calc.go 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396
  1. // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "github.com/xuri/efp"
  26. )
  27. // Excel formula errors
  28. const (
  29. formulaErrorDIV = "#DIV/0!"
  30. formulaErrorNAME = "#NAME?"
  31. formulaErrorNA = "#N/A"
  32. formulaErrorNUM = "#NUM!"
  33. formulaErrorVALUE = "#VALUE!"
  34. formulaErrorREF = "#REF!"
  35. formulaErrorNULL = "#NULL"
  36. formulaErrorSPILL = "#SPILL!"
  37. formulaErrorCALC = "#CALC!"
  38. formulaErrorGETTINGDATA = "#GETTING_DATA"
  39. )
  40. // Numeric precision correct numeric values as legacy Excel application
  41. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  42. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  43. // has a decimal representation that is an infinite string of ones, Excel
  44. // displays only the leading 15 figures. In the second line, the number one
  45. // is added to the fraction, and again Excel displays only 15 figures.
  46. const numericPrecision = 1000000000000000
  47. // cellRef defines the structure of a cell reference.
  48. type cellRef struct {
  49. Col int
  50. Row int
  51. Sheet string
  52. }
  53. // cellRef defines the structure of a cell range.
  54. type cellRange struct {
  55. From cellRef
  56. To cellRef
  57. }
  58. // formula criteria condition enumeration.
  59. const (
  60. _ byte = iota
  61. criteriaEq
  62. criteriaLe
  63. criteriaGe
  64. criteriaL
  65. criteriaG
  66. criteriaBeg
  67. criteriaEnd
  68. )
  69. // formulaCriteria defined formula criteria parser result.
  70. type formulaCriteria struct {
  71. Type byte
  72. Condition string
  73. }
  74. // ArgType is the type if formula argument type.
  75. type ArgType byte
  76. // Formula argument types enumeration.
  77. const (
  78. ArgUnknown ArgType = iota
  79. ArgString
  80. ArgMatrix
  81. )
  82. // formulaArg is the argument of a formula or function.
  83. type formulaArg struct {
  84. String string
  85. Matrix [][]formulaArg
  86. Type ArgType
  87. }
  88. // formulaFuncs is the type of the formula functions.
  89. type formulaFuncs struct{}
  90. // tokenPriority defined basic arithmetic operator priority.
  91. var tokenPriority = map[string]int{
  92. "^": 5,
  93. "*": 4,
  94. "/": 4,
  95. "+": 3,
  96. "-": 3,
  97. "=": 2,
  98. "<": 2,
  99. "<=": 2,
  100. ">": 2,
  101. ">=": 2,
  102. "&": 1,
  103. }
  104. // CalcCellValue provides a function to get calculated cell value. This
  105. // feature is currently in working processing. Array formula, table formula
  106. // and some other formulas are not supported currently.
  107. //
  108. // Supported formulas:
  109. //
  110. // ABS, ACOS, ACOSH, ACOT, ACOTH, AND, ARABIC, ASIN, ASINH, ATAN2, ATANH,
  111. // BASE, CEILING, CEILING.MATH, CEILING.PRECISE, COMBIN, COMBINA, COS,
  112. // COSH, COT, COTH, COUNTA, CSC, CSCH, DATE, DECIMAL, DEGREES, EVEN, EXP,
  113. // FACT, FACTDOUBLE, FLOOR, FLOOR.MATH, FLOOR.PRECISE, GCD, INT, ISBLANK,
  114. // ISERR, ISERROR, ISEVEN, ISNA, ISNONTEXT, ISNUMBER, ISO.CEILING, ISODD,
  115. // LCM, LN, LOG, LOG10, MDETERM, MEDIAN, MOD, MROUND, MULTINOMIAL, MUNIT,
  116. // NA, ODD, OR, PI, POWER, PRODUCT, QUOTIENT, RADIANS, RAND, RANDBETWEEN,
  117. // ROUND, ROUNDDOWN, ROUNDUP, SEC, SECH, SIGN, SIN, SINH, SQRT, SQRTPI,
  118. // SUM, SUMIF, SUMSQ, TAN, TANH, TRUNC
  119. //
  120. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  121. var (
  122. formula string
  123. token efp.Token
  124. )
  125. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  126. return
  127. }
  128. ps := efp.ExcelParser()
  129. tokens := ps.Parse(formula)
  130. if tokens == nil {
  131. return
  132. }
  133. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  134. return
  135. }
  136. result = token.TValue
  137. if len(result) > 16 {
  138. num, e := roundPrecision(result)
  139. if e != nil {
  140. return result, err
  141. }
  142. result = strings.ToUpper(num)
  143. }
  144. return
  145. }
  146. // getPriority calculate arithmetic operator priority.
  147. func getPriority(token efp.Token) (pri int) {
  148. pri, _ = tokenPriority[token.TValue]
  149. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  150. pri = 6
  151. }
  152. if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
  153. pri = 0
  154. }
  155. return
  156. }
  157. // evalInfixExp evaluate syntax analysis by given infix expression after
  158. // lexical analysis. Evaluate an infix expression containing formulas by
  159. // stacks:
  160. //
  161. // opd - Operand
  162. // opt - Operator
  163. // opf - Operation formula
  164. // opfd - Operand of the operation formula
  165. // opft - Operator of the operation formula
  166. //
  167. // Evaluate arguments of the operation formula by list:
  168. //
  169. // args - Arguments of the operation formula
  170. //
  171. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  172. //
  173. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  174. var err error
  175. opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  176. argsList := list.New()
  177. for i := 0; i < len(tokens); i++ {
  178. token := tokens[i]
  179. // out of function stack
  180. if opfStack.Len() == 0 {
  181. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  182. return efp.Token{}, err
  183. }
  184. }
  185. // function start
  186. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
  187. opfStack.Push(token)
  188. continue
  189. }
  190. // in function stack, walk 2 token at once
  191. if opfStack.Len() > 0 {
  192. var nextToken efp.Token
  193. if i+1 < len(tokens) {
  194. nextToken = tokens[i+1]
  195. }
  196. // current token is args or range, skip next token, order required: parse reference first
  197. if token.TSubType == efp.TokenSubTypeRange {
  198. if !opftStack.Empty() {
  199. // parse reference: must reference at here
  200. result, err := f.parseReference(sheet, token.TValue)
  201. if err != nil {
  202. return efp.Token{TValue: formulaErrorNAME}, err
  203. }
  204. if result.Type != ArgString {
  205. return efp.Token{}, errors.New(formulaErrorVALUE)
  206. }
  207. opfdStack.Push(efp.Token{
  208. TType: efp.TokenTypeOperand,
  209. TSubType: efp.TokenSubTypeNumber,
  210. TValue: result.String,
  211. })
  212. continue
  213. }
  214. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  215. // parse reference: reference or range at here
  216. result, err := f.parseReference(sheet, token.TValue)
  217. if err != nil {
  218. return efp.Token{TValue: formulaErrorNAME}, err
  219. }
  220. if result.Type == ArgUnknown {
  221. return efp.Token{}, errors.New(formulaErrorVALUE)
  222. }
  223. argsList.PushBack(result)
  224. continue
  225. }
  226. }
  227. // check current token is opft
  228. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  229. return efp.Token{}, err
  230. }
  231. // current token is arg
  232. if token.TType == efp.TokenTypeArgument {
  233. for !opftStack.Empty() {
  234. // calculate trigger
  235. topOpt := opftStack.Peek().(efp.Token)
  236. if err := calculate(opfdStack, topOpt); err != nil {
  237. return efp.Token{}, err
  238. }
  239. opftStack.Pop()
  240. }
  241. if !opfdStack.Empty() {
  242. argsList.PushBack(formulaArg{
  243. String: opfdStack.Pop().(efp.Token).TValue,
  244. Type: ArgString,
  245. })
  246. }
  247. continue
  248. }
  249. // current token is logical
  250. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  251. }
  252. // current token is text
  253. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  254. argsList.PushBack(formulaArg{
  255. String: token.TValue,
  256. Type: ArgString,
  257. })
  258. }
  259. // current token is function stop
  260. if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
  261. for !opftStack.Empty() {
  262. // calculate trigger
  263. topOpt := opftStack.Peek().(efp.Token)
  264. if err := calculate(opfdStack, topOpt); err != nil {
  265. return efp.Token{}, err
  266. }
  267. opftStack.Pop()
  268. }
  269. // push opfd to args
  270. if opfdStack.Len() > 0 {
  271. argsList.PushBack(formulaArg{
  272. String: opfdStack.Pop().(efp.Token).TValue,
  273. Type: ArgString,
  274. })
  275. }
  276. // call formula function to evaluate
  277. result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  278. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  279. []reflect.Value{reflect.ValueOf(argsList)})
  280. if err != nil {
  281. return efp.Token{}, err
  282. }
  283. argsList.Init()
  284. opfStack.Pop()
  285. if opfStack.Len() > 0 { // still in function stack
  286. opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  287. } else {
  288. opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  289. }
  290. }
  291. }
  292. }
  293. for optStack.Len() != 0 {
  294. topOpt := optStack.Peek().(efp.Token)
  295. if err = calculate(opdStack, topOpt); err != nil {
  296. return efp.Token{}, err
  297. }
  298. optStack.Pop()
  299. }
  300. if opdStack.Len() == 0 {
  301. return efp.Token{}, errors.New("formula not valid")
  302. }
  303. return opdStack.Peek().(efp.Token), err
  304. }
  305. // calcPow evaluate exponentiation arithmetic operations.
  306. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  307. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  308. if err != nil {
  309. return err
  310. }
  311. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  312. if err != nil {
  313. return err
  314. }
  315. result := math.Pow(lOpdVal, rOpdVal)
  316. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  317. return nil
  318. }
  319. // calcEq evaluate equal arithmetic operations.
  320. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  321. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  322. return nil
  323. }
  324. // calcL evaluate less than arithmetic operations.
  325. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  326. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  327. if err != nil {
  328. return err
  329. }
  330. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  331. if err != nil {
  332. return err
  333. }
  334. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  335. return nil
  336. }
  337. // calcLe evaluate less than or equal arithmetic operations.
  338. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  339. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  340. if err != nil {
  341. return err
  342. }
  343. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  344. if err != nil {
  345. return err
  346. }
  347. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  348. return nil
  349. }
  350. // calcG evaluate greater than or equal arithmetic operations.
  351. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  352. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  353. if err != nil {
  354. return err
  355. }
  356. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  357. if err != nil {
  358. return err
  359. }
  360. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  361. return nil
  362. }
  363. // calcGe evaluate greater than or equal arithmetic operations.
  364. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  365. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  366. if err != nil {
  367. return err
  368. }
  369. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  370. if err != nil {
  371. return err
  372. }
  373. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  374. return nil
  375. }
  376. // calcSplice evaluate splice '&' operations.
  377. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  378. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  379. return nil
  380. }
  381. // calcAdd evaluate addition arithmetic operations.
  382. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  383. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  384. if err != nil {
  385. return err
  386. }
  387. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  388. if err != nil {
  389. return err
  390. }
  391. result := lOpdVal + rOpdVal
  392. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  393. return nil
  394. }
  395. // calcSubtract evaluate subtraction arithmetic operations.
  396. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  397. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  398. if err != nil {
  399. return err
  400. }
  401. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  402. if err != nil {
  403. return err
  404. }
  405. result := lOpdVal - rOpdVal
  406. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  407. return nil
  408. }
  409. // calcMultiply evaluate multiplication arithmetic operations.
  410. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  411. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  412. if err != nil {
  413. return err
  414. }
  415. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  416. if err != nil {
  417. return err
  418. }
  419. result := lOpdVal * rOpdVal
  420. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  421. return nil
  422. }
  423. // calcDiv evaluate division arithmetic operations.
  424. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  425. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  426. if err != nil {
  427. return err
  428. }
  429. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  430. if err != nil {
  431. return err
  432. }
  433. result := lOpdVal / rOpdVal
  434. if rOpdVal == 0 {
  435. return errors.New(formulaErrorDIV)
  436. }
  437. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  438. return nil
  439. }
  440. // calculate evaluate basic arithmetic operations.
