calc.go 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "github.com/xuri/efp"
  26. )
  27. // Excel formula errors
  28. const (
  29. formulaErrorDIV = "#DIV/0!"
  30. formulaErrorNAME = "#NAME?"
  31. formulaErrorNA = "#N/A"
  32. formulaErrorNUM = "#NUM!"
  33. formulaErrorVALUE = "#VALUE!"
  34. formulaErrorREF = "#REF!"
  35. formulaErrorNULL = "#NULL"
  36. formulaErrorSPILL = "#SPILL!"
  37. formulaErrorCALC = "#CALC!"
  38. formulaErrorGETTINGDATA = "#GETTING_DATA"
  39. )
  40. // cellRef defines the structure of a cell reference.
  41. type cellRef struct {
  42. Col int
  43. Row int
  44. Sheet string
  45. }
  46. // cellRef defines the structure of a cell range.
  47. type cellRange struct {
  48. From cellRef
  49. To cellRef
  50. }
  51. // formula criteria condition enumeration.
  52. const (
  53. _ byte = iota
  54. criteriaEq
  55. criteriaLe
  56. criteriaGe
  57. criteriaL
  58. criteriaG
  59. criteriaBeg
  60. criteriaEnd
  61. )
  62. // formulaCriteria defined formula criteria parser result.
  63. type formulaCriteria struct {
  64. Type byte
  65. Condition string
  66. }
  67. // ArgType is the type if formula argument type.
  68. type ArgType byte
  69. // Formula argument types enumeration.
  70. const (
  71. ArgUnknown ArgType = iota
  72. ArgString
  73. ArgMatrix
  74. )
  75. // formulaArg is the argument of a formula or function.
  76. type formulaArg struct {
  77. String string
  78. Matrix [][]formulaArg
  79. Type ArgType
  80. }
  81. // formulaFuncs is the type of the formula functions.
  82. type formulaFuncs struct{}
  83. // CalcCellValue provides a function to get calculated cell value. This
  84. // feature is currently in working processing. Array formula, table formula
  85. // and some other formulas are not supported currently.
  86. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  87. var (
  88. formula string
  89. token efp.Token
  90. )
  91. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  92. return
  93. }
  94. ps := efp.ExcelParser()
  95. tokens := ps.Parse(formula)
  96. if tokens == nil {
  97. return
  98. }
  99. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  100. return
  101. }
  102. result = token.TValue
  103. return
  104. }
  105. // getPriority calculate arithmetic operator priority.
  106. func getPriority(token efp.Token) (pri int) {
  107. var priority = map[string]int{
  108. "*": 2,
  109. "/": 2,
  110. "+": 1,
  111. "-": 1,
  112. }
  113. pri, _ = priority[token.TValue]
  114. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  115. pri = 3
  116. }
  117. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  118. pri = 0
  119. }
  120. return
  121. }
  122. // evalInfixExp evaluate syntax analysis by given infix expression after
  123. // lexical analysis. Evaluate an infix expression containing formulas by
  124. // stacks:
  125. //
  126. // opd - Operand
  127. // opt - Operator
  128. // opf - Operation formula
  129. // opfd - Operand of the operation formula
  130. // opft - Operator of the operation formula
  131. //
  132. // Evaluate arguments of the operation formula by list:
  133. //
  134. // args - Arguments of the operation formula
  135. //
  136. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  137. //
  138. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  139. var err error
  140. opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  141. argsList := list.New()
  142. for i := 0; i < len(tokens); i++ {
  143. token := tokens[i]
  144. // out of function stack
  145. if opfStack.Len() == 0 {
  146. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  147. return efp.Token{}, err
  148. }
  149. }
  150. // function start
  151. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  152. opfStack.Push(token)
  153. continue
  154. }
  155. // in function stack, walk 2 token at once
  156. if opfStack.Len() > 0 {
  157. var nextToken efp.Token
  158. if i+1 < len(tokens) {
  159. nextToken = tokens[i+1]
  160. }
  161. // current token is args or range, skip next token, order required: parse reference first
  162. if token.TSubType == efp.TokenSubTypeRange {
  163. if !opftStack.Empty() {
  164. // parse reference: must reference at here
  165. result, err := f.parseReference(sheet, token.TValue)
  166. if err != nil {
  167. return efp.Token{TValue: formulaErrorNAME}, err
  168. }
  169. if result.Type != ArgString {
  170. return efp.Token{}, errors.New(formulaErrorVALUE)
  171. }
  172. opfdStack.Push(efp.Token{
  173. TType: efp.TokenTypeOperand,
  174. TSubType: efp.TokenSubTypeNumber,
  175. TValue: result.String,
  176. })
  177. continue
  178. }
  179. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  180. // parse reference: reference or range at here
  181. result, err := f.parseReference(sheet, token.TValue)
  182. if err != nil {
  183. return efp.Token{TValue: formulaErrorNAME}, err
  184. }
  185. if result.Type == ArgUnknown {
  186. return efp.Token{}, errors.New(formulaErrorVALUE)
  187. }
  188. argsList.PushBack(result)
  189. continue
  190. }
  191. }
  192. // check current token is opft
  193. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  194. return efp.Token{}, err
  195. }
  196. // current token is arg
  197. if token.TType == efp.TokenTypeArgument {
  198. for !opftStack.Empty() {
  199. // calculate trigger
  200. topOpt := opftStack.Peek().(efp.Token)
  201. if err := calculate(opfdStack, topOpt); err != nil {
  202. return efp.Token{}, err
  203. }
  204. opftStack.Pop()
  205. }
  206. if !opfdStack.Empty() {
  207. argsList.PushBack(formulaArg{
  208. String: opfdStack.Pop().(efp.Token).TValue,
  209. Type: ArgString,
  210. })
  211. }
  212. continue
  213. }
  214. // current token is logical
  215. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  216. }
  217. // current token is text
  218. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  219. argsList.PushBack(formulaArg{
  220. String: token.TValue,
  221. Type: ArgString,
  222. })
  223. }
  224. // current token is function stop
  225. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  226. for !opftStack.Empty() {
  227. // calculate trigger
  228. topOpt := opftStack.Peek().(efp.Token)
  229. if err := calculate(opfdStack, topOpt); err != nil {
  230. return efp.Token{}, err
  231. }
  232. opftStack.Pop()
  233. }
  234. // push opfd to args
  235. if opfdStack.Len() > 0 {
  236. argsList.PushBack(formulaArg{
  237. String: opfdStack.Pop().(efp.Token).TValue,
  238. Type: ArgString,
  239. })
  240. }
  241. // call formula function to evaluate
  242. result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  243. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  244. []reflect.Value{reflect.ValueOf(argsList)})
  245. if err != nil {
  246. return efp.Token{}, err
  247. }
  248. argsList.Init()
  249. opfStack.Pop()
  250. if opfStack.Len() > 0 { // still in function stack
  251. opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  252. } else {
  253. opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  254. }
  255. }
  256. }
  257. }
  258. for optStack.Len() != 0 {
  259. topOpt := optStack.Peek().(efp.Token)
  260. if err = calculate(opdStack, topOpt); err != nil {
  261. return efp.Token{}, err
  262. }
  263. optStack.Pop()
  264. }
  265. if opdStack.Len() == 0 {
  266. return efp.Token{}, errors.New("formula not valid")
  267. }
  268. return opdStack.Peek().(efp.Token), err
  269. }
  270. // calcAdd evaluate addition arithmetic operations.
  271. func calcAdd(opdStack *Stack) error {
  272. if opdStack.Len() < 2 {
  273. return errors.New("formula not valid")
  274. }
  275. rOpd := opdStack.Pop().(efp.Token)
  276. lOpd := opdStack.Pop().(efp.Token)
  277. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  278. if err != nil {
  279. return err
  280. }
  281. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  282. if err != nil {
  283. return err
  284. }
  285. result := lOpdVal + rOpdVal
  286. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  287. return nil
  288. }
  289. // calcSubtract evaluate subtraction arithmetic operations.
  290. func calcSubtract(opdStack *Stack) error {
  291. if opdStack.Len() < 2 {
  292. return errors.New("formula not valid")
  293. }
  294. rOpd := opdStack.Pop().(efp.Token)
  295. lOpd := opdStack.Pop().(efp.Token)
  296. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  297. if err != nil {
  298. return err
  299. }
  300. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  301. if err != nil {
  302. return err
  303. }
  304. result := lOpdVal - rOpdVal
  305. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  306. return nil
  307. }
  308. // calcMultiply evaluate multiplication arithmetic operations.
  309. func calcMultiply(opdStack *Stack) error {
  310. if opdStack.Len() < 2 {
  311. return errors.New("formula not valid")
  312. }
  313. rOpd := opdStack.Pop().(efp.Token)
  314. lOpd := opdStack.Pop().(efp.Token)
  315. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  316. if err != nil {
  317. return err
  318. }
  319. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  320. if err != nil {
  321. return err
  322. }
  323. result := lOpdVal * rOpdVal
  324. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  325. return nil
  326. }
  327. // calcDivide evaluate division arithmetic operations.
  328. func calcDivide(opdStack *Stack) error {
  329. if opdStack.Len() < 2 {
  330. return errors.New("formula not valid")
  331. }
  332. rOpd := opdStack.Pop().(efp.Token)
  333. lOpd := opdStack.Pop().(efp.Token)
  334. lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
  335. if err != nil {
  336. return err
  337. }
  338. rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
  339. if err != nil {
  340. return err
  341. }
  342. result := lOpdVal / rOpdVal
  343. if rOpdVal == 0 {
  344. return errors.New(formulaErrorDIV)
  345. }
  346. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  347. return nil
  348. }
  349. // calculate evaluate basic arithmetic operations.
  350. func calculate(opdStack *Stack, opt efp.Token) error {
  351. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  352. if opdStack.Len() < 1 {
  353. return errors.New("formula not valid")
  354. }
  355. opd := opdStack.Pop().(efp.Token)
  356. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  357. if err != nil {
  358. return err
  359. }
  360. result := 0 - opdVal
  361. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  362. }
  363. if opt.TValue == "+" {
  364. if err := calcAdd(opdStack); err != nil {
  365. return err
  366. }
  367. }
  368. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  369. if err := calcSubtract(opdStack); err != nil {
  370. return err
  371. }
  372. }
  373. if opt.TValue == "*" {
  374. if err := calcMultiply(opdStack); err != nil {
  375. return err
  376. }
  377. }
  378. if opt.TValue == "/" {
  379. if err := calcDivide(opdStack); err != nil {
  380. return err
  381. }
  382. }
  383. return nil
  384. }
  385. // parseOperatorPrefixToken parse operator prefix token.
