calc.go 190 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. "golang.org/x/text/language"
  30. "golang.org/x/text/message"
  31. )
  32. // Excel formula errors
  33. const (
  34. formulaErrorDIV = "#DIV/0!"
  35. formulaErrorNAME = "#NAME?"
  36. formulaErrorNA = "#N/A"
  37. formulaErrorNUM = "#NUM!"
  38. formulaErrorVALUE = "#VALUE!"
  39. formulaErrorREF = "#REF!"
  40. formulaErrorNULL = "#NULL"
  41. formulaErrorSPILL = "#SPILL!"
  42. formulaErrorCALC = "#CALC!"
  43. formulaErrorGETTINGDATA = "#GETTING_DATA"
  44. )
  45. // Numeric precision correct numeric values as legacy Excel application
  46. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  47. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  48. // has a decimal representation that is an infinite string of ones, Excel
  49. // displays only the leading 15 figures. In the second line, the number one
  50. // is added to the fraction, and again Excel displays only 15 figures.
  51. const numericPrecision = 1000000000000000
  52. // cellRef defines the structure of a cell reference.
  53. type cellRef struct {
  54. Col int
  55. Row int
  56. Sheet string
  57. }
  58. // cellRef defines the structure of a cell range.
  59. type cellRange struct {
  60. From cellRef
  61. To cellRef
  62. }
  63. // formula criteria condition enumeration.
  64. const (
  65. _ byte = iota
  66. criteriaEq
  67. criteriaLe
  68. criteriaGe
  69. criteriaL
  70. criteriaG
  71. criteriaBeg
  72. criteriaEnd
  73. criteriaErr
  74. )
  75. // formulaCriteria defined formula criteria parser result.
  76. type formulaCriteria struct {
  77. Type byte
  78. Condition string
  79. }
  80. // ArgType is the type if formula argument type.
  81. type ArgType byte
  82. // Formula argument types enumeration.
  83. const (
  84. ArgUnknown ArgType = iota
  85. ArgNumber
  86. ArgString
  87. ArgList
  88. ArgMatrix
  89. ArgError
  90. ArgEmpty
  91. )
  92. // formulaArg is the argument of a formula or function.
  93. type formulaArg struct {
  94. SheetName string
  95. Number float64
  96. String string
  97. List []formulaArg
  98. Matrix [][]formulaArg
  99. Boolean bool
  100. Error string
  101. Type ArgType
  102. cellRefs, cellRanges *list.List
  103. }
  104. // Value returns a string data type of the formula argument.
  105. func (fa formulaArg) Value() (value string) {
  106. switch fa.Type {
  107. case ArgNumber:
  108. if fa.Boolean {
  109. if fa.Number == 0 {
  110. return "FALSE"
  111. }
  112. return "TRUE"
  113. }
  114. return fmt.Sprintf("%g", fa.Number)
  115. case ArgString:
  116. return fa.String
  117. case ArgError:
  118. return fa.Error
  119. }
  120. return
  121. }
  122. // ToNumber returns a formula argument with number data type.
  123. func (fa formulaArg) ToNumber() formulaArg {
  124. var n float64
  125. var err error
  126. switch fa.Type {
  127. case ArgString:
  128. n, err = strconv.ParseFloat(fa.String, 64)
  129. if err != nil {
  130. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  131. }
  132. case ArgNumber:
  133. n = fa.Number
  134. }
  135. return newNumberFormulaArg(n)
  136. }
  137. // ToBool returns a formula argument with boolean data type.
  138. func (fa formulaArg) ToBool() formulaArg {
  139. var b bool
  140. var err error
  141. switch fa.Type {
  142. case ArgString:
  143. b, err = strconv.ParseBool(fa.String)
  144. if err != nil {
  145. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  146. }
  147. case ArgNumber:
  148. if fa.Boolean && fa.Number == 1 {
  149. b = true
  150. }
  151. }
  152. return newBoolFormulaArg(b)
  153. }
  154. // ToList returns a formula argument with array data type.
  155. func (fa formulaArg) ToList() []formulaArg {
  156. switch fa.Type {
  157. case ArgMatrix:
  158. list := []formulaArg{}
  159. for _, row := range fa.Matrix {
  160. list = append(list, row...)
  161. }
  162. return list
  163. case ArgList:
  164. return fa.List
  165. case ArgNumber, ArgString, ArgError, ArgUnknown:
  166. return []formulaArg{fa}
  167. }
  168. return nil
  169. }
  170. // formulaFuncs is the type of the formula functions.
  171. type formulaFuncs struct {
  172. f *File
  173. sheet, cell string
  174. }
  175. // tokenPriority defined basic arithmetic operator priority.
  176. var tokenPriority = map[string]int{
  177. "^": 5,
  178. "*": 4,
  179. "/": 4,
  180. "+": 3,
  181. "-": 3,
  182. "=": 2,
  183. "<>": 2,
  184. "<": 2,
  185. "<=": 2,
  186. ">": 2,
  187. ">=": 2,
  188. "&": 1,
  189. }
  190. // CalcCellValue provides a function to get calculated cell value. This
  191. // feature is currently in working processing. Array formula, table formula
  192. // and some other formulas are not supported currently.
  193. //
  194. // Supported formula functions:
  195. //
  196. // ABS
  197. // ACOS
  198. // ACOSH
  199. // ACOT
  200. // ACOTH
  201. // AND
  202. // ARABIC
  203. // ASIN
  204. // ASINH
  205. // ATAN
  206. // ATAN2
  207. // ATANH
  208. // AVERAGE
  209. // AVERAGEA
  210. // BASE
  211. // BESSELI
  212. // BESSELJ
  213. // BIN2DEC
  214. // BIN2HEX
  215. // BIN2OCT
  216. // BITAND
  217. // BITLSHIFT
  218. // BITOR
  219. // BITRSHIFT
  220. // BITXOR
  221. // CEILING
  222. // CEILING.MATH
  223. // CEILING.PRECISE
  224. // CHAR
  225. // CHOOSE
  226. // CLEAN
  227. // CODE
  228. // COLUMN
  229. // COLUMNS
  230. // COMBIN
  231. // COMBINA
  232. // CONCAT
  233. // CONCATENATE
  234. // COS
  235. // COSH
  236. // COT
  237. // COTH
  238. // COUNT
  239. // COUNTA
  240. // COUNTBLANK
  241. // CSC
  242. // CSCH
  243. // DATE
  244. // DATEDIF
  245. // DEC2BIN
  246. // DEC2HEX
  247. // DEC2OCT
  248. // DECIMAL
  249. // DEGREES
  250. // ENCODEURL
  251. // EVEN
  252. // EXACT
  253. // EXP
  254. // FACT
  255. // FACTDOUBLE
  256. // FALSE
  257. // FIND
  258. // FINDB
  259. // FISHER
  260. // FISHERINV
  261. // FIXED
  262. // FLOOR
  263. // FLOOR.MATH
  264. // FLOOR.PRECISE
  265. // GAMMA
  266. // GAMMALN
  267. // GCD
  268. // HARMEAN
  269. // HEX2BIN
  270. // HEX2DEC
  271. // HEX2OCT
  272. // HLOOKUP
  273. // IF
  274. // IFERROR
  275. // INT
  276. // ISBLANK
  277. // ISERR
  278. // ISERROR
  279. // ISEVEN
  280. // ISNA
  281. // ISNONTEXT
  282. // ISNUMBER
  283. // ISODD
  284. // ISTEXT
  285. // ISO.CEILING
  286. // KURT
  287. // LARGE
  288. // LCM
  289. // LEFT
  290. // LEFTB
  291. // LEN
  292. // LENB
  293. // LN
  294. // LOG
  295. // LOG10
  296. // LOOKUP
  297. // LOWER
  298. // MAX
  299. // MDETERM
  300. // MEDIAN
  301. // MID
  302. // MIDB
  303. // MIN
  304. // MINA
  305. // MOD
  306. // MROUND
  307. // MULTINOMIAL
  308. // MUNIT
  309. // N
  310. // NA
  311. // NORM.DIST
  312. // NORMDIST
  313. // NORM.INV
  314. // NORMINV
  315. // NORM.S.DIST
  316. // NORMSDIST
  317. // NORM.S.INV
  318. // NORMSINV
  319. // NOT
  320. // NOW
  321. // OCT2BIN
  322. // OCT2DEC
  323. // OCT2HEX
  324. // ODD
  325. // OR
  326. // PERCENTILE.INC
  327. // PERCENTILE
  328. // PERMUT
  329. // PERMUTATIONA
  330. // PI
  331. // POISSON.DIST
  332. // POISSON
  333. // POWER
  334. // PRODUCT
  335. // PROPER
  336. // QUARTILE
  337. // QUARTILE.INC
  338. // QUOTIENT
  339. // RADIANS
  340. // RAND
  341. // RANDBETWEEN
  342. // REPLACE
  343. // REPLACEB
  344. // REPT
  345. // RIGHT
  346. // RIGHTB
  347. // ROMAN
  348. // ROUND
  349. // ROUNDDOWN
  350. // ROUNDUP
  351. // ROW
  352. // ROWS
  353. // SEC
  354. // SECH
  355. // SHEET
  356. // SIGN
  357. // SIN
  358. // SINH
  359. // SKEW
  360. // SMALL
  361. // SQRT
  362. // SQRTPI
  363. // STDEV
  364. // STDEV.S
  365. // STDEVA
  366. // SUBSTITUTE
  367. // SUM
  368. // SUMIF
  369. // SUMSQ
  370. // T
  371. // TAN
  372. // TANH
  373. // TODAY
  374. // TRIM
  375. // TRUE
  376. // TRUNC
  377. // UNICHAR
  378. // UNICODE
  379. // UPPER
  380. // VAR.P
  381. // VARP
  382. // VLOOKUP
  383. //
  384. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  385. var (
  386. formula string
  387. token efp.Token
  388. )
  389. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  390. return
  391. }
  392. ps := efp.ExcelParser()
  393. tokens := ps.Parse(formula)
  394. if tokens == nil {
  395. return
  396. }
  397. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  398. return
  399. }
  400. result = token.TValue
  401. isNum, precision := isNumeric(result)
  402. if isNum && precision > 15 {
  403. num, _ := roundPrecision(result)
  404. result = strings.ToUpper(num)
  405. }
  406. return
  407. }
  408. // getPriority calculate arithmetic operator priority.
  409. func getPriority(token efp.Token) (pri int) {
  410. pri = tokenPriority[token.TValue]
  411. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  412. pri = 6
  413. }
  414. if isBeginParenthesesToken(token) { // (
  415. pri = 0
  416. }
  417. return
  418. }
  419. // newNumberFormulaArg constructs a number formula argument.
  420. func newNumberFormulaArg(n float64) formulaArg {
  421. if math.IsNaN(n) {
  422. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  423. }
  424. return formulaArg{Type: ArgNumber, Number: n}
  425. }
  426. // newStringFormulaArg constructs a string formula argument.
  427. func newStringFormulaArg(s string) formulaArg {
  428. return formulaArg{Type: ArgString, String: s}
  429. }
  430. // newMatrixFormulaArg constructs a matrix formula argument.
  431. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  432. return formulaArg{Type: ArgMatrix, Matrix: m}
  433. }
  434. // newListFormulaArg create a list formula argument.
  435. func newListFormulaArg(l []formulaArg) formulaArg {
  436. return formulaArg{Type: ArgList, List: l}
  437. }
  438. // newBoolFormulaArg constructs a boolean formula argument.
  439. func newBoolFormulaArg(b bool) formulaArg {
  440. var n float64
  441. if b {
  442. n = 1
  443. }
  444. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  445. }
  446. // newErrorFormulaArg create an error formula argument of a given type with a
  447. // specified error message.
  448. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  449. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  450. }
  451. // newEmptyFormulaArg create an empty formula argument.
  452. func newEmptyFormulaArg() formulaArg {
  453. return formulaArg{Type: ArgEmpty}
  454. }
  455. // evalInfixExp evaluate syntax analysis by given infix expression after
  456. // lexical analysis. Evaluate an infix expression containing formulas by
  457. // stacks:
  458. //
  459. // opd - Operand
  460. // opt - Operator
  461. // opf - Operation formula
  462. // opfd - Operand of the operation formula
  463. // opft - Operator of the operation formula
  464. // args - Arguments list of the operation formula
  465. //
  466. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  467. //
  468. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  469. var err error
  470. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  471. for i := 0; i < len(tokens); i++ {
  472. token := tokens[i]
  473. // out of function stack
  474. if opfStack.Len() == 0 {
  475. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  476. return efp.Token{}, err
  477. }
  478. }
  479. // function start
  480. if isFunctionStartToken(token) {
  481. opfStack.Push(token)
  482. argsStack.Push(list.New().Init())
  483. continue
  484. }
  485. // in function stack, walk 2 token at once
  486. if opfStack.Len() > 0 {
  487. var nextToken efp.Token
  488. if i+1 < len(tokens) {
  489. nextToken = tokens[i+1]
  490. }
  491. // current token is args or range, skip next token, order required: parse reference first
  492. if token.TSubType == efp.TokenSubTypeRange {
  493. if !opftStack.Empty() {
  494. // parse reference: must reference at here
  495. result, err := f.parseReference(sheet, token.TValue)
  496. if err != nil {
  497. return efp.Token{TValue: formulaErrorNAME}, err
  498. }
  499. if result.Type != ArgString {
  500. return efp.Token{}, errors.New(formulaErrorVALUE)
  501. }
  502. opfdStack.Push(efp.Token{
  503. TType: efp.TokenTypeOperand,
  504. TSubType: efp.TokenSubTypeNumber,
  505. TValue: result.String,
  506. })
  507. continue
  508. }
  509. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  510. // parse reference: reference or range at here
  511. result, err := f.parseReference(sheet, token.TValue)
  512. if err != nil {
  513. return efp.Token{TValue: formulaErrorNAME}, err
  514. }
  515. if result.Type == ArgUnknown {
  516. return efp.Token{}, errors.New(formulaErrorVALUE)
  517. }
  518. argsStack.Peek().(*list.List).PushBack(result)
  519. continue
  520. }
  521. }
  522. // check current token is opft
  523. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  524. return efp.Token{}, err
  525. }
  526. // current token is arg
  527. if token.TType == efp.TokenTypeArgument {
  528. for !opftStack.Empty() {
  529. // calculate trigger
  530. topOpt := opftStack.Peek().(efp.Token)
  531. if err := calculate(opfdStack, topOpt); err != nil {
  532. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  533. }
  534. opftStack.Pop()
  535. }
  536. if !opfdStack.Empty() {
  537. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  538. }
  539. continue
  540. }
  541. // current token is logical
  542. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  543. }
  544. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  545. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  546. }
  547. // current token is text
  548. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  549. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  550. }
  551. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  552. return efp.Token{}, err
  553. }
  554. }
  555. }
  556. for optStack.Len() != 0 {
  557. topOpt := optStack.Peek().(efp.Token)
  558. if err = calculate(opdStack, topOpt); err != nil {
  559. return efp.Token{}, err
  560. }
  561. optStack.Pop()
  562. }
  563. if opdStack.Len() == 0 {
  564. return efp.Token{}, errors.New("formula not valid")
  565. }
  566. return opdStack.Peek().(efp.Token), err
  567. }
  568. // evalInfixExpFunc evaluate formula function in the infix expression.
  569. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  570. if !isFunctionStopToken(token) {
  571. return nil
  572. }
  573. // current token is function stop
  574. for !opftStack.Empty() {
  575. // calculate trigger
  576. topOpt := opftStack.Peek().(efp.Token)
  577. if err := calculate(opfdStack, topOpt); err != nil {
  578. return err
  579. }
  580. opftStack.Pop()
  581. }
  582. // push opfd to args
  583. if opfdStack.Len() > 0 {
  584. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  585. }
  586. // call formula function to evaluate
  587. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  588. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  589. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  590. if arg.Type == ArgError && opfStack.Len() == 1 {
  591. return errors.New(arg.Value())
  592. }
  593. argsStack.Pop()
  594. opfStack.Pop()
  595. if opfStack.Len() > 0 { // still in function stack
  596. if nextToken.TType == efp.TokenTypeOperatorInfix {
  597. // mathematics calculate in formula function
  598. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  599. } else {
  600. argsStack.Peek().(*list.List).PushBack(arg)
  601. }
  602. } else {
  603. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  604. }
  605. return nil
  606. }
  607. // calcPow evaluate exponentiation arithmetic operations.
  608. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  609. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  610. if err != nil {
  611. return err
  612. }
  613. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  614. if err != nil {
  615. return err
  616. }
  617. result := math.Pow(lOpdVal, rOpdVal)
  618. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  619. return nil
  620. }
  621. // calcEq evaluate equal arithmetic operations.
  622. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  623. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  624. return nil
  625. }
  626. // calcNEq evaluate not equal arithmetic operations.
  627. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  628. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  629. return nil
  630. }
  631. // calcL evaluate less than arithmetic operations.
  632. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  633. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  634. if err != nil {
  635. return err
  636. }
  637. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  638. if err != nil {
  639. return err
  640. }
  641. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  642. return nil
  643. }
  644. // calcLe evaluate less than or equal arithmetic operations.
  645. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  646. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  647. if err != nil {
  648. return err
  649. }
  650. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  651. if err != nil {
  652. return err
  653. }
  654. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  655. return nil
  656. }
  657. // calcG evaluate greater than or equal arithmetic operations.
  658. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  659. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  660. if err != nil {
  661. return err
  662. }
  663. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  664. if err != nil {
  665. return err
  666. }
  667. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  668. return nil
  669. }
  670. // calcGe evaluate greater than or equal arithmetic operations.
  671. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  672. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  673. if err != nil {
  674. return err
  675. }
  676. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  677. if err != nil {
  678. return err
  679. }
  680. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  681. return nil
  682. }
  683. // calcSplice evaluate splice '&' operations.
  684. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  685. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  686. return nil
  687. }
  688. // calcAdd evaluate addition arithmetic operations.
  689. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  690. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  691. if err != nil {
  692. return err
  693. }
  694. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  695. if err != nil {
  696. return err
  697. }
  698. result := lOpdVal + rOpdVal
  699. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  700. return nil
  701. }
  702. // calcSubtract evaluate subtraction arithmetic operations.
  703. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  704. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  705. if err != nil {
  706. return err
  707. }
  708. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  709. if err != nil {
  710. return err
  711. }
  712. result := lOpdVal - rOpdVal
  713. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  714. return nil
  715. }
  716. // calcMultiply evaluate multiplication arithmetic operations.
  717. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  718. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  719. if err != nil {
  720. return err
  721. }
  722. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  723. if err != nil {
  724. return err
  725. }
  726. result := lOpdVal * rOpdVal
  727. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  728. return nil
  729. }
  730. // calcDiv evaluate division arithmetic operations.
  731. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  732. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  733. if err != nil {
  734. return err
  735. }
  736. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  737. if err != nil {
  738. return err
  739. }
  740. result := lOpdVal / rOpdVal
  741. if rOpdVal == 0 {
  742. return errors.New(formulaErrorDIV)
  743. }
  744. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  745. return nil
  746. }
  747. // calculate evaluate basic arithmetic operations.
  748. func calculate(opdStack *Stack, opt efp.Token) error {
  749. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  750. if opdStack.Len() < 1 {
  751. return errors.New("formula not valid")
  752. }
  753. opd := opdStack.Pop().(efp.Token)
  754. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  755. if err != nil {
  756. return err
  757. }
  758. result := 0 - opdVal
  759. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  760. }
  761. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  762. "^": calcPow,
  763. "*": calcMultiply,
  764. "/": calcDiv,
  765. "+": calcAdd,
  766. "=": calcEq,
  767. "<>": calcNEq,
  768. "<": calcL,
  769. "<=": calcLe,
  770. ">": calcG,
  771. ">=": calcGe,
  772. "&": calcSplice,
  773. }
  774. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  775. if opdStack.Len() < 2 {
  776. return errors.New("formula not valid")
  777. }
  778. rOpd := opdStack.Pop().(efp.Token)
  779. lOpd := opdStack.Pop().(efp.Token)
  780. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  781. return err
  782. }
  783. }
  784. fn, ok := tokenCalcFunc[opt.TValue]
  785. if ok {
  786. if opdStack.Len() < 2 {
  787. return errors.New("formula not valid")
  788. }
  789. rOpd := opdStack.Pop().(efp.Token)
  790. lOpd := opdStack.Pop().(efp.Token)
  791. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  792. return err
  793. }
  794. }
  795. return nil
  796. }
  797. // parseOperatorPrefixToken parse operator prefix token.
  798. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  799. if optStack.Len() == 0 {
  800. optStack.Push(token)
  801. } else {
  802. tokenPriority := getPriority(token)
  803. topOpt := optStack.Peek().(efp.Token)
  804. topOptPriority := getPriority(topOpt)
  805. if tokenPriority > topOptPriority {
  806. optStack.Push(token)
  807. } else {
  808. for tokenPriority <= topOptPriority {
  809. optStack.Pop()
  810. if err = calculate(opdStack, topOpt); err != nil {
  811. return
  812. }
  813. if optStack.Len() > 0 {
  814. topOpt = optStack.Peek().(efp.Token)
  815. topOptPriority = getPriority(topOpt)
  816. continue
  817. }
  818. break
  819. }
  820. optStack.Push(token)
  821. }
  822. }
  823. return
  824. }
  825. // isFunctionStartToken determine if the token is function stop.
  826. func isFunctionStartToken(token efp.Token) bool {
  827. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  828. }
  829. // isFunctionStopToken determine if the token is function stop.
  830. func isFunctionStopToken(token efp.Token) bool {
  831. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  832. }
  833. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  834. func isBeginParenthesesToken(token efp.Token) bool {
  835. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  836. }
  837. // isEndParenthesesToken determine if the token is end parentheses: ).
  838. func isEndParenthesesToken(token efp.Token) bool {
  839. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  840. }
  841. // isOperatorPrefixToken determine if the token is parse operator prefix
  842. // token.
  843. func isOperatorPrefixToken(token efp.Token) bool {
  844. _, ok := tokenPriority[token.TValue]
  845. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  846. return true
  847. }
  848. return false
  849. }
  850. // getDefinedNameRefTo convert defined name to reference range.
