calc.go 191 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. "golang.org/x/text/language"
  30. "golang.org/x/text/message"
  31. )
  32. // Excel formula errors
  33. const (
  34. formulaErrorDIV = "#DIV/0!"
  35. formulaErrorNAME = "#NAME?"
  36. formulaErrorNA = "#N/A"
  37. formulaErrorNUM = "#NUM!"
  38. formulaErrorVALUE = "#VALUE!"
  39. formulaErrorREF = "#REF!"
  40. formulaErrorNULL = "#NULL"
  41. formulaErrorSPILL = "#SPILL!"
  42. formulaErrorCALC = "#CALC!"
  43. formulaErrorGETTINGDATA = "#GETTING_DATA"
  44. )
  45. // Numeric precision correct numeric values as legacy Excel application
  46. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  47. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  48. // has a decimal representation that is an infinite string of ones, Excel
  49. // displays only the leading 15 figures. In the second line, the number one
  50. // is added to the fraction, and again Excel displays only 15 figures.
  51. const numericPrecision = 1000000000000000
  52. // cellRef defines the structure of a cell reference.
  53. type cellRef struct {
  54. Col int
  55. Row int
  56. Sheet string
  57. }
  58. // cellRef defines the structure of a cell range.
  59. type cellRange struct {
  60. From cellRef
  61. To cellRef
  62. }
  63. // formula criteria condition enumeration.
  64. const (
  65. _ byte = iota
  66. criteriaEq
  67. criteriaLe
  68. criteriaGe
  69. criteriaL
  70. criteriaG
  71. criteriaBeg
  72. criteriaEnd
  73. criteriaErr
  74. )
  75. // formulaCriteria defined formula criteria parser result.
  76. type formulaCriteria struct {
  77. Type byte
  78. Condition string
  79. }
  80. // ArgType is the type if formula argument type.
  81. type ArgType byte
  82. // Formula argument types enumeration.
  83. const (
  84. ArgUnknown ArgType = iota
  85. ArgNumber
  86. ArgString
  87. ArgList
  88. ArgMatrix
  89. ArgError
  90. ArgEmpty
  91. )
  92. // formulaArg is the argument of a formula or function.
  93. type formulaArg struct {
  94. SheetName string
  95. Number float64
  96. String string
  97. List []formulaArg
  98. Matrix [][]formulaArg
  99. Boolean bool
  100. Error string
  101. Type ArgType
  102. cellRefs, cellRanges *list.List
  103. }
  104. // Value returns a string data type of the formula argument.
  105. func (fa formulaArg) Value() (value string) {
  106. switch fa.Type {
  107. case ArgNumber:
  108. if fa.Boolean {
  109. if fa.Number == 0 {
  110. return "FALSE"
  111. }
  112. return "TRUE"
  113. }
  114. return fmt.Sprintf("%g", fa.Number)
  115. case ArgString:
  116. return fa.String
  117. case ArgError:
  118. return fa.Error
  119. }
  120. return
  121. }
  122. // ToNumber returns a formula argument with number data type.
  123. func (fa formulaArg) ToNumber() formulaArg {
  124. var n float64
  125. var err error
  126. switch fa.Type {
  127. case ArgString:
  128. n, err = strconv.ParseFloat(fa.String, 64)
  129. if err != nil {
  130. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  131. }
  132. case ArgNumber:
  133. n = fa.Number
  134. }
  135. return newNumberFormulaArg(n)
  136. }
  137. // ToBool returns a formula argument with boolean data type.
  138. func (fa formulaArg) ToBool() formulaArg {
  139. var b bool
  140. var err error
  141. switch fa.Type {
  142. case ArgString:
  143. b, err = strconv.ParseBool(fa.String)
  144. if err != nil {
  145. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  146. }
  147. case ArgNumber:
  148. if fa.Boolean && fa.Number == 1 {
  149. b = true
  150. }
  151. }
  152. return newBoolFormulaArg(b)
  153. }
  154. // ToList returns a formula argument with array data type.
  155. func (fa formulaArg) ToList() []formulaArg {
  156. switch fa.Type {
  157. case ArgMatrix:
  158. list := []formulaArg{}
  159. for _, row := range fa.Matrix {
  160. list = append(list, row...)
  161. }
  162. return list
  163. case ArgList:
  164. return fa.List
  165. case ArgNumber, ArgString, ArgError, ArgUnknown:
  166. return []formulaArg{fa}
  167. }
  168. return nil
  169. }
  170. // formulaFuncs is the type of the formula functions.
  171. type formulaFuncs struct {
  172. f *File
  173. sheet, cell string
  174. }
  175. // tokenPriority defined basic arithmetic operator priority.
  176. var tokenPriority = map[string]int{
  177. "^": 5,
  178. "*": 4,
  179. "/": 4,
  180. "+": 3,
  181. "-": 3,
  182. "=": 2,
  183. "<>": 2,
  184. "<": 2,
  185. "<=": 2,
  186. ">": 2,
  187. ">=": 2,
  188. "&": 1,
  189. }
  190. // CalcCellValue provides a function to get calculated cell value. This
  191. // feature is currently in working processing. Array formula, table formula
  192. // and some other formulas are not supported currently.
  193. //
  194. // Supported formula functions:
  195. //
  196. // ABS
  197. // ACOS
  198. // ACOSH
  199. // ACOT
  200. // ACOTH
  201. // AND
  202. // ARABIC
  203. // ASIN
  204. // ASINH
  205. // ATAN
  206. // ATAN2
  207. // ATANH
  208. // AVERAGE
  209. // AVERAGEA
  210. // BASE
  211. // BESSELI
  212. // BESSELJ
  213. // BIN2DEC
  214. // BIN2HEX
  215. // BIN2OCT
  216. // BITAND
  217. // BITLSHIFT
  218. // BITOR
  219. // BITRSHIFT
  220. // BITXOR
  221. // CEILING
  222. // CEILING.MATH
  223. // CEILING.PRECISE
  224. // CHAR
  225. // CHOOSE
  226. // CLEAN
  227. // CODE
  228. // COLUMN
  229. // COLUMNS
  230. // COMBIN
  231. // COMBINA
  232. // COMPLEX
  233. // CONCAT
  234. // CONCATENATE
  235. // COS
  236. // COSH
  237. // COT
  238. // COTH
  239. // COUNT
  240. // COUNTA
  241. // COUNTBLANK
  242. // CSC
  243. // CSCH
  244. // DATE
  245. // DATEDIF
  246. // DEC2BIN
  247. // DEC2HEX
  248. // DEC2OCT
  249. // DECIMAL
  250. // DEGREES
  251. // ENCODEURL
  252. // EVEN
  253. // EXACT
  254. // EXP
  255. // FACT
  256. // FACTDOUBLE
  257. // FALSE
  258. // FIND
  259. // FINDB
  260. // FISHER
  261. // FISHERINV
  262. // FIXED
  263. // FLOOR
  264. // FLOOR.MATH
  265. // FLOOR.PRECISE
  266. // GAMMA
  267. // GAMMALN
  268. // GCD
  269. // HARMEAN
  270. // HEX2BIN
  271. // HEX2DEC
  272. // HEX2OCT
  273. // HLOOKUP
  274. // IF
  275. // IFERROR
  276. // INT
  277. // ISBLANK
  278. // ISERR
  279. // ISERROR
  280. // ISEVEN
  281. // ISNA
  282. // ISNONTEXT
  283. // ISNUMBER
  284. // ISODD
  285. // ISTEXT
  286. // ISO.CEILING
  287. // KURT
  288. // LARGE
  289. // LCM
  290. // LEFT
  291. // LEFTB
  292. // LEN
  293. // LENB
  294. // LN
  295. // LOG
  296. // LOG10
  297. // LOOKUP
  298. // LOWER
  299. // MAX
  300. // MDETERM
  301. // MEDIAN
  302. // MID
  303. // MIDB
  304. // MIN
  305. // MINA
  306. // MOD
  307. // MROUND
  308. // MULTINOMIAL
  309. // MUNIT
  310. // N
  311. // NA
  312. // NORM.DIST
  313. // NORMDIST
  314. // NORM.INV
  315. // NORMINV
  316. // NORM.S.DIST
  317. // NORMSDIST
  318. // NORM.S.INV
  319. // NORMSINV
  320. // NOT
  321. // NOW
  322. // OCT2BIN
  323. // OCT2DEC
  324. // OCT2HEX
  325. // ODD
  326. // OR
  327. // PERCENTILE.INC
  328. // PERCENTILE
  329. // PERMUT
  330. // PERMUTATIONA
  331. // PI
  332. // POISSON.DIST
  333. // POISSON
  334. // POWER
  335. // PRODUCT
  336. // PROPER
  337. // QUARTILE
  338. // QUARTILE.INC
  339. // QUOTIENT
  340. // RADIANS
  341. // RAND
  342. // RANDBETWEEN
  343. // REPLACE
  344. // REPLACEB
  345. // REPT
  346. // RIGHT
  347. // RIGHTB
  348. // ROMAN
  349. // ROUND
  350. // ROUNDDOWN
  351. // ROUNDUP
  352. // ROW
  353. // ROWS
  354. // SEC
  355. // SECH
  356. // SHEET
  357. // SIGN
  358. // SIN
  359. // SINH
  360. // SKEW
  361. // SMALL
  362. // SQRT
  363. // SQRTPI
  364. // STDEV
  365. // STDEV.S
  366. // STDEVA
  367. // SUBSTITUTE
  368. // SUM
  369. // SUMIF
  370. // SUMSQ
  371. // T
  372. // TAN
  373. // TANH
  374. // TODAY
  375. // TRIM
  376. // TRUE
  377. // TRUNC
  378. // UNICHAR
  379. // UNICODE
  380. // UPPER
  381. // VAR.P
  382. // VARP
  383. // VLOOKUP
  384. //
  385. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  386. var (
  387. formula string
  388. token efp.Token
  389. )
  390. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  391. return
  392. }
  393. ps := efp.ExcelParser()
  394. tokens := ps.Parse(formula)
  395. if tokens == nil {
  396. return
  397. }
  398. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  399. return
  400. }
  401. result = token.TValue
  402. isNum, precision := isNumeric(result)
  403. if isNum && precision > 15 {
  404. num, _ := roundPrecision(result)
  405. result = strings.ToUpper(num)
  406. }
  407. return
  408. }
  409. // getPriority calculate arithmetic operator priority.
  410. func getPriority(token efp.Token) (pri int) {
  411. pri = tokenPriority[token.TValue]
  412. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  413. pri = 6
  414. }
  415. if isBeginParenthesesToken(token) { // (
  416. pri = 0
  417. }
  418. return
  419. }
  420. // newNumberFormulaArg constructs a number formula argument.
  421. func newNumberFormulaArg(n float64) formulaArg {
  422. if math.IsNaN(n) {
  423. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  424. }
  425. return formulaArg{Type: ArgNumber, Number: n}
  426. }
  427. // newStringFormulaArg constructs a string formula argument.
  428. func newStringFormulaArg(s string) formulaArg {
  429. return formulaArg{Type: ArgString, String: s}
  430. }
  431. // newMatrixFormulaArg constructs a matrix formula argument.
  432. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  433. return formulaArg{Type: ArgMatrix, Matrix: m}
  434. }
  435. // newListFormulaArg create a list formula argument.
  436. func newListFormulaArg(l []formulaArg) formulaArg {
  437. return formulaArg{Type: ArgList, List: l}
  438. }
  439. // newBoolFormulaArg constructs a boolean formula argument.
  440. func newBoolFormulaArg(b bool) formulaArg {
  441. var n float64
  442. if b {
  443. n = 1
  444. }
  445. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  446. }
  447. // newErrorFormulaArg create an error formula argument of a given type with a
  448. // specified error message.
  449. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  450. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  451. }
  452. // newEmptyFormulaArg create an empty formula argument.
  453. func newEmptyFormulaArg() formulaArg {
  454. return formulaArg{Type: ArgEmpty}
  455. }
  456. // evalInfixExp evaluate syntax analysis by given infix expression after
  457. // lexical analysis. Evaluate an infix expression containing formulas by
  458. // stacks:
  459. //
  460. // opd - Operand
  461. // opt - Operator
  462. // opf - Operation formula
  463. // opfd - Operand of the operation formula
  464. // opft - Operator of the operation formula
  465. // args - Arguments list of the operation formula
  466. //
  467. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  468. //
  469. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  470. var err error
  471. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  472. for i := 0; i < len(tokens); i++ {
  473. token := tokens[i]
  474. // out of function stack
  475. if opfStack.Len() == 0 {
  476. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  477. return efp.Token{}, err
  478. }
  479. }
  480. // function start
  481. if isFunctionStartToken(token) {
  482. opfStack.Push(token)
  483. argsStack.Push(list.New().Init())
  484. continue
  485. }
  486. // in function stack, walk 2 token at once
  487. if opfStack.Len() > 0 {
  488. var nextToken efp.Token
  489. if i+1 < len(tokens) {
  490. nextToken = tokens[i+1]
  491. }
  492. // current token is args or range, skip next token, order required: parse reference first
  493. if token.TSubType == efp.TokenSubTypeRange {
  494. if !opftStack.Empty() {
  495. // parse reference: must reference at here
  496. result, err := f.parseReference(sheet, token.TValue)
  497. if err != nil {
  498. return efp.Token{TValue: formulaErrorNAME}, err
  499. }
  500. if result.Type != ArgString {
  501. return efp.Token{}, errors.New(formulaErrorVALUE)
  502. }
  503. opfdStack.Push(efp.Token{
  504. TType: efp.TokenTypeOperand,
  505. TSubType: efp.TokenSubTypeNumber,
  506. TValue: result.String,
  507. })
  508. continue
  509. }
  510. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  511. // parse reference: reference or range at here
  512. result, err := f.parseReference(sheet, token.TValue)
  513. if err != nil {
  514. return efp.Token{TValue: formulaErrorNAME}, err
  515. }
  516. if result.Type == ArgUnknown {
  517. return efp.Token{}, errors.New(formulaErrorVALUE)
  518. }
  519. argsStack.Peek().(*list.List).PushBack(result)
  520. continue
  521. }
  522. }
  523. // check current token is opft
  524. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  525. return efp.Token{}, err
  526. }
  527. // current token is arg
  528. if token.TType == efp.TokenTypeArgument {
  529. for !opftStack.Empty() {
  530. // calculate trigger
  531. topOpt := opftStack.Peek().(efp.Token)
  532. if err := calculate(opfdStack, topOpt); err != nil {
  533. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  534. }
  535. opftStack.Pop()
  536. }
  537. if !opfdStack.Empty() {
  538. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  539. }
  540. continue
  541. }
  542. // current token is logical
  543. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  544. }
  545. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  546. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  547. }
  548. // current token is text
  549. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  550. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  551. }
  552. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  553. return efp.Token{}, err
  554. }
  555. }
  556. }
  557. for optStack.Len() != 0 {
  558. topOpt := optStack.Peek().(efp.Token)
  559. if err = calculate(opdStack, topOpt); err != nil {
  560. return efp.Token{}, err
  561. }
  562. optStack.Pop()
  563. }
  564. if opdStack.Len() == 0 {
  565. return efp.Token{}, errors.New("formula not valid")
  566. }
  567. return opdStack.Peek().(efp.Token), err
  568. }
  569. // evalInfixExpFunc evaluate formula function in the infix expression.
  570. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  571. if !isFunctionStopToken(token) {
  572. return nil
  573. }
  574. // current token is function stop
  575. for !opftStack.Empty() {
  576. // calculate trigger
  577. topOpt := opftStack.Peek().(efp.Token)
  578. if err := calculate(opfdStack, topOpt); err != nil {
  579. return err
  580. }
  581. opftStack.Pop()
  582. }
  583. // push opfd to args
  584. if opfdStack.Len() > 0 {
  585. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  586. }
  587. // call formula function to evaluate
  588. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  589. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  590. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  591. if arg.Type == ArgError && opfStack.Len() == 1 {
  592. return errors.New(arg.Value())
  593. }
  594. argsStack.Pop()
  595. opfStack.Pop()
  596. if opfStack.Len() > 0 { // still in function stack
  597. if nextToken.TType == efp.TokenTypeOperatorInfix {
  598. // mathematics calculate in formula function
  599. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  600. } else {
  601. argsStack.Peek().(*list.List).PushBack(arg)
  602. }
  603. } else {
  604. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  605. }
  606. return nil
  607. }
  608. // calcPow evaluate exponentiation arithmetic operations.
  609. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  610. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  611. if err != nil {
  612. return err
  613. }
  614. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  615. if err != nil {
  616. return err
  617. }
  618. result := math.Pow(lOpdVal, rOpdVal)
  619. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  620. return nil
  621. }
  622. // calcEq evaluate equal arithmetic operations.
  623. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  624. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  625. return nil
  626. }
  627. // calcNEq evaluate not equal arithmetic operations.
  628. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  629. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  630. return nil
  631. }
  632. // calcL evaluate less than arithmetic operations.
  633. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  634. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  635. if err != nil {
  636. return err
  637. }
  638. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  639. if err != nil {
  640. return err
  641. }
  642. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  643. return nil
  644. }
  645. // calcLe evaluate less than or equal arithmetic operations.
  646. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  647. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  648. if err != nil {
  649. return err
  650. }
  651. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  652. if err != nil {
  653. return err
  654. }
  655. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  656. return nil
  657. }
  658. // calcG evaluate greater than or equal arithmetic operations.
  659. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  660. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  661. if err != nil {
  662. return err
  663. }
  664. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  665. if err != nil {
  666. return err
  667. }
  668. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  669. return nil
  670. }
  671. // calcGe evaluate greater than or equal arithmetic operations.
  672. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  673. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  674. if err != nil {
  675. return err
  676. }
  677. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  678. if err != nil {
  679. return err
  680. }
  681. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  682. return nil
  683. }
  684. // calcSplice evaluate splice '&' operations.
  685. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  686. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  687. return nil
  688. }
  689. // calcAdd evaluate addition arithmetic operations.
  690. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  691. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  692. if err != nil {
  693. return err
  694. }
  695. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  696. if err != nil {
  697. return err
  698. }
  699. result := lOpdVal + rOpdVal
  700. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  701. return nil
  702. }
  703. // calcSubtract evaluate subtraction arithmetic operations.
  704. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  705. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  706. if err != nil {
  707. return err
  708. }
  709. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  710. if err != nil {
  711. return err
  712. }
  713. result := lOpdVal - rOpdVal
  714. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  715. return nil
  716. }
  717. // calcMultiply evaluate multiplication arithmetic operations.
  718. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  719. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  720. if err != nil {
  721. return err
  722. }
  723. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  724. if err != nil {
  725. return err
  726. }
  727. result := lOpdVal * rOpdVal
  728. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  729. return nil
  730. }
  731. // calcDiv evaluate division arithmetic operations.
  732. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  733. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  734. if err != nil {
  735. return err
  736. }
  737. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  738. if err != nil {
  739. return err
  740. }
  741. result := lOpdVal / rOpdVal
  742. if rOpdVal == 0 {
  743. return errors.New(formulaErrorDIV)
  744. }
  745. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  746. return nil
  747. }
  748. // calculate evaluate basic arithmetic operations.
  749. func calculate(opdStack *Stack, opt efp.Token) error {
  750. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  751. if opdStack.Len() < 1 {
  752. return errors.New("formula not valid")
  753. }
  754. opd := opdStack.Pop().(efp.Token)
  755. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  756. if err != nil {
  757. return err
  758. }
  759. result := 0 - opdVal
  760. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  761. }
  762. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  763. "^": calcPow,
  764. "*": calcMultiply,
  765. "/": calcDiv,
  766. "+": calcAdd,
  767. "=": calcEq,
  768. "<>": calcNEq,
  769. "<": calcL,
  770. "<=": calcLe,
  771. ">": calcG,
  772. ">=": calcGe,
  773. "&": calcSplice,
  774. }
  775. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  776. if opdStack.Len() < 2 {
  777. return errors.New("formula not valid")
  778. }
  779. rOpd := opdStack.Pop().(efp.Token)
  780. lOpd := opdStack.Pop().(efp.Token)
  781. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  782. return err
  783. }
  784. }
  785. fn, ok := tokenCalcFunc[opt.TValue]
  786. if ok {
  787. if opdStack.Len() < 2 {
  788. return errors.New("formula not valid")
  789. }
  790. rOpd := opdStack.Pop().(efp.Token)
  791. lOpd := opdStack.Pop().(efp.Token)
  792. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  793. return err
  794. }
  795. }
  796. return nil
  797. }
  798. // parseOperatorPrefixToken parse operator prefix token.
  799. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  800. if optStack.Len() == 0 {
  801. optStack.Push(token)
  802. } else {
  803. tokenPriority := getPriority(token)
  804. topOpt := optStack.Peek().(efp.Token)
  805. topOptPriority := getPriority(topOpt)
  806. if tokenPriority > topOptPriority {
  807. optStack.Push(token)
  808. } else {
  809. for tokenPriority <= topOptPriority {
  810. optStack.Pop()
  811. if err = calculate(opdStack, topOpt); err != nil {
  812. return
  813. }
  814. if optStack.Len() > 0 {
  815. topOpt = optStack.Peek().(efp.Token)
  816. topOptPriority = getPriority(topOpt)
  817. continue
  818. }
  819. break
  820. }
  821. optStack.Push(token)
  822. }
  823. }
  824. return
  825. }
  826. // isFunctionStartToken determine if the token is function stop.
  827. func isFunctionStartToken(token efp.Token) bool {
  828. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  829. }
  830. // isFunctionStopToken determine if the token is function stop.
  831. func isFunctionStopToken(token efp.Token) bool {
  832. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  833. }
  834. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  835. func isBeginParenthesesToken(token efp.Token) bool {
  836. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  837. }
  838. // isEndParenthesesToken determine if the token is end parentheses: ).
  839. func isEndParenthesesToken(token efp.Token) bool {
  840. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  841. }
  842. // isOperatorPrefixToken determine if the token is parse operator prefix
  843. // token.
  844. func isOperatorPrefixToken(token efp.Token) bool {
  845. _, ok := tokenPriority[token.TValue]
  846. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  847. return true
  848. }
  849. return false
  850. }
  851. // getDefinedNameRefTo convert defined name to reference range.