  386. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  387. if optStack.Len() == 0 {
  388. optStack.Push(token)
  389. } else {
  390. tokenPriority := getPriority(token)
  391. topOpt := optStack.Peek().(efp.Token)
  392. topOptPriority := getPriority(topOpt)
  393. if tokenPriority > topOptPriority {
  394. optStack.Push(token)
  395. } else {
  396. for tokenPriority <= topOptPriority {
  397. optStack.Pop()
  398. if err = calculate(opdStack, topOpt); err != nil {
  399. return
  400. }
  401. if optStack.Len() > 0 {
  402. topOpt = optStack.Peek().(efp.Token)
  403. topOptPriority = getPriority(topOpt)
  404. continue
  405. }
  406. break
  407. }
  408. optStack.Push(token)
  409. }
  410. }
  411. return
  412. }
  413. // isOperatorPrefixToken determine if the token is parse operator prefix
  414. // token.
  415. func isOperatorPrefixToken(token efp.Token) bool {
  416. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) ||
  417. token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
  418. return true
  419. }
  420. return false
  421. }
  422. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  423. for _, definedName := range f.GetDefinedName() {
  424. if definedName.Name == definedNameName {
  425. refTo = definedName.RefersTo
  426. // worksheet scope takes precedence over scope workbook when both definedNames exist
  427. if definedName.Scope == currentSheet {
  428. break
  429. }
  430. }
  431. }
  432. return refTo
  433. }
  434. // parseToken parse basic arithmetic operator priority and evaluate based on
  435. // operators and operands.
  436. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  437. // parse reference: must reference at here
  438. if token.TSubType == efp.TokenSubTypeRange {
  439. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  440. if refTo != "" {
  441. token.TValue = refTo
  442. }
  443. result, err := f.parseReference(sheet, token.TValue)
  444. if err != nil {
  445. return errors.New(formulaErrorNAME)
  446. }
  447. if result.Type != ArgString {
  448. return errors.New(formulaErrorVALUE)
  449. }
  450. token.TValue = result.String
  451. token.TType = efp.TokenTypeOperand
  452. token.TSubType = efp.TokenSubTypeNumber
  453. }
  454. if isOperatorPrefixToken(token) {
  455. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  456. return err
  457. }
  458. }
  459. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  460. optStack.Push(token)
  461. }
  462. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  463. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  464. topOpt := optStack.Peek().(efp.Token)
  465. if err := calculate(opdStack, topOpt); err != nil {
  466. return err
  467. }
  468. optStack.Pop()
  469. }
  470. optStack.Pop()
  471. }
  472. // opd
  473. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  474. opdStack.Push(token)
  475. }
  476. return nil
  477. }
  478. // parseReference parse reference and extract values by given reference
  479. // characters and default sheet name.
  480. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  481. reference = strings.Replace(reference, "$", "", -1)
  482. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  483. for _, ref := range strings.Split(reference, ":") {
  484. tokens := strings.Split(ref, "!")
  485. cr := cellRef{}
  486. if len(tokens) == 2 { // have a worksheet name
  487. cr.Sheet = tokens[0]
  488. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  489. return
  490. }
  491. if refs.Len() > 0 {
  492. e := refs.Back()
  493. cellRefs.PushBack(e.Value.(cellRef))
  494. refs.Remove(e)
  495. }
  496. refs.PushBack(cr)
  497. continue
  498. }
  499. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  500. return
  501. }
  502. e := refs.Back()
  503. if e == nil {
  504. cr.Sheet = sheet
  505. refs.PushBack(cr)
  506. continue
  507. }
  508. cellRanges.PushBack(cellRange{
  509. From: e.Value.(cellRef),
  510. To: cr,
  511. })
  512. refs.Remove(e)
  513. }
  514. if refs.Len() > 0 {
  515. e := refs.Back()
  516. cellRefs.PushBack(e.Value.(cellRef))
  517. refs.Remove(e)
  518. }
  519. arg, err = f.rangeResolver(cellRefs, cellRanges)
  520. return
  521. }
  522. // prepareValueRange prepare value range.
  523. func prepareValueRange(cr cellRange, valueRange []int) {
  524. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  525. valueRange[0] = cr.From.Row
  526. }
  527. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  528. valueRange[2] = cr.From.Col
  529. }
  530. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  531. valueRange[1] = cr.To.Row
  532. }
  533. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  534. valueRange[3] = cr.To.Col
  535. }
  536. }
  537. // prepareValueRef prepare value reference.
  538. func prepareValueRef(cr cellRef, valueRange []int) {
  539. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  540. valueRange[0] = cr.Row
  541. }
  542. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  543. valueRange[2] = cr.Col
  544. }
  545. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  546. valueRange[1] = cr.Row
  547. }
  548. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  549. valueRange[3] = cr.Col
  550. }
  551. }
  552. // rangeResolver extract value as string from given reference and range list.
  553. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  554. // be reference A1:B3.
  555. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  556. // value range order: from row, to row, from column, to column
  557. valueRange := []int{0, 0, 0, 0}
  558. var sheet string
  559. // prepare value range
  560. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  561. cr := temp.Value.(cellRange)
  562. if cr.From.Sheet != cr.To.Sheet {
  563. err = errors.New(formulaErrorVALUE)
  564. }
  565. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  566. sortCoordinates(rng)
  567. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  568. prepareValueRange(cr, valueRange)
  569. if cr.From.Sheet != "" {
  570. sheet = cr.From.Sheet
  571. }
  572. }
  573. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  574. cr := temp.Value.(cellRef)
  575. if cr.Sheet != "" {
  576. sheet = cr.Sheet
  577. }
  578. prepareValueRef(cr, valueRange)
  579. }
  580. // extract value from ranges
  581. if cellRanges.Len() > 0 {
  582. arg.Type = ArgMatrix
  583. for row := valueRange[0]; row <= valueRange[1]; row++ {
  584. var matrixRow = []formulaArg{}
  585. for col := valueRange[2]; col <= valueRange[3]; col++ {
  586. var cell, value string
  587. if cell, err = CoordinatesToCellName(col, row); err != nil {
  588. return
  589. }
  590. if value, err = f.GetCellValue(sheet, cell); err != nil {
  591. return
  592. }
  593. matrixRow = append(matrixRow, formulaArg{
  594. String: value,
  595. Type: ArgString,
  596. })
  597. }
  598. arg.Matrix = append(arg.Matrix, matrixRow)
  599. }
  600. return
  601. }
  602. // extract value from references
  603. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  604. cr := temp.Value.(cellRef)
  605. var cell string
  606. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  607. return
  608. }
  609. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  610. return
  611. }
  612. arg.Type = ArgString
  613. }
  614. return
  615. }
  616. // callFuncByName calls the no error or only error return function with
  617. // reflect by given receiver, name and parameters.
  618. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
  619. function := reflect.ValueOf(receiver).MethodByName(name)
  620. if function.IsValid() {
  621. rt := function.Call(params)
  622. if len(rt) == 0 {
  623. return
  624. }
  625. if !rt[1].IsNil() {
  626. err = rt[1].Interface().(error)
  627. return
  628. }
  629. result = rt[0].Interface().(string)
  630. return
  631. }
  632. err = fmt.Errorf("not support %s function", name)
  633. return
  634. }
  635. // formulaCriteriaParser parse formula criteria.
  636. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  637. fc = &formulaCriteria{}
  638. if exp == "" {
  639. return
  640. }
  641. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  642. fc.Type, fc.Condition = criteriaEq, match[1]
  643. return
  644. }
  645. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  646. fc.Type, fc.Condition = criteriaEq, match[1]
  647. return
  648. }
  649. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  650. fc.Type, fc.Condition = criteriaLe, match[1]
  651. return
  652. }
  653. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  654. fc.Type, fc.Condition = criteriaGe, match[1]
  655. return
  656. }
  657. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  658. fc.Type, fc.Condition = criteriaL, match[1]
  659. return
  660. }
  661. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  662. fc.Type, fc.Condition = criteriaG, match[1]
  663. return
  664. }
  665. if strings.Contains(exp, "*") {
  666. if strings.HasPrefix(exp, "*") {
  667. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  668. }
  669. if strings.HasSuffix(exp, "*") {
  670. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  671. }
  672. return
  673. }
  674. fc.Type, fc.Condition = criteriaEq, exp
  675. return
  676. }
  677. // formulaCriteriaEval evaluate formula criteria expression.