  851. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  852. for _, definedName := range f.GetDefinedName() {
  853. if definedName.Name == definedNameName {
  854. refTo = definedName.RefersTo
  855. // worksheet scope takes precedence over scope workbook when both definedNames exist
  856. if definedName.Scope == currentSheet {
  857. break
  858. }
  859. }
  860. }
  861. return refTo
  862. }
  863. // parseToken parse basic arithmetic operator priority and evaluate based on
  864. // operators and operands.
  865. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  866. // parse reference: must reference at here
  867. if token.TSubType == efp.TokenSubTypeRange {
  868. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  869. if refTo != "" {
  870. token.TValue = refTo
  871. }
  872. result, err := f.parseReference(sheet, token.TValue)
  873. if err != nil {
  874. return errors.New(formulaErrorNAME)
  875. }
  876. if result.Type != ArgString {
  877. return errors.New(formulaErrorVALUE)
  878. }
  879. token.TValue = result.String
  880. token.TType = efp.TokenTypeOperand
  881. token.TSubType = efp.TokenSubTypeNumber
  882. }
  883. if isOperatorPrefixToken(token) {
  884. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  885. return err
  886. }
  887. }
  888. if isBeginParenthesesToken(token) { // (
  889. optStack.Push(token)
  890. }
  891. if isEndParenthesesToken(token) { // )
  892. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  893. topOpt := optStack.Peek().(efp.Token)
  894. if err := calculate(opdStack, topOpt); err != nil {
  895. return err
  896. }
  897. optStack.Pop()
  898. }
  899. optStack.Pop()
  900. }
  901. // opd
  902. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  903. opdStack.Push(token)
  904. }
  905. return nil
  906. }
  907. // parseReference parse reference and extract values by given reference
  908. // characters and default sheet name.
  909. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  910. reference = strings.Replace(reference, "$", "", -1)
  911. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  912. for _, ref := range strings.Split(reference, ":") {
  913. tokens := strings.Split(ref, "!")
  914. cr := cellRef{}
  915. if len(tokens) == 2 { // have a worksheet name
  916. cr.Sheet = tokens[0]
  917. // cast to cell coordinates
  918. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  919. // cast to column
  920. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  921. // cast to row
  922. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  923. err = newInvalidColumnNameError(tokens[1])
  924. return
  925. }
  926. cr.Col = TotalColumns
  927. }
  928. }
  929. if refs.Len() > 0 {
  930. e := refs.Back()
  931. cellRefs.PushBack(e.Value.(cellRef))
  932. refs.Remove(e)
  933. }
  934. refs.PushBack(cr)
  935. continue
  936. }
  937. // cast to cell coordinates
  938. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  939. // cast to column
  940. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  941. // cast to row
  942. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  943. err = newInvalidColumnNameError(tokens[0])
  944. return
  945. }
  946. cr.Col = TotalColumns
  947. }
  948. cellRanges.PushBack(cellRange{
  949. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  950. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  951. })
  952. cellRefs.Init()
  953. arg, err = f.rangeResolver(cellRefs, cellRanges)
  954. return
  955. }
  956. e := refs.Back()
  957. if e == nil {
  958. cr.Sheet = sheet
  959. refs.PushBack(cr)
  960. continue
  961. }
  962. cellRanges.PushBack(cellRange{
  963. From: e.Value.(cellRef),
  964. To: cr,
  965. })
  966. refs.Remove(e)
  967. }
  968. if refs.Len() > 0 {
  969. e := refs.Back()
  970. cellRefs.PushBack(e.Value.(cellRef))
  971. refs.Remove(e)
  972. }
  973. arg, err = f.rangeResolver(cellRefs, cellRanges)
  974. return
  975. }
  976. // prepareValueRange prepare value range.
  977. func prepareValueRange(cr cellRange, valueRange []int) {
  978. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  979. valueRange[0] = cr.From.Row
  980. }
  981. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  982. valueRange[2] = cr.From.Col
  983. }
  984. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  985. valueRange[1] = cr.To.Row
  986. }
  987. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  988. valueRange[3] = cr.To.Col
  989. }
  990. }
  991. // prepareValueRef prepare value reference.
  992. func prepareValueRef(cr cellRef, valueRange []int) {
  993. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  994. valueRange[0] = cr.Row
  995. }
  996. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  997. valueRange[2] = cr.Col
  998. }
  999. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  1000. valueRange[1] = cr.Row
  1001. }
  1002. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1003. valueRange[3] = cr.Col
  1004. }
  1005. }
  1006. // rangeResolver extract value as string from given reference and range list.
  1007. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1008. // be reference A1:B3.
  1009. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1010. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1011. // value range order: from row, to row, from column, to column
  1012. valueRange := []int{0, 0, 0, 0}
  1013. var sheet string
  1014. // prepare value range
  1015. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1016. cr := temp.Value.(cellRange)
  1017. if cr.From.Sheet != cr.To.Sheet {
  1018. err = errors.New(formulaErrorVALUE)
  1019. }
  1020. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1021. _ = sortCoordinates(rng)
  1022. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1023. prepareValueRange(cr, valueRange)
  1024. if cr.From.Sheet != "" {
  1025. sheet = cr.From.Sheet
  1026. }
  1027. }
  1028. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1029. cr := temp.Value.(cellRef)
  1030. if cr.Sheet != "" {
  1031. sheet = cr.Sheet
  1032. }
  1033. prepareValueRef(cr, valueRange)
  1034. }
  1035. // extract value from ranges
  1036. if cellRanges.Len() > 0 {
  1037. arg.Type = ArgMatrix
  1038. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1039. var matrixRow = []formulaArg{}
  1040. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1041. var cell, value string
  1042. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1043. return
  1044. }
  1045. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1046. return
  1047. }
  1048. matrixRow = append(matrixRow, formulaArg{
  1049. String: value,
  1050. Type: ArgString,
  1051. })
  1052. }
  1053. arg.Matrix = append(arg.Matrix, matrixRow)
  1054. }
  1055. return
  1056. }
  1057. // extract value from references
  1058. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1059. cr := temp.Value.(cellRef)
  1060. var cell string
  1061. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1062. return
  1063. }
  1064. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1065. return
  1066. }
  1067. arg.Type = ArgString
  1068. }
  1069. return
  1070. }
  1071. // callFuncByName calls the no error or only error return function with
  1072. // reflect by given receiver, name and parameters.
  1073. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1074. function := reflect.ValueOf(receiver).MethodByName(name)
  1075. if function.IsValid() {
  1076. rt := function.Call(params)
  1077. if len(rt) == 0 {
  1078. return
  1079. }
  1080. arg = rt[0].Interface().(formulaArg)
  1081. return
  1082. }
  1083. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1084. }
  1085. // formulaCriteriaParser parse formula criteria.
  1086. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1087. fc = &formulaCriteria{}
  1088. if exp == "" {
  1089. return
  1090. }
  1091. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1092. fc.Type, fc.Condition = criteriaEq, match[1]
  1093. return
  1094. }
  1095. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1096. fc.Type, fc.Condition = criteriaEq, match[1]
  1097. return
  1098. }
  1099. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1100. fc.Type, fc.Condition = criteriaLe, match[1]
  1101. return
  1102. }
  1103. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1104. fc.Type, fc.Condition = criteriaGe, match[1]
  1105. return
  1106. }
  1107. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1108. fc.Type, fc.Condition = criteriaL, match[1]
  1109. return
  1110. }
  1111. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1112. fc.Type, fc.Condition = criteriaG, match[1]
  1113. return
  1114. }
  1115. if strings.Contains(exp, "*") {
  1116. if strings.HasPrefix(exp, "*") {
  1117. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1118. }
  1119. if strings.HasSuffix(exp, "*") {
  1120. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1121. }
  1122. return
  1123. }
  1124. fc.Type, fc.Condition = criteriaEq, exp
  1125. return
  1126. }
  1127. // formulaCriteriaEval evaluate formula criteria expression.
  1128. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1129. var value, expected float64
  1130. var e error
  1131. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1132. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1133. return
  1134. }
  1135. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1136. return
  1137. }
  1138. return
  1139. }
  1140. switch criteria.Type {
  1141. case criteriaEq:
  1142. return val == criteria.Condition, err
  1143. case criteriaLe:
  1144. value, expected, e = prepareValue(val, criteria.Condition)
  1145. return value <= expected && e == nil, err
  1146. case criteriaGe:
  1147. value, expected, e = prepareValue(val, criteria.Condition)
  1148. return value >= expected && e == nil, err
  1149. case criteriaL:
  1150. value, expected, e = prepareValue(val, criteria.Condition)
  1151. return value < expected && e == nil, err
  1152. case criteriaG:
  1153. value, expected, e = prepareValue(val, criteria.Condition)
  1154. return value > expected && e == nil, err
  1155. case criteriaBeg:
  1156. return strings.HasPrefix(val, criteria.Condition), err
  1157. case criteriaEnd:
  1158. return strings.HasSuffix(val, criteria.Condition), err
  1159. }
  1160. return
  1161. }
  1162. // Engineering Functions
  1163. // BESSELI function the modified Bessel function, which is equivalent to the
  1164. // Bessel function evaluated for purely imaginary arguments. The syntax of
  1165. // the Besseli function is:
  1166. //
  1167. // BESSELI(x,n)
  1168. //
  1169. func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
  1170. if argsList.Len() != 2 {
  1171. return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
  1172. }
  1173. return fn.bassel(argsList, true)
  1174. }
  1175. // BESSELJ function returns the Bessel function, Jn(x), for a specified order
  1176. // and value of x. The syntax of the function is:
  1177. //
  1178. // BESSELJ(x,n)
  1179. //
  1180. func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
  1181. if argsList.Len() != 2 {
  1182. return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
  1183. }
  1184. return fn.bassel(argsList, false)
  1185. }
  1186. // bassel is an implementation of the formula function BESSELI and BESSELJ.
  1187. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
  1188. x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1189. if x.Type != ArgNumber {
  1190. return x
  1191. }
  1192. if n.Type != ArgNumber {
  1193. return n
  1194. }
  1195. max, x1 := 100, x.Number*0.5
  1196. x2 := x1 * x1
  1197. x1 = math.Pow(x1, n.Number)
  1198. n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
  1199. result := x1 / n1
  1200. t := result * 0.9
  1201. for result != t && max != 0 {
  1202. x1 *= x2
  1203. n3++
  1204. n1 *= n3
  1205. n4++
  1206. n2 *= n4
  1207. t = result
  1208. if modfied || add {
  1209. result += (x1 / n1 / n2)
  1210. } else {
  1211. result -= (x1 / n1 / n2)
  1212. }
  1213. max--
  1214. add = !add
  1215. }
  1216. return newNumberFormulaArg(result)
  1217. }
  1218. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1219. // The syntax of the function is:
  1220. //
  1221. // BIN2DEC(number)
  1222. //
  1223. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1224. if argsList.Len() != 1 {
  1225. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1226. }
  1227. token := argsList.Front().Value.(formulaArg)
  1228. number := token.ToNumber()
  1229. if number.Type != ArgNumber {
  1230. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1231. }
  1232. return fn.bin2dec(token.Value())
  1233. }
  1234. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1235. // (Base 16) number. The syntax of the function is:
  1236. //
  1237. // BIN2HEX(number,[places])
  1238. //
  1239. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1240. if argsList.Len() < 1 {
  1241. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1242. }
  1243. if argsList.Len() > 2 {
  1244. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1245. }
  1246. token := argsList.Front().Value.(formulaArg)
  1247. number := token.ToNumber()
  1248. if number.Type != ArgNumber {
  1249. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1250. }
  1251. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1252. if decimal.Type != ArgNumber {
  1253. return decimal
  1254. }
  1255. newList.PushBack(decimal)
  1256. if argsList.Len() == 2 {
  1257. newList.PushBack(argsList.Back().Value.(formulaArg))
  1258. }
  1259. return fn.dec2x("BIN2HEX", newList)
  1260. }
  1261. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1262. // number. The syntax of the function is:
  1263. //
  1264. // BIN2OCT(number,[places])
  1265. //
  1266. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1267. if argsList.Len() < 1 {
  1268. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1269. }
  1270. if argsList.Len() > 2 {
  1271. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1272. }
  1273. token := argsList.Front().Value.(formulaArg)
  1274. number := token.ToNumber()
  1275. if number.Type != ArgNumber {
  1276. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1277. }
  1278. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1279. if decimal.Type != ArgNumber {
  1280. return decimal
  1281. }
  1282. newList.PushBack(decimal)
  1283. if argsList.Len() == 2 {
  1284. newList.PushBack(argsList.Back().Value.(formulaArg))
  1285. }
  1286. return fn.dec2x("BIN2OCT", newList)
  1287. }
  1288. // bin2dec is an implementation of the formula function BIN2DEC.
  1289. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1290. decimal, length := 0.0, len(number)
  1291. for i := length; i > 0; i-- {
  1292. s := string(number[length-i])
  1293. if i == 10 && s == "1" {
  1294. decimal += math.Pow(-2.0, float64(i-1))
  1295. continue
  1296. }
  1297. if s == "1" {
  1298. decimal += math.Pow(2.0, float64(i-1))
  1299. continue
  1300. }
  1301. if s != "0" {
  1302. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1303. }
  1304. }
  1305. return newNumberFormulaArg(decimal)
  1306. }
  1307. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1308. // syntax of the function is:
  1309. //
  1310. // BITAND(number1,number2)
  1311. //
  1312. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1313. return fn.bitwise("BITAND", argsList)
  1314. }
  1315. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1316. // number of bits. The syntax of the function is:
  1317. //
  1318. // BITLSHIFT(number1,shift_amount)
  1319. //
  1320. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1321. return fn.bitwise("BITLSHIFT", argsList)
  1322. }
  1323. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1324. // syntax of the function is:
  1325. //
  1326. // BITOR(number1,number2)
  1327. //
  1328. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1329. return fn.bitwise("BITOR", argsList)
  1330. }
  1331. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1332. // number of bits. The syntax of the function is:
  1333. //
  1334. // BITRSHIFT(number1,shift_amount)
  1335. //
  1336. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1337. return fn.bitwise("BITRSHIFT", argsList)
  1338. }
  1339. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1340. // integers. The syntax of the function is:
  1341. //
  1342. // BITXOR(number1,number2)
  1343. //
  1344. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1345. return fn.bitwise("BITXOR", argsList)
  1346. }
  1347. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1348. // BITOR, BITRSHIFT and BITXOR.
  1349. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1350. if argsList.Len() != 2 {
  1351. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1352. }
  1353. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1354. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1355. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1356. }
  1357. max := math.Pow(2, 48) - 1
  1358. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1359. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1360. }
  1361. bitwiseFuncMap := map[string]func(a, b int) int{
  1362. "BITAND": func(a, b int) int { return a & b },
  1363. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1364. "BITOR": func(a, b int) int { return a | b },
  1365. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1366. "BITXOR": func(a, b int) int { return a ^ b },
  1367. }
  1368. bitwiseFunc := bitwiseFuncMap[name]
  1369. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1370. }
  1371. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1372. // The syntax of the function is:
  1373. //
  1374. // DEC2BIN(number,[places])
  1375. //
  1376. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1377. return fn.dec2x("DEC2BIN", argsList)
  1378. }
  1379. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1380. // number. The syntax of the function is:
  1381. //
  1382. // DEC2HEX(number,[places])
  1383. //
  1384. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1385. return fn.dec2x("DEC2HEX", argsList)
  1386. }
  1387. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1388. // The syntax of the function is:
  1389. //
  1390. // DEC2OCT(number,[places])
  1391. //
  1392. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1393. return fn.dec2x("DEC2OCT", argsList)
  1394. }
  1395. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1396. // DEC2OCT.
  1397. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1398. if argsList.Len() < 1 {
  1399. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1400. }
  1401. if argsList.Len() > 2 {
  1402. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1403. }
  1404. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1405. if decimal.Type != ArgNumber {
  1406. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1407. }
  1408. maxLimitMap := map[string]float64{
  1409. "DEC2BIN": 511,
  1410. "HEX2BIN": 511,
  1411. "OCT2BIN": 511,
  1412. "BIN2HEX": 549755813887,
  1413. "DEC2HEX": 549755813887,
  1414. "OCT2HEX": 549755813887,
  1415. "BIN2OCT": 536870911,
  1416. "DEC2OCT": 536870911,
  1417. "HEX2OCT": 536870911,
  1418. }
  1419. minLimitMap := map[string]float64{
  1420. "DEC2BIN": -512,
  1421. "HEX2BIN": -512,
  1422. "OCT2BIN": -512,
  1423. "BIN2HEX": -549755813888,
  1424. "DEC2HEX": -549755813888,
  1425. "OCT2HEX": -549755813888,
  1426. "BIN2OCT": -536870912,
  1427. "DEC2OCT": -536870912,
  1428. "HEX2OCT": -536870912,
  1429. }
  1430. baseMap := map[string]int{
  1431. "DEC2BIN": 2,
  1432. "HEX2BIN": 2,
  1433. "OCT2BIN": 2,
  1434. "BIN2HEX": 16,
  1435. "DEC2HEX": 16,
  1436. "OCT2HEX": 16,
  1437. "BIN2OCT": 8,
  1438. "DEC2OCT": 8,
  1439. "HEX2OCT": 8,
  1440. }
  1441. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1442. base := baseMap[name]
  1443. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1444. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1445. }
  1446. n := int64(decimal.Number)
  1447. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1448. if argsList.Len() == 2 {
  1449. places := argsList.Back().Value.(formulaArg).ToNumber()
  1450. if places.Type != ArgNumber {
  1451. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1452. }
  1453. binaryPlaces := len(binary)
  1454. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1455. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1456. }
  1457. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1458. }
  1459. if decimal.Number < 0 && len(binary) > 10 {
  1460. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1461. }
  1462. return newStringFormulaArg(strings.ToUpper(binary))
  1463. }
  1464. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1465. // (Base 2) number. The syntax of the function is:
  1466. //
  1467. // HEX2BIN(number,[places])
  1468. //
  1469. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1470. if argsList.Len() < 1 {
  1471. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1472. }
  1473. if argsList.Len() > 2 {
  1474. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1475. }
  1476. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1477. if decimal.Type != ArgNumber {
  1478. return decimal
  1479. }
  1480. newList.PushBack(decimal)
  1481. if argsList.Len() == 2 {
  1482. newList.PushBack(argsList.Back().Value.(formulaArg))
  1483. }
  1484. return fn.dec2x("HEX2BIN", newList)
  1485. }
  1486. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1487. // number. The syntax of the function is:
  1488. //
  1489. // HEX2DEC(number)
  1490. //
  1491. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1492. if argsList.Len() != 1 {
  1493. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1494. }
  1495. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1496. }
  1497. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1498. // (Base 8) number. The syntax of the function is:
  1499. //
  1500. // HEX2OCT(number,[places])
  1501. //
  1502. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1503. if argsList.Len() < 1 {
  1504. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1505. }
  1506. if argsList.Len() > 2 {
  1507. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1508. }
  1509. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1510. if decimal.Type != ArgNumber {
  1511. return decimal
  1512. }
  1513. newList.PushBack(decimal)
  1514. if argsList.Len() == 2 {
  1515. newList.PushBack(argsList.Back().Value.(formulaArg))
  1516. }
  1517. return fn.dec2x("HEX2OCT", newList)
  1518. }
  1519. // hex2dec is an implementation of the formula function HEX2DEC.
  1520. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1521. decimal, length := 0.0, len(number)
  1522. for i := length; i > 0; i-- {
  1523. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1524. if err != nil {
  1525. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1526. }
  1527. if i == 10 && string(number[length-i]) == "F" {
  1528. decimal += math.Pow(-16.0, float64(i-1))
  1529. continue
  1530. }
  1531. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1532. }
  1533. return newNumberFormulaArg(decimal)
  1534. }
  1535. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1536. // number. The syntax of the function is:
  1537. //
  1538. // OCT2BIN(number,[places])
  1539. //
  1540. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1541. if argsList.Len() < 1 {
  1542. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1543. }
  1544. if argsList.Len() > 2 {
  1545. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1546. }
  1547. token := argsList.Front().Value.(formulaArg)
  1548. number := token.ToNumber()
  1549. if number.Type != ArgNumber {
  1550. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1551. }
  1552. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1553. newList.PushBack(decimal)
  1554. if argsList.Len() == 2 {
  1555. newList.PushBack(argsList.Back().Value.(formulaArg))
  1556. }
  1557. return fn.dec2x("OCT2BIN", newList)
  1558. }
  1559. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1560. // The syntax of the function is:
  1561. //
  1562. // OCT2DEC(number)
  1563. //
  1564. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1565. if argsList.Len() != 1 {
  1566. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1567. }
  1568. token := argsList.Front().Value.(formulaArg)
  1569. number := token.ToNumber()
  1570. if number.Type != ArgNumber {
  1571. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1572. }
  1573. return fn.oct2dec(token.Value())
  1574. }
  1575. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1576. // (Base 16) number. The syntax of the function is:
  1577. //
  1578. // OCT2HEX(number,[places])
  1579. //
  1580. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1581. if argsList.Len() < 1 {
  1582. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1583. }
  1584. if argsList.Len() > 2 {
  1585. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1586. }
  1587. token := argsList.Front().Value.(formulaArg)
  1588. number := token.ToNumber()
  1589. if number.Type != ArgNumber {
  1590. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1591. }
  1592. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1593. newList.PushBack(decimal)
  1594. if argsList.Len() == 2 {
  1595. newList.PushBack(argsList.Back().Value.(formulaArg))
  1596. }
  1597. return fn.dec2x("OCT2HEX", newList)
  1598. }
  1599. // oct2dec is an implementation of the formula function OCT2DEC.