  852. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  853. for _, definedName := range f.GetDefinedName() {
  854. if definedName.Name == definedNameName {
  855. refTo = definedName.RefersTo
  856. // worksheet scope takes precedence over scope workbook when both definedNames exist
  857. if definedName.Scope == currentSheet {
  858. break
  859. }
  860. }
  861. }
  862. return refTo
  863. }
  864. // parseToken parse basic arithmetic operator priority and evaluate based on
  865. // operators and operands.
  866. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  867. // parse reference: must reference at here
  868. if token.TSubType == efp.TokenSubTypeRange {
  869. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  870. if refTo != "" {
  871. token.TValue = refTo
  872. }
  873. result, err := f.parseReference(sheet, token.TValue)
  874. if err != nil {
  875. return errors.New(formulaErrorNAME)
  876. }
  877. if result.Type != ArgString {
  878. return errors.New(formulaErrorVALUE)
  879. }
  880. token.TValue = result.String
  881. token.TType = efp.TokenTypeOperand
  882. token.TSubType = efp.TokenSubTypeNumber
  883. }
  884. if isOperatorPrefixToken(token) {
  885. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  886. return err
  887. }
  888. }
  889. if isBeginParenthesesToken(token) { // (
  890. optStack.Push(token)
  891. }
  892. if isEndParenthesesToken(token) { // )
  893. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  894. topOpt := optStack.Peek().(efp.Token)
  895. if err := calculate(opdStack, topOpt); err != nil {
  896. return err
  897. }
  898. optStack.Pop()
  899. }
  900. optStack.Pop()
  901. }
  902. // opd
  903. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  904. opdStack.Push(token)
  905. }
  906. return nil
  907. }
  908. // parseReference parse reference and extract values by given reference
  909. // characters and default sheet name.
  910. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  911. reference = strings.Replace(reference, "$", "", -1)
  912. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  913. for _, ref := range strings.Split(reference, ":") {
  914. tokens := strings.Split(ref, "!")
  915. cr := cellRef{}
  916. if len(tokens) == 2 { // have a worksheet name
  917. cr.Sheet = tokens[0]
  918. // cast to cell coordinates
  919. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  920. // cast to column
  921. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  922. // cast to row
  923. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  924. err = newInvalidColumnNameError(tokens[1])
  925. return
  926. }
  927. cr.Col = TotalColumns
  928. }
  929. }
  930. if refs.Len() > 0 {
  931. e := refs.Back()
  932. cellRefs.PushBack(e.Value.(cellRef))
  933. refs.Remove(e)
  934. }
  935. refs.PushBack(cr)
  936. continue
  937. }
  938. // cast to cell coordinates
  939. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  940. // cast to column
  941. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  942. // cast to row
  943. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  944. err = newInvalidColumnNameError(tokens[0])
  945. return
  946. }
  947. cr.Col = TotalColumns
  948. }
  949. cellRanges.PushBack(cellRange{
  950. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  951. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  952. })
  953. cellRefs.Init()
  954. arg, err = f.rangeResolver(cellRefs, cellRanges)
  955. return
  956. }
  957. e := refs.Back()
  958. if e == nil {
  959. cr.Sheet = sheet
  960. refs.PushBack(cr)
  961. continue
  962. }
  963. cellRanges.PushBack(cellRange{
  964. From: e.Value.(cellRef),
  965. To: cr,
  966. })
  967. refs.Remove(e)
  968. }
  969. if refs.Len() > 0 {
  970. e := refs.Back()
  971. cellRefs.PushBack(e.Value.(cellRef))
  972. refs.Remove(e)
  973. }
  974. arg, err = f.rangeResolver(cellRefs, cellRanges)
  975. return
  976. }
  977. // prepareValueRange prepare value range.
  978. func prepareValueRange(cr cellRange, valueRange []int) {
  979. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  980. valueRange[0] = cr.From.Row
  981. }
  982. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  983. valueRange[2] = cr.From.Col
  984. }
  985. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  986. valueRange[1] = cr.To.Row
  987. }
  988. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  989. valueRange[3] = cr.To.Col
  990. }
  991. }
  992. // prepareValueRef prepare value reference.
  993. func prepareValueRef(cr cellRef, valueRange []int) {
  994. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  995. valueRange[0] = cr.Row
  996. }
  997. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  998. valueRange[2] = cr.Col
  999. }
  1000. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  1001. valueRange[1] = cr.Row
  1002. }
  1003. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1004. valueRange[3] = cr.Col
  1005. }
  1006. }
  1007. // rangeResolver extract value as string from given reference and range list.
  1008. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1009. // be reference A1:B3.
  1010. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1011. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1012. // value range order: from row, to row, from column, to column
  1013. valueRange := []int{0, 0, 0, 0}
  1014. var sheet string
  1015. // prepare value range
  1016. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1017. cr := temp.Value.(cellRange)
  1018. if cr.From.Sheet != cr.To.Sheet {
  1019. err = errors.New(formulaErrorVALUE)
  1020. }
  1021. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1022. _ = sortCoordinates(rng)
  1023. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1024. prepareValueRange(cr, valueRange)
  1025. if cr.From.Sheet != "" {
  1026. sheet = cr.From.Sheet
  1027. }
  1028. }
  1029. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1030. cr := temp.Value.(cellRef)
  1031. if cr.Sheet != "" {
  1032. sheet = cr.Sheet
  1033. }
  1034. prepareValueRef(cr, valueRange)
  1035. }
  1036. // extract value from ranges
  1037. if cellRanges.Len() > 0 {
  1038. arg.Type = ArgMatrix
  1039. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1040. var matrixRow = []formulaArg{}
  1041. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1042. var cell, value string
  1043. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1044. return
  1045. }
  1046. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1047. return
  1048. }
  1049. matrixRow = append(matrixRow, formulaArg{
  1050. String: value,
  1051. Type: ArgString,
  1052. })
  1053. }
  1054. arg.Matrix = append(arg.Matrix, matrixRow)
  1055. }
  1056. return
  1057. }
  1058. // extract value from references
  1059. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1060. cr := temp.Value.(cellRef)
  1061. var cell string
  1062. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1063. return
  1064. }
  1065. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1066. return
  1067. }
  1068. arg.Type = ArgString
  1069. }
  1070. return
  1071. }
  1072. // callFuncByName calls the no error or only error return function with
  1073. // reflect by given receiver, name and parameters.
  1074. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1075. function := reflect.ValueOf(receiver).MethodByName(name)
  1076. if function.IsValid() {
  1077. rt := function.Call(params)
  1078. if len(rt) == 0 {
  1079. return
  1080. }
  1081. arg = rt[0].Interface().(formulaArg)
  1082. return
  1083. }
  1084. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1085. }
  1086. // formulaCriteriaParser parse formula criteria.
  1087. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1088. fc = &formulaCriteria{}
  1089. if exp == "" {
  1090. return
  1091. }
  1092. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1093. fc.Type, fc.Condition = criteriaEq, match[1]
  1094. return
  1095. }
  1096. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1097. fc.Type, fc.Condition = criteriaEq, match[1]
  1098. return
  1099. }
  1100. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1101. fc.Type, fc.Condition = criteriaLe, match[1]
  1102. return
  1103. }
  1104. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1105. fc.Type, fc.Condition = criteriaGe, match[1]
  1106. return
  1107. }
  1108. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1109. fc.Type, fc.Condition = criteriaL, match[1]
  1110. return
  1111. }
  1112. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1113. fc.Type, fc.Condition = criteriaG, match[1]
  1114. return
  1115. }
  1116. if strings.Contains(exp, "*") {
  1117. if strings.HasPrefix(exp, "*") {
  1118. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1119. }
  1120. if strings.HasSuffix(exp, "*") {
  1121. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1122. }
  1123. return
  1124. }
  1125. fc.Type, fc.Condition = criteriaEq, exp
  1126. return
  1127. }
  1128. // formulaCriteriaEval evaluate formula criteria expression.
  1129. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1130. var value, expected float64
  1131. var e error
  1132. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1133. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1134. return
  1135. }
  1136. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1137. return
  1138. }
  1139. return
  1140. }
  1141. switch criteria.Type {
  1142. case criteriaEq:
  1143. return val == criteria.Condition, err
  1144. case criteriaLe:
  1145. value, expected, e = prepareValue(val, criteria.Condition)
  1146. return value <= expected && e == nil, err
  1147. case criteriaGe:
  1148. value, expected, e = prepareValue(val, criteria.Condition)
  1149. return value >= expected && e == nil, err
  1150. case criteriaL:
  1151. value, expected, e = prepareValue(val, criteria.Condition)
  1152. return value < expected && e == nil, err
  1153. case criteriaG:
  1154. value, expected, e = prepareValue(val, criteria.Condition)
  1155. return value > expected && e == nil, err
  1156. case criteriaBeg:
  1157. return strings.HasPrefix(val, criteria.Condition), err
  1158. case criteriaEnd:
  1159. return strings.HasSuffix(val, criteria.Condition), err
  1160. }
  1161. return
  1162. }
  1163. // Engineering Functions
  1164. // BESSELI function the modified Bessel function, which is equivalent to the
  1165. // Bessel function evaluated for purely imaginary arguments. The syntax of
  1166. // the Besseli function is:
  1167. //
  1168. // BESSELI(x,n)
  1169. //
  1170. func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
  1171. if argsList.Len() != 2 {
  1172. return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
  1173. }
  1174. return fn.bassel(argsList, true)
  1175. }
  1176. // BESSELJ function returns the Bessel function, Jn(x), for a specified order
  1177. // and value of x. The syntax of the function is:
  1178. //
  1179. // BESSELJ(x,n)
  1180. //
  1181. func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
  1182. if argsList.Len() != 2 {
  1183. return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
  1184. }
  1185. return fn.bassel(argsList, false)
  1186. }
  1187. // bassel is an implementation of the formula function BESSELI and BESSELJ.
  1188. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
  1189. x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1190. if x.Type != ArgNumber {
  1191. return x
  1192. }
  1193. if n.Type != ArgNumber {
  1194. return n
  1195. }
  1196. max, x1 := 100, x.Number*0.5
  1197. x2 := x1 * x1
  1198. x1 = math.Pow(x1, n.Number)
  1199. n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
  1200. result := x1 / n1
  1201. t := result * 0.9
  1202. for result != t && max != 0 {
  1203. x1 *= x2
  1204. n3++
  1205. n1 *= n3
  1206. n4++
  1207. n2 *= n4
  1208. t = result
  1209. if modfied || add {
  1210. result += (x1 / n1 / n2)
  1211. } else {
  1212. result -= (x1 / n1 / n2)
  1213. }
  1214. max--
  1215. add = !add
  1216. }
  1217. return newNumberFormulaArg(result)
  1218. }
  1219. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1220. // The syntax of the function is:
  1221. //
  1222. // BIN2DEC(number)
  1223. //
  1224. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1225. if argsList.Len() != 1 {
  1226. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1227. }
  1228. token := argsList.Front().Value.(formulaArg)
  1229. number := token.ToNumber()
  1230. if number.Type != ArgNumber {
  1231. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1232. }
  1233. return fn.bin2dec(token.Value())
  1234. }
  1235. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1236. // (Base 16) number. The syntax of the function is:
  1237. //
  1238. // BIN2HEX(number,[places])
  1239. //
  1240. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1241. if argsList.Len() < 1 {
  1242. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1243. }
  1244. if argsList.Len() > 2 {
  1245. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1246. }
  1247. token := argsList.Front().Value.(formulaArg)
  1248. number := token.ToNumber()
  1249. if number.Type != ArgNumber {
  1250. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1251. }
  1252. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1253. if decimal.Type != ArgNumber {
  1254. return decimal
  1255. }
  1256. newList.PushBack(decimal)
  1257. if argsList.Len() == 2 {
  1258. newList.PushBack(argsList.Back().Value.(formulaArg))
  1259. }
  1260. return fn.dec2x("BIN2HEX", newList)
  1261. }
  1262. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1263. // number. The syntax of the function is:
  1264. //
  1265. // BIN2OCT(number,[places])
  1266. //
  1267. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1268. if argsList.Len() < 1 {
  1269. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1270. }
  1271. if argsList.Len() > 2 {
  1272. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1273. }
  1274. token := argsList.Front().Value.(formulaArg)
  1275. number := token.ToNumber()
  1276. if number.Type != ArgNumber {
  1277. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1278. }
  1279. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1280. if decimal.Type != ArgNumber {
  1281. return decimal
  1282. }
  1283. newList.PushBack(decimal)
  1284. if argsList.Len() == 2 {
  1285. newList.PushBack(argsList.Back().Value.(formulaArg))
  1286. }
  1287. return fn.dec2x("BIN2OCT", newList)
  1288. }
  1289. // bin2dec is an implementation of the formula function BIN2DEC.
  1290. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1291. decimal, length := 0.0, len(number)
  1292. for i := length; i > 0; i-- {
  1293. s := string(number[length-i])
  1294. if i == 10 && s == "1" {
  1295. decimal += math.Pow(-2.0, float64(i-1))
  1296. continue
  1297. }
  1298. if s == "1" {
  1299. decimal += math.Pow(2.0, float64(i-1))
  1300. continue
  1301. }
  1302. if s != "0" {
  1303. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1304. }
  1305. }
  1306. return newNumberFormulaArg(decimal)
  1307. }
  1308. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1309. // syntax of the function is:
  1310. //
  1311. // BITAND(number1,number2)
  1312. //
  1313. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1314. return fn.bitwise("BITAND", argsList)
  1315. }
  1316. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1317. // number of bits. The syntax of the function is:
  1318. //
  1319. // BITLSHIFT(number1,shift_amount)
  1320. //
  1321. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1322. return fn.bitwise("BITLSHIFT", argsList)
  1323. }
  1324. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1325. // syntax of the function is:
  1326. //
  1327. // BITOR(number1,number2)
  1328. //
  1329. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1330. return fn.bitwise("BITOR", argsList)
  1331. }
  1332. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1333. // number of bits. The syntax of the function is:
  1334. //
  1335. // BITRSHIFT(number1,shift_amount)
  1336. //
  1337. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1338. return fn.bitwise("BITRSHIFT", argsList)
  1339. }
  1340. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1341. // integers. The syntax of the function is:
  1342. //
  1343. // BITXOR(number1,number2)
  1344. //
  1345. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1346. return fn.bitwise("BITXOR", argsList)
  1347. }
  1348. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1349. // BITOR, BITRSHIFT and BITXOR.
  1350. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1351. if argsList.Len() != 2 {
  1352. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1353. }
  1354. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1355. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1356. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1357. }
  1358. max := math.Pow(2, 48) - 1
  1359. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1360. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1361. }
  1362. bitwiseFuncMap := map[string]func(a, b int) int{
  1363. "BITAND": func(a, b int) int { return a & b },
  1364. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1365. "BITOR": func(a, b int) int { return a | b },
  1366. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1367. "BITXOR": func(a, b int) int { return a ^ b },
  1368. }
  1369. bitwiseFunc := bitwiseFuncMap[name]
  1370. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1371. }
  1372. // COMPLEX function takes two arguments, representing the real and the
  1373. // imaginary coefficients of a complex number, and from these, creates a
  1374. // complex number. The syntax of the function is:
  1375. //
  1376. // COMPLEX(real_num,i_num,[suffix])
  1377. //
  1378. func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
  1379. if argsList.Len() < 2 {
  1380. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
  1381. }
  1382. if argsList.Len() > 3 {
  1383. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
  1384. }
  1385. real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
  1386. if real.Type != ArgNumber {
  1387. return real
  1388. }
  1389. if i.Type != ArgNumber {
  1390. return i
  1391. }
  1392. if argsList.Len() == 3 {
  1393. if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
  1394. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1395. }
  1396. }
  1397. r := strings.NewReplacer("(", "", ")", "", "0+", "", "+0i", "", "0+0i", "0", "i", suffix)
  1398. return newStringFormulaArg(r.Replace(fmt.Sprint(complex(real.Number, i.Number))))
  1399. }
  1400. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1401. // The syntax of the function is:
  1402. //
  1403. // DEC2BIN(number,[places])
  1404. //
  1405. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1406. return fn.dec2x("DEC2BIN", argsList)
  1407. }
  1408. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1409. // number. The syntax of the function is:
  1410. //
  1411. // DEC2HEX(number,[places])
  1412. //
  1413. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1414. return fn.dec2x("DEC2HEX", argsList)
  1415. }
  1416. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1417. // The syntax of the function is:
  1418. //
  1419. // DEC2OCT(number,[places])
  1420. //
  1421. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1422. return fn.dec2x("DEC2OCT", argsList)
  1423. }
  1424. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1425. // DEC2OCT.
  1426. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1427. if argsList.Len() < 1 {
  1428. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1429. }
  1430. if argsList.Len() > 2 {
  1431. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1432. }
  1433. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1434. if decimal.Type != ArgNumber {
  1435. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1436. }
  1437. maxLimitMap := map[string]float64{
  1438. "DEC2BIN": 511,
  1439. "HEX2BIN": 511,
  1440. "OCT2BIN": 511,
  1441. "BIN2HEX": 549755813887,
  1442. "DEC2HEX": 549755813887,
  1443. "OCT2HEX": 549755813887,
  1444. "BIN2OCT": 536870911,
  1445. "DEC2OCT": 536870911,
  1446. "HEX2OCT": 536870911,
  1447. }
  1448. minLimitMap := map[string]float64{
  1449. "DEC2BIN": -512,
  1450. "HEX2BIN": -512,
  1451. "OCT2BIN": -512,
  1452. "BIN2HEX": -549755813888,
  1453. "DEC2HEX": -549755813888,
  1454. "OCT2HEX": -549755813888,
  1455. "BIN2OCT": -536870912,
  1456. "DEC2OCT": -536870912,
  1457. "HEX2OCT": -536870912,
  1458. }
  1459. baseMap := map[string]int{
  1460. "DEC2BIN": 2,
  1461. "HEX2BIN": 2,
  1462. "OCT2BIN": 2,
  1463. "BIN2HEX": 16,
  1464. "DEC2HEX": 16,
  1465. "OCT2HEX": 16,
  1466. "BIN2OCT": 8,
  1467. "DEC2OCT": 8,
  1468. "HEX2OCT": 8,
  1469. }
  1470. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1471. base := baseMap[name]
  1472. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1473. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1474. }
  1475. n := int64(decimal.Number)
  1476. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1477. if argsList.Len() == 2 {
  1478. places := argsList.Back().Value.(formulaArg).ToNumber()
  1479. if places.Type != ArgNumber {
  1480. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1481. }
  1482. binaryPlaces := len(binary)
  1483. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1484. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1485. }
  1486. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1487. }
  1488. if decimal.Number < 0 && len(binary) > 10 {
  1489. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1490. }
  1491. return newStringFormulaArg(strings.ToUpper(binary))
  1492. }
  1493. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1494. // (Base 2) number. The syntax of the function is:
  1495. //
  1496. // HEX2BIN(number,[places])
  1497. //
  1498. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1499. if argsList.Len() < 1 {
  1500. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1501. }
  1502. if argsList.Len() > 2 {
  1503. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1504. }
  1505. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1506. if decimal.Type != ArgNumber {
  1507. return decimal
  1508. }
  1509. newList.PushBack(decimal)
  1510. if argsList.Len() == 2 {
  1511. newList.PushBack(argsList.Back().Value.(formulaArg))
  1512. }
  1513. return fn.dec2x("HEX2BIN", newList)
  1514. }
  1515. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1516. // number. The syntax of the function is:
  1517. //
  1518. // HEX2DEC(number)
  1519. //
  1520. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1521. if argsList.Len() != 1 {
  1522. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1523. }
  1524. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1525. }
  1526. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1527. // (Base 8) number. The syntax of the function is:
  1528. //
  1529. // HEX2OCT(number,[places])
  1530. //
  1531. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1532. if argsList.Len() < 1 {
  1533. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1534. }
  1535. if argsList.Len() > 2 {
  1536. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1537. }
  1538. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1539. if decimal.Type != ArgNumber {
  1540. return decimal
  1541. }
  1542. newList.PushBack(decimal)
  1543. if argsList.Len() == 2 {
  1544. newList.PushBack(argsList.Back().Value.(formulaArg))
  1545. }
  1546. return fn.dec2x("HEX2OCT", newList)
  1547. }
  1548. // hex2dec is an implementation of the formula function HEX2DEC.
  1549. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1550. decimal, length := 0.0, len(number)
  1551. for i := length; i > 0; i-- {
  1552. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1553. if err != nil {
  1554. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1555. }
  1556. if i == 10 && string(number[length-i]) == "F" {
  1557. decimal += math.Pow(-16.0, float64(i-1))
  1558. continue
  1559. }
  1560. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1561. }
  1562. return newNumberFormulaArg(decimal)
  1563. }
  1564. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1565. // number. The syntax of the function is:
  1566. //
  1567. // OCT2BIN(number,[places])
  1568. //
  1569. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1570. if argsList.Len() < 1 {
  1571. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1572. }
  1573. if argsList.Len() > 2 {
  1574. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1575. }
  1576. token := argsList.Front().Value.(formulaArg)
  1577. number := token.ToNumber()
  1578. if number.Type != ArgNumber {
  1579. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1580. }
  1581. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1582. newList.PushBack(decimal)
  1583. if argsList.Len() == 2 {
  1584. newList.PushBack(argsList.Back().Value.(formulaArg))
  1585. }
  1586. return fn.dec2x("OCT2BIN", newList)
  1587. }
  1588. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1589. // The syntax of the function is:
  1590. //
  1591. // OCT2DEC(number)
  1592. //
  1593. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1594. if argsList.Len() != 1 {
  1595. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1596. }
  1597. token := argsList.Front().Value.(formulaArg)
  1598. number := token.ToNumber()
  1599. if number.Type != ArgNumber {
  1600. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1601. }
  1602. return fn.oct2dec(token.Value())
  1603. }
  1604. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1605. // (Base 16) number. The syntax of the function is:
  1606. //
  1607. // OCT2HEX(number,[places])
  1608. //
  1609. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1610. if argsList.Len() < 1 {
  1611. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1612. }
  1613. if argsList.Len() > 2 {
  1614. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1615. }
  1616. token := argsList.Front().Value.(formulaArg)
  1617. number := token.ToNumber()
  1618. if number.Type != ArgNumber {
  1619. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1620. }
  1621. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1622. newList.PushBack(decimal)
  1623. if argsList.Len() == 2 {
  1624. newList.PushBack(argsList.Back().Value.(formulaArg))
  1625. }
  1626. return fn.dec2x("OCT2HEX", newList)
  1627. }
  1628. // oct2dec is an implementation of the formula function OCT2DEC.
