq
  4407. }
  4408. return criteriaErr
  4409. case ArgEmpty:
  4410. return criteriaEq
  4411. case ArgList:
  4412. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  4413. case ArgMatrix:
  4414. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  4415. }
  4416. return criteriaErr
  4417. }
  4418. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  4419. // list type formula arguments.
  4420. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4421. if len(lhs.List) < len(rhs.List) {
  4422. return criteriaL
  4423. }
  4424. if len(lhs.List) > len(rhs.List) {
  4425. return criteriaG
  4426. }
  4427. for arg := range lhs.List {
  4428. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  4429. if criteria != criteriaEq {
  4430. return criteria
  4431. }
  4432. }
  4433. return criteriaEq
  4434. }
  4435. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  4436. // matrix type formula arguments.
  4437. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4438. if len(lhs.Matrix) < len(rhs.Matrix) {
  4439. return criteriaL
  4440. }
  4441. if len(lhs.Matrix) > len(rhs.Matrix) {
  4442. return criteriaG
  4443. }
  4444. for i := range lhs.Matrix {
  4445. left := lhs.Matrix[i]
  4446. right := lhs.Matrix[i]
  4447. if len(left) < len(right) {
  4448. return criteriaL
  4449. }
  4450. if len(left) > len(right) {
  4451. return criteriaG
  4452. }
  4453. for arg := range left {
  4454. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  4455. if criteria != criteriaEq {
  4456. return criteria
  4457. }
  4458. }
  4459. }
  4460. return criteriaEq
  4461. }
  4462. // HLOOKUP function 'looks up' a given value in the top row of a data array
  4463. // (or table), and returns the corresponding value from another row of the
  4464. // array. The syntax of the function is:
  4465. //
  4466. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  4467. //
  4468. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  4469. if argsList.Len() < 3 {
  4470. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  4471. }
  4472. if argsList.Len() > 4 {
  4473. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  4474. }
  4475. lookupValue := argsList.Front().Value.(formulaArg)
  4476. tableArray := argsList.Front().Next().Value.(formulaArg)
  4477. if tableArray.Type != ArgMatrix {
  4478. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  4479. }
  4480. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4481. if rowArg.Type != ArgNumber {
  4482. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  4483. }
  4484. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  4485. if argsList.Len() == 4 {
  4486. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4487. if rangeLookup.Type == ArgError {
  4488. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4489. }
  4490. if rangeLookup.Number == 0 {
  4491. exactMatch = true
  4492. }
  4493. }
  4494. row := tableArray.Matrix[0]
  4495. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4496. start:
  4497. for idx, mtx := range row {
  4498. lhs := mtx
  4499. switch lookupValue.Type {
  4500. case ArgNumber:
  4501. if !lookupValue.Boolean {
  4502. lhs = mtx.ToNumber()
  4503. if lhs.Type == ArgError {
  4504. lhs = mtx
  4505. }
  4506. }
  4507. case ArgMatrix:
  4508. lhs = tableArray
  4509. }
  4510. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4511. matchIdx = idx
  4512. wasExact = true
  4513. break start
  4514. }
  4515. }
  4516. } else {
  4517. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  4518. }
  4519. if matchIdx == -1 {
  4520. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4521. }
  4522. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  4523. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  4524. }
  4525. row = tableArray.Matrix[rowIdx]
  4526. if wasExact || !exactMatch {
  4527. return row[matchIdx]
  4528. }
  4529. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4530. }
  4531. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  4532. // data array (or table), and returns the corresponding value from another
  4533. // column of the array. The syntax of the function is:
  4534. //
  4535. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  4536. //
  4537. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  4538. if argsList.Len() < 3 {
  4539. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  4540. }
  4541. if argsList.Len() > 4 {
  4542. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  4543. }
  4544. lookupValue := argsList.Front().Value.(formulaArg)
  4545. tableArray := argsList.Front().Next().Value.(formulaArg)
  4546. if tableArray.Type != ArgMatrix {
  4547. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  4548. }
  4549. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4550. if colIdx.Type != ArgNumber {
  4551. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  4552. }
  4553. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  4554. if argsList.Len() == 4 {
  4555. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4556. if rangeLookup.Type == ArgError {
  4557. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4558. }
  4559. if rangeLookup.Number == 0 {
  4560. exactMatch = true
  4561. }
  4562. }
  4563. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4564. start:
  4565. for idx, mtx := range tableArray.Matrix {
  4566. lhs := mtx[0]
  4567. switch lookupValue.Type {
  4568. case ArgNumber:
  4569. if !lookupValue.Boolean {
  4570. lhs = mtx[0].ToNumber()
  4571. if lhs.Type == ArgError {
  4572. lhs = mtx[0]
  4573. }
  4574. }
  4575. case ArgMatrix:
  4576. lhs = tableArray
  4577. }
  4578. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4579. matchIdx = idx
  4580. wasExact = true
  4581. break start
  4582. }
  4583. }
  4584. } else {
  4585. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  4586. }
  4587. if matchIdx == -1 {
  4588. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4589. }
  4590. mtx := tableArray.Matrix[matchIdx]
  4591. if col < 0 || col >= len(mtx) {
  4592. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  4593. }
  4594. if wasExact || !exactMatch {
  4595. return mtx[col]
  4596. }
  4597. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  4598. }
  4599. // vlookupBinarySearch finds the position of a target value when range lookup
  4600. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4601. // return wrong result.
