calc.go 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "reflect"
  20. "regexp"
  21. "sort"
  22. "strconv"
  23. "strings"
  24. "time"
  25. "unicode"
  26. "github.com/xuri/efp"
  27. )
  28. // Excel formula errors
  29. const (
  30. formulaErrorDIV = "#DIV/0!"
  31. formulaErrorNAME = "#NAME?"
  32. formulaErrorNA = "#N/A"
  33. formulaErrorNUM = "#NUM!"
  34. formulaErrorVALUE = "#VALUE!"
  35. formulaErrorREF = "#REF!"
  36. formulaErrorNULL = "#NULL"
  37. formulaErrorSPILL = "#SPILL!"
  38. formulaErrorCALC = "#CALC!"
  39. formulaErrorGETTINGDATA = "#GETTING_DATA"
  40. )
  41. // Numeric precision correct numeric values as legacy Excel application
  42. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  43. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  44. // has a decimal representation that is an infinite string of ones, Excel
  45. // displays only the leading 15 figures. In the second line, the number one
  46. // is added to the fraction, and again Excel displays only 15 figures.
  47. const numericPrecision = 1000000000000000
  48. // cellRef defines the structure of a cell reference.
  49. type cellRef struct {
  50. Col int
  51. Row int
  52. Sheet string
  53. }
  54. // cellRef defines the structure of a cell range.
  55. type cellRange struct {
  56. From cellRef
  57. To cellRef
  58. }
  59. // formula criteria condition enumeration.
  60. const (
  61. _ byte = iota
  62. criteriaEq
  63. criteriaLe
  64. criteriaGe
  65. criteriaL
  66. criteriaG
  67. criteriaBeg
  68. criteriaEnd
  69. criteriaErr
  70. )
  71. // formulaCriteria defined formula criteria parser result.
  72. type formulaCriteria struct {
  73. Type byte
  74. Condition string
  75. }
  76. // ArgType is the type if formula argument type.
  77. type ArgType byte
  78. // Formula argument types enumeration.
  79. const (
  80. ArgUnknown ArgType = iota
  81. ArgNumber
  82. ArgString
  83. ArgList
  84. ArgMatrix
  85. ArgError
  86. ArgEmpty
  87. )
  88. // formulaArg is the argument of a formula or function.
  89. type formulaArg struct {
  90. Number float64
  91. String string
  92. List []formulaArg
  93. Matrix [][]formulaArg
  94. Boolean bool
  95. Error string
  96. Type ArgType
  97. }
  98. // Value returns a string data type of the formula argument.
  99. func (fa formulaArg) Value() (value string) {
  100. switch fa.Type {
  101. case ArgNumber:
  102. if fa.Boolean {
  103. if fa.Number == 0 {
  104. return "FALSE"
  105. }
  106. return "TRUE"
  107. }
  108. return fmt.Sprintf("%g", fa.Number)
  109. case ArgString:
  110. return fa.String
  111. case ArgError:
  112. return fa.Error
  113. }
  114. return
  115. }
  116. // ToNumber returns a formula argument with number data type.
  117. func (fa formulaArg) ToNumber() formulaArg {
  118. var n float64
  119. var err error
  120. switch fa.Type {
  121. case ArgString:
  122. n, err = strconv.ParseFloat(fa.String, 64)
  123. if err != nil {
  124. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  125. }
  126. case ArgNumber:
  127. n = fa.Number
  128. }
  129. return newNumberFormulaArg(n)
  130. }
  131. // ToBool returns a formula argument with boolean data type.
  132. func (fa formulaArg) ToBool() formulaArg {
  133. var b bool
  134. var err error
  135. switch fa.Type {
  136. case ArgString:
  137. b, err = strconv.ParseBool(fa.String)
  138. if err != nil {
  139. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  140. }
  141. case ArgNumber:
  142. if fa.Boolean && fa.Number == 1 {
  143. b = true
  144. }
  145. }
  146. return newBoolFormulaArg(b)
  147. }
  148. // formulaFuncs is the type of the formula functions.
  149. type formulaFuncs struct{}
  150. // tokenPriority defined basic arithmetic operator priority.