  441. func calculate(opdStack *Stack, opt efp.Token) error {
  442. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  443. if opdStack.Len() < 1 {
  444. return errors.New("formula not valid")
  445. }
  446. opd := opdStack.Pop().(efp.Token)
  447. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  448. if err != nil {
  449. return err
  450. }
  451. result := 0 - opdVal
  452. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  453. }
  454. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  455. "^": calcPow,
  456. "*": calcMultiply,
  457. "/": calcDiv,
  458. "+": calcAdd,
  459. "=": calcEq,
  460. "<": calcL,
  461. "<=": calcLe,
  462. ">": calcG,
  463. ">=": calcGe,
  464. "&": calcSplice,
  465. }
  466. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  467. if opdStack.Len() < 2 {
  468. return errors.New("formula not valid")
  469. }
  470. rOpd := opdStack.Pop().(efp.Token)
  471. lOpd := opdStack.Pop().(efp.Token)
  472. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  473. return err
  474. }
  475. }
  476. fn, ok := tokenCalcFunc[opt.TValue]
  477. if ok {
  478. if opdStack.Len() < 2 {
  479. return errors.New("formula not valid")
  480. }
  481. rOpd := opdStack.Pop().(efp.Token)
  482. lOpd := opdStack.Pop().(efp.Token)
  483. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  484. return err
  485. }
  486. }
  487. return nil
  488. }
  489. // parseOperatorPrefixToken parse operator prefix token.
  490. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  491. if optStack.Len() == 0 {
  492. optStack.Push(token)
  493. } else {
  494. tokenPriority := getPriority(token)
  495. topOpt := optStack.Peek().(efp.Token)
  496. topOptPriority := getPriority(topOpt)
  497. if tokenPriority > topOptPriority {
  498. optStack.Push(token)
  499. } else {
  500. for tokenPriority <= topOptPriority {
  501. optStack.Pop()
  502. if err = calculate(opdStack, topOpt); err != nil {
  503. return
  504. }
  505. if optStack.Len() > 0 {
  506. topOpt = optStack.Peek().(efp.Token)
  507. topOptPriority = getPriority(topOpt)
  508. continue
  509. }
  510. break
  511. }
  512. optStack.Push(token)
  513. }
  514. }
  515. return
  516. }
  517. // isOperatorPrefixToken determine if the token is parse operator prefix
  518. // token.
  519. func isOperatorPrefixToken(token efp.Token) bool {
  520. _, ok := tokenPriority[token.TValue]
  521. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || ok {
  522. return true
  523. }
  524. return false
  525. }
  526. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  527. for _, definedName := range f.GetDefinedName() {
  528. if definedName.Name == definedNameName {
  529. refTo = definedName.RefersTo
  530. // worksheet scope takes precedence over scope workbook when both definedNames exist
  531. if definedName.Scope == currentSheet {
  532. break
  533. }
  534. }
  535. }
  536. return refTo
  537. }
  538. // parseToken parse basic arithmetic operator priority and evaluate based on
  539. // operators and operands.
  540. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  541. // parse reference: must reference at here
  542. if token.TSubType == efp.TokenSubTypeRange {
  543. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  544. if refTo != "" {
  545. token.TValue = refTo
  546. }
  547. result, err := f.parseReference(sheet, token.TValue)
  548. if err != nil {
  549. return errors.New(formulaErrorNAME)
  550. }
  551. if result.Type != ArgString {
  552. return errors.New(formulaErrorVALUE)
  553. }
  554. token.TValue = result.String
  555. token.TType = efp.TokenTypeOperand
  556. token.TSubType = efp.TokenSubTypeNumber
  557. }
  558. if isOperatorPrefixToken(token) {
  559. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  560. return err
  561. }
  562. }
  563. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
  564. optStack.Push(token)
  565. }
  566. if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
  567. for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
  568. topOpt := optStack.Peek().(efp.Token)
  569. if err := calculate(opdStack, topOpt); err != nil {
  570. return err
  571. }
  572. optStack.Pop()
  573. }
  574. optStack.Pop()
  575. }
  576. // opd
  577. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  578. opdStack.Push(token)
  579. }
  580. return nil
  581. }
  582. // parseReference parse reference and extract values by given reference
  583. // characters and default sheet name.
  584. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  585. reference = strings.Replace(reference, "$", "", -1)
  586. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  587. for _, ref := range strings.Split(reference, ":") {
  588. tokens := strings.Split(ref, "!")
  589. cr := cellRef{}
  590. if len(tokens) == 2 { // have a worksheet name
  591. cr.Sheet = tokens[0]
  592. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  593. return
  594. }
  595. if refs.Len() > 0 {
  596. e := refs.Back()
  597. cellRefs.PushBack(e.Value.(cellRef))
  598. refs.Remove(e)
  599. }
  600. refs.PushBack(cr)
  601. continue
  602. }
  603. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  604. return
  605. }
  606. e := refs.Back()
  607. if e == nil {
  608. cr.Sheet = sheet
  609. refs.PushBack(cr)
  610. continue
  611. }
  612. cellRanges.PushBack(cellRange{
  613. From: e.Value.(cellRef),
  614. To: cr,
  615. })
  616. refs.Remove(e)
  617. }
  618. if refs.Len() > 0 {
  619. e := refs.Back()
  620. cellRefs.PushBack(e.Value.(cellRef))
  621. refs.Remove(e)
  622. }
  623. arg, err = f.rangeResolver(cellRefs, cellRanges)
  624. return
  625. }
  626. // prepareValueRange prepare value range.
  627. func prepareValueRange(cr cellRange, valueRange []int) {
  628. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  629. valueRange[0] = cr.From.Row
  630. }
  631. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  632. valueRange[2] = cr.From.Col
  633. }
  634. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  635. valueRange[1] = cr.To.Row
  636. }
  637. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  638. valueRange[3] = cr.To.Col
  639. }
  640. }
  641. // prepareValueRef prepare value reference.
  642. func prepareValueRef(cr cellRef, valueRange []int) {
  643. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  644. valueRange[0] = cr.Row
  645. }
  646. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  647. valueRange[2] = cr.Col
  648. }
  649. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  650. valueRange[1] = cr.Row
  651. }
  652. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  653. valueRange[3] = cr.Col
  654. }
  655. }
  656. // rangeResolver extract value as string from given reference and range list.
  657. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  658. // be reference A1:B3.
  659. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  660. // value range order: from row, to row, from column, to column
  661. valueRange := []int{0, 0, 0, 0}
  662. var sheet string
  663. // prepare value range
  664. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  665. cr := temp.Value.(cellRange)
  666. if cr.From.Sheet != cr.To.Sheet {
  667. err = errors.New(formulaErrorVALUE)
  668. }
  669. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  670. sortCoordinates(rng)
  671. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  672. prepareValueRange(cr, valueRange)
  673. if cr.From.Sheet != "" {
  674. sheet = cr.From.Sheet
  675. }
  676. }
  677. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  678. cr := temp.Value.(cellRef)
  679. if cr.Sheet != "" {
  680. sheet = cr.Sheet
  681. }
  682. prepareValueRef(cr, valueRange)
  683. }
  684. // extract value from ranges
  685. if cellRanges.Len() > 0 {
  686. arg.Type = ArgMatrix
  687. for row := valueRange[0]; row <= valueRange[1]; row++ {
  688. var matrixRow = []formulaArg{}
  689. for col := valueRange[2]; col <= valueRange[3]; col++ {
  690. var cell, value string
  691. if cell, err = CoordinatesToCellName(col, row); err != nil {
  692. return
  693. }
  694. if value, err = f.GetCellValue(sheet, cell); err != nil {
  695. return
  696. }
  697. matrixRow = append(matrixRow, formulaArg{
  698. String: value,
  699. Type: ArgString,
  700. })
  701. }
  702. arg.Matrix = append(arg.Matrix, matrixRow)
  703. }
  704. return
  705. }
  706. // extract value from references
  707. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  708. cr := temp.Value.(cellRef)
  709. var cell string
  710. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  711. return
  712. }
  713. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  714. return
  715. }
  716. arg.Type = ArgString
  717. }
  718. return
  719. }
  720. // callFuncByName calls the no error or only error return function with
  721. // reflect by given receiver, name and parameters.
  722. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
  723. function := reflect.ValueOf(receiver).MethodByName(name)
  724. if function.IsValid() {
  725. rt := function.Call(params)
  726. if len(rt) == 0 {
  727. return
  728. }
  729. if !rt[1].IsNil() {
  730. err = rt[1].Interface().(error)
  731. return
  732. }
  733. result = rt[0].Interface().(string)
  734. return
  735. }
  736. err = fmt.Errorf("not support %s function", name)
  737. return
  738. }
  739. // formulaCriteriaParser parse formula criteria.
  740. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  741. fc = &formulaCriteria{}
  742. if exp == "" {
  743. return
  744. }
  745. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  746. fc.Type, fc.Condition = criteriaEq, match[1]
  747. return
  748. }
  749. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  750. fc.Type, fc.Condition = criteriaEq, match[1]
  751. return
  752. }
  753. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  754. fc.Type, fc.Condition = criteriaLe, match[1]
  755. return
  756. }
  757. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  758. fc.Type, fc.Condition = criteriaGe, match[1]
  759. return
  760. }
  761. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  762. fc.Type, fc.Condition = criteriaL, match[1]
  763. return
  764. }
  765. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  766. fc.Type, fc.Condition = criteriaG, match[1]
  767. return
  768. }
  769. if strings.Contains(exp, "*") {
  770. if strings.HasPrefix(exp, "*") {
  771. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  772. }
  773. if strings.HasSuffix(exp, "*") {
  774. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  775. }
  776. return
  777. }
  778. fc.Type, fc.Condition = criteriaEq, exp
  779. return
  780. }
  781. // formulaCriteriaEval evaluate formula criteria expression.