  1600. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1601. decimal, length := 0.0, len(number)
  1602. for i := length; i > 0; i-- {
  1603. num, _ := strconv.Atoi(string(number[length-i]))
  1604. if i == 10 && string(number[length-i]) == "7" {
  1605. decimal += math.Pow(-8.0, float64(i-1))
  1606. continue
  1607. }
  1608. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1609. }
  1610. return newNumberFormulaArg(decimal)
  1611. }
  1612. // Math and Trigonometric Functions
  1613. // ABS function returns the absolute value of any supplied number. The syntax
  1614. // of the function is:
  1615. //
  1616. // ABS(number)
  1617. //
  1618. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1619. if argsList.Len() != 1 {
  1620. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1621. }
  1622. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1623. if arg.Type == ArgError {
  1624. return arg
  1625. }
  1626. return newNumberFormulaArg(math.Abs(arg.Number))
  1627. }
  1628. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1629. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1630. // the function is:
  1631. //
  1632. // ACOS(number)
  1633. //
  1634. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1635. if argsList.Len() != 1 {
  1636. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1637. }
  1638. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1639. if arg.Type == ArgError {
  1640. return arg
  1641. }
  1642. return newNumberFormulaArg(math.Acos(arg.Number))
  1643. }
  1644. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1645. // of the function is:
  1646. //
  1647. // ACOSH(number)
  1648. //
  1649. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1650. if argsList.Len() != 1 {
  1651. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1652. }
  1653. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1654. if arg.Type == ArgError {
  1655. return arg
  1656. }
  1657. return newNumberFormulaArg(math.Acosh(arg.Number))
  1658. }
  1659. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1660. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1661. // of the function is:
  1662. //
  1663. // ACOT(number)
  1664. //
  1665. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1666. if argsList.Len() != 1 {
  1667. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1668. }
  1669. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1670. if arg.Type == ArgError {
  1671. return arg
  1672. }
  1673. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1674. }
  1675. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1676. // value. The syntax of the function is:
  1677. //
  1678. // ACOTH(number)
  1679. //
  1680. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1681. if argsList.Len() != 1 {
  1682. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1683. }
  1684. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1685. if arg.Type == ArgError {
  1686. return arg
  1687. }
  1688. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1689. }
  1690. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1691. // of the function is:
  1692. //
  1693. // ARABIC(text)
  1694. //
  1695. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1696. if argsList.Len() != 1 {
  1697. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1698. }
  1699. text := argsList.Front().Value.(formulaArg).Value()
  1700. if len(text) > 255 {
  1701. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1702. }
  1703. text = strings.ToUpper(text)
  1704. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1705. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1706. for index >= 0 && text[index] == ' ' {
  1707. index--
  1708. }
  1709. for actualStart <= index && text[actualStart] == ' ' {
  1710. actualStart++
  1711. }
  1712. if actualStart <= index && text[actualStart] == '-' {
  1713. isNegative = true
  1714. actualStart++
  1715. }
  1716. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1717. for index >= actualStart {
  1718. startIndex = index
  1719. startChar := text[startIndex]
  1720. index--
  1721. for index >= actualStart && (text[index]|' ') == startChar {
  1722. index--
  1723. }
  1724. currentCharValue = charMap[rune(startChar)]
  1725. currentPartValue = (startIndex - index) * currentCharValue
  1726. if currentCharValue >= prevCharValue {
  1727. number += currentPartValue - subtractNumber
  1728. prevCharValue = currentCharValue
  1729. subtractNumber = 0
  1730. continue
  1731. }
  1732. subtractNumber += currentPartValue
  1733. }
  1734. if subtractNumber != 0 {
  1735. number -= subtractNumber
  1736. }
  1737. if isNegative {
  1738. number = -number
  1739. }
  1740. return newNumberFormulaArg(float64(number))
  1741. }
  1742. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1743. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1744. // of the function is:
  1745. //
  1746. // ASIN(number)
  1747. //
  1748. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1749. if argsList.Len() != 1 {
  1750. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1751. }
  1752. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1753. if arg.Type == ArgError {
  1754. return arg
  1755. }
  1756. return newNumberFormulaArg(math.Asin(arg.Number))
  1757. }
  1758. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1759. // The syntax of the function is:
  1760. //
  1761. // ASINH(number)
  1762. //
  1763. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1764. if argsList.Len() != 1 {
  1765. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1766. }
  1767. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1768. if arg.Type == ArgError {
  1769. return arg
  1770. }
  1771. return newNumberFormulaArg(math.Asinh(arg.Number))
  1772. }
  1773. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1774. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1775. // syntax of the function is:
  1776. //
  1777. // ATAN(number)
  1778. //
  1779. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1780. if argsList.Len() != 1 {
  1781. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1782. }
  1783. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1784. if arg.Type == ArgError {
  1785. return arg
  1786. }
  1787. return newNumberFormulaArg(math.Atan(arg.Number))
  1788. }
  1789. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1790. // number. The syntax of the function is:
  1791. //
  1792. // ATANH(number)
  1793. //
  1794. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1795. if argsList.Len() != 1 {
  1796. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1797. }
  1798. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1799. if arg.Type == ArgError {
  1800. return arg
  1801. }
  1802. return newNumberFormulaArg(math.Atanh(arg.Number))
  1803. }
  1804. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1805. // given set of x and y coordinates, and returns an angle, in radians, between
  1806. // -π/2 and +π/2. The syntax of the function is:
  1807. //
  1808. // ATAN2(x_num,y_num)
  1809. //
  1810. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1811. if argsList.Len() != 2 {
  1812. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1813. }
  1814. x := argsList.Back().Value.(formulaArg).ToNumber()
  1815. if x.Type == ArgError {
  1816. return x
  1817. }
  1818. y := argsList.Front().Value.(formulaArg).ToNumber()
  1819. if y.Type == ArgError {
  1820. return y
  1821. }
  1822. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1823. }
  1824. // BASE function converts a number into a supplied base (radix), and returns a
  1825. // text representation of the calculated value. The syntax of the function is:
  1826. //
  1827. // BASE(number,radix,[min_length])
  1828. //
  1829. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1830. if argsList.Len() < 2 {
  1831. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1832. }
  1833. if argsList.Len() > 3 {
  1834. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1835. }
  1836. var minLength int
  1837. var err error
  1838. number := argsList.Front().Value.(formulaArg).ToNumber()
  1839. if number.Type == ArgError {
  1840. return number
  1841. }
  1842. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1843. if radix.Type == ArgError {
  1844. return radix
  1845. }
  1846. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1847. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1848. }
  1849. if argsList.Len() > 2 {
  1850. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1851. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1852. }
  1853. }
  1854. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1855. if len(result) < minLength {
  1856. result = strings.Repeat("0", minLength-len(result)) + result
  1857. }
  1858. return newStringFormulaArg(strings.ToUpper(result))
  1859. }
  1860. // CEILING function rounds a supplied number away from zero, to the nearest
  1861. // multiple of a given number. The syntax of the function is:
  1862. //
  1863. // CEILING(number,significance)
  1864. //
  1865. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1866. if argsList.Len() == 0 {
  1867. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1868. }
  1869. if argsList.Len() > 2 {
  1870. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1871. }
  1872. number, significance, res := 0.0, 1.0, 0.0
  1873. n := argsList.Front().Value.(formulaArg).ToNumber()
  1874. if n.Type == ArgError {
  1875. return n
  1876. }
  1877. number = n.Number
  1878. if number < 0 {
  1879. significance = -1
  1880. }
  1881. if argsList.Len() > 1 {
  1882. s := argsList.Back().Value.(formulaArg).ToNumber()
  1883. if s.Type == ArgError {
  1884. return s
  1885. }
  1886. significance = s.Number
  1887. }
  1888. if significance < 0 && number > 0 {
  1889. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1890. }
  1891. if argsList.Len() == 1 {
  1892. return newNumberFormulaArg(math.Ceil(number))
  1893. }
  1894. number, res = math.Modf(number / significance)
  1895. if res > 0 {
  1896. number++
  1897. }
  1898. return newNumberFormulaArg(number * significance)
  1899. }
  1900. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  1901. // of significance. The syntax of the function is:
  1902. //
  1903. // CEILING.MATH(number,[significance],[mode])
  1904. //
  1905. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  1906. if argsList.Len() == 0 {
  1907. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1908. }
  1909. if argsList.Len() > 3 {
  1910. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1911. }
  1912. number, significance, mode := 0.0, 1.0, 1.0
  1913. n := argsList.Front().Value.(formulaArg).ToNumber()
  1914. if n.Type == ArgError {
  1915. return n
  1916. }
  1917. number = n.Number
  1918. if number < 0 {
  1919. significance = -1
  1920. }
  1921. if argsList.Len() > 1 {
  1922. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1923. if s.Type == ArgError {
  1924. return s
  1925. }
  1926. significance = s.Number
  1927. }
  1928. if argsList.Len() == 1 {
  1929. return newNumberFormulaArg(math.Ceil(number))
  1930. }
  1931. if argsList.Len() > 2 {
  1932. m := argsList.Back().Value.(formulaArg).ToNumber()
  1933. if m.Type == ArgError {
  1934. return m
  1935. }
  1936. mode = m.Number
  1937. }
  1938. val, res := math.Modf(number / significance)
  1939. if res != 0 {
  1940. if number > 0 {
  1941. val++
  1942. } else if mode < 0 {
  1943. val--
  1944. }
  1945. }
  1946. return newNumberFormulaArg(val * significance)
  1947. }
  1948. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  1949. // number's sign), to the nearest multiple of a given number. The syntax of
  1950. // the function is:
  1951. //
  1952. // CEILING.PRECISE(number,[significance])
  1953. //
  1954. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  1955. if argsList.Len() == 0 {
  1956. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1957. }
  1958. if argsList.Len() > 2 {
  1959. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1960. }
  1961. number, significance := 0.0, 1.0
  1962. n := argsList.Front().Value.(formulaArg).ToNumber()
  1963. if n.Type == ArgError {
  1964. return n
  1965. }
  1966. number = n.Number
  1967. if number < 0 {
  1968. significance = -1
  1969. }
  1970. if argsList.Len() == 1 {
  1971. return newNumberFormulaArg(math.Ceil(number))
  1972. }
  1973. if argsList.Len() > 1 {
  1974. s := argsList.Back().Value.(formulaArg).ToNumber()
  1975. if s.Type == ArgError {
  1976. return s
  1977. }
  1978. significance = s.Number
  1979. significance = math.Abs(significance)
  1980. if significance == 0 {
  1981. return newNumberFormulaArg(significance)
  1982. }
  1983. }
  1984. val, res := math.Modf(number / significance)
  1985. if res != 0 {
  1986. if number > 0 {
  1987. val++
  1988. }
  1989. }
  1990. return newNumberFormulaArg(val * significance)
  1991. }
  1992. // COMBIN function calculates the number of combinations (in any order) of a
  1993. // given number objects from a set. The syntax of the function is:
  1994. //
  1995. // COMBIN(number,number_chosen)
  1996. //
  1997. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1998. if argsList.Len() != 2 {
  1999. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  2000. }
  2001. number, chosen, val := 0.0, 0.0, 1.0
  2002. n := argsList.Front().Value.(formulaArg).ToNumber()
  2003. if n.Type == ArgError {
  2004. return n
  2005. }
  2006. number = n.Number
  2007. c := argsList.Back().Value.(formulaArg).ToNumber()
  2008. if c.Type == ArgError {
  2009. return c
  2010. }
  2011. chosen = c.Number
  2012. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2013. if chosen > number {
  2014. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  2015. }
  2016. if chosen == number || chosen == 0 {
  2017. return newNumberFormulaArg(1)
  2018. }
  2019. for c := float64(1); c <= chosen; c++ {
  2020. val *= (number + 1 - c) / c
  2021. }
  2022. return newNumberFormulaArg(math.Ceil(val))
  2023. }
  2024. // COMBINA function calculates the number of combinations, with repetitions,
  2025. // of a given number objects from a set. The syntax of the function is:
  2026. //
  2027. // COMBINA(number,number_chosen)
  2028. //
  2029. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  2030. if argsList.Len() != 2 {
  2031. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  2032. }
  2033. var number, chosen float64
  2034. n := argsList.Front().Value.(formulaArg).ToNumber()
  2035. if n.Type == ArgError {
  2036. return n
  2037. }
  2038. number = n.Number
  2039. c := argsList.Back().Value.(formulaArg).ToNumber()
  2040. if c.Type == ArgError {
  2041. return c
  2042. }
  2043. chosen = c.Number
  2044. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2045. if number < chosen {
  2046. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  2047. }
  2048. if number == 0 {
  2049. return newNumberFormulaArg(number)
  2050. }
  2051. args := list.New()
  2052. args.PushBack(formulaArg{
  2053. String: fmt.Sprintf("%g", number+chosen-1),
  2054. Type: ArgString,
  2055. })
  2056. args.PushBack(formulaArg{
  2057. String: fmt.Sprintf("%g", number-1),
  2058. Type: ArgString,
  2059. })
  2060. return fn.COMBIN(args)
  2061. }
  2062. // COS function calculates the cosine of a given angle. The syntax of the
  2063. // function is:
  2064. //
  2065. // COS(number)
  2066. //
  2067. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2068. if argsList.Len() != 1 {
  2069. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2070. }
  2071. val := argsList.Front().Value.(formulaArg).ToNumber()
  2072. if val.Type == ArgError {
  2073. return val
  2074. }
  2075. return newNumberFormulaArg(math.Cos(val.Number))
  2076. }
  2077. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2078. // The syntax of the function is:
  2079. //
  2080. // COSH(number)
  2081. //
  2082. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2083. if argsList.Len() != 1 {
  2084. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2085. }
  2086. val := argsList.Front().Value.(formulaArg).ToNumber()
  2087. if val.Type == ArgError {
  2088. return val
  2089. }
  2090. return newNumberFormulaArg(math.Cosh(val.Number))
  2091. }
  2092. // COT function calculates the cotangent of a given angle. The syntax of the
  2093. // function is:
  2094. //
  2095. // COT(number)
  2096. //
  2097. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2098. if argsList.Len() != 1 {
  2099. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2100. }
  2101. val := argsList.Front().Value.(formulaArg).ToNumber()
  2102. if val.Type == ArgError {
  2103. return val
  2104. }
  2105. if val.Number == 0 {
  2106. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2107. }
  2108. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2109. }
  2110. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2111. // angle. The syntax of the function is:
  2112. //
  2113. // COTH(number)
  2114. //
  2115. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2116. if argsList.Len() != 1 {
  2117. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2118. }
  2119. val := argsList.Front().Value.(formulaArg).ToNumber()
  2120. if val.Type == ArgError {
  2121. return val
  2122. }
  2123. if val.Number == 0 {
  2124. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2125. }
  2126. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2127. }
  2128. // CSC function calculates the cosecant of a given angle. The syntax of the
  2129. // function is:
  2130. //
  2131. // CSC(number)
  2132. //
  2133. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2134. if argsList.Len() != 1 {
  2135. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2136. }
  2137. val := argsList.Front().Value.(formulaArg).ToNumber()
  2138. if val.Type == ArgError {
  2139. return val
  2140. }
  2141. if val.Number == 0 {
  2142. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2143. }
  2144. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2145. }
  2146. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2147. // angle. The syntax of the function is:
  2148. //
  2149. // CSCH(number)
  2150. //
  2151. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2152. if argsList.Len() != 1 {
  2153. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2154. }
  2155. val := argsList.Front().Value.(formulaArg).ToNumber()
  2156. if val.Type == ArgError {
  2157. return val
  2158. }
  2159. if val.Number == 0 {
  2160. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2161. }
  2162. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2163. }
  2164. // DECIMAL function converts a text representation of a number in a specified
  2165. // base, into a decimal value. The syntax of the function is:
  2166. //
  2167. // DECIMAL(text,radix)
  2168. //
  2169. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2170. if argsList.Len() != 2 {
  2171. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2172. }
  2173. var text = argsList.Front().Value.(formulaArg).String
  2174. var radix int
  2175. var err error
  2176. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2177. if err != nil {
  2178. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2179. }
  2180. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2181. text = text[2:]
  2182. }
  2183. val, err := strconv.ParseInt(text, radix, 64)
  2184. if err != nil {
  2185. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2186. }
  2187. return newNumberFormulaArg(float64(val))
  2188. }
  2189. // DEGREES function converts radians into degrees. The syntax of the function
  2190. // is:
  2191. //
  2192. // DEGREES(angle)
  2193. //
  2194. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2195. if argsList.Len() != 1 {
  2196. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2197. }
  2198. val := argsList.Front().Value.(formulaArg).ToNumber()
  2199. if val.Type == ArgError {
  2200. return val
  2201. }
  2202. if val.Number == 0 {
  2203. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2204. }
  2205. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2206. }
  2207. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2208. // positive number up and a negative number down), to the next even number.
  2209. // The syntax of the function is:
  2210. //
  2211. // EVEN(number)
  2212. //
  2213. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2214. if argsList.Len() != 1 {
  2215. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2216. }
  2217. number := argsList.Front().Value.(formulaArg).ToNumber()
  2218. if number.Type == ArgError {
  2219. return number
  2220. }
  2221. sign := math.Signbit(number.Number)
  2222. m, frac := math.Modf(number.Number / 2)
  2223. val := m * 2
  2224. if frac != 0 {
  2225. if !sign {
  2226. val += 2
  2227. } else {
  2228. val -= 2
  2229. }
  2230. }
  2231. return newNumberFormulaArg(val)
  2232. }
  2233. // EXP function calculates the value of the mathematical constant e, raised to
  2234. // the power of a given number. The syntax of the function is:
  2235. //
  2236. // EXP(number)
  2237. //
  2238. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2239. if argsList.Len() != 1 {
  2240. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2241. }
  2242. number := argsList.Front().Value.(formulaArg).ToNumber()
  2243. if number.Type == ArgError {
  2244. return number
  2245. }
  2246. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2247. }
  2248. // fact returns the factorial of a supplied number.
  2249. func fact(number float64) float64 {
  2250. val := float64(1)
  2251. for i := float64(2); i <= number; i++ {
  2252. val *= i
  2253. }
  2254. return val
  2255. }
  2256. // FACT function returns the factorial of a supplied number. The syntax of the
  2257. // function is:
  2258. //
  2259. // FACT(number)
  2260. //
  2261. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2262. if argsList.Len() != 1 {
  2263. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2264. }
  2265. number := argsList.Front().Value.(formulaArg).ToNumber()
  2266. if number.Type == ArgError {
  2267. return number
  2268. }
  2269. if number.Number < 0 {
  2270. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2271. }
  2272. return newNumberFormulaArg(fact(number.Number))
  2273. }
  2274. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2275. // syntax of the function is:
  2276. //
  2277. // FACTDOUBLE(number)
  2278. //
  2279. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2280. if argsList.Len() != 1 {
  2281. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2282. }
  2283. val := 1.0
  2284. number := argsList.Front().Value.(formulaArg).ToNumber()
  2285. if number.Type == ArgError {
  2286. return number
  2287. }
  2288. if number.Number < 0 {
  2289. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2290. }
  2291. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2292. val *= i
  2293. }
  2294. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2295. }
  2296. // FLOOR function rounds a supplied number towards zero to the nearest
  2297. // multiple of a specified significance. The syntax of the function is:
  2298. //
  2299. // FLOOR(number,significance)
  2300. //
  2301. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2302. if argsList.Len() != 2 {
  2303. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2304. }
  2305. number := argsList.Front().Value.(formulaArg).ToNumber()
  2306. if number.Type == ArgError {
  2307. return number
  2308. }
  2309. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2310. if significance.Type == ArgError {
  2311. return significance
  2312. }
  2313. if significance.Number < 0 && number.Number >= 0 {
  2314. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2315. }
  2316. val := number.Number
  2317. val, res := math.Modf(val / significance.Number)
  2318. if res != 0 {
  2319. if number.Number < 0 && res < 0 {
  2320. val--
  2321. }
  2322. }
  2323. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2324. }
  2325. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2326. // of significance. The syntax of the function is:
  2327. //
  2328. // FLOOR.MATH(number,[significance],[mode])
  2329. //
  2330. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2331. if argsList.Len() == 0 {
  2332. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2333. }
  2334. if argsList.Len() > 3 {
  2335. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2336. }
  2337. significance, mode := 1.0, 1.0
  2338. number := argsList.Front().Value.(formulaArg).ToNumber()
  2339. if number.Type == ArgError {
  2340. return number
  2341. }
  2342. if number.Number < 0 {
  2343. significance = -1
  2344. }
  2345. if argsList.Len() > 1 {
  2346. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2347. if s.Type == ArgError {
  2348. return s
  2349. }
  2350. significance = s.Number
  2351. }
  2352. if argsList.Len() == 1 {
  2353. return newNumberFormulaArg(math.Floor(number.Number))
  2354. }
  2355. if argsList.Len() > 2 {
  2356. m := argsList.Back().Value.(formulaArg).ToNumber()
  2357. if m.Type == ArgError {
  2358. return m
  2359. }
  2360. mode = m.Number
  2361. }
  2362. val, res := math.Modf(number.Number / significance)
  2363. if res != 0 && number.Number < 0 && mode > 0 {
  2364. val--
  2365. }
  2366. return newNumberFormulaArg(val * significance)
  2367. }
  2368. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2369. // multiple of significance. The syntax of the function is:
  2370. //
  2371. // FLOOR.PRECISE(number,[significance])
  2372. //
  2373. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2374. if argsList.Len() == 0 {
  2375. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2376. }
  2377. if argsList.Len() > 2 {
  2378. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2379. }
  2380. var significance float64
  2381. number := argsList.Front().Value.(formulaArg).ToNumber()
  2382. if number.Type == ArgError {
  2383. return number
  2384. }
  2385. if number.Number < 0 {
  2386. significance = -1
  2387. }
  2388. if argsList.Len() == 1 {
  2389. return newNumberFormulaArg(math.Floor(number.Number))
  2390. }
  2391. if argsList.Len() > 1 {
  2392. s := argsList.Back().Value.(formulaArg).ToNumber()
  2393. if s.Type == ArgError {
  2394. return s
  2395. }
  2396. significance = s.Number
  2397. significance = math.Abs(significance)
  2398. if significance == 0 {
  2399. return newNumberFormulaArg(significance)
  2400. }
  2401. }
  2402. val, res := math.Modf(number.Number / significance)
  2403. if res != 0 {
  2404. if number.Number < 0 {
  2405. val--
  2406. }
  2407. }
  2408. return newNumberFormulaArg(val * significance)
  2409. }
  2410. // gcd returns the greatest common divisor of two supplied integers.