  151. var tokenPriority = map[string]int{
  152. "^": 5,
  153. "*": 4,
  154. "/": 4,
  155. "+": 3,
  156. "-": 3,
  157. "=": 2,
  158. "<>": 2,
  159. "<": 2,
  160. "<=": 2,
  161. ">": 2,
  162. ">=": 2,
  163. "&": 1,
  164. }
  165. // CalcCellValue provides a function to get calculated cell value. This
  166. // feature is currently in working processing. Array formula, table formula
  167. // and some other formulas are not supported currently.
  168. //
  169. // Supported formulas:
  170. //
  171. // ABS
  172. // ACOS
  173. // ACOSH
  174. // ACOT
  175. // ACOTH
  176. // AND
  177. // ARABIC
  178. // ASIN
  179. // ASINH
  180. // ATAN2
  181. // ATANH
  182. // BASE
  183. // CEILING
  184. // CEILING.MATH
  185. // CEILING.PRECISE
  186. // CHOOSE
  187. // CLEAN
  188. // COMBIN
  189. // COMBINA
  190. // COS
  191. // COSH
  192. // COT
  193. // COTH
  194. // COUNTA
  195. // CSC
  196. // CSCH
  197. // DATE
  198. // DECIMAL
  199. // DEGREES
  200. // EVEN
  201. // EXP
  202. // FACT
  203. // FACTDOUBLE
  204. // FLOOR
  205. // FLOOR.MATH
  206. // FLOOR.PRECISE
  207. // GCD
  208. // IF
  209. // INT
  210. // ISBLANK
  211. // ISERR
  212. // ISERROR
  213. // ISEVEN
  214. // ISNA
  215. // ISNONTEXT
  216. // ISNUMBER
  217. // ISODD
  218. // ISO.CEILING
  219. // LCM
  220. // LEN
  221. // LN
  222. // LOG
  223. // LOG10
  224. // LOWER
  225. // MDETERM
  226. // MEDIAN
  227. // MOD
  228. // MROUND
  229. // MULTINOMIAL
  230. // MUNIT
  231. // NA
  232. // ODD
  233. // OR
  234. // PI
  235. // POWER
  236. // PRODUCT
  237. // PROPER
  238. // QUOTIENT
  239. // RADIANS
  240. // RAND
  241. // RANDBETWEEN
  242. // ROUND
  243. // ROUNDDOWN
  244. // ROUNDUP
  245. // SEC
  246. // SECH
  247. // SIGN
  248. // SIN
  249. // SINH
  250. // SQRT
  251. // SQRTPI
  252. // SUM
  253. // SUMIF
  254. // SUMSQ
  255. // TAN
  256. // TANH
  257. // TRIM
  258. // TRUNC
  259. // UPPER
  260. //
  261. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  262. var (
  263. formula string
  264. token efp.Token
  265. )
  266. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  267. return
  268. }
  269. ps := efp.ExcelParser()
  270. tokens := ps.Parse(formula)
  271. if tokens == nil {
  272. return
  273. }
  274. if token, err = f.evalInfixExp(sheet, tokens); err != nil {
  275. return
  276. }
  277. result = token.TValue
  278. isNum, precision := isNumeric(result)
  279. if isNum && precision > 15 {
  280. num, _ := roundPrecision(result)
  281. result = strings.ToUpper(num)
  282. }
  283. return
  284. }
  285. // getPriority calculate arithmetic operator priority.
  286. func getPriority(token efp.Token) (pri int) {
  287. pri, _ = tokenPriority[token.TValue]
  288. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  289. pri = 6
  290. }
  291. if isBeginParenthesesToken(token) { // (
  292. pri = 0
  293. }
  294. return
  295. }
  296. // newNumberFormulaArg constructs a number formula argument.
  297. func newNumberFormulaArg(n float64) formulaArg {
  298. if math.IsNaN(n) {
  299. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  300. }
  301. return formulaArg{Type: ArgNumber, Number: n}
  302. }
  303. // newStringFormulaArg constructs a string formula argument.
  304. func newStringFormulaArg(s string) formulaArg {
  305. return formulaArg{Type: ArgString, String: s}
  306. }
  307. // newMatrixFormulaArg constructs a matrix formula argument.
  308. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  309. return formulaArg{Type: ArgMatrix, Matrix: m}
  310. }
  311. // newListFormulaArg create a list formula argument.