  678. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  679. var value, expected float64
  680. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  681. value, _ = strconv.ParseFloat(val, 64)
  682. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  683. return
  684. }
  685. return
  686. }
  687. switch criteria.Type {
  688. case criteriaEq:
  689. return val == criteria.Condition, err
  690. case criteriaLe:
  691. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  692. return
  693. }
  694. return value <= expected, err
  695. case criteriaGe:
  696. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  697. return
  698. }
  699. return value >= expected, err
  700. case criteriaL:
  701. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  702. return
  703. }
  704. return value < expected, err
  705. case criteriaG:
  706. if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
  707. return
  708. }
  709. return value > expected, err
  710. case criteriaBeg:
  711. return strings.HasPrefix(val, criteria.Condition), err
  712. case criteriaEnd:
  713. return strings.HasSuffix(val, criteria.Condition), err
  714. }
  715. return
  716. }
  717. // Math and Trigonometric functions
  718. // ABS function returns the absolute value of any supplied number. The syntax
  719. // of the function is:
  720. //
  721. // ABS(number)
  722. //
  723. func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
  724. if argsList.Len() != 1 {
  725. err = errors.New("ABS requires 1 numeric argument")
  726. return
  727. }
  728. var val float64
  729. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  730. err = errors.New(formulaErrorVALUE)
  731. return
  732. }
  733. result = fmt.Sprintf("%g", math.Abs(val))
  734. return
  735. }
  736. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  737. // number, and returns an angle, in radians, between 0 and π. The syntax of
  738. // the function is:
  739. //
  740. // ACOS(number)
  741. //
  742. func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
  743. if argsList.Len() != 1 {
  744. err = errors.New("ACOS requires 1 numeric argument")
  745. return
  746. }
  747. var val float64
  748. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  749. err = errors.New(formulaErrorVALUE)
  750. return
  751. }
  752. result = fmt.Sprintf("%g", math.Acos(val))
  753. return
  754. }
  755. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  756. // of the function is:
  757. //
  758. // ACOSH(number)
  759. //
  760. func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
  761. if argsList.Len() != 1 {
  762. err = errors.New("ACOSH requires 1 numeric argument")
  763. return
  764. }
  765. var val float64
  766. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  767. err = errors.New(formulaErrorVALUE)
  768. return
  769. }
  770. result = fmt.Sprintf("%g", math.Acosh(val))
  771. return
  772. }
  773. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  774. // given number, and returns an angle, in radians, between 0 and π. The syntax
  775. // of the function is:
  776. //
  777. // ACOT(number)
  778. //
  779. func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
  780. if argsList.Len() != 1 {
  781. err = errors.New("ACOT requires 1 numeric argument")
  782. return
  783. }
  784. var val float64
  785. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  786. err = errors.New(formulaErrorVALUE)
  787. return
  788. }
  789. result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
  790. return
  791. }
  792. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  793. // value. The syntax of the function is:
  794. //
  795. // ACOTH(number)
  796. //
  797. func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
  798. if argsList.Len() != 1 {
  799. err = errors.New("ACOTH requires 1 numeric argument")
  800. return
  801. }
  802. var val float64
  803. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  804. err = errors.New(formulaErrorVALUE)
  805. return
  806. }
  807. result = fmt.Sprintf("%g", math.Atanh(1/val))
  808. return
  809. }
  810. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  811. // of the function is:
  812. //
  813. // ARABIC(text)
  814. //
  815. func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
  816. if argsList.Len() != 1 {
  817. err = errors.New("ARABIC requires 1 numeric argument")
  818. return
  819. }
  820. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  821. val, last, prefix := 0.0, 0.0, 1.0
  822. for _, char := range argsList.Front().Value.(formulaArg).String {
  823. digit := 0.0
  824. if char == '-' {
  825. prefix = -1
  826. continue
  827. }
  828. digit, _ = charMap[char]
  829. val += digit
  830. switch {
  831. case last == digit && (last == 5 || last == 50 || last == 500):
  832. result = formulaErrorVALUE
  833. return
  834. case 2*last == digit:
  835. result = formulaErrorVALUE
  836. return
  837. }
  838. if last < digit {
  839. val -= 2 * last
  840. }
  841. last = digit
  842. }
  843. result = fmt.Sprintf("%g", prefix*val)
  844. return
  845. }
  846. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  847. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  848. // of the function is:
  849. //
  850. // ASIN(number)
  851. //
  852. func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
  853. if argsList.Len() != 1 {
  854. err = errors.New("ASIN requires 1 numeric argument")
  855. return
  856. }
  857. var val float64
  858. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  859. err = errors.New(formulaErrorVALUE)
  860. return
  861. }
  862. result = fmt.Sprintf("%g", math.Asin(val))
  863. return
  864. }
  865. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  866. // The syntax of the function is:
  867. //
  868. // ASINH(number)
  869. //
  870. func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
  871. if argsList.Len() != 1 {
  872. err = errors.New("ASINH requires 1 numeric argument")
  873. return
  874. }
  875. var val float64
  876. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  877. err = errors.New(formulaErrorVALUE)
  878. return
  879. }
  880. result = fmt.Sprintf("%g", math.Asinh(val))
  881. return
  882. }
  883. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  884. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  885. // syntax of the function is:
  886. //
  887. // ATAN(number)
  888. //
  889. func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
  890. if argsList.Len() != 1 {
  891. err = errors.New("ATAN requires 1 numeric argument")
  892. return
  893. }
  894. var val float64
  895. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  896. err = errors.New(formulaErrorVALUE)
  897. return
  898. }
  899. result = fmt.Sprintf("%g", math.Atan(val))
  900. return
  901. }
  902. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  903. // number. The syntax of the function is:
  904. //
  905. // ATANH(number)
  906. //
  907. func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
  908. if argsList.Len() != 1 {
  909. err = errors.New("ATANH requires 1 numeric argument")
  910. return
  911. }
  912. var val float64
  913. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  914. err = errors.New(formulaErrorVALUE)
  915. return
  916. }
  917. result = fmt.Sprintf("%g", math.Atanh(val))
  918. return
  919. }
  920. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  921. // given set of x and y coordinates, and returns an angle, in radians, between
  922. // -π/2 and +π/2. The syntax of the function is:
  923. //
  924. // ATAN2(x_num,y_num)
  925. //
  926. func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
  927. if argsList.Len() != 2 {
  928. err = errors.New("ATAN2 requires 2 numeric arguments")
  929. return
  930. }
  931. var x, y float64
  932. if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  933. err = errors.New(formulaErrorVALUE)
  934. return
  935. }
  936. if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  937. err = errors.New(formulaErrorVALUE)
  938. return
  939. }
  940. result = fmt.Sprintf("%g", math.Atan2(x, y))
  941. return
  942. }
  943. // BASE function converts a number into a supplied base (radix), and returns a
  944. // text representation of the calculated value. The syntax of the function is:
  945. //
  946. // BASE(number,radix,[min_length])
  947. //
  948. func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
  949. if argsList.Len() < 2 {
  950. err = errors.New("BASE requires at least 2 arguments")
  951. return
  952. }
  953. if argsList.Len() > 3 {
  954. err = errors.New("BASE allows at most 3 arguments")
  955. return
  956. }
  957. var number float64
  958. var radix, minLength int
  959. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  960. err = errors.New(formulaErrorVALUE)
  961. return
  962. }
  963. if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  964. err = errors.New(formulaErrorVALUE)
  965. return
  966. }
  967. if radix < 2 || radix > 36 {
  968. err = errors.New("radix must be an integer >= 2 and <= 36")
  969. return
  970. }
  971. if argsList.Len() > 2 {
  972. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  973. err = errors.New(formulaErrorVALUE)
  974. return
  975. }
  976. }
  977. result = strconv.FormatInt(int64(number), radix)
  978. if len(result) < minLength {
  979. result = strings.Repeat("0", minLength-len(result)) + result
  980. }
  981. result = strings.ToUpper(result)
  982. return
  983. }
  984. // CEILING function rounds a supplied number away from zero, to the nearest
  985. // multiple of a given number. The syntax of the function is:
  986. //
  987. // CEILING(number,significance)
  988. //
  989. func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
  990. if argsList.Len() == 0 {
  991. err = errors.New("CEILING requires at least 1 argument")
  992. return
  993. }
  994. if argsList.Len() > 2 {
  995. err = errors.New("CEILING allows at most 2 arguments")
  996. return
  997. }
  998. number, significance, res := 0.0, 1.0, 0.0
  999. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1000. err = errors.New(formulaErrorVALUE)
  1001. return
  1002. }
  1003. if number < 0 {
  1004. significance = -1
  1005. }
  1006. if argsList.Len() > 1 {
  1007. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1008. err = errors.New(formulaErrorVALUE)
  1009. return
  1010. }
  1011. }
  1012. if significance < 0 && number > 0 {
  1013. err = errors.New("negative sig to CEILING invalid")
  1014. return
  1015. }
  1016. if argsList.Len() == 1 {
  1017. result = fmt.Sprintf("%g", math.Ceil(number))
  1018. return
  1019. }
  1020. number, res = math.Modf(number / significance)
  1021. if res > 0 {
  1022. number++
  1023. }
  1024. result = fmt.Sprintf("%g", number*significance)
  1025. return
  1026. }
  1027. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1028. // significance. The syntax of the function is:
  1029. //
  1030. // CEILING.MATH(number,[significance],[mode])
  1031. //
  1032. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
  1033. if argsList.Len() == 0 {
  1034. err = errors.New("CEILING.MATH requires at least 1 argument")
  1035. return
  1036. }
  1037. if argsList.Len() > 3 {
  1038. err = errors.New("CEILING.MATH allows at most 3 arguments")
  1039. return
  1040. }
  1041. number, significance, mode := 0.0, 1.0, 1.0
  1042. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1043. err = errors.New(formulaErrorVALUE)
  1044. return
  1045. }
  1046. if number < 0 {
  1047. significance = -1
  1048. }
  1049. if argsList.Len() > 1 {
  1050. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1051. err = errors.New(formulaErrorVALUE)
  1052. return
  1053. }
  1054. }
  1055. if argsList.Len() == 1 {
  1056. result = fmt.Sprintf("%g", math.Ceil(number))
  1057. return
  1058. }
  1059. if argsList.Len() > 2 {
  1060. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1061. err = errors.New(formulaErrorVALUE)
  1062. return
  1063. }
  1064. }
  1065. val, res := math.Modf(number / significance)
  1066. if res != 0 {
  1067. if number > 0 {
  1068. val++
  1069. } else if mode < 0 {
  1070. val--
  1071. }
  1072. }
  1073. result = fmt.Sprintf("%g", val*significance)
  1074. return
  1075. }
  1076. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1077. // number's sign), to the nearest multiple of a given number. The syntax of
  1078. // the function is:
  1079. //
  1080. // CEILING.PRECISE(number,[significance])
  1081. //
  1082. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
  1083. if argsList.Len() == 0 {
  1084. err = errors.New("CEILING.PRECISE requires at least 1 argument")
  1085. return
  1086. }
  1087. if argsList.Len() > 2 {
  1088. err = errors.New("CEILING.PRECISE allows at most 2 arguments")
  1089. return
  1090. }
  1091. number, significance := 0.0, 1.0
  1092. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1093. err = errors.New(formulaErrorVALUE)
  1094. return
  1095. }
  1096. if number < 0 {
  1097. significance = -1
  1098. }
  1099. if argsList.Len() == 1 {
  1100. result = fmt.Sprintf("%g", math.Ceil(number))
  1101. return
  1102. }
  1103. if argsList.Len() > 1 {
  1104. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1105. err = errors.New(formulaErrorVALUE)
  1106. return
  1107. }
  1108. significance = math.Abs(significance)
  1109. if significance == 0 {
  1110. result = "0"
  1111. return
  1112. }
  1113. }
  1114. val, res := math.Modf(number / significance)
  1115. if res != 0 {
  1116. if number > 0 {
  1117. val++
  1118. }
  1119. }
  1120. result = fmt.Sprintf("%g", val*significance)
  1121. return
  1122. }
  1123. // COMBIN function calculates the number of combinations (in any order) of a
  1124. // given number objects from a set. The syntax of the function is:
  1125. //
  1126. // COMBIN(number,number_chosen)
  1127. //
  1128. func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
  1129. if argsList.Len() != 2 {
  1130. err = errors.New("COMBIN requires 2 argument")
  1131. return
  1132. }
  1133. number, chosen, val := 0.0, 0.0, 1.0