  1629. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1630. decimal, length := 0.0, len(number)
  1631. for i := length; i > 0; i-- {
  1632. num, _ := strconv.Atoi(string(number[length-i]))
  1633. if i == 10 && string(number[length-i]) == "7" {
  1634. decimal += math.Pow(-8.0, float64(i-1))
  1635. continue
  1636. }
  1637. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1638. }
  1639. return newNumberFormulaArg(decimal)
  1640. }
  1641. // Math and Trigonometric Functions
  1642. // ABS function returns the absolute value of any supplied number. The syntax
  1643. // of the function is:
  1644. //
  1645. // ABS(number)
  1646. //
  1647. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1648. if argsList.Len() != 1 {
  1649. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1650. }
  1651. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1652. if arg.Type == ArgError {
  1653. return arg
  1654. }
  1655. return newNumberFormulaArg(math.Abs(arg.Number))
  1656. }
  1657. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1658. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1659. // the function is:
  1660. //
  1661. // ACOS(number)
  1662. //
  1663. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1664. if argsList.Len() != 1 {
  1665. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1666. }
  1667. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1668. if arg.Type == ArgError {
  1669. return arg
  1670. }
  1671. return newNumberFormulaArg(math.Acos(arg.Number))
  1672. }
  1673. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1674. // of the function is:
  1675. //
  1676. // ACOSH(number)
  1677. //
  1678. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1679. if argsList.Len() != 1 {
  1680. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1681. }
  1682. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1683. if arg.Type == ArgError {
  1684. return arg
  1685. }
  1686. return newNumberFormulaArg(math.Acosh(arg.Number))
  1687. }
  1688. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1689. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1690. // of the function is:
  1691. //
  1692. // ACOT(number)
  1693. //
  1694. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1695. if argsList.Len() != 1 {
  1696. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1697. }
  1698. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1699. if arg.Type == ArgError {
  1700. return arg
  1701. }
  1702. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1703. }
  1704. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1705. // value. The syntax of the function is:
  1706. //
  1707. // ACOTH(number)
  1708. //
  1709. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1710. if argsList.Len() != 1 {
  1711. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1712. }
  1713. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1714. if arg.Type == ArgError {
  1715. return arg
  1716. }
  1717. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1718. }
  1719. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1720. // of the function is:
  1721. //
  1722. // ARABIC(text)
  1723. //
  1724. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1725. if argsList.Len() != 1 {
  1726. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1727. }
  1728. text := argsList.Front().Value.(formulaArg).Value()
  1729. if len(text) > 255 {
  1730. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1731. }
  1732. text = strings.ToUpper(text)
  1733. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1734. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1735. for index >= 0 && text[index] == ' ' {
  1736. index--
  1737. }
  1738. for actualStart <= index && text[actualStart] == ' ' {
  1739. actualStart++
  1740. }
  1741. if actualStart <= index && text[actualStart] == '-' {
  1742. isNegative = true
  1743. actualStart++
  1744. }
  1745. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1746. for index >= actualStart {
  1747. startIndex = index
  1748. startChar := text[startIndex]
  1749. index--
  1750. for index >= actualStart && (text[index]|' ') == startChar {
  1751. index--
  1752. }
  1753. currentCharValue = charMap[rune(startChar)]
  1754. currentPartValue = (startIndex - index) * currentCharValue
  1755. if currentCharValue >= prevCharValue {
  1756. number += currentPartValue - subtractNumber
  1757. prevCharValue = currentCharValue
  1758. subtractNumber = 0
  1759. continue
  1760. }
  1761. subtractNumber += currentPartValue
  1762. }
  1763. if subtractNumber != 0 {
  1764. number -= subtractNumber
  1765. }
  1766. if isNegative {
  1767. number = -number
  1768. }
  1769. return newNumberFormulaArg(float64(number))
  1770. }
  1771. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1772. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1773. // of the function is:
  1774. //
  1775. // ASIN(number)
  1776. //
  1777. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1778. if argsList.Len() != 1 {
  1779. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1780. }
  1781. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1782. if arg.Type == ArgError {
  1783. return arg
  1784. }
  1785. return newNumberFormulaArg(math.Asin(arg.Number))
  1786. }
  1787. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1788. // The syntax of the function is:
  1789. //
  1790. // ASINH(number)
  1791. //
  1792. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1793. if argsList.Len() != 1 {
  1794. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1795. }
  1796. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1797. if arg.Type == ArgError {
  1798. return arg
  1799. }
  1800. return newNumberFormulaArg(math.Asinh(arg.Number))
  1801. }
  1802. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1803. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1804. // syntax of the function is:
  1805. //
  1806. // ATAN(number)
  1807. //
  1808. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1809. if argsList.Len() != 1 {
  1810. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1811. }
  1812. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1813. if arg.Type == ArgError {
  1814. return arg
  1815. }
  1816. return newNumberFormulaArg(math.Atan(arg.Number))
  1817. }
  1818. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1819. // number. The syntax of the function is:
  1820. //
  1821. // ATANH(number)
  1822. //
  1823. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1824. if argsList.Len() != 1 {
  1825. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1826. }
  1827. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1828. if arg.Type == ArgError {
  1829. return arg
  1830. }
  1831. return newNumberFormulaArg(math.Atanh(arg.Number))
  1832. }
  1833. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1834. // given set of x and y coordinates, and returns an angle, in radians, between
  1835. // -π/2 and +π/2. The syntax of the function is:
  1836. //
  1837. // ATAN2(x_num,y_num)
  1838. //
  1839. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1840. if argsList.Len() != 2 {
  1841. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1842. }
  1843. x := argsList.Back().Value.(formulaArg).ToNumber()
  1844. if x.Type == ArgError {
  1845. return x
  1846. }
  1847. y := argsList.Front().Value.(formulaArg).ToNumber()
  1848. if y.Type == ArgError {
  1849. return y
  1850. }
  1851. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1852. }
  1853. // BASE function converts a number into a supplied base (radix), and returns a
  1854. // text representation of the calculated value. The syntax of the function is:
  1855. //
  1856. // BASE(number,radix,[min_length])
  1857. //
  1858. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1859. if argsList.Len() < 2 {
  1860. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1861. }
  1862. if argsList.Len() > 3 {
  1863. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1864. }
  1865. var minLength int
  1866. var err error
  1867. number := argsList.Front().Value.(formulaArg).ToNumber()
  1868. if number.Type == ArgError {
  1869. return number
  1870. }
  1871. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1872. if radix.Type == ArgError {
  1873. return radix
  1874. }
  1875. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1876. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1877. }
  1878. if argsList.Len() > 2 {
  1879. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1880. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1881. }
  1882. }
  1883. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1884. if len(result) < minLength {
  1885. result = strings.Repeat("0", minLength-len(result)) + result
  1886. }
  1887. return newStringFormulaArg(strings.ToUpper(result))
  1888. }
  1889. // CEILING function rounds a supplied number away from zero, to the nearest
  1890. // multiple of a given number. The syntax of the function is:
  1891. //
  1892. // CEILING(number,significance)
  1893. //
  1894. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1895. if argsList.Len() == 0 {
  1896. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1897. }
  1898. if argsList.Len() > 2 {
  1899. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1900. }
  1901. number, significance, res := 0.0, 1.0, 0.0
  1902. n := argsList.Front().Value.(formulaArg).ToNumber()
  1903. if n.Type == ArgError {
  1904. return n
  1905. }
  1906. number = n.Number
  1907. if number < 0 {
  1908. significance = -1
  1909. }
  1910. if argsList.Len() > 1 {
  1911. s := argsList.Back().Value.(formulaArg).ToNumber()
  1912. if s.Type == ArgError {
  1913. return s
  1914. }
  1915. significance = s.Number
  1916. }
  1917. if significance < 0 && number > 0 {
  1918. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1919. }
  1920. if argsList.Len() == 1 {
  1921. return newNumberFormulaArg(math.Ceil(number))
  1922. }
  1923. number, res = math.Modf(number / significance)
  1924. if res > 0 {
  1925. number++
  1926. }
  1927. return newNumberFormulaArg(number * significance)
  1928. }
  1929. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  1930. // of significance. The syntax of the function is:
  1931. //
  1932. // CEILING.MATH(number,[significance],[mode])
  1933. //
  1934. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  1935. if argsList.Len() == 0 {
  1936. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1937. }
  1938. if argsList.Len() > 3 {
  1939. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1940. }
  1941. number, significance, mode := 0.0, 1.0, 1.0
  1942. n := argsList.Front().Value.(formulaArg).ToNumber()
  1943. if n.Type == ArgError {
  1944. return n
  1945. }
  1946. number = n.Number
  1947. if number < 0 {
  1948. significance = -1
  1949. }
  1950. if argsList.Len() > 1 {
  1951. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1952. if s.Type == ArgError {
  1953. return s
  1954. }
  1955. significance = s.Number
  1956. }
  1957. if argsList.Len() == 1 {
  1958. return newNumberFormulaArg(math.Ceil(number))
  1959. }
  1960. if argsList.Len() > 2 {
  1961. m := argsList.Back().Value.(formulaArg).ToNumber()
  1962. if m.Type == ArgError {
  1963. return m
  1964. }
  1965. mode = m.Number
  1966. }
  1967. val, res := math.Modf(number / significance)
  1968. if res != 0 {
  1969. if number > 0 {
  1970. val++
  1971. } else if mode < 0 {
  1972. val--
  1973. }
  1974. }
  1975. return newNumberFormulaArg(val * significance)
  1976. }
  1977. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  1978. // number's sign), to the nearest multiple of a given number. The syntax of
  1979. // the function is:
  1980. //
  1981. // CEILING.PRECISE(number,[significance])
  1982. //
  1983. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  1984. if argsList.Len() == 0 {
  1985. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1986. }
  1987. if argsList.Len() > 2 {
  1988. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1989. }
  1990. number, significance := 0.0, 1.0
  1991. n := argsList.Front().Value.(formulaArg).ToNumber()
  1992. if n.Type == ArgError {
  1993. return n
  1994. }
  1995. number = n.Number
  1996. if number < 0 {
  1997. significance = -1
  1998. }
  1999. if argsList.Len() == 1 {
  2000. return newNumberFormulaArg(math.Ceil(number))
  2001. }
  2002. if argsList.Len() > 1 {
  2003. s := argsList.Back().Value.(formulaArg).ToNumber()
  2004. if s.Type == ArgError {
  2005. return s
  2006. }
  2007. significance = s.Number
  2008. significance = math.Abs(significance)
  2009. if significance == 0 {
  2010. return newNumberFormulaArg(significance)
  2011. }
  2012. }
  2013. val, res := math.Modf(number / significance)
  2014. if res != 0 {
  2015. if number > 0 {
  2016. val++
  2017. }
  2018. }
  2019. return newNumberFormulaArg(val * significance)
  2020. }
  2021. // COMBIN function calculates the number of combinations (in any order) of a
  2022. // given number objects from a set. The syntax of the function is:
  2023. //
  2024. // COMBIN(number,number_chosen)
  2025. //
  2026. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  2027. if argsList.Len() != 2 {
  2028. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  2029. }
  2030. number, chosen, val := 0.0, 0.0, 1.0
  2031. n := argsList.Front().Value.(formulaArg).ToNumber()
  2032. if n.Type == ArgError {
  2033. return n
  2034. }
  2035. number = n.Number
  2036. c := argsList.Back().Value.(formulaArg).ToNumber()
  2037. if c.Type == ArgError {
  2038. return c
  2039. }
  2040. chosen = c.Number
  2041. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2042. if chosen > number {
  2043. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  2044. }
  2045. if chosen == number || chosen == 0 {
  2046. return newNumberFormulaArg(1)
  2047. }
  2048. for c := float64(1); c <= chosen; c++ {
  2049. val *= (number + 1 - c) / c
  2050. }
  2051. return newNumberFormulaArg(math.Ceil(val))
  2052. }
  2053. // COMBINA function calculates the number of combinations, with repetitions,
  2054. // of a given number objects from a set. The syntax of the function is:
  2055. //
  2056. // COMBINA(number,number_chosen)
  2057. //
  2058. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  2059. if argsList.Len() != 2 {
  2060. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  2061. }
  2062. var number, chosen float64
  2063. n := argsList.Front().Value.(formulaArg).ToNumber()
  2064. if n.Type == ArgError {
  2065. return n
  2066. }
  2067. number = n.Number
  2068. c := argsList.Back().Value.(formulaArg).ToNumber()
  2069. if c.Type == ArgError {
  2070. return c
  2071. }
  2072. chosen = c.Number
  2073. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2074. if number < chosen {
  2075. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  2076. }
  2077. if number == 0 {
  2078. return newNumberFormulaArg(number)
  2079. }
  2080. args := list.New()
  2081. args.PushBack(formulaArg{
  2082. String: fmt.Sprintf("%g", number+chosen-1),
  2083. Type: ArgString,
  2084. })
  2085. args.PushBack(formulaArg{
  2086. String: fmt.Sprintf("%g", number-1),
  2087. Type: ArgString,
  2088. })
  2089. return fn.COMBIN(args)
  2090. }
  2091. // COS function calculates the cosine of a given angle. The syntax of the
  2092. // function is:
  2093. //
  2094. // COS(number)
  2095. //
  2096. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2097. if argsList.Len() != 1 {
  2098. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2099. }
  2100. val := argsList.Front().Value.(formulaArg).ToNumber()
  2101. if val.Type == ArgError {
  2102. return val
  2103. }
  2104. return newNumberFormulaArg(math.Cos(val.Number))
  2105. }
  2106. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2107. // The syntax of the function is:
  2108. //
  2109. // COSH(number)
  2110. //
  2111. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2112. if argsList.Len() != 1 {
  2113. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2114. }
  2115. val := argsList.Front().Value.(formulaArg).ToNumber()
  2116. if val.Type == ArgError {
  2117. return val
  2118. }
  2119. return newNumberFormulaArg(math.Cosh(val.Number))
  2120. }
  2121. // COT function calculates the cotangent of a given angle. The syntax of the
  2122. // function is:
  2123. //
  2124. // COT(number)
  2125. //
  2126. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2127. if argsList.Len() != 1 {
  2128. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2129. }
  2130. val := argsList.Front().Value.(formulaArg).ToNumber()
  2131. if val.Type == ArgError {
  2132. return val
  2133. }
  2134. if val.Number == 0 {
  2135. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2136. }
  2137. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2138. }
  2139. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2140. // angle. The syntax of the function is:
  2141. //
  2142. // COTH(number)
  2143. //
  2144. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2145. if argsList.Len() != 1 {
  2146. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2147. }
  2148. val := argsList.Front().Value.(formulaArg).ToNumber()
  2149. if val.Type == ArgError {
  2150. return val
  2151. }
  2152. if val.Number == 0 {
  2153. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2154. }
  2155. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2156. }
  2157. // CSC function calculates the cosecant of a given angle. The syntax of the
  2158. // function is:
  2159. //
  2160. // CSC(number)
  2161. //
  2162. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2163. if argsList.Len() != 1 {
  2164. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2165. }
  2166. val := argsList.Front().Value.(formulaArg).ToNumber()
  2167. if val.Type == ArgError {
  2168. return val
  2169. }
  2170. if val.Number == 0 {
  2171. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2172. }
  2173. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2174. }
  2175. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2176. // angle. The syntax of the function is:
  2177. //
  2178. // CSCH(number)
  2179. //
  2180. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2181. if argsList.Len() != 1 {
  2182. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2183. }
  2184. val := argsList.Front().Value.(formulaArg).ToNumber()
  2185. if val.Type == ArgError {
  2186. return val
  2187. }
  2188. if val.Number == 0 {
  2189. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2190. }
  2191. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2192. }
  2193. // DECIMAL function converts a text representation of a number in a specified
  2194. // base, into a decimal value. The syntax of the function is:
  2195. //
  2196. // DECIMAL(text,radix)
  2197. //
  2198. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2199. if argsList.Len() != 2 {
  2200. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2201. }
  2202. var text = argsList.Front().Value.(formulaArg).String
  2203. var radix int
  2204. var err error
  2205. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2206. if err != nil {
  2207. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2208. }
  2209. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2210. text = text[2:]
  2211. }
  2212. val, err := strconv.ParseInt(text, radix, 64)
  2213. if err != nil {
  2214. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2215. }
  2216. return newNumberFormulaArg(float64(val))
  2217. }
  2218. // DEGREES function converts radians into degrees. The syntax of the function
  2219. // is:
  2220. //
  2221. // DEGREES(angle)
  2222. //
  2223. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2224. if argsList.Len() != 1 {
  2225. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2226. }
  2227. val := argsList.Front().Value.(formulaArg).ToNumber()
  2228. if val.Type == ArgError {
  2229. return val
  2230. }
  2231. if val.Number == 0 {
  2232. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2233. }
  2234. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2235. }
  2236. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2237. // positive number up and a negative number down), to the next even number.
  2238. // The syntax of the function is:
  2239. //
  2240. // EVEN(number)
  2241. //
  2242. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2243. if argsList.Len() != 1 {
  2244. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2245. }
  2246. number := argsList.Front().Value.(formulaArg).ToNumber()
  2247. if number.Type == ArgError {
  2248. return number
  2249. }
  2250. sign := math.Signbit(number.Number)
  2251. m, frac := math.Modf(number.Number / 2)
  2252. val := m * 2
  2253. if frac != 0 {
  2254. if !sign {
  2255. val += 2
  2256. } else {
  2257. val -= 2
  2258. }
  2259. }
  2260. return newNumberFormulaArg(val)
  2261. }
  2262. // EXP function calculates the value of the mathematical constant e, raised to
  2263. // the power of a given number. The syntax of the function is:
  2264. //
  2265. // EXP(number)
  2266. //
  2267. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2268. if argsList.Len() != 1 {
  2269. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2270. }
  2271. number := argsList.Front().Value.(formulaArg).ToNumber()
  2272. if number.Type == ArgError {
  2273. return number
  2274. }
  2275. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2276. }
  2277. // fact returns the factorial of a supplied number.
  2278. func fact(number float64) float64 {
  2279. val := float64(1)
  2280. for i := float64(2); i <= number; i++ {
  2281. val *= i
  2282. }
  2283. return val
  2284. }
  2285. // FACT function returns the factorial of a supplied number. The syntax of the
  2286. // function is:
  2287. //
  2288. // FACT(number)
  2289. //
  2290. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2291. if argsList.Len() != 1 {
  2292. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2293. }
  2294. number := argsList.Front().Value.(formulaArg).ToNumber()
  2295. if number.Type == ArgError {
  2296. return number
  2297. }
  2298. if number.Number < 0 {
  2299. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2300. }
  2301. return newNumberFormulaArg(fact(number.Number))
  2302. }
  2303. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2304. // syntax of the function is:
  2305. //
  2306. // FACTDOUBLE(number)
  2307. //
  2308. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2309. if argsList.Len() != 1 {
  2310. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2311. }
  2312. val := 1.0
  2313. number := argsList.Front().Value.(formulaArg).ToNumber()
  2314. if number.Type == ArgError {
  2315. return number
  2316. }
  2317. if number.Number < 0 {
  2318. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2319. }
  2320. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2321. val *= i
  2322. }
  2323. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2324. }
  2325. // FLOOR function rounds a supplied number towards zero to the nearest
  2326. // multiple of a specified significance. The syntax of the function is:
  2327. //
  2328. // FLOOR(number,significance)
  2329. //
  2330. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2331. if argsList.Len() != 2 {
  2332. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2333. }
  2334. number := argsList.Front().Value.(formulaArg).ToNumber()
  2335. if number.Type == ArgError {
  2336. return number
  2337. }
  2338. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2339. if significance.Type == ArgError {
  2340. return significance
  2341. }
  2342. if significance.Number < 0 && number.Number >= 0 {
  2343. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2344. }
  2345. val := number.Number
  2346. val, res := math.Modf(val / significance.Number)
  2347. if res != 0 {
  2348. if number.Number < 0 && res < 0 {
  2349. val--
  2350. }
  2351. }
  2352. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2353. }
  2354. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2355. // of significance. The syntax of the function is:
  2356. //
  2357. // FLOOR.MATH(number,[significance],[mode])
  2358. //
  2359. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2360. if argsList.Len() == 0 {
  2361. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2362. }
  2363. if argsList.Len() > 3 {
  2364. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2365. }
  2366. significance, mode := 1.0, 1.0
  2367. number := argsList.Front().Value.(formulaArg).ToNumber()
  2368. if number.Type == ArgError {
  2369. return number
  2370. }
  2371. if number.Number < 0 {
  2372. significance = -1
  2373. }
  2374. if argsList.Len() > 1 {
  2375. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2376. if s.Type == ArgError {
  2377. return s
  2378. }
  2379. significance = s.Number
  2380. }
  2381. if argsList.Len() == 1 {
  2382. return newNumberFormulaArg(math.Floor(number.Number))
  2383. }
  2384. if argsList.Len() > 2 {
  2385. m := argsList.Back().Value.(formulaArg).ToNumber()
  2386. if m.Type == ArgError {
  2387. return m
  2388. }
  2389. mode = m.Number
  2390. }
  2391. val, res := math.Modf(number.Number / significance)
  2392. if res != 0 && number.Number < 0 && mode > 0 {
  2393. val--
  2394. }
  2395. return newNumberFormulaArg(val * significance)
  2396. }
  2397. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2398. // multiple of significance. The syntax of the function is:
  2399. //
  2400. // FLOOR.PRECISE(number,[significance])
  2401. //
  2402. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2403. if argsList.Len() == 0 {
  2404. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2405. }
  2406. if argsList.Len() > 2 {
  2407. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2408. }
  2409. var significance float64
  2410. number := argsList.Front().Value.(formulaArg).ToNumber()
  2411. if number.Type == ArgError {
  2412. return number
  2413. }
  2414. if number.Number < 0 {
  2415. significance = -1
  2416. }
  2417. if argsList.Len() == 1 {
  2418. return newNumberFormulaArg(math.Floor(number.Number))
  2419. }
  2420. if argsList.Len() > 1 {
  2421. s := argsList.Back().Value.(formulaArg).ToNumber()
  2422. if s.Type == ArgError {
  2423. return s
  2424. }
  2425. significance = s.Number
  2426. significance = math.Abs(significance)
  2427. if significance == 0 {
  2428. return newNumberFormulaArg(significance)
  2429. }
  2430. }
  2431. val, res := math.Modf(number.Number / significance)
  2432. if res != 0 {
  2433. if number.Number < 0 {
  2434. val--
  2435. }
  2436. }
  2437. return newNumberFormulaArg(val * significance)
  2438. }
  2439. // gcd returns the greatest common divisor of two supplied integers.