  782. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  783. var value, expected float64
  784. var e error
  785. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  786. if value, err = strconv.ParseFloat(val, 64); err != nil {
  787. return
  788. }
  789. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  790. return
  791. }
  792. return
  793. }
  794. switch criteria.Type {
  795. case criteriaEq:
  796. return val == criteria.Condition, err
  797. case criteriaLe:
  798. value, expected, e = prepareValue(val, criteria.Condition)
  799. return value <= expected && e == nil, err
  800. case criteriaGe:
  801. value, expected, e = prepareValue(val, criteria.Condition)
  802. return value >= expected && e == nil, err
  803. case criteriaL:
  804. value, expected, e = prepareValue(val, criteria.Condition)
  805. return value < expected && e == nil, err
  806. case criteriaG:
  807. value, expected, e = prepareValue(val, criteria.Condition)
  808. return value > expected && e == nil, err
  809. case criteriaBeg:
  810. return strings.HasPrefix(val, criteria.Condition), err
  811. case criteriaEnd:
  812. return strings.HasSuffix(val, criteria.Condition), err
  813. }
  814. return
  815. }
  816. // Math and Trigonometric functions
  817. // ABS function returns the absolute value of any supplied number. The syntax
  818. // of the function is:
  819. //
  820. // ABS(number)
  821. //
  822. func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
  823. if argsList.Len() != 1 {
  824. err = errors.New("ABS requires 1 numeric argument")
  825. return
  826. }
  827. var val float64
  828. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  829. err = errors.New(formulaErrorVALUE)
  830. return
  831. }
  832. result = fmt.Sprintf("%g", math.Abs(val))
  833. return
  834. }
  835. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  836. // number, and returns an angle, in radians, between 0 and π. The syntax of
  837. // the function is:
  838. //
  839. // ACOS(number)
  840. //
  841. func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
  842. if argsList.Len() != 1 {
  843. err = errors.New("ACOS requires 1 numeric argument")
  844. return
  845. }
  846. var val float64
  847. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  848. err = errors.New(formulaErrorVALUE)
  849. return
  850. }
  851. result = fmt.Sprintf("%g", math.Acos(val))
  852. return
  853. }
  854. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  855. // of the function is:
  856. //
  857. // ACOSH(number)
  858. //
  859. func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
  860. if argsList.Len() != 1 {
  861. err = errors.New("ACOSH requires 1 numeric argument")
  862. return
  863. }
  864. var val float64
  865. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  866. err = errors.New(formulaErrorVALUE)
  867. return
  868. }
  869. result = fmt.Sprintf("%g", math.Acosh(val))
  870. return
  871. }
  872. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  873. // given number, and returns an angle, in radians, between 0 and π. The syntax
  874. // of the function is:
  875. //
  876. // ACOT(number)
  877. //
  878. func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
  879. if argsList.Len() != 1 {
  880. err = errors.New("ACOT requires 1 numeric argument")
  881. return
  882. }
  883. var val float64
  884. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  885. err = errors.New(formulaErrorVALUE)
  886. return
  887. }
  888. result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
  889. return
  890. }
  891. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  892. // value. The syntax of the function is:
  893. //
  894. // ACOTH(number)
  895. //
  896. func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
  897. if argsList.Len() != 1 {
  898. err = errors.New("ACOTH requires 1 numeric argument")
  899. return
  900. }
  901. var val float64
  902. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  903. err = errors.New(formulaErrorVALUE)
  904. return
  905. }
  906. result = fmt.Sprintf("%g", math.Atanh(1/val))
  907. return
  908. }
  909. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  910. // of the function is:
  911. //
  912. // ARABIC(text)
  913. //
  914. func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
  915. if argsList.Len() != 1 {
  916. err = errors.New("ARABIC requires 1 numeric argument")
  917. return
  918. }
  919. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  920. val, last, prefix := 0.0, 0.0, 1.0
  921. for _, char := range argsList.Front().Value.(formulaArg).String {
  922. digit := 0.0
  923. if char == '-' {
  924. prefix = -1
  925. continue
  926. }
  927. digit, _ = charMap[char]
  928. val += digit
  929. switch {
  930. case last == digit && (last == 5 || last == 50 || last == 500):
  931. result = formulaErrorVALUE
  932. return
  933. case 2*last == digit:
  934. result = formulaErrorVALUE
  935. return
  936. }
  937. if last < digit {
  938. val -= 2 * last
  939. }
  940. last = digit
  941. }
  942. result = fmt.Sprintf("%g", prefix*val)
  943. return
  944. }
  945. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  946. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  947. // of the function is:
  948. //
  949. // ASIN(number)
  950. //
  951. func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
  952. if argsList.Len() != 1 {
  953. err = errors.New("ASIN requires 1 numeric argument")
  954. return
  955. }
  956. var val float64
  957. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  958. err = errors.New(formulaErrorVALUE)
  959. return
  960. }
  961. result = fmt.Sprintf("%g", math.Asin(val))
  962. return
  963. }
  964. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  965. // The syntax of the function is:
  966. //
  967. // ASINH(number)
  968. //
  969. func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
  970. if argsList.Len() != 1 {
  971. err = errors.New("ASINH requires 1 numeric argument")
  972. return
  973. }
  974. var val float64
  975. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  976. err = errors.New(formulaErrorVALUE)
  977. return
  978. }
  979. result = fmt.Sprintf("%g", math.Asinh(val))
  980. return
  981. }
  982. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  983. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  984. // syntax of the function is:
  985. //
  986. // ATAN(number)
  987. //
  988. func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
  989. if argsList.Len() != 1 {
  990. err = errors.New("ATAN requires 1 numeric argument")
  991. return
  992. }
  993. var val float64
  994. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  995. err = errors.New(formulaErrorVALUE)
  996. return
  997. }
  998. result = fmt.Sprintf("%g", math.Atan(val))
  999. return
  1000. }
  1001. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1002. // number. The syntax of the function is:
  1003. //
  1004. // ATANH(number)
  1005. //
  1006. func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
  1007. if argsList.Len() != 1 {
  1008. err = errors.New("ATANH requires 1 numeric argument")
  1009. return
  1010. }
  1011. var val float64
  1012. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1013. err = errors.New(formulaErrorVALUE)
  1014. return
  1015. }
  1016. result = fmt.Sprintf("%g", math.Atanh(val))
  1017. return
  1018. }
  1019. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1020. // given set of x and y coordinates, and returns an angle, in radians, between
  1021. // -π/2 and +π/2. The syntax of the function is:
  1022. //
  1023. // ATAN2(x_num,y_num)
  1024. //
  1025. func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
  1026. if argsList.Len() != 2 {
  1027. err = errors.New("ATAN2 requires 2 numeric arguments")
  1028. return
  1029. }
  1030. var x, y float64
  1031. if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1032. err = errors.New(formulaErrorVALUE)
  1033. return
  1034. }
  1035. if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1036. err = errors.New(formulaErrorVALUE)
  1037. return
  1038. }
  1039. result = fmt.Sprintf("%g", math.Atan2(x, y))
  1040. return
  1041. }
  1042. // BASE function converts a number into a supplied base (radix), and returns a
  1043. // text representation of the calculated value. The syntax of the function is:
  1044. //
  1045. // BASE(number,radix,[min_length])
  1046. //
  1047. func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
  1048. if argsList.Len() < 2 {
  1049. err = errors.New("BASE requires at least 2 arguments")
  1050. return
  1051. }
  1052. if argsList.Len() > 3 {
  1053. err = errors.New("BASE allows at most 3 arguments")
  1054. return
  1055. }
  1056. var number float64
  1057. var radix, minLength int
  1058. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1059. err = errors.New(formulaErrorVALUE)
  1060. return
  1061. }
  1062. if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  1063. err = errors.New(formulaErrorVALUE)
  1064. return
  1065. }
  1066. if radix < 2 || radix > 36 {
  1067. err = errors.New("radix must be an integer >= 2 and <= 36")
  1068. return
  1069. }
  1070. if argsList.Len() > 2 {
  1071. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1072. err = errors.New(formulaErrorVALUE)
  1073. return
  1074. }
  1075. }
  1076. result = strconv.FormatInt(int64(number), radix)
  1077. if len(result) < minLength {
  1078. result = strings.Repeat("0", minLength-len(result)) + result
  1079. }
  1080. result = strings.ToUpper(result)
  1081. return
  1082. }
  1083. // CEILING function rounds a supplied number away from zero, to the nearest
  1084. // multiple of a given number. The syntax of the function is:
  1085. //
  1086. // CEILING(number,significance)
  1087. //
  1088. func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
  1089. if argsList.Len() == 0 {
  1090. err = errors.New("CEILING requires at least 1 argument")
  1091. return
  1092. }
  1093. if argsList.Len() > 2 {
  1094. err = errors.New("CEILING allows at most 2 arguments")
  1095. return
  1096. }
  1097. number, significance, res := 0.0, 1.0, 0.0
  1098. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1099. err = errors.New(formulaErrorVALUE)
  1100. return
  1101. }
  1102. if number < 0 {
  1103. significance = -1
  1104. }
  1105. if argsList.Len() > 1 {
  1106. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1107. err = errors.New(formulaErrorVALUE)
  1108. return
  1109. }
  1110. }
  1111. if significance < 0 && number > 0 {
  1112. err = errors.New("negative sig to CEILING invalid")
  1113. return
  1114. }
  1115. if argsList.Len() == 1 {
  1116. result = fmt.Sprintf("%g", math.Ceil(number))
  1117. return
  1118. }
  1119. number, res = math.Modf(number / significance)
  1120. if res > 0 {
  1121. number++
  1122. }
  1123. result = fmt.Sprintf("%g", number*significance)
  1124. return
  1125. }
  1126. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1127. // significance. The syntax of the function is:
  1128. //
  1129. // CEILING.MATH(number,[significance],[mode])
  1130. //
  1131. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
  1132. if argsList.Len() == 0 {
  1133. err = errors.New("CEILING.MATH requires at least 1 argument")
  1134. return
  1135. }
  1136. if argsList.Len() > 3 {
  1137. err = errors.New("CEILING.MATH allows at most 3 arguments")
  1138. return
  1139. }
  1140. number, significance, mode := 0.0, 1.0, 1.0
  1141. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1142. err = errors.New(formulaErrorVALUE)
  1143. return
  1144. }
  1145. if number < 0 {
  1146. significance = -1
  1147. }
  1148. if argsList.Len() > 1 {
  1149. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1150. err = errors.New(formulaErrorVALUE)
  1151. return
  1152. }
  1153. }
  1154. if argsList.Len() == 1 {
  1155. result = fmt.Sprintf("%g", math.Ceil(number))
  1156. return
  1157. }
  1158. if argsList.Len() > 2 {
  1159. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1160. err = errors.New(formulaErrorVALUE)
  1161. return
  1162. }
  1163. }
  1164. val, res := math.Modf(number / significance)
  1165. if res != 0 {
  1166. if number > 0 {
  1167. val++
  1168. } else if mode < 0 {
  1169. val--
  1170. }
  1171. }
  1172. result = fmt.Sprintf("%g", val*significance)
  1173. return
  1174. }
  1175. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1176. // number's sign), to the nearest multiple of a given number. The syntax of
  1177. // the function is:
  1178. //
  1179. // CEILING.PRECISE(number,[significance])
  1180. //
  1181. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
  1182. if argsList.Len() == 0 {
  1183. err = errors.New("CEILING.PRECISE requires at least 1 argument")
  1184. return
  1185. }
  1186. if argsList.Len() > 2 {
  1187. err = errors.New("CEILING.PRECISE allows at most 2 arguments")
  1188. return
  1189. }
  1190. number, significance := 0.0, 1.0
  1191. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1192. err = errors.New(formulaErrorVALUE)
  1193. return
  1194. }
  1195. if number < 0 {
  1196. significance = -1
  1197. }
  1198. if argsList.Len() == 1 {
  1199. result = fmt.Sprintf("%g", math.Ceil(number))
  1200. return
  1201. }
  1202. if argsList.Len() > 1 {
  1203. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1204. err = errors.New(formulaErrorVALUE)
  1205. return
  1206. }
  1207. significance = math.Abs(significance)
  1208. if significance == 0 {
  1209. result = "0"
  1210. return
  1211. }
  1212. }
  1213. val, res := math.Modf(number / significance)
  1214. if res != 0 {
  1215. if number > 0 {
  1216. val++
  1217. }
  1218. }
  1219. result = fmt.Sprintf("%g", val*significance)
  1220. return
  1221. }
  1222. // COMBIN function calculates the number of combinations (in any order) of a
  1223. // given number objects from a set. The syntax of the function is:
  1224. //
  1225. // COMBIN(number,number_chosen)
  1226. //
  1227. func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
  1228. if argsList.Len() != 2 {
  1229. err = errors.New("COMBIN requires 2 argument")
  1230. return
  1231. }