  1134. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1135. err = errors.New(formulaErrorVALUE)
  1136. return
  1137. }
  1138. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1139. err = errors.New(formulaErrorVALUE)
  1140. return
  1141. }
  1142. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1143. if chosen > number {
  1144. err = errors.New("COMBIN requires number >= number_chosen")
  1145. return
  1146. }
  1147. if chosen == number || chosen == 0 {
  1148. result = "1"
  1149. return
  1150. }
  1151. for c := float64(1); c <= chosen; c++ {
  1152. val *= (number + 1 - c) / c
  1153. }
  1154. result = fmt.Sprintf("%g", math.Ceil(val))
  1155. return
  1156. }
  1157. // COMBINA function calculates the number of combinations, with repetitions,
  1158. // of a given number objects from a set. The syntax of the function is:
  1159. //
  1160. // COMBINA(number,number_chosen)
  1161. //
  1162. func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
  1163. if argsList.Len() != 2 {
  1164. err = errors.New("COMBINA requires 2 argument")
  1165. return
  1166. }
  1167. var number, chosen float64
  1168. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1169. err = errors.New(formulaErrorVALUE)
  1170. return
  1171. }
  1172. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1173. err = errors.New(formulaErrorVALUE)
  1174. return
  1175. }
  1176. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1177. if number < chosen {
  1178. err = errors.New("COMBINA requires number > number_chosen")
  1179. return
  1180. }
  1181. if number == 0 {
  1182. result = "0"
  1183. return
  1184. }
  1185. args := list.New()
  1186. args.PushBack(formulaArg{
  1187. String: fmt.Sprintf("%g", number+chosen-1),
  1188. Type: ArgString,
  1189. })
  1190. args.PushBack(formulaArg{
  1191. String: fmt.Sprintf("%g", number-1),
  1192. Type: ArgString,
  1193. })
  1194. return fn.COMBIN(args)
  1195. }
  1196. // COS function calculates the cosine of a given angle. The syntax of the
  1197. // function is:
  1198. //
  1199. // COS(number)
  1200. //
  1201. func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
  1202. if argsList.Len() != 1 {
  1203. err = errors.New("COS requires 1 numeric argument")
  1204. return
  1205. }
  1206. var val float64
  1207. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1208. err = errors.New(formulaErrorVALUE)
  1209. return
  1210. }
  1211. result = fmt.Sprintf("%g", math.Cos(val))
  1212. return
  1213. }
  1214. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1215. // The syntax of the function is:
  1216. //
  1217. // COSH(number)
  1218. //
  1219. func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
  1220. if argsList.Len() != 1 {
  1221. err = errors.New("COSH requires 1 numeric argument")
  1222. return
  1223. }
  1224. var val float64
  1225. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1226. err = errors.New(formulaErrorVALUE)
  1227. return
  1228. }
  1229. result = fmt.Sprintf("%g", math.Cosh(val))
  1230. return
  1231. }
  1232. // COT function calculates the cotangent of a given angle. The syntax of the
  1233. // function is:
  1234. //
  1235. // COT(number)
  1236. //
  1237. func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
  1238. if argsList.Len() != 1 {
  1239. err = errors.New("COT requires 1 numeric argument")
  1240. return
  1241. }
  1242. var val float64
  1243. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1244. err = errors.New(formulaErrorVALUE)
  1245. return
  1246. }
  1247. if val == 0 {
  1248. err = errors.New(formulaErrorDIV)
  1249. return
  1250. }
  1251. result = fmt.Sprintf("%g", math.Tan(val))
  1252. return
  1253. }
  1254. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1255. // angle. The syntax of the function is:
  1256. //
  1257. // COTH(number)
  1258. //
  1259. func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
  1260. if argsList.Len() != 1 {
  1261. err = errors.New("COTH requires 1 numeric argument")
  1262. return
  1263. }
  1264. var val float64
  1265. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1266. err = errors.New(formulaErrorVALUE)
  1267. return
  1268. }
  1269. if val == 0 {
  1270. err = errors.New(formulaErrorDIV)
  1271. return
  1272. }
  1273. result = fmt.Sprintf("%g", math.Tanh(val))
  1274. return
  1275. }
  1276. // CSC function calculates the cosecant of a given angle. The syntax of the
  1277. // function is:
  1278. //
  1279. // CSC(number)
  1280. //
  1281. func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
  1282. if argsList.Len() != 1 {
  1283. err = errors.New("CSC requires 1 numeric argument")
  1284. return
  1285. }
  1286. var val float64
  1287. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1288. err = errors.New(formulaErrorVALUE)
  1289. return
  1290. }
  1291. if val == 0 {
  1292. err = errors.New(formulaErrorDIV)
  1293. return
  1294. }
  1295. result = fmt.Sprintf("%g", 1/math.Sin(val))
  1296. return
  1297. }
  1298. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1299. // angle. The syntax of the function is:
  1300. //
  1301. // CSCH(number)
  1302. //
  1303. func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
  1304. if argsList.Len() != 1 {
  1305. err = errors.New("CSCH requires 1 numeric argument")
  1306. return
  1307. }
  1308. var val float64
  1309. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1310. err = errors.New(formulaErrorVALUE)
  1311. return
  1312. }
  1313. if val == 0 {
  1314. err = errors.New(formulaErrorDIV)
  1315. return
  1316. }
  1317. result = fmt.Sprintf("%g", 1/math.Sinh(val))
  1318. return
  1319. }
  1320. // DECIMAL function converts a text representation of a number in a specified
  1321. // base, into a decimal value. The syntax of the function is:
  1322. //
  1323. // DECIMAL(text,radix)
  1324. //
  1325. func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
  1326. if argsList.Len() != 2 {
  1327. err = errors.New("DECIMAL requires 2 numeric arguments")
  1328. return
  1329. }
  1330. var text = argsList.Front().Value.(formulaArg).String
  1331. var radix int
  1332. if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1333. err = errors.New(formulaErrorVALUE)
  1334. return
  1335. }
  1336. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1337. text = text[2:]
  1338. }
  1339. val, err := strconv.ParseInt(text, radix, 64)
  1340. if err != nil {
  1341. err = errors.New(formulaErrorVALUE)
  1342. return
  1343. }
  1344. result = fmt.Sprintf("%g", float64(val))
  1345. return
  1346. }
  1347. // DEGREES function converts radians into degrees. The syntax of the function
  1348. // is:
  1349. //
  1350. // DEGREES(angle)
  1351. //
  1352. func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
  1353. if argsList.Len() != 1 {
  1354. err = errors.New("DEGREES requires 1 numeric argument")
  1355. return
  1356. }
  1357. var val float64
  1358. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1359. err = errors.New(formulaErrorVALUE)
  1360. return
  1361. }
  1362. if val == 0 {
  1363. err = errors.New(formulaErrorDIV)
  1364. return
  1365. }
  1366. result = fmt.Sprintf("%g", 180.0/math.Pi*val)
  1367. return
  1368. }
  1369. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1370. // positive number up and a negative number down), to the next even number.
  1371. // The syntax of the function is:
  1372. //
  1373. // EVEN(number)
  1374. //
  1375. func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
  1376. if argsList.Len() != 1 {
  1377. err = errors.New("EVEN requires 1 numeric argument")
  1378. return
  1379. }
  1380. var number float64
  1381. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1382. err = errors.New(formulaErrorVALUE)
  1383. return
  1384. }
  1385. sign := math.Signbit(number)
  1386. m, frac := math.Modf(number / 2)
  1387. val := m * 2
  1388. if frac != 0 {
  1389. if !sign {
  1390. val += 2
  1391. } else {
  1392. val -= 2
  1393. }
  1394. }
  1395. result = fmt.Sprintf("%g", val)
  1396. return
  1397. }
  1398. // EXP function calculates the value of the mathematical constant e, raised to
  1399. // the power of a given number. The syntax of the function is:
  1400. //
  1401. // EXP(number)
  1402. //
  1403. func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
  1404. if argsList.Len() != 1 {
  1405. err = errors.New("EXP requires 1 numeric argument")
  1406. return
  1407. }
  1408. var number float64
  1409. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1410. err = errors.New(formulaErrorVALUE)
  1411. return
  1412. }
  1413. result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
  1414. return
  1415. }
  1416. // fact returns the factorial of a supplied number.
  1417. func fact(number float64) float64 {
  1418. val := float64(1)
  1419. for i := float64(2); i <= number; i++ {
  1420. val *= i
  1421. }
  1422. return val
  1423. }
  1424. // FACT function returns the factorial of a supplied number. The syntax of the
  1425. // function is:
  1426. //
  1427. // FACT(number)
  1428. //
  1429. func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
  1430. if argsList.Len() != 1 {
  1431. err = errors.New("FACT requires 1 numeric argument")
  1432. return
  1433. }
  1434. var number float64
  1435. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1436. err = errors.New(formulaErrorVALUE)
  1437. return
  1438. }
  1439. if number < 0 {
  1440. err = errors.New(formulaErrorNUM)
  1441. }
  1442. result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
  1443. return
  1444. }
  1445. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1446. // syntax of the function is:
  1447. //
  1448. // FACTDOUBLE(number)
  1449. //
  1450. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
  1451. if argsList.Len() != 1 {
  1452. err = errors.New("FACTDOUBLE requires 1 numeric argument")
  1453. return
  1454. }
  1455. number, val := 0.0, 1.0
  1456. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1457. err = errors.New(formulaErrorVALUE)
  1458. return
  1459. }
  1460. if number < 0 {
  1461. err = errors.New(formulaErrorNUM)
  1462. return
  1463. }
  1464. for i := math.Trunc(number); i > 1; i -= 2 {
  1465. val *= i
  1466. }
  1467. result = strings.ToUpper(fmt.Sprintf("%g", val))
  1468. return
  1469. }
  1470. // FLOOR function rounds a supplied number towards zero to the nearest
  1471. // multiple of a specified significance. The syntax of the function is:
  1472. //
  1473. // FLOOR(number,significance)
  1474. //
  1475. func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
  1476. if argsList.Len() != 2 {
  1477. err = errors.New("FLOOR requires 2 numeric arguments")
  1478. return
  1479. }
  1480. var number, significance float64
  1481. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1482. err = errors.New(formulaErrorVALUE)
  1483. return
  1484. }
  1485. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1486. err = errors.New(formulaErrorVALUE)
  1487. return
  1488. }
  1489. if significance < 0 && number >= 0 {
  1490. err = errors.New(formulaErrorNUM)
  1491. return
  1492. }
  1493. val := number
  1494. val, res := math.Modf(val / significance)
  1495. if res != 0 {
  1496. if number < 0 && res < 0 {
  1497. val--
  1498. }
  1499. }
  1500. result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
  1501. return
  1502. }
  1503. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1504. // significance. The syntax of the function is:
  1505. //
  1506. // FLOOR.MATH(number,[significance],[mode])
  1507. //
  1508. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
  1509. if argsList.Len() == 0 {
  1510. err = errors.New("FLOOR.MATH requires at least 1 argument")
  1511. return
  1512. }
  1513. if argsList.Len() > 3 {
  1514. err = errors.New("FLOOR.MATH allows at most 3 arguments")
  1515. return
  1516. }
  1517. number, significance, mode := 0.0, 1.0, 1.0
  1518. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1519. err = errors.New(formulaErrorVALUE)
  1520. return
  1521. }
  1522. if number < 0 {
  1523. significance = -1
  1524. }
  1525. if argsList.Len() > 1 {
  1526. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1527. err = errors.New(formulaErrorVALUE)
  1528. return
  1529. }
  1530. }
  1531. if argsList.Len() == 1 {
  1532. result = fmt.Sprintf("%g", math.Floor(number))
  1533. return
  1534. }
  1535. if argsList.Len() > 2 {
  1536. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1537. err = errors.New(formulaErrorVALUE)
  1538. return
  1539. }
  1540. }
  1541. val, res := math.Modf(number / significance)
  1542. if res != 0 && number < 0 && mode > 0 {
  1543. val--
  1544. }
  1545. result = fmt.Sprintf("%g", val*significance)
  1546. return
  1547. }
  1548. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1549. // of significance. The syntax of the function is:
  1550. //
  1551. // FLOOR.PRECISE(number,[significance])
  1552. //
  1553. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
  1554. if argsList.Len() == 0 {
  1555. err = errors.New("FLOOR.PRECISE requires at least 1 argument")
  1556. return
  1557. }
  1558. if argsList.Len() > 2 {
  1559. err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
  1560. return
  1561. }
  1562. var number, significance float64
  1563. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1564. err = errors.New(formulaErrorVALUE)
  1565. return
  1566. }
  1567. if number < 0 {
  1568. significance = -1
  1569. }
  1570. if argsList.Len() == 1 {
  1571. result = fmt.Sprintf("%g", math.Floor(number))
  1572. return
  1573. }
  1574. if argsList.Len() > 1 {
  1575. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1576. err = errors.New(formulaErrorVALUE)
  1577. return
  1578. }
  1579. significance = math.Abs(significance)
  1580. if significance == 0 {
  1581. result = "0"
  1582. return
  1583. }
  1584. }
  1585. val, res := math.Modf(number / significance)
  1586. if res != 0 {
  1587. if number < 0 {
  1588. val--
  1589. }
  1590. }
  1591. result = fmt.Sprintf("%g", val*significance)
  1592. return
  1593. }
  1594. // gcd returns the greatest common divisor of two supplied integers.