  2440. func gcd(x, y float64) float64 {
  2441. x, y = math.Trunc(x), math.Trunc(y)
  2442. if x == 0 {
  2443. return y
  2444. }
  2445. if y == 0 {
  2446. return x
  2447. }
  2448. for x != y {
  2449. if x > y {
  2450. x = x - y
  2451. } else {
  2452. y = y - x
  2453. }
  2454. }
  2455. return x
  2456. }
  2457. // GCD function returns the greatest common divisor of two or more supplied
  2458. // integers. The syntax of the function is:
  2459. //
  2460. // GCD(number1,[number2],...)
  2461. //
  2462. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2463. if argsList.Len() == 0 {
  2464. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2465. }
  2466. var (
  2467. val float64
  2468. nums = []float64{}
  2469. )
  2470. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2471. token := arg.Value.(formulaArg)
  2472. switch token.Type {
  2473. case ArgString:
  2474. num := token.ToNumber()
  2475. if num.Type == ArgError {
  2476. return num
  2477. }
  2478. val = num.Number
  2479. case ArgNumber:
  2480. val = token.Number
  2481. }
  2482. nums = append(nums, val)
  2483. }
  2484. if nums[0] < 0 {
  2485. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2486. }
  2487. if len(nums) == 1 {
  2488. return newNumberFormulaArg(nums[0])
  2489. }
  2490. cd := nums[0]
  2491. for i := 1; i < len(nums); i++ {
  2492. if nums[i] < 0 {
  2493. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2494. }
  2495. cd = gcd(cd, nums[i])
  2496. }
  2497. return newNumberFormulaArg(cd)
  2498. }
  2499. // INT function truncates a supplied number down to the closest integer. The
  2500. // syntax of the function is:
  2501. //
  2502. // INT(number)
  2503. //
  2504. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2505. if argsList.Len() != 1 {
  2506. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2507. }
  2508. number := argsList.Front().Value.(formulaArg).ToNumber()
  2509. if number.Type == ArgError {
  2510. return number
  2511. }
  2512. val, frac := math.Modf(number.Number)
  2513. if frac < 0 {
  2514. val--
  2515. }
  2516. return newNumberFormulaArg(val)
  2517. }
  2518. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2519. // number's sign), to the nearest multiple of a supplied significance. The
  2520. // syntax of the function is:
  2521. //
  2522. // ISO.CEILING(number,[significance])
  2523. //
  2524. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2525. if argsList.Len() == 0 {
  2526. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2527. }
  2528. if argsList.Len() > 2 {
  2529. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2530. }
  2531. var significance float64
  2532. number := argsList.Front().Value.(formulaArg).ToNumber()
  2533. if number.Type == ArgError {
  2534. return number
  2535. }
  2536. if number.Number < 0 {
  2537. significance = -1
  2538. }
  2539. if argsList.Len() == 1 {
  2540. return newNumberFormulaArg(math.Ceil(number.Number))
  2541. }
  2542. if argsList.Len() > 1 {
  2543. s := argsList.Back().Value.(formulaArg).ToNumber()
  2544. if s.Type == ArgError {
  2545. return s
  2546. }
  2547. significance = s.Number
  2548. significance = math.Abs(significance)
  2549. if significance == 0 {
  2550. return newNumberFormulaArg(significance)
  2551. }
  2552. }
  2553. val, res := math.Modf(number.Number / significance)
  2554. if res != 0 {
  2555. if number.Number > 0 {
  2556. val++
  2557. }
  2558. }
  2559. return newNumberFormulaArg(val * significance)
  2560. }
  2561. // lcm returns the least common multiple of two supplied integers.
  2562. func lcm(a, b float64) float64 {
  2563. a = math.Trunc(a)
  2564. b = math.Trunc(b)
  2565. if a == 0 && b == 0 {
  2566. return 0
  2567. }
  2568. return a * b / gcd(a, b)
  2569. }
  2570. // LCM function returns the least common multiple of two or more supplied
  2571. // integers. The syntax of the function is:
  2572. //
  2573. // LCM(number1,[number2],...)
  2574. //
  2575. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2576. if argsList.Len() == 0 {
  2577. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2578. }
  2579. var (
  2580. val float64
  2581. nums = []float64{}
  2582. err error
  2583. )
  2584. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2585. token := arg.Value.(formulaArg)
  2586. switch token.Type {
  2587. case ArgString:
  2588. if token.String == "" {
  2589. continue
  2590. }
  2591. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2592. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2593. }
  2594. case ArgNumber:
  2595. val = token.Number
  2596. }
  2597. nums = append(nums, val)
  2598. }
  2599. if nums[0] < 0 {
  2600. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2601. }
  2602. if len(nums) == 1 {
  2603. return newNumberFormulaArg(nums[0])
  2604. }
  2605. cm := nums[0]
  2606. for i := 1; i < len(nums); i++ {
  2607. if nums[i] < 0 {
  2608. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2609. }
  2610. cm = lcm(cm, nums[i])
  2611. }
  2612. return newNumberFormulaArg(cm)
  2613. }
  2614. // LN function calculates the natural logarithm of a given number. The syntax
  2615. // of the function is:
  2616. //
  2617. // LN(number)
  2618. //
  2619. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2620. if argsList.Len() != 1 {
  2621. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2622. }
  2623. number := argsList.Front().Value.(formulaArg).ToNumber()
  2624. if number.Type == ArgError {
  2625. return number
  2626. }
  2627. return newNumberFormulaArg(math.Log(number.Number))
  2628. }
  2629. // LOG function calculates the logarithm of a given number, to a supplied
  2630. // base. The syntax of the function is:
  2631. //
  2632. // LOG(number,[base])
  2633. //
  2634. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2635. if argsList.Len() == 0 {
  2636. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2637. }
  2638. if argsList.Len() > 2 {
  2639. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2640. }
  2641. base := 10.0
  2642. number := argsList.Front().Value.(formulaArg).ToNumber()
  2643. if number.Type == ArgError {
  2644. return number
  2645. }
  2646. if argsList.Len() > 1 {
  2647. b := argsList.Back().Value.(formulaArg).ToNumber()
  2648. if b.Type == ArgError {
  2649. return b
  2650. }
  2651. base = b.Number
  2652. }
  2653. if number.Number == 0 {
  2654. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2655. }
  2656. if base == 0 {
  2657. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2658. }
  2659. if base == 1 {
  2660. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2661. }
  2662. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2663. }
  2664. // LOG10 function calculates the base 10 logarithm of a given number. The
  2665. // syntax of the function is:
  2666. //
  2667. // LOG10(number)
  2668. //
  2669. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2670. if argsList.Len() != 1 {
  2671. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2672. }
  2673. number := argsList.Front().Value.(formulaArg).ToNumber()
  2674. if number.Type == ArgError {
  2675. return number
  2676. }
  2677. return newNumberFormulaArg(math.Log10(number.Number))
  2678. }
  2679. // minor function implement a minor of a matrix A is the determinant of some
  2680. // smaller square matrix.
  2681. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2682. ret := [][]float64{}
  2683. for i := range sqMtx {
  2684. if i == 0 {
  2685. continue
  2686. }
  2687. row := []float64{}
  2688. for j := range sqMtx {
  2689. if j == idx {
  2690. continue
  2691. }
  2692. row = append(row, sqMtx[i][j])
  2693. }
  2694. ret = append(ret, row)
  2695. }
  2696. return ret
  2697. }
  2698. // det determinant of the 2x2 matrix.
  2699. func det(sqMtx [][]float64) float64 {
  2700. if len(sqMtx) == 2 {
  2701. m00 := sqMtx[0][0]
  2702. m01 := sqMtx[0][1]
  2703. m10 := sqMtx[1][0]
  2704. m11 := sqMtx[1][1]
  2705. return m00*m11 - m10*m01
  2706. }
  2707. var res, sgn float64 = 0, 1
  2708. for j := range sqMtx {
  2709. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2710. sgn *= -1
  2711. }
  2712. return res
  2713. }
  2714. // MDETERM calculates the determinant of a square matrix. The
  2715. // syntax of the function is:
  2716. //
  2717. // MDETERM(array)
  2718. //
  2719. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2720. var (
  2721. num float64
  2722. numMtx = [][]float64{}
  2723. err error
  2724. strMtx [][]formulaArg
  2725. )
  2726. if argsList.Len() < 1 {
  2727. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2728. }
  2729. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2730. var rows = len(strMtx)
  2731. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2732. if len(row) != rows {
  2733. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2734. }
  2735. numRow := []float64{}
  2736. for _, ele := range row {
  2737. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2738. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2739. }
  2740. numRow = append(numRow, num)
  2741. }
  2742. numMtx = append(numMtx, numRow)
  2743. }
  2744. return newNumberFormulaArg(det(numMtx))
  2745. }
  2746. // MOD function returns the remainder of a division between two supplied
  2747. // numbers. The syntax of the function is:
  2748. //
  2749. // MOD(number,divisor)
  2750. //
  2751. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2752. if argsList.Len() != 2 {
  2753. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2754. }
  2755. number := argsList.Front().Value.(formulaArg).ToNumber()
  2756. if number.Type == ArgError {
  2757. return number
  2758. }
  2759. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2760. if divisor.Type == ArgError {
  2761. return divisor
  2762. }
  2763. if divisor.Number == 0 {
  2764. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2765. }
  2766. trunc, rem := math.Modf(number.Number / divisor.Number)
  2767. if rem < 0 {
  2768. trunc--
  2769. }
  2770. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2771. }
  2772. // MROUND function rounds a supplied number up or down to the nearest multiple
  2773. // of a given number. The syntax of the function is:
  2774. //
  2775. // MROUND(number,multiple)
  2776. //
  2777. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2778. if argsList.Len() != 2 {
  2779. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2780. }
  2781. n := argsList.Front().Value.(formulaArg).ToNumber()
  2782. if n.Type == ArgError {
  2783. return n
  2784. }
  2785. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2786. if multiple.Type == ArgError {
  2787. return multiple
  2788. }
  2789. if multiple.Number == 0 {
  2790. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2791. }
  2792. if multiple.Number < 0 && n.Number > 0 ||
  2793. multiple.Number > 0 && n.Number < 0 {
  2794. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2795. }
  2796. number, res := math.Modf(n.Number / multiple.Number)
  2797. if math.Trunc(res+0.5) > 0 {
  2798. number++
  2799. }
  2800. return newNumberFormulaArg(number * multiple.Number)
  2801. }
  2802. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2803. // supplied values to the product of factorials of those values. The syntax of
  2804. // the function is:
  2805. //
  2806. // MULTINOMIAL(number1,[number2],...)
  2807. //
  2808. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2809. val, num, denom := 0.0, 0.0, 1.0
  2810. var err error
  2811. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2812. token := arg.Value.(formulaArg)
  2813. switch token.Type {
  2814. case ArgString:
  2815. if token.String == "" {
  2816. continue
  2817. }
  2818. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2819. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2820. }
  2821. case ArgNumber:
  2822. val = token.Number
  2823. }
  2824. num += val
  2825. denom *= fact(val)
  2826. }
  2827. return newNumberFormulaArg(fact(num) / denom)
  2828. }
  2829. // MUNIT function returns the unit matrix for a specified dimension. The
  2830. // syntax of the function is:
  2831. //
  2832. // MUNIT(dimension)
  2833. //
  2834. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2835. if argsList.Len() != 1 {
  2836. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2837. }
  2838. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2839. if dimension.Type == ArgError || dimension.Number < 0 {
  2840. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2841. }
  2842. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2843. for i := 0; i < int(dimension.Number); i++ {
  2844. row := make([]formulaArg, int(dimension.Number))
  2845. for j := 0; j < int(dimension.Number); j++ {
  2846. if i == j {
  2847. row[j] = newNumberFormulaArg(1.0)
  2848. } else {
  2849. row[j] = newNumberFormulaArg(0.0)
  2850. }
  2851. }
  2852. matrix = append(matrix, row)
  2853. }
  2854. return newMatrixFormulaArg(matrix)
  2855. }
  2856. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2857. // number up and a negative number down), to the next odd number. The syntax
  2858. // of the function is:
  2859. //
  2860. // ODD(number)
  2861. //
  2862. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2863. if argsList.Len() != 1 {
  2864. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2865. }
  2866. number := argsList.Back().Value.(formulaArg).ToNumber()
  2867. if number.Type == ArgError {
  2868. return number
  2869. }
  2870. if number.Number == 0 {
  2871. return newNumberFormulaArg(1)
  2872. }
  2873. sign := math.Signbit(number.Number)
  2874. m, frac := math.Modf((number.Number - 1) / 2)
  2875. val := m*2 + 1
  2876. if frac != 0 {
  2877. if !sign {
  2878. val += 2
  2879. } else {
  2880. val -= 2
  2881. }
  2882. }
  2883. return newNumberFormulaArg(val)
  2884. }
  2885. // PI function returns the value of the mathematical constant π (pi), accurate
  2886. // to 15 digits (14 decimal places). The syntax of the function is:
  2887. //
  2888. // PI()
  2889. //
  2890. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2891. if argsList.Len() != 0 {
  2892. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2893. }
  2894. return newNumberFormulaArg(math.Pi)
  2895. }
  2896. // POWER function calculates a given number, raised to a supplied power.
  2897. // The syntax of the function is:
  2898. //
  2899. // POWER(number,power)
  2900. //
  2901. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2902. if argsList.Len() != 2 {
  2903. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2904. }
  2905. x := argsList.Front().Value.(formulaArg).ToNumber()
  2906. if x.Type == ArgError {
  2907. return x
  2908. }
  2909. y := argsList.Back().Value.(formulaArg).ToNumber()
  2910. if y.Type == ArgError {
  2911. return y
  2912. }
  2913. if x.Number == 0 && y.Number == 0 {
  2914. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2915. }
  2916. if x.Number == 0 && y.Number < 0 {
  2917. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2918. }
  2919. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2920. }
  2921. // PRODUCT function returns the product (multiplication) of a supplied set of
  2922. // numerical values. The syntax of the function is:
  2923. //
  2924. // PRODUCT(number1,[number2],...)
  2925. //
  2926. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2927. val, product := 0.0, 1.0
  2928. var err error
  2929. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2930. token := arg.Value.(formulaArg)
  2931. switch token.Type {
  2932. case ArgUnknown:
  2933. continue
  2934. case ArgString:
  2935. if token.String == "" {
  2936. continue
  2937. }
  2938. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2939. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2940. }
  2941. product = product * val
  2942. case ArgNumber:
  2943. product = product * token.Number
  2944. case ArgMatrix:
  2945. for _, row := range token.Matrix {
  2946. for _, value := range row {
  2947. if value.String == "" {
  2948. continue
  2949. }
  2950. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2951. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2952. }
  2953. product = product * val
  2954. }
  2955. }
  2956. }
  2957. }
  2958. return newNumberFormulaArg(product)
  2959. }
  2960. // QUOTIENT function returns the integer portion of a division between two
  2961. // supplied numbers. The syntax of the function is:
  2962. //
  2963. // QUOTIENT(numerator,denominator)
  2964. //
  2965. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2966. if argsList.Len() != 2 {
  2967. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2968. }
  2969. x := argsList.Front().Value.(formulaArg).ToNumber()
  2970. if x.Type == ArgError {
  2971. return x
  2972. }
  2973. y := argsList.Back().Value.(formulaArg).ToNumber()
  2974. if y.Type == ArgError {
  2975. return y
  2976. }
  2977. if y.Number == 0 {
  2978. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2979. }
  2980. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2981. }
  2982. // RADIANS function converts radians into degrees. The syntax of the function is:
  2983. //
  2984. // RADIANS(angle)
  2985. //
  2986. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2987. if argsList.Len() != 1 {
  2988. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2989. }
  2990. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2991. if angle.Type == ArgError {
  2992. return angle
  2993. }
  2994. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2995. }
  2996. // RAND function generates a random real number between 0 and 1. The syntax of
  2997. // the function is:
  2998. //
  2999. // RAND()
  3000. //
  3001. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  3002. if argsList.Len() != 0 {
  3003. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  3004. }
  3005. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  3006. }
  3007. // RANDBETWEEN function generates a random integer between two supplied
  3008. // integers. The syntax of the function is:
  3009. //
  3010. // RANDBETWEEN(bottom,top)
  3011. //
  3012. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  3013. if argsList.Len() != 2 {
  3014. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  3015. }
  3016. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  3017. if bottom.Type == ArgError {
  3018. return bottom
  3019. }
  3020. top := argsList.Back().Value.(formulaArg).ToNumber()
  3021. if top.Type == ArgError {
  3022. return top
  3023. }
  3024. if top.Number < bottom.Number {
  3025. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3026. }
  3027. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  3028. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  3029. }
  3030. // romanNumerals defined a numeral system that originated in ancient Rome and
  3031. // remained the usual way of writing numbers throughout Europe well into the
  3032. // Late Middle Ages.
  3033. type romanNumerals struct {
  3034. n float64
  3035. s string
  3036. }
  3037. var romanTable = [][]romanNumerals{
  3038. {
  3039. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  3040. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3041. },
  3042. {
  3043. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  3044. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3045. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3046. },
  3047. {
  3048. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  3049. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  3050. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3051. },
  3052. {
  3053. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  3054. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  3055. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  3056. {5, "V"}, {4, "IV"}, {1, "I"},
  3057. },
  3058. {
  3059. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  3060. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  3061. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3062. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3063. },
  3064. }
  3065. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  3066. // integer, the function returns a text string depicting the roman numeral
  3067. // form of the number. The syntax of the function is:
  3068. //
  3069. // ROMAN(number,[form])
  3070. //
  3071. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  3072. if argsList.Len() == 0 {
  3073. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  3074. }
  3075. if argsList.Len() > 2 {
  3076. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  3077. }
  3078. var form int
  3079. number := argsList.Front().Value.(formulaArg).ToNumber()
  3080. if number.Type == ArgError {
  3081. return number
  3082. }
  3083. if argsList.Len() > 1 {
  3084. f := argsList.Back().Value.(formulaArg).ToNumber()
  3085. if f.Type == ArgError {
  3086. return f
  3087. }
  3088. form = int(f.Number)
  3089. if form < 0 {
  3090. form = 0
  3091. } else if form > 4 {
  3092. form = 4
  3093. }
  3094. }
  3095. decimalTable := romanTable[0]
  3096. switch form {
  3097. case 1:
  3098. decimalTable = romanTable[1]
  3099. case 2:
  3100. decimalTable = romanTable[2]
  3101. case 3:
  3102. decimalTable = romanTable[3]
  3103. case 4:
  3104. decimalTable = romanTable[4]
  3105. }
  3106. val := math.Trunc(number.Number)
  3107. buf := bytes.Buffer{}
  3108. for _, r := range decimalTable {
  3109. for val >= r.n {
  3110. buf.WriteString(r.s)
  3111. val -= r.n
  3112. }
  3113. }
  3114. return newStringFormulaArg(buf.String())
  3115. }
  3116. type roundMode byte
  3117. const (
  3118. closest roundMode = iota
  3119. down
  3120. up
  3121. )
  3122. // round rounds a supplied number up or down.