  2411. func gcd(x, y float64) float64 {
  2412. x, y = math.Trunc(x), math.Trunc(y)
  2413. if x == 0 {
  2414. return y
  2415. }
  2416. if y == 0 {
  2417. return x
  2418. }
  2419. for x != y {
  2420. if x > y {
  2421. x = x - y
  2422. } else {
  2423. y = y - x
  2424. }
  2425. }
  2426. return x
  2427. }
  2428. // GCD function returns the greatest common divisor of two or more supplied
  2429. // integers. The syntax of the function is:
  2430. //
  2431. // GCD(number1,[number2],...)
  2432. //
  2433. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2434. if argsList.Len() == 0 {
  2435. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2436. }
  2437. var (
  2438. val float64
  2439. nums = []float64{}
  2440. )
  2441. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2442. token := arg.Value.(formulaArg)
  2443. switch token.Type {
  2444. case ArgString:
  2445. num := token.ToNumber()
  2446. if num.Type == ArgError {
  2447. return num
  2448. }
  2449. val = num.Number
  2450. case ArgNumber:
  2451. val = token.Number
  2452. }
  2453. nums = append(nums, val)
  2454. }
  2455. if nums[0] < 0 {
  2456. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2457. }
  2458. if len(nums) == 1 {
  2459. return newNumberFormulaArg(nums[0])
  2460. }
  2461. cd := nums[0]
  2462. for i := 1; i < len(nums); i++ {
  2463. if nums[i] < 0 {
  2464. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2465. }
  2466. cd = gcd(cd, nums[i])
  2467. }
  2468. return newNumberFormulaArg(cd)
  2469. }
  2470. // INT function truncates a supplied number down to the closest integer. The
  2471. // syntax of the function is:
  2472. //
  2473. // INT(number)
  2474. //
  2475. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2476. if argsList.Len() != 1 {
  2477. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2478. }
  2479. number := argsList.Front().Value.(formulaArg).ToNumber()
  2480. if number.Type == ArgError {
  2481. return number
  2482. }
  2483. val, frac := math.Modf(number.Number)
  2484. if frac < 0 {
  2485. val--
  2486. }
  2487. return newNumberFormulaArg(val)
  2488. }
  2489. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2490. // number's sign), to the nearest multiple of a supplied significance. The
  2491. // syntax of the function is:
  2492. //
  2493. // ISO.CEILING(number,[significance])
  2494. //
  2495. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2496. if argsList.Len() == 0 {
  2497. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2498. }
  2499. if argsList.Len() > 2 {
  2500. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2501. }
  2502. var significance float64
  2503. number := argsList.Front().Value.(formulaArg).ToNumber()
  2504. if number.Type == ArgError {
  2505. return number
  2506. }
  2507. if number.Number < 0 {
  2508. significance = -1
  2509. }
  2510. if argsList.Len() == 1 {
  2511. return newNumberFormulaArg(math.Ceil(number.Number))
  2512. }
  2513. if argsList.Len() > 1 {
  2514. s := argsList.Back().Value.(formulaArg).ToNumber()
  2515. if s.Type == ArgError {
  2516. return s
  2517. }
  2518. significance = s.Number
  2519. significance = math.Abs(significance)
  2520. if significance == 0 {
  2521. return newNumberFormulaArg(significance)
  2522. }
  2523. }
  2524. val, res := math.Modf(number.Number / significance)
  2525. if res != 0 {
  2526. if number.Number > 0 {
  2527. val++
  2528. }
  2529. }
  2530. return newNumberFormulaArg(val * significance)
  2531. }
  2532. // lcm returns the least common multiple of two supplied integers.
  2533. func lcm(a, b float64) float64 {
  2534. a = math.Trunc(a)
  2535. b = math.Trunc(b)
  2536. if a == 0 && b == 0 {
  2537. return 0
  2538. }
  2539. return a * b / gcd(a, b)
  2540. }
  2541. // LCM function returns the least common multiple of two or more supplied
  2542. // integers. The syntax of the function is:
  2543. //
  2544. // LCM(number1,[number2],...)
  2545. //
  2546. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2547. if argsList.Len() == 0 {
  2548. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2549. }
  2550. var (
  2551. val float64
  2552. nums = []float64{}
  2553. err error
  2554. )
  2555. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2556. token := arg.Value.(formulaArg)
  2557. switch token.Type {
  2558. case ArgString:
  2559. if token.String == "" {
  2560. continue
  2561. }
  2562. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2563. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2564. }
  2565. case ArgNumber:
  2566. val = token.Number
  2567. }
  2568. nums = append(nums, val)
  2569. }
  2570. if nums[0] < 0 {
  2571. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2572. }
  2573. if len(nums) == 1 {
  2574. return newNumberFormulaArg(nums[0])
  2575. }
  2576. cm := nums[0]
  2577. for i := 1; i < len(nums); i++ {
  2578. if nums[i] < 0 {
  2579. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2580. }
  2581. cm = lcm(cm, nums[i])
  2582. }
  2583. return newNumberFormulaArg(cm)
  2584. }
  2585. // LN function calculates the natural logarithm of a given number. The syntax
  2586. // of the function is:
  2587. //
  2588. // LN(number)
  2589. //
  2590. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2591. if argsList.Len() != 1 {
  2592. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2593. }
  2594. number := argsList.Front().Value.(formulaArg).ToNumber()
  2595. if number.Type == ArgError {
  2596. return number
  2597. }
  2598. return newNumberFormulaArg(math.Log(number.Number))
  2599. }
  2600. // LOG function calculates the logarithm of a given number, to a supplied
  2601. // base. The syntax of the function is:
  2602. //
  2603. // LOG(number,[base])
  2604. //
  2605. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2606. if argsList.Len() == 0 {
  2607. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2608. }
  2609. if argsList.Len() > 2 {
  2610. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2611. }
  2612. base := 10.0
  2613. number := argsList.Front().Value.(formulaArg).ToNumber()
  2614. if number.Type == ArgError {
  2615. return number
  2616. }
  2617. if argsList.Len() > 1 {
  2618. b := argsList.Back().Value.(formulaArg).ToNumber()
  2619. if b.Type == ArgError {
  2620. return b
  2621. }
  2622. base = b.Number
  2623. }
  2624. if number.Number == 0 {
  2625. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2626. }
  2627. if base == 0 {
  2628. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2629. }
  2630. if base == 1 {
  2631. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2632. }
  2633. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2634. }
  2635. // LOG10 function calculates the base 10 logarithm of a given number. The
  2636. // syntax of the function is:
  2637. //
  2638. // LOG10(number)
  2639. //
  2640. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2641. if argsList.Len() != 1 {
  2642. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2643. }
  2644. number := argsList.Front().Value.(formulaArg).ToNumber()
  2645. if number.Type == ArgError {
  2646. return number
  2647. }
  2648. return newNumberFormulaArg(math.Log10(number.Number))
  2649. }
  2650. // minor function implement a minor of a matrix A is the determinant of some
  2651. // smaller square matrix.
  2652. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2653. ret := [][]float64{}
  2654. for i := range sqMtx {
  2655. if i == 0 {
  2656. continue
  2657. }
  2658. row := []float64{}
  2659. for j := range sqMtx {
  2660. if j == idx {
  2661. continue
  2662. }
  2663. row = append(row, sqMtx[i][j])
  2664. }
  2665. ret = append(ret, row)
  2666. }
  2667. return ret
  2668. }
  2669. // det determinant of the 2x2 matrix.
  2670. func det(sqMtx [][]float64) float64 {
  2671. if len(sqMtx) == 2 {
  2672. m00 := sqMtx[0][0]
  2673. m01 := sqMtx[0][1]
  2674. m10 := sqMtx[1][0]
  2675. m11 := sqMtx[1][1]
  2676. return m00*m11 - m10*m01
  2677. }
  2678. var res, sgn float64 = 0, 1
  2679. for j := range sqMtx {
  2680. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2681. sgn *= -1
  2682. }
  2683. return res
  2684. }
  2685. // MDETERM calculates the determinant of a square matrix. The
  2686. // syntax of the function is:
  2687. //
  2688. // MDETERM(array)
  2689. //
  2690. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2691. var (
  2692. num float64
  2693. numMtx = [][]float64{}
  2694. err error
  2695. strMtx [][]formulaArg
  2696. )
  2697. if argsList.Len() < 1 {
  2698. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2699. }
  2700. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2701. var rows = len(strMtx)
  2702. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2703. if len(row) != rows {
  2704. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2705. }
  2706. numRow := []float64{}
  2707. for _, ele := range row {
  2708. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2709. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2710. }
  2711. numRow = append(numRow, num)
  2712. }
  2713. numMtx = append(numMtx, numRow)
  2714. }
  2715. return newNumberFormulaArg(det(numMtx))
  2716. }
  2717. // MOD function returns the remainder of a division between two supplied
  2718. // numbers. The syntax of the function is:
  2719. //
  2720. // MOD(number,divisor)
  2721. //
  2722. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2723. if argsList.Len() != 2 {
  2724. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2725. }
  2726. number := argsList.Front().Value.(formulaArg).ToNumber()
  2727. if number.Type == ArgError {
  2728. return number
  2729. }
  2730. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2731. if divisor.Type == ArgError {
  2732. return divisor
  2733. }
  2734. if divisor.Number == 0 {
  2735. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2736. }
  2737. trunc, rem := math.Modf(number.Number / divisor.Number)
  2738. if rem < 0 {
  2739. trunc--
  2740. }
  2741. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2742. }
  2743. // MROUND function rounds a supplied number up or down to the nearest multiple
  2744. // of a given number. The syntax of the function is:
  2745. //
  2746. // MROUND(number,multiple)
  2747. //
  2748. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2749. if argsList.Len() != 2 {
  2750. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2751. }
  2752. n := argsList.Front().Value.(formulaArg).ToNumber()
  2753. if n.Type == ArgError {
  2754. return n
  2755. }
  2756. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2757. if multiple.Type == ArgError {
  2758. return multiple
  2759. }
  2760. if multiple.Number == 0 {
  2761. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2762. }
  2763. if multiple.Number < 0 && n.Number > 0 ||
  2764. multiple.Number > 0 && n.Number < 0 {
  2765. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2766. }
  2767. number, res := math.Modf(n.Number / multiple.Number)
  2768. if math.Trunc(res+0.5) > 0 {
  2769. number++
  2770. }
  2771. return newNumberFormulaArg(number * multiple.Number)
  2772. }
  2773. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2774. // supplied values to the product of factorials of those values. The syntax of
  2775. // the function is:
  2776. //
  2777. // MULTINOMIAL(number1,[number2],...)
  2778. //
  2779. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2780. val, num, denom := 0.0, 0.0, 1.0
  2781. var err error
  2782. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2783. token := arg.Value.(formulaArg)
  2784. switch token.Type {
  2785. case ArgString:
  2786. if token.String == "" {
  2787. continue
  2788. }
  2789. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2790. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2791. }
  2792. case ArgNumber:
  2793. val = token.Number
  2794. }
  2795. num += val
  2796. denom *= fact(val)
  2797. }
  2798. return newNumberFormulaArg(fact(num) / denom)
  2799. }
  2800. // MUNIT function returns the unit matrix for a specified dimension. The
  2801. // syntax of the function is:
  2802. //
  2803. // MUNIT(dimension)
  2804. //
  2805. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2806. if argsList.Len() != 1 {
  2807. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2808. }
  2809. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2810. if dimension.Type == ArgError || dimension.Number < 0 {
  2811. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2812. }
  2813. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2814. for i := 0; i < int(dimension.Number); i++ {
  2815. row := make([]formulaArg, int(dimension.Number))
  2816. for j := 0; j < int(dimension.Number); j++ {
  2817. if i == j {
  2818. row[j] = newNumberFormulaArg(1.0)
  2819. } else {
  2820. row[j] = newNumberFormulaArg(0.0)
  2821. }
  2822. }
  2823. matrix = append(matrix, row)
  2824. }
  2825. return newMatrixFormulaArg(matrix)
  2826. }
  2827. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2828. // number up and a negative number down), to the next odd number. The syntax
  2829. // of the function is:
  2830. //
  2831. // ODD(number)
  2832. //
  2833. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2834. if argsList.Len() != 1 {
  2835. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2836. }
  2837. number := argsList.Back().Value.(formulaArg).ToNumber()
  2838. if number.Type == ArgError {
  2839. return number
  2840. }
  2841. if number.Number == 0 {
  2842. return newNumberFormulaArg(1)
  2843. }
  2844. sign := math.Signbit(number.Number)
  2845. m, frac := math.Modf((number.Number - 1) / 2)
  2846. val := m*2 + 1
  2847. if frac != 0 {
  2848. if !sign {
  2849. val += 2
  2850. } else {
  2851. val -= 2
  2852. }
  2853. }
  2854. return newNumberFormulaArg(val)
  2855. }
  2856. // PI function returns the value of the mathematical constant π (pi), accurate
  2857. // to 15 digits (14 decimal places). The syntax of the function is:
  2858. //
  2859. // PI()
  2860. //
  2861. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2862. if argsList.Len() != 0 {
  2863. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2864. }
  2865. return newNumberFormulaArg(math.Pi)
  2866. }
  2867. // POWER function calculates a given number, raised to a supplied power.
  2868. // The syntax of the function is:
  2869. //
  2870. // POWER(number,power)
  2871. //
  2872. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2873. if argsList.Len() != 2 {
  2874. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2875. }
  2876. x := argsList.Front().Value.(formulaArg).ToNumber()
  2877. if x.Type == ArgError {
  2878. return x
  2879. }
  2880. y := argsList.Back().Value.(formulaArg).ToNumber()
  2881. if y.Type == ArgError {
  2882. return y
  2883. }
  2884. if x.Number == 0 && y.Number == 0 {
  2885. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2886. }
  2887. if x.Number == 0 && y.Number < 0 {
  2888. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2889. }
  2890. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2891. }
  2892. // PRODUCT function returns the product (multiplication) of a supplied set of
  2893. // numerical values. The syntax of the function is:
  2894. //
  2895. // PRODUCT(number1,[number2],...)
  2896. //
  2897. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2898. val, product := 0.0, 1.0
  2899. var err error
  2900. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2901. token := arg.Value.(formulaArg)
  2902. switch token.Type {
  2903. case ArgUnknown:
  2904. continue
  2905. case ArgString:
  2906. if token.String == "" {
  2907. continue
  2908. }
  2909. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2910. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2911. }
  2912. product = product * val
  2913. case ArgNumber:
  2914. product = product * token.Number
  2915. case ArgMatrix:
  2916. for _, row := range token.Matrix {
  2917. for _, value := range row {
  2918. if value.String == "" {
  2919. continue
  2920. }
  2921. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2922. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2923. }
  2924. product = product * val
  2925. }
  2926. }
  2927. }
  2928. }
  2929. return newNumberFormulaArg(product)
  2930. }
  2931. // QUOTIENT function returns the integer portion of a division between two
  2932. // supplied numbers. The syntax of the function is:
  2933. //
  2934. // QUOTIENT(numerator,denominator)
  2935. //
  2936. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2937. if argsList.Len() != 2 {
  2938. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2939. }
  2940. x := argsList.Front().Value.(formulaArg).ToNumber()
  2941. if x.Type == ArgError {
  2942. return x
  2943. }
  2944. y := argsList.Back().Value.(formulaArg).ToNumber()
  2945. if y.Type == ArgError {
  2946. return y
  2947. }
  2948. if y.Number == 0 {
  2949. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2950. }
  2951. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2952. }
  2953. // RADIANS function converts radians into degrees. The syntax of the function is:
  2954. //
  2955. // RADIANS(angle)
  2956. //
  2957. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2958. if argsList.Len() != 1 {
  2959. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2960. }
  2961. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2962. if angle.Type == ArgError {
  2963. return angle
  2964. }
  2965. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2966. }
  2967. // RAND function generates a random real number between 0 and 1. The syntax of
  2968. // the function is:
  2969. //
  2970. // RAND()
  2971. //
  2972. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2973. if argsList.Len() != 0 {
  2974. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2975. }
  2976. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2977. }
  2978. // RANDBETWEEN function generates a random integer between two supplied
  2979. // integers. The syntax of the function is:
  2980. //
  2981. // RANDBETWEEN(bottom,top)
  2982. //
  2983. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2984. if argsList.Len() != 2 {
  2985. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2986. }
  2987. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2988. if bottom.Type == ArgError {
  2989. return bottom
  2990. }
  2991. top := argsList.Back().Value.(formulaArg).ToNumber()
  2992. if top.Type == ArgError {
  2993. return top
  2994. }
  2995. if top.Number < bottom.Number {
  2996. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2997. }
  2998. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2999. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  3000. }
  3001. // romanNumerals defined a numeral system that originated in ancient Rome and
  3002. // remained the usual way of writing numbers throughout Europe well into the
  3003. // Late Middle Ages.
  3004. type romanNumerals struct {
  3005. n float64
  3006. s string
  3007. }
  3008. var romanTable = [][]romanNumerals{
  3009. {
  3010. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  3011. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3012. },
  3013. {
  3014. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  3015. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3016. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3017. },
  3018. {
  3019. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  3020. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  3021. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3022. },
  3023. {
  3024. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  3025. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  3026. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  3027. {5, "V"}, {4, "IV"}, {1, "I"},
  3028. },
  3029. {
  3030. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  3031. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  3032. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3033. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3034. },
  3035. }
  3036. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  3037. // integer, the function returns a text string depicting the roman numeral
  3038. // form of the number. The syntax of the function is:
  3039. //
  3040. // ROMAN(number,[form])
  3041. //
  3042. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  3043. if argsList.Len() == 0 {
  3044. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  3045. }
  3046. if argsList.Len() > 2 {
  3047. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  3048. }
  3049. var form int
  3050. number := argsList.Front().Value.(formulaArg).ToNumber()
  3051. if number.Type == ArgError {
  3052. return number
  3053. }
  3054. if argsList.Len() > 1 {
  3055. f := argsList.Back().Value.(formulaArg).ToNumber()
  3056. if f.Type == ArgError {
  3057. return f
  3058. }
  3059. form = int(f.Number)
  3060. if form < 0 {
  3061. form = 0
  3062. } else if form > 4 {
  3063. form = 4
  3064. }
  3065. }
  3066. decimalTable := romanTable[0]
  3067. switch form {
  3068. case 1:
  3069. decimalTable = romanTable[1]
  3070. case 2:
  3071. decimalTable = romanTable[2]
  3072. case 3:
  3073. decimalTable = romanTable[3]
  3074. case 4:
  3075. decimalTable = romanTable[4]
  3076. }
  3077. val := math.Trunc(number.Number)
  3078. buf := bytes.Buffer{}
  3079. for _, r := range decimalTable {
  3080. for val >= r.n {
  3081. buf.WriteString(r.s)
  3082. val -= r.n
  3083. }
  3084. }
  3085. return newStringFormulaArg(buf.String())
  3086. }
  3087. type roundMode byte
  3088. const (
  3089. closest roundMode = iota
  3090. down
  3091. up
  3092. )
  3093. // round rounds a supplied number up or down.
  3094. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3095. var significance float64
  3096. if digits > 0 {
  3097. significance = math.Pow(1/10.0, digits)
  3098. } else {
  3099. significance = math.Pow(10.0, -digits)
  3100. }
  3101. val, res := math.Modf(number / significance)
  3102. switch mode {
  3103. case closest:
  3104. const eps = 0.499999999
  3105. if res >= eps {
  3106. val++
  3107. } else if res <= -eps {
  3108. val--
  3109. }
  3110. case down:
  3111. case up:
  3112. if res > 0 {
  3113. val++
  3114. } else if res < 0 {
  3115. val--
  3116. }
  3117. }
  3118. return val * significance
  3119. }
  3120. // ROUND function rounds a supplied number up or down, to a specified number
  3121. // of decimal places. The syntax of the function is:
  3122. //
  3123. // ROUND(number,num_digits)
  3124. //
  3125. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3126. if argsList.Len() != 2 {
  3127. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3128. }
  3129. number := argsList.Front().Value.(formulaArg).ToNumber()
  3130. if number.Type == ArgError {
  3131. return number
  3132. }
  3133. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3134. if digits.Type == ArgError {
  3135. return digits
  3136. }
  3137. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3138. }
  3139. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3140. // specified number of decimal places. The syntax of the function is:
  3141. //
  3142. // ROUNDDOWN(number,num_digits)
  3143. //
  3144. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3145. if argsList.Len() != 2 {
  3146. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3147. }
  3148. number := argsList.Front().Value.(formulaArg).ToNumber()
  3149. if number.Type == ArgError {
  3150. return number
  3151. }
  3152. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3153. if digits.Type == ArgError {
  3154. return digits
  3155. }
  3156. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3157. }
  3158. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3159. // specified number of decimal places. The syntax of the function is:
  3160. //
  3161. // ROUNDUP(number,num_digits)
  3162. //
  3163. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3164. if argsList.Len() != 2 {
  3165. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3166. }
  3167. number := argsList.Front().Value.(formulaArg).ToNumber()
  3168. if number.Type == ArgError {
  3169. return number
  3170. }
  3171. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3172. if digits.Type == ArgError {
  3173. return digits
  3174. }
  3175. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3176. }
  3177. // SEC function calculates the secant of a given angle. The syntax of the
  3178. // function is:
  3179. //
  3180. // SEC(number)
  3181. //
  3182. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3183. if argsList.Len() != 1 {
  3184. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3185. }
  3186. number := argsList.Front().Value.(formulaArg).ToNumber()
  3187. if number.Type == ArgError {
  3188. return number
  3189. }
  3190. return newNumberFormulaArg(math.Cos(number.Number))
  3191. }
  3192. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3193. // The syntax of the function is:
  3194. //
  3195. // SECH(number)
  3196. //
  3197. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3198. if argsList.Len() != 1 {
  3199. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3200. }
  3201. number := argsList.Front().Value.(formulaArg).ToNumber()
  3202. if number.Type == ArgError {
  3203. return number
  3204. }
  3205. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3206. }
  3207. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3208. // number. I.e. if the number is positive, the Sign function returns +1, if
  3209. // the number is negative, the function returns -1 and if the number is 0
  3210. // (zero), the function returns 0. The syntax of the function is:
  3211. //
  3212. // SIGN(number)
  3213. //
  3214. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3215. if argsList.Len() != 1 {
  3216. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3217. }
  3218. val := argsList.Front().Value.(formulaArg).ToNumber()
  3219. if val.Type == ArgError {
  3220. return val
  3221. }
  3222. if val.Number < 0 {
  3223. return newNumberFormulaArg(-1)
  3224. }
  3225. if val.Number > 0 {
  3226. return newNumberFormulaArg(1)
  3227. }
  3228. return newNumberFormulaArg(0)
  3229. }
  3230. // SIN function calculates the sine of a given angle. The syntax of the
  3231. // function is:
  3232. //
  3233. // SIN(number)
  3234. //
  3235. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3236. if argsList.Len() != 1 {
  3237. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3238. }
  3239. number := argsList.Front().Value.(formulaArg).ToNumber()
  3240. if number.Type == ArgError {
  3241. return number
  3242. }
  3243. return newNumberFormulaArg(math.Sin(number.Number))
  3244. }
  3245. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3246. // The syntax of the function is:
  3247. //
  3248. // SINH(number)
  3249. //
  3250. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3251. if argsList.Len() != 1 {
  3252. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3253. }
  3254. number := argsList.Front().Value.(formulaArg).ToNumber()
  3255. if number.Type == ArgError {
  3256. return number
  3257. }
  3258. return newNumberFormulaArg(math.Sinh(number.Number))
  3259. }
  3260. // SQRT function calculates the positive square root of a supplied number. The
  3261. // syntax of the function is:
  3262. //
  3263. // SQRT(number)
  3264. //
  3265. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3266. if argsList.Len() != 1 {
  3267. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3268. }
  3269. value := argsList.Front().Value.(formulaArg).ToNumber()
  3270. if value.Type == ArgError {
  3271. return value
  3272. }
  3273. if value.Number < 0 {
  3274. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3275. }
  3276. return newNumberFormulaArg(math.Sqrt(value.Number))
  3277. }
  3278. // SQRTPI function returns the square root of a supplied number multiplied by
  3279. // the mathematical constant, π. The syntax of the function is:
  3280. //
  3281. // SQRTPI(number)
  3282. //
  3283. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3284. if argsList.Len() != 1 {
  3285. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3286. }
  3287. number := argsList.Front().Value.(formulaArg).ToNumber()
  3288. if number.Type == ArgError {
  3289. return number
  3290. }
  3291. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3292. }
  3293. // STDEV function calculates the sample standard deviation of a supplied set
  3294. // of values. The syntax of the function is:
  3295. //
  3296. // STDEV(number1,[number2],...)