  1232. number, chosen, val := 0.0, 0.0, 1.0
  1233. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1234. err = errors.New(formulaErrorVALUE)
  1235. return
  1236. }
  1237. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1238. err = errors.New(formulaErrorVALUE)
  1239. return
  1240. }
  1241. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1242. if chosen > number {
  1243. err = errors.New("COMBIN requires number >= number_chosen")
  1244. return
  1245. }
  1246. if chosen == number || chosen == 0 {
  1247. result = "1"
  1248. return
  1249. }
  1250. for c := float64(1); c <= chosen; c++ {
  1251. val *= (number + 1 - c) / c
  1252. }
  1253. result = fmt.Sprintf("%g", math.Ceil(val))
  1254. return
  1255. }
  1256. // COMBINA function calculates the number of combinations, with repetitions,
  1257. // of a given number objects from a set. The syntax of the function is:
  1258. //
  1259. // COMBINA(number,number_chosen)
  1260. //
  1261. func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
  1262. if argsList.Len() != 2 {
  1263. err = errors.New("COMBINA requires 2 argument")
  1264. return
  1265. }
  1266. var number, chosen float64
  1267. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1268. err = errors.New(formulaErrorVALUE)
  1269. return
  1270. }
  1271. if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1272. err = errors.New(formulaErrorVALUE)
  1273. return
  1274. }
  1275. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1276. if number < chosen {
  1277. err = errors.New("COMBINA requires number > number_chosen")
  1278. return
  1279. }
  1280. if number == 0 {
  1281. result = "0"
  1282. return
  1283. }
  1284. args := list.New()
  1285. args.PushBack(formulaArg{
  1286. String: fmt.Sprintf("%g", number+chosen-1),
  1287. Type: ArgString,
  1288. })
  1289. args.PushBack(formulaArg{
  1290. String: fmt.Sprintf("%g", number-1),
  1291. Type: ArgString,
  1292. })
  1293. return fn.COMBIN(args)
  1294. }
  1295. // COS function calculates the cosine of a given angle. The syntax of the
  1296. // function is:
  1297. //
  1298. // COS(number)
  1299. //
  1300. func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
  1301. if argsList.Len() != 1 {
  1302. err = errors.New("COS requires 1 numeric argument")
  1303. return
  1304. }
  1305. var val float64
  1306. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1307. err = errors.New(formulaErrorVALUE)
  1308. return
  1309. }
  1310. result = fmt.Sprintf("%g", math.Cos(val))
  1311. return
  1312. }
  1313. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1314. // The syntax of the function is:
  1315. //
  1316. // COSH(number)
  1317. //
  1318. func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
  1319. if argsList.Len() != 1 {
  1320. err = errors.New("COSH requires 1 numeric argument")
  1321. return
  1322. }
  1323. var val float64
  1324. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1325. err = errors.New(formulaErrorVALUE)
  1326. return
  1327. }
  1328. result = fmt.Sprintf("%g", math.Cosh(val))
  1329. return
  1330. }
  1331. // COT function calculates the cotangent of a given angle. The syntax of the
  1332. // function is:
  1333. //
  1334. // COT(number)
  1335. //
  1336. func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
  1337. if argsList.Len() != 1 {
  1338. err = errors.New("COT requires 1 numeric argument")
  1339. return
  1340. }
  1341. var val float64
  1342. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1343. err = errors.New(formulaErrorVALUE)
  1344. return
  1345. }
  1346. if val == 0 {
  1347. err = errors.New(formulaErrorDIV)
  1348. return
  1349. }
  1350. result = fmt.Sprintf("%g", math.Tan(val))
  1351. return
  1352. }
  1353. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1354. // angle. The syntax of the function is:
  1355. //
  1356. // COTH(number)
  1357. //
  1358. func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
  1359. if argsList.Len() != 1 {
  1360. err = errors.New("COTH requires 1 numeric argument")
  1361. return
  1362. }
  1363. var val float64
  1364. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1365. err = errors.New(formulaErrorVALUE)
  1366. return
  1367. }
  1368. if val == 0 {
  1369. err = errors.New(formulaErrorDIV)
  1370. return
  1371. }
  1372. result = fmt.Sprintf("%g", math.Tanh(val))
  1373. return
  1374. }
  1375. // CSC function calculates the cosecant of a given angle. The syntax of the
  1376. // function is:
  1377. //
  1378. // CSC(number)
  1379. //
  1380. func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
  1381. if argsList.Len() != 1 {
  1382. err = errors.New("CSC requires 1 numeric argument")
  1383. return
  1384. }
  1385. var val float64
  1386. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1387. err = errors.New(formulaErrorVALUE)
  1388. return
  1389. }
  1390. if val == 0 {
  1391. err = errors.New(formulaErrorDIV)
  1392. return
  1393. }
  1394. result = fmt.Sprintf("%g", 1/math.Sin(val))
  1395. return
  1396. }
  1397. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1398. // angle. The syntax of the function is:
  1399. //
  1400. // CSCH(number)
  1401. //
  1402. func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
  1403. if argsList.Len() != 1 {
  1404. err = errors.New("CSCH requires 1 numeric argument")
  1405. return
  1406. }
  1407. var val float64
  1408. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1409. err = errors.New(formulaErrorVALUE)
  1410. return
  1411. }
  1412. if val == 0 {
  1413. err = errors.New(formulaErrorDIV)
  1414. return
  1415. }
  1416. result = fmt.Sprintf("%g", 1/math.Sinh(val))
  1417. return
  1418. }
  1419. // DECIMAL function converts a text representation of a number in a specified
  1420. // base, into a decimal value. The syntax of the function is:
  1421. //
  1422. // DECIMAL(text,radix)
  1423. //
  1424. func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
  1425. if argsList.Len() != 2 {
  1426. err = errors.New("DECIMAL requires 2 numeric arguments")
  1427. return
  1428. }
  1429. var text = argsList.Front().Value.(formulaArg).String
  1430. var radix int
  1431. if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1432. err = errors.New(formulaErrorVALUE)
  1433. return
  1434. }
  1435. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1436. text = text[2:]
  1437. }
  1438. val, err := strconv.ParseInt(text, radix, 64)
  1439. if err != nil {
  1440. err = errors.New(formulaErrorVALUE)
  1441. return
  1442. }
  1443. result = fmt.Sprintf("%g", float64(val))
  1444. return
  1445. }
  1446. // DEGREES function converts radians into degrees. The syntax of the function
  1447. // is:
  1448. //
  1449. // DEGREES(angle)
  1450. //
  1451. func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
  1452. if argsList.Len() != 1 {
  1453. err = errors.New("DEGREES requires 1 numeric argument")
  1454. return
  1455. }
  1456. var val float64
  1457. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1458. err = errors.New(formulaErrorVALUE)
  1459. return
  1460. }
  1461. if val == 0 {
  1462. err = errors.New(formulaErrorDIV)
  1463. return
  1464. }
  1465. result = fmt.Sprintf("%g", 180.0/math.Pi*val)
  1466. return
  1467. }
  1468. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1469. // positive number up and a negative number down), to the next even number.
  1470. // The syntax of the function is:
  1471. //
  1472. // EVEN(number)
  1473. //
  1474. func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
  1475. if argsList.Len() != 1 {
  1476. err = errors.New("EVEN requires 1 numeric argument")
  1477. return
  1478. }
  1479. var number float64
  1480. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1481. err = errors.New(formulaErrorVALUE)
  1482. return
  1483. }
  1484. sign := math.Signbit(number)
  1485. m, frac := math.Modf(number / 2)
  1486. val := m * 2
  1487. if frac != 0 {
  1488. if !sign {
  1489. val += 2
  1490. } else {
  1491. val -= 2
  1492. }
  1493. }
  1494. result = fmt.Sprintf("%g", val)
  1495. return
  1496. }
  1497. // EXP function calculates the value of the mathematical constant e, raised to
  1498. // the power of a given number. The syntax of the function is:
  1499. //
  1500. // EXP(number)
  1501. //
  1502. func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
  1503. if argsList.Len() != 1 {
  1504. err = errors.New("EXP requires 1 numeric argument")
  1505. return
  1506. }
  1507. var number float64
  1508. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1509. err = errors.New(formulaErrorVALUE)
  1510. return
  1511. }
  1512. result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
  1513. return
  1514. }
  1515. // fact returns the factorial of a supplied number.
  1516. func fact(number float64) float64 {
  1517. val := float64(1)
  1518. for i := float64(2); i <= number; i++ {
  1519. val *= i
  1520. }
  1521. return val
  1522. }
  1523. // FACT function returns the factorial of a supplied number. The syntax of the
  1524. // function is:
  1525. //
  1526. // FACT(number)
  1527. //
  1528. func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
  1529. if argsList.Len() != 1 {
  1530. err = errors.New("FACT requires 1 numeric argument")
  1531. return
  1532. }
  1533. var number float64
  1534. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1535. err = errors.New(formulaErrorVALUE)
  1536. return
  1537. }
  1538. if number < 0 {
  1539. err = errors.New(formulaErrorNUM)
  1540. }
  1541. result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
  1542. return
  1543. }
  1544. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1545. // syntax of the function is:
  1546. //
  1547. // FACTDOUBLE(number)
  1548. //
  1549. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
  1550. if argsList.Len() != 1 {
  1551. err = errors.New("FACTDOUBLE requires 1 numeric argument")
  1552. return
  1553. }
  1554. number, val := 0.0, 1.0
  1555. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1556. err = errors.New(formulaErrorVALUE)
  1557. return
  1558. }
  1559. if number < 0 {
  1560. err = errors.New(formulaErrorNUM)
  1561. return
  1562. }
  1563. for i := math.Trunc(number); i > 1; i -= 2 {
  1564. val *= i
  1565. }
  1566. result = strings.ToUpper(fmt.Sprintf("%g", val))
  1567. return
  1568. }
  1569. // FLOOR function rounds a supplied number towards zero to the nearest
  1570. // multiple of a specified significance. The syntax of the function is:
  1571. //
  1572. // FLOOR(number,significance)
  1573. //
  1574. func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
  1575. if argsList.Len() != 2 {
  1576. err = errors.New("FLOOR requires 2 numeric arguments")
  1577. return
  1578. }
  1579. var number, significance float64
  1580. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1581. err = errors.New(formulaErrorVALUE)
  1582. return
  1583. }
  1584. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1585. err = errors.New(formulaErrorVALUE)
  1586. return
  1587. }
  1588. if significance < 0 && number >= 0 {
  1589. err = errors.New(formulaErrorNUM)
  1590. return
  1591. }
  1592. val := number
  1593. val, res := math.Modf(val / significance)
  1594. if res != 0 {
  1595. if number < 0 && res < 0 {
  1596. val--
  1597. }
  1598. }
  1599. result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
  1600. return
  1601. }
  1602. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1603. // significance. The syntax of the function is:
  1604. //
  1605. // FLOOR.MATH(number,[significance],[mode])
  1606. //
  1607. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
  1608. if argsList.Len() == 0 {
  1609. err = errors.New("FLOOR.MATH requires at least 1 argument")
  1610. return
  1611. }
  1612. if argsList.Len() > 3 {
  1613. err = errors.New("FLOOR.MATH allows at most 3 arguments")
  1614. return
  1615. }
  1616. number, significance, mode := 0.0, 1.0, 1.0
  1617. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1618. err = errors.New(formulaErrorVALUE)
  1619. return
  1620. }
  1621. if number < 0 {
  1622. significance = -1
  1623. }
  1624. if argsList.Len() > 1 {
  1625. if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
  1626. err = errors.New(formulaErrorVALUE)
  1627. return
  1628. }
  1629. }
  1630. if argsList.Len() == 1 {
  1631. result = fmt.Sprintf("%g", math.Floor(number))
  1632. return
  1633. }
  1634. if argsList.Len() > 2 {
  1635. if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1636. err = errors.New(formulaErrorVALUE)
  1637. return
  1638. }
  1639. }
  1640. val, res := math.Modf(number / significance)
  1641. if res != 0 && number < 0 && mode > 0 {
  1642. val--
  1643. }
  1644. result = fmt.Sprintf("%g", val*significance)
  1645. return
  1646. }
  1647. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1648. // of significance. The syntax of the function is:
  1649. //
  1650. // FLOOR.PRECISE(number,[significance])
  1651. //
  1652. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
  1653. if argsList.Len() == 0 {
  1654. err = errors.New("FLOOR.PRECISE requires at least 1 argument")
  1655. return
  1656. }
  1657. if argsList.Len() > 2 {
  1658. err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
  1659. return
  1660. }
  1661. var number, significance float64
  1662. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1663. err = errors.New(formulaErrorVALUE)
  1664. return
  1665. }
  1666. if number < 0 {
  1667. significance = -1
  1668. }
  1669. if argsList.Len() == 1 {
  1670. result = fmt.Sprintf("%g", math.Floor(number))
  1671. return
  1672. }
  1673. if argsList.Len() > 1 {
  1674. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1675. err = errors.New(formulaErrorVALUE)
  1676. return
  1677. }
  1678. significance = math.Abs(significance)
  1679. if significance == 0 {
  1680. result = "0"
  1681. return
  1682. }
  1683. }
  1684. val, res := math.Modf(number / significance)
  1685. if res != 0 {
  1686. if number < 0 {
  1687. val--
  1688. }
  1689. }
  1690. result = fmt.Sprintf("%g", val*significance)
  1691. return
  1692. }
  1693. // gcd returns the greatest common divisor of two supplied integers.