  3123. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3124. var significance float64
  3125. if digits > 0 {
  3126. significance = math.Pow(1/10.0, digits)
  3127. } else {
  3128. significance = math.Pow(10.0, -digits)
  3129. }
  3130. val, res := math.Modf(number / significance)
  3131. switch mode {
  3132. case closest:
  3133. const eps = 0.499999999
  3134. if res >= eps {
  3135. val++
  3136. } else if res <= -eps {
  3137. val--
  3138. }
  3139. case down:
  3140. case up:
  3141. if res > 0 {
  3142. val++
  3143. } else if res < 0 {
  3144. val--
  3145. }
  3146. }
  3147. return val * significance
  3148. }
  3149. // ROUND function rounds a supplied number up or down, to a specified number
  3150. // of decimal places. The syntax of the function is:
  3151. //
  3152. // ROUND(number,num_digits)
  3153. //
  3154. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3155. if argsList.Len() != 2 {
  3156. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3157. }
  3158. number := argsList.Front().Value.(formulaArg).ToNumber()
  3159. if number.Type == ArgError {
  3160. return number
  3161. }
  3162. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3163. if digits.Type == ArgError {
  3164. return digits
  3165. }
  3166. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3167. }
  3168. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3169. // specified number of decimal places. The syntax of the function is:
  3170. //
  3171. // ROUNDDOWN(number,num_digits)
  3172. //
  3173. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3174. if argsList.Len() != 2 {
  3175. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3176. }
  3177. number := argsList.Front().Value.(formulaArg).ToNumber()
  3178. if number.Type == ArgError {
  3179. return number
  3180. }
  3181. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3182. if digits.Type == ArgError {
  3183. return digits
  3184. }
  3185. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3186. }
  3187. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3188. // specified number of decimal places. The syntax of the function is:
  3189. //
  3190. // ROUNDUP(number,num_digits)
  3191. //
  3192. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3193. if argsList.Len() != 2 {
  3194. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3195. }
  3196. number := argsList.Front().Value.(formulaArg).ToNumber()
  3197. if number.Type == ArgError {
  3198. return number
  3199. }
  3200. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3201. if digits.Type == ArgError {
  3202. return digits
  3203. }
  3204. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3205. }
  3206. // SEC function calculates the secant of a given angle. The syntax of the
  3207. // function is:
  3208. //
  3209. // SEC(number)
  3210. //
  3211. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3212. if argsList.Len() != 1 {
  3213. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3214. }
  3215. number := argsList.Front().Value.(formulaArg).ToNumber()
  3216. if number.Type == ArgError {
  3217. return number
  3218. }
  3219. return newNumberFormulaArg(math.Cos(number.Number))
  3220. }
  3221. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3222. // The syntax of the function is:
  3223. //
  3224. // SECH(number)
  3225. //
  3226. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3227. if argsList.Len() != 1 {
  3228. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3229. }
  3230. number := argsList.Front().Value.(formulaArg).ToNumber()
  3231. if number.Type == ArgError {
  3232. return number
  3233. }
  3234. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3235. }
  3236. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3237. // number. I.e. if the number is positive, the Sign function returns +1, if
  3238. // the number is negative, the function returns -1 and if the number is 0
  3239. // (zero), the function returns 0. The syntax of the function is:
  3240. //
  3241. // SIGN(number)
  3242. //
  3243. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3244. if argsList.Len() != 1 {
  3245. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3246. }
  3247. val := argsList.Front().Value.(formulaArg).ToNumber()
  3248. if val.Type == ArgError {
  3249. return val
  3250. }
  3251. if val.Number < 0 {
  3252. return newNumberFormulaArg(-1)
  3253. }
  3254. if val.Number > 0 {
  3255. return newNumberFormulaArg(1)
  3256. }
  3257. return newNumberFormulaArg(0)
  3258. }
  3259. // SIN function calculates the sine of a given angle. The syntax of the
  3260. // function is:
  3261. //
  3262. // SIN(number)
  3263. //
  3264. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3265. if argsList.Len() != 1 {
  3266. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3267. }
  3268. number := argsList.Front().Value.(formulaArg).ToNumber()
  3269. if number.Type == ArgError {
  3270. return number
  3271. }
  3272. return newNumberFormulaArg(math.Sin(number.Number))
  3273. }
  3274. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3275. // The syntax of the function is:
  3276. //
  3277. // SINH(number)
  3278. //
  3279. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3280. if argsList.Len() != 1 {
  3281. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3282. }
  3283. number := argsList.Front().Value.(formulaArg).ToNumber()
  3284. if number.Type == ArgError {
  3285. return number
  3286. }
  3287. return newNumberFormulaArg(math.Sinh(number.Number))
  3288. }
  3289. // SQRT function calculates the positive square root of a supplied number. The
  3290. // syntax of the function is:
  3291. //
  3292. // SQRT(number)
  3293. //
  3294. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3295. if argsList.Len() != 1 {
  3296. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3297. }
  3298. value := argsList.Front().Value.(formulaArg).ToNumber()
  3299. if value.Type == ArgError {
  3300. return value
  3301. }
  3302. if value.Number < 0 {
  3303. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3304. }
  3305. return newNumberFormulaArg(math.Sqrt(value.Number))
  3306. }
  3307. // SQRTPI function returns the square root of a supplied number multiplied by
  3308. // the mathematical constant, π. The syntax of the function is:
  3309. //
  3310. // SQRTPI(number)
  3311. //
  3312. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3313. if argsList.Len() != 1 {
  3314. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3315. }
  3316. number := argsList.Front().Value.(formulaArg).ToNumber()
  3317. if number.Type == ArgError {
  3318. return number
  3319. }
  3320. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3321. }
  3322. // STDEV function calculates the sample standard deviation of a supplied set
  3323. // of values. The syntax of the function is:
  3324. //
  3325. // STDEV(number1,[number2],...)
  3326. //
  3327. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3328. if argsList.Len() < 1 {
  3329. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3330. }
  3331. return fn.stdev(false, argsList)
  3332. }
  3333. // STDEVdotS function calculates the sample standard deviation of a supplied
  3334. // set of values. The syntax of the function is:
  3335. //
  3336. // STDEV.S(number1,[number2],...)
  3337. //
  3338. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3339. if argsList.Len() < 1 {
  3340. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3341. }
  3342. return fn.stdev(false, argsList)
  3343. }
  3344. // STDEVA function estimates standard deviation based on a sample. The
  3345. // standard deviation is a measure of how widely values are dispersed from
  3346. // the average value (the mean). The syntax of the function is:
  3347. //
  3348. // STDEVA(number1,[number2],...)
  3349. //
  3350. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3351. if argsList.Len() < 1 {
  3352. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3353. }
  3354. return fn.stdev(true, argsList)
  3355. }
  3356. // stdev is an implementation of the formula function STDEV and STDEVA.
  3357. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3358. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3359. if result == -1 {
  3360. result = math.Pow((n.Number - m.Number), 2)
  3361. } else {
  3362. result += math.Pow((n.Number - m.Number), 2)
  3363. }
  3364. count++
  3365. return result, count
  3366. }
  3367. count, result := -1.0, -1.0
  3368. var mean formulaArg
  3369. if stdeva {
  3370. mean = fn.AVERAGEA(argsList)
  3371. } else {
  3372. mean = fn.AVERAGE(argsList)
  3373. }
  3374. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3375. token := arg.Value.(formulaArg)
  3376. switch token.Type {
  3377. case ArgString, ArgNumber:
  3378. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3379. continue
  3380. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3381. num := token.ToBool()
  3382. if num.Type == ArgNumber {
  3383. result, count = pow(result, count, num, mean)
  3384. continue
  3385. }
  3386. } else {
  3387. num := token.ToNumber()
  3388. if num.Type == ArgNumber {
  3389. result, count = pow(result, count, num, mean)
  3390. }
  3391. }
  3392. case ArgList, ArgMatrix:
  3393. for _, row := range token.ToList() {
  3394. if row.Type == ArgNumber || row.Type == ArgString {
  3395. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3396. continue
  3397. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3398. num := row.ToBool()
  3399. if num.Type == ArgNumber {
  3400. result, count = pow(result, count, num, mean)
  3401. continue
  3402. }
  3403. } else {
  3404. num := row.ToNumber()
  3405. if num.Type == ArgNumber {
  3406. result, count = pow(result, count, num, mean)
  3407. }
  3408. }
  3409. }
  3410. }
  3411. }
  3412. }
  3413. if count > 0 && result >= 0 {
  3414. return newNumberFormulaArg(math.Sqrt(result / count))
  3415. }
  3416. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3417. }
  3418. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3419. // the Cumulative Poisson Probability Function for a supplied set of
  3420. // parameters. The syntax of the function is:
  3421. //
  3422. // POISSON.DIST(x,mean,cumulative)
  3423. //
  3424. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3425. if argsList.Len() != 3 {
  3426. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3427. }
  3428. return fn.POISSON(argsList)
  3429. }
  3430. // POISSON function calculates the Poisson Probability Mass Function or the
  3431. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3432. // The syntax of the function is:
  3433. //
  3434. // POISSON(x,mean,cumulative)
  3435. //
  3436. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3437. if argsList.Len() != 3 {
  3438. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3439. }
  3440. var x, mean, cumulative formulaArg
  3441. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3442. return x
  3443. }
  3444. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3445. return mean
  3446. }
  3447. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3448. return cumulative
  3449. }
  3450. if x.Number < 0 || mean.Number <= 0 {
  3451. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3452. }
  3453. if cumulative.Number == 1 {
  3454. summer := 0.0
  3455. floor := math.Floor(x.Number)
  3456. for i := 0; i <= int(floor); i++ {
  3457. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3458. }
  3459. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3460. }
  3461. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3462. }
  3463. // SUM function adds together a supplied set of numbers and returns the sum of
  3464. // these values. The syntax of the function is:
  3465. //
  3466. // SUM(number1,[number2],...)
  3467. //
  3468. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3469. var sum float64
  3470. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3471. token := arg.Value.(formulaArg)
  3472. switch token.Type {
  3473. case ArgUnknown:
  3474. continue
  3475. case ArgString:
  3476. if num := token.ToNumber(); num.Type == ArgNumber {
  3477. sum += num.Number
  3478. }
  3479. case ArgNumber:
  3480. sum += token.Number
  3481. case ArgMatrix:
  3482. for _, row := range token.Matrix {
  3483. for _, value := range row {
  3484. if num := value.ToNumber(); num.Type == ArgNumber {
  3485. sum += num.Number
  3486. }
  3487. }
  3488. }
  3489. }
  3490. }
  3491. return newNumberFormulaArg(sum)
  3492. }
  3493. // SUMIF function finds the values in a supplied array, that satisfy a given
  3494. // criteria, and returns the sum of the corresponding values in a second
  3495. // supplied array. The syntax of the function is:
  3496. //
  3497. // SUMIF(range,criteria,[sum_range])
  3498. //
  3499. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3500. if argsList.Len() < 2 {
  3501. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3502. }
  3503. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3504. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3505. var sumRange [][]formulaArg
  3506. if argsList.Len() == 3 {
  3507. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3508. }
  3509. var sum, val float64
  3510. var err error
  3511. for rowIdx, row := range rangeMtx {
  3512. for colIdx, col := range row {
  3513. var ok bool
  3514. fromVal := col.String
  3515. if col.String == "" {
  3516. continue
  3517. }
  3518. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3519. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3520. }
  3521. if ok {
  3522. if argsList.Len() == 3 {
  3523. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3524. continue
  3525. }
  3526. fromVal = sumRange[rowIdx][colIdx].String
  3527. }
  3528. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3529. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3530. }
  3531. sum += val
  3532. }
  3533. }
  3534. }
  3535. return newNumberFormulaArg(sum)
  3536. }
  3537. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3538. // syntax of the function is:
  3539. //
  3540. // SUMSQ(number1,[number2],...)
  3541. //
  3542. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3543. var val, sq float64
  3544. var err error
  3545. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3546. token := arg.Value.(formulaArg)
  3547. switch token.Type {
  3548. case ArgString:
  3549. if token.String == "" {
  3550. continue
  3551. }
  3552. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3553. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3554. }
  3555. sq += val * val
  3556. case ArgNumber:
  3557. sq += token.Number
  3558. case ArgMatrix:
  3559. for _, row := range token.Matrix {
  3560. for _, value := range row {
  3561. if value.String == "" {
  3562. continue
  3563. }
  3564. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3565. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3566. }
  3567. sq += val * val
  3568. }
  3569. }
  3570. }
  3571. }
  3572. return newNumberFormulaArg(sq)
  3573. }
  3574. // TAN function calculates the tangent of a given angle. The syntax of the
  3575. // function is:
  3576. //
  3577. // TAN(number)
  3578. //
  3579. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3580. if argsList.Len() != 1 {
  3581. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3582. }
  3583. number := argsList.Front().Value.(formulaArg).ToNumber()
  3584. if number.Type == ArgError {
  3585. return number
  3586. }
  3587. return newNumberFormulaArg(math.Tan(number.Number))
  3588. }
  3589. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3590. // number. The syntax of the function is:
  3591. //
  3592. // TANH(number)
  3593. //
  3594. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3595. if argsList.Len() != 1 {
  3596. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3597. }
  3598. number := argsList.Front().Value.(formulaArg).ToNumber()
  3599. if number.Type == ArgError {
  3600. return number
  3601. }
  3602. return newNumberFormulaArg(math.Tanh(number.Number))
  3603. }
  3604. // TRUNC function truncates a supplied number to a specified number of decimal
  3605. // places. The syntax of the function is:
  3606. //
  3607. // TRUNC(number,[number_digits])
  3608. //
  3609. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3610. if argsList.Len() == 0 {
  3611. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3612. }
  3613. var digits, adjust, rtrim float64
  3614. var err error
  3615. number := argsList.Front().Value.(formulaArg).ToNumber()
  3616. if number.Type == ArgError {
  3617. return number
  3618. }
  3619. if argsList.Len() > 1 {
  3620. d := argsList.Back().Value.(formulaArg).ToNumber()
  3621. if d.Type == ArgError {
  3622. return d
  3623. }
  3624. digits = d.Number
  3625. digits = math.Floor(digits)
  3626. }
  3627. adjust = math.Pow(10, digits)
  3628. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3629. if x != 0 {
  3630. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3631. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3632. }
  3633. }
  3634. if (digits > 0) && (rtrim < adjust/10) {
  3635. return newNumberFormulaArg(number.Number)
  3636. }
  3637. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3638. }
  3639. // Statistical Functions
  3640. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3641. // The syntax of the function is:
  3642. //
  3643. // AVERAGE(number1,[number2],...)
  3644. //
  3645. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3646. args := []formulaArg{}
  3647. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3648. args = append(args, arg.Value.(formulaArg))
  3649. }
  3650. count, sum := fn.countSum(false, args)
  3651. if count == 0 {
  3652. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3653. }
  3654. return newNumberFormulaArg(sum / count)
  3655. }
  3656. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3657. // with text cell and zero values. The syntax of the function is:
  3658. //
  3659. // AVERAGEA(number1,[number2],...)
  3660. //
  3661. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3662. args := []formulaArg{}
  3663. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3664. args = append(args, arg.Value.(formulaArg))
  3665. }
  3666. count, sum := fn.countSum(true, args)
  3667. if count == 0 {
  3668. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3669. }
  3670. return newNumberFormulaArg(sum / count)
  3671. }
  3672. // countSum get count and sum for a formula arguments array.
  3673. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3674. for _, arg := range args {
  3675. switch arg.Type {
  3676. case ArgNumber:
  3677. if countText || !arg.Boolean {
  3678. sum += arg.Number
  3679. count++
  3680. }
  3681. case ArgString:
  3682. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3683. continue
  3684. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3685. num := arg.ToBool()
  3686. if num.Type == ArgNumber {
  3687. count++
  3688. sum += num.Number
  3689. continue
  3690. }
  3691. }
  3692. num := arg.ToNumber()
  3693. if countText && num.Type == ArgError && arg.String != "" {
  3694. count++
  3695. }
  3696. if num.Type == ArgNumber {
  3697. sum += num.Number
  3698. count++
  3699. }
  3700. case ArgList, ArgMatrix:
  3701. cnt, summary := fn.countSum(countText, arg.ToList())
  3702. sum += summary
  3703. count += cnt
  3704. }
  3705. }
  3706. return
  3707. }
  3708. // COUNT function returns the count of numeric values in a supplied set of
  3709. // cells or values. This count includes both numbers and dates. The syntax of
  3710. // the function is:
  3711. //
  3712. // COUNT(value1,[value2],...)
  3713. //
  3714. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3715. var count int
  3716. for token := argsList.Front(); token != nil; token = token.Next() {
  3717. arg := token.Value.(formulaArg)
  3718. switch arg.Type {
  3719. case ArgString:
  3720. if arg.ToNumber().Type != ArgError {
  3721. count++
  3722. }
  3723. case ArgNumber:
  3724. count++
  3725. case ArgMatrix:
  3726. for _, row := range arg.Matrix {
  3727. for _, value := range row {
  3728. if value.ToNumber().Type != ArgError {
  3729. count++
  3730. }
  3731. }
  3732. }
  3733. }
  3734. }
  3735. return newNumberFormulaArg(float64(count))
  3736. }
  3737. // COUNTA function returns the number of non-blanks within a supplied set of
  3738. // cells or values. The syntax of the function is:
  3739. //
  3740. // COUNTA(value1,[value2],...)
  3741. //
  3742. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3743. var count int
  3744. for token := argsList.Front(); token != nil; token = token.Next() {
  3745. arg := token.Value.(formulaArg)
  3746. switch arg.Type {
  3747. case ArgString:
  3748. if arg.String != "" {
  3749. count++
  3750. }
  3751. case ArgNumber:
  3752. count++
  3753. case ArgMatrix:
  3754. for _, row := range arg.ToList() {
  3755. switch row.Type {
  3756. case ArgString:
  3757. if row.String != "" {
  3758. count++
  3759. }
  3760. case ArgNumber:
  3761. count++
  3762. }
  3763. }
  3764. }
  3765. }
  3766. return newNumberFormulaArg(float64(count))
  3767. }
  3768. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3769. // The syntax of the function is:
  3770. //
  3771. // COUNTBLANK(range)
  3772. //
  3773. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3774. if argsList.Len() != 1 {
  3775. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3776. }
  3777. var count int
  3778. token := argsList.Front().Value.(formulaArg)
  3779. switch token.Type {
  3780. case ArgString:
  3781. if token.String == "" {
  3782. count++
  3783. }
  3784. case ArgList, ArgMatrix:
  3785. for _, row := range token.ToList() {
  3786. switch row.Type {
  3787. case ArgString:
  3788. if row.String == "" {
  3789. count++
  3790. }
  3791. case ArgEmpty:
  3792. count++
  3793. }
  3794. }
  3795. case ArgEmpty:
  3796. count++
  3797. }
  3798. return newNumberFormulaArg(float64(count))
  3799. }
  3800. // FISHER function calculates the Fisher Transformation for a supplied value.
  3801. // The syntax of the function is:
  3802. //
  3803. // FISHER(x)
  3804. //
  3805. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3806. if argsList.Len() != 1 {
  3807. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3808. }
  3809. token := argsList.Front().Value.(formulaArg)
  3810. switch token.Type {
  3811. case ArgString:
  3812. arg := token.ToNumber()
  3813. if arg.Type == ArgNumber {
  3814. if arg.Number <= -1 || arg.Number >= 1 {
  3815. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3816. }
  3817. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3818. }
  3819. case ArgNumber:
  3820. if token.Number <= -1 || token.Number >= 1 {
  3821. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3822. }
  3823. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3824. }
  3825. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3826. }
  3827. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3828. // returns a value between -1 and +1. The syntax of the function is:
  3829. //
  3830. // FISHERINV(y)
  3831. //
  3832. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3833. if argsList.Len() != 1 {
  3834. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3835. }
  3836. token := argsList.Front().Value.(formulaArg)
  3837. switch token.Type {
  3838. case ArgString:
  3839. arg := token.ToNumber()
  3840. if arg.Type == ArgNumber {
  3841. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3842. }
  3843. case ArgNumber:
  3844. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3845. }
  3846. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3847. }
  3848. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3849. // specified number, n. The syntax of the function is:
  3850. //
  3851. // GAMMA(number)
  3852. //
  3853. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3854. if argsList.Len() != 1 {
  3855. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3856. }
  3857. token := argsList.Front().Value.(formulaArg)
  3858. switch token.Type {
  3859. case ArgString:
  3860. arg := token.ToNumber()
  3861. if arg.Type == ArgNumber {
  3862. if arg.Number <= 0 {
  3863. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3864. }
  3865. return newNumberFormulaArg(math.Gamma(arg.Number))
  3866. }
  3867. case ArgNumber:
  3868. if token.Number <= 0 {
  3869. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3870. }
  3871. return newNumberFormulaArg(math.Gamma(token.Number))
  3872. }
  3873. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3874. }
  3875. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3876. // (n). The syntax of the function is:
  3877. //
  3878. // GAMMALN(x)
  3879. //
  3880. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3881. if argsList.Len() != 1 {
  3882. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3883. }
  3884. token := argsList.Front().Value.(formulaArg)
  3885. switch token.Type {
  3886. case ArgString:
  3887. arg := token.ToNumber()
  3888. if arg.Type == ArgNumber {
  3889. if arg.Number <= 0 {
  3890. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3891. }
  3892. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3893. }
  3894. case ArgNumber:
  3895. if token.Number <= 0 {
  3896. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3897. }
  3898. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3899. }
  3900. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3901. }
  3902. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  3903. // The syntax of the function is:
  3904. //
  3905. // HARMEAN(number1,[number2],...)
  3906. //
  3907. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  3908. if argsList.Len() < 1 {
  3909. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  3910. }
  3911. if min := fn.MIN(argsList); min.Number < 0 {
  3912. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3913. }
  3914. number, val, cnt := 0.0, 0.0, 0.0
  3915. for token := argsList.Front(); token != nil; token = token.Next() {
  3916. arg := token.Value.(formulaArg)
  3917. switch arg.Type {
  3918. case ArgString:
  3919. num := arg.ToNumber()
  3920. if num.Type != ArgNumber {
  3921. continue
  3922. }
  3923. number = num.Number
  3924. case ArgNumber:
  3925. number = arg.Number
  3926. }
  3927. if number <= 0 {
  3928. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3929. }
  3930. val += (1 / number)
  3931. cnt++
  3932. }
  3933. return newNumberFormulaArg(1 / (val / cnt))
  3934. }
  3935. // KURT function calculates the kurtosis of a supplied set of values. The
  3936. // syntax of the function is:
  3937. //
  3938. // KURT(number1,[number2],...)