  312. func newListFormulaArg(l []formulaArg) formulaArg {
  313. return formulaArg{Type: ArgList, List: l}
  314. }
  315. // newBoolFormulaArg constructs a boolean formula argument.
  316. func newBoolFormulaArg(b bool) formulaArg {
  317. var n float64
  318. if b {
  319. n = 1
  320. }
  321. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  322. }
  323. // newErrorFormulaArg create an error formula argument of a given type with a
  324. // specified error message.
  325. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  326. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  327. }
  328. // newEmptyFormulaArg create an empty formula argument.
  329. func newEmptyFormulaArg() formulaArg {
  330. return formulaArg{Type: ArgEmpty}
  331. }
  332. // evalInfixExp evaluate syntax analysis by given infix expression after
  333. // lexical analysis. Evaluate an infix expression containing formulas by
  334. // stacks:
  335. //
  336. // opd - Operand
  337. // opt - Operator
  338. // opf - Operation formula
  339. // opfd - Operand of the operation formula
  340. // opft - Operator of the operation formula
  341. //
  342. // Evaluate arguments of the operation formula by list:
  343. //
  344. // args - Arguments of the operation formula
  345. //
  346. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  347. //
  348. func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
  349. var err error
  350. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  351. for i := 0; i < len(tokens); i++ {
  352. token := tokens[i]
  353. // out of function stack
  354. if opfStack.Len() == 0 {
  355. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  356. return efp.Token{}, err
  357. }
  358. }
  359. // function start
  360. if isFunctionStartToken(token) {
  361. opfStack.Push(token)
  362. argsStack.Push(list.New().Init())
  363. continue
  364. }
  365. // in function stack, walk 2 token at once
  366. if opfStack.Len() > 0 {
  367. var nextToken efp.Token
  368. if i+1 < len(tokens) {
  369. nextToken = tokens[i+1]
  370. }
  371. // current token is args or range, skip next token, order required: parse reference first
  372. if token.TSubType == efp.TokenSubTypeRange {
  373. if !opftStack.Empty() {
  374. // parse reference: must reference at here
  375. result, err := f.parseReference(sheet, token.TValue)
  376. if err != nil {
  377. return efp.Token{TValue: formulaErrorNAME}, err
  378. }
  379. if result.Type != ArgString {
  380. return efp.Token{}, errors.New(formulaErrorVALUE)
  381. }
  382. opfdStack.Push(efp.Token{
  383. TType: efp.TokenTypeOperand,
  384. TSubType: efp.TokenSubTypeNumber,
  385. TValue: result.String,
  386. })
  387. continue
  388. }
  389. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  390. // parse reference: reference or range at here
  391. result, err := f.parseReference(sheet, token.TValue)
  392. if err != nil {
  393. return efp.Token{TValue: formulaErrorNAME}, err
  394. }
  395. if result.Type == ArgUnknown {
  396. return efp.Token{}, errors.New(formulaErrorVALUE)
  397. }
  398. argsStack.Peek().(*list.List).PushBack(result)
  399. continue
  400. }
  401. }
  402. // check current token is opft
  403. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  404. return efp.Token{}, err
  405. }
  406. // current token is arg
  407. if token.TType == efp.TokenTypeArgument {
  408. for !opftStack.Empty() {
  409. // calculate trigger
  410. topOpt := opftStack.Peek().(efp.Token)
  411. if err := calculate(opfdStack, topOpt); err != nil {
  412. return efp.Token{}, err
  413. }
  414. opftStack.Pop()
  415. }
  416. if !opfdStack.Empty() {
  417. argsStack.Peek().(*list.List).PushBack(formulaArg{
  418. String: opfdStack.Pop().(efp.Token).TValue,
  419. Type: ArgString,
  420. })
  421. }
  422. continue
  423. }
  424. // current token is logical
  425. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  426. }
  427. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  428. argsStack.Peek().(*list.List).PushBack(formulaArg{
  429. String: token.TValue,
  430. Type: ArgString,
  431. })
  432. }
  433. // current token is text
  434. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  435. argsStack.Peek().(*list.List).PushBack(formulaArg{
  436. String: token.TValue,
  437. Type: ArgString,
  438. })
  439. }
  440. if err = evalInfixExpFunc(token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  441. return efp.Token{}, err
  442. }
  443. }
  444. }
  445. for optStack.Len() != 0 {
  446. topOpt := optStack.Peek().(efp.Token)
  447. if err = calculate(opdStack, topOpt); err != nil {
  448. return efp.Token{}, err
  449. }
  450. optStack.Pop()
  451. }
  452. if opdStack.Len() == 0 {
  453. return efp.Token{}, errors.New("formula not valid")
  454. }
  455. return opdStack.Peek().(efp.Token), err
  456. }
  457. // evalInfixExpFunc evaluate formula function in the infix expression.