  1595. func gcd(x, y float64) float64 {
  1596. x, y = math.Trunc(x), math.Trunc(y)
  1597. if x == 0 {
  1598. return y
  1599. }
  1600. if y == 0 {
  1601. return x
  1602. }
  1603. for x != y {
  1604. if x > y {
  1605. x = x - y
  1606. } else {
  1607. y = y - x
  1608. }
  1609. }
  1610. return x
  1611. }
  1612. // GCD function returns the greatest common divisor of two or more supplied
  1613. // integers. The syntax of the function is:
  1614. //
  1615. // GCD(number1,[number2],...)
  1616. //
  1617. func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
  1618. if argsList.Len() == 0 {
  1619. err = errors.New("GCD requires at least 1 argument")
  1620. return
  1621. }
  1622. var (
  1623. val float64
  1624. nums = []float64{}
  1625. )
  1626. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1627. token := arg.Value.(formulaArg).String
  1628. if token == "" {
  1629. continue
  1630. }
  1631. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1632. err = errors.New(formulaErrorVALUE)
  1633. return
  1634. }
  1635. nums = append(nums, val)
  1636. }
  1637. if nums[0] < 0 {
  1638. err = errors.New("GCD only accepts positive arguments")
  1639. return
  1640. }
  1641. if len(nums) == 1 {
  1642. result = fmt.Sprintf("%g", nums[0])
  1643. return
  1644. }
  1645. cd := nums[0]
  1646. for i := 1; i < len(nums); i++ {
  1647. if nums[i] < 0 {
  1648. err = errors.New("GCD only accepts positive arguments")
  1649. return
  1650. }
  1651. cd = gcd(cd, nums[i])
  1652. }
  1653. result = fmt.Sprintf("%g", cd)
  1654. return
  1655. }
  1656. // INT function truncates a supplied number down to the closest integer. The
  1657. // syntax of the function is:
  1658. //
  1659. // INT(number)
  1660. //
  1661. func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
  1662. if argsList.Len() != 1 {
  1663. err = errors.New("INT requires 1 numeric argument")
  1664. return
  1665. }
  1666. var number float64
  1667. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1668. err = errors.New(formulaErrorVALUE)
  1669. return
  1670. }
  1671. val, frac := math.Modf(number)
  1672. if frac < 0 {
  1673. val--
  1674. }
  1675. result = fmt.Sprintf("%g", val)
  1676. return
  1677. }
  1678. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1679. // sign), to the nearest multiple of a supplied significance. The syntax of
  1680. // the function is:
  1681. //
  1682. // ISO.CEILING(number,[significance])
  1683. //
  1684. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
  1685. if argsList.Len() == 0 {
  1686. err = errors.New("ISO.CEILING requires at least 1 argument")
  1687. return
  1688. }
  1689. if argsList.Len() > 2 {
  1690. err = errors.New("ISO.CEILING allows at most 2 arguments")
  1691. return
  1692. }
  1693. var number, significance float64
  1694. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1695. err = errors.New(formulaErrorVALUE)
  1696. return
  1697. }
  1698. if number < 0 {
  1699. significance = -1
  1700. }
  1701. if argsList.Len() == 1 {
  1702. result = fmt.Sprintf("%g", math.Ceil(number))
  1703. return
  1704. }
  1705. if argsList.Len() > 1 {
  1706. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1707. err = errors.New(formulaErrorVALUE)
  1708. return
  1709. }
  1710. significance = math.Abs(significance)
  1711. if significance == 0 {
  1712. result = "0"
  1713. return
  1714. }
  1715. }
  1716. val, res := math.Modf(number / significance)
  1717. if res != 0 {
  1718. if number > 0 {
  1719. val++
  1720. }
  1721. }
  1722. result = fmt.Sprintf("%g", val*significance)
  1723. return
  1724. }
  1725. // lcm returns the least common multiple of two supplied integers.
  1726. func lcm(a, b float64) float64 {
  1727. a = math.Trunc(a)
  1728. b = math.Trunc(b)
  1729. if a == 0 && b == 0 {
  1730. return 0
  1731. }
  1732. return a * b / gcd(a, b)
  1733. }
  1734. // LCM function returns the least common multiple of two or more supplied
  1735. // integers. The syntax of the function is:
  1736. //
  1737. // LCM(number1,[number2],...)
  1738. //
  1739. func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
  1740. if argsList.Len() == 0 {
  1741. err = errors.New("LCM requires at least 1 argument")
  1742. return
  1743. }
  1744. var (
  1745. val float64
  1746. nums = []float64{}
  1747. )
  1748. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1749. token := arg.Value.(formulaArg).String
  1750. if token == "" {
  1751. continue
  1752. }
  1753. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1754. err = errors.New(formulaErrorVALUE)
  1755. return
  1756. }
  1757. nums = append(nums, val)
  1758. }
  1759. if nums[0] < 0 {
  1760. err = errors.New("LCM only accepts positive arguments")
  1761. return
  1762. }
  1763. if len(nums) == 1 {
  1764. result = fmt.Sprintf("%g", nums[0])
  1765. return
  1766. }
  1767. cm := nums[0]
  1768. for i := 1; i < len(nums); i++ {
  1769. if nums[i] < 0 {
  1770. err = errors.New("LCM only accepts positive arguments")
  1771. return
  1772. }
  1773. cm = lcm(cm, nums[i])
  1774. }
  1775. result = fmt.Sprintf("%g", cm)
  1776. return
  1777. }
  1778. // LN function calculates the natural logarithm of a given number. The syntax
  1779. // of the function is:
  1780. //
  1781. // LN(number)
  1782. //
  1783. func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
  1784. if argsList.Len() != 1 {
  1785. err = errors.New("LN requires 1 numeric argument")
  1786. return
  1787. }
  1788. var number float64
  1789. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1790. err = errors.New(formulaErrorVALUE)
  1791. return
  1792. }
  1793. result = fmt.Sprintf("%g", math.Log(number))
  1794. return
  1795. }
  1796. // LOG function calculates the logarithm of a given number, to a supplied
  1797. // base. The syntax of the function is:
  1798. //
  1799. // LOG(number,[base])
  1800. //
  1801. func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
  1802. if argsList.Len() == 0 {
  1803. err = errors.New("LOG requires at least 1 argument")
  1804. return
  1805. }
  1806. if argsList.Len() > 2 {
  1807. err = errors.New("LOG allows at most 2 arguments")
  1808. return
  1809. }
  1810. number, base := 0.0, 10.0
  1811. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1812. err = errors.New(formulaErrorVALUE)
  1813. return
  1814. }
  1815. if argsList.Len() > 1 {
  1816. if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1817. err = errors.New(formulaErrorVALUE)
  1818. return
  1819. }
  1820. }
  1821. if number == 0 {
  1822. err = errors.New(formulaErrorNUM)
  1823. return
  1824. }
  1825. if base == 0 {
  1826. err = errors.New(formulaErrorNUM)
  1827. return
  1828. }
  1829. if base == 1 {
  1830. err = errors.New(formulaErrorDIV)
  1831. return
  1832. }
  1833. result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
  1834. return
  1835. }
  1836. // LOG10 function calculates the base 10 logarithm of a given number. The
  1837. // syntax of the function is:
  1838. //
  1839. // LOG10(number)
  1840. //
  1841. func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
  1842. if argsList.Len() != 1 {
  1843. err = errors.New("LOG10 requires 1 numeric argument")
  1844. return
  1845. }
  1846. var number float64
  1847. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1848. err = errors.New(formulaErrorVALUE)
  1849. return
  1850. }
  1851. result = fmt.Sprintf("%g", math.Log10(number))
  1852. return
  1853. }
  1854. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1855. ret := [][]float64{}
  1856. for i := range sqMtx {
  1857. if i == 0 {
  1858. continue
  1859. }
  1860. row := []float64{}
  1861. for j := range sqMtx {
  1862. if j == idx {
  1863. continue
  1864. }
  1865. row = append(row, sqMtx[i][j])
  1866. }
  1867. ret = append(ret, row)
  1868. }
  1869. return ret
  1870. }
  1871. // det determinant of the 2x2 matrix.
  1872. func det(sqMtx [][]float64) float64 {
  1873. if len(sqMtx) == 2 {
  1874. m00 := sqMtx[0][0]
  1875. m01 := sqMtx[0][1]
  1876. m10 := sqMtx[1][0]
  1877. m11 := sqMtx[1][1]
  1878. return m00*m11 - m10*m01
  1879. }
  1880. var res, sgn float64 = 0, 1
  1881. for j := range sqMtx {
  1882. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  1883. sgn *= -1
  1884. }
  1885. return res
  1886. }
  1887. // MDETERM calculates the determinant of a square matrix. The
  1888. // syntax of the function is:
  1889. //
  1890. // MDETERM(array)
  1891. //
  1892. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
  1893. var num float64
  1894. var numMtx = [][]float64{}
  1895. var strMtx = argsList.Front().Value.(formulaArg).Matrix
  1896. if argsList.Len() < 1 {
  1897. return
  1898. }
  1899. var rows = len(strMtx)
  1900. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  1901. if len(row) != rows {
  1902. err = errors.New(formulaErrorVALUE)
  1903. return
  1904. }
  1905. numRow := []float64{}
  1906. for _, ele := range row {
  1907. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  1908. return
  1909. }
  1910. numRow = append(numRow, num)
  1911. }
  1912. numMtx = append(numMtx, numRow)
  1913. }
  1914. result = fmt.Sprintf("%g", det(numMtx))
  1915. return
  1916. }
  1917. // MOD function returns the remainder of a division between two supplied
  1918. // numbers. The syntax of the function is:
  1919. //
  1920. // MOD(number,divisor)
  1921. //
  1922. func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
  1923. if argsList.Len() != 2 {
  1924. err = errors.New("MOD requires 2 numeric arguments")
  1925. return
  1926. }
  1927. var number, divisor float64
  1928. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1929. err = errors.New(formulaErrorVALUE)
  1930. return
  1931. }
  1932. if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1933. err = errors.New(formulaErrorVALUE)
  1934. return
  1935. }
  1936. if divisor == 0 {
  1937. err = errors.New(formulaErrorDIV)
  1938. return
  1939. }
  1940. trunc, rem := math.Modf(number / divisor)
  1941. if rem < 0 {
  1942. trunc--
  1943. }
  1944. result = fmt.Sprintf("%g", number-divisor*trunc)
  1945. return
  1946. }
  1947. // MROUND function rounds a supplied number up or down to the nearest multiple
  1948. // of a given number. The syntax of the function is:
  1949. //
  1950. // MOD(number,multiple)
  1951. //
  1952. func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
  1953. if argsList.Len() != 2 {
  1954. err = errors.New("MROUND requires 2 numeric arguments")
  1955. return
  1956. }
  1957. var number, multiple float64
  1958. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1959. err = errors.New(formulaErrorVALUE)
  1960. return
  1961. }
  1962. if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1963. err = errors.New(formulaErrorVALUE)
  1964. return
  1965. }
  1966. if multiple == 0 {
  1967. err = errors.New(formulaErrorNUM)
  1968. return
  1969. }
  1970. if multiple < 0 && number > 0 ||
  1971. multiple > 0 && number < 0 {
  1972. err = errors.New(formulaErrorNUM)
  1973. return
  1974. }
  1975. number, res := math.Modf(number / multiple)
  1976. if math.Trunc(res+0.5) > 0 {
  1977. number++
  1978. }
  1979. result = fmt.Sprintf("%g", number*multiple)
  1980. return
  1981. }
  1982. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  1983. // supplied values to the product of factorials of those values. The syntax of
  1984. // the function is:
  1985. //
  1986. // MULTINOMIAL(number1,[number2],...)