  4602. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4603. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  4604. for low <= high {
  4605. var mid int = low + (high-low)/2
  4606. mtx := tableArray.Matrix[mid]
  4607. lhs := mtx[0]
  4608. switch lookupValue.Type {
  4609. case ArgNumber:
  4610. if !lookupValue.Boolean {
  4611. lhs = mtx[0].ToNumber()
  4612. if lhs.Type == ArgError {
  4613. lhs = mtx[0]
  4614. }
  4615. }
  4616. case ArgMatrix:
  4617. lhs = tableArray
  4618. }
  4619. result := compareFormulaArg(lhs, lookupValue, false, false)
  4620. if result == criteriaEq {
  4621. matchIdx, wasExact = mid, true
  4622. return
  4623. } else if result == criteriaG {
  4624. high = mid - 1
  4625. } else if result == criteriaL {
  4626. matchIdx, low = mid, mid+1
  4627. if lhs.Value() != "" {
  4628. lastMatchIdx = matchIdx
  4629. }
  4630. } else {
  4631. return -1, false
  4632. }
  4633. }
  4634. matchIdx, wasExact = lastMatchIdx, true
  4635. return
  4636. }
  4637. // vlookupBinarySearch finds the position of a target value when range lookup
  4638. // is TRUE, if the data of table array can't guarantee be sorted, it will
  4639. // return wrong result.
  4640. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  4641. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  4642. for low <= high {
  4643. var mid int = low + (high-low)/2
  4644. mtx := row[mid]
  4645. result := compareFormulaArg(mtx, lookupValue, false, false)
  4646. if result == criteriaEq {
  4647. matchIdx, wasExact = mid, true
  4648. return
  4649. } else if result == criteriaG {
  4650. high = mid - 1
  4651. } else if result == criteriaL {
  4652. low, lastMatchIdx = mid+1, mid
  4653. } else {
  4654. return -1, false
  4655. }
  4656. }
  4657. matchIdx, wasExact = lastMatchIdx, true
  4658. return
  4659. }
  4660. // LOOKUP function performs an approximate match lookup in a one-column or
  4661. // one-row range, and returns the corresponding value from another one-column
  4662. // or one-row range. The syntax of the function is:
  4663. //
  4664. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  4665. //
  4666. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  4667. if argsList.Len() < 2 {
  4668. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  4669. }
  4670. if argsList.Len() > 3 {
  4671. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  4672. }
  4673. lookupValue := argsList.Front().Value.(formulaArg)
  4674. lookupVector := argsList.Front().Next().Value.(formulaArg)
  4675. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  4676. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  4677. }
  4678. cols, matchIdx := lookupCol(lookupVector), -1
  4679. for idx, col := range cols {
  4680. lhs := lookupValue
  4681. switch col.Type {
  4682. case ArgNumber:
  4683. lhs = lhs.ToNumber()
  4684. if !col.Boolean {
  4685. if lhs.Type == ArgError {
  4686. lhs = lookupValue
  4687. }
  4688. }
  4689. }
  4690. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  4691. matchIdx = idx
  4692. break
  4693. }
  4694. }
  4695. column := cols
  4696. if argsList.Len() == 3 {
  4697. column = lookupCol(argsList.Back().Value.(formulaArg))
  4698. }
  4699. if matchIdx < 0 || matchIdx >= len(column) {
  4700. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  4701. }
  4702. return column[matchIdx]
  4703. }
  4704. // lookupCol extract columns for LOOKUP.
  4705. func lookupCol(arr formulaArg) []formulaArg {
  4706. col := arr.List
  4707. if arr.Type == ArgMatrix {
  4708. col = nil
  4709. for _, r := range arr.Matrix {
  4710. if len(r) > 0 {
  4711. col = append(col, r[0])
  4712. continue
  4713. }
  4714. col = append(col, newEmptyFormulaArg())
  4715. }
  4716. }
  4717. return col
  4718. }
  4719. // Web Functions
  4720. // ENCODEURL function returns a URL-encoded string, replacing certain
  4721. // non-alphanumeric characters with the percentage symbol (%) and a
  4722. // hexadecimal number. The syntax of the function is:
  4723. //
  4724. // ENCODEURL(url)
  4725. //
  4726. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  4727. if argsList.Len() != 1 {
  4728. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  4729. }
  4730. token := argsList.Front().Value.(formulaArg).Value()
  4731. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  4732. }