calc.go 184 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. "golang.org/x/text/language"
  30. "golang.org/x/text/message"
  31. )
  32. // Excel formula errors
  33. const (
  34. formulaErrorDIV = "#DIV/0!"
  35. formulaErrorNAME = "#NAME?"
  36. formulaErrorNA = "#N/A"
  37. formulaErrorNUM = "#NUM!"
  38. formulaErrorVALUE = "#VALUE!"
  39. formulaErrorREF = "#REF!"
  40. formulaErrorNULL = "#NULL"
  41. formulaErrorSPILL = "#SPILL!"
  42. formulaErrorCALC = "#CALC!"
  43. formulaErrorGETTINGDATA = "#GETTING_DATA"
  44. )
  45. // Numeric precision correct numeric values as legacy Excel application
  46. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  47. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  48. // has a decimal representation that is an infinite string of ones, Excel
  49. // displays only the leading 15 figures. In the second line, the number one
  50. // is added to the fraction, and again Excel displays only 15 figures.
  51. const numericPrecision = 1000000000000000
  52. // cellRef defines the structure of a cell reference.
  53. type cellRef struct {
  54. Col int
  55. Row int
  56. Sheet string
  57. }
  58. // cellRef defines the structure of a cell range.
  59. type cellRange struct {
  60. From cellRef
  61. To cellRef
  62. }
  63. // formula criteria condition enumeration.
  64. const (
  65. _ byte = iota
  66. criteriaEq
  67. criteriaLe
  68. criteriaGe
  69. criteriaL
  70. criteriaG
  71. criteriaBeg
  72. criteriaEnd
  73. criteriaErr
  74. )
  75. // formulaCriteria defined formula criteria parser result.
  76. type formulaCriteria struct {
  77. Type byte
  78. Condition string
  79. }
  80. // ArgType is the type if formula argument type.
  81. type ArgType byte
  82. // Formula argument types enumeration.
  83. const (
  84. ArgUnknown ArgType = iota
  85. ArgNumber
  86. ArgString
  87. ArgList
  88. ArgMatrix
  89. ArgError
  90. ArgEmpty
  91. )
  92. // formulaArg is the argument of a formula or function.
  93. type formulaArg struct {
  94. SheetName string
  95. Number float64
  96. String string
  97. List []formulaArg
  98. Matrix [][]formulaArg
  99. Boolean bool
  100. Error string
  101. Type ArgType
  102. cellRefs, cellRanges *list.List
  103. }
  104. // Value returns a string data type of the formula argument.
  105. func (fa formulaArg) Value() (value string) {
  106. switch fa.Type {
  107. case ArgNumber:
  108. if fa.Boolean {
  109. if fa.Number == 0 {
  110. return "FALSE"
  111. }
  112. return "TRUE"
  113. }
  114. return fmt.Sprintf("%g", fa.Number)
  115. case ArgString:
  116. return fa.String
  117. case ArgError:
  118. return fa.Error
  119. }
  120. return
  121. }
  122. // ToNumber returns a formula argument with number data type.
  123. func (fa formulaArg) ToNumber() formulaArg {
  124. var n float64
  125. var err error
  126. switch fa.Type {
  127. case ArgString:
  128. n, err = strconv.ParseFloat(fa.String, 64)
  129. if err != nil {
  130. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  131. }
  132. case ArgNumber:
  133. n = fa.Number
  134. }
  135. return newNumberFormulaArg(n)
  136. }
  137. // ToBool returns a formula argument with boolean data type.
  138. func (fa formulaArg) ToBool() formulaArg {
  139. var b bool
  140. var err error
  141. switch fa.Type {
  142. case ArgString:
  143. b, err = strconv.ParseBool(fa.String)
  144. if err != nil {
  145. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  146. }
  147. case ArgNumber:
  148. if fa.Boolean && fa.Number == 1 {
  149. b = true
  150. }
  151. }
  152. return newBoolFormulaArg(b)
  153. }
  154. // ToList returns a formula argument with array data type.
  155. func (fa formulaArg) ToList() []formulaArg {
  156. switch fa.Type {
  157. case ArgMatrix:
  158. list := []formulaArg{}
  159. for _, row := range fa.Matrix {
  160. list = append(list, row...)
  161. }
  162. return list
  163. case ArgList:
  164. return fa.List
  165. case ArgNumber, ArgString, ArgError, ArgUnknown:
  166. return []formulaArg{fa}
  167. }
  168. return nil
  169. }
  170. // formulaFuncs is the type of the formula functions.
  171. type formulaFuncs struct {
  172. f *File
  173. sheet, cell string
  174. }
  175. // tokenPriority defined basic arithmetic operator priority.
  176. var tokenPriority = map[string]int{
  177. "^": 5,
  178. "*": 4,
  179. "/": 4,
  180. "+": 3,
  181. "-": 3,
  182. "=": 2,
  183. "<>": 2,
  184. "<": 2,
  185. "<=": 2,
  186. ">": 2,
  187. ">=": 2,
  188. "&": 1,
  189. }
  190. // CalcCellValue provides a function to get calculated cell value. This
  191. // feature is currently in working processing. Array formula, table formula
  192. // and some other formulas are not supported currently.
  193. //
  194. // Supported formula functions:
  195. //
  196. // ABS
  197. // ACOS
  198. // ACOSH
  199. // ACOT
  200. // ACOTH
  201. // AND
  202. // ARABIC
  203. // ASIN
  204. // ASINH
  205. // ATAN
  206. // ATAN2
  207. // ATANH
  208. // AVERAGE
  209. // AVERAGEA
  210. // BASE
  211. // BIN2DEC
  212. // BIN2HEX
  213. // BIN2OCT
  214. // BITAND
  215. // BITLSHIFT
  216. // BITOR
  217. // BITRSHIFT
  218. // BITXOR
  219. // CEILING
  220. // CEILING.MATH
  221. // CEILING.PRECISE
  222. // CHAR
  223. // CHOOSE
  224. // CLEAN
  225. // CODE
  226. // COLUMN
  227. // COLUMNS
  228. // COMBIN
  229. // COMBINA
  230. // CONCAT
  231. // CONCATENATE
  232. // COS
  233. // COSH
  234. // COT
  235. // COTH
  236. // COUNT
  237. // COUNTA
  238. // COUNTBLANK
  239. // CSC
  240. // CSCH
  241. // DATE
  242. // DATEDIF
  243. // DEC2BIN
  244. // DEC2HEX
  245. // DEC2OCT
  246. // DECIMAL
  247. // DEGREES
  248. // ENCODEURL
  249. // EVEN
  250. // EXACT
  251. // EXP
  252. // FACT
  253. // FACTDOUBLE
  254. // FALSE
  255. // FIND
  256. // FINDB
  257. // FISHER
  258. // FISHERINV
  259. // FIXED
  260. // FLOOR
  261. // FLOOR.MATH
  262. // FLOOR.PRECISE
  263. // GAMMA
  264. // GAMMALN
  265. // GCD
  266. // HARMEAN
  267. // HEX2BIN
  268. // HEX2DEC
  269. // HEX2OCT
  270. // HLOOKUP
  271. // IF
  272. // IFERROR
  273. // INT
  274. // ISBLANK
  275. // ISERR
  276. // ISERROR
  277. // ISEVEN
  278. // ISNA
  279. // ISNONTEXT
  280. // ISNUMBER
  281. // ISODD
  282. // ISTEXT
  283. // ISO.CEILING
  284. // KURT
  285. // LARGE
  286. // LCM
  287. // LEFT
  288. // LEFTB
  289. // LEN
  290. // LENB
  291. // LN
  292. // LOG
  293. // LOG10
  294. // LOOKUP
  295. // LOWER
  296. // MAX
  297. // MDETERM
  298. // MEDIAN
  299. // MID
  300. // MIDB
  301. // MIN
  302. // MINA
  303. // MOD
  304. // MROUND
  305. // MULTINOMIAL
  306. // MUNIT
  307. // NA
  308. // NORM.DIST
  309. // NORMDIST
  310. // NORM.INV
  311. // NORMINV
  312. // NORM.S.DIST
  313. // NORMSDIST
  314. // NORM.S.INV
  315. // NORMSINV
  316. // NOT
  317. // NOW
  318. // OCT2BIN
  319. // OCT2DEC
  320. // OCT2HEX
  321. // ODD
  322. // OR
  323. // PERCENTILE
  324. // PERMUT
  325. // PERMUTATIONA
  326. // PI
  327. // POISSON.DIST
  328. // POISSON
  329. // POWER
  330. // PRODUCT
  331. // PROPER
  332. // QUOTIENT
  333. // RADIANS
  334. // RAND
  335. // RANDBETWEEN
  336. // REPLACE
  337. // REPLACEB
  338. // REPT
  339. // RIGHT
  340. // RIGHTB
  341. // ROMAN
  342. // ROUND
  343. // ROUNDDOWN
  344. // ROUNDUP
  345. // ROW
  346. // ROWS
  347. // SEC
  348. // SECH
  349. // SHEET
  350. // SIGN
  351. // SIN
  352. // SINH
  353. // SKEW
  354. // SMALL
  355. // SQRT
  356. // SQRTPI
  357. // STDEV
  358. // STDEV.S
  359. // STDEVA
  360. // SUBSTITUTE
  361. // SUM
  362. // SUMIF
  363. // SUMSQ
  364. // TAN
  365. // TANH
  366. // TODAY
  367. // TRIM
  368. // TRUE
  369. // TRUNC
  370. // UNICHAR
  371. // UNICODE
  372. // UPPER
  373. // VLOOKUP
  374. //
  375. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  376. var (
  377. formula string
  378. token efp.Token
  379. )
  380. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  381. return
  382. }
  383. ps := efp.ExcelParser()
  384. tokens := ps.Parse(formula)
  385. if tokens == nil {
  386. return
  387. }
  388. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  389. return
  390. }
  391. result = token.TValue
  392. isNum, precision := isNumeric(result)
  393. if isNum && precision > 15 {
  394. num, _ := roundPrecision(result)
  395. result = strings.ToUpper(num)
  396. }
  397. return
  398. }
  399. // getPriority calculate arithmetic operator priority.
  400. func getPriority(token efp.Token) (pri int) {
  401. pri = tokenPriority[token.TValue]
  402. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  403. pri = 6
  404. }
  405. if isBeginParenthesesToken(token) { // (
  406. pri = 0
  407. }
  408. return
  409. }
  410. // newNumberFormulaArg constructs a number formula argument.
  411. func newNumberFormulaArg(n float64) formulaArg {
  412. if math.IsNaN(n) {
  413. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  414. }
  415. return formulaArg{Type: ArgNumber, Number: n}
  416. }
  417. // newStringFormulaArg constructs a string formula argument.
  418. func newStringFormulaArg(s string) formulaArg {
  419. return formulaArg{Type: ArgString, String: s}
  420. }
  421. // newMatrixFormulaArg constructs a matrix formula argument.
  422. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  423. return formulaArg{Type: ArgMatrix, Matrix: m}
  424. }
  425. // newListFormulaArg create a list formula argument.
  426. func newListFormulaArg(l []formulaArg) formulaArg {
  427. return formulaArg{Type: ArgList, List: l}
  428. }
  429. // newBoolFormulaArg constructs a boolean formula argument.
  430. func newBoolFormulaArg(b bool) formulaArg {
  431. var n float64
  432. if b {
  433. n = 1
  434. }
  435. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  436. }
  437. // newErrorFormulaArg create an error formula argument of a given type with a
  438. // specified error message.
  439. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  440. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  441. }
  442. // newEmptyFormulaArg create an empty formula argument.
  443. func newEmptyFormulaArg() formulaArg {
  444. return formulaArg{Type: ArgEmpty}
  445. }
  446. // evalInfixExp evaluate syntax analysis by given infix expression after
  447. // lexical analysis. Evaluate an infix expression containing formulas by
  448. // stacks:
  449. //
  450. // opd - Operand
  451. // opt - Operator
  452. // opf - Operation formula
  453. // opfd - Operand of the operation formula
  454. // opft - Operator of the operation formula
  455. // args - Arguments list of the operation formula
  456. //
  457. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  458. //
  459. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  460. var err error
  461. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  462. for i := 0; i < len(tokens); i++ {
  463. token := tokens[i]
  464. // out of function stack
  465. if opfStack.Len() == 0 {
  466. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  467. return efp.Token{}, err
  468. }
  469. }
  470. // function start
  471. if isFunctionStartToken(token) {
  472. opfStack.Push(token)
  473. argsStack.Push(list.New().Init())
  474. continue
  475. }
  476. // in function stack, walk 2 token at once
  477. if opfStack.Len() > 0 {
  478. var nextToken efp.Token
  479. if i+1 < len(tokens) {
  480. nextToken = tokens[i+1]
  481. }
  482. // current token is args or range, skip next token, order required: parse reference first
  483. if token.TSubType == efp.TokenSubTypeRange {
  484. if !opftStack.Empty() {
  485. // parse reference: must reference at here
  486. result, err := f.parseReference(sheet, token.TValue)
  487. if err != nil {
  488. return efp.Token{TValue: formulaErrorNAME}, err
  489. }
  490. if result.Type != ArgString {
  491. return efp.Token{}, errors.New(formulaErrorVALUE)
  492. }
  493. opfdStack.Push(efp.Token{
  494. TType: efp.TokenTypeOperand,
  495. TSubType: efp.TokenSubTypeNumber,
  496. TValue: result.String,
  497. })
  498. continue
  499. }
  500. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  501. // parse reference: reference or range at here
  502. result, err := f.parseReference(sheet, token.TValue)
  503. if err != nil {
  504. return efp.Token{TValue: formulaErrorNAME}, err
  505. }
  506. if result.Type == ArgUnknown {
  507. return efp.Token{}, errors.New(formulaErrorVALUE)
  508. }
  509. argsStack.Peek().(*list.List).PushBack(result)
  510. continue
  511. }
  512. }
  513. // check current token is opft
  514. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  515. return efp.Token{}, err
  516. }
  517. // current token is arg
  518. if token.TType == efp.TokenTypeArgument {
  519. for !opftStack.Empty() {
  520. // calculate trigger
  521. topOpt := opftStack.Peek().(efp.Token)
  522. if err := calculate(opfdStack, topOpt); err != nil {
  523. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  524. }
  525. opftStack.Pop()
  526. }
  527. if !opfdStack.Empty() {
  528. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  529. }
  530. continue
  531. }
  532. // current token is logical
  533. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  534. }
  535. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  536. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  537. }
  538. // current token is text
  539. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  540. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  541. }
  542. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  543. return efp.Token{}, err
  544. }
  545. }
  546. }
  547. for optStack.Len() != 0 {
  548. topOpt := optStack.Peek().(efp.Token)
  549. if err = calculate(opdStack, topOpt); err != nil {
  550. return efp.Token{}, err
  551. }
  552. optStack.Pop()
  553. }
  554. if opdStack.Len() == 0 {
  555. return efp.Token{}, errors.New("formula not valid")
  556. }
  557. return opdStack.Peek().(efp.Token), err
  558. }
  559. // evalInfixExpFunc evaluate formula function in the infix expression.
  560. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  561. if !isFunctionStopToken(token) {
  562. return nil
  563. }
  564. // current token is function stop
  565. for !opftStack.Empty() {
  566. // calculate trigger
  567. topOpt := opftStack.Peek().(efp.Token)
  568. if err := calculate(opfdStack, topOpt); err != nil {
  569. return err
  570. }
  571. opftStack.Pop()
  572. }
  573. // push opfd to args
  574. if opfdStack.Len() > 0 {
  575. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  576. }
  577. // call formula function to evaluate
  578. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  579. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  580. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  581. if arg.Type == ArgError && opfStack.Len() == 1 {
  582. return errors.New(arg.Value())
  583. }
  584. argsStack.Pop()
  585. opfStack.Pop()
  586. if opfStack.Len() > 0 { // still in function stack
  587. if nextToken.TType == efp.TokenTypeOperatorInfix {
  588. // mathematics calculate in formula function
  589. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  590. } else {
  591. argsStack.Peek().(*list.List).PushBack(arg)
  592. }
  593. } else {
  594. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  595. }
  596. return nil
  597. }
  598. // calcPow evaluate exponentiation arithmetic operations.
  599. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  600. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  601. if err != nil {
  602. return err
  603. }
  604. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  605. if err != nil {
  606. return err
  607. }
  608. result := math.Pow(lOpdVal, rOpdVal)
  609. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  610. return nil
  611. }
  612. // calcEq evaluate equal arithmetic operations.
  613. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  614. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  615. return nil
  616. }
  617. // calcNEq evaluate not equal arithmetic operations.
  618. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  619. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  620. return nil
  621. }
  622. // calcL evaluate less than arithmetic operations.
  623. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  624. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  625. if err != nil {
  626. return err
  627. }
  628. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  629. if err != nil {
  630. return err
  631. }
  632. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  633. return nil
  634. }
  635. // calcLe evaluate less than or equal arithmetic operations.
  636. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  637. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  638. if err != nil {
  639. return err
  640. }
  641. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  642. if err != nil {
  643. return err
  644. }
  645. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  646. return nil
  647. }
  648. // calcG evaluate greater than or equal arithmetic operations.
  649. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  650. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  651. if err != nil {
  652. return err
  653. }
  654. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  655. if err != nil {
  656. return err
  657. }
  658. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  659. return nil
  660. }
  661. // calcGe evaluate greater than or equal arithmetic operations.
  662. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  663. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  664. if err != nil {
  665. return err
  666. }
  667. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  668. if err != nil {
  669. return err
  670. }
  671. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  672. return nil
  673. }
  674. // calcSplice evaluate splice '&' operations.
  675. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  676. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  677. return nil
  678. }
  679. // calcAdd evaluate addition arithmetic operations.
  680. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  681. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  682. if err != nil {
  683. return err
  684. }
  685. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  686. if err != nil {
  687. return err
  688. }
  689. result := lOpdVal + rOpdVal
  690. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  691. return nil
  692. }
  693. // calcSubtract evaluate subtraction arithmetic operations.
  694. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  695. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  696. if err != nil {
  697. return err
  698. }
  699. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  700. if err != nil {
  701. return err
  702. }
  703. result := lOpdVal - rOpdVal
  704. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  705. return nil
  706. }
  707. // calcMultiply evaluate multiplication arithmetic operations.
  708. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  709. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  710. if err != nil {
  711. return err
  712. }
  713. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  714. if err != nil {
  715. return err
  716. }
  717. result := lOpdVal * rOpdVal
  718. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  719. return nil
  720. }
  721. // calcDiv evaluate division arithmetic operations.
  722. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  723. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  724. if err != nil {
  725. return err
  726. }
  727. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  728. if err != nil {
  729. return err
  730. }
  731. result := lOpdVal / rOpdVal
  732. if rOpdVal == 0 {
  733. return errors.New(formulaErrorDIV)
  734. }
  735. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  736. return nil
  737. }
  738. // calculate evaluate basic arithmetic operations.
  739. func calculate(opdStack *Stack, opt efp.Token) error {
  740. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  741. if opdStack.Len() < 1 {
  742. return errors.New("formula not valid")
  743. }
  744. opd := opdStack.Pop().(efp.Token)
  745. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  746. if err != nil {
  747. return err
  748. }
  749. result := 0 - opdVal
  750. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  751. }
  752. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  753. "^": calcPow,
  754. "*": calcMultiply,
  755. "/": calcDiv,
  756. "+": calcAdd,
  757. "=": calcEq,
  758. "<>": calcNEq,
  759. "<": calcL,
  760. "<=": calcLe,
  761. ">": calcG,
  762. ">=": calcGe,
  763. "&": calcSplice,
  764. }
  765. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  766. if opdStack.Len() < 2 {
  767. return errors.New("formula not valid")
  768. }
  769. rOpd := opdStack.Pop().(efp.Token)
  770. lOpd := opdStack.Pop().(efp.Token)
  771. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  772. return err
  773. }
  774. }
  775. fn, ok := tokenCalcFunc[opt.TValue]
  776. if ok {
  777. if opdStack.Len() < 2 {
  778. return errors.New("formula not valid")
  779. }
  780. rOpd := opdStack.Pop().(efp.Token)
  781. lOpd := opdStack.Pop().(efp.Token)
  782. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  783. return err
  784. }
  785. }
  786. return nil
  787. }
  788. // parseOperatorPrefixToken parse operator prefix token.
  789. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  790. if optStack.Len() == 0 {
  791. optStack.Push(token)
  792. } else {
  793. tokenPriority := getPriority(token)
  794. topOpt := optStack.Peek().(efp.Token)
  795. topOptPriority := getPriority(topOpt)
  796. if tokenPriority > topOptPriority {
  797. optStack.Push(token)
  798. } else {
  799. for tokenPriority <= topOptPriority {
  800. optStack.Pop()
  801. if err = calculate(opdStack, topOpt); err != nil {
  802. return
  803. }
  804. if optStack.Len() > 0 {
  805. topOpt = optStack.Peek().(efp.Token)
  806. topOptPriority = getPriority(topOpt)
  807. continue
  808. }
  809. break
  810. }
  811. optStack.Push(token)
  812. }
  813. }
  814. return
  815. }
  816. // isFunctionStartToken determine if the token is function stop.
  817. func isFunctionStartToken(token efp.Token) bool {
  818. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  819. }
  820. // isFunctionStopToken determine if the token is function stop.
  821. func isFunctionStopToken(token efp.Token) bool {
  822. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  823. }
  824. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  825. func isBeginParenthesesToken(token efp.Token) bool {
  826. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  827. }
  828. // isEndParenthesesToken determine if the token is end parentheses: ).