  458. func evalInfixExpFunc(token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  459. if !isFunctionStopToken(token) {
  460. return nil
  461. }
  462. // current token is function stop
  463. for !opftStack.Empty() {
  464. // calculate trigger
  465. topOpt := opftStack.Peek().(efp.Token)
  466. if err := calculate(opfdStack, topOpt); err != nil {
  467. return err
  468. }
  469. opftStack.Pop()
  470. }
  471. // push opfd to args
  472. if opfdStack.Len() > 0 {
  473. argsStack.Peek().(*list.List).PushBack(formulaArg{
  474. String: opfdStack.Pop().(efp.Token).TValue,
  475. Type: ArgString,
  476. })
  477. }
  478. // call formula function to evaluate
  479. arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
  480. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  481. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  482. if arg.Type == ArgError {
  483. return errors.New(arg.Value())
  484. }
  485. argsStack.Pop()
  486. opfStack.Pop()
  487. if opfStack.Len() > 0 { // still in function stack
  488. if nextToken.TType == efp.TokenTypeOperatorInfix {
  489. // mathematics calculate in formula function
  490. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  491. } else {
  492. argsStack.Peek().(*list.List).PushBack(arg)
  493. }
  494. } else {
  495. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  496. }
  497. return nil
  498. }
  499. // calcPow evaluate exponentiation arithmetic operations.
  500. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  501. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  502. if err != nil {
  503. return err
  504. }
  505. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  506. if err != nil {
  507. return err
  508. }
  509. result := math.Pow(lOpdVal, rOpdVal)
  510. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  511. return nil
  512. }
  513. // calcEq evaluate equal arithmetic operations.
  514. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  515. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  516. return nil
  517. }
  518. // calcNEq evaluate not equal arithmetic operations.
  519. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  520. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  521. return nil
  522. }
  523. // calcL evaluate less than arithmetic operations.
  524. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  525. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  526. if err != nil {
  527. return err
  528. }
  529. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  530. if err != nil {
  531. return err
  532. }
  533. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  534. return nil
  535. }
  536. // calcLe evaluate less than or equal arithmetic operations.
  537. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  538. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  539. if err != nil {
  540. return err
  541. }
  542. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  543. if err != nil {
  544. return err
  545. }
  546. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  547. return nil
  548. }
  549. // calcG evaluate greater than or equal arithmetic operations.
  550. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  551. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  552. if err != nil {
  553. return err
  554. }
  555. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  556. if err != nil {
  557. return err
  558. }
  559. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  560. return nil
  561. }
  562. // calcGe evaluate greater than or equal arithmetic operations.
  563. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  564. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  565. if err != nil {
  566. return err
  567. }
  568. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  569. if err != nil {
  570. return err
  571. }
  572. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  573. return nil
  574. }
  575. // calcSplice evaluate splice '&' operations.
  576. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  577. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  578. return nil
  579. }
  580. // calcAdd evaluate addition arithmetic operations.
  581. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  582. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  583. if err != nil {
  584. return err
  585. }
  586. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  587. if err != nil {
  588. return err
  589. }
  590. result := lOpdVal + rOpdVal
  591. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  592. return nil
  593. }
  594. // calcSubtract evaluate subtraction arithmetic operations.
  595. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  596. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  597. if err != nil {
  598. return err
  599. }
  600. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  601. if err != nil {
  602. return err
  603. }
  604. result := lOpdVal - rOpdVal
  605. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  606. return nil
  607. }
  608. // calcMultiply evaluate multiplication arithmetic operations.
  609. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  610. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  611. if err != nil {
  612. return err
  613. }
  614. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  615. if err != nil {
  616. return err
  617. }
  618. result := lOpdVal * rOpdVal
  619. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  620. return nil
  621. }
  622. // calcDiv evaluate division arithmetic operations.