  3939. //
  3940. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3941. if argsList.Len() < 1 {
  3942. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3943. }
  3944. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3945. if stdev.Number > 0 {
  3946. count, summer := 0.0, 0.0
  3947. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3948. token := arg.Value.(formulaArg)
  3949. switch token.Type {
  3950. case ArgString, ArgNumber:
  3951. num := token.ToNumber()
  3952. if num.Type == ArgError {
  3953. continue
  3954. }
  3955. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3956. count++
  3957. case ArgList, ArgMatrix:
  3958. for _, row := range token.ToList() {
  3959. if row.Type == ArgNumber || row.Type == ArgString {
  3960. num := row.ToNumber()
  3961. if num.Type == ArgError {
  3962. continue
  3963. }
  3964. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3965. count++
  3966. }
  3967. }
  3968. }
  3969. }
  3970. if count > 3 {
  3971. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3972. }
  3973. }
  3974. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3975. }
  3976. // NORMdotDIST function calculates the Normal Probability Density Function or
  3977. // the Cumulative Normal Distribution. Function for a supplied set of
  3978. // parameters. The syntax of the function is:
  3979. //
  3980. // NORM.DIST(x,mean,standard_dev,cumulative)
  3981. //
  3982. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  3983. if argsList.Len() != 4 {
  3984. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  3985. }
  3986. return fn.NORMDIST(argsList)
  3987. }
  3988. // NORMDIST function calculates the Normal Probability Density Function or the
  3989. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  3990. // The syntax of the function is:
  3991. //
  3992. // NORMDIST(x,mean,standard_dev,cumulative)
  3993. //
  3994. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  3995. if argsList.Len() != 4 {
  3996. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  3997. }
  3998. var x, mean, stdDev, cumulative formulaArg
  3999. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  4000. return x
  4001. }
  4002. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4003. return mean
  4004. }
  4005. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4006. return stdDev
  4007. }
  4008. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  4009. return cumulative
  4010. }
  4011. if stdDev.Number < 0 {
  4012. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4013. }
  4014. if cumulative.Number == 1 {
  4015. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  4016. }
  4017. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  4018. }
  4019. // NORMdotINV function calculates the inverse of the Cumulative Normal
  4020. // Distribution Function for a supplied value of x, and a supplied
  4021. // distribution mean & standard deviation. The syntax of the function is:
  4022. //
  4023. // NORM.INV(probability,mean,standard_dev)
  4024. //
  4025. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  4026. if argsList.Len() != 3 {
  4027. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  4028. }
  4029. return fn.NORMINV(argsList)
  4030. }
  4031. // NORMINV function calculates the inverse of the Cumulative Normal
  4032. // Distribution Function for a supplied value of x, and a supplied
  4033. // distribution mean & standard deviation. The syntax of the function is:
  4034. //
  4035. // NORMINV(probability,mean,standard_dev)
  4036. //
  4037. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  4038. if argsList.Len() != 3 {
  4039. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  4040. }
  4041. var prob, mean, stdDev formulaArg
  4042. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  4043. return prob
  4044. }
  4045. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4046. return mean
  4047. }
  4048. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4049. return stdDev
  4050. }
  4051. if prob.Number < 0 || prob.Number > 1 {
  4052. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4053. }
  4054. if stdDev.Number < 0 {
  4055. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4056. }
  4057. inv, err := norminv(prob.Number)
  4058. if err != nil {
  4059. return newErrorFormulaArg(err.Error(), err.Error())
  4060. }
  4061. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  4062. }
  4063. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  4064. // Distribution Function for a supplied value. The syntax of the function
  4065. // is:
  4066. //
  4067. // NORM.S.DIST(z)
  4068. //
  4069. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  4070. if argsList.Len() != 2 {
  4071. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  4072. }
  4073. args := list.New().Init()
  4074. args.PushBack(argsList.Front().Value.(formulaArg))
  4075. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4076. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4077. args.PushBack(argsList.Back().Value.(formulaArg))
  4078. return fn.NORMDIST(args)
  4079. }
  4080. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  4081. // Function for a supplied value. The syntax of the function is:
  4082. //
  4083. // NORMSDIST(z)
  4084. //
  4085. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4086. if argsList.Len() != 1 {
  4087. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4088. }
  4089. args := list.New().Init()
  4090. args.PushBack(argsList.Front().Value.(formulaArg))
  4091. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4092. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4093. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4094. return fn.NORMDIST(args)
  4095. }
  4096. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4097. // Distribution Function for a supplied probability value. The syntax of the
  4098. // function is:
  4099. //
  4100. // NORMSINV(probability)
  4101. //
  4102. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4103. if argsList.Len() != 1 {
  4104. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4105. }
  4106. args := list.New().Init()
  4107. args.PushBack(argsList.Front().Value.(formulaArg))
  4108. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4109. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4110. return fn.NORMINV(args)
  4111. }
  4112. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4113. // Cumulative Distribution Function for a supplied probability value. The
  4114. // syntax of the function is:
  4115. //
  4116. // NORM.S.INV(probability)
  4117. //
  4118. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4119. if argsList.Len() != 1 {
  4120. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4121. }
  4122. args := list.New().Init()
  4123. args.PushBack(argsList.Front().Value.(formulaArg))
  4124. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4125. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4126. return fn.NORMINV(args)
  4127. }
  4128. // norminv returns the inverse of the normal cumulative distribution for the
  4129. // specified value.
  4130. func norminv(p float64) (float64, error) {
  4131. a := map[int]float64{
  4132. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4133. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4134. }
  4135. b := map[int]float64{
  4136. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4137. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4138. }
  4139. c := map[int]float64{
  4140. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4141. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4142. }
  4143. d := map[int]float64{
  4144. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4145. 4: 3.754408661907416e+00,
  4146. }
  4147. pLow := 0.02425 // Use lower region approx. below this
  4148. pHigh := 1 - pLow // Use upper region approx. above this
  4149. if 0 < p && p < pLow {
  4150. // Rational approximation for lower region.
  4151. q := math.Sqrt(-2 * math.Log(p))
  4152. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4153. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4154. } else if pLow <= p && p <= pHigh {
  4155. // Rational approximation for central region.
  4156. q := p - 0.5
  4157. r := q * q
  4158. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4159. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4160. } else if pHigh < p && p < 1 {
  4161. // Rational approximation for upper region.
  4162. q := math.Sqrt(-2 * math.Log(1-p))
  4163. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4164. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4165. }
  4166. return 0, errors.New(formulaErrorNUM)
  4167. }
  4168. // kth is an implementation of the formula function LARGE and SMALL.
  4169. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4170. if argsList.Len() != 2 {
  4171. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4172. }
  4173. array := argsList.Front().Value.(formulaArg).ToList()
  4174. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4175. if kArg.Type != ArgNumber {
  4176. return kArg
  4177. }
  4178. k := int(kArg.Number)
  4179. if k < 1 {
  4180. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4181. }
  4182. data := []float64{}
  4183. for _, arg := range array {
  4184. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4185. data = append(data, numArg.Number)
  4186. }
  4187. }
  4188. if len(data) < k {
  4189. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4190. }
  4191. sort.Float64s(data)
  4192. if name == "LARGE" {
  4193. return newNumberFormulaArg(data[len(data)-k])
  4194. }
  4195. return newNumberFormulaArg(data[k-1])
  4196. }
  4197. // LARGE function returns the k'th largest value from an array of numeric
  4198. // values. The syntax of the function is:
  4199. //
  4200. // LARGE(array,k)
  4201. //
  4202. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4203. return fn.kth("LARGE", argsList)
  4204. }
  4205. // MAX function returns the largest value from a supplied set of numeric
  4206. // values. The syntax of the function is:
  4207. //
  4208. // MAX(number1,[number2],...)
  4209. //
  4210. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4211. if argsList.Len() == 0 {
  4212. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4213. }
  4214. return fn.max(false, argsList)
  4215. }
  4216. // MAXA function returns the largest value from a supplied set of numeric
  4217. // values, while counting text and the logical value FALSE as the value 0 and
  4218. // counting the logical value TRUE as the value 1. The syntax of the function
  4219. // is:
  4220. //
  4221. // MAXA(number1,[number2],...)
  4222. //
  4223. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4224. if argsList.Len() == 0 {
  4225. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4226. }
  4227. return fn.max(true, argsList)
  4228. }
  4229. // max is an implementation of the formula function MAX and MAXA.
  4230. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4231. max := -math.MaxFloat64
  4232. for token := argsList.Front(); token != nil; token = token.Next() {
  4233. arg := token.Value.(formulaArg)
  4234. switch arg.Type {
  4235. case ArgString:
  4236. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4237. continue
  4238. } else {
  4239. num := arg.ToBool()
  4240. if num.Type == ArgNumber && num.Number > max {
  4241. max = num.Number
  4242. continue
  4243. }
  4244. }
  4245. num := arg.ToNumber()
  4246. if num.Type != ArgError && num.Number > max {
  4247. max = num.Number
  4248. }
  4249. case ArgNumber:
  4250. if arg.Number > max {
  4251. max = arg.Number
  4252. }
  4253. case ArgList, ArgMatrix:
  4254. for _, row := range arg.ToList() {
  4255. switch row.Type {
  4256. case ArgString:
  4257. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4258. continue
  4259. } else {
  4260. num := row.ToBool()
  4261. if num.Type == ArgNumber && num.Number > max {
  4262. max = num.Number
  4263. continue
  4264. }
  4265. }
  4266. num := row.ToNumber()
  4267. if num.Type != ArgError && num.Number > max {
  4268. max = num.Number
  4269. }
  4270. case ArgNumber:
  4271. if row.Number > max {
  4272. max = row.Number
  4273. }
  4274. }
  4275. }
  4276. case ArgError:
  4277. return arg
  4278. }
  4279. }
  4280. if max == -math.MaxFloat64 {
  4281. max = 0
  4282. }
  4283. return newNumberFormulaArg(max)
  4284. }
  4285. // MEDIAN function returns the statistical median (the middle value) of a list
  4286. // of supplied numbers. The syntax of the function is:
  4287. //
  4288. // MEDIAN(number1,[number2],...)
  4289. //
  4290. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4291. if argsList.Len() == 0 {
  4292. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4293. }
  4294. var values = []float64{}
  4295. var median, digits float64
  4296. var err error
  4297. for token := argsList.Front(); token != nil; token = token.Next() {
  4298. arg := token.Value.(formulaArg)
  4299. switch arg.Type {
  4300. case ArgString:
  4301. num := arg.ToNumber()
  4302. if num.Type == ArgError {
  4303. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4304. }
  4305. values = append(values, num.Number)
  4306. case ArgNumber:
  4307. values = append(values, arg.Number)
  4308. case ArgMatrix:
  4309. for _, row := range arg.Matrix {
  4310. for _, value := range row {
  4311. if value.String == "" {
  4312. continue
  4313. }
  4314. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4315. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4316. }
  4317. values = append(values, digits)
  4318. }
  4319. }
  4320. }
  4321. }
  4322. sort.Float64s(values)
  4323. if len(values)%2 == 0 {
  4324. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4325. } else {
  4326. median = values[len(values)/2]
  4327. }
  4328. return newNumberFormulaArg(median)
  4329. }
  4330. // MIN function returns the smallest value from a supplied set of numeric
  4331. // values. The syntax of the function is:
  4332. //
  4333. // MIN(number1,[number2],...)
  4334. //
  4335. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4336. if argsList.Len() == 0 {
  4337. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4338. }
  4339. return fn.min(false, argsList)
  4340. }
  4341. // MINA function returns the smallest value from a supplied set of numeric
  4342. // values, while counting text and the logical value FALSE as the value 0 and
  4343. // counting the logical value TRUE as the value 1. The syntax of the function
  4344. // is:
  4345. //
  4346. // MINA(number1,[number2],...)
  4347. //
  4348. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4349. if argsList.Len() == 0 {
  4350. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4351. }
  4352. return fn.min(true, argsList)
  4353. }
  4354. // min is an implementation of the formula function MIN and MINA.
  4355. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4356. min := math.MaxFloat64
  4357. for token := argsList.Front(); token != nil; token = token.Next() {
  4358. arg := token.Value.(formulaArg)
  4359. switch arg.Type {
  4360. case ArgString:
  4361. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4362. continue
  4363. } else {
  4364. num := arg.ToBool()
  4365. if num.Type == ArgNumber && num.Number < min {
  4366. min = num.Number
  4367. continue
  4368. }
  4369. }
  4370. num := arg.ToNumber()
  4371. if num.Type != ArgError && num.Number < min {
  4372. min = num.Number
  4373. }
  4374. case ArgNumber:
  4375. if arg.Number < min {
  4376. min = arg.Number
  4377. }
  4378. case ArgList, ArgMatrix:
  4379. for _, row := range arg.ToList() {
  4380. switch row.Type {
  4381. case ArgString:
  4382. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4383. continue
  4384. } else {
  4385. num := row.ToBool()
  4386. if num.Type == ArgNumber && num.Number < min {
  4387. min = num.Number
  4388. continue
  4389. }
  4390. }
  4391. num := row.ToNumber()
  4392. if num.Type != ArgError && num.Number < min {
  4393. min = num.Number
  4394. }
  4395. case ArgNumber:
  4396. if row.Number < min {
  4397. min = row.Number
  4398. }
  4399. }
  4400. }
  4401. case ArgError:
  4402. return arg
  4403. }
  4404. }
  4405. if min == math.MaxFloat64 {
  4406. min = 0
  4407. }
  4408. return newNumberFormulaArg(min)
  4409. }
  4410. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4411. // which k% of the data values fall) for a supplied range of values and a
  4412. // supplied k. The syntax of the function is:
  4413. //
  4414. // PERCENTILE.INC(array,k)
  4415. //
  4416. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4417. if argsList.Len() != 2 {
  4418. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4419. }
  4420. return fn.PERCENTILE(argsList)
  4421. }
  4422. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4423. // k% of the data values fall) for a supplied range of values and a supplied
  4424. // k. The syntax of the function is:
  4425. //
  4426. // PERCENTILE(array,k)
  4427. //
  4428. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4429. if argsList.Len() != 2 {
  4430. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4431. }
  4432. array := argsList.Front().Value.(formulaArg).ToList()
  4433. k := argsList.Back().Value.(formulaArg).ToNumber()
  4434. if k.Type != ArgNumber {
  4435. return k
  4436. }
  4437. if k.Number < 0 || k.Number > 1 {
  4438. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4439. }
  4440. numbers := []float64{}
  4441. for _, arg := range array {
  4442. if arg.Type == ArgError {
  4443. return arg
  4444. }
  4445. num := arg.ToNumber()
  4446. if num.Type == ArgNumber {
  4447. numbers = append(numbers, num.Number)
  4448. }
  4449. }
  4450. cnt := len(numbers)
  4451. sort.Float64s(numbers)
  4452. idx := k.Number * (float64(cnt) - 1)
  4453. base := math.Floor(idx)
  4454. if idx == base {
  4455. return newNumberFormulaArg(numbers[int(idx)])
  4456. }
  4457. next := base + 1
  4458. proportion := idx - base
  4459. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4460. }
  4461. // PERMUT function calculates the number of permutations of a specified number
  4462. // of objects from a set of objects. The syntax of the function is:
  4463. //
  4464. // PERMUT(number,number_chosen)
  4465. //
  4466. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4467. if argsList.Len() != 2 {
  4468. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4469. }
  4470. number := argsList.Front().Value.(formulaArg).ToNumber()
  4471. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4472. if number.Type != ArgNumber {
  4473. return number
  4474. }
  4475. if chosen.Type != ArgNumber {
  4476. return chosen
  4477. }
  4478. if number.Number < chosen.Number {
  4479. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4480. }
  4481. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4482. }
  4483. // PERMUTATIONA function calculates the number of permutations, with
  4484. // repetitions, of a specified number of objects from a set. The syntax of
  4485. // the function is:
  4486. //
  4487. // PERMUTATIONA(number,number_chosen)
  4488. //
  4489. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4490. if argsList.Len() < 1 {
  4491. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4492. }
  4493. number := argsList.Front().Value.(formulaArg).ToNumber()
  4494. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4495. if number.Type != ArgNumber {
  4496. return number
  4497. }
  4498. if chosen.Type != ArgNumber {
  4499. return chosen
  4500. }
  4501. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4502. if num < 0 || numChosen < 0 {
  4503. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4504. }
  4505. return newNumberFormulaArg(math.Pow(num, numChosen))
  4506. }
  4507. // QUARTILE function returns a requested quartile of a supplied range of
  4508. // values. The syntax of the function is:
  4509. //
  4510. // QUARTILE(array,quart)
  4511. //
  4512. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  4513. if argsList.Len() != 2 {
  4514. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  4515. }
  4516. quart := argsList.Back().Value.(formulaArg).ToNumber()
  4517. if quart.Type != ArgNumber {
  4518. return quart
  4519. }
  4520. if quart.Number < 0 || quart.Number > 4 {
  4521. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  4522. }
  4523. args := list.New().Init()
  4524. args.PushBack(argsList.Front().Value.(formulaArg))
  4525. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  4526. return fn.PERCENTILE(args)
  4527. }
  4528. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  4529. // values. The syntax of the function is:
  4530. //
  4531. // QUARTILE.INC(array,quart)
  4532. //
  4533. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  4534. if argsList.Len() != 2 {
  4535. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  4536. }
  4537. return fn.QUARTILE(argsList)
  4538. }
  4539. // SKEW function calculates the skewness of the distribution of a supplied set
  4540. // of values. The syntax of the function is:
  4541. //
  4542. // SKEW(number1,[number2],...)
  4543. //
  4544. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4545. if argsList.Len() < 1 {
  4546. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4547. }
  4548. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4549. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4550. token := arg.Value.(formulaArg)
  4551. switch token.Type {
  4552. case ArgNumber, ArgString:
  4553. num := token.ToNumber()
  4554. if num.Type == ArgError {
  4555. return num
  4556. }
  4557. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4558. count++
  4559. case ArgList, ArgMatrix:
  4560. for _, row := range token.ToList() {
  4561. numArg := row.ToNumber()
  4562. if numArg.Type != ArgNumber {
  4563. continue
  4564. }
  4565. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4566. count++
  4567. }
  4568. }
  4569. }
  4570. if count > 2 {
  4571. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  4572. }
  4573. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4574. }
  4575. // SMALL function returns the k'th smallest value from an array of numeric
  4576. // values. The syntax of the function is:
  4577. //
  4578. // SMALL(array,k)
  4579. //
  4580. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4581. return fn.kth("SMALL", argsList)
  4582. }
  4583. // VARP function returns the Variance of a given set of values. The syntax of
  4584. // the function is:
  4585. //
  4586. // VARP(number1,[number2],...)
  4587. //
  4588. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  4589. if argsList.Len() < 1 {
  4590. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  4591. }
  4592. summerA, summerB, count := 0.0, 0.0, 0.0
  4593. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4594. for _, token := range arg.Value.(formulaArg).ToList() {
  4595. if num := token.ToNumber(); num.Type == ArgNumber {
  4596. summerA += (num.Number * num.Number)
  4597. summerB += num.Number
  4598. count++
  4599. }
  4600. }
  4601. }
  4602. if count > 0 {
  4603. summerA *= count
  4604. summerB *= summerB
  4605. return newNumberFormulaArg((summerA - summerB) / (count * count))
  4606. }
  4607. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4608. }
  4609. // VARdotP function returns the Variance of a given set of values. The syntax
  4610. // of the function is:
  4611. //
  4612. // VAR.P(number1,[number2],...)
  4613. //
  4614. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  4615. if argsList.Len() < 1 {
  4616. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  4617. }
  4618. return fn.VARP(argsList)
  4619. }
  4620. // Information Functions
  4621. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4622. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4623. // function is:
  4624. //
  4625. // ISBLANK(value)
  4626. //
  4627. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4628. if argsList.Len() != 1 {
  4629. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4630. }
  4631. token := argsList.Front().Value.(formulaArg)
  4632. result := "FALSE"
  4633. switch token.Type {
  4634. case ArgUnknown:
  4635. result = "TRUE"
  4636. case ArgString:
  4637. if token.String == "" {
  4638. result = "TRUE"
  4639. }
  4640. }
  4641. return newStringFormulaArg(result)
  4642. }
  4643. // ISERR function tests if an initial supplied expression (or value) returns
  4644. // any Excel Error, except the #N/A error. If so, the function returns the
  4645. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4646. // error, the ISERR function returns FALSE. The syntax of the function is:
  4647. //
  4648. // ISERR(value)
  4649. //
  4650. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4651. if argsList.Len() != 1 {
  4652. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4653. }
  4654. token := argsList.Front().Value.(formulaArg)
  4655. result := "FALSE"
  4656. if token.Type == ArgError {
  4657. for _, errType := range []string{
  4658. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4659. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4660. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4661. } {
  4662. if errType == token.String {
  4663. result = "TRUE"
  4664. }
  4665. }
  4666. }
  4667. return newStringFormulaArg(result)
  4668. }
  4669. // ISERROR function tests if an initial supplied expression (or value) returns
  4670. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4671. // function returns FALSE. The syntax of the function is:
  4672. //
  4673. // ISERROR(value)
  4674. //
  4675. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4676. if argsList.Len() != 1 {
  4677. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4678. }
  4679. token := argsList.Front().Value.(formulaArg)
  4680. result := "FALSE"
  4681. if token.Type == ArgError {
  4682. for _, errType := range []string{
  4683. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4684. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4685. formulaErrorCALC, formulaErrorGETTINGDATA,
  4686. } {
  4687. if errType == token.String {
  4688. result = "TRUE"
  4689. }
  4690. }
  4691. }
  4692. return newStringFormulaArg(result)
  4693. }
  4694. // ISEVEN function tests if a supplied number (or numeric expression)
  4695. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4696. // function returns FALSE. The syntax of the function is:
  4697. //
  4698. // ISEVEN(value)
  4699. //
  4700. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4701. if argsList.Len() != 1 {
  4702. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4703. }
  4704. var (
  4705. token = argsList.Front().Value.(formulaArg)
  4706. result = "FALSE"
  4707. numeric int
  4708. err error
  4709. )
  4710. if token.Type == ArgString {
  4711. if numeric, err = strconv.Atoi(token.String); err != nil {
  4712. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4713. }
  4714. if numeric == numeric/2*2 {
  4715. return newStringFormulaArg("TRUE")
  4716. }
  4717. }
  4718. return newStringFormulaArg(result)
  4719. }
  4720. // ISNA function tests if an initial supplied expression (or value) returns
  4721. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4722. // returns FALSE. The syntax of the function is:
  4723. //
  4724. // ISNA(value)
  4725. //
  4726. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4727. if argsList.Len() != 1 {
  4728. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4729. }
  4730. token := argsList.Front().Value.(formulaArg)
  4731. result := "FALSE"
  4732. if token.Type == ArgError && token.String == formulaErrorNA {
  4733. result = "TRUE"
  4734. }
  4735. return newStringFormulaArg(result)
  4736. }
  4737. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4738. // function returns TRUE; If the supplied value is text, the function returns
  4739. // FALSE. The syntax of the function is:
  4740. //
  4741. // ISNONTEXT(value)
  4742. //
  4743. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4744. if argsList.Len() != 1 {
  4745. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4746. }
  4747. token := argsList.Front().Value.(formulaArg)
  4748. result := "TRUE"
  4749. if token.Type == ArgString && token.String != "" {
  4750. result = "FALSE"
  4751. }
  4752. return newStringFormulaArg(result)
  4753. }
  4754. // ISNUMBER function function tests if a supplied value is a number. If so,
  4755. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4756. // function is:
  4757. //
  4758. // ISNUMBER(value)
  4759. //
  4760. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4761. if argsList.Len() != 1 {
  4762. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4763. }
  4764. token, result := argsList.Front().Value.(formulaArg), false
  4765. if token.Type == ArgString && token.String != "" {
  4766. if _, err := strconv.Atoi(token.String); err == nil {
  4767. result = true
  4768. }
  4769. }
  4770. return newBoolFormulaArg(result)
  4771. }
  4772. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4773. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4774. // FALSE. The syntax of the function is:
  4775. //
  4776. // ISODD(value)
  4777. //
  4778. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4779. if argsList.Len() != 1 {
  4780. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4781. }
  4782. var (
  4783. token = argsList.Front().Value.(formulaArg)
  4784. result = "FALSE"
  4785. numeric int
  4786. err error
  4787. )
  4788. if token.Type == ArgString {
  4789. if numeric, err = strconv.Atoi(token.String); err != nil {
  4790. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4791. }
  4792. if numeric != numeric/2*2 {
  4793. return newStringFormulaArg("TRUE")
  4794. }
  4795. }
  4796. return newStringFormulaArg(result)
  4797. }
  4798. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4799. // Otherwise, the function returns FALSE. The syntax of the function is:
  4800. //
  4801. // ISTEXT(value)
  4802. //
  4803. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4804. if argsList.Len() != 1 {
  4805. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4806. }
  4807. token := argsList.Front().Value.(formulaArg)
  4808. if token.ToNumber().Type != ArgError {
  4809. return newBoolFormulaArg(false)
  4810. }
  4811. return newBoolFormulaArg(token.Type == ArgString)
  4812. }
  4813. // N function converts data into a numeric value. The syntax of the function
  4814. // is:
  4815. //
  4816. // N(value)
  4817. //
  4818. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  4819. if argsList.Len() != 1 {
  4820. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  4821. }
  4822. token, num := argsList.Front().Value.(formulaArg), 0.0
  4823. if token.Type == ArgError {
  4824. return token
  4825. }
  4826. if arg := token.ToNumber(); arg.Type == ArgNumber {
  4827. num = arg.Number
  4828. }
  4829. if token.Value() == "TRUE" {
  4830. num = 1
  4831. }
  4832. return newNumberFormulaArg(num)
  4833. }
  4834. // NA function returns the Excel #N/A error. This error message has the
  4835. // meaning 'value not available' and is produced when an Excel Formula is
  4836. // unable to find a value that it needs. The syntax of the function is:
  4837. //
  4838. // NA()
  4839. //
  4840. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4841. if argsList.Len() != 0 {
  4842. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4843. }
  4844. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4845. }
  4846. // SHEET function returns the Sheet number for a specified reference. The
  4847. // syntax of the function is:
  4848. //
  4849. // SHEET()
  4850. //
  4851. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4852. if argsList.Len() != 0 {
  4853. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4854. }
  4855. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4856. }
  4857. // T function tests if a supplied value is text and if so, returns the
  4858. // supplied text; Otherwise, the function returns an empty text string. The
  4859. // syntax of the function is:
  4860. //
  4861. // T(value)
  4862. //
  4863. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  4864. if argsList.Len() != 1 {
  4865. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  4866. }
  4867. token := argsList.Front().Value.(formulaArg)
  4868. if token.Type == ArgError {
  4869. return token
  4870. }
  4871. if token.Type == ArgNumber {
  4872. return newStringFormulaArg("")
  4873. }
  4874. return newStringFormulaArg(token.Value())
  4875. }
  4876. // Logical Functions
  4877. // AND function tests a number of supplied conditions and returns TRUE or
  4878. // FALSE. The syntax of the function is:
  4879. //
  4880. // AND(logical_test1,[logical_test2],...)