  829. func isEndParenthesesToken(token efp.Token) bool {
  830. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  831. }
  832. // isOperatorPrefixToken determine if the token is parse operator prefix
  833. // token.
  834. func isOperatorPrefixToken(token efp.Token) bool {
  835. _, ok := tokenPriority[token.TValue]
  836. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  837. return true
  838. }
  839. return false
  840. }
  841. // getDefinedNameRefTo convert defined name to reference range.
  842. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  843. for _, definedName := range f.GetDefinedName() {
  844. if definedName.Name == definedNameName {
  845. refTo = definedName.RefersTo
  846. // worksheet scope takes precedence over scope workbook when both definedNames exist
  847. if definedName.Scope == currentSheet {
  848. break
  849. }
  850. }
  851. }
  852. return refTo
  853. }
  854. // parseToken parse basic arithmetic operator priority and evaluate based on
  855. // operators and operands.
  856. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  857. // parse reference: must reference at here
  858. if token.TSubType == efp.TokenSubTypeRange {
  859. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  860. if refTo != "" {
  861. token.TValue = refTo
  862. }
  863. result, err := f.parseReference(sheet, token.TValue)
  864. if err != nil {
  865. return errors.New(formulaErrorNAME)
  866. }
  867. if result.Type != ArgString {
  868. return errors.New(formulaErrorVALUE)
  869. }
  870. token.TValue = result.String
  871. token.TType = efp.TokenTypeOperand
  872. token.TSubType = efp.TokenSubTypeNumber
  873. }
  874. if isOperatorPrefixToken(token) {
  875. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  876. return err
  877. }
  878. }
  879. if isBeginParenthesesToken(token) { // (
  880. optStack.Push(token)
  881. }
  882. if isEndParenthesesToken(token) { // )
  883. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  884. topOpt := optStack.Peek().(efp.Token)
  885. if err := calculate(opdStack, topOpt); err != nil {
  886. return err
  887. }
  888. optStack.Pop()
  889. }
  890. optStack.Pop()
  891. }
  892. // opd
  893. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  894. opdStack.Push(token)
  895. }
  896. return nil
  897. }
  898. // parseReference parse reference and extract values by given reference
  899. // characters and default sheet name.
  900. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  901. reference = strings.Replace(reference, "$", "", -1)
  902. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  903. for _, ref := range strings.Split(reference, ":") {
  904. tokens := strings.Split(ref, "!")
  905. cr := cellRef{}
  906. if len(tokens) == 2 { // have a worksheet name
  907. cr.Sheet = tokens[0]
  908. // cast to cell coordinates
  909. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  910. // cast to column
  911. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  912. // cast to row
  913. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  914. err = newInvalidColumnNameError(tokens[1])
  915. return
  916. }
  917. cr.Col = TotalColumns
  918. }
  919. }
  920. if refs.Len() > 0 {
  921. e := refs.Back()
  922. cellRefs.PushBack(e.Value.(cellRef))
  923. refs.Remove(e)
  924. }
  925. refs.PushBack(cr)
  926. continue
  927. }
  928. // cast to cell coordinates
  929. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  930. // cast to column
  931. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  932. // cast to row
  933. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  934. err = newInvalidColumnNameError(tokens[0])
  935. return
  936. }
  937. cr.Col = TotalColumns
  938. }
  939. cellRanges.PushBack(cellRange{
  940. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  941. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  942. })
  943. cellRefs.Init()
  944. arg, err = f.rangeResolver(cellRefs, cellRanges)
  945. return
  946. }
  947. e := refs.Back()
  948. if e == nil {
  949. cr.Sheet = sheet
  950. refs.PushBack(cr)
  951. continue
  952. }
  953. cellRanges.PushBack(cellRange{
  954. From: e.Value.(cellRef),
  955. To: cr,
  956. })
  957. refs.Remove(e)
  958. }
  959. if refs.Len() > 0 {
  960. e := refs.Back()
  961. cellRefs.PushBack(e.Value.(cellRef))
  962. refs.Remove(e)
  963. }
  964. arg, err = f.rangeResolver(cellRefs, cellRanges)
  965. return
  966. }
  967. // prepareValueRange prepare value range.
  968. func prepareValueRange(cr cellRange, valueRange []int) {
  969. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  970. valueRange[0] = cr.From.Row
  971. }
  972. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  973. valueRange[2] = cr.From.Col
  974. }
  975. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  976. valueRange[1] = cr.To.Row
  977. }
  978. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  979. valueRange[3] = cr.To.Col
  980. }
  981. }
  982. // prepareValueRef prepare value reference.
  983. func prepareValueRef(cr cellRef, valueRange []int) {
  984. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  985. valueRange[0] = cr.Row
  986. }
  987. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  988. valueRange[2] = cr.Col
  989. }
  990. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  991. valueRange[1] = cr.Row
  992. }
  993. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  994. valueRange[3] = cr.Col
  995. }
  996. }
  997. // rangeResolver extract value as string from given reference and range list.
  998. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  999. // be reference A1:B3.
  1000. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1001. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1002. // value range order: from row, to row, from column, to column
  1003. valueRange := []int{0, 0, 0, 0}
  1004. var sheet string
  1005. // prepare value range
  1006. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1007. cr := temp.Value.(cellRange)
  1008. if cr.From.Sheet != cr.To.Sheet {
  1009. err = errors.New(formulaErrorVALUE)
  1010. }
  1011. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1012. _ = sortCoordinates(rng)
  1013. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1014. prepareValueRange(cr, valueRange)
  1015. if cr.From.Sheet != "" {
  1016. sheet = cr.From.Sheet
  1017. }
  1018. }
  1019. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1020. cr := temp.Value.(cellRef)
  1021. if cr.Sheet != "" {
  1022. sheet = cr.Sheet
  1023. }
  1024. prepareValueRef(cr, valueRange)
  1025. }
  1026. // extract value from ranges
  1027. if cellRanges.Len() > 0 {
  1028. arg.Type = ArgMatrix
  1029. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1030. var matrixRow = []formulaArg{}
  1031. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1032. var cell, value string
  1033. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1034. return
  1035. }
  1036. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1037. return
  1038. }
  1039. matrixRow = append(matrixRow, formulaArg{
  1040. String: value,
  1041. Type: ArgString,
  1042. })
  1043. }
  1044. arg.Matrix = append(arg.Matrix, matrixRow)
  1045. }
  1046. return
  1047. }
  1048. // extract value from references
  1049. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1050. cr := temp.Value.(cellRef)
  1051. var cell string
  1052. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1053. return
  1054. }
  1055. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1056. return
  1057. }
  1058. arg.Type = ArgString
  1059. }
  1060. return
  1061. }
  1062. // callFuncByName calls the no error or only error return function with
  1063. // reflect by given receiver, name and parameters.
  1064. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1065. function := reflect.ValueOf(receiver).MethodByName(name)
  1066. if function.IsValid() {
  1067. rt := function.Call(params)
  1068. if len(rt) == 0 {
  1069. return
  1070. }
  1071. arg = rt[0].Interface().(formulaArg)
  1072. return
  1073. }
  1074. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1075. }
  1076. // formulaCriteriaParser parse formula criteria.
  1077. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1078. fc = &formulaCriteria{}
  1079. if exp == "" {
  1080. return
  1081. }
  1082. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1083. fc.Type, fc.Condition = criteriaEq, match[1]
  1084. return
  1085. }
  1086. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1087. fc.Type, fc.Condition = criteriaEq, match[1]
  1088. return
  1089. }
  1090. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1091. fc.Type, fc.Condition = criteriaLe, match[1]
  1092. return
  1093. }
  1094. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1095. fc.Type, fc.Condition = criteriaGe, match[1]
  1096. return
  1097. }
  1098. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1099. fc.Type, fc.Condition = criteriaL, match[1]
  1100. return
  1101. }
  1102. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1103. fc.Type, fc.Condition = criteriaG, match[1]
  1104. return
  1105. }
  1106. if strings.Contains(exp, "*") {
  1107. if strings.HasPrefix(exp, "*") {
  1108. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1109. }
  1110. if strings.HasSuffix(exp, "*") {
  1111. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1112. }
  1113. return
  1114. }
  1115. fc.Type, fc.Condition = criteriaEq, exp
  1116. return
  1117. }
  1118. // formulaCriteriaEval evaluate formula criteria expression.
  1119. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1120. var value, expected float64
  1121. var e error
  1122. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1123. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1124. return
  1125. }
  1126. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1127. return
  1128. }
  1129. return
  1130. }
  1131. switch criteria.Type {
  1132. case criteriaEq:
  1133. return val == criteria.Condition, err
  1134. case criteriaLe:
  1135. value, expected, e = prepareValue(val, criteria.Condition)
  1136. return value <= expected && e == nil, err
  1137. case criteriaGe:
  1138. value, expected, e = prepareValue(val, criteria.Condition)
  1139. return value >= expected && e == nil, err
  1140. case criteriaL:
  1141. value, expected, e = prepareValue(val, criteria.Condition)
  1142. return value < expected && e == nil, err
  1143. case criteriaG:
  1144. value, expected, e = prepareValue(val, criteria.Condition)
  1145. return value > expected && e == nil, err
  1146. case criteriaBeg:
  1147. return strings.HasPrefix(val, criteria.Condition), err
  1148. case criteriaEnd:
  1149. return strings.HasSuffix(val, criteria.Condition), err
  1150. }
  1151. return
  1152. }
  1153. // Engineering Functions
  1154. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1155. // The syntax of the function is:
  1156. //
  1157. // BIN2DEC(number)
  1158. //
  1159. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1160. if argsList.Len() != 1 {
  1161. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1162. }
  1163. token := argsList.Front().Value.(formulaArg)
  1164. number := token.ToNumber()
  1165. if number.Type != ArgNumber {
  1166. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1167. }
  1168. return fn.bin2dec(token.Value())
  1169. }
  1170. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1171. // (Base 16) number. The syntax of the function is:
  1172. //
  1173. // BIN2HEX(number,[places])
  1174. //
  1175. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1176. if argsList.Len() < 1 {
  1177. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1178. }
  1179. if argsList.Len() > 2 {
  1180. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1181. }
  1182. token := argsList.Front().Value.(formulaArg)
  1183. number := token.ToNumber()
  1184. if number.Type != ArgNumber {
  1185. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1186. }
  1187. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1188. if decimal.Type != ArgNumber {
  1189. return decimal
  1190. }
  1191. newList.PushBack(decimal)
  1192. if argsList.Len() == 2 {
  1193. newList.PushBack(argsList.Back().Value.(formulaArg))
  1194. }
  1195. return fn.dec2x("BIN2HEX", newList)
  1196. }
  1197. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1198. // number. The syntax of the function is:
  1199. //
  1200. // BIN2OCT(number,[places])
  1201. //
  1202. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1203. if argsList.Len() < 1 {
  1204. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1205. }
  1206. if argsList.Len() > 2 {
  1207. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1208. }
  1209. token := argsList.Front().Value.(formulaArg)
  1210. number := token.ToNumber()
  1211. if number.Type != ArgNumber {
  1212. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1213. }
  1214. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1215. if decimal.Type != ArgNumber {
  1216. return decimal
  1217. }
  1218. newList.PushBack(decimal)
  1219. if argsList.Len() == 2 {
  1220. newList.PushBack(argsList.Back().Value.(formulaArg))
  1221. }
  1222. return fn.dec2x("BIN2OCT", newList)
  1223. }
  1224. // bin2dec is an implementation of the formula function BIN2DEC.
  1225. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1226. decimal, length := 0.0, len(number)
  1227. for i := length; i > 0; i-- {
  1228. s := string(number[length-i])
  1229. if 10 == i && s == "1" {
  1230. decimal += math.Pow(-2.0, float64(i-1))
  1231. continue
  1232. }
  1233. if s == "1" {
  1234. decimal += math.Pow(2.0, float64(i-1))
  1235. continue
  1236. }
  1237. if s != "0" {
  1238. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1239. }
  1240. }
  1241. return newNumberFormulaArg(decimal)
  1242. }
  1243. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1244. // syntax of the function is:
  1245. //
  1246. // BITAND(number1,number2)
  1247. //
  1248. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1249. return fn.bitwise("BITAND", argsList)
  1250. }
  1251. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1252. // number of bits. The syntax of the function is:
  1253. //
  1254. // BITLSHIFT(number1,shift_amount)
  1255. //
  1256. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1257. return fn.bitwise("BITLSHIFT", argsList)
  1258. }
  1259. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1260. // syntax of the function is:
  1261. //
  1262. // BITOR(number1,number2)
  1263. //
  1264. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1265. return fn.bitwise("BITOR", argsList)
  1266. }
  1267. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1268. // number of bits. The syntax of the function is:
  1269. //
  1270. // BITRSHIFT(number1,shift_amount)
  1271. //
  1272. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1273. return fn.bitwise("BITRSHIFT", argsList)
  1274. }
  1275. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1276. // integers. The syntax of the function is:
  1277. //
  1278. // BITXOR(number1,number2)
  1279. //
  1280. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1281. return fn.bitwise("BITXOR", argsList)
  1282. }
  1283. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1284. // BITOR, BITRSHIFT and BITXOR.
  1285. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1286. if argsList.Len() != 2 {
  1287. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1288. }
  1289. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1290. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1291. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1292. }
  1293. max := math.Pow(2, 48) - 1
  1294. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1295. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1296. }
  1297. bitwiseFuncMap := map[string]func(a, b int) int{
  1298. "BITAND": func(a, b int) int { return a & b },
  1299. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1300. "BITOR": func(a, b int) int { return a | b },
  1301. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1302. "BITXOR": func(a, b int) int { return a ^ b },
  1303. }
  1304. bitwiseFunc := bitwiseFuncMap[name]
  1305. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1306. }
  1307. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1308. // The syntax of the function is:
  1309. //
  1310. // DEC2BIN(number,[places])
  1311. //
  1312. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1313. return fn.dec2x("DEC2BIN", argsList)
  1314. }
  1315. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1316. // number. The syntax of the function is:
  1317. //
  1318. // DEC2HEX(number,[places])
  1319. //
  1320. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1321. return fn.dec2x("DEC2HEX", argsList)
  1322. }
  1323. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1324. // The syntax of the function is:
  1325. //
  1326. // DEC2OCT(number,[places])
  1327. //
  1328. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1329. return fn.dec2x("DEC2OCT", argsList)
  1330. }
  1331. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1332. // DEC2OCT.
  1333. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1334. if argsList.Len() < 1 {
  1335. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1336. }
  1337. if argsList.Len() > 2 {
  1338. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1339. }
  1340. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1341. if decimal.Type != ArgNumber {
  1342. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1343. }
  1344. maxLimitMap := map[string]float64{
  1345. "DEC2BIN": 511,
  1346. "HEX2BIN": 511,
  1347. "OCT2BIN": 511,
  1348. "BIN2HEX": 549755813887,
  1349. "DEC2HEX": 549755813887,
  1350. "OCT2HEX": 549755813887,
  1351. "BIN2OCT": 536870911,
  1352. "DEC2OCT": 536870911,
  1353. "HEX2OCT": 536870911,
  1354. }
  1355. minLimitMap := map[string]float64{
  1356. "DEC2BIN": -512,
  1357. "HEX2BIN": -512,
  1358. "OCT2BIN": -512,
  1359. "BIN2HEX": -549755813888,
  1360. "DEC2HEX": -549755813888,
  1361. "OCT2HEX": -549755813888,
  1362. "BIN2OCT": -536870912,
  1363. "DEC2OCT": -536870912,
  1364. "HEX2OCT": -536870912,
  1365. }
  1366. baseMap := map[string]int{
  1367. "DEC2BIN": 2,
  1368. "HEX2BIN": 2,
  1369. "OCT2BIN": 2,
  1370. "BIN2HEX": 16,
  1371. "DEC2HEX": 16,
  1372. "OCT2HEX": 16,
  1373. "BIN2OCT": 8,
  1374. "DEC2OCT": 8,
  1375. "HEX2OCT": 8,
  1376. }
  1377. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1378. base := baseMap[name]
  1379. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1380. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1381. }
  1382. n := int64(decimal.Number)
  1383. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1384. if argsList.Len() == 2 {
  1385. places := argsList.Back().Value.(formulaArg).ToNumber()
  1386. if places.Type != ArgNumber {
  1387. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1388. }
  1389. binaryPlaces := len(binary)
  1390. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1391. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1392. }
  1393. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1394. }
  1395. if decimal.Number < 0 && len(binary) > 10 {
  1396. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1397. }
  1398. return newStringFormulaArg(strings.ToUpper(binary))
  1399. }
  1400. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1401. // (Base 2) number. The syntax of the function is:
  1402. //
  1403. // HEX2BIN(number,[places])
  1404. //
  1405. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1406. if argsList.Len() < 1 {
  1407. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1408. }
  1409. if argsList.Len() > 2 {
  1410. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1411. }
  1412. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1413. if decimal.Type != ArgNumber {
  1414. return decimal
  1415. }
  1416. newList.PushBack(decimal)
  1417. if argsList.Len() == 2 {
  1418. newList.PushBack(argsList.Back().Value.(formulaArg))
  1419. }
  1420. return fn.dec2x("HEX2BIN", newList)
  1421. }
  1422. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1423. // number. The syntax of the function is:
  1424. //
  1425. // HEX2DEC(number)
  1426. //
  1427. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1428. if argsList.Len() != 1 {
  1429. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1430. }
  1431. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1432. }
  1433. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1434. // (Base 8) number. The syntax of the function is:
  1435. //
  1436. // HEX2OCT(number,[places])
  1437. //
  1438. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1439. if argsList.Len() < 1 {
  1440. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1441. }
  1442. if argsList.Len() > 2 {
  1443. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1444. }
  1445. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1446. if decimal.Type != ArgNumber {
  1447. return decimal
  1448. }
  1449. newList.PushBack(decimal)
  1450. if argsList.Len() == 2 {
  1451. newList.PushBack(argsList.Back().Value.(formulaArg))
  1452. }
  1453. return fn.dec2x("HEX2OCT", newList)
  1454. }
  1455. // hex2dec is an implementation of the formula function HEX2DEC.
  1456. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1457. decimal, length := 0.0, len(number)
  1458. for i := length; i > 0; i-- {
  1459. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1460. if err != nil {
  1461. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1462. }
  1463. if 10 == i && string(number[length-i]) == "F" {
  1464. decimal += math.Pow(-16.0, float64(i-1))
  1465. continue
  1466. }
  1467. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1468. }
  1469. return newNumberFormulaArg(decimal)
  1470. }
  1471. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1472. // number. The syntax of the function is:
  1473. //
  1474. // OCT2BIN(number,[places])
  1475. //
  1476. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1477. if argsList.Len() < 1 {
  1478. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1479. }
  1480. if argsList.Len() > 2 {
  1481. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1482. }
  1483. token := argsList.Front().Value.(formulaArg)
  1484. number := token.ToNumber()
  1485. if number.Type != ArgNumber {
  1486. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1487. }
  1488. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1489. newList.PushBack(decimal)
  1490. if argsList.Len() == 2 {
  1491. newList.PushBack(argsList.Back().Value.(formulaArg))
  1492. }
  1493. return fn.dec2x("OCT2BIN", newList)
  1494. }
  1495. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1496. // The syntax of the function is:
  1497. //
  1498. // OCT2DEC(number)
  1499. //
  1500. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1501. if argsList.Len() != 1 {
  1502. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1503. }
  1504. token := argsList.Front().Value.(formulaArg)
  1505. number := token.ToNumber()
  1506. if number.Type != ArgNumber {
  1507. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1508. }
  1509. return fn.oct2dec(token.Value())
  1510. }
  1511. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1512. // (Base 16) number. The syntax of the function is:
  1513. //
  1514. // OCT2HEX(number,[places])
  1515. //
  1516. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1517. if argsList.Len() < 1 {
  1518. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1519. }
  1520. if argsList.Len() > 2 {
  1521. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1522. }
  1523. token := argsList.Front().Value.(formulaArg)
  1524. number := token.ToNumber()
  1525. if number.Type != ArgNumber {
  1526. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1527. }
  1528. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1529. newList.PushBack(decimal)
  1530. if argsList.Len() == 2 {
  1531. newList.PushBack(argsList.Back().Value.(formulaArg))
  1532. }
  1533. return fn.dec2x("OCT2HEX", newList)
  1534. }
  1535. // oct2dec is an implementation of the formula function OCT2DEC.