  623. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  624. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  625. if err != nil {
  626. return err
  627. }
  628. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  629. if err != nil {
  630. return err
  631. }
  632. result := lOpdVal / rOpdVal
  633. if rOpdVal == 0 {
  634. return errors.New(formulaErrorDIV)
  635. }
  636. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  637. return nil
  638. }
  639. // calculate evaluate basic arithmetic operations.
  640. func calculate(opdStack *Stack, opt efp.Token) error {
  641. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  642. if opdStack.Len() < 1 {
  643. return errors.New("formula not valid")
  644. }
  645. opd := opdStack.Pop().(efp.Token)
  646. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  647. if err != nil {
  648. return err
  649. }
  650. result := 0 - opdVal
  651. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  652. }
  653. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  654. "^": calcPow,
  655. "*": calcMultiply,
  656. "/": calcDiv,
  657. "+": calcAdd,
  658. "=": calcEq,
  659. "<>": calcNEq,
  660. "<": calcL,
  661. "<=": calcLe,
  662. ">": calcG,
  663. ">=": calcGe,
  664. "&": calcSplice,
  665. }
  666. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  667. if opdStack.Len() < 2 {
  668. return errors.New("formula not valid")
  669. }
  670. rOpd := opdStack.Pop().(efp.Token)
  671. lOpd := opdStack.Pop().(efp.Token)
  672. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  673. return err
  674. }
  675. }
  676. fn, ok := tokenCalcFunc[opt.TValue]
  677. if ok {
  678. if opdStack.Len() < 2 {
  679. return errors.New("formula not valid")
  680. }
  681. rOpd := opdStack.Pop().(efp.Token)
  682. lOpd := opdStack.Pop().(efp.Token)
  683. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  684. return err
  685. }
  686. }
  687. return nil
  688. }
  689. // parseOperatorPrefixToken parse operator prefix token.
  690. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  691. if optStack.Len() == 0 {
  692. optStack.Push(token)
  693. } else {
  694. tokenPriority := getPriority(token)
  695. topOpt := optStack.Peek().(efp.Token)
  696. topOptPriority := getPriority(topOpt)
  697. if tokenPriority > topOptPriority {
  698. optStack.Push(token)
  699. } else {
  700. for tokenPriority <= topOptPriority {
  701. optStack.Pop()
  702. if err = calculate(opdStack, topOpt); err != nil {
  703. return
  704. }
  705. if optStack.Len() > 0 {
  706. topOpt = optStack.Peek().(efp.Token)
  707. topOptPriority = getPriority(topOpt)
  708. continue
  709. }
  710. break
  711. }
  712. optStack.Push(token)
  713. }
  714. }
  715. return
  716. }
  717. // isFunctionStartToken determine if the token is function stop.
  718. func isFunctionStartToken(token efp.Token) bool {
  719. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  720. }
  721. // isFunctionStopToken determine if the token is function stop.
  722. func isFunctionStopToken(token efp.Token) bool {
  723. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  724. }
  725. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  726. func isBeginParenthesesToken(token efp.Token) bool {
  727. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  728. }
  729. // isEndParenthesesToken determine if the token is end parentheses: ).
  730. func isEndParenthesesToken(token efp.Token) bool {
  731. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  732. }
  733. // isOperatorPrefixToken determine if the token is parse operator prefix
  734. // token.
  735. func isOperatorPrefixToken(token efp.Token) bool {
  736. _, ok := tokenPriority[token.TValue]
  737. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || ok {
  738. return true
  739. }
  740. return false
  741. }
  742. // getDefinedNameRefTo convert defined name to reference range.
  743. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  744. for _, definedName := range f.GetDefinedName() {
  745. if definedName.Name == definedNameName {
  746. refTo = definedName.RefersTo
  747. // worksheet scope takes precedence over scope workbook when both definedNames exist
  748. if definedName.Scope == currentSheet {
  749. break
  750. }
  751. }
  752. }
  753. return refTo
  754. }
  755. // parseToken parse basic arithmetic operator priority and evaluate based on
  756. // operators and operands.