  3297. //
  3298. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3299. if argsList.Len() < 1 {
  3300. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3301. }
  3302. return fn.stdev(false, argsList)
  3303. }
  3304. // STDEVdotS function calculates the sample standard deviation of a supplied
  3305. // set of values. The syntax of the function is:
  3306. //
  3307. // STDEV.S(number1,[number2],...)
  3308. //
  3309. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3310. if argsList.Len() < 1 {
  3311. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3312. }
  3313. return fn.stdev(false, argsList)
  3314. }
  3315. // STDEVA function estimates standard deviation based on a sample. The
  3316. // standard deviation is a measure of how widely values are dispersed from
  3317. // the average value (the mean). The syntax of the function is:
  3318. //
  3319. // STDEVA(number1,[number2],...)
  3320. //
  3321. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3322. if argsList.Len() < 1 {
  3323. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3324. }
  3325. return fn.stdev(true, argsList)
  3326. }
  3327. // stdev is an implementation of the formula function STDEV and STDEVA.
  3328. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3329. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3330. if result == -1 {
  3331. result = math.Pow((n.Number - m.Number), 2)
  3332. } else {
  3333. result += math.Pow((n.Number - m.Number), 2)
  3334. }
  3335. count++
  3336. return result, count
  3337. }
  3338. count, result := -1.0, -1.0
  3339. var mean formulaArg
  3340. if stdeva {
  3341. mean = fn.AVERAGEA(argsList)
  3342. } else {
  3343. mean = fn.AVERAGE(argsList)
  3344. }
  3345. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3346. token := arg.Value.(formulaArg)
  3347. switch token.Type {
  3348. case ArgString, ArgNumber:
  3349. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3350. continue
  3351. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3352. num := token.ToBool()
  3353. if num.Type == ArgNumber {
  3354. result, count = pow(result, count, num, mean)
  3355. continue
  3356. }
  3357. } else {
  3358. num := token.ToNumber()
  3359. if num.Type == ArgNumber {
  3360. result, count = pow(result, count, num, mean)
  3361. }
  3362. }
  3363. case ArgList, ArgMatrix:
  3364. for _, row := range token.ToList() {
  3365. if row.Type == ArgNumber || row.Type == ArgString {
  3366. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3367. continue
  3368. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3369. num := row.ToBool()
  3370. if num.Type == ArgNumber {
  3371. result, count = pow(result, count, num, mean)
  3372. continue
  3373. }
  3374. } else {
  3375. num := row.ToNumber()
  3376. if num.Type == ArgNumber {
  3377. result, count = pow(result, count, num, mean)
  3378. }
  3379. }
  3380. }
  3381. }
  3382. }
  3383. }
  3384. if count > 0 && result >= 0 {
  3385. return newNumberFormulaArg(math.Sqrt(result / count))
  3386. }
  3387. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3388. }
  3389. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3390. // the Cumulative Poisson Probability Function for a supplied set of
  3391. // parameters. The syntax of the function is:
  3392. //
  3393. // POISSON.DIST(x,mean,cumulative)
  3394. //
  3395. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3396. if argsList.Len() != 3 {
  3397. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3398. }
  3399. return fn.POISSON(argsList)
  3400. }
  3401. // POISSON function calculates the Poisson Probability Mass Function or the
  3402. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3403. // The syntax of the function is:
  3404. //
  3405. // POISSON(x,mean,cumulative)
  3406. //
  3407. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3408. if argsList.Len() != 3 {
  3409. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3410. }
  3411. var x, mean, cumulative formulaArg
  3412. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3413. return x
  3414. }
  3415. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3416. return mean
  3417. }
  3418. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3419. return cumulative
  3420. }
  3421. if x.Number < 0 || mean.Number <= 0 {
  3422. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3423. }
  3424. if cumulative.Number == 1 {
  3425. summer := 0.0
  3426. floor := math.Floor(x.Number)
  3427. for i := 0; i <= int(floor); i++ {
  3428. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3429. }
  3430. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3431. }
  3432. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3433. }
  3434. // SUM function adds together a supplied set of numbers and returns the sum of
  3435. // these values. The syntax of the function is:
  3436. //
  3437. // SUM(number1,[number2],...)
  3438. //
  3439. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3440. var sum float64
  3441. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3442. token := arg.Value.(formulaArg)
  3443. switch token.Type {
  3444. case ArgUnknown:
  3445. continue
  3446. case ArgString:
  3447. if num := token.ToNumber(); num.Type == ArgNumber {
  3448. sum += num.Number
  3449. }
  3450. case ArgNumber:
  3451. sum += token.Number
  3452. case ArgMatrix:
  3453. for _, row := range token.Matrix {
  3454. for _, value := range row {
  3455. if num := value.ToNumber(); num.Type == ArgNumber {
  3456. sum += num.Number
  3457. }
  3458. }
  3459. }
  3460. }
  3461. }
  3462. return newNumberFormulaArg(sum)
  3463. }
  3464. // SUMIF function finds the values in a supplied array, that satisfy a given
  3465. // criteria, and returns the sum of the corresponding values in a second
  3466. // supplied array. The syntax of the function is:
  3467. //
  3468. // SUMIF(range,criteria,[sum_range])
  3469. //
  3470. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3471. if argsList.Len() < 2 {
  3472. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3473. }
  3474. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3475. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3476. var sumRange [][]formulaArg
  3477. if argsList.Len() == 3 {
  3478. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3479. }
  3480. var sum, val float64
  3481. var err error
  3482. for rowIdx, row := range rangeMtx {
  3483. for colIdx, col := range row {
  3484. var ok bool
  3485. fromVal := col.String
  3486. if col.String == "" {
  3487. continue
  3488. }
  3489. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3490. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3491. }
  3492. if ok {
  3493. if argsList.Len() == 3 {
  3494. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3495. continue
  3496. }
  3497. fromVal = sumRange[rowIdx][colIdx].String
  3498. }
  3499. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3500. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3501. }
  3502. sum += val
  3503. }
  3504. }
  3505. }
  3506. return newNumberFormulaArg(sum)
  3507. }
  3508. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3509. // syntax of the function is:
  3510. //
  3511. // SUMSQ(number1,[number2],...)
  3512. //
  3513. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3514. var val, sq float64
  3515. var err error
  3516. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3517. token := arg.Value.(formulaArg)
  3518. switch token.Type {
  3519. case ArgString:
  3520. if token.String == "" {
  3521. continue
  3522. }
  3523. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3524. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3525. }
  3526. sq += val * val
  3527. case ArgNumber:
  3528. sq += token.Number
  3529. case ArgMatrix:
  3530. for _, row := range token.Matrix {
  3531. for _, value := range row {
  3532. if value.String == "" {
  3533. continue
  3534. }
  3535. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3536. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3537. }
  3538. sq += val * val
  3539. }
  3540. }
  3541. }
  3542. }
  3543. return newNumberFormulaArg(sq)
  3544. }
  3545. // TAN function calculates the tangent of a given angle. The syntax of the
  3546. // function is:
  3547. //
  3548. // TAN(number)
  3549. //
  3550. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3551. if argsList.Len() != 1 {
  3552. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3553. }
  3554. number := argsList.Front().Value.(formulaArg).ToNumber()
  3555. if number.Type == ArgError {
  3556. return number
  3557. }
  3558. return newNumberFormulaArg(math.Tan(number.Number))
  3559. }
  3560. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3561. // number. The syntax of the function is:
  3562. //
  3563. // TANH(number)
  3564. //
  3565. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3566. if argsList.Len() != 1 {
  3567. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3568. }
  3569. number := argsList.Front().Value.(formulaArg).ToNumber()
  3570. if number.Type == ArgError {
  3571. return number
  3572. }
  3573. return newNumberFormulaArg(math.Tanh(number.Number))
  3574. }
  3575. // TRUNC function truncates a supplied number to a specified number of decimal
  3576. // places. The syntax of the function is:
  3577. //
  3578. // TRUNC(number,[number_digits])
  3579. //
  3580. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3581. if argsList.Len() == 0 {
  3582. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3583. }
  3584. var digits, adjust, rtrim float64
  3585. var err error
  3586. number := argsList.Front().Value.(formulaArg).ToNumber()
  3587. if number.Type == ArgError {
  3588. return number
  3589. }
  3590. if argsList.Len() > 1 {
  3591. d := argsList.Back().Value.(formulaArg).ToNumber()
  3592. if d.Type == ArgError {
  3593. return d
  3594. }
  3595. digits = d.Number
  3596. digits = math.Floor(digits)
  3597. }
  3598. adjust = math.Pow(10, digits)
  3599. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3600. if x != 0 {
  3601. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3602. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3603. }
  3604. }
  3605. if (digits > 0) && (rtrim < adjust/10) {
  3606. return newNumberFormulaArg(number.Number)
  3607. }
  3608. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3609. }
  3610. // Statistical Functions
  3611. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3612. // The syntax of the function is:
  3613. //
  3614. // AVERAGE(number1,[number2],...)
  3615. //
  3616. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3617. args := []formulaArg{}
  3618. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3619. args = append(args, arg.Value.(formulaArg))
  3620. }
  3621. count, sum := fn.countSum(false, args)
  3622. if count == 0 {
  3623. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3624. }
  3625. return newNumberFormulaArg(sum / count)
  3626. }
  3627. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3628. // with text cell and zero values. The syntax of the function is:
  3629. //
  3630. // AVERAGEA(number1,[number2],...)
  3631. //
  3632. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3633. args := []formulaArg{}
  3634. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3635. args = append(args, arg.Value.(formulaArg))
  3636. }
  3637. count, sum := fn.countSum(true, args)
  3638. if count == 0 {
  3639. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3640. }
  3641. return newNumberFormulaArg(sum / count)
  3642. }
  3643. // countSum get count and sum for a formula arguments array.
  3644. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3645. for _, arg := range args {
  3646. switch arg.Type {
  3647. case ArgNumber:
  3648. if countText || !arg.Boolean {
  3649. sum += arg.Number
  3650. count++
  3651. }
  3652. case ArgString:
  3653. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3654. continue
  3655. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3656. num := arg.ToBool()
  3657. if num.Type == ArgNumber {
  3658. count++
  3659. sum += num.Number
  3660. continue
  3661. }
  3662. }
  3663. num := arg.ToNumber()
  3664. if countText && num.Type == ArgError && arg.String != "" {
  3665. count++
  3666. }
  3667. if num.Type == ArgNumber {
  3668. sum += num.Number
  3669. count++
  3670. }
  3671. case ArgList, ArgMatrix:
  3672. cnt, summary := fn.countSum(countText, arg.ToList())
  3673. sum += summary
  3674. count += cnt
  3675. }
  3676. }
  3677. return
  3678. }
  3679. // COUNT function returns the count of numeric values in a supplied set of
  3680. // cells or values. This count includes both numbers and dates. The syntax of
  3681. // the function is:
  3682. //
  3683. // COUNT(value1,[value2],...)
  3684. //
  3685. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3686. var count int
  3687. for token := argsList.Front(); token != nil; token = token.Next() {
  3688. arg := token.Value.(formulaArg)
  3689. switch arg.Type {
  3690. case ArgString:
  3691. if arg.ToNumber().Type != ArgError {
  3692. count++
  3693. }
  3694. case ArgNumber:
  3695. count++
  3696. case ArgMatrix:
  3697. for _, row := range arg.Matrix {
  3698. for _, value := range row {
  3699. if value.ToNumber().Type != ArgError {
  3700. count++
  3701. }
  3702. }
  3703. }
  3704. }
  3705. }
  3706. return newNumberFormulaArg(float64(count))
  3707. }
  3708. // COUNTA function returns the number of non-blanks within a supplied set of
  3709. // cells or values. The syntax of the function is:
  3710. //
  3711. // COUNTA(value1,[value2],...)
  3712. //
  3713. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3714. var count int
  3715. for token := argsList.Front(); token != nil; token = token.Next() {
  3716. arg := token.Value.(formulaArg)
  3717. switch arg.Type {
  3718. case ArgString:
  3719. if arg.String != "" {
  3720. count++
  3721. }
  3722. case ArgNumber:
  3723. count++
  3724. case ArgMatrix:
  3725. for _, row := range arg.ToList() {
  3726. switch row.Type {
  3727. case ArgString:
  3728. if row.String != "" {
  3729. count++
  3730. }
  3731. case ArgNumber:
  3732. count++
  3733. }
  3734. }
  3735. }
  3736. }
  3737. return newNumberFormulaArg(float64(count))
  3738. }
  3739. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3740. // The syntax of the function is:
  3741. //
  3742. // COUNTBLANK(range)
  3743. //
  3744. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3745. if argsList.Len() != 1 {
  3746. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3747. }
  3748. var count int
  3749. token := argsList.Front().Value.(formulaArg)
  3750. switch token.Type {
  3751. case ArgString:
  3752. if token.String == "" {
  3753. count++
  3754. }
  3755. case ArgList, ArgMatrix:
  3756. for _, row := range token.ToList() {
  3757. switch row.Type {
  3758. case ArgString:
  3759. if row.String == "" {
  3760. count++
  3761. }
  3762. case ArgEmpty:
  3763. count++
  3764. }
  3765. }
  3766. case ArgEmpty:
  3767. count++
  3768. }
  3769. return newNumberFormulaArg(float64(count))
  3770. }
  3771. // FISHER function calculates the Fisher Transformation for a supplied value.
  3772. // The syntax of the function is:
  3773. //
  3774. // FISHER(x)
  3775. //
  3776. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3777. if argsList.Len() != 1 {
  3778. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3779. }
  3780. token := argsList.Front().Value.(formulaArg)
  3781. switch token.Type {
  3782. case ArgString:
  3783. arg := token.ToNumber()
  3784. if arg.Type == ArgNumber {
  3785. if arg.Number <= -1 || arg.Number >= 1 {
  3786. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3787. }
  3788. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3789. }
  3790. case ArgNumber:
  3791. if token.Number <= -1 || token.Number >= 1 {
  3792. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3793. }
  3794. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3795. }
  3796. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3797. }
  3798. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3799. // returns a value between -1 and +1. The syntax of the function is:
  3800. //
  3801. // FISHERINV(y)
  3802. //
  3803. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3804. if argsList.Len() != 1 {
  3805. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3806. }
  3807. token := argsList.Front().Value.(formulaArg)
  3808. switch token.Type {
  3809. case ArgString:
  3810. arg := token.ToNumber()
  3811. if arg.Type == ArgNumber {
  3812. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3813. }
  3814. case ArgNumber:
  3815. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3816. }
  3817. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3818. }
  3819. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3820. // specified number, n. The syntax of the function is:
  3821. //
  3822. // GAMMA(number)
  3823. //
  3824. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3825. if argsList.Len() != 1 {
  3826. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3827. }
  3828. token := argsList.Front().Value.(formulaArg)
  3829. switch token.Type {
  3830. case ArgString:
  3831. arg := token.ToNumber()
  3832. if arg.Type == ArgNumber {
  3833. if arg.Number <= 0 {
  3834. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3835. }
  3836. return newNumberFormulaArg(math.Gamma(arg.Number))
  3837. }
  3838. case ArgNumber:
  3839. if token.Number <= 0 {
  3840. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3841. }
  3842. return newNumberFormulaArg(math.Gamma(token.Number))
  3843. }
  3844. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3845. }
  3846. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3847. // (n). The syntax of the function is:
  3848. //
  3849. // GAMMALN(x)
  3850. //
  3851. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3852. if argsList.Len() != 1 {
  3853. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3854. }
  3855. token := argsList.Front().Value.(formulaArg)
  3856. switch token.Type {
  3857. case ArgString:
  3858. arg := token.ToNumber()
  3859. if arg.Type == ArgNumber {
  3860. if arg.Number <= 0 {
  3861. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3862. }
  3863. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3864. }
  3865. case ArgNumber:
  3866. if token.Number <= 0 {
  3867. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3868. }
  3869. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3870. }
  3871. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3872. }
  3873. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  3874. // The syntax of the function is:
  3875. //
  3876. // HARMEAN(number1,[number2],...)
  3877. //
  3878. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  3879. if argsList.Len() < 1 {
  3880. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  3881. }
  3882. if min := fn.MIN(argsList); min.Number < 0 {
  3883. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3884. }
  3885. number, val, cnt := 0.0, 0.0, 0.0
  3886. for token := argsList.Front(); token != nil; token = token.Next() {
  3887. arg := token.Value.(formulaArg)
  3888. switch arg.Type {
  3889. case ArgString:
  3890. num := arg.ToNumber()
  3891. if num.Type != ArgNumber {
  3892. continue
  3893. }
  3894. number = num.Number
  3895. case ArgNumber:
  3896. number = arg.Number
  3897. }
  3898. if number <= 0 {
  3899. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3900. }
  3901. val += (1 / number)
  3902. cnt++
  3903. }
  3904. return newNumberFormulaArg(1 / (val / cnt))
  3905. }
  3906. // KURT function calculates the kurtosis of a supplied set of values. The
  3907. // syntax of the function is:
  3908. //
  3909. // KURT(number1,[number2],...)