  1536. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1537. decimal, length := 0.0, len(number)
  1538. for i := length; i > 0; i-- {
  1539. num, _ := strconv.Atoi(string(number[length-i]))
  1540. if 10 == i && string(number[length-i]) == "7" {
  1541. decimal += math.Pow(-8.0, float64(i-1))
  1542. continue
  1543. }
  1544. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1545. }
  1546. return newNumberFormulaArg(decimal)
  1547. }
  1548. // Math and Trigonometric Functions
  1549. // ABS function returns the absolute value of any supplied number. The syntax
  1550. // of the function is:
  1551. //
  1552. // ABS(number)
  1553. //
  1554. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1555. if argsList.Len() != 1 {
  1556. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1557. }
  1558. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1559. if arg.Type == ArgError {
  1560. return arg
  1561. }
  1562. return newNumberFormulaArg(math.Abs(arg.Number))
  1563. }
  1564. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1565. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1566. // the function is:
  1567. //
  1568. // ACOS(number)
  1569. //
  1570. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1571. if argsList.Len() != 1 {
  1572. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1573. }
  1574. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1575. if arg.Type == ArgError {
  1576. return arg
  1577. }
  1578. return newNumberFormulaArg(math.Acos(arg.Number))
  1579. }
  1580. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1581. // of the function is:
  1582. //
  1583. // ACOSH(number)
  1584. //
  1585. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1586. if argsList.Len() != 1 {
  1587. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1588. }
  1589. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1590. if arg.Type == ArgError {
  1591. return arg
  1592. }
  1593. return newNumberFormulaArg(math.Acosh(arg.Number))
  1594. }
  1595. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1596. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1597. // of the function is:
  1598. //
  1599. // ACOT(number)
  1600. //
  1601. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1602. if argsList.Len() != 1 {
  1603. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1604. }
  1605. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1606. if arg.Type == ArgError {
  1607. return arg
  1608. }
  1609. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1610. }
  1611. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1612. // value. The syntax of the function is:
  1613. //
  1614. // ACOTH(number)
  1615. //
  1616. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1617. if argsList.Len() != 1 {
  1618. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1619. }
  1620. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1621. if arg.Type == ArgError {
  1622. return arg
  1623. }
  1624. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1625. }
  1626. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1627. // of the function is:
  1628. //
  1629. // ARABIC(text)
  1630. //
  1631. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1632. if argsList.Len() != 1 {
  1633. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1634. }
  1635. text := argsList.Front().Value.(formulaArg).Value()
  1636. if len(text) > 255 {
  1637. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1638. }
  1639. text = strings.ToUpper(text)
  1640. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1641. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1642. for index >= 0 && text[index] == ' ' {
  1643. index--
  1644. }
  1645. for actualStart <= index && text[actualStart] == ' ' {
  1646. actualStart++
  1647. }
  1648. if actualStart <= index && text[actualStart] == '-' {
  1649. isNegative = true
  1650. actualStart++
  1651. }
  1652. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1653. for index >= actualStart {
  1654. startIndex = index
  1655. startChar := text[startIndex]
  1656. index--
  1657. for index >= actualStart && (text[index]|' ') == startChar {
  1658. index--
  1659. }
  1660. currentCharValue = charMap[rune(startChar)]
  1661. currentPartValue = (startIndex - index) * currentCharValue
  1662. if currentCharValue >= prevCharValue {
  1663. number += currentPartValue - subtractNumber
  1664. prevCharValue = currentCharValue
  1665. subtractNumber = 0
  1666. continue
  1667. }
  1668. subtractNumber += currentPartValue
  1669. }
  1670. if subtractNumber != 0 {
  1671. number -= subtractNumber
  1672. }
  1673. if isNegative {
  1674. number = -number
  1675. }
  1676. return newNumberFormulaArg(float64(number))
  1677. }
  1678. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1679. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1680. // of the function is:
  1681. //
  1682. // ASIN(number)
  1683. //
  1684. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1685. if argsList.Len() != 1 {
  1686. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1687. }
  1688. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1689. if arg.Type == ArgError {
  1690. return arg
  1691. }
  1692. return newNumberFormulaArg(math.Asin(arg.Number))
  1693. }
  1694. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1695. // The syntax of the function is:
  1696. //
  1697. // ASINH(number)
  1698. //
  1699. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1700. if argsList.Len() != 1 {
  1701. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1702. }
  1703. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1704. if arg.Type == ArgError {
  1705. return arg
  1706. }
  1707. return newNumberFormulaArg(math.Asinh(arg.Number))
  1708. }
  1709. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1710. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1711. // syntax of the function is:
  1712. //
  1713. // ATAN(number)
  1714. //
  1715. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1716. if argsList.Len() != 1 {
  1717. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1718. }
  1719. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1720. if arg.Type == ArgError {
  1721. return arg
  1722. }
  1723. return newNumberFormulaArg(math.Atan(arg.Number))
  1724. }
  1725. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1726. // number. The syntax of the function is:
  1727. //
  1728. // ATANH(number)
  1729. //
  1730. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1731. if argsList.Len() != 1 {
  1732. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1733. }
  1734. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1735. if arg.Type == ArgError {
  1736. return arg
  1737. }
  1738. return newNumberFormulaArg(math.Atanh(arg.Number))
  1739. }
  1740. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1741. // given set of x and y coordinates, and returns an angle, in radians, between
  1742. // -π/2 and +π/2. The syntax of the function is:
  1743. //
  1744. // ATAN2(x_num,y_num)
  1745. //
  1746. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1747. if argsList.Len() != 2 {
  1748. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1749. }
  1750. x := argsList.Back().Value.(formulaArg).ToNumber()
  1751. if x.Type == ArgError {
  1752. return x
  1753. }
  1754. y := argsList.Front().Value.(formulaArg).ToNumber()
  1755. if y.Type == ArgError {
  1756. return y
  1757. }
  1758. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1759. }
  1760. // BASE function converts a number into a supplied base (radix), and returns a
  1761. // text representation of the calculated value. The syntax of the function is:
  1762. //
  1763. // BASE(number,radix,[min_length])
  1764. //
  1765. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1766. if argsList.Len() < 2 {
  1767. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1768. }
  1769. if argsList.Len() > 3 {
  1770. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1771. }
  1772. var minLength int
  1773. var err error
  1774. number := argsList.Front().Value.(formulaArg).ToNumber()
  1775. if number.Type == ArgError {
  1776. return number
  1777. }
  1778. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1779. if radix.Type == ArgError {
  1780. return radix
  1781. }
  1782. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1783. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1784. }
  1785. if argsList.Len() > 2 {
  1786. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1787. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1788. }
  1789. }
  1790. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1791. if len(result) < minLength {
  1792. result = strings.Repeat("0", minLength-len(result)) + result
  1793. }
  1794. return newStringFormulaArg(strings.ToUpper(result))
  1795. }
  1796. // CEILING function rounds a supplied number away from zero, to the nearest
  1797. // multiple of a given number. The syntax of the function is:
  1798. //
  1799. // CEILING(number,significance)
  1800. //
  1801. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1802. if argsList.Len() == 0 {
  1803. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1804. }
  1805. if argsList.Len() > 2 {
  1806. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1807. }
  1808. number, significance, res := 0.0, 1.0, 0.0
  1809. n := argsList.Front().Value.(formulaArg).ToNumber()
  1810. if n.Type == ArgError {
  1811. return n
  1812. }
  1813. number = n.Number
  1814. if number < 0 {
  1815. significance = -1
  1816. }
  1817. if argsList.Len() > 1 {
  1818. s := argsList.Back().Value.(formulaArg).ToNumber()
  1819. if s.Type == ArgError {
  1820. return s
  1821. }
  1822. significance = s.Number
  1823. }
  1824. if significance < 0 && number > 0 {
  1825. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1826. }
  1827. if argsList.Len() == 1 {
  1828. return newNumberFormulaArg(math.Ceil(number))
  1829. }
  1830. number, res = math.Modf(number / significance)
  1831. if res > 0 {
  1832. number++
  1833. }
  1834. return newNumberFormulaArg(number * significance)
  1835. }
  1836. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  1837. // of significance. The syntax of the function is:
  1838. //
  1839. // CEILING.MATH(number,[significance],[mode])
  1840. //
  1841. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  1842. if argsList.Len() == 0 {
  1843. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1844. }
  1845. if argsList.Len() > 3 {
  1846. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1847. }
  1848. number, significance, mode := 0.0, 1.0, 1.0
  1849. n := argsList.Front().Value.(formulaArg).ToNumber()
  1850. if n.Type == ArgError {
  1851. return n
  1852. }
  1853. number = n.Number
  1854. if number < 0 {
  1855. significance = -1
  1856. }
  1857. if argsList.Len() > 1 {
  1858. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1859. if s.Type == ArgError {
  1860. return s
  1861. }
  1862. significance = s.Number
  1863. }
  1864. if argsList.Len() == 1 {
  1865. return newNumberFormulaArg(math.Ceil(number))
  1866. }
  1867. if argsList.Len() > 2 {
  1868. m := argsList.Back().Value.(formulaArg).ToNumber()
  1869. if m.Type == ArgError {
  1870. return m
  1871. }
  1872. mode = m.Number
  1873. }
  1874. val, res := math.Modf(number / significance)
  1875. if res != 0 {
  1876. if number > 0 {
  1877. val++
  1878. } else if mode < 0 {
  1879. val--
  1880. }
  1881. }
  1882. return newNumberFormulaArg(val * significance)
  1883. }
  1884. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  1885. // number's sign), to the nearest multiple of a given number. The syntax of
  1886. // the function is:
  1887. //
  1888. // CEILING.PRECISE(number,[significance])
  1889. //
  1890. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  1891. if argsList.Len() == 0 {
  1892. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1893. }
  1894. if argsList.Len() > 2 {
  1895. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1896. }
  1897. number, significance := 0.0, 1.0
  1898. n := argsList.Front().Value.(formulaArg).ToNumber()
  1899. if n.Type == ArgError {
  1900. return n
  1901. }
  1902. number = n.Number
  1903. if number < 0 {
  1904. significance = -1
  1905. }
  1906. if argsList.Len() == 1 {
  1907. return newNumberFormulaArg(math.Ceil(number))
  1908. }
  1909. if argsList.Len() > 1 {
  1910. s := argsList.Back().Value.(formulaArg).ToNumber()
  1911. if s.Type == ArgError {
  1912. return s
  1913. }
  1914. significance = s.Number
  1915. significance = math.Abs(significance)
  1916. if significance == 0 {
  1917. return newNumberFormulaArg(significance)
  1918. }
  1919. }
  1920. val, res := math.Modf(number / significance)
  1921. if res != 0 {
  1922. if number > 0 {
  1923. val++
  1924. }
  1925. }
  1926. return newNumberFormulaArg(val * significance)
  1927. }
  1928. // COMBIN function calculates the number of combinations (in any order) of a
  1929. // given number objects from a set. The syntax of the function is:
  1930. //
  1931. // COMBIN(number,number_chosen)
  1932. //
  1933. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1934. if argsList.Len() != 2 {
  1935. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1936. }
  1937. number, chosen, val := 0.0, 0.0, 1.0
  1938. n := argsList.Front().Value.(formulaArg).ToNumber()
  1939. if n.Type == ArgError {
  1940. return n
  1941. }
  1942. number = n.Number
  1943. c := argsList.Back().Value.(formulaArg).ToNumber()
  1944. if c.Type == ArgError {
  1945. return c
  1946. }
  1947. chosen = c.Number
  1948. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1949. if chosen > number {
  1950. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1951. }
  1952. if chosen == number || chosen == 0 {
  1953. return newNumberFormulaArg(1)
  1954. }
  1955. for c := float64(1); c <= chosen; c++ {
  1956. val *= (number + 1 - c) / c
  1957. }
  1958. return newNumberFormulaArg(math.Ceil(val))
  1959. }
  1960. // COMBINA function calculates the number of combinations, with repetitions,
  1961. // of a given number objects from a set. The syntax of the function is:
  1962. //
  1963. // COMBINA(number,number_chosen)
  1964. //
  1965. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1966. if argsList.Len() != 2 {
  1967. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1968. }
  1969. var number, chosen float64
  1970. n := argsList.Front().Value.(formulaArg).ToNumber()
  1971. if n.Type == ArgError {
  1972. return n
  1973. }
  1974. number = n.Number
  1975. c := argsList.Back().Value.(formulaArg).ToNumber()
  1976. if c.Type == ArgError {
  1977. return c
  1978. }
  1979. chosen = c.Number
  1980. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1981. if number < chosen {
  1982. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1983. }
  1984. if number == 0 {
  1985. return newNumberFormulaArg(number)
  1986. }
  1987. args := list.New()
  1988. args.PushBack(formulaArg{
  1989. String: fmt.Sprintf("%g", number+chosen-1),
  1990. Type: ArgString,
  1991. })
  1992. args.PushBack(formulaArg{
  1993. String: fmt.Sprintf("%g", number-1),
  1994. Type: ArgString,
  1995. })
  1996. return fn.COMBIN(args)
  1997. }
  1998. // COS function calculates the cosine of a given angle. The syntax of the
  1999. // function is:
  2000. //
  2001. // COS(number)
  2002. //
  2003. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2004. if argsList.Len() != 1 {
  2005. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2006. }
  2007. val := argsList.Front().Value.(formulaArg).ToNumber()
  2008. if val.Type == ArgError {
  2009. return val
  2010. }
  2011. return newNumberFormulaArg(math.Cos(val.Number))
  2012. }
  2013. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2014. // The syntax of the function is:
  2015. //
  2016. // COSH(number)
  2017. //
  2018. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2019. if argsList.Len() != 1 {
  2020. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2021. }
  2022. val := argsList.Front().Value.(formulaArg).ToNumber()
  2023. if val.Type == ArgError {
  2024. return val
  2025. }
  2026. return newNumberFormulaArg(math.Cosh(val.Number))
  2027. }
  2028. // COT function calculates the cotangent of a given angle. The syntax of the
  2029. // function is:
  2030. //
  2031. // COT(number)
  2032. //
  2033. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2034. if argsList.Len() != 1 {
  2035. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2036. }
  2037. val := argsList.Front().Value.(formulaArg).ToNumber()
  2038. if val.Type == ArgError {
  2039. return val
  2040. }
  2041. if val.Number == 0 {
  2042. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2043. }
  2044. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2045. }
  2046. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2047. // angle. The syntax of the function is:
  2048. //
  2049. // COTH(number)
  2050. //
  2051. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2052. if argsList.Len() != 1 {
  2053. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2054. }
  2055. val := argsList.Front().Value.(formulaArg).ToNumber()
  2056. if val.Type == ArgError {
  2057. return val
  2058. }
  2059. if val.Number == 0 {
  2060. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2061. }
  2062. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2063. }
  2064. // CSC function calculates the cosecant of a given angle. The syntax of the
  2065. // function is:
  2066. //
  2067. // CSC(number)
  2068. //
  2069. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2070. if argsList.Len() != 1 {
  2071. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2072. }
  2073. val := argsList.Front().Value.(formulaArg).ToNumber()
  2074. if val.Type == ArgError {
  2075. return val
  2076. }
  2077. if val.Number == 0 {
  2078. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2079. }
  2080. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2081. }
  2082. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2083. // angle. The syntax of the function is:
  2084. //
  2085. // CSCH(number)
  2086. //
  2087. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2088. if argsList.Len() != 1 {
  2089. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2090. }
  2091. val := argsList.Front().Value.(formulaArg).ToNumber()
  2092. if val.Type == ArgError {
  2093. return val
  2094. }
  2095. if val.Number == 0 {
  2096. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2097. }
  2098. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2099. }
  2100. // DECIMAL function converts a text representation of a number in a specified
  2101. // base, into a decimal value. The syntax of the function is:
  2102. //
  2103. // DECIMAL(text,radix)
  2104. //
  2105. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2106. if argsList.Len() != 2 {
  2107. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2108. }
  2109. var text = argsList.Front().Value.(formulaArg).String
  2110. var radix int
  2111. var err error
  2112. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2113. if err != nil {
  2114. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2115. }
  2116. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2117. text = text[2:]
  2118. }
  2119. val, err := strconv.ParseInt(text, radix, 64)
  2120. if err != nil {
  2121. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2122. }
  2123. return newNumberFormulaArg(float64(val))
  2124. }
  2125. // DEGREES function converts radians into degrees. The syntax of the function
  2126. // is:
  2127. //
  2128. // DEGREES(angle)
  2129. //
  2130. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2131. if argsList.Len() != 1 {
  2132. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2133. }
  2134. val := argsList.Front().Value.(formulaArg).ToNumber()
  2135. if val.Type == ArgError {
  2136. return val
  2137. }
  2138. if val.Number == 0 {
  2139. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2140. }
  2141. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2142. }
  2143. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2144. // positive number up and a negative number down), to the next even number.
  2145. // The syntax of the function is:
  2146. //
  2147. // EVEN(number)
  2148. //
  2149. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2150. if argsList.Len() != 1 {
  2151. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2152. }
  2153. number := argsList.Front().Value.(formulaArg).ToNumber()
  2154. if number.Type == ArgError {
  2155. return number
  2156. }
  2157. sign := math.Signbit(number.Number)
  2158. m, frac := math.Modf(number.Number / 2)
  2159. val := m * 2
  2160. if frac != 0 {
  2161. if !sign {
  2162. val += 2
  2163. } else {
  2164. val -= 2
  2165. }
  2166. }
  2167. return newNumberFormulaArg(val)
  2168. }
  2169. // EXP function calculates the value of the mathematical constant e, raised to
  2170. // the power of a given number. The syntax of the function is:
  2171. //
  2172. // EXP(number)
  2173. //
  2174. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2175. if argsList.Len() != 1 {
  2176. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2177. }
  2178. number := argsList.Front().Value.(formulaArg).ToNumber()
  2179. if number.Type == ArgError {
  2180. return number
  2181. }
  2182. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2183. }
  2184. // fact returns the factorial of a supplied number.
  2185. func fact(number float64) float64 {
  2186. val := float64(1)
  2187. for i := float64(2); i <= number; i++ {
  2188. val *= i
  2189. }
  2190. return val
  2191. }
  2192. // FACT function returns the factorial of a supplied number. The syntax of the
  2193. // function is:
  2194. //
  2195. // FACT(number)
  2196. //
  2197. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2198. if argsList.Len() != 1 {
  2199. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2200. }
  2201. number := argsList.Front().Value.(formulaArg).ToNumber()
  2202. if number.Type == ArgError {
  2203. return number
  2204. }
  2205. if number.Number < 0 {
  2206. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2207. }
  2208. return newNumberFormulaArg(fact(number.Number))
  2209. }
  2210. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2211. // syntax of the function is:
  2212. //
  2213. // FACTDOUBLE(number)
  2214. //
  2215. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2216. if argsList.Len() != 1 {
  2217. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2218. }
  2219. val := 1.0
  2220. number := argsList.Front().Value.(formulaArg).ToNumber()
  2221. if number.Type == ArgError {
  2222. return number
  2223. }
  2224. if number.Number < 0 {
  2225. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2226. }
  2227. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2228. val *= i
  2229. }
  2230. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2231. }
  2232. // FLOOR function rounds a supplied number towards zero to the nearest
  2233. // multiple of a specified significance. The syntax of the function is:
  2234. //
  2235. // FLOOR(number,significance)
  2236. //
  2237. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2238. if argsList.Len() != 2 {
  2239. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2240. }
  2241. number := argsList.Front().Value.(formulaArg).ToNumber()
  2242. if number.Type == ArgError {
  2243. return number
  2244. }
  2245. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2246. if significance.Type == ArgError {
  2247. return significance
  2248. }
  2249. if significance.Number < 0 && number.Number >= 0 {
  2250. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2251. }
  2252. val := number.Number
  2253. val, res := math.Modf(val / significance.Number)
  2254. if res != 0 {
  2255. if number.Number < 0 && res < 0 {
  2256. val--
  2257. }
  2258. }
  2259. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2260. }
  2261. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2262. // of significance. The syntax of the function is:
  2263. //
  2264. // FLOOR.MATH(number,[significance],[mode])
  2265. //
  2266. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2267. if argsList.Len() == 0 {
  2268. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2269. }
  2270. if argsList.Len() > 3 {
  2271. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2272. }
  2273. significance, mode := 1.0, 1.0
  2274. number := argsList.Front().Value.(formulaArg).ToNumber()
  2275. if number.Type == ArgError {
  2276. return number
  2277. }
  2278. if number.Number < 0 {
  2279. significance = -1
  2280. }
  2281. if argsList.Len() > 1 {
  2282. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2283. if s.Type == ArgError {
  2284. return s
  2285. }
  2286. significance = s.Number
  2287. }
  2288. if argsList.Len() == 1 {
  2289. return newNumberFormulaArg(math.Floor(number.Number))
  2290. }
  2291. if argsList.Len() > 2 {
  2292. m := argsList.Back().Value.(formulaArg).ToNumber()
  2293. if m.Type == ArgError {
  2294. return m
  2295. }
  2296. mode = m.Number
  2297. }
  2298. val, res := math.Modf(number.Number / significance)
  2299. if res != 0 && number.Number < 0 && mode > 0 {
  2300. val--
  2301. }
  2302. return newNumberFormulaArg(val * significance)
  2303. }
  2304. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2305. // multiple of significance. The syntax of the function is:
  2306. //
  2307. // FLOOR.PRECISE(number,[significance])
  2308. //
  2309. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2310. if argsList.Len() == 0 {
  2311. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2312. }
  2313. if argsList.Len() > 2 {
  2314. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2315. }
  2316. var significance float64
  2317. number := argsList.Front().Value.(formulaArg).ToNumber()
  2318. if number.Type == ArgError {
  2319. return number
  2320. }
  2321. if number.Number < 0 {
  2322. significance = -1
  2323. }
  2324. if argsList.Len() == 1 {
  2325. return newNumberFormulaArg(math.Floor(number.Number))
  2326. }
  2327. if argsList.Len() > 1 {
  2328. s := argsList.Back().Value.(formulaArg).ToNumber()
  2329. if s.Type == ArgError {
  2330. return s
  2331. }
  2332. significance = s.Number
  2333. significance = math.Abs(significance)
  2334. if significance == 0 {
  2335. return newNumberFormulaArg(significance)
  2336. }
  2337. }
  2338. val, res := math.Modf(number.Number / significance)
  2339. if res != 0 {
  2340. if number.Number < 0 {
  2341. val--
  2342. }
  2343. }
  2344. return newNumberFormulaArg(val * significance)
  2345. }
  2346. // gcd returns the greatest common divisor of two supplied integers.