  757. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  758. // parse reference: must reference at here
  759. if token.TSubType == efp.TokenSubTypeRange {
  760. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  761. if refTo != "" {
  762. token.TValue = refTo
  763. }
  764. result, err := f.parseReference(sheet, token.TValue)
  765. if err != nil {
  766. return errors.New(formulaErrorNAME)
  767. }
  768. if result.Type != ArgString {
  769. return errors.New(formulaErrorVALUE)
  770. }
  771. token.TValue = result.String
  772. token.TType = efp.TokenTypeOperand
  773. token.TSubType = efp.TokenSubTypeNumber
  774. }
  775. if isOperatorPrefixToken(token) {
  776. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  777. return err
  778. }
  779. }
  780. if isBeginParenthesesToken(token) { // (
  781. optStack.Push(token)
  782. }
  783. if isEndParenthesesToken(token) { // )
  784. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  785. topOpt := optStack.Peek().(efp.Token)
  786. if err := calculate(opdStack, topOpt); err != nil {
  787. return err
  788. }
  789. optStack.Pop()
  790. }
  791. optStack.Pop()
  792. }
  793. // opd
  794. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  795. opdStack.Push(token)
  796. }
  797. return nil
  798. }
  799. // parseReference parse reference and extract values by given reference
  800. // characters and default sheet name.
  801. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  802. reference = strings.Replace(reference, "$", "", -1)
  803. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  804. for _, ref := range strings.Split(reference, ":") {
  805. tokens := strings.Split(ref, "!")
  806. cr := cellRef{}
  807. if len(tokens) == 2 { // have a worksheet name
  808. cr.Sheet = tokens[0]
  809. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  810. return
  811. }
  812. if refs.Len() > 0 {
  813. e := refs.Back()
  814. cellRefs.PushBack(e.Value.(cellRef))
  815. refs.Remove(e)
  816. }
  817. refs.PushBack(cr)
  818. continue
  819. }
  820. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  821. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  822. return
  823. }
  824. cellRanges.PushBack(cellRange{
  825. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  826. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  827. })
  828. cellRefs.Init()
  829. arg, err = f.rangeResolver(cellRefs, cellRanges)
  830. return
  831. }
  832. e := refs.Back()
  833. if e == nil {
  834. cr.Sheet = sheet
  835. refs.PushBack(cr)
  836. continue
  837. }
  838. cellRanges.PushBack(cellRange{
  839. From: e.Value.(cellRef),
  840. To: cr,
  841. })
  842. refs.Remove(e)
  843. }
  844. if refs.Len() > 0 {
  845. e := refs.Back()
  846. cellRefs.PushBack(e.Value.(cellRef))
  847. refs.Remove(e)
  848. }
  849. arg, err = f.rangeResolver(cellRefs, cellRanges)
  850. return
  851. }
  852. // prepareValueRange prepare value range.
  853. func prepareValueRange(cr cellRange, valueRange []int) {
  854. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  855. valueRange[0] = cr.From.Row
  856. }
  857. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  858. valueRange[2] = cr.From.Col
  859. }
  860. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  861. valueRange[1] = cr.To.Row
  862. }
  863. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  864. valueRange[3] = cr.To.Col
  865. }
  866. }
  867. // prepareValueRef prepare value reference.
  868. func prepareValueRef(cr cellRef, valueRange []int) {
  869. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  870. valueRange[0] = cr.Row
  871. }
  872. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  873. valueRange[2] = cr.Col
  874. }
  875. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  876. valueRange[1] = cr.Row
  877. }
  878. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  879. valueRange[3] = cr.Col
  880. }
  881. }
  882. // rangeResolver extract value as string from given reference and range list.
  883. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  884. // be reference A1:B3.