  1987. //
  1988. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
  1989. val, num, denom := 0.0, 0.0, 1.0
  1990. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1991. token := arg.Value.(formulaArg)
  1992. if token.String == "" {
  1993. continue
  1994. }
  1995. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1996. err = errors.New(formulaErrorVALUE)
  1997. return
  1998. }
  1999. num += val
  2000. denom *= fact(val)
  2001. }
  2002. result = fmt.Sprintf("%g", fact(num)/denom)
  2003. return
  2004. }
  2005. // MUNIT function returns the unit matrix for a specified dimension. The
  2006. // syntax of the function is:
  2007. //
  2008. // MUNIT(dimension)
  2009. //
  2010. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
  2011. if argsList.Len() != 1 {
  2012. err = errors.New("MUNIT requires 1 numeric argument")
  2013. return
  2014. }
  2015. var dimension int
  2016. if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  2017. err = errors.New(formulaErrorVALUE)
  2018. return
  2019. }
  2020. matrix := make([][]float64, 0, dimension)
  2021. for i := 0; i < dimension; i++ {
  2022. row := make([]float64, dimension)
  2023. for j := 0; j < dimension; j++ {
  2024. if i == j {
  2025. row[j] = float64(1.0)
  2026. } else {
  2027. row[j] = float64(0.0)
  2028. }
  2029. }
  2030. matrix = append(matrix, row)
  2031. }
  2032. return
  2033. }
  2034. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2035. // number up and a negative number down), to the next odd number. The syntax
  2036. // of the function is:
  2037. //
  2038. // ODD(number)
  2039. //
  2040. func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
  2041. if argsList.Len() != 1 {
  2042. err = errors.New("ODD requires 1 numeric argument")
  2043. return
  2044. }
  2045. var number float64
  2046. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2047. err = errors.New(formulaErrorVALUE)
  2048. return
  2049. }
  2050. if number == 0 {
  2051. result = "1"
  2052. return
  2053. }
  2054. sign := math.Signbit(number)
  2055. m, frac := math.Modf((number - 1) / 2)
  2056. val := m*2 + 1
  2057. if frac != 0 {
  2058. if !sign {
  2059. val += 2
  2060. } else {
  2061. val -= 2
  2062. }
  2063. }
  2064. result = fmt.Sprintf("%g", val)
  2065. return
  2066. }
  2067. // PI function returns the value of the mathematical constant π (pi), accurate
  2068. // to 15 digits (14 decimal places). The syntax of the function is:
  2069. //
  2070. // PI()
  2071. //
  2072. func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
  2073. if argsList.Len() != 0 {
  2074. err = errors.New("PI accepts no arguments")
  2075. return
  2076. }
  2077. result = fmt.Sprintf("%g", math.Pi)
  2078. return
  2079. }
  2080. // POWER function calculates a given number, raised to a supplied power.
  2081. // The syntax of the function is:
  2082. //
  2083. // POWER(number,power)
  2084. //
  2085. func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
  2086. if argsList.Len() != 2 {
  2087. err = errors.New("POWER requires 2 numeric arguments")
  2088. return
  2089. }
  2090. var x, y float64
  2091. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2092. err = errors.New(formulaErrorVALUE)
  2093. return
  2094. }
  2095. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2096. err = errors.New(formulaErrorVALUE)
  2097. return
  2098. }
  2099. if x == 0 && y == 0 {
  2100. err = errors.New(formulaErrorNUM)
  2101. return
  2102. }
  2103. if x == 0 && y < 0 {
  2104. err = errors.New(formulaErrorDIV)
  2105. return
  2106. }
  2107. result = fmt.Sprintf("%g", math.Pow(x, y))
  2108. return
  2109. }
  2110. // PRODUCT function returns the product (multiplication) of a supplied set of
  2111. // numerical values. The syntax of the function is:
  2112. //
  2113. // PRODUCT(number1,[number2],...)
  2114. //
  2115. func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
  2116. val, product := 0.0, 1.0
  2117. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2118. token := arg.Value.(formulaArg)
  2119. switch token.Type {
  2120. case ArgUnknown:
  2121. continue
  2122. case ArgString:
  2123. if token.String == "" {
  2124. continue
  2125. }
  2126. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2127. err = errors.New(formulaErrorVALUE)
  2128. return
  2129. }
  2130. product = product * val
  2131. case ArgMatrix:
  2132. for _, row := range token.Matrix {
  2133. for _, value := range row {
  2134. if value.String == "" {
  2135. continue
  2136. }
  2137. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2138. err = errors.New(formulaErrorVALUE)
  2139. return
  2140. }
  2141. product = product * val
  2142. }
  2143. }
  2144. }
  2145. }
  2146. result = fmt.Sprintf("%g", product)
  2147. return
  2148. }
  2149. // QUOTIENT function returns the integer portion of a division between two
  2150. // supplied numbers. The syntax of the function is:
  2151. //
  2152. // QUOTIENT(numerator,denominator)
  2153. //
  2154. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
  2155. if argsList.Len() != 2 {
  2156. err = errors.New("QUOTIENT requires 2 numeric arguments")
  2157. return
  2158. }
  2159. var x, y float64
  2160. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2161. err = errors.New(formulaErrorVALUE)
  2162. return
  2163. }
  2164. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2165. err = errors.New(formulaErrorVALUE)
  2166. return
  2167. }
  2168. if y == 0 {
  2169. err = errors.New(formulaErrorDIV)
  2170. return
  2171. }
  2172. result = fmt.Sprintf("%g", math.Trunc(x/y))
  2173. return
  2174. }
  2175. // RADIANS function converts radians into degrees. The syntax of the function is:
  2176. //
  2177. // RADIANS(angle)
  2178. //
  2179. func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
  2180. if argsList.Len() != 1 {
  2181. err = errors.New("RADIANS requires 1 numeric argument")
  2182. return
  2183. }
  2184. var angle float64
  2185. if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2186. err = errors.New(formulaErrorVALUE)
  2187. return
  2188. }
  2189. result = fmt.Sprintf("%g", math.Pi/180.0*angle)
  2190. return
  2191. }
  2192. // RAND function generates a random real number between 0 and 1. The syntax of
  2193. // the function is:
  2194. //
  2195. // RAND()
  2196. //
  2197. func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
  2198. if argsList.Len() != 0 {
  2199. err = errors.New("RAND accepts no arguments")
  2200. return
  2201. }
  2202. result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2203. return
  2204. }
  2205. // RANDBETWEEN function generates a random integer between two supplied
  2206. // integers. The syntax of the function is:
  2207. //
  2208. // RANDBETWEEN(bottom,top)
  2209. //
  2210. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
  2211. if argsList.Len() != 2 {
  2212. err = errors.New("RANDBETWEEN requires 2 numeric arguments")
  2213. return
  2214. }
  2215. var bottom, top int64
  2216. if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64); err != nil {
  2217. err = errors.New(formulaErrorVALUE)
  2218. return
  2219. }
  2220. if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64); err != nil {
  2221. err = errors.New(formulaErrorVALUE)
  2222. return
  2223. }
  2224. if top < bottom {
  2225. err = errors.New(formulaErrorNUM)
  2226. return
  2227. }
  2228. result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
  2229. return
  2230. }
  2231. // romanNumerals defined a numeral system that originated in ancient Rome and
  2232. // remained the usual way of writing numbers throughout Europe well into the
  2233. // Late Middle Ages.
  2234. type romanNumerals struct {
  2235. n float64
  2236. s string
  2237. }
  2238. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2239. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2240. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2241. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2242. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2243. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2244. // integer, the function returns a text string depicting the roman numeral
  2245. // form of the number. The syntax of the function is:
  2246. //
  2247. // ROMAN(number,[form])
  2248. //
  2249. func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
  2250. if argsList.Len() == 0 {
  2251. err = errors.New("ROMAN requires at least 1 argument")
  2252. return
  2253. }
  2254. if argsList.Len() > 2 {
  2255. err = errors.New("ROMAN allows at most 2 arguments")
  2256. return
  2257. }
  2258. var number float64
  2259. var form int
  2260. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2261. err = errors.New(formulaErrorVALUE)
  2262. return
  2263. }
  2264. if argsList.Len() > 1 {
  2265. if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2266. err = errors.New(formulaErrorVALUE)
  2267. return
  2268. }
  2269. if form < 0 {
  2270. form = 0
  2271. } else if form > 4 {
  2272. form = 4
  2273. }
  2274. }
  2275. decimalTable := romanTable[0]
  2276. switch form {
  2277. case 1:
  2278. decimalTable = romanTable[1]
  2279. case 2:
  2280. decimalTable = romanTable[2]
  2281. case 3:
  2282. decimalTable = romanTable[3]
  2283. case 4:
  2284. decimalTable = romanTable[4]
  2285. }
  2286. val := math.Trunc(number)
  2287. buf := bytes.Buffer{}
  2288. for _, r := range decimalTable {
  2289. for val >= r.n {
  2290. buf.WriteString(r.s)
  2291. val -= r.n
  2292. }
  2293. }
  2294. result = buf.String()
  2295. return
  2296. }
  2297. type roundMode byte
  2298. const (
  2299. closest roundMode = iota
  2300. down
  2301. up
  2302. )
  2303. // round rounds a supplied number up or down.