  2347. func gcd(x, y float64) float64 {
  2348. x, y = math.Trunc(x), math.Trunc(y)
  2349. if x == 0 {
  2350. return y
  2351. }
  2352. if y == 0 {
  2353. return x
  2354. }
  2355. for x != y {
  2356. if x > y {
  2357. x = x - y
  2358. } else {
  2359. y = y - x
  2360. }
  2361. }
  2362. return x
  2363. }
  2364. // GCD function returns the greatest common divisor of two or more supplied
  2365. // integers. The syntax of the function is:
  2366. //
  2367. // GCD(number1,[number2],...)
  2368. //
  2369. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2370. if argsList.Len() == 0 {
  2371. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2372. }
  2373. var (
  2374. val float64
  2375. nums = []float64{}
  2376. )
  2377. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2378. token := arg.Value.(formulaArg)
  2379. switch token.Type {
  2380. case ArgString:
  2381. num := token.ToNumber()
  2382. if num.Type == ArgError {
  2383. return num
  2384. }
  2385. val = num.Number
  2386. case ArgNumber:
  2387. val = token.Number
  2388. }
  2389. nums = append(nums, val)
  2390. }
  2391. if nums[0] < 0 {
  2392. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2393. }
  2394. if len(nums) == 1 {
  2395. return newNumberFormulaArg(nums[0])
  2396. }
  2397. cd := nums[0]
  2398. for i := 1; i < len(nums); i++ {
  2399. if nums[i] < 0 {
  2400. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2401. }
  2402. cd = gcd(cd, nums[i])
  2403. }
  2404. return newNumberFormulaArg(cd)
  2405. }
  2406. // INT function truncates a supplied number down to the closest integer. The
  2407. // syntax of the function is:
  2408. //
  2409. // INT(number)
  2410. //
  2411. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2412. if argsList.Len() != 1 {
  2413. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2414. }
  2415. number := argsList.Front().Value.(formulaArg).ToNumber()
  2416. if number.Type == ArgError {
  2417. return number
  2418. }
  2419. val, frac := math.Modf(number.Number)
  2420. if frac < 0 {
  2421. val--
  2422. }
  2423. return newNumberFormulaArg(val)
  2424. }
  2425. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2426. // number's sign), to the nearest multiple of a supplied significance. The
  2427. // syntax of the function is:
  2428. //
  2429. // ISO.CEILING(number,[significance])
  2430. //
  2431. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2432. if argsList.Len() == 0 {
  2433. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2434. }
  2435. if argsList.Len() > 2 {
  2436. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2437. }
  2438. var significance float64
  2439. number := argsList.Front().Value.(formulaArg).ToNumber()
  2440. if number.Type == ArgError {
  2441. return number
  2442. }
  2443. if number.Number < 0 {
  2444. significance = -1
  2445. }
  2446. if argsList.Len() == 1 {
  2447. return newNumberFormulaArg(math.Ceil(number.Number))
  2448. }
  2449. if argsList.Len() > 1 {
  2450. s := argsList.Back().Value.(formulaArg).ToNumber()
  2451. if s.Type == ArgError {
  2452. return s
  2453. }
  2454. significance = s.Number
  2455. significance = math.Abs(significance)
  2456. if significance == 0 {
  2457. return newNumberFormulaArg(significance)
  2458. }
  2459. }
  2460. val, res := math.Modf(number.Number / significance)
  2461. if res != 0 {
  2462. if number.Number > 0 {
  2463. val++
  2464. }
  2465. }
  2466. return newNumberFormulaArg(val * significance)
  2467. }
  2468. // lcm returns the least common multiple of two supplied integers.
  2469. func lcm(a, b float64) float64 {
  2470. a = math.Trunc(a)
  2471. b = math.Trunc(b)
  2472. if a == 0 && b == 0 {
  2473. return 0
  2474. }
  2475. return a * b / gcd(a, b)
  2476. }
  2477. // LCM function returns the least common multiple of two or more supplied
  2478. // integers. The syntax of the function is:
  2479. //
  2480. // LCM(number1,[number2],...)
  2481. //
  2482. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2483. if argsList.Len() == 0 {
  2484. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2485. }
  2486. var (
  2487. val float64
  2488. nums = []float64{}
  2489. err error
  2490. )
  2491. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2492. token := arg.Value.(formulaArg)
  2493. switch token.Type {
  2494. case ArgString:
  2495. if token.String == "" {
  2496. continue
  2497. }
  2498. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2499. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2500. }
  2501. case ArgNumber:
  2502. val = token.Number
  2503. }
  2504. nums = append(nums, val)
  2505. }
  2506. if nums[0] < 0 {
  2507. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2508. }
  2509. if len(nums) == 1 {
  2510. return newNumberFormulaArg(nums[0])
  2511. }
  2512. cm := nums[0]
  2513. for i := 1; i < len(nums); i++ {
  2514. if nums[i] < 0 {
  2515. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2516. }
  2517. cm = lcm(cm, nums[i])
  2518. }
  2519. return newNumberFormulaArg(cm)
  2520. }
  2521. // LN function calculates the natural logarithm of a given number. The syntax
  2522. // of the function is:
  2523. //
  2524. // LN(number)
  2525. //
  2526. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2527. if argsList.Len() != 1 {
  2528. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2529. }
  2530. number := argsList.Front().Value.(formulaArg).ToNumber()
  2531. if number.Type == ArgError {
  2532. return number
  2533. }
  2534. return newNumberFormulaArg(math.Log(number.Number))
  2535. }
  2536. // LOG function calculates the logarithm of a given number, to a supplied
  2537. // base. The syntax of the function is:
  2538. //
  2539. // LOG(number,[base])
  2540. //
  2541. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2542. if argsList.Len() == 0 {
  2543. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2544. }
  2545. if argsList.Len() > 2 {
  2546. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2547. }
  2548. base := 10.0
  2549. number := argsList.Front().Value.(formulaArg).ToNumber()
  2550. if number.Type == ArgError {
  2551. return number
  2552. }
  2553. if argsList.Len() > 1 {
  2554. b := argsList.Back().Value.(formulaArg).ToNumber()
  2555. if b.Type == ArgError {
  2556. return b
  2557. }
  2558. base = b.Number
  2559. }
  2560. if number.Number == 0 {
  2561. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2562. }
  2563. if base == 0 {
  2564. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2565. }
  2566. if base == 1 {
  2567. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2568. }
  2569. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2570. }
  2571. // LOG10 function calculates the base 10 logarithm of a given number. The
  2572. // syntax of the function is:
  2573. //
  2574. // LOG10(number)
  2575. //
  2576. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2577. if argsList.Len() != 1 {
  2578. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2579. }
  2580. number := argsList.Front().Value.(formulaArg).ToNumber()
  2581. if number.Type == ArgError {
  2582. return number
  2583. }
  2584. return newNumberFormulaArg(math.Log10(number.Number))
  2585. }
  2586. // minor function implement a minor of a matrix A is the determinant of some
  2587. // smaller square matrix.
  2588. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2589. ret := [][]float64{}
  2590. for i := range sqMtx {
  2591. if i == 0 {
  2592. continue
  2593. }
  2594. row := []float64{}
  2595. for j := range sqMtx {
  2596. if j == idx {
  2597. continue
  2598. }
  2599. row = append(row, sqMtx[i][j])
  2600. }
  2601. ret = append(ret, row)
  2602. }
  2603. return ret
  2604. }
  2605. // det determinant of the 2x2 matrix.
  2606. func det(sqMtx [][]float64) float64 {
  2607. if len(sqMtx) == 2 {
  2608. m00 := sqMtx[0][0]
  2609. m01 := sqMtx[0][1]
  2610. m10 := sqMtx[1][0]
  2611. m11 := sqMtx[1][1]
  2612. return m00*m11 - m10*m01
  2613. }
  2614. var res, sgn float64 = 0, 1
  2615. for j := range sqMtx {
  2616. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2617. sgn *= -1
  2618. }
  2619. return res
  2620. }
  2621. // MDETERM calculates the determinant of a square matrix. The
  2622. // syntax of the function is:
  2623. //
  2624. // MDETERM(array)
  2625. //
  2626. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2627. var (
  2628. num float64
  2629. numMtx = [][]float64{}
  2630. err error
  2631. strMtx [][]formulaArg
  2632. )
  2633. if argsList.Len() < 1 {
  2634. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2635. }
  2636. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2637. var rows = len(strMtx)
  2638. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2639. if len(row) != rows {
  2640. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2641. }
  2642. numRow := []float64{}
  2643. for _, ele := range row {
  2644. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2645. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2646. }
  2647. numRow = append(numRow, num)
  2648. }
  2649. numMtx = append(numMtx, numRow)
  2650. }
  2651. return newNumberFormulaArg(det(numMtx))
  2652. }
  2653. // MOD function returns the remainder of a division between two supplied
  2654. // numbers. The syntax of the function is:
  2655. //
  2656. // MOD(number,divisor)
  2657. //
  2658. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2659. if argsList.Len() != 2 {
  2660. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2661. }
  2662. number := argsList.Front().Value.(formulaArg).ToNumber()
  2663. if number.Type == ArgError {
  2664. return number
  2665. }
  2666. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2667. if divisor.Type == ArgError {
  2668. return divisor
  2669. }
  2670. if divisor.Number == 0 {
  2671. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2672. }
  2673. trunc, rem := math.Modf(number.Number / divisor.Number)
  2674. if rem < 0 {
  2675. trunc--
  2676. }
  2677. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2678. }
  2679. // MROUND function rounds a supplied number up or down to the nearest multiple
  2680. // of a given number. The syntax of the function is:
  2681. //
  2682. // MROUND(number,multiple)
  2683. //
  2684. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2685. if argsList.Len() != 2 {
  2686. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2687. }
  2688. n := argsList.Front().Value.(formulaArg).ToNumber()
  2689. if n.Type == ArgError {
  2690. return n
  2691. }
  2692. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2693. if multiple.Type == ArgError {
  2694. return multiple
  2695. }
  2696. if multiple.Number == 0 {
  2697. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2698. }
  2699. if multiple.Number < 0 && n.Number > 0 ||
  2700. multiple.Number > 0 && n.Number < 0 {
  2701. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2702. }
  2703. number, res := math.Modf(n.Number / multiple.Number)
  2704. if math.Trunc(res+0.5) > 0 {
  2705. number++
  2706. }
  2707. return newNumberFormulaArg(number * multiple.Number)
  2708. }
  2709. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2710. // supplied values to the product of factorials of those values. The syntax of
  2711. // the function is:
  2712. //
  2713. // MULTINOMIAL(number1,[number2],...)
  2714. //
  2715. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2716. val, num, denom := 0.0, 0.0, 1.0
  2717. var err error
  2718. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2719. token := arg.Value.(formulaArg)
  2720. switch token.Type {
  2721. case ArgString:
  2722. if token.String == "" {
  2723. continue
  2724. }
  2725. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2726. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2727. }
  2728. case ArgNumber:
  2729. val = token.Number
  2730. }
  2731. num += val
  2732. denom *= fact(val)
  2733. }
  2734. return newNumberFormulaArg(fact(num) / denom)
  2735. }
  2736. // MUNIT function returns the unit matrix for a specified dimension. The
  2737. // syntax of the function is:
  2738. //
  2739. // MUNIT(dimension)
  2740. //
  2741. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2742. if argsList.Len() != 1 {
  2743. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2744. }
  2745. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2746. if dimension.Type == ArgError || dimension.Number < 0 {
  2747. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2748. }
  2749. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2750. for i := 0; i < int(dimension.Number); i++ {
  2751. row := make([]formulaArg, int(dimension.Number))
  2752. for j := 0; j < int(dimension.Number); j++ {
  2753. if i == j {
  2754. row[j] = newNumberFormulaArg(1.0)
  2755. } else {
  2756. row[j] = newNumberFormulaArg(0.0)
  2757. }
  2758. }
  2759. matrix = append(matrix, row)
  2760. }
  2761. return newMatrixFormulaArg(matrix)
  2762. }
  2763. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2764. // number up and a negative number down), to the next odd number. The syntax
  2765. // of the function is:
  2766. //
  2767. // ODD(number)
  2768. //
  2769. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2770. if argsList.Len() != 1 {
  2771. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2772. }
  2773. number := argsList.Back().Value.(formulaArg).ToNumber()
  2774. if number.Type == ArgError {
  2775. return number
  2776. }
  2777. if number.Number == 0 {
  2778. return newNumberFormulaArg(1)
  2779. }
  2780. sign := math.Signbit(number.Number)
  2781. m, frac := math.Modf((number.Number - 1) / 2)
  2782. val := m*2 + 1
  2783. if frac != 0 {
  2784. if !sign {
  2785. val += 2
  2786. } else {
  2787. val -= 2
  2788. }
  2789. }
  2790. return newNumberFormulaArg(val)
  2791. }
  2792. // PI function returns the value of the mathematical constant π (pi), accurate
  2793. // to 15 digits (14 decimal places). The syntax of the function is:
  2794. //
  2795. // PI()
  2796. //
  2797. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2798. if argsList.Len() != 0 {
  2799. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2800. }
  2801. return newNumberFormulaArg(math.Pi)
  2802. }
  2803. // POWER function calculates a given number, raised to a supplied power.
  2804. // The syntax of the function is:
  2805. //
  2806. // POWER(number,power)
  2807. //
  2808. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2809. if argsList.Len() != 2 {
  2810. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2811. }
  2812. x := argsList.Front().Value.(formulaArg).ToNumber()
  2813. if x.Type == ArgError {
  2814. return x
  2815. }
  2816. y := argsList.Back().Value.(formulaArg).ToNumber()
  2817. if y.Type == ArgError {
  2818. return y
  2819. }
  2820. if x.Number == 0 && y.Number == 0 {
  2821. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2822. }
  2823. if x.Number == 0 && y.Number < 0 {
  2824. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2825. }
  2826. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2827. }
  2828. // PRODUCT function returns the product (multiplication) of a supplied set of
  2829. // numerical values. The syntax of the function is:
  2830. //
  2831. // PRODUCT(number1,[number2],...)
  2832. //
  2833. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2834. val, product := 0.0, 1.0
  2835. var err error
  2836. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2837. token := arg.Value.(formulaArg)
  2838. switch token.Type {
  2839. case ArgUnknown:
  2840. continue
  2841. case ArgString:
  2842. if token.String == "" {
  2843. continue
  2844. }
  2845. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2846. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2847. }
  2848. product = product * val
  2849. case ArgNumber:
  2850. product = product * token.Number
  2851. case ArgMatrix:
  2852. for _, row := range token.Matrix {
  2853. for _, value := range row {
  2854. if value.String == "" {
  2855. continue
  2856. }
  2857. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2858. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2859. }
  2860. product = product * val
  2861. }
  2862. }
  2863. }
  2864. }
  2865. return newNumberFormulaArg(product)
  2866. }
  2867. // QUOTIENT function returns the integer portion of a division between two
  2868. // supplied numbers. The syntax of the function is:
  2869. //
  2870. // QUOTIENT(numerator,denominator)
  2871. //
  2872. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2873. if argsList.Len() != 2 {
  2874. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2875. }
  2876. x := argsList.Front().Value.(formulaArg).ToNumber()
  2877. if x.Type == ArgError {
  2878. return x
  2879. }
  2880. y := argsList.Back().Value.(formulaArg).ToNumber()
  2881. if y.Type == ArgError {
  2882. return y
  2883. }
  2884. if y.Number == 0 {
  2885. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2886. }
  2887. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2888. }
  2889. // RADIANS function converts radians into degrees. The syntax of the function is:
  2890. //
  2891. // RADIANS(angle)
  2892. //
  2893. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2894. if argsList.Len() != 1 {
  2895. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2896. }
  2897. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2898. if angle.Type == ArgError {
  2899. return angle
  2900. }
  2901. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2902. }
  2903. // RAND function generates a random real number between 0 and 1. The syntax of
  2904. // the function is:
  2905. //
  2906. // RAND()
  2907. //
  2908. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2909. if argsList.Len() != 0 {
  2910. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2911. }
  2912. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2913. }
  2914. // RANDBETWEEN function generates a random integer between two supplied
  2915. // integers. The syntax of the function is:
  2916. //
  2917. // RANDBETWEEN(bottom,top)
  2918. //
  2919. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2920. if argsList.Len() != 2 {
  2921. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2922. }
  2923. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2924. if bottom.Type == ArgError {
  2925. return bottom
  2926. }
  2927. top := argsList.Back().Value.(formulaArg).ToNumber()
  2928. if top.Type == ArgError {
  2929. return top
  2930. }
  2931. if top.Number < bottom.Number {
  2932. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2933. }
  2934. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2935. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2936. }
  2937. // romanNumerals defined a numeral system that originated in ancient Rome and
  2938. // remained the usual way of writing numbers throughout Europe well into the
  2939. // Late Middle Ages.
  2940. type romanNumerals struct {
  2941. n float64
  2942. s string
  2943. }
  2944. var romanTable = [][]romanNumerals{
  2945. {
  2946. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2947. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2948. },
  2949. {
  2950. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2951. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2952. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2953. },
  2954. {
  2955. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2956. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2957. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2958. },
  2959. {
  2960. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2961. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2962. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2963. {5, "V"}, {4, "IV"}, {1, "I"},
  2964. },
  2965. {
  2966. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2967. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2968. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2969. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2970. },
  2971. }
  2972. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2973. // integer, the function returns a text string depicting the roman numeral
  2974. // form of the number. The syntax of the function is:
  2975. //
  2976. // ROMAN(number,[form])
  2977. //
  2978. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2979. if argsList.Len() == 0 {
  2980. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2981. }
  2982. if argsList.Len() > 2 {
  2983. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2984. }
  2985. var form int
  2986. number := argsList.Front().Value.(formulaArg).ToNumber()
  2987. if number.Type == ArgError {
  2988. return number
  2989. }
  2990. if argsList.Len() > 1 {
  2991. f := argsList.Back().Value.(formulaArg).ToNumber()
  2992. if f.Type == ArgError {
  2993. return f
  2994. }
  2995. form = int(f.Number)
  2996. if form < 0 {
  2997. form = 0
  2998. } else if form > 4 {
  2999. form = 4
  3000. }
  3001. }
  3002. decimalTable := romanTable[0]
  3003. switch form {
  3004. case 1:
  3005. decimalTable = romanTable[1]
  3006. case 2:
  3007. decimalTable = romanTable[2]
  3008. case 3:
  3009. decimalTable = romanTable[3]
  3010. case 4:
  3011. decimalTable = romanTable[4]
  3012. }
  3013. val := math.Trunc(number.Number)
  3014. buf := bytes.Buffer{}
  3015. for _, r := range decimalTable {
  3016. for val >= r.n {
  3017. buf.WriteString(r.s)
  3018. val -= r.n
  3019. }
  3020. }
  3021. return newStringFormulaArg(buf.String())
  3022. }
  3023. type roundMode byte
  3024. const (
  3025. closest roundMode = iota
  3026. down
  3027. up
  3028. )
  3029. // round rounds a supplied number up or down.