  1694. func gcd(x, y float64) float64 {
  1695. x, y = math.Trunc(x), math.Trunc(y)
  1696. if x == 0 {
  1697. return y
  1698. }
  1699. if y == 0 {
  1700. return x
  1701. }
  1702. for x != y {
  1703. if x > y {
  1704. x = x - y
  1705. } else {
  1706. y = y - x
  1707. }
  1708. }
  1709. return x
  1710. }
  1711. // GCD function returns the greatest common divisor of two or more supplied
  1712. // integers. The syntax of the function is:
  1713. //
  1714. // GCD(number1,[number2],...)
  1715. //
  1716. func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
  1717. if argsList.Len() == 0 {
  1718. err = errors.New("GCD requires at least 1 argument")
  1719. return
  1720. }
  1721. var (
  1722. val float64
  1723. nums = []float64{}
  1724. )
  1725. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1726. token := arg.Value.(formulaArg).String
  1727. if token == "" {
  1728. continue
  1729. }
  1730. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1731. err = errors.New(formulaErrorVALUE)
  1732. return
  1733. }
  1734. nums = append(nums, val)
  1735. }
  1736. if nums[0] < 0 {
  1737. err = errors.New("GCD only accepts positive arguments")
  1738. return
  1739. }
  1740. if len(nums) == 1 {
  1741. result = fmt.Sprintf("%g", nums[0])
  1742. return
  1743. }
  1744. cd := nums[0]
  1745. for i := 1; i < len(nums); i++ {
  1746. if nums[i] < 0 {
  1747. err = errors.New("GCD only accepts positive arguments")
  1748. return
  1749. }
  1750. cd = gcd(cd, nums[i])
  1751. }
  1752. result = fmt.Sprintf("%g", cd)
  1753. return
  1754. }
  1755. // INT function truncates a supplied number down to the closest integer. The
  1756. // syntax of the function is:
  1757. //
  1758. // INT(number)
  1759. //
  1760. func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
  1761. if argsList.Len() != 1 {
  1762. err = errors.New("INT requires 1 numeric argument")
  1763. return
  1764. }
  1765. var number float64
  1766. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1767. err = errors.New(formulaErrorVALUE)
  1768. return
  1769. }
  1770. val, frac := math.Modf(number)
  1771. if frac < 0 {
  1772. val--
  1773. }
  1774. result = fmt.Sprintf("%g", val)
  1775. return
  1776. }
  1777. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1778. // sign), to the nearest multiple of a supplied significance. The syntax of
  1779. // the function is:
  1780. //
  1781. // ISO.CEILING(number,[significance])
  1782. //
  1783. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
  1784. if argsList.Len() == 0 {
  1785. err = errors.New("ISO.CEILING requires at least 1 argument")
  1786. return
  1787. }
  1788. if argsList.Len() > 2 {
  1789. err = errors.New("ISO.CEILING allows at most 2 arguments")
  1790. return
  1791. }
  1792. var number, significance float64
  1793. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1794. err = errors.New(formulaErrorVALUE)
  1795. return
  1796. }
  1797. if number < 0 {
  1798. significance = -1
  1799. }
  1800. if argsList.Len() == 1 {
  1801. result = fmt.Sprintf("%g", math.Ceil(number))
  1802. return
  1803. }
  1804. if argsList.Len() > 1 {
  1805. if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1806. err = errors.New(formulaErrorVALUE)
  1807. return
  1808. }
  1809. significance = math.Abs(significance)
  1810. if significance == 0 {
  1811. result = "0"
  1812. return
  1813. }
  1814. }
  1815. val, res := math.Modf(number / significance)
  1816. if res != 0 {
  1817. if number > 0 {
  1818. val++
  1819. }
  1820. }
  1821. result = fmt.Sprintf("%g", val*significance)
  1822. return
  1823. }
  1824. // lcm returns the least common multiple of two supplied integers.
  1825. func lcm(a, b float64) float64 {
  1826. a = math.Trunc(a)
  1827. b = math.Trunc(b)
  1828. if a == 0 && b == 0 {
  1829. return 0
  1830. }
  1831. return a * b / gcd(a, b)
  1832. }
  1833. // LCM function returns the least common multiple of two or more supplied
  1834. // integers. The syntax of the function is:
  1835. //
  1836. // LCM(number1,[number2],...)
  1837. //
  1838. func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
  1839. if argsList.Len() == 0 {
  1840. err = errors.New("LCM requires at least 1 argument")
  1841. return
  1842. }
  1843. var (
  1844. val float64
  1845. nums = []float64{}
  1846. )
  1847. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1848. token := arg.Value.(formulaArg).String
  1849. if token == "" {
  1850. continue
  1851. }
  1852. if val, err = strconv.ParseFloat(token, 64); err != nil {
  1853. err = errors.New(formulaErrorVALUE)
  1854. return
  1855. }
  1856. nums = append(nums, val)
  1857. }
  1858. if nums[0] < 0 {
  1859. err = errors.New("LCM only accepts positive arguments")
  1860. return
  1861. }
  1862. if len(nums) == 1 {
  1863. result = fmt.Sprintf("%g", nums[0])
  1864. return
  1865. }
  1866. cm := nums[0]
  1867. for i := 1; i < len(nums); i++ {
  1868. if nums[i] < 0 {
  1869. err = errors.New("LCM only accepts positive arguments")
  1870. return
  1871. }
  1872. cm = lcm(cm, nums[i])
  1873. }
  1874. result = fmt.Sprintf("%g", cm)
  1875. return
  1876. }
  1877. // LN function calculates the natural logarithm of a given number. The syntax
  1878. // of the function is:
  1879. //
  1880. // LN(number)
  1881. //
  1882. func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
  1883. if argsList.Len() != 1 {
  1884. err = errors.New("LN requires 1 numeric argument")
  1885. return
  1886. }
  1887. var number float64
  1888. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1889. err = errors.New(formulaErrorVALUE)
  1890. return
  1891. }
  1892. result = fmt.Sprintf("%g", math.Log(number))
  1893. return
  1894. }
  1895. // LOG function calculates the logarithm of a given number, to a supplied
  1896. // base. The syntax of the function is:
  1897. //
  1898. // LOG(number,[base])
  1899. //
  1900. func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
  1901. if argsList.Len() == 0 {
  1902. err = errors.New("LOG requires at least 1 argument")
  1903. return
  1904. }
  1905. if argsList.Len() > 2 {
  1906. err = errors.New("LOG allows at most 2 arguments")
  1907. return
  1908. }
  1909. number, base := 0.0, 10.0
  1910. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1911. err = errors.New(formulaErrorVALUE)
  1912. return
  1913. }
  1914. if argsList.Len() > 1 {
  1915. if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  1916. err = errors.New(formulaErrorVALUE)
  1917. return
  1918. }
  1919. }
  1920. if number == 0 {
  1921. err = errors.New(formulaErrorNUM)
  1922. return
  1923. }
  1924. if base == 0 {
  1925. err = errors.New(formulaErrorNUM)
  1926. return
  1927. }
  1928. if base == 1 {
  1929. err = errors.New(formulaErrorDIV)
  1930. return
  1931. }
  1932. result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
  1933. return
  1934. }
  1935. // LOG10 function calculates the base 10 logarithm of a given number. The
  1936. // syntax of the function is:
  1937. //
  1938. // LOG10(number)
  1939. //
  1940. func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
  1941. if argsList.Len() != 1 {
  1942. err = errors.New("LOG10 requires 1 numeric argument")
  1943. return
  1944. }
  1945. var number float64
  1946. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  1947. err = errors.New(formulaErrorVALUE)
  1948. return
  1949. }
  1950. result = fmt.Sprintf("%g", math.Log10(number))
  1951. return
  1952. }
  1953. func minor(sqMtx [][]float64, idx int) [][]float64 {
  1954. ret := [][]float64{}
  1955. for i := range sqMtx {
  1956. if i == 0 {
  1957. continue
  1958. }
  1959. row := []float64{}
  1960. for j := range sqMtx {
  1961. if j == idx {
  1962. continue
  1963. }
  1964. row = append(row, sqMtx[i][j])
  1965. }
  1966. ret = append(ret, row)
  1967. }
  1968. return ret
  1969. }
  1970. // det determinant of the 2x2 matrix.
  1971. func det(sqMtx [][]float64) float64 {
  1972. if len(sqMtx) == 2 {
  1973. m00 := sqMtx[0][0]
  1974. m01 := sqMtx[0][1]
  1975. m10 := sqMtx[1][0]
  1976. m11 := sqMtx[1][1]
  1977. return m00*m11 - m10*m01
  1978. }
  1979. var res, sgn float64 = 0, 1
  1980. for j := range sqMtx {
  1981. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  1982. sgn *= -1
  1983. }
  1984. return res
  1985. }
  1986. // MDETERM calculates the determinant of a square matrix. The
  1987. // syntax of the function is:
  1988. //
  1989. // MDETERM(array)
  1990. //
  1991. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
  1992. var num float64
  1993. var numMtx = [][]float64{}
  1994. var strMtx = argsList.Front().Value.(formulaArg).Matrix
  1995. if argsList.Len() < 1 {
  1996. return
  1997. }
  1998. var rows = len(strMtx)
  1999. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2000. if len(row) != rows {
  2001. err = errors.New(formulaErrorVALUE)
  2002. return
  2003. }
  2004. numRow := []float64{}
  2005. for _, ele := range row {
  2006. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2007. return
  2008. }
  2009. numRow = append(numRow, num)
  2010. }
  2011. numMtx = append(numMtx, numRow)
  2012. }
  2013. result = fmt.Sprintf("%g", det(numMtx))
  2014. return
  2015. }
  2016. // MOD function returns the remainder of a division between two supplied
  2017. // numbers. The syntax of the function is:
  2018. //
  2019. // MOD(number,divisor)
  2020. //
  2021. func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
  2022. if argsList.Len() != 2 {
  2023. err = errors.New("MOD requires 2 numeric arguments")
  2024. return
  2025. }
  2026. var number, divisor float64
  2027. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2028. err = errors.New(formulaErrorVALUE)
  2029. return
  2030. }
  2031. if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2032. err = errors.New(formulaErrorVALUE)
  2033. return
  2034. }
  2035. if divisor == 0 {
  2036. err = errors.New(formulaErrorDIV)
  2037. return
  2038. }
  2039. trunc, rem := math.Modf(number / divisor)
  2040. if rem < 0 {
  2041. trunc--
  2042. }
  2043. result = fmt.Sprintf("%g", number-divisor*trunc)
  2044. return
  2045. }
  2046. // MROUND function rounds a supplied number up or down to the nearest multiple
  2047. // of a given number. The syntax of the function is:
  2048. //
  2049. // MOD(number,multiple)
  2050. //
  2051. func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
  2052. if argsList.Len() != 2 {
  2053. err = errors.New("MROUND requires 2 numeric arguments")
  2054. return
  2055. }
  2056. var number, multiple float64
  2057. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2058. err = errors.New(formulaErrorVALUE)
  2059. return
  2060. }
  2061. if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2062. err = errors.New(formulaErrorVALUE)
  2063. return
  2064. }
  2065. if multiple == 0 {
  2066. err = errors.New(formulaErrorNUM)
  2067. return
  2068. }
  2069. if multiple < 0 && number > 0 ||
  2070. multiple > 0 && number < 0 {
  2071. err = errors.New(formulaErrorNUM)
  2072. return
  2073. }
  2074. number, res := math.Modf(number / multiple)
  2075. if math.Trunc(res+0.5) > 0 {
  2076. number++
  2077. }
  2078. result = fmt.Sprintf("%g", number*multiple)
  2079. return
  2080. }
  2081. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2082. // supplied values to the product of factorials of those values. The syntax of
  2083. // the function is:
  2084. //
  2085. // MULTINOMIAL(number1,[number2],...)