  2304. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2305. var significance float64
  2306. if digits > 0 {
  2307. significance = math.Pow(1/10.0, digits)
  2308. } else {
  2309. significance = math.Pow(10.0, -digits)
  2310. }
  2311. val, res := math.Modf(number / significance)
  2312. switch mode {
  2313. case closest:
  2314. const eps = 0.499999999
  2315. if res >= eps {
  2316. val++
  2317. } else if res <= -eps {
  2318. val--
  2319. }
  2320. case down:
  2321. case up:
  2322. if res > 0 {
  2323. val++
  2324. } else if res < 0 {
  2325. val--
  2326. }
  2327. }
  2328. return val * significance
  2329. }
  2330. // ROUND function rounds a supplied number up or down, to a specified number
  2331. // of decimal places. The syntax of the function is:
  2332. //
  2333. // ROUND(number,num_digits)
  2334. //
  2335. func (fn *formulaFuncs) ROUND(argsList *list.List) (result string, err error) {
  2336. if argsList.Len() != 2 {
  2337. err = errors.New("ROUND requires 2 numeric arguments")
  2338. return
  2339. }
  2340. var number, digits float64
  2341. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2342. err = errors.New(formulaErrorVALUE)
  2343. return
  2344. }
  2345. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2346. err = errors.New(formulaErrorVALUE)
  2347. return
  2348. }
  2349. result = fmt.Sprintf("%g", fn.round(number, digits, closest))
  2350. return
  2351. }
  2352. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2353. // specified number of decimal places. The syntax of the function is:
  2354. //
  2355. // ROUNDDOWN(number,num_digits)
  2356. //
  2357. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) (result string, err error) {
  2358. if argsList.Len() != 2 {
  2359. err = errors.New("ROUNDDOWN requires 2 numeric arguments")
  2360. return
  2361. }
  2362. var number, digits float64
  2363. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2364. err = errors.New(formulaErrorVALUE)
  2365. return
  2366. }
  2367. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2368. err = errors.New(formulaErrorVALUE)
  2369. return
  2370. }
  2371. result = fmt.Sprintf("%g", fn.round(number, digits, down))
  2372. return
  2373. }
  2374. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2375. // specified number of decimal places. The syntax of the function is:
  2376. //
  2377. // ROUNDUP(number,num_digits)
  2378. //
  2379. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) (result string, err error) {
  2380. if argsList.Len() != 2 {
  2381. err = errors.New("ROUNDUP requires 2 numeric arguments")
  2382. return
  2383. }
  2384. var number, digits float64
  2385. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2386. err = errors.New(formulaErrorVALUE)
  2387. return
  2388. }
  2389. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2390. err = errors.New(formulaErrorVALUE)
  2391. return
  2392. }
  2393. result = fmt.Sprintf("%g", fn.round(number, digits, up))
  2394. return
  2395. }
  2396. // SEC function calculates the secant of a given angle. The syntax of the
  2397. // function is:
  2398. //
  2399. // SEC(number)
  2400. //
  2401. func (fn *formulaFuncs) SEC(argsList *list.List) (result string, err error) {
  2402. if argsList.Len() != 1 {
  2403. err = errors.New("SEC requires 1 numeric argument")
  2404. return
  2405. }
  2406. var number float64
  2407. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2408. err = errors.New(formulaErrorVALUE)
  2409. return
  2410. }
  2411. result = fmt.Sprintf("%g", math.Cos(number))
  2412. return
  2413. }
  2414. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2415. // The syntax of the function is:
  2416. //
  2417. // SECH(number)
  2418. //
  2419. func (fn *formulaFuncs) SECH(argsList *list.List) (result string, err error) {
  2420. if argsList.Len() != 1 {
  2421. err = errors.New("SECH requires 1 numeric argument")
  2422. return
  2423. }
  2424. var number float64
  2425. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2426. err = errors.New(formulaErrorVALUE)
  2427. return
  2428. }
  2429. result = fmt.Sprintf("%g", 1/math.Cosh(number))
  2430. return
  2431. }
  2432. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2433. // number. I.e. if the number is positive, the Sign function returns +1, if
  2434. // the number is negative, the function returns -1 and if the number is 0
  2435. // (zero), the function returns 0. The syntax of the function is:
  2436. //
  2437. // SIGN(number)
  2438. //
  2439. func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
  2440. if argsList.Len() != 1 {
  2441. err = errors.New("SIGN requires 1 numeric argument")
  2442. return
  2443. }
  2444. var val float64
  2445. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2446. err = errors.New(formulaErrorVALUE)
  2447. return
  2448. }
  2449. if val < 0 {
  2450. result = "-1"
  2451. return
  2452. }
  2453. if val > 0 {
  2454. result = "1"
  2455. return
  2456. }
  2457. result = "0"
  2458. return
  2459. }
  2460. // SIN function calculates the sine of a given angle. The syntax of the
  2461. // function is:
  2462. //
  2463. // SIN(number)
  2464. //
  2465. func (fn *formulaFuncs) SIN(argsList *list.List) (result string, err error) {
  2466. if argsList.Len() != 1 {
  2467. err = errors.New("SIN requires 1 numeric argument")
  2468. return
  2469. }
  2470. var number float64
  2471. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2472. err = errors.New(formulaErrorVALUE)
  2473. return
  2474. }
  2475. result = fmt.Sprintf("%g", math.Sin(number))
  2476. return
  2477. }
  2478. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2479. // The syntax of the function is:
  2480. //
  2481. // SINH(number)
  2482. //
  2483. func (fn *formulaFuncs) SINH(argsList *list.List) (result string, err error) {
  2484. if argsList.Len() != 1 {
  2485. err = errors.New("SINH requires 1 numeric argument")
  2486. return
  2487. }
  2488. var number float64
  2489. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2490. err = errors.New(formulaErrorVALUE)
  2491. return
  2492. }
  2493. result = fmt.Sprintf("%g", math.Sinh(number))
  2494. return
  2495. }
  2496. // SQRT function calculates the positive square root of a supplied number. The
  2497. // syntax of the function is:
  2498. //
  2499. // SQRT(number)
  2500. //
  2501. func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
  2502. if argsList.Len() != 1 {
  2503. err = errors.New("SQRT requires 1 numeric argument")
  2504. return
  2505. }
  2506. var res float64
  2507. var value = argsList.Front().Value.(formulaArg).String
  2508. if value == "" {
  2509. result = "0"
  2510. return
  2511. }
  2512. if res, err = strconv.ParseFloat(value, 64); err != nil {
  2513. err = errors.New(formulaErrorVALUE)
  2514. return
  2515. }
  2516. if res < 0 {
  2517. err = errors.New(formulaErrorNUM)
  2518. return
  2519. }
  2520. result = fmt.Sprintf("%g", math.Sqrt(res))
  2521. return
  2522. }
  2523. // SQRTPI function returns the square root of a supplied number multiplied by
  2524. // the mathematical constant, π. The syntax of the function is:
  2525. //
  2526. // SQRTPI(number)
  2527. //
  2528. func (fn *formulaFuncs) SQRTPI(argsList *list.List) (result string, err error) {
  2529. if argsList.Len() != 1 {
  2530. err = errors.New("SQRTPI requires 1 numeric argument")
  2531. return
  2532. }
  2533. var number float64
  2534. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2535. err = errors.New(formulaErrorVALUE)
  2536. return
  2537. }
  2538. result = fmt.Sprintf("%g", math.Sqrt(number*math.Pi))
  2539. return
  2540. }
  2541. // SUM function adds together a supplied set of numbers and returns the sum of
  2542. // these values. The syntax of the function is:
  2543. //
  2544. // SUM(number1,[number2],...)
  2545. //
  2546. func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
  2547. var val, sum float64
  2548. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2549. token := arg.Value.(formulaArg)
  2550. switch token.Type {
  2551. case ArgUnknown:
  2552. continue
  2553. case ArgString:
  2554. if token.String == "" {
  2555. continue
  2556. }
  2557. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2558. err = errors.New(formulaErrorVALUE)
  2559. return
  2560. }
  2561. sum += val
  2562. case ArgMatrix:
  2563. for _, row := range token.Matrix {
  2564. for _, value := range row {
  2565. if value.String == "" {
  2566. continue
  2567. }
  2568. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2569. err = errors.New(formulaErrorVALUE)
  2570. return
  2571. }
  2572. sum += val
  2573. }
  2574. }
  2575. }
  2576. }
  2577. result = fmt.Sprintf("%g", sum)
  2578. return
  2579. }
  2580. // SUMIF function finds the values in a supplied array, that satisfy a given
  2581. // criteria, and returns the sum of the corresponding values in a second
  2582. // supplied array. The syntax of the function is:
  2583. //
  2584. // SUMIF(range,criteria,[sum_range])
  2585. //
  2586. func (fn *formulaFuncs) SUMIF(argsList *list.List) (result string, err error) {
  2587. if argsList.Len() < 2 {
  2588. err = errors.New("SUMIF requires at least 2 argument")
  2589. return
  2590. }
  2591. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2592. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2593. var sumRange [][]formulaArg
  2594. if argsList.Len() == 3 {
  2595. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2596. }
  2597. var sum, val float64
  2598. for rowIdx, row := range rangeMtx {
  2599. for colIdx, col := range row {
  2600. var ok bool
  2601. fromVal := col.String
  2602. if col.String == "" {
  2603. continue
  2604. }
  2605. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2606. return
  2607. }
  2608. if ok {
  2609. if argsList.Len() == 3 {
  2610. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2611. continue
  2612. }
  2613. fromVal = sumRange[rowIdx][colIdx].String
  2614. }
  2615. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2616. err = errors.New(formulaErrorVALUE)
  2617. return
  2618. }
  2619. sum += val
  2620. }
  2621. }
  2622. }
  2623. result = fmt.Sprintf("%g", sum)
  2624. return
  2625. }
  2626. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2627. // syntax of the function is:
  2628. //
  2629. // SUMSQ(number1,[number2],...)