  3030. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3031. var significance float64
  3032. if digits > 0 {
  3033. significance = math.Pow(1/10.0, digits)
  3034. } else {
  3035. significance = math.Pow(10.0, -digits)
  3036. }
  3037. val, res := math.Modf(number / significance)
  3038. switch mode {
  3039. case closest:
  3040. const eps = 0.499999999
  3041. if res >= eps {
  3042. val++
  3043. } else if res <= -eps {
  3044. val--
  3045. }
  3046. case down:
  3047. case up:
  3048. if res > 0 {
  3049. val++
  3050. } else if res < 0 {
  3051. val--
  3052. }
  3053. }
  3054. return val * significance
  3055. }
  3056. // ROUND function rounds a supplied number up or down, to a specified number
  3057. // of decimal places. The syntax of the function is:
  3058. //
  3059. // ROUND(number,num_digits)
  3060. //
  3061. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3062. if argsList.Len() != 2 {
  3063. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3064. }
  3065. number := argsList.Front().Value.(formulaArg).ToNumber()
  3066. if number.Type == ArgError {
  3067. return number
  3068. }
  3069. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3070. if digits.Type == ArgError {
  3071. return digits
  3072. }
  3073. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3074. }
  3075. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3076. // specified number of decimal places. The syntax of the function is:
  3077. //
  3078. // ROUNDDOWN(number,num_digits)
  3079. //
  3080. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3081. if argsList.Len() != 2 {
  3082. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3083. }
  3084. number := argsList.Front().Value.(formulaArg).ToNumber()
  3085. if number.Type == ArgError {
  3086. return number
  3087. }
  3088. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3089. if digits.Type == ArgError {
  3090. return digits
  3091. }
  3092. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3093. }
  3094. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3095. // specified number of decimal places. The syntax of the function is:
  3096. //
  3097. // ROUNDUP(number,num_digits)
  3098. //
  3099. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3100. if argsList.Len() != 2 {
  3101. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3102. }
  3103. number := argsList.Front().Value.(formulaArg).ToNumber()
  3104. if number.Type == ArgError {
  3105. return number
  3106. }
  3107. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3108. if digits.Type == ArgError {
  3109. return digits
  3110. }
  3111. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3112. }
  3113. // SEC function calculates the secant of a given angle. The syntax of the
  3114. // function is:
  3115. //
  3116. // SEC(number)
  3117. //
  3118. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3119. if argsList.Len() != 1 {
  3120. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3121. }
  3122. number := argsList.Front().Value.(formulaArg).ToNumber()
  3123. if number.Type == ArgError {
  3124. return number
  3125. }
  3126. return newNumberFormulaArg(math.Cos(number.Number))
  3127. }
  3128. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3129. // The syntax of the function is:
  3130. //
  3131. // SECH(number)
  3132. //
  3133. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3134. if argsList.Len() != 1 {
  3135. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3136. }
  3137. number := argsList.Front().Value.(formulaArg).ToNumber()
  3138. if number.Type == ArgError {
  3139. return number
  3140. }
  3141. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3142. }
  3143. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3144. // number. I.e. if the number is positive, the Sign function returns +1, if
  3145. // the number is negative, the function returns -1 and if the number is 0
  3146. // (zero), the function returns 0. The syntax of the function is:
  3147. //
  3148. // SIGN(number)
  3149. //
  3150. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3151. if argsList.Len() != 1 {
  3152. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3153. }
  3154. val := argsList.Front().Value.(formulaArg).ToNumber()
  3155. if val.Type == ArgError {
  3156. return val
  3157. }
  3158. if val.Number < 0 {
  3159. return newNumberFormulaArg(-1)
  3160. }
  3161. if val.Number > 0 {
  3162. return newNumberFormulaArg(1)
  3163. }
  3164. return newNumberFormulaArg(0)
  3165. }
  3166. // SIN function calculates the sine of a given angle. The syntax of the
  3167. // function is:
  3168. //
  3169. // SIN(number)
  3170. //
  3171. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3172. if argsList.Len() != 1 {
  3173. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3174. }
  3175. number := argsList.Front().Value.(formulaArg).ToNumber()
  3176. if number.Type == ArgError {
  3177. return number
  3178. }
  3179. return newNumberFormulaArg(math.Sin(number.Number))
  3180. }
  3181. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3182. // The syntax of the function is:
  3183. //
  3184. // SINH(number)
  3185. //
  3186. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3187. if argsList.Len() != 1 {
  3188. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3189. }
  3190. number := argsList.Front().Value.(formulaArg).ToNumber()
  3191. if number.Type == ArgError {
  3192. return number
  3193. }
  3194. return newNumberFormulaArg(math.Sinh(number.Number))
  3195. }
  3196. // SQRT function calculates the positive square root of a supplied number. The
  3197. // syntax of the function is:
  3198. //
  3199. // SQRT(number)
  3200. //
  3201. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3202. if argsList.Len() != 1 {
  3203. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3204. }
  3205. value := argsList.Front().Value.(formulaArg).ToNumber()
  3206. if value.Type == ArgError {
  3207. return value
  3208. }
  3209. if value.Number < 0 {
  3210. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3211. }
  3212. return newNumberFormulaArg(math.Sqrt(value.Number))
  3213. }
  3214. // SQRTPI function returns the square root of a supplied number multiplied by
  3215. // the mathematical constant, π. The syntax of the function is:
  3216. //
  3217. // SQRTPI(number)
  3218. //
  3219. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3220. if argsList.Len() != 1 {
  3221. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3222. }
  3223. number := argsList.Front().Value.(formulaArg).ToNumber()
  3224. if number.Type == ArgError {
  3225. return number
  3226. }
  3227. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3228. }
  3229. // STDEV function calculates the sample standard deviation of a supplied set
  3230. // of values. The syntax of the function is:
  3231. //
  3232. // STDEV(number1,[number2],...)
  3233. //
  3234. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3235. if argsList.Len() < 1 {
  3236. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3237. }
  3238. return fn.stdev(false, argsList)
  3239. }
  3240. // STDEVdotS function calculates the sample standard deviation of a supplied
  3241. // set of values. The syntax of the function is:
  3242. //
  3243. // STDEV.S(number1,[number2],...)
  3244. //
  3245. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3246. if argsList.Len() < 1 {
  3247. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3248. }
  3249. return fn.stdev(false, argsList)
  3250. }
  3251. // STDEVA function estimates standard deviation based on a sample. The
  3252. // standard deviation is a measure of how widely values are dispersed from
  3253. // the average value (the mean). The syntax of the function is:
  3254. //
  3255. // STDEVA(number1,[number2],...)
  3256. //
  3257. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3258. if argsList.Len() < 1 {
  3259. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3260. }
  3261. return fn.stdev(true, argsList)
  3262. }
  3263. // stdev is an implementation of the formula function STDEV and STDEVA.
  3264. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3265. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3266. if result == -1 {
  3267. result = math.Pow((n.Number - m.Number), 2)
  3268. } else {
  3269. result += math.Pow((n.Number - m.Number), 2)
  3270. }
  3271. count++
  3272. return result, count
  3273. }
  3274. count, result := -1.0, -1.0
  3275. var mean formulaArg
  3276. if stdeva {
  3277. mean = fn.AVERAGEA(argsList)
  3278. } else {
  3279. mean = fn.AVERAGE(argsList)
  3280. }
  3281. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3282. token := arg.Value.(formulaArg)
  3283. switch token.Type {
  3284. case ArgString, ArgNumber:
  3285. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3286. continue
  3287. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3288. num := token.ToBool()
  3289. if num.Type == ArgNumber {
  3290. result, count = pow(result, count, num, mean)
  3291. continue
  3292. }
  3293. } else {
  3294. num := token.ToNumber()
  3295. if num.Type == ArgNumber {
  3296. result, count = pow(result, count, num, mean)
  3297. }
  3298. }
  3299. case ArgList, ArgMatrix:
  3300. for _, row := range token.ToList() {
  3301. if row.Type == ArgNumber || row.Type == ArgString {
  3302. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3303. continue
  3304. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3305. num := row.ToBool()
  3306. if num.Type == ArgNumber {
  3307. result, count = pow(result, count, num, mean)
  3308. continue
  3309. }
  3310. } else {
  3311. num := row.ToNumber()
  3312. if num.Type == ArgNumber {
  3313. result, count = pow(result, count, num, mean)
  3314. }
  3315. }
  3316. }
  3317. }
  3318. }
  3319. }
  3320. if count > 0 && result >= 0 {
  3321. return newNumberFormulaArg(math.Sqrt(result / count))
  3322. }
  3323. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3324. }
  3325. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3326. // the Cumulative Poisson Probability Function for a supplied set of
  3327. // parameters. The syntax of the function is:
  3328. //
  3329. // POISSON.DIST(x,mean,cumulative)
  3330. //
  3331. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3332. if argsList.Len() != 3 {
  3333. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3334. }
  3335. return fn.POISSON(argsList)
  3336. }
  3337. // POISSON function calculates the Poisson Probability Mass Function or the
  3338. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3339. // The syntax of the function is:
  3340. //
  3341. // POISSON(x,mean,cumulative)
  3342. //
  3343. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3344. if argsList.Len() != 3 {
  3345. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3346. }
  3347. var x, mean, cumulative formulaArg
  3348. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3349. return x
  3350. }
  3351. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3352. return mean
  3353. }
  3354. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3355. return cumulative
  3356. }
  3357. if x.Number < 0 || mean.Number <= 0 {
  3358. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3359. }
  3360. if cumulative.Number == 1 {
  3361. summer := 0.0
  3362. floor := math.Floor(x.Number)
  3363. for i := 0; i <= int(floor); i++ {
  3364. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3365. }
  3366. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3367. }
  3368. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3369. }
  3370. // SUM function adds together a supplied set of numbers and returns the sum of
  3371. // these values. The syntax of the function is:
  3372. //
  3373. // SUM(number1,[number2],...)
  3374. //
  3375. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3376. var sum float64
  3377. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3378. token := arg.Value.(formulaArg)
  3379. switch token.Type {
  3380. case ArgUnknown:
  3381. continue
  3382. case ArgString:
  3383. if num := token.ToNumber(); num.Type == ArgNumber {
  3384. sum += num.Number
  3385. }
  3386. case ArgNumber:
  3387. sum += token.Number
  3388. case ArgMatrix:
  3389. for _, row := range token.Matrix {
  3390. for _, value := range row {
  3391. if num := value.ToNumber(); num.Type == ArgNumber {
  3392. sum += num.Number
  3393. }
  3394. }
  3395. }
  3396. }
  3397. }
  3398. return newNumberFormulaArg(sum)
  3399. }
  3400. // SUMIF function finds the values in a supplied array, that satisfy a given
  3401. // criteria, and returns the sum of the corresponding values in a second
  3402. // supplied array. The syntax of the function is:
  3403. //
  3404. // SUMIF(range,criteria,[sum_range])
  3405. //
  3406. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3407. if argsList.Len() < 2 {
  3408. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3409. }
  3410. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3411. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3412. var sumRange [][]formulaArg
  3413. if argsList.Len() == 3 {
  3414. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3415. }
  3416. var sum, val float64
  3417. var err error
  3418. for rowIdx, row := range rangeMtx {
  3419. for colIdx, col := range row {
  3420. var ok bool
  3421. fromVal := col.String
  3422. if col.String == "" {
  3423. continue
  3424. }
  3425. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3426. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3427. }
  3428. if ok {
  3429. if argsList.Len() == 3 {
  3430. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3431. continue
  3432. }
  3433. fromVal = sumRange[rowIdx][colIdx].String
  3434. }
  3435. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3436. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3437. }
  3438. sum += val
  3439. }
  3440. }
  3441. }
  3442. return newNumberFormulaArg(sum)
  3443. }
  3444. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3445. // syntax of the function is:
  3446. //
  3447. // SUMSQ(number1,[number2],...)
  3448. //
  3449. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3450. var val, sq float64
  3451. var err error
  3452. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3453. token := arg.Value.(formulaArg)
  3454. switch token.Type {
  3455. case ArgString:
  3456. if token.String == "" {
  3457. continue
  3458. }
  3459. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3460. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3461. }
  3462. sq += val * val
  3463. case ArgNumber:
  3464. sq += token.Number
  3465. case ArgMatrix:
  3466. for _, row := range token.Matrix {
  3467. for _, value := range row {
  3468. if value.String == "" {
  3469. continue
  3470. }
  3471. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3472. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3473. }
  3474. sq += val * val
  3475. }
  3476. }
  3477. }
  3478. }
  3479. return newNumberFormulaArg(sq)
  3480. }
  3481. // TAN function calculates the tangent of a given angle. The syntax of the
  3482. // function is:
  3483. //
  3484. // TAN(number)
  3485. //
  3486. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3487. if argsList.Len() != 1 {
  3488. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3489. }
  3490. number := argsList.Front().Value.(formulaArg).ToNumber()
  3491. if number.Type == ArgError {
  3492. return number
  3493. }
  3494. return newNumberFormulaArg(math.Tan(number.Number))
  3495. }
  3496. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3497. // number. The syntax of the function is:
  3498. //
  3499. // TANH(number)
  3500. //
  3501. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3502. if argsList.Len() != 1 {
  3503. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3504. }
  3505. number := argsList.Front().Value.(formulaArg).ToNumber()
  3506. if number.Type == ArgError {
  3507. return number
  3508. }
  3509. return newNumberFormulaArg(math.Tanh(number.Number))
  3510. }
  3511. // TRUNC function truncates a supplied number to a specified number of decimal
  3512. // places. The syntax of the function is:
  3513. //
  3514. // TRUNC(number,[number_digits])
  3515. //
  3516. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3517. if argsList.Len() == 0 {
  3518. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3519. }
  3520. var digits, adjust, rtrim float64
  3521. var err error
  3522. number := argsList.Front().Value.(formulaArg).ToNumber()
  3523. if number.Type == ArgError {
  3524. return number
  3525. }
  3526. if argsList.Len() > 1 {
  3527. d := argsList.Back().Value.(formulaArg).ToNumber()
  3528. if d.Type == ArgError {
  3529. return d
  3530. }
  3531. digits = d.Number
  3532. digits = math.Floor(digits)
  3533. }
  3534. adjust = math.Pow(10, digits)
  3535. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3536. if x != 0 {
  3537. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3538. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3539. }
  3540. }
  3541. if (digits > 0) && (rtrim < adjust/10) {
  3542. return newNumberFormulaArg(number.Number)
  3543. }
  3544. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3545. }
  3546. // Statistical Functions
  3547. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3548. // The syntax of the function is:
  3549. //
  3550. // AVERAGE(number1,[number2],...)
  3551. //
  3552. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3553. args := []formulaArg{}
  3554. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3555. args = append(args, arg.Value.(formulaArg))
  3556. }
  3557. count, sum := fn.countSum(false, args)
  3558. if count == 0 {
  3559. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3560. }
  3561. return newNumberFormulaArg(sum / count)
  3562. }
  3563. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3564. // with text cell and zero values. The syntax of the function is:
  3565. //
  3566. // AVERAGEA(number1,[number2],...)
  3567. //
  3568. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3569. args := []formulaArg{}
  3570. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3571. args = append(args, arg.Value.(formulaArg))
  3572. }
  3573. count, sum := fn.countSum(true, args)
  3574. if count == 0 {
  3575. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3576. }
  3577. return newNumberFormulaArg(sum / count)
  3578. }
  3579. // countSum get count and sum for a formula arguments array.
  3580. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3581. for _, arg := range args {
  3582. switch arg.Type {
  3583. case ArgNumber:
  3584. if countText || !arg.Boolean {
  3585. sum += arg.Number
  3586. count++
  3587. }
  3588. case ArgString:
  3589. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3590. continue
  3591. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3592. num := arg.ToBool()
  3593. if num.Type == ArgNumber {
  3594. count++
  3595. sum += num.Number
  3596. continue
  3597. }
  3598. }
  3599. num := arg.ToNumber()
  3600. if countText && num.Type == ArgError && arg.String != "" {
  3601. count++
  3602. }
  3603. if num.Type == ArgNumber {
  3604. sum += num.Number
  3605. count++
  3606. }
  3607. case ArgList, ArgMatrix:
  3608. cnt, summary := fn.countSum(countText, arg.ToList())
  3609. sum += summary
  3610. count += cnt
  3611. }
  3612. }
  3613. return
  3614. }
  3615. // COUNT function returns the count of numeric values in a supplied set of
  3616. // cells or values. This count includes both numbers and dates. The syntax of
  3617. // the function is:
  3618. //
  3619. // COUNT(value1,[value2],...)
  3620. //
  3621. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3622. var count int
  3623. for token := argsList.Front(); token != nil; token = token.Next() {
  3624. arg := token.Value.(formulaArg)
  3625. switch arg.Type {
  3626. case ArgString:
  3627. if arg.ToNumber().Type != ArgError {
  3628. count++
  3629. }
  3630. case ArgNumber:
  3631. count++
  3632. case ArgMatrix:
  3633. for _, row := range arg.Matrix {
  3634. for _, value := range row {
  3635. if value.ToNumber().Type != ArgError {
  3636. count++
  3637. }
  3638. }
  3639. }
  3640. }
  3641. }
  3642. return newNumberFormulaArg(float64(count))
  3643. }
  3644. // COUNTA function returns the number of non-blanks within a supplied set of
  3645. // cells or values. The syntax of the function is:
  3646. //
  3647. // COUNTA(value1,[value2],...)
  3648. //
  3649. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3650. var count int
  3651. for token := argsList.Front(); token != nil; token = token.Next() {
  3652. arg := token.Value.(formulaArg)
  3653. switch arg.Type {
  3654. case ArgString:
  3655. if arg.String != "" {
  3656. count++
  3657. }
  3658. case ArgNumber:
  3659. count++
  3660. case ArgMatrix:
  3661. for _, row := range arg.ToList() {
  3662. switch row.Type {
  3663. case ArgString:
  3664. if row.String != "" {
  3665. count++
  3666. }
  3667. case ArgNumber:
  3668. count++
  3669. }
  3670. }
  3671. }
  3672. }
  3673. return newNumberFormulaArg(float64(count))
  3674. }
  3675. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3676. // The syntax of the function is:
  3677. //
  3678. // COUNTBLANK(range)
  3679. //
  3680. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3681. if argsList.Len() != 1 {
  3682. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3683. }
  3684. var count int
  3685. token := argsList.Front().Value.(formulaArg)
  3686. switch token.Type {
  3687. case ArgString:
  3688. if token.String == "" {
  3689. count++
  3690. }
  3691. case ArgList, ArgMatrix:
  3692. for _, row := range token.ToList() {
  3693. switch row.Type {
  3694. case ArgString:
  3695. if row.String == "" {
  3696. count++
  3697. }
  3698. case ArgEmpty:
  3699. count++
  3700. }
  3701. }
  3702. case ArgEmpty:
  3703. count++
  3704. }
  3705. return newNumberFormulaArg(float64(count))
  3706. }
  3707. // FISHER function calculates the Fisher Transformation for a supplied value.
  3708. // The syntax of the function is:
  3709. //
  3710. // FISHER(x)
  3711. //
  3712. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3713. if argsList.Len() != 1 {
  3714. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3715. }
  3716. token := argsList.Front().Value.(formulaArg)
  3717. switch token.Type {
  3718. case ArgString:
  3719. arg := token.ToNumber()
  3720. if arg.Type == ArgNumber {
  3721. if arg.Number <= -1 || arg.Number >= 1 {
  3722. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3723. }
  3724. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3725. }
  3726. case ArgNumber:
  3727. if token.Number <= -1 || token.Number >= 1 {
  3728. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3729. }
  3730. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3731. }
  3732. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3733. }
  3734. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3735. // returns a value between -1 and +1. The syntax of the function is:
  3736. //
  3737. // FISHERINV(y)
  3738. //
  3739. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3740. if argsList.Len() != 1 {
  3741. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3742. }
  3743. token := argsList.Front().Value.(formulaArg)
  3744. switch token.Type {
  3745. case ArgString:
  3746. arg := token.ToNumber()
  3747. if arg.Type == ArgNumber {
  3748. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3749. }
  3750. case ArgNumber:
  3751. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3752. }
  3753. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3754. }
  3755. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3756. // specified number, n. The syntax of the function is:
  3757. //
  3758. // GAMMA(number)
  3759. //
  3760. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3761. if argsList.Len() != 1 {
  3762. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3763. }
  3764. token := argsList.Front().Value.(formulaArg)
  3765. switch token.Type {
  3766. case ArgString:
  3767. arg := token.ToNumber()
  3768. if arg.Type == ArgNumber {
  3769. if arg.Number <= 0 {
  3770. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3771. }
  3772. return newNumberFormulaArg(math.Gamma(arg.Number))
  3773. }
  3774. case ArgNumber:
  3775. if token.Number <= 0 {
  3776. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3777. }
  3778. return newNumberFormulaArg(math.Gamma(token.Number))
  3779. }
  3780. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3781. }
  3782. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3783. // (n). The syntax of the function is:
  3784. //
  3785. // GAMMALN(x)
  3786. //
  3787. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3788. if argsList.Len() != 1 {
  3789. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3790. }
  3791. token := argsList.Front().Value.(formulaArg)
  3792. switch token.Type {
  3793. case ArgString:
  3794. arg := token.ToNumber()
  3795. if arg.Type == ArgNumber {
  3796. if arg.Number <= 0 {
  3797. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3798. }
  3799. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3800. }
  3801. case ArgNumber:
  3802. if token.Number <= 0 {
  3803. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3804. }
  3805. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3806. }
  3807. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3808. }
  3809. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  3810. // The syntax of the function is:
  3811. //
  3812. // HARMEAN(number1,[number2],...)
  3813. //
  3814. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  3815. if argsList.Len() < 1 {
  3816. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  3817. }
  3818. if min := fn.MIN(argsList); min.Number < 0 {
  3819. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3820. }
  3821. number, val, cnt := 0.0, 0.0, 0.0
  3822. for token := argsList.Front(); token != nil; token = token.Next() {
  3823. arg := token.Value.(formulaArg)
  3824. switch arg.Type {
  3825. case ArgString:
  3826. num := arg.ToNumber()
  3827. if num.Type != ArgNumber {
  3828. continue
  3829. }
  3830. number = num.Number
  3831. case ArgNumber:
  3832. number = arg.Number
  3833. }
  3834. if number <= 0 {
  3835. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3836. }
  3837. val += (1 / number)
  3838. cnt++
  3839. }
  3840. return newNumberFormulaArg(1 / (val / cnt))
  3841. }
  3842. // KURT function calculates the kurtosis of a supplied set of values. The
  3843. // syntax of the function is:
  3844. //
  3845. // KURT(number1,[number2],...)