  2086. //
  2087. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
  2088. val, num, denom := 0.0, 0.0, 1.0
  2089. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2090. token := arg.Value.(formulaArg)
  2091. if token.String == "" {
  2092. continue
  2093. }
  2094. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2095. err = errors.New(formulaErrorVALUE)
  2096. return
  2097. }
  2098. num += val
  2099. denom *= fact(val)
  2100. }
  2101. result = fmt.Sprintf("%g", fact(num)/denom)
  2102. return
  2103. }
  2104. // MUNIT function returns the unit matrix for a specified dimension. The
  2105. // syntax of the function is:
  2106. //
  2107. // MUNIT(dimension)
  2108. //
  2109. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
  2110. if argsList.Len() != 1 {
  2111. err = errors.New("MUNIT requires 1 numeric argument")
  2112. return
  2113. }
  2114. var dimension int
  2115. if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  2116. err = errors.New(formulaErrorVALUE)
  2117. return
  2118. }
  2119. matrix := make([][]float64, 0, dimension)
  2120. for i := 0; i < dimension; i++ {
  2121. row := make([]float64, dimension)
  2122. for j := 0; j < dimension; j++ {
  2123. if i == j {
  2124. row[j] = float64(1.0)
  2125. } else {
  2126. row[j] = float64(0.0)
  2127. }
  2128. }
  2129. matrix = append(matrix, row)
  2130. }
  2131. return
  2132. }
  2133. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2134. // number up and a negative number down), to the next odd number. The syntax
  2135. // of the function is:
  2136. //
  2137. // ODD(number)
  2138. //
  2139. func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
  2140. if argsList.Len() != 1 {
  2141. err = errors.New("ODD requires 1 numeric argument")
  2142. return
  2143. }
  2144. var number float64
  2145. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2146. err = errors.New(formulaErrorVALUE)
  2147. return
  2148. }
  2149. if number == 0 {
  2150. result = "1"
  2151. return
  2152. }
  2153. sign := math.Signbit(number)
  2154. m, frac := math.Modf((number - 1) / 2)
  2155. val := m*2 + 1
  2156. if frac != 0 {
  2157. if !sign {
  2158. val += 2
  2159. } else {
  2160. val -= 2
  2161. }
  2162. }
  2163. result = fmt.Sprintf("%g", val)
  2164. return
  2165. }
  2166. // PI function returns the value of the mathematical constant π (pi), accurate
  2167. // to 15 digits (14 decimal places). The syntax of the function is:
  2168. //
  2169. // PI()
  2170. //
  2171. func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
  2172. if argsList.Len() != 0 {
  2173. err = errors.New("PI accepts no arguments")
  2174. return
  2175. }
  2176. result = fmt.Sprintf("%g", math.Pi)
  2177. return
  2178. }
  2179. // POWER function calculates a given number, raised to a supplied power.
  2180. // The syntax of the function is:
  2181. //
  2182. // POWER(number,power)
  2183. //
  2184. func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
  2185. if argsList.Len() != 2 {
  2186. err = errors.New("POWER requires 2 numeric arguments")
  2187. return
  2188. }
  2189. var x, y float64
  2190. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2191. err = errors.New(formulaErrorVALUE)
  2192. return
  2193. }
  2194. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2195. err = errors.New(formulaErrorVALUE)
  2196. return
  2197. }
  2198. if x == 0 && y == 0 {
  2199. err = errors.New(formulaErrorNUM)
  2200. return
  2201. }
  2202. if x == 0 && y < 0 {
  2203. err = errors.New(formulaErrorDIV)
  2204. return
  2205. }
  2206. result = fmt.Sprintf("%g", math.Pow(x, y))
  2207. return
  2208. }
  2209. // PRODUCT function returns the product (multiplication) of a supplied set of
  2210. // numerical values. The syntax of the function is:
  2211. //
  2212. // PRODUCT(number1,[number2],...)
  2213. //
  2214. func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
  2215. val, product := 0.0, 1.0
  2216. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2217. token := arg.Value.(formulaArg)
  2218. switch token.Type {
  2219. case ArgUnknown:
  2220. continue
  2221. case ArgString:
  2222. if token.String == "" {
  2223. continue
  2224. }
  2225. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2226. err = errors.New(formulaErrorVALUE)
  2227. return
  2228. }
  2229. product = product * val
  2230. case ArgMatrix:
  2231. for _, row := range token.Matrix {
  2232. for _, value := range row {
  2233. if value.String == "" {
  2234. continue
  2235. }
  2236. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2237. err = errors.New(formulaErrorVALUE)
  2238. return
  2239. }
  2240. product = product * val
  2241. }
  2242. }
  2243. }
  2244. }
  2245. result = fmt.Sprintf("%g", product)
  2246. return
  2247. }
  2248. // QUOTIENT function returns the integer portion of a division between two
  2249. // supplied numbers. The syntax of the function is:
  2250. //
  2251. // QUOTIENT(numerator,denominator)
  2252. //
  2253. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
  2254. if argsList.Len() != 2 {
  2255. err = errors.New("QUOTIENT requires 2 numeric arguments")
  2256. return
  2257. }
  2258. var x, y float64
  2259. if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2260. err = errors.New(formulaErrorVALUE)
  2261. return
  2262. }
  2263. if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2264. err = errors.New(formulaErrorVALUE)
  2265. return
  2266. }
  2267. if y == 0 {
  2268. err = errors.New(formulaErrorDIV)
  2269. return
  2270. }
  2271. result = fmt.Sprintf("%g", math.Trunc(x/y))
  2272. return
  2273. }
  2274. // RADIANS function converts radians into degrees. The syntax of the function is:
  2275. //
  2276. // RADIANS(angle)
  2277. //
  2278. func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
  2279. if argsList.Len() != 1 {
  2280. err = errors.New("RADIANS requires 1 numeric argument")
  2281. return
  2282. }
  2283. var angle float64
  2284. if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2285. err = errors.New(formulaErrorVALUE)
  2286. return
  2287. }
  2288. result = fmt.Sprintf("%g", math.Pi/180.0*angle)
  2289. return
  2290. }
  2291. // RAND function generates a random real number between 0 and 1. The syntax of
  2292. // the function is:
  2293. //
  2294. // RAND()
  2295. //
  2296. func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
  2297. if argsList.Len() != 0 {
  2298. err = errors.New("RAND accepts no arguments")
  2299. return
  2300. }
  2301. result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2302. return
  2303. }
  2304. // RANDBETWEEN function generates a random integer between two supplied
  2305. // integers. The syntax of the function is:
  2306. //
  2307. // RANDBETWEEN(bottom,top)
  2308. //
  2309. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
  2310. if argsList.Len() != 2 {
  2311. err = errors.New("RANDBETWEEN requires 2 numeric arguments")
  2312. return
  2313. }
  2314. var bottom, top int64
  2315. if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64); err != nil {
  2316. err = errors.New(formulaErrorVALUE)
  2317. return
  2318. }
  2319. if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64); err != nil {
  2320. err = errors.New(formulaErrorVALUE)
  2321. return
  2322. }
  2323. if top < bottom {
  2324. err = errors.New(formulaErrorNUM)
  2325. return
  2326. }
  2327. result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
  2328. return
  2329. }
  2330. // romanNumerals defined a numeral system that originated in ancient Rome and
  2331. // remained the usual way of writing numbers throughout Europe well into the
  2332. // Late Middle Ages.
  2333. type romanNumerals struct {
  2334. n float64
  2335. s string
  2336. }
  2337. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2338. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2339. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2340. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2341. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2342. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2343. // integer, the function returns a text string depicting the roman numeral
  2344. // form of the number. The syntax of the function is:
  2345. //
  2346. // ROMAN(number,[form])
  2347. //
  2348. func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
  2349. if argsList.Len() == 0 {
  2350. err = errors.New("ROMAN requires at least 1 argument")
  2351. return
  2352. }
  2353. if argsList.Len() > 2 {
  2354. err = errors.New("ROMAN allows at most 2 arguments")
  2355. return
  2356. }
  2357. var number float64
  2358. var form int
  2359. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2360. err = errors.New(formulaErrorVALUE)
  2361. return
  2362. }
  2363. if argsList.Len() > 1 {
  2364. if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2365. err = errors.New(formulaErrorVALUE)
  2366. return
  2367. }
  2368. if form < 0 {
  2369. form = 0
  2370. } else if form > 4 {
  2371. form = 4
  2372. }
  2373. }
  2374. decimalTable := romanTable[0]
  2375. switch form {
  2376. case 1:
  2377. decimalTable = romanTable[1]
  2378. case 2:
  2379. decimalTable = romanTable[2]
  2380. case 3:
  2381. decimalTable = romanTable[3]
  2382. case 4:
  2383. decimalTable = romanTable[4]
  2384. }
  2385. val := math.Trunc(number)
  2386. buf := bytes.Buffer{}
  2387. for _, r := range decimalTable {
  2388. for val >= r.n {
  2389. buf.WriteString(r.s)
  2390. val -= r.n
  2391. }
  2392. }
  2393. result = buf.String()
  2394. return
  2395. }
  2396. type roundMode byte
  2397. const (
  2398. closest roundMode = iota
  2399. down
  2400. up
  2401. )
  2402. // round rounds a supplied number up or down.