  3910. //
  3911. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3912. if argsList.Len() < 1 {
  3913. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3914. }
  3915. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3916. if stdev.Number > 0 {
  3917. count, summer := 0.0, 0.0
  3918. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3919. token := arg.Value.(formulaArg)
  3920. switch token.Type {
  3921. case ArgString, ArgNumber:
  3922. num := token.ToNumber()
  3923. if num.Type == ArgError {
  3924. continue
  3925. }
  3926. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3927. count++
  3928. case ArgList, ArgMatrix:
  3929. for _, row := range token.ToList() {
  3930. if row.Type == ArgNumber || row.Type == ArgString {
  3931. num := row.ToNumber()
  3932. if num.Type == ArgError {
  3933. continue
  3934. }
  3935. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3936. count++
  3937. }
  3938. }
  3939. }
  3940. }
  3941. if count > 3 {
  3942. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3943. }
  3944. }
  3945. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3946. }
  3947. // NORMdotDIST function calculates the Normal Probability Density Function or
  3948. // the Cumulative Normal Distribution. Function for a supplied set of
  3949. // parameters. The syntax of the function is:
  3950. //
  3951. // NORM.DIST(x,mean,standard_dev,cumulative)
  3952. //
  3953. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  3954. if argsList.Len() != 4 {
  3955. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  3956. }
  3957. return fn.NORMDIST(argsList)
  3958. }
  3959. // NORMDIST function calculates the Normal Probability Density Function or the
  3960. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  3961. // The syntax of the function is:
  3962. //
  3963. // NORMDIST(x,mean,standard_dev,cumulative)
  3964. //
  3965. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  3966. if argsList.Len() != 4 {
  3967. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  3968. }
  3969. var x, mean, stdDev, cumulative formulaArg
  3970. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3971. return x
  3972. }
  3973. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3974. return mean
  3975. }
  3976. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3977. return stdDev
  3978. }
  3979. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3980. return cumulative
  3981. }
  3982. if stdDev.Number < 0 {
  3983. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3984. }
  3985. if cumulative.Number == 1 {
  3986. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  3987. }
  3988. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  3989. }
  3990. // NORMdotINV function calculates the inverse of the Cumulative Normal
  3991. // Distribution Function for a supplied value of x, and a supplied
  3992. // distribution mean & standard deviation. The syntax of the function is:
  3993. //
  3994. // NORM.INV(probability,mean,standard_dev)
  3995. //
  3996. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  3997. if argsList.Len() != 3 {
  3998. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  3999. }
  4000. return fn.NORMINV(argsList)
  4001. }
  4002. // NORMINV function calculates the inverse of the Cumulative Normal
  4003. // Distribution Function for a supplied value of x, and a supplied
  4004. // distribution mean & standard deviation. The syntax of the function is:
  4005. //
  4006. // NORMINV(probability,mean,standard_dev)
  4007. //
  4008. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  4009. if argsList.Len() != 3 {
  4010. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  4011. }
  4012. var prob, mean, stdDev formulaArg
  4013. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  4014. return prob
  4015. }
  4016. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4017. return mean
  4018. }
  4019. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4020. return stdDev
  4021. }
  4022. if prob.Number < 0 || prob.Number > 1 {
  4023. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4024. }
  4025. if stdDev.Number < 0 {
  4026. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4027. }
  4028. inv, err := norminv(prob.Number)
  4029. if err != nil {
  4030. return newErrorFormulaArg(err.Error(), err.Error())
  4031. }
  4032. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  4033. }
  4034. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  4035. // Distribution Function for a supplied value. The syntax of the function
  4036. // is:
  4037. //
  4038. // NORM.S.DIST(z)
  4039. //
  4040. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  4041. if argsList.Len() != 2 {
  4042. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  4043. }
  4044. args := list.New().Init()
  4045. args.PushBack(argsList.Front().Value.(formulaArg))
  4046. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4047. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4048. args.PushBack(argsList.Back().Value.(formulaArg))
  4049. return fn.NORMDIST(args)
  4050. }
  4051. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  4052. // Function for a supplied value. The syntax of the function is:
  4053. //
  4054. // NORMSDIST(z)
  4055. //
  4056. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4057. if argsList.Len() != 1 {
  4058. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4059. }
  4060. args := list.New().Init()
  4061. args.PushBack(argsList.Front().Value.(formulaArg))
  4062. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4063. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4064. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4065. return fn.NORMDIST(args)
  4066. }
  4067. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4068. // Distribution Function for a supplied probability value. The syntax of the
  4069. // function is:
  4070. //
  4071. // NORMSINV(probability)
  4072. //
  4073. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4074. if argsList.Len() != 1 {
  4075. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4076. }
  4077. args := list.New().Init()
  4078. args.PushBack(argsList.Front().Value.(formulaArg))
  4079. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4080. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4081. return fn.NORMINV(args)
  4082. }
  4083. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4084. // Cumulative Distribution Function for a supplied probability value. The
  4085. // syntax of the function is:
  4086. //
  4087. // NORM.S.INV(probability)
  4088. //
  4089. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4090. if argsList.Len() != 1 {
  4091. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4092. }
  4093. args := list.New().Init()
  4094. args.PushBack(argsList.Front().Value.(formulaArg))
  4095. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4096. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4097. return fn.NORMINV(args)
  4098. }
  4099. // norminv returns the inverse of the normal cumulative distribution for the
  4100. // specified value.
  4101. func norminv(p float64) (float64, error) {
  4102. a := map[int]float64{
  4103. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4104. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4105. }
  4106. b := map[int]float64{
  4107. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4108. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4109. }
  4110. c := map[int]float64{
  4111. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4112. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4113. }
  4114. d := map[int]float64{
  4115. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4116. 4: 3.754408661907416e+00,
  4117. }
  4118. pLow := 0.02425 // Use lower region approx. below this
  4119. pHigh := 1 - pLow // Use upper region approx. above this
  4120. if 0 < p && p < pLow {
  4121. // Rational approximation for lower region.
  4122. q := math.Sqrt(-2 * math.Log(p))
  4123. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4124. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4125. } else if pLow <= p && p <= pHigh {
  4126. // Rational approximation for central region.
  4127. q := p - 0.5
  4128. r := q * q
  4129. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4130. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4131. } else if pHigh < p && p < 1 {
  4132. // Rational approximation for upper region.
  4133. q := math.Sqrt(-2 * math.Log(1-p))
  4134. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4135. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4136. }
  4137. return 0, errors.New(formulaErrorNUM)
  4138. }
  4139. // kth is an implementation of the formula function LARGE and SMALL.
  4140. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4141. if argsList.Len() != 2 {
  4142. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4143. }
  4144. array := argsList.Front().Value.(formulaArg).ToList()
  4145. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4146. if kArg.Type != ArgNumber {
  4147. return kArg
  4148. }
  4149. k := int(kArg.Number)
  4150. if k < 1 {
  4151. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4152. }
  4153. data := []float64{}
  4154. for _, arg := range array {
  4155. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4156. data = append(data, numArg.Number)
  4157. }
  4158. }
  4159. if len(data) < k {
  4160. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4161. }
  4162. sort.Float64s(data)
  4163. if name == "LARGE" {
  4164. return newNumberFormulaArg(data[len(data)-k])
  4165. }
  4166. return newNumberFormulaArg(data[k-1])
  4167. }
  4168. // LARGE function returns the k'th largest value from an array of numeric
  4169. // values. The syntax of the function is:
  4170. //
  4171. // LARGE(array,k)
  4172. //
  4173. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4174. return fn.kth("LARGE", argsList)
  4175. }
  4176. // MAX function returns the largest value from a supplied set of numeric
  4177. // values. The syntax of the function is:
  4178. //
  4179. // MAX(number1,[number2],...)
  4180. //
  4181. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4182. if argsList.Len() == 0 {
  4183. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4184. }
  4185. return fn.max(false, argsList)
  4186. }
  4187. // MAXA function returns the largest value from a supplied set of numeric
  4188. // values, while counting text and the logical value FALSE as the value 0 and
  4189. // counting the logical value TRUE as the value 1. The syntax of the function
  4190. // is:
  4191. //
  4192. // MAXA(number1,[number2],...)
  4193. //
  4194. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4195. if argsList.Len() == 0 {
  4196. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4197. }
  4198. return fn.max(true, argsList)
  4199. }
  4200. // max is an implementation of the formula function MAX and MAXA.
  4201. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4202. max := -math.MaxFloat64
  4203. for token := argsList.Front(); token != nil; token = token.Next() {
  4204. arg := token.Value.(formulaArg)
  4205. switch arg.Type {
  4206. case ArgString:
  4207. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4208. continue
  4209. } else {
  4210. num := arg.ToBool()
  4211. if num.Type == ArgNumber && num.Number > max {
  4212. max = num.Number
  4213. continue
  4214. }
  4215. }
  4216. num := arg.ToNumber()
  4217. if num.Type != ArgError && num.Number > max {
  4218. max = num.Number
  4219. }
  4220. case ArgNumber:
  4221. if arg.Number > max {
  4222. max = arg.Number
  4223. }
  4224. case ArgList, ArgMatrix:
  4225. for _, row := range arg.ToList() {
  4226. switch row.Type {
  4227. case ArgString:
  4228. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4229. continue
  4230. } else {
  4231. num := row.ToBool()
  4232. if num.Type == ArgNumber && num.Number > max {
  4233. max = num.Number
  4234. continue
  4235. }
  4236. }
  4237. num := row.ToNumber()
  4238. if num.Type != ArgError && num.Number > max {
  4239. max = num.Number
  4240. }
  4241. case ArgNumber:
  4242. if row.Number > max {
  4243. max = row.Number
  4244. }
  4245. }
  4246. }
  4247. case ArgError:
  4248. return arg
  4249. }
  4250. }
  4251. if max == -math.MaxFloat64 {
  4252. max = 0
  4253. }
  4254. return newNumberFormulaArg(max)
  4255. }
  4256. // MEDIAN function returns the statistical median (the middle value) of a list
  4257. // of supplied numbers. The syntax of the function is:
  4258. //
  4259. // MEDIAN(number1,[number2],...)
  4260. //
  4261. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4262. if argsList.Len() == 0 {
  4263. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4264. }
  4265. var values = []float64{}
  4266. var median, digits float64
  4267. var err error
  4268. for token := argsList.Front(); token != nil; token = token.Next() {
  4269. arg := token.Value.(formulaArg)
  4270. switch arg.Type {
  4271. case ArgString:
  4272. num := arg.ToNumber()
  4273. if num.Type == ArgError {
  4274. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4275. }
  4276. values = append(values, num.Number)
  4277. case ArgNumber:
  4278. values = append(values, arg.Number)
  4279. case ArgMatrix:
  4280. for _, row := range arg.Matrix {
  4281. for _, value := range row {
  4282. if value.String == "" {
  4283. continue
  4284. }
  4285. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4286. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4287. }
  4288. values = append(values, digits)
  4289. }
  4290. }
  4291. }
  4292. }
  4293. sort.Float64s(values)
  4294. if len(values)%2 == 0 {
  4295. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4296. } else {
  4297. median = values[len(values)/2]
  4298. }
  4299. return newNumberFormulaArg(median)
  4300. }
  4301. // MIN function returns the smallest value from a supplied set of numeric
  4302. // values. The syntax of the function is:
  4303. //
  4304. // MIN(number1,[number2],...)
  4305. //
  4306. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4307. if argsList.Len() == 0 {
  4308. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4309. }
  4310. return fn.min(false, argsList)
  4311. }
  4312. // MINA function returns the smallest value from a supplied set of numeric
  4313. // values, while counting text and the logical value FALSE as the value 0 and
  4314. // counting the logical value TRUE as the value 1. The syntax of the function
  4315. // is:
  4316. //
  4317. // MINA(number1,[number2],...)
  4318. //
  4319. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4320. if argsList.Len() == 0 {
  4321. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4322. }
  4323. return fn.min(true, argsList)
  4324. }
  4325. // min is an implementation of the formula function MIN and MINA.
  4326. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4327. min := math.MaxFloat64
  4328. for token := argsList.Front(); token != nil; token = token.Next() {
  4329. arg := token.Value.(formulaArg)
  4330. switch arg.Type {
  4331. case ArgString:
  4332. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4333. continue
  4334. } else {
  4335. num := arg.ToBool()
  4336. if num.Type == ArgNumber && num.Number < min {
  4337. min = num.Number
  4338. continue
  4339. }
  4340. }
  4341. num := arg.ToNumber()
  4342. if num.Type != ArgError && num.Number < min {
  4343. min = num.Number
  4344. }
  4345. case ArgNumber:
  4346. if arg.Number < min {
  4347. min = arg.Number
  4348. }
  4349. case ArgList, ArgMatrix:
  4350. for _, row := range arg.ToList() {
  4351. switch row.Type {
  4352. case ArgString:
  4353. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4354. continue
  4355. } else {
  4356. num := row.ToBool()
  4357. if num.Type == ArgNumber && num.Number < min {
  4358. min = num.Number
  4359. continue
  4360. }
  4361. }
  4362. num := row.ToNumber()
  4363. if num.Type != ArgError && num.Number < min {
  4364. min = num.Number
  4365. }
  4366. case ArgNumber:
  4367. if row.Number < min {
  4368. min = row.Number
  4369. }
  4370. }
  4371. }
  4372. case ArgError:
  4373. return arg
  4374. }
  4375. }
  4376. if min == math.MaxFloat64 {
  4377. min = 0
  4378. }
  4379. return newNumberFormulaArg(min)
  4380. }
  4381. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4382. // which k% of the data values fall) for a supplied range of values and a
  4383. // supplied k. The syntax of the function is:
  4384. //
  4385. // PERCENTILE.INC(array,k)
  4386. //
  4387. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4388. if argsList.Len() != 2 {
  4389. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4390. }
  4391. return fn.PERCENTILE(argsList)
  4392. }
  4393. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4394. // k% of the data values fall) for a supplied range of values and a supplied
  4395. // k. The syntax of the function is:
  4396. //
  4397. // PERCENTILE(array,k)
  4398. //
  4399. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4400. if argsList.Len() != 2 {
  4401. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4402. }
  4403. array := argsList.Front().Value.(formulaArg).ToList()
  4404. k := argsList.Back().Value.(formulaArg).ToNumber()
  4405. if k.Type != ArgNumber {
  4406. return k
  4407. }
  4408. if k.Number < 0 || k.Number > 1 {
  4409. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4410. }
  4411. numbers := []float64{}
  4412. for _, arg := range array {
  4413. if arg.Type == ArgError {
  4414. return arg
  4415. }
  4416. num := arg.ToNumber()
  4417. if num.Type == ArgNumber {
  4418. numbers = append(numbers, num.Number)
  4419. }
  4420. }
  4421. cnt := len(numbers)
  4422. sort.Float64s(numbers)
  4423. idx := k.Number * (float64(cnt) - 1)
  4424. base := math.Floor(idx)
  4425. if idx == base {
  4426. return newNumberFormulaArg(numbers[int(idx)])
  4427. }
  4428. next := base + 1
  4429. proportion := idx - base
  4430. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4431. }
  4432. // PERMUT function calculates the number of permutations of a specified number
  4433. // of objects from a set of objects. The syntax of the function is:
  4434. //
  4435. // PERMUT(number,number_chosen)
  4436. //
  4437. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4438. if argsList.Len() != 2 {
  4439. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4440. }
  4441. number := argsList.Front().Value.(formulaArg).ToNumber()
  4442. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4443. if number.Type != ArgNumber {
  4444. return number
  4445. }
  4446. if chosen.Type != ArgNumber {
  4447. return chosen
  4448. }
  4449. if number.Number < chosen.Number {
  4450. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4451. }
  4452. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4453. }
  4454. // PERMUTATIONA function calculates the number of permutations, with
  4455. // repetitions, of a specified number of objects from a set. The syntax of
  4456. // the function is:
  4457. //
  4458. // PERMUTATIONA(number,number_chosen)
  4459. //
  4460. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4461. if argsList.Len() < 1 {
  4462. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4463. }
  4464. number := argsList.Front().Value.(formulaArg).ToNumber()
  4465. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4466. if number.Type != ArgNumber {
  4467. return number
  4468. }
  4469. if chosen.Type != ArgNumber {
  4470. return chosen
  4471. }
  4472. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4473. if num < 0 || numChosen < 0 {
  4474. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4475. }
  4476. return newNumberFormulaArg(math.Pow(num, numChosen))
  4477. }
  4478. // QUARTILE function returns a requested quartile of a supplied range of
  4479. // values. The syntax of the function is:
  4480. //
  4481. // QUARTILE(array,quart)
  4482. //
  4483. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  4484. if argsList.Len() != 2 {
  4485. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  4486. }
  4487. quart := argsList.Back().Value.(formulaArg).ToNumber()
  4488. if quart.Type != ArgNumber {
  4489. return quart
  4490. }
  4491. if quart.Number < 0 || quart.Number > 4 {
  4492. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  4493. }
  4494. args := list.New().Init()
  4495. args.PushBack(argsList.Front().Value.(formulaArg))
  4496. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  4497. return fn.PERCENTILE(args)
  4498. }
  4499. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  4500. // values. The syntax of the function is:
  4501. //
  4502. // QUARTILE.INC(array,quart)
  4503. //
  4504. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  4505. if argsList.Len() != 2 {
  4506. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  4507. }
  4508. return fn.QUARTILE(argsList)
  4509. }
  4510. // SKEW function calculates the skewness of the distribution of a supplied set
  4511. // of values. The syntax of the function is:
  4512. //
  4513. // SKEW(number1,[number2],...)
  4514. //
  4515. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4516. if argsList.Len() < 1 {
  4517. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4518. }
  4519. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4520. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4521. token := arg.Value.(formulaArg)
  4522. switch token.Type {
  4523. case ArgNumber, ArgString:
  4524. num := token.ToNumber()
  4525. if num.Type == ArgError {
  4526. return num
  4527. }
  4528. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4529. count++
  4530. case ArgList, ArgMatrix:
  4531. for _, row := range token.ToList() {
  4532. numArg := row.ToNumber()
  4533. if numArg.Type != ArgNumber {
  4534. continue
  4535. }
  4536. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4537. count++
  4538. }
  4539. }
  4540. }
  4541. if count > 2 {
  4542. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  4543. }
  4544. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4545. }
  4546. // SMALL function returns the k'th smallest value from an array of numeric
  4547. // values. The syntax of the function is:
  4548. //
  4549. // SMALL(array,k)
  4550. //
  4551. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4552. return fn.kth("SMALL", argsList)
  4553. }
  4554. // VARP function returns the Variance of a given set of values. The syntax of
  4555. // the function is:
  4556. //
  4557. // VARP(number1,[number2],...)
  4558. //
  4559. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  4560. if argsList.Len() < 1 {
  4561. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  4562. }
  4563. summerA, summerB, count := 0.0, 0.0, 0.0
  4564. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4565. for _, token := range arg.Value.(formulaArg).ToList() {
  4566. if num := token.ToNumber(); num.Type == ArgNumber {
  4567. summerA += (num.Number * num.Number)
  4568. summerB += num.Number
  4569. count++
  4570. }
  4571. }
  4572. }
  4573. if count > 0 {
  4574. summerA *= count
  4575. summerB *= summerB
  4576. return newNumberFormulaArg((summerA - summerB) / (count * count))
  4577. }
  4578. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4579. }
  4580. // VARdotP function returns the Variance of a given set of values. The syntax
  4581. // of the function is:
  4582. //
  4583. // VAR.P(number1,[number2],...)
  4584. //
  4585. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  4586. if argsList.Len() < 1 {
  4587. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  4588. }
  4589. return fn.VARP(argsList)
  4590. }
  4591. // Information Functions
  4592. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4593. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4594. // function is:
  4595. //
  4596. // ISBLANK(value)
  4597. //
  4598. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4599. if argsList.Len() != 1 {
  4600. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4601. }
  4602. token := argsList.Front().Value.(formulaArg)
  4603. result := "FALSE"
  4604. switch token.Type {
  4605. case ArgUnknown:
  4606. result = "TRUE"
  4607. case ArgString:
  4608. if token.String == "" {
  4609. result = "TRUE"
  4610. }
  4611. }
  4612. return newStringFormulaArg(result)
  4613. }
  4614. // ISERR function tests if an initial supplied expression (or value) returns
  4615. // any Excel Error, except the #N/A error. If so, the function returns the
  4616. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4617. // error, the ISERR function returns FALSE. The syntax of the function is:
  4618. //
  4619. // ISERR(value)
  4620. //
  4621. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4622. if argsList.Len() != 1 {
  4623. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4624. }
  4625. token := argsList.Front().Value.(formulaArg)
  4626. result := "FALSE"
  4627. if token.Type == ArgError {
  4628. for _, errType := range []string{
  4629. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4630. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4631. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4632. } {
  4633. if errType == token.String {
  4634. result = "TRUE"
  4635. }
  4636. }
  4637. }
  4638. return newStringFormulaArg(result)
  4639. }
  4640. // ISERROR function tests if an initial supplied expression (or value) returns
  4641. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4642. // function returns FALSE. The syntax of the function is:
  4643. //
  4644. // ISERROR(value)
  4645. //
  4646. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4647. if argsList.Len() != 1 {
  4648. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4649. }
  4650. token := argsList.Front().Value.(formulaArg)
  4651. result := "FALSE"
  4652. if token.Type == ArgError {
  4653. for _, errType := range []string{
  4654. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4655. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4656. formulaErrorCALC, formulaErrorGETTINGDATA,
  4657. } {
  4658. if errType == token.String {
  4659. result = "TRUE"
  4660. }
  4661. }
  4662. }
  4663. return newStringFormulaArg(result)
  4664. }
  4665. // ISEVEN function tests if a supplied number (or numeric expression)
  4666. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4667. // function returns FALSE. The syntax of the function is:
  4668. //
  4669. // ISEVEN(value)
  4670. //
  4671. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4672. if argsList.Len() != 1 {
  4673. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4674. }
  4675. var (
  4676. token = argsList.Front().Value.(formulaArg)
  4677. result = "FALSE"
  4678. numeric int
  4679. err error
  4680. )
  4681. if token.Type == ArgString {
  4682. if numeric, err = strconv.Atoi(token.String); err != nil {
  4683. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4684. }
  4685. if numeric == numeric/2*2 {
  4686. return newStringFormulaArg("TRUE")
  4687. }
  4688. }
  4689. return newStringFormulaArg(result)
  4690. }
  4691. // ISNA function tests if an initial supplied expression (or value) returns
  4692. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4693. // returns FALSE. The syntax of the function is:
  4694. //
  4695. // ISNA(value)
  4696. //
  4697. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4698. if argsList.Len() != 1 {
  4699. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4700. }
  4701. token := argsList.Front().Value.(formulaArg)
  4702. result := "FALSE"
  4703. if token.Type == ArgError && token.String == formulaErrorNA {
  4704. result = "TRUE"
  4705. }
  4706. return newStringFormulaArg(result)
  4707. }
  4708. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4709. // function returns TRUE; If the supplied value is text, the function returns
  4710. // FALSE. The syntax of the function is:
  4711. //
  4712. // ISNONTEXT(value)
  4713. //
  4714. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4715. if argsList.Len() != 1 {
  4716. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4717. }
  4718. token := argsList.Front().Value.(formulaArg)
  4719. result := "TRUE"
  4720. if token.Type == ArgString && token.String != "" {
  4721. result = "FALSE"
  4722. }
  4723. return newStringFormulaArg(result)
  4724. }
  4725. // ISNUMBER function function tests if a supplied value is a number. If so,
  4726. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4727. // function is:
  4728. //
  4729. // ISNUMBER(value)
  4730. //
  4731. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4732. if argsList.Len() != 1 {
  4733. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4734. }
  4735. token, result := argsList.Front().Value.(formulaArg), false
  4736. if token.Type == ArgString && token.String != "" {
  4737. if _, err := strconv.Atoi(token.String); err == nil {
  4738. result = true
  4739. }
  4740. }
  4741. return newBoolFormulaArg(result)
  4742. }
  4743. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4744. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4745. // FALSE. The syntax of the function is:
  4746. //
  4747. // ISODD(value)
  4748. //
  4749. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4750. if argsList.Len() != 1 {
  4751. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4752. }
  4753. var (
  4754. token = argsList.Front().Value.(formulaArg)
  4755. result = "FALSE"
  4756. numeric int
  4757. err error
  4758. )
  4759. if token.Type == ArgString {
  4760. if numeric, err = strconv.Atoi(token.String); err != nil {
  4761. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4762. }
  4763. if numeric != numeric/2*2 {
  4764. return newStringFormulaArg("TRUE")
  4765. }
  4766. }
  4767. return newStringFormulaArg(result)
  4768. }
  4769. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4770. // Otherwise, the function returns FALSE. The syntax of the function is:
  4771. //
  4772. // ISTEXT(value)
  4773. //
  4774. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4775. if argsList.Len() != 1 {
  4776. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4777. }
  4778. token := argsList.Front().Value.(formulaArg)
  4779. if token.ToNumber().Type != ArgError {
  4780. return newBoolFormulaArg(false)
  4781. }
  4782. return newBoolFormulaArg(token.Type == ArgString)
  4783. }
  4784. // N function converts data into a numeric value. The syntax of the function
  4785. // is:
  4786. //
  4787. // N(value)
  4788. //
  4789. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  4790. if argsList.Len() != 1 {
  4791. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  4792. }
  4793. token, num := argsList.Front().Value.(formulaArg), 0.0
  4794. if token.Type == ArgError {
  4795. return token
  4796. }
  4797. if arg := token.ToNumber(); arg.Type == ArgNumber {
  4798. num = arg.Number
  4799. }
  4800. if token.Value() == "TRUE" {
  4801. num = 1
  4802. }
  4803. return newNumberFormulaArg(num)
  4804. }
  4805. // NA function returns the Excel #N/A error. This error message has the
  4806. // meaning 'value not available' and is produced when an Excel Formula is
  4807. // unable to find a value that it needs. The syntax of the function is:
  4808. //
  4809. // NA()
  4810. //
  4811. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4812. if argsList.Len() != 0 {
  4813. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4814. }
  4815. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4816. }
  4817. // SHEET function returns the Sheet number for a specified reference. The
  4818. // syntax of the function is:
  4819. //
  4820. // SHEET()
  4821. //
  4822. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4823. if argsList.Len() != 0 {
  4824. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4825. }
  4826. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4827. }
  4828. // T function tests if a supplied value is text and if so, returns the
  4829. // supplied text; Otherwise, the function returns an empty text string. The
  4830. // syntax of the function is:
  4831. //
  4832. // T(value)
  4833. //
  4834. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  4835. if argsList.Len() != 1 {
  4836. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  4837. }
  4838. token := argsList.Front().Value.(formulaArg)
  4839. if token.Type == ArgError {
  4840. return token
  4841. }
  4842. if token.Type == ArgNumber {
  4843. return newStringFormulaArg("")
  4844. }
  4845. return newStringFormulaArg(token.Value())
  4846. }
  4847. // Logical Functions
  4848. // AND function tests a number of supplied conditions and returns TRUE or
  4849. // FALSE. The syntax of the function is:
  4850. //
  4851. // AND(logical_test1,[logical_test2],...)