  3846. //
  3847. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3848. if argsList.Len() < 1 {
  3849. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3850. }
  3851. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3852. if stdev.Number > 0 {
  3853. count, summer := 0.0, 0.0
  3854. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3855. token := arg.Value.(formulaArg)
  3856. switch token.Type {
  3857. case ArgString, ArgNumber:
  3858. num := token.ToNumber()
  3859. if num.Type == ArgError {
  3860. continue
  3861. }
  3862. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3863. count++
  3864. case ArgList, ArgMatrix:
  3865. for _, row := range token.ToList() {
  3866. if row.Type == ArgNumber || row.Type == ArgString {
  3867. num := row.ToNumber()
  3868. if num.Type == ArgError {
  3869. continue
  3870. }
  3871. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3872. count++
  3873. }
  3874. }
  3875. }
  3876. }
  3877. if count > 3 {
  3878. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3879. }
  3880. }
  3881. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3882. }
  3883. // NORMdotDIST function calculates the Normal Probability Density Function or
  3884. // the Cumulative Normal Distribution. Function for a supplied set of
  3885. // parameters. The syntax of the function is:
  3886. //
  3887. // NORM.DIST(x,mean,standard_dev,cumulative)
  3888. //
  3889. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  3890. if argsList.Len() != 4 {
  3891. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  3892. }
  3893. return fn.NORMDIST(argsList)
  3894. }
  3895. // NORMDIST function calculates the Normal Probability Density Function or the
  3896. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  3897. // The syntax of the function is:
  3898. //
  3899. // NORMDIST(x,mean,standard_dev,cumulative)
  3900. //
  3901. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  3902. if argsList.Len() != 4 {
  3903. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  3904. }
  3905. var x, mean, stdDev, cumulative formulaArg
  3906. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3907. return x
  3908. }
  3909. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3910. return mean
  3911. }
  3912. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3913. return stdDev
  3914. }
  3915. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3916. return cumulative
  3917. }
  3918. if stdDev.Number < 0 {
  3919. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3920. }
  3921. if cumulative.Number == 1 {
  3922. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  3923. }
  3924. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  3925. }
  3926. // NORMdotINV function calculates the inverse of the Cumulative Normal
  3927. // Distribution Function for a supplied value of x, and a supplied
  3928. // distribution mean & standard deviation. The syntax of the function is:
  3929. //
  3930. // NORM.INV(probability,mean,standard_dev)
  3931. //
  3932. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  3933. if argsList.Len() != 3 {
  3934. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  3935. }
  3936. return fn.NORMINV(argsList)
  3937. }
  3938. // NORMINV function calculates the inverse of the Cumulative Normal
  3939. // Distribution Function for a supplied value of x, and a supplied
  3940. // distribution mean & standard deviation. The syntax of the function is:
  3941. //
  3942. // NORMINV(probability,mean,standard_dev)
  3943. //
  3944. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  3945. if argsList.Len() != 3 {
  3946. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  3947. }
  3948. var prob, mean, stdDev formulaArg
  3949. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  3950. return prob
  3951. }
  3952. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3953. return mean
  3954. }
  3955. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3956. return stdDev
  3957. }
  3958. if prob.Number < 0 || prob.Number > 1 {
  3959. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3960. }
  3961. if stdDev.Number < 0 {
  3962. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3963. }
  3964. inv, err := norminv(prob.Number)
  3965. if err != nil {
  3966. return newErrorFormulaArg(err.Error(), err.Error())
  3967. }
  3968. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  3969. }
  3970. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  3971. // Distribution Function for a supplied value. The syntax of the function
  3972. // is:
  3973. //
  3974. // NORM.S.DIST(z)
  3975. //
  3976. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  3977. if argsList.Len() != 2 {
  3978. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  3979. }
  3980. args := list.New().Init()
  3981. args.PushBack(argsList.Front().Value.(formulaArg))
  3982. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3983. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  3984. args.PushBack(argsList.Back().Value.(formulaArg))
  3985. return fn.NORMDIST(args)
  3986. }
  3987. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  3988. // Function for a supplied value. The syntax of the function is:
  3989. //
  3990. // NORMSDIST(z)
  3991. //
  3992. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  3993. if argsList.Len() != 1 {
  3994. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  3995. }
  3996. args := list.New().Init()
  3997. args.PushBack(argsList.Front().Value.(formulaArg))
  3998. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3999. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4000. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4001. return fn.NORMDIST(args)
  4002. }
  4003. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4004. // Distribution Function for a supplied probability value. The syntax of the
  4005. // function is:
  4006. //
  4007. // NORMSINV(probability)
  4008. //
  4009. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4010. if argsList.Len() != 1 {
  4011. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4012. }
  4013. args := list.New().Init()
  4014. args.PushBack(argsList.Front().Value.(formulaArg))
  4015. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4016. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4017. return fn.NORMINV(args)
  4018. }
  4019. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4020. // Cumulative Distribution Function for a supplied probability value. The
  4021. // syntax of the function is:
  4022. //
  4023. // NORM.S.INV(probability)
  4024. //
  4025. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4026. if argsList.Len() != 1 {
  4027. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4028. }
  4029. args := list.New().Init()
  4030. args.PushBack(argsList.Front().Value.(formulaArg))
  4031. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4032. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4033. return fn.NORMINV(args)
  4034. }
  4035. // norminv returns the inverse of the normal cumulative distribution for the
  4036. // specified value.
  4037. func norminv(p float64) (float64, error) {
  4038. a := map[int]float64{
  4039. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4040. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4041. }
  4042. b := map[int]float64{
  4043. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4044. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4045. }
  4046. c := map[int]float64{
  4047. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4048. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4049. }
  4050. d := map[int]float64{
  4051. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4052. 4: 3.754408661907416e+00,
  4053. }
  4054. pLow := 0.02425 // Use lower region approx. below this
  4055. pHigh := 1 - pLow // Use upper region approx. above this
  4056. if 0 < p && p < pLow {
  4057. // Rational approximation for lower region.
  4058. q := math.Sqrt(-2 * math.Log(p))
  4059. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4060. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4061. } else if pLow <= p && p <= pHigh {
  4062. // Rational approximation for central region.
  4063. q := p - 0.5
  4064. r := q * q
  4065. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4066. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4067. } else if pHigh < p && p < 1 {
  4068. // Rational approximation for upper region.
  4069. q := math.Sqrt(-2 * math.Log(1-p))
  4070. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4071. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4072. }
  4073. return 0, errors.New(formulaErrorNUM)
  4074. }
  4075. // kth is an implementation of the formula function LARGE and SMALL.
  4076. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4077. if argsList.Len() != 2 {
  4078. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4079. }
  4080. array := argsList.Front().Value.(formulaArg).ToList()
  4081. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4082. if kArg.Type != ArgNumber {
  4083. return kArg
  4084. }
  4085. k := int(kArg.Number)
  4086. if k < 1 {
  4087. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4088. }
  4089. data := []float64{}
  4090. for _, arg := range array {
  4091. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4092. data = append(data, numArg.Number)
  4093. }
  4094. }
  4095. if len(data) < k {
  4096. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4097. }
  4098. sort.Float64s(data)
  4099. if name == "LARGE" {
  4100. return newNumberFormulaArg(data[len(data)-k])
  4101. }
  4102. return newNumberFormulaArg(data[k-1])
  4103. }
  4104. // LARGE function returns the k'th largest value from an array of numeric
  4105. // values. The syntax of the function is:
  4106. //
  4107. // LARGE(array,k)
  4108. //
  4109. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4110. return fn.kth("LARGE", argsList)
  4111. }
  4112. // MAX function returns the largest value from a supplied set of numeric
  4113. // values. The syntax of the function is:
  4114. //
  4115. // MAX(number1,[number2],...)
  4116. //
  4117. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4118. if argsList.Len() == 0 {
  4119. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4120. }
  4121. return fn.max(false, argsList)
  4122. }
  4123. // MAXA function returns the largest value from a supplied set of numeric
  4124. // values, while counting text and the logical value FALSE as the value 0 and
  4125. // counting the logical value TRUE as the value 1. The syntax of the function
  4126. // is:
  4127. //
  4128. // MAXA(number1,[number2],...)
  4129. //
  4130. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4131. if argsList.Len() == 0 {
  4132. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4133. }
  4134. return fn.max(true, argsList)
  4135. }
  4136. // max is an implementation of the formula function MAX and MAXA.
  4137. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4138. max := -math.MaxFloat64
  4139. for token := argsList.Front(); token != nil; token = token.Next() {
  4140. arg := token.Value.(formulaArg)
  4141. switch arg.Type {
  4142. case ArgString:
  4143. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4144. continue
  4145. } else {
  4146. num := arg.ToBool()
  4147. if num.Type == ArgNumber && num.Number > max {
  4148. max = num.Number
  4149. continue
  4150. }
  4151. }
  4152. num := arg.ToNumber()
  4153. if num.Type != ArgError && num.Number > max {
  4154. max = num.Number
  4155. }
  4156. case ArgNumber:
  4157. if arg.Number > max {
  4158. max = arg.Number
  4159. }
  4160. case ArgList, ArgMatrix:
  4161. for _, row := range arg.ToList() {
  4162. switch row.Type {
  4163. case ArgString:
  4164. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4165. continue
  4166. } else {
  4167. num := row.ToBool()
  4168. if num.Type == ArgNumber && num.Number > max {
  4169. max = num.Number
  4170. continue
  4171. }
  4172. }
  4173. num := row.ToNumber()
  4174. if num.Type != ArgError && num.Number > max {
  4175. max = num.Number
  4176. }
  4177. case ArgNumber:
  4178. if row.Number > max {
  4179. max = row.Number
  4180. }
  4181. }
  4182. }
  4183. case ArgError:
  4184. return arg
  4185. }
  4186. }
  4187. if max == -math.MaxFloat64 {
  4188. max = 0
  4189. }
  4190. return newNumberFormulaArg(max)
  4191. }
  4192. // MEDIAN function returns the statistical median (the middle value) of a list
  4193. // of supplied numbers. The syntax of the function is:
  4194. //
  4195. // MEDIAN(number1,[number2],...)
  4196. //
  4197. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4198. if argsList.Len() == 0 {
  4199. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4200. }
  4201. var values = []float64{}
  4202. var median, digits float64
  4203. var err error
  4204. for token := argsList.Front(); token != nil; token = token.Next() {
  4205. arg := token.Value.(formulaArg)
  4206. switch arg.Type {
  4207. case ArgString:
  4208. num := arg.ToNumber()
  4209. if num.Type == ArgError {
  4210. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4211. }
  4212. values = append(values, num.Number)
  4213. case ArgNumber:
  4214. values = append(values, arg.Number)
  4215. case ArgMatrix:
  4216. for _, row := range arg.Matrix {
  4217. for _, value := range row {
  4218. if value.String == "" {
  4219. continue
  4220. }
  4221. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4222. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4223. }
  4224. values = append(values, digits)
  4225. }
  4226. }
  4227. }
  4228. }
  4229. sort.Float64s(values)
  4230. if len(values)%2 == 0 {
  4231. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4232. } else {
  4233. median = values[len(values)/2]
  4234. }
  4235. return newNumberFormulaArg(median)
  4236. }
  4237. // MIN function returns the smallest value from a supplied set of numeric
  4238. // values. The syntax of the function is:
  4239. //
  4240. // MIN(number1,[number2],...)
  4241. //
  4242. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4243. if argsList.Len() == 0 {
  4244. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4245. }
  4246. return fn.min(false, argsList)
  4247. }
  4248. // MINA function returns the smallest value from a supplied set of numeric
  4249. // values, while counting text and the logical value FALSE as the value 0 and
  4250. // counting the logical value TRUE as the value 1. The syntax of the function
  4251. // is:
  4252. //
  4253. // MINA(number1,[number2],...)
  4254. //
  4255. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4256. if argsList.Len() == 0 {
  4257. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4258. }
  4259. return fn.min(true, argsList)
  4260. }
  4261. // min is an implementation of the formula function MIN and MINA.
  4262. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4263. min := math.MaxFloat64
  4264. for token := argsList.Front(); token != nil; token = token.Next() {
  4265. arg := token.Value.(formulaArg)
  4266. switch arg.Type {
  4267. case ArgString:
  4268. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4269. continue
  4270. } else {
  4271. num := arg.ToBool()
  4272. if num.Type == ArgNumber && num.Number < min {
  4273. min = num.Number
  4274. continue
  4275. }
  4276. }
  4277. num := arg.ToNumber()
  4278. if num.Type != ArgError && num.Number < min {
  4279. min = num.Number
  4280. }
  4281. case ArgNumber:
  4282. if arg.Number < min {
  4283. min = arg.Number
  4284. }
  4285. case ArgList, ArgMatrix:
  4286. for _, row := range arg.ToList() {
  4287. switch row.Type {
  4288. case ArgString:
  4289. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4290. continue
  4291. } else {
  4292. num := row.ToBool()
  4293. if num.Type == ArgNumber && num.Number < min {
  4294. min = num.Number
  4295. continue
  4296. }
  4297. }
  4298. num := row.ToNumber()
  4299. if num.Type != ArgError && num.Number < min {
  4300. min = num.Number
  4301. }
  4302. case ArgNumber:
  4303. if row.Number < min {
  4304. min = row.Number
  4305. }
  4306. }
  4307. }
  4308. case ArgError:
  4309. return arg
  4310. }
  4311. }
  4312. if min == math.MaxFloat64 {
  4313. min = 0
  4314. }
  4315. return newNumberFormulaArg(min)
  4316. }
  4317. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4318. // k% of the data values fall) for a supplied range of values and a supplied
  4319. // k. The syntax of the function is:
  4320. //
  4321. // PERCENTILE(array,k)
  4322. //
  4323. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4324. if argsList.Len() != 2 {
  4325. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4326. }
  4327. array := argsList.Front().Value.(formulaArg).ToList()
  4328. k := argsList.Back().Value.(formulaArg).ToNumber()
  4329. if k.Type != ArgNumber {
  4330. return k
  4331. }
  4332. if k.Number < 0 || k.Number > 1 {
  4333. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4334. }
  4335. numbers := []float64{}
  4336. for _, arg := range array {
  4337. if arg.Type == ArgError {
  4338. return arg
  4339. }
  4340. num := arg.ToNumber()
  4341. if num.Type == ArgNumber {
  4342. numbers = append(numbers, num.Number)
  4343. }
  4344. }
  4345. cnt := len(numbers)
  4346. sort.Float64s(numbers)
  4347. idx := k.Number * (float64(cnt) - 1)
  4348. base := math.Floor(idx)
  4349. if idx == base {
  4350. return newNumberFormulaArg(numbers[int(idx)])
  4351. }
  4352. next := base + 1
  4353. proportion := idx - base
  4354. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4355. }
  4356. // PERMUT function calculates the number of permutations of a specified number
  4357. // of objects from a set of objects. The syntax of the function is:
  4358. //
  4359. // PERMUT(number,number_chosen)
  4360. //
  4361. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4362. if argsList.Len() != 2 {
  4363. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4364. }
  4365. number := argsList.Front().Value.(formulaArg).ToNumber()
  4366. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4367. if number.Type != ArgNumber {
  4368. return number
  4369. }
  4370. if chosen.Type != ArgNumber {
  4371. return chosen
  4372. }
  4373. if number.Number < chosen.Number {
  4374. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4375. }
  4376. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4377. }
  4378. // PERMUTATIONA function calculates the number of permutations, with
  4379. // repetitions, of a specified number of objects from a set. The syntax of
  4380. // the function is:
  4381. //
  4382. // PERMUTATIONA(number,number_chosen)
  4383. //
  4384. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4385. if argsList.Len() < 1 {
  4386. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4387. }
  4388. number := argsList.Front().Value.(formulaArg).ToNumber()
  4389. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4390. if number.Type != ArgNumber {
  4391. return number
  4392. }
  4393. if chosen.Type != ArgNumber {
  4394. return chosen
  4395. }
  4396. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4397. if num < 0 || numChosen < 0 {
  4398. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4399. }
  4400. return newNumberFormulaArg(math.Pow(num, numChosen))
  4401. }
  4402. // SKEW function calculates the skewness of the distribution of a supplied set
  4403. // of values. The syntax of the function is:
  4404. //
  4405. // SKEW(number1,[number2],...)
  4406. //
  4407. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4408. if argsList.Len() < 1 {
  4409. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4410. }
  4411. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4412. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4413. token := arg.Value.(formulaArg)
  4414. switch token.Type {
  4415. case ArgNumber, ArgString:
  4416. num := token.ToNumber()
  4417. if num.Type == ArgError {
  4418. return num
  4419. }
  4420. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4421. count++
  4422. case ArgList, ArgMatrix:
  4423. for _, row := range token.ToList() {
  4424. numArg := row.ToNumber()
  4425. if numArg.Type != ArgNumber {
  4426. continue
  4427. }
  4428. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4429. count++
  4430. }
  4431. }
  4432. }
  4433. if count > 2 {
  4434. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  4435. }
  4436. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4437. }
  4438. // SMALL function returns the k'th smallest value from an array of numeric
  4439. // values. The syntax of the function is:
  4440. //
  4441. // SMALL(array,k)
  4442. //
  4443. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4444. return fn.kth("SMALL", argsList)
  4445. }
  4446. // Information Functions
  4447. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4448. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4449. // function is:
  4450. //
  4451. // ISBLANK(value)
  4452. //
  4453. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4454. if argsList.Len() != 1 {
  4455. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4456. }
  4457. token := argsList.Front().Value.(formulaArg)
  4458. result := "FALSE"
  4459. switch token.Type {
  4460. case ArgUnknown:
  4461. result = "TRUE"
  4462. case ArgString:
  4463. if token.String == "" {
  4464. result = "TRUE"
  4465. }
  4466. }
  4467. return newStringFormulaArg(result)
  4468. }
  4469. // ISERR function tests if an initial supplied expression (or value) returns
  4470. // any Excel Error, except the #N/A error. If so, the function returns the
  4471. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4472. // error, the ISERR function returns FALSE. The syntax of the function is:
  4473. //
  4474. // ISERR(value)
  4475. //
  4476. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4477. if argsList.Len() != 1 {
  4478. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4479. }
  4480. token := argsList.Front().Value.(formulaArg)
  4481. result := "FALSE"
  4482. if token.Type == ArgError {
  4483. for _, errType := range []string{
  4484. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4485. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4486. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4487. } {
  4488. if errType == token.String {
  4489. result = "TRUE"
  4490. }
  4491. }
  4492. }
  4493. return newStringFormulaArg(result)
  4494. }
  4495. // ISERROR function tests if an initial supplied expression (or value) returns
  4496. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4497. // function returns FALSE. The syntax of the function is:
  4498. //
  4499. // ISERROR(value)
  4500. //
  4501. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4502. if argsList.Len() != 1 {
  4503. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4504. }
  4505. token := argsList.Front().Value.(formulaArg)
  4506. result := "FALSE"
  4507. if token.Type == ArgError {
  4508. for _, errType := range []string{
  4509. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4510. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4511. formulaErrorCALC, formulaErrorGETTINGDATA,
  4512. } {
  4513. if errType == token.String {
  4514. result = "TRUE"
  4515. }
  4516. }
  4517. }
  4518. return newStringFormulaArg(result)
  4519. }
  4520. // ISEVEN function tests if a supplied number (or numeric expression)
  4521. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4522. // function returns FALSE. The syntax of the function is:
  4523. //
  4524. // ISEVEN(value)
  4525. //
  4526. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4527. if argsList.Len() != 1 {
  4528. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4529. }
  4530. var (
  4531. token = argsList.Front().Value.(formulaArg)
  4532. result = "FALSE"
  4533. numeric int
  4534. err error
  4535. )
  4536. if token.Type == ArgString {
  4537. if numeric, err = strconv.Atoi(token.String); err != nil {
  4538. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4539. }
  4540. if numeric == numeric/2*2 {
  4541. return newStringFormulaArg("TRUE")
  4542. }
  4543. }
  4544. return newStringFormulaArg(result)
  4545. }
  4546. // ISNA function tests if an initial supplied expression (or value) returns
  4547. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4548. // returns FALSE. The syntax of the function is:
  4549. //
  4550. // ISNA(value)
  4551. //
  4552. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4553. if argsList.Len() != 1 {
  4554. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4555. }
  4556. token := argsList.Front().Value.(formulaArg)
  4557. result := "FALSE"
  4558. if token.Type == ArgError && token.String == formulaErrorNA {
  4559. result = "TRUE"
  4560. }
  4561. return newStringFormulaArg(result)
  4562. }
  4563. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4564. // function returns TRUE; If the supplied value is text, the function returns
  4565. // FALSE. The syntax of the function is:
  4566. //
  4567. // ISNONTEXT(value)
  4568. //
  4569. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4570. if argsList.Len() != 1 {
  4571. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4572. }
  4573. token := argsList.Front().Value.(formulaArg)
  4574. result := "TRUE"
  4575. if token.Type == ArgString && token.String != "" {
  4576. result = "FALSE"
  4577. }
  4578. return newStringFormulaArg(result)
  4579. }
  4580. // ISNUMBER function function tests if a supplied value is a number. If so,
  4581. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4582. // function is:
  4583. //
  4584. // ISNUMBER(value)
  4585. //
  4586. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4587. if argsList.Len() != 1 {
  4588. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4589. }
  4590. token, result := argsList.Front().Value.(formulaArg), false
  4591. if token.Type == ArgString && token.String != "" {
  4592. if _, err := strconv.Atoi(token.String); err == nil {
  4593. result = true
  4594. }
  4595. }
  4596. return newBoolFormulaArg(result)
  4597. }
  4598. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4599. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4600. // FALSE. The syntax of the function is:
  4601. //
  4602. // ISODD(value)
  4603. //
  4604. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4605. if argsList.Len() != 1 {
  4606. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4607. }
  4608. var (
  4609. token = argsList.Front().Value.(formulaArg)
  4610. result = "FALSE"
  4611. numeric int
  4612. err error
  4613. )
  4614. if token.Type == ArgString {
  4615. if numeric, err = strconv.Atoi(token.String); err != nil {
  4616. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4617. }
  4618. if numeric != numeric/2*2 {
  4619. return newStringFormulaArg("TRUE")
  4620. }
  4621. }
  4622. return newStringFormulaArg(result)
  4623. }
  4624. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4625. // Otherwise, the function returns FALSE. The syntax of the function is:
  4626. //
  4627. // ISTEXT(value)
  4628. //
  4629. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4630. if argsList.Len() != 1 {
  4631. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4632. }
  4633. token := argsList.Front().Value.(formulaArg)
  4634. if token.ToNumber().Type != ArgError {
  4635. return newBoolFormulaArg(false)
  4636. }
  4637. return newBoolFormulaArg(token.Type == ArgString)
  4638. }
  4639. // NA function returns the Excel #N/A error. This error message has the
  4640. // meaning 'value not available' and is produced when an Excel Formula is
  4641. // unable to find a value that it needs. The syntax of the function is:
  4642. //
  4643. // NA()
  4644. //
  4645. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4646. if argsList.Len() != 0 {
  4647. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4648. }
  4649. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4650. }
  4651. // SHEET function returns the Sheet number for a specified reference. The
  4652. // syntax of the function is:
  4653. //
  4654. // SHEET()
  4655. //
  4656. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4657. if argsList.Len() != 0 {
  4658. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4659. }
  4660. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4661. }
  4662. // Logical Functions
  4663. // AND function tests a number of supplied conditions and returns TRUE or
  4664. // FALSE. The syntax of the function is:
  4665. //
  4666. // AND(logical_test1,[logical_test2],...)