  2630. //
  2631. func (fn *formulaFuncs) SUMSQ(argsList *list.List) (result string, err error) {
  2632. var val, sq float64
  2633. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2634. token := arg.Value.(formulaArg)
  2635. switch token.Type {
  2636. case ArgString:
  2637. if token.String == "" {
  2638. continue
  2639. }
  2640. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2641. err = errors.New(formulaErrorVALUE)
  2642. return
  2643. }
  2644. sq += val * val
  2645. case ArgMatrix:
  2646. for _, row := range token.Matrix {
  2647. for _, value := range row {
  2648. if value.String == "" {
  2649. continue
  2650. }
  2651. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2652. err = errors.New(formulaErrorVALUE)
  2653. return
  2654. }
  2655. sq += val * val
  2656. }
  2657. }
  2658. }
  2659. }
  2660. result = fmt.Sprintf("%g", sq)
  2661. return
  2662. }
  2663. // TAN function calculates the tangent of a given angle. The syntax of the
  2664. // function is:
  2665. //
  2666. // TAN(number)
  2667. //
  2668. func (fn *formulaFuncs) TAN(argsList *list.List) (result string, err error) {
  2669. if argsList.Len() != 1 {
  2670. err = errors.New("TAN requires 1 numeric argument")
  2671. return
  2672. }
  2673. var number float64
  2674. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2675. err = errors.New(formulaErrorVALUE)
  2676. return
  2677. }
  2678. result = fmt.Sprintf("%g", math.Tan(number))
  2679. return
  2680. }
  2681. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2682. // number. The syntax of the function is:
  2683. //
  2684. // TANH(number)
  2685. //
  2686. func (fn *formulaFuncs) TANH(argsList *list.List) (result string, err error) {
  2687. if argsList.Len() != 1 {
  2688. err = errors.New("TANH requires 1 numeric argument")
  2689. return
  2690. }
  2691. var number float64
  2692. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2693. err = errors.New(formulaErrorVALUE)
  2694. return
  2695. }
  2696. result = fmt.Sprintf("%g", math.Tanh(number))
  2697. return
  2698. }
  2699. // TRUNC function truncates a supplied number to a specified number of decimal
  2700. // places. The syntax of the function is:
  2701. //
  2702. // TRUNC(number,[number_digits])
  2703. //
  2704. func (fn *formulaFuncs) TRUNC(argsList *list.List) (result string, err error) {
  2705. if argsList.Len() == 0 {
  2706. err = errors.New("TRUNC requires at least 1 argument")
  2707. return
  2708. }
  2709. var number, digits, adjust, rtrim float64
  2710. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2711. err = errors.New(formulaErrorVALUE)
  2712. return
  2713. }
  2714. if argsList.Len() > 1 {
  2715. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2716. err = errors.New(formulaErrorVALUE)
  2717. return
  2718. }
  2719. digits = math.Floor(digits)
  2720. }
  2721. adjust = math.Pow(10, digits)
  2722. x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
  2723. if x != 0 {
  2724. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2725. return
  2726. }
  2727. }
  2728. if (digits > 0) && (rtrim < adjust/10) {
  2729. result = fmt.Sprintf("%g", number)
  2730. return
  2731. }
  2732. result = fmt.Sprintf("%g", float64(int(number*adjust))/adjust)
  2733. return
  2734. }
  2735. // Statistical functions
  2736. // COUNTA function returns the number of non-blanks within a supplied set of
  2737. // cells or values. The syntax of the function is:
  2738. //
  2739. // COUNTA(value1,[value2],...)
  2740. //
  2741. func (fn *formulaFuncs) COUNTA(argsList *list.List) (result string, err error) {
  2742. var count int
  2743. for token := argsList.Front(); token != nil; token = token.Next() {
  2744. arg := token.Value.(formulaArg)
  2745. switch arg.Type {
  2746. case ArgString:
  2747. if arg.String != "" {
  2748. count++
  2749. }
  2750. case ArgMatrix:
  2751. for _, row := range arg.Matrix {
  2752. for _, value := range row {
  2753. if value.String != "" {
  2754. count++
  2755. }
  2756. }
  2757. }
  2758. }
  2759. }
  2760. result = fmt.Sprintf("%d", count)
  2761. return
  2762. }
  2763. // MEDIAN function returns the statistical median (the middle value) of a list
  2764. // of supplied numbers. The syntax of the function is:
  2765. //
  2766. // MEDIAN(number1,[number2],...)
  2767. //
  2768. func (fn *formulaFuncs) MEDIAN(argsList *list.List) (result string, err error) {
  2769. if argsList.Len() == 0 {
  2770. err = errors.New("MEDIAN requires at least 1 argument")
  2771. return
  2772. }
  2773. values := []float64{}
  2774. var median, digits float64
  2775. for token := argsList.Front(); token != nil; token = token.Next() {
  2776. arg := token.Value.(formulaArg)
  2777. switch arg.Type {
  2778. case ArgString:
  2779. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2780. err = errors.New(formulaErrorVALUE)
  2781. return
  2782. }
  2783. values = append(values, digits)
  2784. case ArgMatrix:
  2785. for _, row := range arg.Matrix {
  2786. for _, value := range row {
  2787. if value.String == "" {
  2788. continue
  2789. }
  2790. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2791. err = errors.New(formulaErrorVALUE)
  2792. return
  2793. }
  2794. values = append(values, digits)
  2795. }
  2796. }
  2797. }
  2798. }
  2799. sort.Float64s(values)
  2800. if len(values)%2 == 0 {
  2801. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2802. } else {
  2803. median = values[len(values)/2]
  2804. }
  2805. result = fmt.Sprintf("%g", median)
  2806. return
  2807. }
  2808. // Information functions
  2809. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2810. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2811. // function is:
  2812. //
  2813. // ISBLANK(value)
  2814. //
  2815. func (fn *formulaFuncs) ISBLANK(argsList *list.List) (result string, err error) {
  2816. if argsList.Len() != 1 {
  2817. err = errors.New("ISBLANK requires 1 argument")
  2818. return
  2819. }
  2820. token := argsList.Front().Value.(formulaArg)
  2821. result = "FALSE"
  2822. switch token.Type {
  2823. case ArgUnknown:
  2824. result = "TRUE"
  2825. case ArgString:
  2826. if token.String == "" {
  2827. result = "TRUE"
  2828. }
  2829. }
  2830. return
  2831. }
  2832. // ISERR function tests if an initial supplied expression (or value) returns
  2833. // any Excel Error, except the #N/A error. If so, the function returns the
  2834. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2835. // error, the ISERR function returns FALSE. The syntax of the function is:
  2836. //
  2837. // ISERR(value)
  2838. //
  2839. func (fn *formulaFuncs) ISERR(argsList *list.List) (result string, err error) {
  2840. if argsList.Len() != 1 {
  2841. err = errors.New("ISERR requires 1 argument")
  2842. return
  2843. }
  2844. token := argsList.Front().Value.(formulaArg)
  2845. result = "FALSE"
  2846. if token.Type == ArgString {
  2847. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2848. if errType == token.String {
  2849. result = "TRUE"
  2850. }
  2851. }
  2852. }
  2853. return
  2854. }
  2855. // ISERROR function tests if an initial supplied expression (or value) returns
  2856. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2857. // function returns FALSE. The syntax of the function is:
  2858. //
  2859. // ISERROR(value)
  2860. //
  2861. func (fn *formulaFuncs) ISERROR(argsList *list.List) (result string, err error) {
  2862. if argsList.Len() != 1 {
  2863. err = errors.New("ISERROR requires 1 argument")
  2864. return
  2865. }
  2866. token := argsList.Front().Value.(formulaArg)
  2867. result = "FALSE"
  2868. if token.Type == ArgString {
  2869. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2870. if errType == token.String {
  2871. result = "TRUE"
  2872. }
  2873. }
  2874. }
  2875. return
  2876. }
  2877. // ISEVEN function tests if a supplied number (or numeric expression)
  2878. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  2879. // function returns FALSE. The syntax of the function is:
  2880. //
  2881. // ISEVEN(value)
  2882. //
  2883. func (fn *formulaFuncs) ISEVEN(argsList *list.List) (result string, err error) {
  2884. if argsList.Len() != 1 {
  2885. err = errors.New("ISEVEN requires 1 argument")
  2886. return
  2887. }
  2888. token := argsList.Front().Value.(formulaArg)
  2889. result = "FALSE"
  2890. var numeric int
  2891. if token.Type == ArgString {
  2892. if numeric, err = strconv.Atoi(token.String); err != nil {
  2893. err = errors.New(formulaErrorVALUE)
  2894. return
  2895. }
  2896. if numeric == numeric/2*2 {
  2897. result = "TRUE"
  2898. return
  2899. }
  2900. }
  2901. return
  2902. }
  2903. // ISNA function tests if an initial supplied expression (or value) returns
  2904. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  2905. // returns FALSE. The syntax of the function is:
  2906. //
  2907. // ISNA(value)
  2908. //
  2909. func (fn *formulaFuncs) ISNA(argsList *list.List) (result string, err error) {
  2910. if argsList.Len() != 1 {
  2911. err = errors.New("ISNA requires 1 argument")
  2912. return
  2913. }
  2914. token := argsList.Front().Value.(formulaArg)
  2915. result = "FALSE"
  2916. if token.Type == ArgString && token.String == formulaErrorNA {
  2917. result = "TRUE"
  2918. }
  2919. return
  2920. }
  2921. // ISNONTEXT function function tests if a supplied value is text. If not, the
  2922. // function returns TRUE; If the supplied value is text, the function returns
  2923. // FALSE. The syntax of the function is:
  2924. //
  2925. // ISNONTEXT(value)
  2926. //
  2927. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) (result string, err error) {
  2928. if argsList.Len() != 1 {
  2929. err = errors.New("ISNONTEXT requires 1 argument")
  2930. return
  2931. }
  2932. token := argsList.Front().Value.(formulaArg)
  2933. result = "TRUE"
  2934. if token.Type == ArgString && token.String != "" {
  2935. result = "FALSE"
  2936. }
  2937. return
  2938. }
  2939. // ISNUMBER function function tests if a supplied value is a number. If so,
  2940. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  2941. // function is:
  2942. //
  2943. // ISNUMBER(value)
  2944. //
  2945. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) (result string, err error) {
  2946. if argsList.Len() != 1 {
  2947. err = errors.New("ISNUMBER requires 1 argument")
  2948. return
  2949. }
  2950. token := argsList.Front().Value.(formulaArg)
  2951. result = "FALSE"
  2952. if token.Type == ArgString && token.String != "" {
  2953. if _, err = strconv.Atoi(token.String); err == nil {
  2954. result = "TRUE"
  2955. }
  2956. err = nil
  2957. }
  2958. return
  2959. }
  2960. // ISODD function tests if a supplied number (or numeric expression) evaluates
  2961. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  2962. // FALSE. The syntax of the function is:
  2963. //
  2964. // ISODD(value)
  2965. //
  2966. func (fn *formulaFuncs) ISODD(argsList *list.List) (result string, err error) {
  2967. if argsList.Len() != 1 {
  2968. err = errors.New("ISODD requires 1 argument")
  2969. return
  2970. }
  2971. token := argsList.Front().Value.(formulaArg)
  2972. result = "FALSE"
  2973. var numeric int
  2974. if token.Type == ArgString {
  2975. if numeric, err = strconv.Atoi(token.String); err != nil {
  2976. err = errors.New(formulaErrorVALUE)
  2977. return
  2978. }
  2979. if numeric != numeric/2*2 {
  2980. result = "TRUE"
  2981. return
  2982. }
  2983. }
  2984. return
  2985. }
  2986. // NA function returns the Excel #N/A error. This error message has the
  2987. // meaning 'value not available' and is produced when an Excel Formula is
  2988. // unable to find a value that it needs. The syntax of the function is:
  2989. //
  2990. // NA()
  2991. //
  2992. func (fn *formulaFuncs) NA(argsList *list.List) (result string, err error) {
  2993. if argsList.Len() != 0 {
  2994. err = errors.New("NA accepts no arguments")
  2995. return
  2996. }
  2997. result = formulaErrorNA
  2998. return
  2999. }