  4852. //
  4853. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4854. if argsList.Len() == 0 {
  4855. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4856. }
  4857. if argsList.Len() > 30 {
  4858. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4859. }
  4860. var (
  4861. and = true
  4862. val float64
  4863. err error
  4864. )
  4865. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4866. token := arg.Value.(formulaArg)
  4867. switch token.Type {
  4868. case ArgUnknown:
  4869. continue
  4870. case ArgString:
  4871. if token.String == "TRUE" {
  4872. continue
  4873. }
  4874. if token.String == "FALSE" {
  4875. return newStringFormulaArg(token.String)
  4876. }
  4877. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4878. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4879. }
  4880. and = and && (val != 0)
  4881. case ArgMatrix:
  4882. // TODO
  4883. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4884. }
  4885. }
  4886. return newBoolFormulaArg(and)
  4887. }
  4888. // FALSE function function returns the logical value FALSE. The syntax of the
  4889. // function is:
  4890. //
  4891. // FALSE()
  4892. //
  4893. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4894. if argsList.Len() != 0 {
  4895. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4896. }
  4897. return newBoolFormulaArg(false)
  4898. }
  4899. // IFERROR function receives two values (or expressions) and tests if the
  4900. // first of these evaluates to an error. The syntax of the function is:
  4901. //
  4902. // IFERROR(value,value_if_error)
  4903. //
  4904. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4905. if argsList.Len() != 2 {
  4906. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4907. }
  4908. value := argsList.Front().Value.(formulaArg)
  4909. if value.Type != ArgError {
  4910. if value.Type == ArgEmpty {
  4911. return newNumberFormulaArg(0)
  4912. }
  4913. return value
  4914. }
  4915. return argsList.Back().Value.(formulaArg)
  4916. }
  4917. // NOT function returns the opposite to a supplied logical value. The syntax
  4918. // of the function is:
  4919. //
  4920. // NOT(logical)
  4921. //
  4922. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4923. if argsList.Len() != 1 {
  4924. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4925. }
  4926. token := argsList.Front().Value.(formulaArg)
  4927. switch token.Type {
  4928. case ArgString, ArgList:
  4929. if strings.ToUpper(token.String) == "TRUE" {
  4930. return newBoolFormulaArg(false)
  4931. }
  4932. if strings.ToUpper(token.String) == "FALSE" {
  4933. return newBoolFormulaArg(true)
  4934. }
  4935. case ArgNumber:
  4936. return newBoolFormulaArg(!(token.Number != 0))
  4937. case ArgError:
  4938. return token
  4939. }
  4940. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4941. }
  4942. // OR function tests a number of supplied conditions and returns either TRUE
  4943. // or FALSE. The syntax of the function is:
  4944. //
  4945. // OR(logical_test1,[logical_test2],...)
  4946. //
  4947. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4948. if argsList.Len() == 0 {
  4949. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4950. }
  4951. if argsList.Len() > 30 {
  4952. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4953. }
  4954. var (
  4955. or bool
  4956. val float64
  4957. err error
  4958. )
  4959. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4960. token := arg.Value.(formulaArg)
  4961. switch token.Type {
  4962. case ArgUnknown:
  4963. continue
  4964. case ArgString:
  4965. if token.String == "FALSE" {
  4966. continue
  4967. }
  4968. if token.String == "TRUE" {
  4969. or = true
  4970. continue
  4971. }
  4972. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4973. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4974. }
  4975. or = val != 0
  4976. case ArgMatrix:
  4977. // TODO
  4978. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4979. }
  4980. }
  4981. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4982. }
  4983. // TRUE function returns the logical value TRUE. The syntax of the function
  4984. // is:
  4985. //
  4986. // TRUE()
  4987. //
  4988. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4989. if argsList.Len() != 0 {
  4990. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4991. }
  4992. return newBoolFormulaArg(true)
  4993. }
  4994. // Date and Time Functions
  4995. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4996. // of the function is:
  4997. //
  4998. // DATE(year,month,day)
  4999. //
  5000. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  5001. if argsList.Len() != 3 {
  5002. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5003. }
  5004. year := argsList.Front().Value.(formulaArg).ToNumber()
  5005. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5006. day := argsList.Back().Value.(formulaArg).ToNumber()
  5007. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  5008. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5009. }
  5010. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  5011. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  5012. }
  5013. // DATEDIF function calculates the number of days, months, or years between
  5014. // two dates. The syntax of the function is:
  5015. //
  5016. // DATEDIF(start_date,end_date,unit)
  5017. //
  5018. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  5019. if argsList.Len() != 3 {
  5020. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  5021. }
  5022. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  5023. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  5024. return startArg
  5025. }
  5026. if startArg.Number > endArg.Number {
  5027. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  5028. }
  5029. if startArg.Number == endArg.Number {
  5030. return newNumberFormulaArg(0)
  5031. }
  5032. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  5033. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  5034. sy, smm, sd := startDate.Date()
  5035. ey, emm, ed := endDate.Date()
  5036. sm, em, diff := int(smm), int(emm), 0.0
  5037. switch unit {
  5038. case "d":
  5039. return newNumberFormulaArg(endArg.Number - startArg.Number)
  5040. case "y":
  5041. diff = float64(ey - sy)
  5042. if em < sm || (em == sm && ed < sd) {
  5043. diff--
  5044. }
  5045. case "m":
  5046. ydiff := ey - sy
  5047. mdiff := em - sm
  5048. if ed < sd {
  5049. mdiff--
  5050. }
  5051. if mdiff < 0 {
  5052. ydiff--
  5053. mdiff += 12
  5054. }
  5055. diff = float64(ydiff*12 + mdiff)
  5056. case "md":
  5057. smMD := em
  5058. if ed < sd {
  5059. smMD--
  5060. }
  5061. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5062. case "ym":
  5063. diff = float64(em - sm)
  5064. if ed < sd {
  5065. diff--
  5066. }
  5067. if diff < 0 {
  5068. diff += 12
  5069. }
  5070. case "yd":
  5071. syYD := sy
  5072. if em < sm || (em == sm && ed < sd) {
  5073. syYD++
  5074. }
  5075. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5076. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5077. diff = s - e
  5078. default:
  5079. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5080. }
  5081. return newNumberFormulaArg(diff)
  5082. }
  5083. // NOW function returns the current date and time. The function receives no
  5084. // arguments and therefore. The syntax of the function is:
  5085. //
  5086. // NOW()
  5087. //
  5088. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5089. if argsList.Len() != 0 {
  5090. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5091. }
  5092. now := time.Now()
  5093. _, offset := now.Zone()
  5094. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5095. }
  5096. // TODAY function returns the current date. The function has no arguments and
  5097. // therefore. The syntax of the function is:
  5098. //
  5099. // TODAY()
  5100. //
  5101. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5102. if argsList.Len() != 0 {
  5103. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5104. }
  5105. now := time.Now()
  5106. _, offset := now.Zone()
  5107. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5108. }
  5109. // makeDate return date as a Unix time, the number of seconds elapsed since
  5110. // January 1, 1970 UTC.
  5111. func makeDate(y int, m time.Month, d int) int64 {
  5112. if y == 1900 && int(m) <= 2 {
  5113. d--
  5114. }
  5115. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5116. return date.Unix()
  5117. }
  5118. // daysBetween return time interval of the given start timestamp and end
  5119. // timestamp.
  5120. func daysBetween(startDate, endDate int64) float64 {
  5121. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5122. }
  5123. // Text Functions
  5124. // CHAR function returns the character relating to a supplied character set
  5125. // number (from 1 to 255). syntax of the function is:
  5126. //
  5127. // CHAR(number)
  5128. //
  5129. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5130. if argsList.Len() != 1 {
  5131. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5132. }
  5133. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5134. if arg.Type != ArgNumber {
  5135. return arg
  5136. }
  5137. num := int(arg.Number)
  5138. if num < 0 || num > 255 {
  5139. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5140. }
  5141. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5142. }
  5143. // CLEAN removes all non-printable characters from a supplied text string. The
  5144. // syntax of the function is:
  5145. //
  5146. // CLEAN(text)
  5147. //
  5148. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5149. if argsList.Len() != 1 {
  5150. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5151. }
  5152. b := bytes.Buffer{}
  5153. for _, c := range argsList.Front().Value.(formulaArg).String {
  5154. if c > 31 {
  5155. b.WriteRune(c)
  5156. }
  5157. }
  5158. return newStringFormulaArg(b.String())
  5159. }
  5160. // CODE function converts the first character of a supplied text string into
  5161. // the associated numeric character set code used by your computer. The
  5162. // syntax of the function is:
  5163. //
  5164. // CODE(text)
  5165. //
  5166. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5167. return fn.code("CODE", argsList)
  5168. }
  5169. // code is an implementation of the formula function CODE and UNICODE.
  5170. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5171. if argsList.Len() != 1 {
  5172. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5173. }
  5174. text := argsList.Front().Value.(formulaArg).Value()
  5175. if len(text) == 0 {
  5176. if name == "CODE" {
  5177. return newNumberFormulaArg(0)
  5178. }
  5179. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5180. }
  5181. return newNumberFormulaArg(float64(text[0]))
  5182. }
  5183. // CONCAT function joins together a series of supplied text strings into one
  5184. // combined text string.
  5185. //
  5186. // CONCAT(text1,[text2],...)
  5187. //
  5188. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5189. return fn.concat("CONCAT", argsList)
  5190. }
  5191. // CONCATENATE function joins together a series of supplied text strings into
  5192. // one combined text string.
  5193. //
  5194. // CONCATENATE(text1,[text2],...)
  5195. //
  5196. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5197. return fn.concat("CONCATENATE", argsList)
  5198. }
  5199. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5200. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5201. buf := bytes.Buffer{}
  5202. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5203. token := arg.Value.(formulaArg)
  5204. switch token.Type {
  5205. case ArgString:
  5206. buf.WriteString(token.String)
  5207. case ArgNumber:
  5208. if token.Boolean {
  5209. if token.Number == 0 {
  5210. buf.WriteString("FALSE")
  5211. } else {
  5212. buf.WriteString("TRUE")
  5213. }
  5214. } else {
  5215. buf.WriteString(token.Value())
  5216. }
  5217. default:
  5218. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5219. }
  5220. }
  5221. return newStringFormulaArg(buf.String())
  5222. }
  5223. // EXACT function tests if two supplied text strings or values are exactly
  5224. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5225. // function is case-sensitive. The syntax of the function is:
  5226. //
  5227. // EXACT(text1,text2)
  5228. //
  5229. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5230. if argsList.Len() != 2 {
  5231. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5232. }
  5233. text1 := argsList.Front().Value.(formulaArg).Value()
  5234. text2 := argsList.Back().Value.(formulaArg).Value()
  5235. return newBoolFormulaArg(text1 == text2)
  5236. }
  5237. // FIXED function rounds a supplied number to a specified number of decimal
  5238. // places and then converts this into text. The syntax of the function is:
  5239. //
  5240. // FIXED(number,[decimals],[no_commas])
  5241. //
  5242. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5243. if argsList.Len() < 1 {
  5244. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5245. }
  5246. if argsList.Len() > 3 {
  5247. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5248. }
  5249. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5250. if numArg.Type != ArgNumber {
  5251. return numArg
  5252. }
  5253. precision, decimals, noCommas := 0, 0, false
  5254. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5255. if argsList.Len() == 1 && len(s) == 2 {
  5256. precision = len(s[1])
  5257. decimals = len(s[1])
  5258. }
  5259. if argsList.Len() >= 2 {
  5260. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5261. if decimalsArg.Type != ArgNumber {
  5262. return decimalsArg
  5263. }
  5264. decimals = int(decimalsArg.Number)
  5265. }
  5266. if argsList.Len() == 3 {
  5267. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5268. if noCommasArg.Type == ArgError {
  5269. return noCommasArg
  5270. }
  5271. noCommas = noCommasArg.Boolean
  5272. }
  5273. n := math.Pow(10, float64(decimals))
  5274. r := numArg.Number * n
  5275. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5276. if decimals > 0 {
  5277. precision = decimals
  5278. }
  5279. if noCommas {
  5280. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5281. }
  5282. p := message.NewPrinter(language.English)
  5283. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5284. }
  5285. // FIND function returns the position of a specified character or sub-string
  5286. // within a supplied text string. The function is case-sensitive. The syntax
  5287. // of the function is:
  5288. //
  5289. // FIND(find_text,within_text,[start_num])
  5290. //
  5291. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5292. return fn.find("FIND", argsList)
  5293. }
  5294. // FINDB counts each double-byte character as 2 when you have enabled the
  5295. // editing of a language that supports DBCS and then set it as the default
  5296. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5297. // function is:
  5298. //
  5299. // FINDB(find_text,within_text,[start_num])
  5300. //
  5301. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5302. return fn.find("FINDB", argsList)
  5303. }
  5304. // find is an implementation of the formula function FIND and FINDB.
  5305. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5306. if argsList.Len() < 2 {
  5307. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5308. }
  5309. if argsList.Len() > 3 {
  5310. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5311. }
  5312. findText := argsList.Front().Value.(formulaArg).Value()
  5313. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5314. startNum, result := 1, 1
  5315. if argsList.Len() == 3 {
  5316. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5317. if numArg.Type != ArgNumber {
  5318. return numArg
  5319. }
  5320. if numArg.Number < 0 {
  5321. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5322. }
  5323. startNum = int(numArg.Number)
  5324. }
  5325. if findText == "" {
  5326. return newNumberFormulaArg(float64(startNum))
  5327. }
  5328. for idx := range withinText {
  5329. if result < startNum {
  5330. result++
  5331. }
  5332. if strings.Index(withinText[idx:], findText) == 0 {
  5333. return newNumberFormulaArg(float64(result))
  5334. }
  5335. result++
  5336. }
  5337. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5338. }
  5339. // LEFT function returns a specified number of characters from the start of a
  5340. // supplied text string. The syntax of the function is:
  5341. //
  5342. // LEFT(text,[num_chars])
  5343. //
  5344. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5345. return fn.leftRight("LEFT", argsList)
  5346. }
  5347. // LEFTB returns the first character or characters in a text string, based on
  5348. // the number of bytes you specify. The syntax of the function is:
  5349. //
  5350. // LEFTB(text,[num_bytes])
  5351. //
  5352. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5353. return fn.leftRight("LEFTB", argsList)
  5354. }
  5355. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5356. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5357. // (Traditional), and Korean.
  5358. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5359. if argsList.Len() < 1 {
  5360. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5361. }
  5362. if argsList.Len() > 2 {
  5363. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5364. }
  5365. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5366. if argsList.Len() == 2 {
  5367. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5368. if numArg.Type != ArgNumber {
  5369. return numArg
  5370. }
  5371. if numArg.Number < 0 {
  5372. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5373. }
  5374. numChars = int(numArg.Number)
  5375. }
  5376. if len(text) > numChars {
  5377. if name == "LEFT" || name == "LEFTB" {
  5378. return newStringFormulaArg(text[:numChars])
  5379. }
  5380. return newStringFormulaArg(text[len(text)-numChars:])
  5381. }
  5382. return newStringFormulaArg(text)
  5383. }
  5384. // LEN returns the length of a supplied text string. The syntax of the
  5385. // function is:
  5386. //
  5387. // LEN(text)
  5388. //
  5389. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5390. if argsList.Len() != 1 {
  5391. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5392. }
  5393. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5394. }
  5395. // LENB returns the number of bytes used to represent the characters in a text
  5396. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5397. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5398. // 1 byte per character. The syntax of the function is:
  5399. //
  5400. // LENB(text)
  5401. //
  5402. // TODO: the languages that support DBCS include Japanese, Chinese
  5403. // (Simplified), Chinese (Traditional), and Korean.
  5404. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5405. if argsList.Len() != 1 {
  5406. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5407. }
  5408. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5409. }
  5410. // LOWER converts all characters in a supplied text string to lower case. The
  5411. // syntax of the function is:
  5412. //
  5413. // LOWER(text)
  5414. //
  5415. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5416. if argsList.Len() != 1 {
  5417. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5418. }
  5419. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5420. }
  5421. // MID function returns a specified number of characters from the middle of a
  5422. // supplied text string. The syntax of the function is:
  5423. //
  5424. // MID(text,start_num,num_chars)
  5425. //
  5426. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5427. return fn.mid("MID", argsList)
  5428. }
  5429. // MIDB returns a specific number of characters from a text string, starting
  5430. // at the position you specify, based on the number of bytes you specify. The
  5431. // syntax of the function is:
  5432. //
  5433. // MID(text,start_num,num_chars)
  5434. //
  5435. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5436. return fn.mid("MIDB", argsList)
  5437. }
  5438. // mid is an implementation of the formula function MID and MIDB. TODO:
  5439. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5440. // (Traditional), and Korean.
  5441. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5442. if argsList.Len() != 3 {
  5443. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5444. }
  5445. text := argsList.Front().Value.(formulaArg).Value()
  5446. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5447. if startNumArg.Type != ArgNumber {
  5448. return startNumArg
  5449. }
  5450. if numCharsArg.Type != ArgNumber {
  5451. return numCharsArg
  5452. }
  5453. startNum := int(startNumArg.Number)
  5454. if startNum < 0 {
  5455. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5456. }
  5457. textLen := len(text)
  5458. if startNum > textLen {
  5459. return newStringFormulaArg("")
  5460. }
  5461. startNum--
  5462. endNum := startNum + int(numCharsArg.Number)
  5463. if endNum > textLen+1 {
  5464. return newStringFormulaArg(text[startNum:])
  5465. }
  5466. return newStringFormulaArg(text[startNum:endNum])
  5467. }
  5468. // PROPER converts all characters in a supplied text string to proper case
  5469. // (i.e. all letters that do not immediately follow another letter are set to
  5470. // upper case and all other characters are lower case). The syntax of the
  5471. // function is:
  5472. //
  5473. // PROPER(text)
  5474. //
  5475. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5476. if argsList.Len() != 1 {
  5477. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5478. }
  5479. buf := bytes.Buffer{}
  5480. isLetter := false
  5481. for _, char := range argsList.Front().Value.(formulaArg).String {
  5482. if !isLetter && unicode.IsLetter(char) {
  5483. buf.WriteRune(unicode.ToUpper(char))
  5484. } else {
  5485. buf.WriteRune(unicode.ToLower(char))
  5486. }
  5487. isLetter = unicode.IsLetter(char)
  5488. }
  5489. return newStringFormulaArg(buf.String())
  5490. }
  5491. // REPLACE function replaces all or part of a text string with another string.
  5492. // The syntax of the function is:
  5493. //
  5494. // REPLACE(old_text,start_num,num_chars,new_text)
  5495. //
  5496. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5497. return fn.replace("REPLACE", argsList)
  5498. }
  5499. // REPLACEB replaces part of a text string, based on the number of bytes you
  5500. // specify, with a different text string.
  5501. //
  5502. // REPLACEB(old_text,start_num,num_chars,new_text)
  5503. //
  5504. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5505. return fn.replace("REPLACEB", argsList)
  5506. }
  5507. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5508. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5509. // (Traditional), and Korean.