  4667. //
  4668. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4669. if argsList.Len() == 0 {
  4670. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4671. }
  4672. if argsList.Len() > 30 {
  4673. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4674. }
  4675. var (
  4676. and = true
  4677. val float64
  4678. err error
  4679. )
  4680. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4681. token := arg.Value.(formulaArg)
  4682. switch token.Type {
  4683. case ArgUnknown:
  4684. continue
  4685. case ArgString:
  4686. if token.String == "TRUE" {
  4687. continue
  4688. }
  4689. if token.String == "FALSE" {
  4690. return newStringFormulaArg(token.String)
  4691. }
  4692. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4693. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4694. }
  4695. and = and && (val != 0)
  4696. case ArgMatrix:
  4697. // TODO
  4698. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4699. }
  4700. }
  4701. return newBoolFormulaArg(and)
  4702. }
  4703. // FALSE function function returns the logical value FALSE. The syntax of the
  4704. // function is:
  4705. //
  4706. // FALSE()
  4707. //
  4708. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4709. if argsList.Len() != 0 {
  4710. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4711. }
  4712. return newBoolFormulaArg(false)
  4713. }
  4714. // IFERROR function receives two values (or expressions) and tests if the
  4715. // first of these evaluates to an error. The syntax of the function is:
  4716. //
  4717. // IFERROR(value,value_if_error)
  4718. //
  4719. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4720. if argsList.Len() != 2 {
  4721. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4722. }
  4723. value := argsList.Front().Value.(formulaArg)
  4724. if value.Type != ArgError {
  4725. if value.Type == ArgEmpty {
  4726. return newNumberFormulaArg(0)
  4727. }
  4728. return value
  4729. }
  4730. return argsList.Back().Value.(formulaArg)
  4731. }
  4732. // NOT function returns the opposite to a supplied logical value. The syntax
  4733. // of the function is:
  4734. //
  4735. // NOT(logical)
  4736. //
  4737. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4738. if argsList.Len() != 1 {
  4739. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4740. }
  4741. token := argsList.Front().Value.(formulaArg)
  4742. switch token.Type {
  4743. case ArgString, ArgList:
  4744. if strings.ToUpper(token.String) == "TRUE" {
  4745. return newBoolFormulaArg(false)
  4746. }
  4747. if strings.ToUpper(token.String) == "FALSE" {
  4748. return newBoolFormulaArg(true)
  4749. }
  4750. case ArgNumber:
  4751. return newBoolFormulaArg(!(token.Number != 0))
  4752. case ArgError:
  4753. return token
  4754. }
  4755. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4756. }
  4757. // OR function tests a number of supplied conditions and returns either TRUE
  4758. // or FALSE. The syntax of the function is:
  4759. //
  4760. // OR(logical_test1,[logical_test2],...)
  4761. //
  4762. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4763. if argsList.Len() == 0 {
  4764. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4765. }
  4766. if argsList.Len() > 30 {
  4767. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4768. }
  4769. var (
  4770. or bool
  4771. val float64
  4772. err error
  4773. )
  4774. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4775. token := arg.Value.(formulaArg)
  4776. switch token.Type {
  4777. case ArgUnknown:
  4778. continue
  4779. case ArgString:
  4780. if token.String == "FALSE" {
  4781. continue
  4782. }
  4783. if token.String == "TRUE" {
  4784. or = true
  4785. continue
  4786. }
  4787. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4788. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4789. }
  4790. or = val != 0
  4791. case ArgMatrix:
  4792. // TODO
  4793. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4794. }
  4795. }
  4796. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4797. }
  4798. // TRUE function returns the logical value TRUE. The syntax of the function
  4799. // is:
  4800. //
  4801. // TRUE()
  4802. //
  4803. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4804. if argsList.Len() != 0 {
  4805. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4806. }
  4807. return newBoolFormulaArg(true)
  4808. }
  4809. // Date and Time Functions
  4810. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4811. // of the function is:
  4812. //
  4813. // DATE(year,month,day)
  4814. //
  4815. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4816. if argsList.Len() != 3 {
  4817. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4818. }
  4819. year := argsList.Front().Value.(formulaArg).ToNumber()
  4820. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  4821. day := argsList.Back().Value.(formulaArg).ToNumber()
  4822. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  4823. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4824. }
  4825. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  4826. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4827. }
  4828. // DATEDIF function calculates the number of days, months, or years between
  4829. // two dates. The syntax of the function is:
  4830. //
  4831. // DATEDIF(start_date,end_date,unit)
  4832. //
  4833. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  4834. if argsList.Len() != 3 {
  4835. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  4836. }
  4837. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  4838. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  4839. return startArg
  4840. }
  4841. if startArg.Number > endArg.Number {
  4842. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  4843. }
  4844. if startArg.Number == endArg.Number {
  4845. return newNumberFormulaArg(0)
  4846. }
  4847. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  4848. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  4849. sy, smm, sd := startDate.Date()
  4850. ey, emm, ed := endDate.Date()
  4851. sm, em, diff := int(smm), int(emm), 0.0
  4852. switch unit {
  4853. case "d":
  4854. return newNumberFormulaArg(endArg.Number - startArg.Number)
  4855. case "y":
  4856. diff = float64(ey - sy)
  4857. if em < sm || (em == sm && ed < sd) {
  4858. diff--
  4859. }
  4860. case "m":
  4861. ydiff := ey - sy
  4862. mdiff := em - sm
  4863. if ed < sd {
  4864. mdiff--
  4865. }
  4866. if mdiff < 0 {
  4867. ydiff--
  4868. mdiff += 12
  4869. }
  4870. diff = float64(ydiff*12 + mdiff)
  4871. case "md":
  4872. smMD := em
  4873. if ed < sd {
  4874. smMD--
  4875. }
  4876. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  4877. case "ym":
  4878. diff = float64(em - sm)
  4879. if ed < sd {
  4880. diff--
  4881. }
  4882. if diff < 0 {
  4883. diff += 12
  4884. }
  4885. case "yd":
  4886. syYD := sy
  4887. if em < sm || (em == sm && ed < sd) {
  4888. syYD++
  4889. }
  4890. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  4891. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  4892. diff = s - e
  4893. default:
  4894. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  4895. }
  4896. return newNumberFormulaArg(diff)
  4897. }
  4898. // NOW function returns the current date and time. The function receives no
  4899. // arguments and therefore. The syntax of the function is:
  4900. //
  4901. // NOW()
  4902. //
  4903. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  4904. if argsList.Len() != 0 {
  4905. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  4906. }
  4907. now := time.Now()
  4908. _, offset := now.Zone()
  4909. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  4910. }
  4911. // TODAY function returns the current date. The function has no arguments and
  4912. // therefore. The syntax of the function is:
  4913. //
  4914. // TODAY()
  4915. //
  4916. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  4917. if argsList.Len() != 0 {
  4918. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  4919. }
  4920. now := time.Now()
  4921. _, offset := now.Zone()
  4922. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  4923. }
  4924. // makeDate return date as a Unix time, the number of seconds elapsed since
  4925. // January 1, 1970 UTC.
  4926. func makeDate(y int, m time.Month, d int) int64 {
  4927. if y == 1900 && int(m) <= 2 {
  4928. d--
  4929. }
  4930. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4931. return date.Unix()
  4932. }
  4933. // daysBetween return time interval of the given start timestamp and end
  4934. // timestamp.
  4935. func daysBetween(startDate, endDate int64) float64 {
  4936. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4937. }
  4938. // Text Functions
  4939. // CHAR function returns the character relating to a supplied character set
  4940. // number (from 1 to 255). syntax of the function is:
  4941. //
  4942. // CHAR(number)
  4943. //
  4944. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  4945. if argsList.Len() != 1 {
  4946. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  4947. }
  4948. arg := argsList.Front().Value.(formulaArg).ToNumber()
  4949. if arg.Type != ArgNumber {
  4950. return arg
  4951. }
  4952. num := int(arg.Number)
  4953. if num < 0 || num > 255 {
  4954. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4955. }
  4956. return newStringFormulaArg(fmt.Sprintf("%c", num))
  4957. }
  4958. // CLEAN removes all non-printable characters from a supplied text string. The
  4959. // syntax of the function is:
  4960. //
  4961. // CLEAN(text)
  4962. //
  4963. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4964. if argsList.Len() != 1 {
  4965. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4966. }
  4967. b := bytes.Buffer{}
  4968. for _, c := range argsList.Front().Value.(formulaArg).String {
  4969. if c > 31 {
  4970. b.WriteRune(c)
  4971. }
  4972. }
  4973. return newStringFormulaArg(b.String())
  4974. }
  4975. // CODE function converts the first character of a supplied text string into
  4976. // the associated numeric character set code used by your computer. The
  4977. // syntax of the function is:
  4978. //
  4979. // CODE(text)
  4980. //
  4981. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  4982. return fn.code("CODE", argsList)
  4983. }
  4984. // code is an implementation of the formula function CODE and UNICODE.
  4985. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  4986. if argsList.Len() != 1 {
  4987. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  4988. }
  4989. text := argsList.Front().Value.(formulaArg).Value()
  4990. if len(text) == 0 {
  4991. if name == "CODE" {
  4992. return newNumberFormulaArg(0)
  4993. }
  4994. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4995. }
  4996. return newNumberFormulaArg(float64(text[0]))
  4997. }
  4998. // CONCAT function joins together a series of supplied text strings into one
  4999. // combined text string.
  5000. //
  5001. // CONCAT(text1,[text2],...)
  5002. //
  5003. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5004. return fn.concat("CONCAT", argsList)
  5005. }
  5006. // CONCATENATE function joins together a series of supplied text strings into
  5007. // one combined text string.
  5008. //
  5009. // CONCATENATE(text1,[text2],...)
  5010. //
  5011. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5012. return fn.concat("CONCATENATE", argsList)
  5013. }
  5014. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5015. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5016. buf := bytes.Buffer{}
  5017. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5018. token := arg.Value.(formulaArg)
  5019. switch token.Type {
  5020. case ArgString:
  5021. buf.WriteString(token.String)
  5022. case ArgNumber:
  5023. if token.Boolean {
  5024. if token.Number == 0 {
  5025. buf.WriteString("FALSE")
  5026. } else {
  5027. buf.WriteString("TRUE")
  5028. }
  5029. } else {
  5030. buf.WriteString(token.Value())
  5031. }
  5032. default:
  5033. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5034. }
  5035. }
  5036. return newStringFormulaArg(buf.String())
  5037. }
  5038. // EXACT function tests if two supplied text strings or values are exactly
  5039. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5040. // function is case-sensitive. The syntax of the function is:
  5041. //
  5042. // EXACT(text1,text2)
  5043. //
  5044. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5045. if argsList.Len() != 2 {
  5046. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5047. }
  5048. text1 := argsList.Front().Value.(formulaArg).Value()
  5049. text2 := argsList.Back().Value.(formulaArg).Value()
  5050. return newBoolFormulaArg(text1 == text2)
  5051. }
  5052. // FIXED function rounds a supplied number to a specified number of decimal
  5053. // places and then converts this into text. The syntax of the function is:
  5054. //
  5055. // FIXED(number,[decimals],[no_commas])
  5056. //
  5057. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5058. if argsList.Len() < 1 {
  5059. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5060. }
  5061. if argsList.Len() > 3 {
  5062. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5063. }
  5064. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5065. if numArg.Type != ArgNumber {
  5066. return numArg
  5067. }
  5068. precision, decimals, noCommas := 0, 0, false
  5069. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5070. if argsList.Len() == 1 && len(s) == 2 {
  5071. precision = len(s[1])
  5072. decimals = len(s[1])
  5073. }
  5074. if argsList.Len() >= 2 {
  5075. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5076. if decimalsArg.Type != ArgNumber {
  5077. return decimalsArg
  5078. }
  5079. decimals = int(decimalsArg.Number)
  5080. }
  5081. if argsList.Len() == 3 {
  5082. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5083. if noCommasArg.Type == ArgError {
  5084. return noCommasArg
  5085. }
  5086. noCommas = noCommasArg.Boolean
  5087. }
  5088. n := math.Pow(10, float64(decimals))
  5089. r := numArg.Number * n
  5090. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5091. if decimals > 0 {
  5092. precision = decimals
  5093. }
  5094. if noCommas {
  5095. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5096. }
  5097. p := message.NewPrinter(language.English)
  5098. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5099. }
  5100. // FIND function returns the position of a specified character or sub-string
  5101. // within a supplied text string. The function is case-sensitive. The syntax
  5102. // of the function is:
  5103. //
  5104. // FIND(find_text,within_text,[start_num])
  5105. //
  5106. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5107. return fn.find("FIND", argsList)
  5108. }
  5109. // FINDB counts each double-byte character as 2 when you have enabled the
  5110. // editing of a language that supports DBCS and then set it as the default
  5111. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5112. // function is:
  5113. //
  5114. // FINDB(find_text,within_text,[start_num])
  5115. //
  5116. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5117. return fn.find("FINDB", argsList)
  5118. }
  5119. // find is an implementation of the formula function FIND and FINDB.
  5120. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5121. if argsList.Len() < 2 {
  5122. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5123. }
  5124. if argsList.Len() > 3 {
  5125. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5126. }
  5127. findText := argsList.Front().Value.(formulaArg).Value()
  5128. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5129. startNum, result := 1, 1
  5130. if argsList.Len() == 3 {
  5131. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5132. if numArg.Type != ArgNumber {
  5133. return numArg
  5134. }
  5135. if numArg.Number < 0 {
  5136. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5137. }
  5138. startNum = int(numArg.Number)
  5139. }
  5140. if findText == "" {
  5141. return newNumberFormulaArg(float64(startNum))
  5142. }
  5143. for idx := range withinText {
  5144. if result < startNum {
  5145. result++
  5146. }
  5147. if strings.Index(withinText[idx:], findText) == 0 {
  5148. return newNumberFormulaArg(float64(result))
  5149. }
  5150. result++
  5151. }
  5152. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5153. }
  5154. // LEFT function returns a specified number of characters from the start of a
  5155. // supplied text string. The syntax of the function is:
  5156. //
  5157. // LEFT(text,[num_chars])
  5158. //
  5159. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5160. return fn.leftRight("LEFT", argsList)
  5161. }
  5162. // LEFTB returns the first character or characters in a text string, based on
  5163. // the number of bytes you specify. The syntax of the function is:
  5164. //
  5165. // LEFTB(text,[num_bytes])
  5166. //
  5167. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5168. return fn.leftRight("LEFTB", argsList)
  5169. }
  5170. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5171. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5172. // (Traditional), and Korean.
  5173. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5174. if argsList.Len() < 1 {
  5175. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5176. }
  5177. if argsList.Len() > 2 {
  5178. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5179. }
  5180. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5181. if argsList.Len() == 2 {
  5182. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5183. if numArg.Type != ArgNumber {
  5184. return numArg
  5185. }
  5186. if numArg.Number < 0 {
  5187. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5188. }
  5189. numChars = int(numArg.Number)
  5190. }
  5191. if len(text) > numChars {
  5192. if name == "LEFT" || name == "LEFTB" {
  5193. return newStringFormulaArg(text[:numChars])
  5194. }
  5195. return newStringFormulaArg(text[len(text)-numChars:])
  5196. }
  5197. return newStringFormulaArg(text)
  5198. }
  5199. // LEN returns the length of a supplied text string. The syntax of the
  5200. // function is:
  5201. //
  5202. // LEN(text)
  5203. //
  5204. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5205. if argsList.Len() != 1 {
  5206. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5207. }
  5208. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5209. }
  5210. // LENB returns the number of bytes used to represent the characters in a text
  5211. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5212. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5213. // 1 byte per character. The syntax of the function is:
  5214. //
  5215. // LENB(text)
  5216. //
  5217. // TODO: the languages that support DBCS include Japanese, Chinese
  5218. // (Simplified), Chinese (Traditional), and Korean.
  5219. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5220. if argsList.Len() != 1 {
  5221. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5222. }
  5223. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5224. }
  5225. // LOWER converts all characters in a supplied text string to lower case. The
  5226. // syntax of the function is:
  5227. //
  5228. // LOWER(text)
  5229. //
  5230. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5231. if argsList.Len() != 1 {
  5232. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5233. }
  5234. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5235. }
  5236. // MID function returns a specified number of characters from the middle of a
  5237. // supplied text string. The syntax of the function is:
  5238. //
  5239. // MID(text,start_num,num_chars)
  5240. //
  5241. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5242. return fn.mid("MID", argsList)
  5243. }
  5244. // MIDB returns a specific number of characters from a text string, starting
  5245. // at the position you specify, based on the number of bytes you specify. The
  5246. // syntax of the function is:
  5247. //
  5248. // MID(text,start_num,num_chars)
  5249. //
  5250. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5251. return fn.mid("MIDB", argsList)
  5252. }
  5253. // mid is an implementation of the formula function MID and MIDB. TODO:
  5254. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5255. // (Traditional), and Korean.
  5256. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5257. if argsList.Len() != 3 {
  5258. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5259. }
  5260. text := argsList.Front().Value.(formulaArg).Value()
  5261. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5262. if startNumArg.Type != ArgNumber {
  5263. return startNumArg
  5264. }
  5265. if numCharsArg.Type != ArgNumber {
  5266. return numCharsArg
  5267. }
  5268. startNum := int(startNumArg.Number)
  5269. if startNum < 0 {
  5270. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5271. }
  5272. textLen := len(text)
  5273. if startNum > textLen {
  5274. return newStringFormulaArg("")
  5275. }
  5276. startNum--
  5277. endNum := startNum + int(numCharsArg.Number)
  5278. if endNum > textLen+1 {
  5279. return newStringFormulaArg(text[startNum:])
  5280. }
  5281. return newStringFormulaArg(text[startNum:endNum])
  5282. }
  5283. // PROPER converts all characters in a supplied text string to proper case
  5284. // (i.e. all letters that do not immediately follow another letter are set to
  5285. // upper case and all other characters are lower case). The syntax of the
  5286. // function is:
  5287. //
  5288. // PROPER(text)
  5289. //
  5290. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5291. if argsList.Len() != 1 {
  5292. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5293. }
  5294. buf := bytes.Buffer{}
  5295. isLetter := false
  5296. for _, char := range argsList.Front().Value.(formulaArg).String {
  5297. if !isLetter && unicode.IsLetter(char) {
  5298. buf.WriteRune(unicode.ToUpper(char))
  5299. } else {
  5300. buf.WriteRune(unicode.ToLower(char))
  5301. }
  5302. isLetter = unicode.IsLetter(char)
  5303. }
  5304. return newStringFormulaArg(buf.String())
  5305. }
  5306. // REPLACE function replaces all or part of a text string with another string.
  5307. // The syntax of the function is:
  5308. //
  5309. // REPLACE(old_text,start_num,num_chars,new_text)
  5310. //
  5311. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5312. return fn.replace("REPLACE", argsList)
  5313. }
  5314. // REPLACEB replaces part of a text string, based on the number of bytes you
  5315. // specify, with a different text string.
  5316. //
  5317. // REPLACEB(old_text,start_num,num_chars,new_text)
  5318. //
  5319. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5320. return fn.replace("REPLACEB", argsList)
  5321. }
  5322. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5323. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5324. // (Traditional), and Korean.