  4881. //
  4882. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4883. if argsList.Len() == 0 {
  4884. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4885. }
  4886. if argsList.Len() > 30 {
  4887. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4888. }
  4889. var (
  4890. and = true
  4891. val float64
  4892. err error
  4893. )
  4894. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4895. token := arg.Value.(formulaArg)
  4896. switch token.Type {
  4897. case ArgUnknown:
  4898. continue
  4899. case ArgString:
  4900. if token.String == "TRUE" {
  4901. continue
  4902. }
  4903. if token.String == "FALSE" {
  4904. return newStringFormulaArg(token.String)
  4905. }
  4906. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4907. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4908. }
  4909. and = and && (val != 0)
  4910. case ArgMatrix:
  4911. // TODO
  4912. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4913. }
  4914. }
  4915. return newBoolFormulaArg(and)
  4916. }
  4917. // FALSE function function returns the logical value FALSE. The syntax of the
  4918. // function is:
  4919. //
  4920. // FALSE()
  4921. //
  4922. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4923. if argsList.Len() != 0 {
  4924. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4925. }
  4926. return newBoolFormulaArg(false)
  4927. }
  4928. // IFERROR function receives two values (or expressions) and tests if the
  4929. // first of these evaluates to an error. The syntax of the function is:
  4930. //
  4931. // IFERROR(value,value_if_error)
  4932. //
  4933. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4934. if argsList.Len() != 2 {
  4935. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4936. }
  4937. value := argsList.Front().Value.(formulaArg)
  4938. if value.Type != ArgError {
  4939. if value.Type == ArgEmpty {
  4940. return newNumberFormulaArg(0)
  4941. }
  4942. return value
  4943. }
  4944. return argsList.Back().Value.(formulaArg)
  4945. }
  4946. // NOT function returns the opposite to a supplied logical value. The syntax
  4947. // of the function is:
  4948. //
  4949. // NOT(logical)
  4950. //
  4951. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4952. if argsList.Len() != 1 {
  4953. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4954. }
  4955. token := argsList.Front().Value.(formulaArg)
  4956. switch token.Type {
  4957. case ArgString, ArgList:
  4958. if strings.ToUpper(token.String) == "TRUE" {
  4959. return newBoolFormulaArg(false)
  4960. }
  4961. if strings.ToUpper(token.String) == "FALSE" {
  4962. return newBoolFormulaArg(true)
  4963. }
  4964. case ArgNumber:
  4965. return newBoolFormulaArg(!(token.Number != 0))
  4966. case ArgError:
  4967. return token
  4968. }
  4969. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4970. }
  4971. // OR function tests a number of supplied conditions and returns either TRUE
  4972. // or FALSE. The syntax of the function is:
  4973. //
  4974. // OR(logical_test1,[logical_test2],...)
  4975. //
  4976. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4977. if argsList.Len() == 0 {
  4978. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4979. }
  4980. if argsList.Len() > 30 {
  4981. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4982. }
  4983. var (
  4984. or bool
  4985. val float64
  4986. err error
  4987. )
  4988. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4989. token := arg.Value.(formulaArg)
  4990. switch token.Type {
  4991. case ArgUnknown:
  4992. continue
  4993. case ArgString:
  4994. if token.String == "FALSE" {
  4995. continue
  4996. }
  4997. if token.String == "TRUE" {
  4998. or = true
  4999. continue
  5000. }
  5001. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5002. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5003. }
  5004. or = val != 0
  5005. case ArgMatrix:
  5006. // TODO
  5007. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5008. }
  5009. }
  5010. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  5011. }
  5012. // TRUE function returns the logical value TRUE. The syntax of the function
  5013. // is:
  5014. //
  5015. // TRUE()
  5016. //
  5017. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  5018. if argsList.Len() != 0 {
  5019. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  5020. }
  5021. return newBoolFormulaArg(true)
  5022. }
  5023. // Date and Time Functions
  5024. // DATE returns a date, from a user-supplied year, month and day. The syntax
  5025. // of the function is:
  5026. //
  5027. // DATE(year,month,day)
  5028. //
  5029. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  5030. if argsList.Len() != 3 {
  5031. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5032. }
  5033. year := argsList.Front().Value.(formulaArg).ToNumber()
  5034. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5035. day := argsList.Back().Value.(formulaArg).ToNumber()
  5036. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  5037. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5038. }
  5039. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  5040. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  5041. }
  5042. // DATEDIF function calculates the number of days, months, or years between
  5043. // two dates. The syntax of the function is:
  5044. //
  5045. // DATEDIF(start_date,end_date,unit)
  5046. //
  5047. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  5048. if argsList.Len() != 3 {
  5049. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  5050. }
  5051. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  5052. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  5053. return startArg
  5054. }
  5055. if startArg.Number > endArg.Number {
  5056. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  5057. }
  5058. if startArg.Number == endArg.Number {
  5059. return newNumberFormulaArg(0)
  5060. }
  5061. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  5062. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  5063. sy, smm, sd := startDate.Date()
  5064. ey, emm, ed := endDate.Date()
  5065. sm, em, diff := int(smm), int(emm), 0.0
  5066. switch unit {
  5067. case "d":
  5068. return newNumberFormulaArg(endArg.Number - startArg.Number)
  5069. case "y":
  5070. diff = float64(ey - sy)
  5071. if em < sm || (em == sm && ed < sd) {
  5072. diff--
  5073. }
  5074. case "m":
  5075. ydiff := ey - sy
  5076. mdiff := em - sm
  5077. if ed < sd {
  5078. mdiff--
  5079. }
  5080. if mdiff < 0 {
  5081. ydiff--
  5082. mdiff += 12
  5083. }
  5084. diff = float64(ydiff*12 + mdiff)
  5085. case "md":
  5086. smMD := em
  5087. if ed < sd {
  5088. smMD--
  5089. }
  5090. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5091. case "ym":
  5092. diff = float64(em - sm)
  5093. if ed < sd {
  5094. diff--
  5095. }
  5096. if diff < 0 {
  5097. diff += 12
  5098. }
  5099. case "yd":
  5100. syYD := sy
  5101. if em < sm || (em == sm && ed < sd) {
  5102. syYD++
  5103. }
  5104. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5105. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5106. diff = s - e
  5107. default:
  5108. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5109. }
  5110. return newNumberFormulaArg(diff)
  5111. }
  5112. // NOW function returns the current date and time. The function receives no
  5113. // arguments and therefore. The syntax of the function is:
  5114. //
  5115. // NOW()
  5116. //
  5117. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5118. if argsList.Len() != 0 {
  5119. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5120. }
  5121. now := time.Now()
  5122. _, offset := now.Zone()
  5123. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5124. }
  5125. // TODAY function returns the current date. The function has no arguments and
  5126. // therefore. The syntax of the function is:
  5127. //
  5128. // TODAY()
  5129. //
  5130. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5131. if argsList.Len() != 0 {
  5132. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5133. }
  5134. now := time.Now()
  5135. _, offset := now.Zone()
  5136. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5137. }
  5138. // makeDate return date as a Unix time, the number of seconds elapsed since
  5139. // January 1, 1970 UTC.
  5140. func makeDate(y int, m time.Month, d int) int64 {
  5141. if y == 1900 && int(m) <= 2 {
  5142. d--
  5143. }
  5144. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5145. return date.Unix()
  5146. }
  5147. // daysBetween return time interval of the given start timestamp and end
  5148. // timestamp.
  5149. func daysBetween(startDate, endDate int64) float64 {
  5150. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5151. }
  5152. // Text Functions
  5153. // CHAR function returns the character relating to a supplied character set
  5154. // number (from 1 to 255). syntax of the function is:
  5155. //
  5156. // CHAR(number)
  5157. //
  5158. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5159. if argsList.Len() != 1 {
  5160. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5161. }
  5162. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5163. if arg.Type != ArgNumber {
  5164. return arg
  5165. }
  5166. num := int(arg.Number)
  5167. if num < 0 || num > 255 {
  5168. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5169. }
  5170. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5171. }
  5172. // CLEAN removes all non-printable characters from a supplied text string. The
  5173. // syntax of the function is:
  5174. //
  5175. // CLEAN(text)
  5176. //
  5177. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5178. if argsList.Len() != 1 {
  5179. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5180. }
  5181. b := bytes.Buffer{}
  5182. for _, c := range argsList.Front().Value.(formulaArg).String {
  5183. if c > 31 {
  5184. b.WriteRune(c)
  5185. }
  5186. }
  5187. return newStringFormulaArg(b.String())
  5188. }
  5189. // CODE function converts the first character of a supplied text string into
  5190. // the associated numeric character set code used by your computer. The
  5191. // syntax of the function is:
  5192. //
  5193. // CODE(text)
  5194. //
  5195. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5196. return fn.code("CODE", argsList)
  5197. }
  5198. // code is an implementation of the formula function CODE and UNICODE.
  5199. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5200. if argsList.Len() != 1 {
  5201. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5202. }
  5203. text := argsList.Front().Value.(formulaArg).Value()
  5204. if len(text) == 0 {
  5205. if name == "CODE" {
  5206. return newNumberFormulaArg(0)
  5207. }
  5208. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5209. }
  5210. return newNumberFormulaArg(float64(text[0]))
  5211. }
  5212. // CONCAT function joins together a series of supplied text strings into one
  5213. // combined text string.
  5214. //
  5215. // CONCAT(text1,[text2],...)
  5216. //
  5217. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5218. return fn.concat("CONCAT", argsList)
  5219. }
  5220. // CONCATENATE function joins together a series of supplied text strings into
  5221. // one combined text string.
  5222. //
  5223. // CONCATENATE(text1,[text2],...)
  5224. //
  5225. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5226. return fn.concat("CONCATENATE", argsList)
  5227. }
  5228. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5229. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5230. buf := bytes.Buffer{}
  5231. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5232. token := arg.Value.(formulaArg)
  5233. switch token.Type {
  5234. case ArgString:
  5235. buf.WriteString(token.String)
  5236. case ArgNumber:
  5237. if token.Boolean {
  5238. if token.Number == 0 {
  5239. buf.WriteString("FALSE")
  5240. } else {
  5241. buf.WriteString("TRUE")
  5242. }
  5243. } else {
  5244. buf.WriteString(token.Value())
  5245. }
  5246. default:
  5247. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5248. }
  5249. }
  5250. return newStringFormulaArg(buf.String())
  5251. }
  5252. // EXACT function tests if two supplied text strings or values are exactly
  5253. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5254. // function is case-sensitive. The syntax of the function is:
  5255. //
  5256. // EXACT(text1,text2)
  5257. //
  5258. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5259. if argsList.Len() != 2 {
  5260. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5261. }
  5262. text1 := argsList.Front().Value.(formulaArg).Value()
  5263. text2 := argsList.Back().Value.(formulaArg).Value()
  5264. return newBoolFormulaArg(text1 == text2)
  5265. }
  5266. // FIXED function rounds a supplied number to a specified number of decimal
  5267. // places and then converts this into text. The syntax of the function is:
  5268. //
  5269. // FIXED(number,[decimals],[no_commas])
  5270. //
  5271. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5272. if argsList.Len() < 1 {
  5273. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5274. }
  5275. if argsList.Len() > 3 {
  5276. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5277. }
  5278. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5279. if numArg.Type != ArgNumber {
  5280. return numArg
  5281. }
  5282. precision, decimals, noCommas := 0, 0, false
  5283. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5284. if argsList.Len() == 1 && len(s) == 2 {
  5285. precision = len(s[1])
  5286. decimals = len(s[1])
  5287. }
  5288. if argsList.Len() >= 2 {
  5289. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5290. if decimalsArg.Type != ArgNumber {
  5291. return decimalsArg
  5292. }
  5293. decimals = int(decimalsArg.Number)
  5294. }
  5295. if argsList.Len() == 3 {
  5296. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5297. if noCommasArg.Type == ArgError {
  5298. return noCommasArg
  5299. }
  5300. noCommas = noCommasArg.Boolean
  5301. }
  5302. n := math.Pow(10, float64(decimals))
  5303. r := numArg.Number * n
  5304. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5305. if decimals > 0 {
  5306. precision = decimals
  5307. }
  5308. if noCommas {
  5309. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5310. }
  5311. p := message.NewPrinter(language.English)
  5312. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5313. }
  5314. // FIND function returns the position of a specified character or sub-string
  5315. // within a supplied text string. The function is case-sensitive. The syntax
  5316. // of the function is:
  5317. //
  5318. // FIND(find_text,within_text,[start_num])
  5319. //
  5320. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5321. return fn.find("FIND", argsList)
  5322. }
  5323. // FINDB counts each double-byte character as 2 when you have enabled the
  5324. // editing of a language that supports DBCS and then set it as the default
  5325. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5326. // function is:
  5327. //
  5328. // FINDB(find_text,within_text,[start_num])
  5329. //
  5330. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5331. return fn.find("FINDB", argsList)
  5332. }
  5333. // find is an implementation of the formula function FIND and FINDB.
  5334. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5335. if argsList.Len() < 2 {
  5336. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5337. }
  5338. if argsList.Len() > 3 {
  5339. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5340. }
  5341. findText := argsList.Front().Value.(formulaArg).Value()
  5342. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5343. startNum, result := 1, 1
  5344. if argsList.Len() == 3 {
  5345. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5346. if numArg.Type != ArgNumber {
  5347. return numArg
  5348. }
  5349. if numArg.Number < 0 {
  5350. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5351. }
  5352. startNum = int(numArg.Number)
  5353. }
  5354. if findText == "" {
  5355. return newNumberFormulaArg(float64(startNum))
  5356. }
  5357. for idx := range withinText {
  5358. if result < startNum {
  5359. result++
  5360. }
  5361. if strings.Index(withinText[idx:], findText) == 0 {
  5362. return newNumberFormulaArg(float64(result))
  5363. }
  5364. result++
  5365. }
  5366. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5367. }
  5368. // LEFT function returns a specified number of characters from the start of a
  5369. // supplied text string. The syntax of the function is:
  5370. //
  5371. // LEFT(text,[num_chars])
  5372. //
  5373. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5374. return fn.leftRight("LEFT", argsList)
  5375. }
  5376. // LEFTB returns the first character or characters in a text string, based on
  5377. // the number of bytes you specify. The syntax of the function is:
  5378. //
  5379. // LEFTB(text,[num_bytes])
  5380. //
  5381. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5382. return fn.leftRight("LEFTB", argsList)
  5383. }
  5384. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5385. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5386. // (Traditional), and Korean.
  5387. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5388. if argsList.Len() < 1 {
  5389. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5390. }
  5391. if argsList.Len() > 2 {
  5392. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5393. }
  5394. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5395. if argsList.Len() == 2 {
  5396. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5397. if numArg.Type != ArgNumber {
  5398. return numArg
  5399. }
  5400. if numArg.Number < 0 {
  5401. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5402. }
  5403. numChars = int(numArg.Number)
  5404. }
  5405. if len(text) > numChars {
  5406. if name == "LEFT" || name == "LEFTB" {
  5407. return newStringFormulaArg(text[:numChars])
  5408. }
  5409. return newStringFormulaArg(text[len(text)-numChars:])
  5410. }
  5411. return newStringFormulaArg(text)
  5412. }
  5413. // LEN returns the length of a supplied text string. The syntax of the
  5414. // function is:
  5415. //
  5416. // LEN(text)
  5417. //
  5418. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5419. if argsList.Len() != 1 {
  5420. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5421. }
  5422. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5423. }
  5424. // LENB returns the number of bytes used to represent the characters in a text
  5425. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5426. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5427. // 1 byte per character. The syntax of the function is:
  5428. //
  5429. // LENB(text)
  5430. //
  5431. // TODO: the languages that support DBCS include Japanese, Chinese
  5432. // (Simplified), Chinese (Traditional), and Korean.
  5433. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5434. if argsList.Len() != 1 {
  5435. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5436. }
  5437. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5438. }
  5439. // LOWER converts all characters in a supplied text string to lower case. The
  5440. // syntax of the function is:
  5441. //
  5442. // LOWER(text)
  5443. //
  5444. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5445. if argsList.Len() != 1 {
  5446. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5447. }
  5448. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5449. }
  5450. // MID function returns a specified number of characters from the middle of a
  5451. // supplied text string. The syntax of the function is:
  5452. //
  5453. // MID(text,start_num,num_chars)
  5454. //
  5455. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5456. return fn.mid("MID", argsList)
  5457. }
  5458. // MIDB returns a specific number of characters from a text string, starting
  5459. // at the position you specify, based on the number of bytes you specify. The
  5460. // syntax of the function is:
  5461. //
  5462. // MID(text,start_num,num_chars)
  5463. //
  5464. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5465. return fn.mid("MIDB", argsList)
  5466. }
  5467. // mid is an implementation of the formula function MID and MIDB. TODO:
  5468. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5469. // (Traditional), and Korean.
  5470. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5471. if argsList.Len() != 3 {
  5472. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5473. }
  5474. text := argsList.Front().Value.(formulaArg).Value()
  5475. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5476. if startNumArg.Type != ArgNumber {
  5477. return startNumArg
  5478. }
  5479. if numCharsArg.Type != ArgNumber {
  5480. return numCharsArg
  5481. }
  5482. startNum := int(startNumArg.Number)
  5483. if startNum < 0 {
  5484. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5485. }
  5486. textLen := len(text)
  5487. if startNum > textLen {
  5488. return newStringFormulaArg("")
  5489. }
  5490. startNum--
  5491. endNum := startNum + int(numCharsArg.Number)
  5492. if endNum > textLen+1 {
  5493. return newStringFormulaArg(text[startNum:])
  5494. }
  5495. return newStringFormulaArg(text[startNum:endNum])
  5496. }
  5497. // PROPER converts all characters in a supplied text string to proper case
  5498. // (i.e. all letters that do not immediately follow another letter are set to
  5499. // upper case and all other characters are lower case). The syntax of the
  5500. // function is:
  5501. //
  5502. // PROPER(text)
  5503. //
  5504. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5505. if argsList.Len() != 1 {
  5506. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5507. }
  5508. buf := bytes.Buffer{}
  5509. isLetter := false
  5510. for _, char := range argsList.Front().Value.(formulaArg).String {
  5511. if !isLetter && unicode.IsLetter(char) {
  5512. buf.WriteRune(unicode.ToUpper(char))
  5513. } else {
  5514. buf.WriteRune(unicode.ToLower(char))
  5515. }
  5516. isLetter = unicode.IsLetter(char)
  5517. }
  5518. return newStringFormulaArg(buf.String())
  5519. }
  5520. // REPLACE function replaces all or part of a text string with another string.
  5521. // The syntax of the function is:
  5522. //
  5523. // REPLACE(old_text,start_num,num_chars,new_text)
  5524. //
  5525. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5526. return fn.replace("REPLACE", argsList)
  5527. }
  5528. // REPLACEB replaces part of a text string, based on the number of bytes you
  5529. // specify, with a different text string.
  5530. //
  5531. // REPLACEB(old_text,start_num,num_chars,new_text)
  5532. //
  5533. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5534. return fn.replace("REPLACEB", argsList)
  5535. }
  5536. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5537. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5538. // (Traditional), and Korean.