  5510. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5511. if argsList.Len() != 4 {
  5512. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5513. }
  5514. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5515. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5516. if startNumArg.Type != ArgNumber {
  5517. return startNumArg
  5518. }
  5519. if numCharsArg.Type != ArgNumber {
  5520. return numCharsArg
  5521. }
  5522. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5523. if startIdx > oldTextLen {
  5524. startIdx = oldTextLen + 1
  5525. }
  5526. endIdx := startIdx + int(numCharsArg.Number)
  5527. if endIdx > oldTextLen {
  5528. endIdx = oldTextLen + 1
  5529. }
  5530. if startIdx < 1 || endIdx < 1 {
  5531. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5532. }
  5533. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5534. return newStringFormulaArg(result)
  5535. }
  5536. // REPT function returns a supplied text string, repeated a specified number
  5537. // of times. The syntax of the function is:
  5538. //
  5539. // REPT(text,number_times)
  5540. //
  5541. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5542. if argsList.Len() != 2 {
  5543. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5544. }
  5545. text := argsList.Front().Value.(formulaArg)
  5546. if text.Type != ArgString {
  5547. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5548. }
  5549. times := argsList.Back().Value.(formulaArg).ToNumber()
  5550. if times.Type != ArgNumber {
  5551. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5552. }
  5553. if times.Number < 0 {
  5554. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5555. }
  5556. if times.Number == 0 {
  5557. return newStringFormulaArg("")
  5558. }
  5559. buf := bytes.Buffer{}
  5560. for i := 0; i < int(times.Number); i++ {
  5561. buf.WriteString(text.String)
  5562. }
  5563. return newStringFormulaArg(buf.String())
  5564. }
  5565. // RIGHT function returns a specified number of characters from the end of a
  5566. // supplied text string. The syntax of the function is:
  5567. //
  5568. // RIGHT(text,[num_chars])
  5569. //
  5570. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5571. return fn.leftRight("RIGHT", argsList)
  5572. }
  5573. // RIGHTB returns the last character or characters in a text string, based on
  5574. // the number of bytes you specify. The syntax of the function is:
  5575. //
  5576. // RIGHTB(text,[num_bytes])
  5577. //
  5578. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5579. return fn.leftRight("RIGHTB", argsList)
  5580. }
  5581. // SUBSTITUTE function replaces one or more instances of a given text string,
  5582. // within an original text string. The syntax of the function is:
  5583. //
  5584. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5585. //
  5586. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5587. if argsList.Len() != 3 && argsList.Len() != 4 {
  5588. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5589. }
  5590. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5591. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5592. if argsList.Len() == 3 {
  5593. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5594. }
  5595. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5596. if instanceNumArg.Type != ArgNumber {
  5597. return instanceNumArg
  5598. }
  5599. instanceNum = int(instanceNumArg.Number)
  5600. if instanceNum < 1 {
  5601. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5602. }
  5603. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5604. for {
  5605. count--
  5606. index := strings.Index(str, oldText.Value())
  5607. if index == -1 {
  5608. pos = -1
  5609. break
  5610. } else {
  5611. pos = index + chars
  5612. if count == 0 {
  5613. break
  5614. }
  5615. idx := oldTextLen + index
  5616. chars += idx
  5617. str = str[idx:]
  5618. }
  5619. }
  5620. if pos == -1 {
  5621. return newStringFormulaArg(text.Value())
  5622. }
  5623. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5624. return newStringFormulaArg(pre + newText.Value() + post)
  5625. }
  5626. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5627. // words or characters) from a supplied text string. The syntax of the
  5628. // function is:
  5629. //
  5630. // TRIM(text)
  5631. //
  5632. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5633. if argsList.Len() != 1 {
  5634. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5635. }
  5636. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5637. }
  5638. // UNICHAR returns the Unicode character that is referenced by the given
  5639. // numeric value. The syntax of the function is:
  5640. //
  5641. // UNICHAR(number)
  5642. //
  5643. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5644. if argsList.Len() != 1 {
  5645. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5646. }
  5647. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5648. if numArg.Type != ArgNumber {
  5649. return numArg
  5650. }
  5651. if numArg.Number <= 0 || numArg.Number > 55295 {
  5652. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5653. }
  5654. return newStringFormulaArg(string(rune(numArg.Number)))
  5655. }
  5656. // UNICODE function returns the code point for the first character of a
  5657. // supplied text string. The syntax of the function is:
  5658. //
  5659. // UNICODE(text)
  5660. //
  5661. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5662. return fn.code("UNICODE", argsList)
  5663. }
  5664. // UPPER converts all characters in a supplied text string to upper case. The
  5665. // syntax of the function is:
  5666. //
  5667. // UPPER(text)
  5668. //
  5669. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5670. if argsList.Len() != 1 {
  5671. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5672. }
  5673. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5674. }
  5675. // Conditional Functions
  5676. // IF function tests a supplied condition and returns one result if the
  5677. // condition evaluates to TRUE, and another result if the condition evaluates
  5678. // to FALSE. The syntax of the function is:
  5679. //
  5680. // IF(logical_test,value_if_true,value_if_false)
  5681. //
  5682. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5683. if argsList.Len() == 0 {
  5684. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5685. }
  5686. if argsList.Len() > 3 {
  5687. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5688. }
  5689. token := argsList.Front().Value.(formulaArg)
  5690. var (
  5691. cond bool
  5692. err error
  5693. result string
  5694. )
  5695. switch token.Type {
  5696. case ArgString:
  5697. if cond, err = strconv.ParseBool(token.String); err != nil {
  5698. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5699. }
  5700. if argsList.Len() == 1 {
  5701. return newBoolFormulaArg(cond)
  5702. }
  5703. if cond {
  5704. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5705. }
  5706. if argsList.Len() == 3 {
  5707. result = argsList.Back().Value.(formulaArg).String
  5708. }
  5709. }
  5710. return newStringFormulaArg(result)
  5711. }
  5712. // Lookup and Reference Functions
  5713. // CHOOSE function returns a value from an array, that corresponds to a
  5714. // supplied index number (position). The syntax of the function is:
  5715. //
  5716. // CHOOSE(index_num,value1,[value2],...)
  5717. //
  5718. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5719. if argsList.Len() < 2 {
  5720. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5721. }
  5722. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5723. if err != nil {
  5724. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5725. }
  5726. if argsList.Len() <= idx {
  5727. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5728. }
  5729. arg := argsList.Front()
  5730. for i := 0; i < idx; i++ {
  5731. arg = arg.Next()
  5732. }
  5733. var result formulaArg
  5734. switch arg.Value.(formulaArg).Type {
  5735. case ArgString:
  5736. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5737. case ArgMatrix:
  5738. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5739. }
  5740. return result
  5741. }
  5742. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5743. // string.
  5744. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5745. for len(pattern) > 0 {
  5746. switch pattern[0] {
  5747. default:
  5748. if len(str) == 0 || str[0] != pattern[0] {
  5749. return false
  5750. }
  5751. case '?':
  5752. if len(str) == 0 && !simple {
  5753. return false
  5754. }
  5755. case '*':
  5756. return deepMatchRune(str, pattern[1:], simple) ||
  5757. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5758. }
  5759. str = str[1:]
  5760. pattern = pattern[1:]
  5761. }
  5762. return len(str) == 0 && len(pattern) == 0
  5763. }
  5764. // matchPattern finds whether the text matches or satisfies the pattern
  5765. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5766. func matchPattern(pattern, name string) (matched bool) {
  5767. if pattern == "" {
  5768. return name == pattern
  5769. }
  5770. if pattern == "*" {
  5771. return true
  5772. }
  5773. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5774. for _, r := range name {
  5775. rname = append(rname, r)
  5776. }
  5777. for _, r := range pattern {
  5778. rpattern = append(rpattern, r)
  5779. }
  5780. simple := false // Does extended wildcard '*' and '?' match.
  5781. return deepMatchRune(rname, rpattern, simple)
  5782. }
  5783. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5784. // formula arguments by given conditions such as case sensitive, if exact
  5785. // match, and make compare result as formula criteria condition type.
  5786. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5787. if lhs.Type != rhs.Type {
  5788. return criteriaErr
  5789. }
  5790. switch lhs.Type {
  5791. case ArgNumber:
  5792. if lhs.Number == rhs.Number {
  5793. return criteriaEq
  5794. }
  5795. if lhs.Number < rhs.Number {
  5796. return criteriaL
  5797. }
  5798. return criteriaG
  5799. case ArgString:
  5800. ls, rs := lhs.String, rhs.String
  5801. if !caseSensitive {
  5802. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5803. }
  5804. if exactMatch {
  5805. match := matchPattern(rs, ls)
  5806. if match {
  5807. return criteriaEq
  5808. }
  5809. return criteriaG
  5810. }
  5811. switch strings.Compare(ls, rs) {
  5812. case 1:
  5813. return criteriaG
  5814. case -1:
  5815. return criteriaL
  5816. case 0:
  5817. return criteriaEq
  5818. }
  5819. return criteriaErr
  5820. case ArgEmpty:
  5821. return criteriaEq
  5822. case ArgList:
  5823. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5824. case ArgMatrix:
  5825. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5826. }
  5827. return criteriaErr
  5828. }
  5829. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5830. // list type formula arguments.
  5831. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5832. if len(lhs.List) < len(rhs.List) {
  5833. return criteriaL
  5834. }
  5835. if len(lhs.List) > len(rhs.List) {
  5836. return criteriaG
  5837. }
  5838. for arg := range lhs.List {
  5839. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5840. if criteria != criteriaEq {
  5841. return criteria
  5842. }
  5843. }
  5844. return criteriaEq
  5845. }
  5846. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5847. // matrix type formula arguments.
  5848. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5849. if len(lhs.Matrix) < len(rhs.Matrix) {
  5850. return criteriaL
  5851. }
  5852. if len(lhs.Matrix) > len(rhs.Matrix) {
  5853. return criteriaG
  5854. }
  5855. for i := range lhs.Matrix {
  5856. left := lhs.Matrix[i]
  5857. right := lhs.Matrix[i]
  5858. if len(left) < len(right) {
  5859. return criteriaL
  5860. }
  5861. if len(left) > len(right) {
  5862. return criteriaG
  5863. }
  5864. for arg := range left {
  5865. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5866. if criteria != criteriaEq {
  5867. return criteria
  5868. }
  5869. }
  5870. }
  5871. return criteriaEq
  5872. }
  5873. // COLUMN function returns the first column number within a supplied reference
  5874. // or the number of the current column. The syntax of the function is:
  5875. //
  5876. // COLUMN([reference])
  5877. //
  5878. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5879. if argsList.Len() > 1 {
  5880. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5881. }
  5882. if argsList.Len() == 1 {
  5883. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5884. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5885. }
  5886. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5887. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5888. }
  5889. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5890. }
  5891. col, _, _ := CellNameToCoordinates(fn.cell)
  5892. return newNumberFormulaArg(float64(col))
  5893. }
  5894. // COLUMNS function receives an Excel range and returns the number of columns
  5895. // that are contained within the range. The syntax of the function is:
  5896. //
  5897. // COLUMNS(array)
  5898. //
  5899. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5900. if argsList.Len() != 1 {
  5901. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5902. }
  5903. var min, max int
  5904. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5905. crs := argsList.Front().Value.(formulaArg).cellRanges
  5906. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5907. if min == 0 {
  5908. min = cr.Value.(cellRange).From.Col
  5909. }
  5910. if min > cr.Value.(cellRange).From.Col {
  5911. min = cr.Value.(cellRange).From.Col
  5912. }
  5913. if min > cr.Value.(cellRange).To.Col {
  5914. min = cr.Value.(cellRange).To.Col
  5915. }
  5916. if max < cr.Value.(cellRange).To.Col {
  5917. max = cr.Value.(cellRange).To.Col
  5918. }
  5919. if max < cr.Value.(cellRange).From.Col {
  5920. max = cr.Value.(cellRange).From.Col
  5921. }
  5922. }
  5923. }
  5924. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5925. cr := argsList.Front().Value.(formulaArg).cellRefs
  5926. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5927. if min == 0 {
  5928. min = refs.Value.(cellRef).Col
  5929. }
  5930. if min > refs.Value.(cellRef).Col {
  5931. min = refs.Value.(cellRef).Col
  5932. }
  5933. if max < refs.Value.(cellRef).Col {
  5934. max = refs.Value.(cellRef).Col
  5935. }
  5936. }
  5937. }
  5938. if max == TotalColumns {
  5939. return newNumberFormulaArg(float64(TotalColumns))
  5940. }
  5941. result := max - min + 1
  5942. if max == min {
  5943. if min == 0 {
  5944. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5945. }
  5946. return newNumberFormulaArg(float64(1))
  5947. }
  5948. return newNumberFormulaArg(float64(result))
  5949. }
  5950. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5951. // (or table), and returns the corresponding value from another row of the
  5952. // array. The syntax of the function is:
  5953. //
  5954. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5955. //
  5956. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5957. if argsList.Len() < 3 {
  5958. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5959. }
  5960. if argsList.Len() > 4 {
  5961. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5962. }
  5963. lookupValue := argsList.Front().Value.(formulaArg)
  5964. tableArray := argsList.Front().Next().Value.(formulaArg)
  5965. if tableArray.Type != ArgMatrix {
  5966. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5967. }
  5968. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5969. if rowArg.Type != ArgNumber {
  5970. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5971. }
  5972. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5973. if argsList.Len() == 4 {
  5974. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5975. if rangeLookup.Type == ArgError {
  5976. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5977. }
  5978. if rangeLookup.Number == 0 {
  5979. exactMatch = true
  5980. }
  5981. }
  5982. row := tableArray.Matrix[0]
  5983. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5984. start:
  5985. for idx, mtx := range row {
  5986. lhs := mtx
  5987. switch lookupValue.Type {
  5988. case ArgNumber:
  5989. if !lookupValue.Boolean {
  5990. lhs = mtx.ToNumber()
  5991. if lhs.Type == ArgError {
  5992. lhs = mtx
  5993. }
  5994. }
  5995. case ArgMatrix:
  5996. lhs = tableArray
  5997. }
  5998. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5999. matchIdx = idx
  6000. wasExact = true
  6001. break start
  6002. }
  6003. }
  6004. } else {
  6005. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  6006. }
  6007. if matchIdx == -1 {
  6008. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6009. }
  6010. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  6011. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  6012. }
  6013. row = tableArray.Matrix[rowIdx]
  6014. if wasExact || !exactMatch {
  6015. return row[matchIdx]
  6016. }
  6017. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6018. }
  6019. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  6020. // data array (or table), and returns the corresponding value from another
  6021. // column of the array. The syntax of the function is:
  6022. //
  6023. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  6024. //
  6025. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  6026. if argsList.Len() < 3 {
  6027. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  6028. }
  6029. if argsList.Len() > 4 {
  6030. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  6031. }
  6032. lookupValue := argsList.Front().Value.(formulaArg)
  6033. tableArray := argsList.Front().Next().Value.(formulaArg)
  6034. if tableArray.Type != ArgMatrix {
  6035. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  6036. }
  6037. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6038. if colIdx.Type != ArgNumber {
  6039. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  6040. }
  6041. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  6042. if argsList.Len() == 4 {
  6043. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6044. if rangeLookup.Type == ArgError {
  6045. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6046. }
  6047. if rangeLookup.Number == 0 {
  6048. exactMatch = true
  6049. }
  6050. }
  6051. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6052. start:
  6053. for idx, mtx := range tableArray.Matrix {
  6054. lhs := mtx[0]
  6055. switch lookupValue.Type {
  6056. case ArgNumber:
  6057. if !lookupValue.Boolean {
  6058. lhs = mtx[0].ToNumber()
  6059. if lhs.Type == ArgError {
  6060. lhs = mtx[0]
  6061. }
  6062. }
  6063. case ArgMatrix:
  6064. lhs = tableArray
  6065. }
  6066. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6067. matchIdx = idx
  6068. wasExact = true
  6069. break start
  6070. }
  6071. }
  6072. } else {
  6073. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6074. }
  6075. if matchIdx == -1 {
  6076. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6077. }
  6078. mtx := tableArray.Matrix[matchIdx]
  6079. if col < 0 || col >= len(mtx) {
  6080. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6081. }
  6082. if wasExact || !exactMatch {
  6083. return mtx[col]
  6084. }
  6085. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6086. }
  6087. // vlookupBinarySearch finds the position of a target value when range lookup
  6088. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6089. // return wrong result.
  6090. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6091. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6092. for low <= high {
  6093. var mid int = low + (high-low)/2
  6094. mtx := tableArray.Matrix[mid]
  6095. lhs := mtx[0]
  6096. switch lookupValue.Type {
  6097. case ArgNumber:
  6098. if !lookupValue.Boolean {
  6099. lhs = mtx[0].ToNumber()
  6100. if lhs.Type == ArgError {
  6101. lhs = mtx[0]
  6102. }
  6103. }
  6104. case ArgMatrix:
  6105. lhs = tableArray
  6106. }
  6107. result := compareFormulaArg(lhs, lookupValue, false, false)
  6108. if result == criteriaEq {
  6109. matchIdx, wasExact = mid, true
  6110. return
  6111. } else if result == criteriaG {
  6112. high = mid - 1
  6113. } else if result == criteriaL {
  6114. matchIdx, low = mid, mid+1
  6115. if lhs.Value() != "" {
  6116. lastMatchIdx = matchIdx
  6117. }
  6118. } else {
  6119. return -1, false
  6120. }
  6121. }
  6122. matchIdx, wasExact = lastMatchIdx, true
  6123. return
  6124. }
  6125. // vlookupBinarySearch finds the position of a target value when range lookup
  6126. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6127. // return wrong result.
  6128. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6129. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6130. for low <= high {
  6131. var mid int = low + (high-low)/2
  6132. mtx := row[mid]
  6133. result := compareFormulaArg(mtx, lookupValue, false, false)
  6134. if result == criteriaEq {
  6135. matchIdx, wasExact = mid, true
  6136. return
  6137. } else if result == criteriaG {
  6138. high = mid - 1
  6139. } else if result == criteriaL {
  6140. low, lastMatchIdx = mid+1, mid
  6141. } else {
  6142. return -1, false
  6143. }
  6144. }
  6145. matchIdx, wasExact = lastMatchIdx, true
  6146. return
  6147. }
  6148. // LOOKUP function performs an approximate match lookup in a one-column or
  6149. // one-row range, and returns the corresponding value from another one-column
  6150. // or one-row range. The syntax of the function is:
  6151. //
  6152. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6153. //
  6154. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6155. if argsList.Len() < 2 {
  6156. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6157. }
  6158. if argsList.Len() > 3 {
  6159. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6160. }
  6161. lookupValue := argsList.Front().Value.(formulaArg)
  6162. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6163. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6164. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6165. }
  6166. cols, matchIdx := lookupCol(lookupVector), -1
  6167. for idx, col := range cols {
  6168. lhs := lookupValue
  6169. switch col.Type {
  6170. case ArgNumber:
  6171. lhs = lhs.ToNumber()
  6172. if !col.Boolean {
  6173. if lhs.Type == ArgError {
  6174. lhs = lookupValue
  6175. }
  6176. }
  6177. }
  6178. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6179. matchIdx = idx
  6180. break
  6181. }
  6182. }
  6183. column := cols
  6184. if argsList.Len() == 3 {
  6185. column = lookupCol(argsList.Back().Value.(formulaArg))
  6186. }
  6187. if matchIdx < 0 || matchIdx >= len(column) {
  6188. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6189. }
  6190. return column[matchIdx]
  6191. }
  6192. // lookupCol extract columns for LOOKUP.
  6193. func lookupCol(arr formulaArg) []formulaArg {
  6194. col := arr.List
  6195. if arr.Type == ArgMatrix {
  6196. col = nil
  6197. for _, r := range arr.Matrix {
  6198. if len(r) > 0 {
  6199. col = append(col, r[0])
  6200. continue
  6201. }
  6202. col = append(col, newEmptyFormulaArg())
  6203. }
  6204. }
  6205. return col
  6206. }
  6207. // ROW function returns the first row number within a supplied reference or
  6208. // the number of the current row. The syntax of the function is:
  6209. //
  6210. // ROW([reference])
  6211. //
  6212. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6213. if argsList.Len() > 1 {
  6214. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6215. }
  6216. if argsList.Len() == 1 {
  6217. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6218. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6219. }
  6220. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6221. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6222. }
  6223. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6224. }
  6225. _, row, _ := CellNameToCoordinates(fn.cell)
  6226. return newNumberFormulaArg(float64(row))
  6227. }
  6228. // ROWS function takes an Excel range and returns the number of rows that are
  6229. // contained within the range. The syntax of the function is:
  6230. //
  6231. // ROWS(array)
  6232. //
  6233. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6234. if argsList.Len() != 1 {
  6235. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6236. }
  6237. var min, max int
  6238. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6239. crs := argsList.Front().Value.(formulaArg).cellRanges
  6240. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6241. if min == 0 {
  6242. min = cr.Value.(cellRange).From.Row
  6243. }
  6244. if min > cr.Value.(cellRange).From.Row {
  6245. min = cr.Value.(cellRange).From.Row
  6246. }
  6247. if min > cr.Value.(cellRange).To.Row {
  6248. min = cr.Value.(cellRange).To.Row
  6249. }
  6250. if max < cr.Value.(cellRange).To.Row {
  6251. max = cr.Value.(cellRange).To.Row
  6252. }
  6253. if max < cr.Value.(cellRange).From.Row {
  6254. max = cr.Value.(cellRange).From.Row
  6255. }
  6256. }
  6257. }
  6258. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6259. cr := argsList.Front().Value.(formulaArg).cellRefs
  6260. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6261. if min == 0 {
  6262. min = refs.Value.(cellRef).Row
  6263. }
  6264. if min > refs.Value.(cellRef).Row {
  6265. min = refs.Value.(cellRef).Row
  6266. }
  6267. if max < refs.Value.(cellRef).Row {
  6268. max = refs.Value.(cellRef).Row
  6269. }
  6270. }
  6271. }
  6272. if max == TotalRows {
  6273. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6274. }
  6275. result := max - min + 1
  6276. if max == min {
  6277. if min == 0 {
  6278. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6279. }
  6280. return newNumberFormulaArg(float64(1))
  6281. }
  6282. return newStringFormulaArg(strconv.Itoa(result))
  6283. }
  6284. // Web Functions
  6285. // ENCODEURL function returns a URL-encoded string, replacing certain
  6286. // non-alphanumeric characters with the percentage symbol (%) and a
  6287. // hexadecimal number. The syntax of the function is:
  6288. //
  6289. // ENCODEURL(url)
  6290. //
  6291. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6292. if argsList.Len() != 1 {
  6293. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6294. }
  6295. token := argsList.Front().Value.(formulaArg).Value()
  6296. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6297. }