  2403. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2404. var significance float64
  2405. if digits > 0 {
  2406. significance = math.Pow(1/10.0, digits)
  2407. } else {
  2408. significance = math.Pow(10.0, -digits)
  2409. }
  2410. val, res := math.Modf(number / significance)
  2411. switch mode {
  2412. case closest:
  2413. const eps = 0.499999999
  2414. if res >= eps {
  2415. val++
  2416. } else if res <= -eps {
  2417. val--
  2418. }
  2419. case down:
  2420. case up:
  2421. if res > 0 {
  2422. val++
  2423. } else if res < 0 {
  2424. val--
  2425. }
  2426. }
  2427. return val * significance
  2428. }
  2429. // ROUND function rounds a supplied number up or down, to a specified number
  2430. // of decimal places. The syntax of the function is:
  2431. //
  2432. // ROUND(number,num_digits)
  2433. //
  2434. func (fn *formulaFuncs) ROUND(argsList *list.List) (result string, err error) {
  2435. if argsList.Len() != 2 {
  2436. err = errors.New("ROUND requires 2 numeric arguments")
  2437. return
  2438. }
  2439. var number, digits float64
  2440. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2441. err = errors.New(formulaErrorVALUE)
  2442. return
  2443. }
  2444. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2445. err = errors.New(formulaErrorVALUE)
  2446. return
  2447. }
  2448. result = fmt.Sprintf("%g", fn.round(number, digits, closest))
  2449. return
  2450. }
  2451. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2452. // specified number of decimal places. The syntax of the function is:
  2453. //
  2454. // ROUNDDOWN(number,num_digits)
  2455. //
  2456. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) (result string, err error) {
  2457. if argsList.Len() != 2 {
  2458. err = errors.New("ROUNDDOWN requires 2 numeric arguments")
  2459. return
  2460. }
  2461. var number, digits float64
  2462. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2463. err = errors.New(formulaErrorVALUE)
  2464. return
  2465. }
  2466. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2467. err = errors.New(formulaErrorVALUE)
  2468. return
  2469. }
  2470. result = fmt.Sprintf("%g", fn.round(number, digits, down))
  2471. return
  2472. }
  2473. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2474. // specified number of decimal places. The syntax of the function is:
  2475. //
  2476. // ROUNDUP(number,num_digits)
  2477. //
  2478. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) (result string, err error) {
  2479. if argsList.Len() != 2 {
  2480. err = errors.New("ROUNDUP requires 2 numeric arguments")
  2481. return
  2482. }
  2483. var number, digits float64
  2484. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2485. err = errors.New(formulaErrorVALUE)
  2486. return
  2487. }
  2488. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2489. err = errors.New(formulaErrorVALUE)
  2490. return
  2491. }
  2492. result = fmt.Sprintf("%g", fn.round(number, digits, up))
  2493. return
  2494. }
  2495. // SEC function calculates the secant of a given angle. The syntax of the
  2496. // function is:
  2497. //
  2498. // SEC(number)
  2499. //
  2500. func (fn *formulaFuncs) SEC(argsList *list.List) (result string, err error) {
  2501. if argsList.Len() != 1 {
  2502. err = errors.New("SEC requires 1 numeric argument")
  2503. return
  2504. }
  2505. var number float64
  2506. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2507. err = errors.New(formulaErrorVALUE)
  2508. return
  2509. }
  2510. result = fmt.Sprintf("%g", math.Cos(number))
  2511. return
  2512. }
  2513. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2514. // The syntax of the function is:
  2515. //
  2516. // SECH(number)
  2517. //
  2518. func (fn *formulaFuncs) SECH(argsList *list.List) (result string, err error) {
  2519. if argsList.Len() != 1 {
  2520. err = errors.New("SECH requires 1 numeric argument")
  2521. return
  2522. }
  2523. var number float64
  2524. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2525. err = errors.New(formulaErrorVALUE)
  2526. return
  2527. }
  2528. result = fmt.Sprintf("%g", 1/math.Cosh(number))
  2529. return
  2530. }
  2531. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2532. // number. I.e. if the number is positive, the Sign function returns +1, if
  2533. // the number is negative, the function returns -1 and if the number is 0
  2534. // (zero), the function returns 0. The syntax of the function is:
  2535. //
  2536. // SIGN(number)
  2537. //
  2538. func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
  2539. if argsList.Len() != 1 {
  2540. err = errors.New("SIGN requires 1 numeric argument")
  2541. return
  2542. }
  2543. var val float64
  2544. if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2545. err = errors.New(formulaErrorVALUE)
  2546. return
  2547. }
  2548. if val < 0 {
  2549. result = "-1"
  2550. return
  2551. }
  2552. if val > 0 {
  2553. result = "1"
  2554. return
  2555. }
  2556. result = "0"
  2557. return
  2558. }
  2559. // SIN function calculates the sine of a given angle. The syntax of the
  2560. // function is:
  2561. //
  2562. // SIN(number)
  2563. //
  2564. func (fn *formulaFuncs) SIN(argsList *list.List) (result string, err error) {
  2565. if argsList.Len() != 1 {
  2566. err = errors.New("SIN requires 1 numeric argument")
  2567. return
  2568. }
  2569. var number float64
  2570. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2571. err = errors.New(formulaErrorVALUE)
  2572. return
  2573. }
  2574. result = fmt.Sprintf("%g", math.Sin(number))
  2575. return
  2576. }
  2577. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2578. // The syntax of the function is:
  2579. //
  2580. // SINH(number)
  2581. //
  2582. func (fn *formulaFuncs) SINH(argsList *list.List) (result string, err error) {
  2583. if argsList.Len() != 1 {
  2584. err = errors.New("SINH requires 1 numeric argument")
  2585. return
  2586. }
  2587. var number float64
  2588. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2589. err = errors.New(formulaErrorVALUE)
  2590. return
  2591. }
  2592. result = fmt.Sprintf("%g", math.Sinh(number))
  2593. return
  2594. }
  2595. // SQRT function calculates the positive square root of a supplied number. The
  2596. // syntax of the function is:
  2597. //
  2598. // SQRT(number)
  2599. //
  2600. func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
  2601. if argsList.Len() != 1 {
  2602. err = errors.New("SQRT requires 1 numeric argument")
  2603. return
  2604. }
  2605. var res float64
  2606. var value = argsList.Front().Value.(formulaArg).String
  2607. if value == "" {
  2608. result = "0"
  2609. return
  2610. }
  2611. if res, err = strconv.ParseFloat(value, 64); err != nil {
  2612. err = errors.New(formulaErrorVALUE)
  2613. return
  2614. }
  2615. if res < 0 {
  2616. err = errors.New(formulaErrorNUM)
  2617. return
  2618. }
  2619. result = fmt.Sprintf("%g", math.Sqrt(res))
  2620. return
  2621. }
  2622. // SQRTPI function returns the square root of a supplied number multiplied by
  2623. // the mathematical constant, π. The syntax of the function is:
  2624. //
  2625. // SQRTPI(number)
  2626. //
  2627. func (fn *formulaFuncs) SQRTPI(argsList *list.List) (result string, err error) {
  2628. if argsList.Len() != 1 {
  2629. err = errors.New("SQRTPI requires 1 numeric argument")
  2630. return
  2631. }
  2632. var number float64
  2633. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2634. err = errors.New(formulaErrorVALUE)
  2635. return
  2636. }
  2637. result = fmt.Sprintf("%g", math.Sqrt(number*math.Pi))
  2638. return
  2639. }
  2640. // SUM function adds together a supplied set of numbers and returns the sum of
  2641. // these values. The syntax of the function is:
  2642. //
  2643. // SUM(number1,[number2],...)
  2644. //
  2645. func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
  2646. var val, sum float64
  2647. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2648. token := arg.Value.(formulaArg)
  2649. switch token.Type {
  2650. case ArgUnknown:
  2651. continue
  2652. case ArgString:
  2653. if token.String == "" {
  2654. continue
  2655. }
  2656. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2657. err = errors.New(formulaErrorVALUE)
  2658. return
  2659. }
  2660. sum += val
  2661. case ArgMatrix:
  2662. for _, row := range token.Matrix {
  2663. for _, value := range row {
  2664. if value.String == "" {
  2665. continue
  2666. }
  2667. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2668. err = errors.New(formulaErrorVALUE)
  2669. return
  2670. }
  2671. sum += val
  2672. }
  2673. }
  2674. }
  2675. }
  2676. result = fmt.Sprintf("%g", sum)
  2677. return
  2678. }
  2679. // SUMIF function finds the values in a supplied array, that satisfy a given
  2680. // criteria, and returns the sum of the corresponding values in a second
  2681. // supplied array. The syntax of the function is:
  2682. //
  2683. // SUMIF(range,criteria,[sum_range])
  2684. //
  2685. func (fn *formulaFuncs) SUMIF(argsList *list.List) (result string, err error) {
  2686. if argsList.Len() < 2 {
  2687. err = errors.New("SUMIF requires at least 2 argument")
  2688. return
  2689. }
  2690. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2691. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2692. var sumRange [][]formulaArg
  2693. if argsList.Len() == 3 {
  2694. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2695. }
  2696. var sum, val float64
  2697. for rowIdx, row := range rangeMtx {
  2698. for colIdx, col := range row {
  2699. var ok bool
  2700. fromVal := col.String
  2701. if col.String == "" {
  2702. continue
  2703. }
  2704. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2705. return
  2706. }
  2707. if ok {
  2708. if argsList.Len() == 3 {
  2709. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2710. continue
  2711. }
  2712. fromVal = sumRange[rowIdx][colIdx].String
  2713. }
  2714. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2715. err = errors.New(formulaErrorVALUE)
  2716. return
  2717. }
  2718. sum += val
  2719. }
  2720. }
  2721. }
  2722. result = fmt.Sprintf("%g", sum)
  2723. return
  2724. }
  2725. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2726. // syntax of the function is:
  2727. //
  2728. // SUMSQ(number1,[number2],...)
  2729. //
  2730. func (fn *formulaFuncs) SUMSQ(argsList *list.List) (result string, err error) {
  2731. var val, sq float64
  2732. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2733. token := arg.Value.(formulaArg)
  2734. switch token.Type {
  2735. case ArgString:
  2736. if token.String == "" {
  2737. continue
  2738. }
  2739. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2740. err = errors.New(formulaErrorVALUE)
  2741. return
  2742. }
  2743. sq += val * val
  2744. case ArgMatrix:
  2745. for _, row := range token.Matrix {
  2746. for _, value := range row {
  2747. if value.String == "" {
  2748. continue
  2749. }
  2750. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2751. err = errors.New(formulaErrorVALUE)
  2752. return
  2753. }
  2754. sq += val * val
  2755. }
  2756. }
  2757. }
  2758. }
  2759. result = fmt.Sprintf("%g", sq)
  2760. return
  2761. }
  2762. // TAN function calculates the tangent of a given angle. The syntax of the
  2763. // function is:
  2764. //
  2765. // TAN(number)
  2766. //
  2767. func (fn *formulaFuncs) TAN(argsList *list.List) (result string, err error) {
  2768. if argsList.Len() != 1 {
  2769. err = errors.New("TAN requires 1 numeric argument")
  2770. return
  2771. }
  2772. var number float64
  2773. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2774. err = errors.New(formulaErrorVALUE)
  2775. return
  2776. }
  2777. result = fmt.Sprintf("%g", math.Tan(number))
  2778. return
  2779. }
  2780. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2781. // number. The syntax of the function is:
  2782. //
  2783. // TANH(number)
  2784. //
  2785. func (fn *formulaFuncs) TANH(argsList *list.List) (result string, err error) {
  2786. if argsList.Len() != 1 {
  2787. err = errors.New("TANH requires 1 numeric argument")
  2788. return
  2789. }
  2790. var number float64
  2791. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2792. err = errors.New(formulaErrorVALUE)
  2793. return
  2794. }
  2795. result = fmt.Sprintf("%g", math.Tanh(number))
  2796. return
  2797. }
  2798. // TRUNC function truncates a supplied number to a specified number of decimal
  2799. // places. The syntax of the function is:
  2800. //
  2801. // TRUNC(number,[number_digits])
  2802. //
  2803. func (fn *formulaFuncs) TRUNC(argsList *list.List) (result string, err error) {
  2804. if argsList.Len() == 0 {
  2805. err = errors.New("TRUNC requires at least 1 argument")
  2806. return
  2807. }
  2808. var number, digits, adjust, rtrim float64
  2809. if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
  2810. err = errors.New(formulaErrorVALUE)
  2811. return
  2812. }
  2813. if argsList.Len() > 1 {
  2814. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2815. err = errors.New(formulaErrorVALUE)
  2816. return
  2817. }
  2818. digits = math.Floor(digits)
  2819. }
  2820. adjust = math.Pow(10, digits)
  2821. x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
  2822. if x != 0 {
  2823. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2824. return
  2825. }
  2826. }
  2827. if (digits > 0) && (rtrim < adjust/10) {
  2828. result = fmt.Sprintf("%g", number)
  2829. return
  2830. }
  2831. result = fmt.Sprintf("%g", float64(int(number*adjust))/adjust)
  2832. return
  2833. }
  2834. // Statistical functions
  2835. // COUNTA function returns the number of non-blanks within a supplied set of
  2836. // cells or values. The syntax of the function is:
  2837. //
  2838. // COUNTA(value1,[value2],...)
  2839. //
  2840. func (fn *formulaFuncs) COUNTA(argsList *list.List) (result string, err error) {
  2841. var count int
  2842. for token := argsList.Front(); token != nil; token = token.Next() {
  2843. arg := token.Value.(formulaArg)
  2844. switch arg.Type {
  2845. case ArgString:
  2846. if arg.String != "" {
  2847. count++
  2848. }
  2849. case ArgMatrix:
  2850. for _, row := range arg.Matrix {
  2851. for _, value := range row {
  2852. if value.String != "" {
  2853. count++
  2854. }
  2855. }
  2856. }
  2857. }
  2858. }
  2859. result = fmt.Sprintf("%d", count)
  2860. return
  2861. }
  2862. // MEDIAN function returns the statistical median (the middle value) of a list
  2863. // of supplied numbers. The syntax of the function is:
  2864. //
  2865. // MEDIAN(number1,[number2],...)