  5325. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5326. if argsList.Len() != 4 {
  5327. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5328. }
  5329. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5330. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5331. if startNumArg.Type != ArgNumber {
  5332. return startNumArg
  5333. }
  5334. if numCharsArg.Type != ArgNumber {
  5335. return numCharsArg
  5336. }
  5337. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5338. if startIdx > oldTextLen {
  5339. startIdx = oldTextLen + 1
  5340. }
  5341. endIdx := startIdx + int(numCharsArg.Number)
  5342. if endIdx > oldTextLen {
  5343. endIdx = oldTextLen + 1
  5344. }
  5345. if startIdx < 1 || endIdx < 1 {
  5346. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5347. }
  5348. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5349. return newStringFormulaArg(result)
  5350. }
  5351. // REPT function returns a supplied text string, repeated a specified number
  5352. // of times. The syntax of the function is:
  5353. //
  5354. // REPT(text,number_times)
  5355. //
  5356. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5357. if argsList.Len() != 2 {
  5358. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5359. }
  5360. text := argsList.Front().Value.(formulaArg)
  5361. if text.Type != ArgString {
  5362. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5363. }
  5364. times := argsList.Back().Value.(formulaArg).ToNumber()
  5365. if times.Type != ArgNumber {
  5366. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5367. }
  5368. if times.Number < 0 {
  5369. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5370. }
  5371. if times.Number == 0 {
  5372. return newStringFormulaArg("")
  5373. }
  5374. buf := bytes.Buffer{}
  5375. for i := 0; i < int(times.Number); i++ {
  5376. buf.WriteString(text.String)
  5377. }
  5378. return newStringFormulaArg(buf.String())
  5379. }
  5380. // RIGHT function returns a specified number of characters from the end of a
  5381. // supplied text string. The syntax of the function is:
  5382. //
  5383. // RIGHT(text,[num_chars])
  5384. //
  5385. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5386. return fn.leftRight("RIGHT", argsList)
  5387. }
  5388. // RIGHTB returns the last character or characters in a text string, based on
  5389. // the number of bytes you specify. The syntax of the function is:
  5390. //
  5391. // RIGHTB(text,[num_bytes])
  5392. //
  5393. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5394. return fn.leftRight("RIGHTB", argsList)
  5395. }
  5396. // SUBSTITUTE function replaces one or more instances of a given text string,
  5397. // within an original text string. The syntax of the function is:
  5398. //
  5399. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5400. //
  5401. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5402. if argsList.Len() != 3 && argsList.Len() != 4 {
  5403. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5404. }
  5405. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5406. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5407. if argsList.Len() == 3 {
  5408. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5409. }
  5410. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5411. if instanceNumArg.Type != ArgNumber {
  5412. return instanceNumArg
  5413. }
  5414. instanceNum = int(instanceNumArg.Number)
  5415. if instanceNum < 1 {
  5416. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5417. }
  5418. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5419. for {
  5420. count--
  5421. index := strings.Index(str, oldText.Value())
  5422. if index == -1 {
  5423. pos = -1
  5424. break
  5425. } else {
  5426. pos = index + chars
  5427. if count == 0 {
  5428. break
  5429. }
  5430. idx := oldTextLen + index
  5431. chars += idx
  5432. str = str[idx:]
  5433. }
  5434. }
  5435. if pos == -1 {
  5436. return newStringFormulaArg(text.Value())
  5437. }
  5438. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5439. return newStringFormulaArg(pre + newText.Value() + post)
  5440. }
  5441. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5442. // words or characters) from a supplied text string. The syntax of the
  5443. // function is:
  5444. //
  5445. // TRIM(text)
  5446. //
  5447. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5448. if argsList.Len() != 1 {
  5449. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5450. }
  5451. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5452. }
  5453. // UNICHAR returns the Unicode character that is referenced by the given
  5454. // numeric value. The syntax of the function is:
  5455. //
  5456. // UNICHAR(number)
  5457. //
  5458. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5459. if argsList.Len() != 1 {
  5460. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5461. }
  5462. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5463. if numArg.Type != ArgNumber {
  5464. return numArg
  5465. }
  5466. if numArg.Number <= 0 || numArg.Number > 55295 {
  5467. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5468. }
  5469. return newStringFormulaArg(string(rune(numArg.Number)))
  5470. }
  5471. // UNICODE function returns the code point for the first character of a
  5472. // supplied text string. The syntax of the function is:
  5473. //
  5474. // UNICODE(text)
  5475. //
  5476. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5477. return fn.code("UNICODE", argsList)
  5478. }
  5479. // UPPER converts all characters in a supplied text string to upper case. The
  5480. // syntax of the function is:
  5481. //
  5482. // UPPER(text)
  5483. //
  5484. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5485. if argsList.Len() != 1 {
  5486. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5487. }
  5488. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5489. }
  5490. // Conditional Functions
  5491. // IF function tests a supplied condition and returns one result if the
  5492. // condition evaluates to TRUE, and another result if the condition evaluates
  5493. // to FALSE. The syntax of the function is:
  5494. //
  5495. // IF(logical_test,value_if_true,value_if_false)
  5496. //
  5497. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5498. if argsList.Len() == 0 {
  5499. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5500. }
  5501. if argsList.Len() > 3 {
  5502. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5503. }
  5504. token := argsList.Front().Value.(formulaArg)
  5505. var (
  5506. cond bool
  5507. err error
  5508. result string
  5509. )
  5510. switch token.Type {
  5511. case ArgString:
  5512. if cond, err = strconv.ParseBool(token.String); err != nil {
  5513. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5514. }
  5515. if argsList.Len() == 1 {
  5516. return newBoolFormulaArg(cond)
  5517. }
  5518. if cond {
  5519. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5520. }
  5521. if argsList.Len() == 3 {
  5522. result = argsList.Back().Value.(formulaArg).String
  5523. }
  5524. }
  5525. return newStringFormulaArg(result)
  5526. }
  5527. // Lookup and Reference Functions
  5528. // CHOOSE function returns a value from an array, that corresponds to a
  5529. // supplied index number (position). The syntax of the function is:
  5530. //
  5531. // CHOOSE(index_num,value1,[value2],...)
  5532. //
  5533. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5534. if argsList.Len() < 2 {
  5535. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5536. }
  5537. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5538. if err != nil {
  5539. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5540. }
  5541. if argsList.Len() <= idx {
  5542. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5543. }
  5544. arg := argsList.Front()
  5545. for i := 0; i < idx; i++ {
  5546. arg = arg.Next()
  5547. }
  5548. var result formulaArg
  5549. switch arg.Value.(formulaArg).Type {
  5550. case ArgString:
  5551. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5552. case ArgMatrix:
  5553. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5554. }
  5555. return result
  5556. }
  5557. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5558. // string.
  5559. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5560. for len(pattern) > 0 {
  5561. switch pattern[0] {
  5562. default:
  5563. if len(str) == 0 || str[0] != pattern[0] {
  5564. return false
  5565. }
  5566. case '?':
  5567. if len(str) == 0 && !simple {
  5568. return false
  5569. }
  5570. case '*':
  5571. return deepMatchRune(str, pattern[1:], simple) ||
  5572. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5573. }
  5574. str = str[1:]
  5575. pattern = pattern[1:]
  5576. }
  5577. return len(str) == 0 && len(pattern) == 0
  5578. }
  5579. // matchPattern finds whether the text matches or satisfies the pattern
  5580. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5581. func matchPattern(pattern, name string) (matched bool) {
  5582. if pattern == "" {
  5583. return name == pattern
  5584. }
  5585. if pattern == "*" {
  5586. return true
  5587. }
  5588. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5589. for _, r := range name {
  5590. rname = append(rname, r)
  5591. }
  5592. for _, r := range pattern {
  5593. rpattern = append(rpattern, r)
  5594. }
  5595. simple := false // Does extended wildcard '*' and '?' match.
  5596. return deepMatchRune(rname, rpattern, simple)
  5597. }
  5598. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5599. // formula arguments by given conditions such as case sensitive, if exact
  5600. // match, and make compare result as formula criteria condition type.
  5601. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5602. if lhs.Type != rhs.Type {
  5603. return criteriaErr
  5604. }
  5605. switch lhs.Type {
  5606. case ArgNumber:
  5607. if lhs.Number == rhs.Number {
  5608. return criteriaEq
  5609. }
  5610. if lhs.Number < rhs.Number {
  5611. return criteriaL
  5612. }
  5613. return criteriaG
  5614. case ArgString:
  5615. ls, rs := lhs.String, rhs.String
  5616. if !caseSensitive {
  5617. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5618. }
  5619. if exactMatch {
  5620. match := matchPattern(rs, ls)
  5621. if match {
  5622. return criteriaEq
  5623. }
  5624. return criteriaG
  5625. }
  5626. switch strings.Compare(ls, rs) {
  5627. case 1:
  5628. return criteriaG
  5629. case -1:
  5630. return criteriaL
  5631. case 0:
  5632. return criteriaEq
  5633. }
  5634. return criteriaErr
  5635. case ArgEmpty:
  5636. return criteriaEq
  5637. case ArgList:
  5638. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5639. case ArgMatrix:
  5640. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5641. }
  5642. return criteriaErr
  5643. }
  5644. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5645. // list type formula arguments.
  5646. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5647. if len(lhs.List) < len(rhs.List) {
  5648. return criteriaL
  5649. }
  5650. if len(lhs.List) > len(rhs.List) {
  5651. return criteriaG
  5652. }
  5653. for arg := range lhs.List {
  5654. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5655. if criteria != criteriaEq {
  5656. return criteria
  5657. }
  5658. }
  5659. return criteriaEq
  5660. }
  5661. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5662. // matrix type formula arguments.
  5663. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5664. if len(lhs.Matrix) < len(rhs.Matrix) {
  5665. return criteriaL
  5666. }
  5667. if len(lhs.Matrix) > len(rhs.Matrix) {
  5668. return criteriaG
  5669. }
  5670. for i := range lhs.Matrix {
  5671. left := lhs.Matrix[i]
  5672. right := lhs.Matrix[i]
  5673. if len(left) < len(right) {
  5674. return criteriaL
  5675. }
  5676. if len(left) > len(right) {
  5677. return criteriaG
  5678. }
  5679. for arg := range left {
  5680. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5681. if criteria != criteriaEq {
  5682. return criteria
  5683. }
  5684. }
  5685. }
  5686. return criteriaEq
  5687. }
  5688. // COLUMN function returns the first column number within a supplied reference
  5689. // or the number of the current column. The syntax of the function is:
  5690. //
  5691. // COLUMN([reference])
  5692. //
  5693. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5694. if argsList.Len() > 1 {
  5695. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5696. }
  5697. if argsList.Len() == 1 {
  5698. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5699. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5700. }
  5701. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5702. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5703. }
  5704. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5705. }
  5706. col, _, _ := CellNameToCoordinates(fn.cell)
  5707. return newNumberFormulaArg(float64(col))
  5708. }
  5709. // COLUMNS function receives an Excel range and returns the number of columns
  5710. // that are contained within the range. The syntax of the function is:
  5711. //
  5712. // COLUMNS(array)
  5713. //
  5714. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5715. if argsList.Len() != 1 {
  5716. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5717. }
  5718. var min, max int
  5719. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5720. crs := argsList.Front().Value.(formulaArg).cellRanges
  5721. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5722. if min == 0 {
  5723. min = cr.Value.(cellRange).From.Col
  5724. }
  5725. if min > cr.Value.(cellRange).From.Col {
  5726. min = cr.Value.(cellRange).From.Col
  5727. }
  5728. if min > cr.Value.(cellRange).To.Col {
  5729. min = cr.Value.(cellRange).To.Col
  5730. }
  5731. if max < cr.Value.(cellRange).To.Col {
  5732. max = cr.Value.(cellRange).To.Col
  5733. }
  5734. if max < cr.Value.(cellRange).From.Col {
  5735. max = cr.Value.(cellRange).From.Col
  5736. }
  5737. }
  5738. }
  5739. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5740. cr := argsList.Front().Value.(formulaArg).cellRefs
  5741. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5742. if min == 0 {
  5743. min = refs.Value.(cellRef).Col
  5744. }
  5745. if min > refs.Value.(cellRef).Col {
  5746. min = refs.Value.(cellRef).Col
  5747. }
  5748. if max < refs.Value.(cellRef).Col {
  5749. max = refs.Value.(cellRef).Col
  5750. }
  5751. }
  5752. }
  5753. if max == TotalColumns {
  5754. return newNumberFormulaArg(float64(TotalColumns))
  5755. }
  5756. result := max - min + 1
  5757. if max == min {
  5758. if min == 0 {
  5759. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5760. }
  5761. return newNumberFormulaArg(float64(1))
  5762. }
  5763. return newNumberFormulaArg(float64(result))
  5764. }
  5765. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5766. // (or table), and returns the corresponding value from another row of the
  5767. // array. The syntax of the function is:
  5768. //
  5769. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5770. //
  5771. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5772. if argsList.Len() < 3 {
  5773. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5774. }
  5775. if argsList.Len() > 4 {
  5776. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5777. }
  5778. lookupValue := argsList.Front().Value.(formulaArg)
  5779. tableArray := argsList.Front().Next().Value.(formulaArg)
  5780. if tableArray.Type != ArgMatrix {
  5781. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5782. }
  5783. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5784. if rowArg.Type != ArgNumber {
  5785. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5786. }
  5787. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5788. if argsList.Len() == 4 {
  5789. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5790. if rangeLookup.Type == ArgError {
  5791. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5792. }
  5793. if rangeLookup.Number == 0 {
  5794. exactMatch = true
  5795. }
  5796. }
  5797. row := tableArray.Matrix[0]
  5798. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5799. start:
  5800. for idx, mtx := range row {
  5801. lhs := mtx
  5802. switch lookupValue.Type {
  5803. case ArgNumber:
  5804. if !lookupValue.Boolean {
  5805. lhs = mtx.ToNumber()
  5806. if lhs.Type == ArgError {
  5807. lhs = mtx
  5808. }
  5809. }
  5810. case ArgMatrix:
  5811. lhs = tableArray
  5812. }
  5813. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5814. matchIdx = idx
  5815. wasExact = true
  5816. break start
  5817. }
  5818. }
  5819. } else {
  5820. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  5821. }
  5822. if matchIdx == -1 {
  5823. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5824. }
  5825. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  5826. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  5827. }
  5828. row = tableArray.Matrix[rowIdx]
  5829. if wasExact || !exactMatch {
  5830. return row[matchIdx]
  5831. }
  5832. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5833. }
  5834. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  5835. // data array (or table), and returns the corresponding value from another
  5836. // column of the array. The syntax of the function is:
  5837. //
  5838. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  5839. //
  5840. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  5841. if argsList.Len() < 3 {
  5842. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  5843. }
  5844. if argsList.Len() > 4 {
  5845. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  5846. }
  5847. lookupValue := argsList.Front().Value.(formulaArg)
  5848. tableArray := argsList.Front().Next().Value.(formulaArg)
  5849. if tableArray.Type != ArgMatrix {
  5850. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  5851. }
  5852. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5853. if colIdx.Type != ArgNumber {
  5854. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  5855. }
  5856. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  5857. if argsList.Len() == 4 {
  5858. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5859. if rangeLookup.Type == ArgError {
  5860. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5861. }
  5862. if rangeLookup.Number == 0 {
  5863. exactMatch = true
  5864. }
  5865. }
  5866. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5867. start:
  5868. for idx, mtx := range tableArray.Matrix {
  5869. lhs := mtx[0]
  5870. switch lookupValue.Type {
  5871. case ArgNumber:
  5872. if !lookupValue.Boolean {
  5873. lhs = mtx[0].ToNumber()
  5874. if lhs.Type == ArgError {
  5875. lhs = mtx[0]
  5876. }
  5877. }
  5878. case ArgMatrix:
  5879. lhs = tableArray
  5880. }
  5881. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5882. matchIdx = idx
  5883. wasExact = true
  5884. break start
  5885. }
  5886. }
  5887. } else {
  5888. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  5889. }
  5890. if matchIdx == -1 {
  5891. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5892. }
  5893. mtx := tableArray.Matrix[matchIdx]
  5894. if col < 0 || col >= len(mtx) {
  5895. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  5896. }
  5897. if wasExact || !exactMatch {
  5898. return mtx[col]
  5899. }
  5900. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5901. }
  5902. // vlookupBinarySearch finds the position of a target value when range lookup
  5903. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5904. // return wrong result.
  5905. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5906. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  5907. for low <= high {
  5908. var mid int = low + (high-low)/2
  5909. mtx := tableArray.Matrix[mid]
  5910. lhs := mtx[0]
  5911. switch lookupValue.Type {
  5912. case ArgNumber:
  5913. if !lookupValue.Boolean {
  5914. lhs = mtx[0].ToNumber()
  5915. if lhs.Type == ArgError {
  5916. lhs = mtx[0]
  5917. }
  5918. }
  5919. case ArgMatrix:
  5920. lhs = tableArray
  5921. }
  5922. result := compareFormulaArg(lhs, lookupValue, false, false)
  5923. if result == criteriaEq {
  5924. matchIdx, wasExact = mid, true
  5925. return
  5926. } else if result == criteriaG {
  5927. high = mid - 1
  5928. } else if result == criteriaL {
  5929. matchIdx, low = mid, mid+1
  5930. if lhs.Value() != "" {
  5931. lastMatchIdx = matchIdx
  5932. }
  5933. } else {
  5934. return -1, false
  5935. }
  5936. }
  5937. matchIdx, wasExact = lastMatchIdx, true
  5938. return
  5939. }
  5940. // vlookupBinarySearch finds the position of a target value when range lookup
  5941. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5942. // return wrong result.
  5943. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5944. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  5945. for low <= high {
  5946. var mid int = low + (high-low)/2
  5947. mtx := row[mid]
  5948. result := compareFormulaArg(mtx, lookupValue, false, false)
  5949. if result == criteriaEq {
  5950. matchIdx, wasExact = mid, true
  5951. return
  5952. } else if result == criteriaG {
  5953. high = mid - 1
  5954. } else if result == criteriaL {
  5955. low, lastMatchIdx = mid+1, mid
  5956. } else {
  5957. return -1, false
  5958. }
  5959. }
  5960. matchIdx, wasExact = lastMatchIdx, true
  5961. return
  5962. }
  5963. // LOOKUP function performs an approximate match lookup in a one-column or
  5964. // one-row range, and returns the corresponding value from another one-column
  5965. // or one-row range. The syntax of the function is:
  5966. //
  5967. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  5968. //
  5969. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  5970. if argsList.Len() < 2 {
  5971. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  5972. }
  5973. if argsList.Len() > 3 {
  5974. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  5975. }
  5976. lookupValue := argsList.Front().Value.(formulaArg)
  5977. lookupVector := argsList.Front().Next().Value.(formulaArg)
  5978. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  5979. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  5980. }
  5981. cols, matchIdx := lookupCol(lookupVector), -1
  5982. for idx, col := range cols {
  5983. lhs := lookupValue
  5984. switch col.Type {
  5985. case ArgNumber:
  5986. lhs = lhs.ToNumber()
  5987. if !col.Boolean {
  5988. if lhs.Type == ArgError {
  5989. lhs = lookupValue
  5990. }
  5991. }
  5992. }
  5993. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  5994. matchIdx = idx
  5995. break
  5996. }
  5997. }
  5998. column := cols
  5999. if argsList.Len() == 3 {
  6000. column = lookupCol(argsList.Back().Value.(formulaArg))
  6001. }
  6002. if matchIdx < 0 || matchIdx >= len(column) {
  6003. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6004. }
  6005. return column[matchIdx]
  6006. }
  6007. // lookupCol extract columns for LOOKUP.
  6008. func lookupCol(arr formulaArg) []formulaArg {
  6009. col := arr.List
  6010. if arr.Type == ArgMatrix {
  6011. col = nil
  6012. for _, r := range arr.Matrix {
  6013. if len(r) > 0 {
  6014. col = append(col, r[0])
  6015. continue
  6016. }
  6017. col = append(col, newEmptyFormulaArg())
  6018. }
  6019. }
  6020. return col
  6021. }
  6022. // ROW function returns the first row number within a supplied reference or
  6023. // the number of the current row. The syntax of the function is:
  6024. //
  6025. // ROW([reference])
  6026. //
  6027. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6028. if argsList.Len() > 1 {
  6029. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6030. }
  6031. if argsList.Len() == 1 {
  6032. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6033. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6034. }
  6035. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6036. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6037. }
  6038. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6039. }
  6040. _, row, _ := CellNameToCoordinates(fn.cell)
  6041. return newNumberFormulaArg(float64(row))
  6042. }
  6043. // ROWS function takes an Excel range and returns the number of rows that are
  6044. // contained within the range. The syntax of the function is:
  6045. //
  6046. // ROWS(array)
  6047. //
  6048. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6049. if argsList.Len() != 1 {
  6050. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6051. }
  6052. var min, max int
  6053. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6054. crs := argsList.Front().Value.(formulaArg).cellRanges
  6055. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6056. if min == 0 {
  6057. min = cr.Value.(cellRange).From.Row
  6058. }
  6059. if min > cr.Value.(cellRange).From.Row {
  6060. min = cr.Value.(cellRange).From.Row
  6061. }
  6062. if min > cr.Value.(cellRange).To.Row {
  6063. min = cr.Value.(cellRange).To.Row
  6064. }
  6065. if max < cr.Value.(cellRange).To.Row {
  6066. max = cr.Value.(cellRange).To.Row
  6067. }
  6068. if max < cr.Value.(cellRange).From.Row {
  6069. max = cr.Value.(cellRange).From.Row
  6070. }
  6071. }
  6072. }
  6073. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6074. cr := argsList.Front().Value.(formulaArg).cellRefs
  6075. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6076. if min == 0 {
  6077. min = refs.Value.(cellRef).Row
  6078. }
  6079. if min > refs.Value.(cellRef).Row {
  6080. min = refs.Value.(cellRef).Row
  6081. }
  6082. if max < refs.Value.(cellRef).Row {
  6083. max = refs.Value.(cellRef).Row
  6084. }
  6085. }
  6086. }
  6087. if max == TotalRows {
  6088. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6089. }
  6090. result := max - min + 1
  6091. if max == min {
  6092. if min == 0 {
  6093. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6094. }
  6095. return newNumberFormulaArg(float64(1))
  6096. }
  6097. return newStringFormulaArg(strconv.Itoa(result))
  6098. }
  6099. // Web Functions
  6100. // ENCODEURL function returns a URL-encoded string, replacing certain
  6101. // non-alphanumeric characters with the percentage symbol (%) and a
  6102. // hexadecimal number. The syntax of the function is:
  6103. //
  6104. // ENCODEURL(url)
  6105. //
  6106. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6107. if argsList.Len() != 1 {
  6108. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6109. }
  6110. token := argsList.Front().Value.(formulaArg).Value()
  6111. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6112. }