  5539. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5540. if argsList.Len() != 4 {
  5541. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5542. }
  5543. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5544. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5545. if startNumArg.Type != ArgNumber {
  5546. return startNumArg
  5547. }
  5548. if numCharsArg.Type != ArgNumber {
  5549. return numCharsArg
  5550. }
  5551. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5552. if startIdx > oldTextLen {
  5553. startIdx = oldTextLen + 1
  5554. }
  5555. endIdx := startIdx + int(numCharsArg.Number)
  5556. if endIdx > oldTextLen {
  5557. endIdx = oldTextLen + 1
  5558. }
  5559. if startIdx < 1 || endIdx < 1 {
  5560. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5561. }
  5562. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5563. return newStringFormulaArg(result)
  5564. }
  5565. // REPT function returns a supplied text string, repeated a specified number
  5566. // of times. The syntax of the function is:
  5567. //
  5568. // REPT(text,number_times)
  5569. //
  5570. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5571. if argsList.Len() != 2 {
  5572. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5573. }
  5574. text := argsList.Front().Value.(formulaArg)
  5575. if text.Type != ArgString {
  5576. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5577. }
  5578. times := argsList.Back().Value.(formulaArg).ToNumber()
  5579. if times.Type != ArgNumber {
  5580. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5581. }
  5582. if times.Number < 0 {
  5583. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5584. }
  5585. if times.Number == 0 {
  5586. return newStringFormulaArg("")
  5587. }
  5588. buf := bytes.Buffer{}
  5589. for i := 0; i < int(times.Number); i++ {
  5590. buf.WriteString(text.String)
  5591. }
  5592. return newStringFormulaArg(buf.String())
  5593. }
  5594. // RIGHT function returns a specified number of characters from the end of a
  5595. // supplied text string. The syntax of the function is:
  5596. //
  5597. // RIGHT(text,[num_chars])
  5598. //
  5599. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5600. return fn.leftRight("RIGHT", argsList)
  5601. }
  5602. // RIGHTB returns the last character or characters in a text string, based on
  5603. // the number of bytes you specify. The syntax of the function is:
  5604. //
  5605. // RIGHTB(text,[num_bytes])
  5606. //
  5607. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5608. return fn.leftRight("RIGHTB", argsList)
  5609. }
  5610. // SUBSTITUTE function replaces one or more instances of a given text string,
  5611. // within an original text string. The syntax of the function is:
  5612. //
  5613. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5614. //
  5615. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5616. if argsList.Len() != 3 && argsList.Len() != 4 {
  5617. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5618. }
  5619. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5620. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5621. if argsList.Len() == 3 {
  5622. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5623. }
  5624. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5625. if instanceNumArg.Type != ArgNumber {
  5626. return instanceNumArg
  5627. }
  5628. instanceNum = int(instanceNumArg.Number)
  5629. if instanceNum < 1 {
  5630. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5631. }
  5632. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5633. for {
  5634. count--
  5635. index := strings.Index(str, oldText.Value())
  5636. if index == -1 {
  5637. pos = -1
  5638. break
  5639. } else {
  5640. pos = index + chars
  5641. if count == 0 {
  5642. break
  5643. }
  5644. idx := oldTextLen + index
  5645. chars += idx
  5646. str = str[idx:]
  5647. }
  5648. }
  5649. if pos == -1 {
  5650. return newStringFormulaArg(text.Value())
  5651. }
  5652. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5653. return newStringFormulaArg(pre + newText.Value() + post)
  5654. }
  5655. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5656. // words or characters) from a supplied text string. The syntax of the
  5657. // function is:
  5658. //
  5659. // TRIM(text)
  5660. //
  5661. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5662. if argsList.Len() != 1 {
  5663. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5664. }
  5665. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5666. }
  5667. // UNICHAR returns the Unicode character that is referenced by the given
  5668. // numeric value. The syntax of the function is:
  5669. //
  5670. // UNICHAR(number)
  5671. //
  5672. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5673. if argsList.Len() != 1 {
  5674. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5675. }
  5676. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5677. if numArg.Type != ArgNumber {
  5678. return numArg
  5679. }
  5680. if numArg.Number <= 0 || numArg.Number > 55295 {
  5681. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5682. }
  5683. return newStringFormulaArg(string(rune(numArg.Number)))
  5684. }
  5685. // UNICODE function returns the code point for the first character of a
  5686. // supplied text string. The syntax of the function is:
  5687. //
  5688. // UNICODE(text)
  5689. //
  5690. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5691. return fn.code("UNICODE", argsList)
  5692. }
  5693. // UPPER converts all characters in a supplied text string to upper case. The
  5694. // syntax of the function is:
  5695. //
  5696. // UPPER(text)
  5697. //
  5698. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5699. if argsList.Len() != 1 {
  5700. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5701. }
  5702. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5703. }
  5704. // Conditional Functions
  5705. // IF function tests a supplied condition and returns one result if the
  5706. // condition evaluates to TRUE, and another result if the condition evaluates
  5707. // to FALSE. The syntax of the function is:
  5708. //
  5709. // IF(logical_test,value_if_true,value_if_false)
  5710. //
  5711. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5712. if argsList.Len() == 0 {
  5713. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5714. }
  5715. if argsList.Len() > 3 {
  5716. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5717. }
  5718. token := argsList.Front().Value.(formulaArg)
  5719. var (
  5720. cond bool
  5721. err error
  5722. result string
  5723. )
  5724. switch token.Type {
  5725. case ArgString:
  5726. if cond, err = strconv.ParseBool(token.String); err != nil {
  5727. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5728. }
  5729. if argsList.Len() == 1 {
  5730. return newBoolFormulaArg(cond)
  5731. }
  5732. if cond {
  5733. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5734. }
  5735. if argsList.Len() == 3 {
  5736. result = argsList.Back().Value.(formulaArg).String
  5737. }
  5738. }
  5739. return newStringFormulaArg(result)
  5740. }
  5741. // Lookup and Reference Functions
  5742. // CHOOSE function returns a value from an array, that corresponds to a
  5743. // supplied index number (position). The syntax of the function is:
  5744. //
  5745. // CHOOSE(index_num,value1,[value2],...)
  5746. //
  5747. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5748. if argsList.Len() < 2 {
  5749. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5750. }
  5751. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5752. if err != nil {
  5753. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5754. }
  5755. if argsList.Len() <= idx {
  5756. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5757. }
  5758. arg := argsList.Front()
  5759. for i := 0; i < idx; i++ {
  5760. arg = arg.Next()
  5761. }
  5762. var result formulaArg
  5763. switch arg.Value.(formulaArg).Type {
  5764. case ArgString:
  5765. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5766. case ArgMatrix:
  5767. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5768. }
  5769. return result
  5770. }
  5771. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5772. // string.
  5773. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5774. for len(pattern) > 0 {
  5775. switch pattern[0] {
  5776. default:
  5777. if len(str) == 0 || str[0] != pattern[0] {
  5778. return false
  5779. }
  5780. case '?':
  5781. if len(str) == 0 && !simple {
  5782. return false
  5783. }
  5784. case '*':
  5785. return deepMatchRune(str, pattern[1:], simple) ||
  5786. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5787. }
  5788. str = str[1:]
  5789. pattern = pattern[1:]
  5790. }
  5791. return len(str) == 0 && len(pattern) == 0
  5792. }
  5793. // matchPattern finds whether the text matches or satisfies the pattern
  5794. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5795. func matchPattern(pattern, name string) (matched bool) {
  5796. if pattern == "" {
  5797. return name == pattern
  5798. }
  5799. if pattern == "*" {
  5800. return true
  5801. }
  5802. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5803. for _, r := range name {
  5804. rname = append(rname, r)
  5805. }
  5806. for _, r := range pattern {
  5807. rpattern = append(rpattern, r)
  5808. }
  5809. simple := false // Does extended wildcard '*' and '?' match.
  5810. return deepMatchRune(rname, rpattern, simple)
  5811. }
  5812. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5813. // formula arguments by given conditions such as case sensitive, if exact
  5814. // match, and make compare result as formula criteria condition type.
  5815. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5816. if lhs.Type != rhs.Type {
  5817. return criteriaErr
  5818. }
  5819. switch lhs.Type {
  5820. case ArgNumber:
  5821. if lhs.Number == rhs.Number {
  5822. return criteriaEq
  5823. }
  5824. if lhs.Number < rhs.Number {
  5825. return criteriaL
  5826. }
  5827. return criteriaG
  5828. case ArgString:
  5829. ls, rs := lhs.String, rhs.String
  5830. if !caseSensitive {
  5831. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5832. }
  5833. if exactMatch {
  5834. match := matchPattern(rs, ls)
  5835. if match {
  5836. return criteriaEq
  5837. }
  5838. return criteriaG
  5839. }
  5840. switch strings.Compare(ls, rs) {
  5841. case 1:
  5842. return criteriaG
  5843. case -1:
  5844. return criteriaL
  5845. case 0:
  5846. return criteriaEq
  5847. }
  5848. return criteriaErr
  5849. case ArgEmpty:
  5850. return criteriaEq
  5851. case ArgList:
  5852. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5853. case ArgMatrix:
  5854. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5855. }
  5856. return criteriaErr
  5857. }
  5858. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5859. // list type formula arguments.
  5860. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5861. if len(lhs.List) < len(rhs.List) {
  5862. return criteriaL
  5863. }
  5864. if len(lhs.List) > len(rhs.List) {
  5865. return criteriaG
  5866. }
  5867. for arg := range lhs.List {
  5868. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5869. if criteria != criteriaEq {
  5870. return criteria
  5871. }
  5872. }
  5873. return criteriaEq
  5874. }
  5875. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5876. // matrix type formula arguments.
  5877. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5878. if len(lhs.Matrix) < len(rhs.Matrix) {
  5879. return criteriaL
  5880. }
  5881. if len(lhs.Matrix) > len(rhs.Matrix) {
  5882. return criteriaG
  5883. }
  5884. for i := range lhs.Matrix {
  5885. left := lhs.Matrix[i]
  5886. right := lhs.Matrix[i]
  5887. if len(left) < len(right) {
  5888. return criteriaL
  5889. }
  5890. if len(left) > len(right) {
  5891. return criteriaG
  5892. }
  5893. for arg := range left {
  5894. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5895. if criteria != criteriaEq {
  5896. return criteria
  5897. }
  5898. }
  5899. }
  5900. return criteriaEq
  5901. }
  5902. // COLUMN function returns the first column number within a supplied reference
  5903. // or the number of the current column. The syntax of the function is:
  5904. //
  5905. // COLUMN([reference])
  5906. //
  5907. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5908. if argsList.Len() > 1 {
  5909. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5910. }
  5911. if argsList.Len() == 1 {
  5912. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5913. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5914. }
  5915. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5916. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5917. }
  5918. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5919. }
  5920. col, _, _ := CellNameToCoordinates(fn.cell)
  5921. return newNumberFormulaArg(float64(col))
  5922. }
  5923. // COLUMNS function receives an Excel range and returns the number of columns
  5924. // that are contained within the range. The syntax of the function is:
  5925. //
  5926. // COLUMNS(array)
  5927. //
  5928. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5929. if argsList.Len() != 1 {
  5930. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5931. }
  5932. var min, max int
  5933. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5934. crs := argsList.Front().Value.(formulaArg).cellRanges
  5935. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5936. if min == 0 {
  5937. min = cr.Value.(cellRange).From.Col
  5938. }
  5939. if min > cr.Value.(cellRange).From.Col {
  5940. min = cr.Value.(cellRange).From.Col
  5941. }
  5942. if min > cr.Value.(cellRange).To.Col {
  5943. min = cr.Value.(cellRange).To.Col
  5944. }
  5945. if max < cr.Value.(cellRange).To.Col {
  5946. max = cr.Value.(cellRange).To.Col
  5947. }
  5948. if max < cr.Value.(cellRange).From.Col {
  5949. max = cr.Value.(cellRange).From.Col
  5950. }
  5951. }
  5952. }
  5953. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5954. cr := argsList.Front().Value.(formulaArg).cellRefs
  5955. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5956. if min == 0 {
  5957. min = refs.Value.(cellRef).Col
  5958. }
  5959. if min > refs.Value.(cellRef).Col {
  5960. min = refs.Value.(cellRef).Col
  5961. }
  5962. if max < refs.Value.(cellRef).Col {
  5963. max = refs.Value.(cellRef).Col
  5964. }
  5965. }
  5966. }
  5967. if max == TotalColumns {
  5968. return newNumberFormulaArg(float64(TotalColumns))
  5969. }
  5970. result := max - min + 1
  5971. if max == min {
  5972. if min == 0 {
  5973. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5974. }
  5975. return newNumberFormulaArg(float64(1))
  5976. }
  5977. return newNumberFormulaArg(float64(result))
  5978. }
  5979. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5980. // (or table), and returns the corresponding value from another row of the
  5981. // array. The syntax of the function is:
  5982. //
  5983. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5984. //
  5985. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5986. if argsList.Len() < 3 {
  5987. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5988. }
  5989. if argsList.Len() > 4 {
  5990. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5991. }
  5992. lookupValue := argsList.Front().Value.(formulaArg)
  5993. tableArray := argsList.Front().Next().Value.(formulaArg)
  5994. if tableArray.Type != ArgMatrix {
  5995. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5996. }
  5997. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5998. if rowArg.Type != ArgNumber {
  5999. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  6000. }
  6001. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  6002. if argsList.Len() == 4 {
  6003. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6004. if rangeLookup.Type == ArgError {
  6005. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6006. }
  6007. if rangeLookup.Number == 0 {
  6008. exactMatch = true
  6009. }
  6010. }
  6011. row := tableArray.Matrix[0]
  6012. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6013. start:
  6014. for idx, mtx := range row {
  6015. lhs := mtx
  6016. switch lookupValue.Type {
  6017. case ArgNumber:
  6018. if !lookupValue.Boolean {
  6019. lhs = mtx.ToNumber()
  6020. if lhs.Type == ArgError {
  6021. lhs = mtx
  6022. }
  6023. }
  6024. case ArgMatrix:
  6025. lhs = tableArray
  6026. }
  6027. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6028. matchIdx = idx
  6029. wasExact = true
  6030. break start
  6031. }
  6032. }
  6033. } else {
  6034. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  6035. }
  6036. if matchIdx == -1 {
  6037. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6038. }
  6039. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  6040. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  6041. }
  6042. row = tableArray.Matrix[rowIdx]
  6043. if wasExact || !exactMatch {
  6044. return row[matchIdx]
  6045. }
  6046. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6047. }
  6048. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  6049. // data array (or table), and returns the corresponding value from another
  6050. // column of the array. The syntax of the function is:
  6051. //
  6052. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  6053. //
  6054. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  6055. if argsList.Len() < 3 {
  6056. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  6057. }
  6058. if argsList.Len() > 4 {
  6059. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  6060. }
  6061. lookupValue := argsList.Front().Value.(formulaArg)
  6062. tableArray := argsList.Front().Next().Value.(formulaArg)
  6063. if tableArray.Type != ArgMatrix {
  6064. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  6065. }
  6066. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6067. if colIdx.Type != ArgNumber {
  6068. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  6069. }
  6070. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  6071. if argsList.Len() == 4 {
  6072. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6073. if rangeLookup.Type == ArgError {
  6074. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6075. }
  6076. if rangeLookup.Number == 0 {
  6077. exactMatch = true
  6078. }
  6079. }
  6080. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6081. start:
  6082. for idx, mtx := range tableArray.Matrix {
  6083. lhs := mtx[0]
  6084. switch lookupValue.Type {
  6085. case ArgNumber:
  6086. if !lookupValue.Boolean {
  6087. lhs = mtx[0].ToNumber()
  6088. if lhs.Type == ArgError {
  6089. lhs = mtx[0]
  6090. }
  6091. }
  6092. case ArgMatrix:
  6093. lhs = tableArray
  6094. }
  6095. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6096. matchIdx = idx
  6097. wasExact = true
  6098. break start
  6099. }
  6100. }
  6101. } else {
  6102. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6103. }
  6104. if matchIdx == -1 {
  6105. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6106. }
  6107. mtx := tableArray.Matrix[matchIdx]
  6108. if col < 0 || col >= len(mtx) {
  6109. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6110. }
  6111. if wasExact || !exactMatch {
  6112. return mtx[col]
  6113. }
  6114. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6115. }
  6116. // vlookupBinarySearch finds the position of a target value when range lookup
  6117. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6118. // return wrong result.
  6119. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6120. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6121. for low <= high {
  6122. var mid int = low + (high-low)/2
  6123. mtx := tableArray.Matrix[mid]
  6124. lhs := mtx[0]
  6125. switch lookupValue.Type {
  6126. case ArgNumber:
  6127. if !lookupValue.Boolean {
  6128. lhs = mtx[0].ToNumber()
  6129. if lhs.Type == ArgError {
  6130. lhs = mtx[0]
  6131. }
  6132. }
  6133. case ArgMatrix:
  6134. lhs = tableArray
  6135. }
  6136. result := compareFormulaArg(lhs, lookupValue, false, false)
  6137. if result == criteriaEq {
  6138. matchIdx, wasExact = mid, true
  6139. return
  6140. } else if result == criteriaG {
  6141. high = mid - 1
  6142. } else if result == criteriaL {
  6143. matchIdx, low = mid, mid+1
  6144. if lhs.Value() != "" {
  6145. lastMatchIdx = matchIdx
  6146. }
  6147. } else {
  6148. return -1, false
  6149. }
  6150. }
  6151. matchIdx, wasExact = lastMatchIdx, true
  6152. return
  6153. }
  6154. // vlookupBinarySearch finds the position of a target value when range lookup
  6155. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6156. // return wrong result.
  6157. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6158. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6159. for low <= high {
  6160. var mid int = low + (high-low)/2
  6161. mtx := row[mid]
  6162. result := compareFormulaArg(mtx, lookupValue, false, false)
  6163. if result == criteriaEq {
  6164. matchIdx, wasExact = mid, true
  6165. return
  6166. } else if result == criteriaG {
  6167. high = mid - 1
  6168. } else if result == criteriaL {
  6169. low, lastMatchIdx = mid+1, mid
  6170. } else {
  6171. return -1, false
  6172. }
  6173. }
  6174. matchIdx, wasExact = lastMatchIdx, true
  6175. return
  6176. }
  6177. // LOOKUP function performs an approximate match lookup in a one-column or
  6178. // one-row range, and returns the corresponding value from another one-column
  6179. // or one-row range. The syntax of the function is:
  6180. //
  6181. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6182. //
  6183. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6184. if argsList.Len() < 2 {
  6185. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6186. }
  6187. if argsList.Len() > 3 {
  6188. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6189. }
  6190. lookupValue := argsList.Front().Value.(formulaArg)
  6191. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6192. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6193. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6194. }
  6195. cols, matchIdx := lookupCol(lookupVector), -1
  6196. for idx, col := range cols {
  6197. lhs := lookupValue
  6198. switch col.Type {
  6199. case ArgNumber:
  6200. lhs = lhs.ToNumber()
  6201. if !col.Boolean {
  6202. if lhs.Type == ArgError {
  6203. lhs = lookupValue
  6204. }
  6205. }
  6206. }
  6207. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6208. matchIdx = idx
  6209. break
  6210. }
  6211. }
  6212. column := cols
  6213. if argsList.Len() == 3 {
  6214. column = lookupCol(argsList.Back().Value.(formulaArg))
  6215. }
  6216. if matchIdx < 0 || matchIdx >= len(column) {
  6217. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6218. }
  6219. return column[matchIdx]
  6220. }
  6221. // lookupCol extract columns for LOOKUP.
  6222. func lookupCol(arr formulaArg) []formulaArg {
  6223. col := arr.List
  6224. if arr.Type == ArgMatrix {
  6225. col = nil
  6226. for _, r := range arr.Matrix {
  6227. if len(r) > 0 {
  6228. col = append(col, r[0])
  6229. continue
  6230. }
  6231. col = append(col, newEmptyFormulaArg())
  6232. }
  6233. }
  6234. return col
  6235. }
  6236. // ROW function returns the first row number within a supplied reference or
  6237. // the number of the current row. The syntax of the function is:
  6238. //
  6239. // ROW([reference])
  6240. //
  6241. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6242. if argsList.Len() > 1 {
  6243. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6244. }
  6245. if argsList.Len() == 1 {
  6246. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6247. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6248. }
  6249. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6250. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6251. }
  6252. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6253. }
  6254. _, row, _ := CellNameToCoordinates(fn.cell)
  6255. return newNumberFormulaArg(float64(row))
  6256. }
  6257. // ROWS function takes an Excel range and returns the number of rows that are
  6258. // contained within the range. The syntax of the function is:
  6259. //
  6260. // ROWS(array)
  6261. //
  6262. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6263. if argsList.Len() != 1 {
  6264. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6265. }
  6266. var min, max int
  6267. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6268. crs := argsList.Front().Value.(formulaArg).cellRanges
  6269. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6270. if min == 0 {
  6271. min = cr.Value.(cellRange).From.Row
  6272. }
  6273. if min > cr.Value.(cellRange).From.Row {
  6274. min = cr.Value.(cellRange).From.Row
  6275. }
  6276. if min > cr.Value.(cellRange).To.Row {
  6277. min = cr.Value.(cellRange).To.Row
  6278. }
  6279. if max < cr.Value.(cellRange).To.Row {
  6280. max = cr.Value.(cellRange).To.Row
  6281. }
  6282. if max < cr.Value.(cellRange).From.Row {
  6283. max = cr.Value.(cellRange).From.Row
  6284. }
  6285. }
  6286. }
  6287. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6288. cr := argsList.Front().Value.(formulaArg).cellRefs
  6289. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6290. if min == 0 {
  6291. min = refs.Value.(cellRef).Row
  6292. }
  6293. if min > refs.Value.(cellRef).Row {
  6294. min = refs.Value.(cellRef).Row
  6295. }
  6296. if max < refs.Value.(cellRef).Row {
  6297. max = refs.Value.(cellRef).Row
  6298. }
  6299. }
  6300. }
  6301. if max == TotalRows {
  6302. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6303. }
  6304. result := max - min + 1
  6305. if max == min {
  6306. if min == 0 {
  6307. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6308. }
  6309. return newNumberFormulaArg(float64(1))
  6310. }
  6311. return newStringFormulaArg(strconv.Itoa(result))
  6312. }
  6313. // Web Functions
  6314. // ENCODEURL function returns a URL-encoded string, replacing certain
  6315. // non-alphanumeric characters with the percentage symbol (%) and a
  6316. // hexadecimal number. The syntax of the function is:
  6317. //
  6318. // ENCODEURL(url)
  6319. //
  6320. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6321. if argsList.Len() != 1 {
  6322. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6323. }
  6324. token := argsList.Front().Value.(formulaArg).Value()
  6325. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6326. }