  2866. //
  2867. func (fn *formulaFuncs) MEDIAN(argsList *list.List) (result string, err error) {
  2868. if argsList.Len() == 0 {
  2869. err = errors.New("MEDIAN requires at least 1 argument")
  2870. return
  2871. }
  2872. values := []float64{}
  2873. var median, digits float64
  2874. for token := argsList.Front(); token != nil; token = token.Next() {
  2875. arg := token.Value.(formulaArg)
  2876. switch arg.Type {
  2877. case ArgString:
  2878. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2879. err = errors.New(formulaErrorVALUE)
  2880. return
  2881. }
  2882. values = append(values, digits)
  2883. case ArgMatrix:
  2884. for _, row := range arg.Matrix {
  2885. for _, value := range row {
  2886. if value.String == "" {
  2887. continue
  2888. }
  2889. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2890. err = errors.New(formulaErrorVALUE)
  2891. return
  2892. }
  2893. values = append(values, digits)
  2894. }
  2895. }
  2896. }
  2897. }
  2898. sort.Float64s(values)
  2899. if len(values)%2 == 0 {
  2900. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2901. } else {
  2902. median = values[len(values)/2]
  2903. }
  2904. result = fmt.Sprintf("%g", median)
  2905. return
  2906. }
  2907. // Information functions
  2908. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2909. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2910. // function is:
  2911. //
  2912. // ISBLANK(value)
  2913. //
  2914. func (fn *formulaFuncs) ISBLANK(argsList *list.List) (result string, err error) {
  2915. if argsList.Len() != 1 {
  2916. err = errors.New("ISBLANK requires 1 argument")
  2917. return
  2918. }
  2919. token := argsList.Front().Value.(formulaArg)
  2920. result = "FALSE"
  2921. switch token.Type {
  2922. case ArgUnknown:
  2923. result = "TRUE"
  2924. case ArgString:
  2925. if token.String == "" {
  2926. result = "TRUE"
  2927. }
  2928. }
  2929. return
  2930. }
  2931. // ISERR function tests if an initial supplied expression (or value) returns
  2932. // any Excel Error, except the #N/A error. If so, the function returns the
  2933. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2934. // error, the ISERR function returns FALSE. The syntax of the function is:
  2935. //
  2936. // ISERR(value)
  2937. //
  2938. func (fn *formulaFuncs) ISERR(argsList *list.List) (result string, err error) {
  2939. if argsList.Len() != 1 {
  2940. err = errors.New("ISERR requires 1 argument")
  2941. return
  2942. }
  2943. token := argsList.Front().Value.(formulaArg)
  2944. result = "FALSE"
  2945. if token.Type == ArgString {
  2946. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2947. if errType == token.String {
  2948. result = "TRUE"
  2949. }
  2950. }
  2951. }
  2952. return
  2953. }
  2954. // ISERROR function tests if an initial supplied expression (or value) returns
  2955. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2956. // function returns FALSE. The syntax of the function is:
  2957. //
  2958. // ISERROR(value)
  2959. //
  2960. func (fn *formulaFuncs) ISERROR(argsList *list.List) (result string, err error) {
  2961. if argsList.Len() != 1 {
  2962. err = errors.New("ISERROR requires 1 argument")
  2963. return
  2964. }
  2965. token := argsList.Front().Value.(formulaArg)
  2966. result = "FALSE"
  2967. if token.Type == ArgString {
  2968. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2969. if errType == token.String {
  2970. result = "TRUE"
  2971. }
  2972. }
  2973. }
  2974. return
  2975. }
  2976. // ISEVEN function tests if a supplied number (or numeric expression)
  2977. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  2978. // function returns FALSE. The syntax of the function is:
  2979. //
  2980. // ISEVEN(value)
  2981. //
  2982. func (fn *formulaFuncs) ISEVEN(argsList *list.List) (result string, err error) {
  2983. if argsList.Len() != 1 {
  2984. err = errors.New("ISEVEN requires 1 argument")
  2985. return
  2986. }
  2987. token := argsList.Front().Value.(formulaArg)
  2988. result = "FALSE"
  2989. var numeric int
  2990. if token.Type == ArgString {
  2991. if numeric, err = strconv.Atoi(token.String); err != nil {
  2992. err = errors.New(formulaErrorVALUE)
  2993. return
  2994. }
  2995. if numeric == numeric/2*2 {
  2996. result = "TRUE"
  2997. return
  2998. }
  2999. }
  3000. return
  3001. }
  3002. // ISNA function tests if an initial supplied expression (or value) returns
  3003. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  3004. // returns FALSE. The syntax of the function is:
  3005. //
  3006. // ISNA(value)
  3007. //
  3008. func (fn *formulaFuncs) ISNA(argsList *list.List) (result string, err error) {
  3009. if argsList.Len() != 1 {
  3010. err = errors.New("ISNA requires 1 argument")
  3011. return
  3012. }
  3013. token := argsList.Front().Value.(formulaArg)
  3014. result = "FALSE"
  3015. if token.Type == ArgString && token.String == formulaErrorNA {
  3016. result = "TRUE"
  3017. }
  3018. return
  3019. }
  3020. // ISNONTEXT function function tests if a supplied value is text. If not, the
  3021. // function returns TRUE; If the supplied value is text, the function returns
  3022. // FALSE. The syntax of the function is:
  3023. //
  3024. // ISNONTEXT(value)
  3025. //
  3026. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) (result string, err error) {
  3027. if argsList.Len() != 1 {
  3028. err = errors.New("ISNONTEXT requires 1 argument")
  3029. return
  3030. }
  3031. token := argsList.Front().Value.(formulaArg)
  3032. result = "TRUE"
  3033. if token.Type == ArgString && token.String != "" {
  3034. result = "FALSE"
  3035. }
  3036. return
  3037. }
  3038. // ISNUMBER function function tests if a supplied value is a number. If so,
  3039. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3040. // function is:
  3041. //
  3042. // ISNUMBER(value)
  3043. //
  3044. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) (result string, err error) {
  3045. if argsList.Len() != 1 {
  3046. err = errors.New("ISNUMBER requires 1 argument")
  3047. return
  3048. }
  3049. token := argsList.Front().Value.(formulaArg)
  3050. result = "FALSE"
  3051. if token.Type == ArgString && token.String != "" {
  3052. if _, err = strconv.Atoi(token.String); err == nil {
  3053. result = "TRUE"
  3054. }
  3055. err = nil
  3056. }
  3057. return
  3058. }
  3059. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3060. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3061. // FALSE. The syntax of the function is:
  3062. //
  3063. // ISODD(value)
  3064. //
  3065. func (fn *formulaFuncs) ISODD(argsList *list.List) (result string, err error) {
  3066. if argsList.Len() != 1 {
  3067. err = errors.New("ISODD requires 1 argument")
  3068. return
  3069. }
  3070. token := argsList.Front().Value.(formulaArg)
  3071. result = "FALSE"
  3072. var numeric int
  3073. if token.Type == ArgString {
  3074. if numeric, err = strconv.Atoi(token.String); err != nil {
  3075. err = errors.New(formulaErrorVALUE)
  3076. return
  3077. }
  3078. if numeric != numeric/2*2 {
  3079. result = "TRUE"
  3080. return
  3081. }
  3082. }
  3083. return
  3084. }
  3085. // NA function returns the Excel #N/A error. This error message has the
  3086. // meaning 'value not available' and is produced when an Excel Formula is
  3087. // unable to find a value that it needs. The syntax of the function is:
  3088. //
  3089. // NA()
  3090. //
  3091. func (fn *formulaFuncs) NA(argsList *list.List) (result string, err error) {
  3092. if argsList.Len() != 0 {
  3093. err = errors.New("NA accepts no arguments")
  3094. return
  3095. }
  3096. result = formulaErrorNA
  3097. return
  3098. }
  3099. // Logical Functions
  3100. // AND function tests a number of supplied conditions and returns TRUE or
  3101. // FALSE.
  3102. func (fn *formulaFuncs) AND(argsList *list.List) (result string, err error) {
  3103. if argsList.Len() == 0 {
  3104. err = errors.New("AND requires at least 1 argument")
  3105. return
  3106. }
  3107. if argsList.Len() > 30 {
  3108. err = errors.New("AND accepts at most 30 arguments")
  3109. return
  3110. }
  3111. var and = true
  3112. var val float64
  3113. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3114. token := arg.Value.(formulaArg)
  3115. switch token.Type {
  3116. case ArgUnknown:
  3117. continue
  3118. case ArgString:
  3119. if token.String == "TRUE" {
  3120. continue
  3121. }
  3122. if token.String == "FALSE" {
  3123. result = token.String
  3124. return
  3125. }
  3126. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3127. err = errors.New(formulaErrorVALUE)
  3128. return
  3129. }
  3130. and = and && (val != 0)
  3131. case ArgMatrix:
  3132. // TODO
  3133. err = errors.New(formulaErrorVALUE)
  3134. return
  3135. }
  3136. }
  3137. result = strings.ToUpper(strconv.FormatBool(and))
  3138. return
  3139. }
  3140. // OR function tests a number of supplied conditions and returns either TRUE
  3141. // or FALSE.
  3142. func (fn *formulaFuncs) OR(argsList *list.List) (result string, err error) {
  3143. if argsList.Len() == 0 {
  3144. err = errors.New("OR requires at least 1 argument")
  3145. return
  3146. }
  3147. if argsList.Len() > 30 {
  3148. err = errors.New("OR accepts at most 30 arguments")
  3149. return
  3150. }
  3151. var or bool
  3152. var val float64
  3153. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3154. token := arg.Value.(formulaArg)
  3155. switch token.Type {
  3156. case ArgUnknown:
  3157. continue
  3158. case ArgString:
  3159. if token.String == "FALSE" {
  3160. continue
  3161. }
  3162. if token.String == "TRUE" {
  3163. or = true
  3164. continue
  3165. }
  3166. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3167. err = errors.New(formulaErrorVALUE)
  3168. return
  3169. }
  3170. or = val != 0
  3171. case ArgMatrix:
  3172. // TODO
  3173. err = errors.New(formulaErrorVALUE)
  3174. return
  3175. }
  3176. }
  3177. result = strings.ToUpper(strconv.FormatBool(or))
  3178. return
  3179. }
  3180. // Date and Time Functions
  3181. // DATE returns a date, from a user-supplied year, month and day.
  3182. func (fn *formulaFuncs) DATE(argsList *list.List) (result string, err error) {
  3183. if argsList.Len() != 3 {
  3184. err = errors.New("DATE requires 3 number arguments")
  3185. return
  3186. }
  3187. var year, month, day int
  3188. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3189. err = errors.New("DATE requires 3 number arguments")
  3190. return
  3191. }
  3192. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  3193. err = errors.New("DATE requires 3 number arguments")
  3194. return
  3195. }
  3196. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  3197. err = errors.New("DATE requires 3 number arguments")
  3198. return
  3199. }
  3200. d := makeDate(year, time.Month(month), day)
  3201. result = timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String()
  3202. return
  3203. }
  3204. // makeDate return date as a Unix time, the number of seconds elapsed since
  3205. // January 1, 1970 UTC.
  3206. func makeDate(y int, m time.Month, d int) int64 {
  3207. if y == 1900 && int(m) <= 2 {
  3208. d--
  3209. }
  3210. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  3211. return date.Unix()
  3212. }
  3213. // daysBetween return time interval of the given start timestamp and end
  3214. // timestamp.
  3215. func daysBetween(startDate, endDate int64) float64 {
  3216. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  3217. }
  3218. // Text Functions
  3219. // CLEAN removes all non-printable characters from a supplied text string.
  3220. func (fn *formulaFuncs) CLEAN(argsList *list.List) (result string, err error) {
  3221. if argsList.Len() != 1 {
  3222. err = errors.New("CLEAN requires 1 argument")
  3223. return
  3224. }
  3225. b := bytes.Buffer{}
  3226. for _, c := range argsList.Front().Value.(formulaArg).String {
  3227. if c > 31 {
  3228. b.WriteRune(c)
  3229. }
  3230. }
  3231. result = b.String()
  3232. return
  3233. }
  3234. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  3235. // words or characters) from a supplied text string.
  3236. func (fn *formulaFuncs) TRIM(argsList *list.List) (result string, err error) {
  3237. if argsList.Len() != 1 {
  3238. err = errors.New("TRIM requires 1 argument")
  3239. return
  3240. }
  3241. result = strings.TrimSpace(argsList.Front().Value.(formulaArg).String)
  3242. return
  3243. }