  885. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  886. // value range order: from row, to row, from column, to column
  887. valueRange := []int{0, 0, 0, 0}
  888. var sheet string
  889. // prepare value range
  890. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  891. cr := temp.Value.(cellRange)
  892. if cr.From.Sheet != cr.To.Sheet {
  893. err = errors.New(formulaErrorVALUE)
  894. }
  895. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  896. sortCoordinates(rng)
  897. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  898. prepareValueRange(cr, valueRange)
  899. if cr.From.Sheet != "" {
  900. sheet = cr.From.Sheet
  901. }
  902. }
  903. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  904. cr := temp.Value.(cellRef)
  905. if cr.Sheet != "" {
  906. sheet = cr.Sheet
  907. }
  908. prepareValueRef(cr, valueRange)
  909. }
  910. // extract value from ranges
  911. if cellRanges.Len() > 0 {
  912. arg.Type = ArgMatrix
  913. for row := valueRange[0]; row <= valueRange[1]; row++ {
  914. var matrixRow = []formulaArg{}
  915. for col := valueRange[2]; col <= valueRange[3]; col++ {
  916. var cell, value string
  917. if cell, err = CoordinatesToCellName(col, row); err != nil {
  918. return
  919. }
  920. if value, err = f.GetCellValue(sheet, cell); err != nil {
  921. return
  922. }
  923. matrixRow = append(matrixRow, formulaArg{
  924. String: value,
  925. Type: ArgString,
  926. })
  927. }
  928. arg.Matrix = append(arg.Matrix, matrixRow)
  929. }
  930. return
  931. }
  932. // extract value from references
  933. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  934. cr := temp.Value.(cellRef)
  935. var cell string
  936. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  937. return
  938. }
  939. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  940. return
  941. }
  942. arg.Type = ArgString
  943. }
  944. return
  945. }
  946. // callFuncByName calls the no error or only error return function with
  947. // reflect by given receiver, name and parameters.
  948. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  949. function := reflect.ValueOf(receiver).MethodByName(name)
  950. if function.IsValid() {
  951. rt := function.Call(params)
  952. if len(rt) == 0 {
  953. return
  954. }
  955. arg = rt[0].Interface().(formulaArg)
  956. return
  957. }
  958. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  959. }
  960. // formulaCriteriaParser parse formula criteria.
  961. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  962. fc = &formulaCriteria{}
  963. if exp == "" {
  964. return
  965. }
  966. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  967. fc.Type, fc.Condition = criteriaEq, match[1]
  968. return
  969. }
  970. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  971. fc.Type, fc.Condition = criteriaEq, match[1]
  972. return
  973. }
  974. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  975. fc.Type, fc.Condition = criteriaLe, match[1]
  976. return
  977. }
  978. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  979. fc.Type, fc.Condition = criteriaGe, match[1]
  980. return
  981. }
  982. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  983. fc.Type, fc.Condition = criteriaL, match[1]
  984. return
  985. }
  986. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  987. fc.Type, fc.Condition = criteriaG, match[1]
  988. return
  989. }
  990. if strings.Contains(exp, "*") {
  991. if strings.HasPrefix(exp, "*") {
  992. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  993. }
  994. if strings.HasSuffix(exp, "*") {
  995. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  996. }
  997. return
  998. }
  999. fc.Type, fc.Condition = criteriaEq, exp
  1000. return
  1001. }
  1002. // formulaCriteriaEval evaluate formula criteria expression.
  1003. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1004. var value, expected float64
  1005. var e error
  1006. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1007. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1008. return
  1009. }
  1010. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1011. return
  1012. }
  1013. return
  1014. }
  1015. switch criteria.Type {
  1016. case criteriaEq:
  1017. return val == criteria.Condition, err
  1018. case criteriaLe:
  1019. value, expected, e = prepareValue(val, criteria.Condition)
  1020. return value <= expected && e == nil, err
  1021. case criteriaGe:
  1022. value, expected, e = prepareValue(val, criteria.Condition)
  1023. return value >= expected && e == nil, err
  1024. case criteriaL:
  1025. value, expected, e = prepareValue(val, criteria.Condition)
  1026. return value < expected && e == nil, err
  1027. case criteriaG:
  1028. value, expected, e = prepareValue(val, criteria.Condition)
  1029. return value > expected && e == nil, err
  1030. case criteriaBeg:
  1031. return strings.HasPrefix(val, criteria.Condition), err
  1032. case criteriaEnd:
  1033. return strings.HasSuffix(val, criteria.Condition), err
  1034. }
  1035. return
  1036. }
  1037. // Math and Trigonometric functions
  1038. // ABS function returns the absolute value of any supplied number. The syntax
  1039. // of the function is:
  1040. //
  1041. // ABS(number)
  1042. //
  1043. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1044. if argsList.Len() != 1 {
  1045. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1046. }
  1047. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1048. if arg.Type == ArgError {
  1049. return arg
  1050. }
  1051. return newNumberFormulaArg(math.Abs(arg.Number))
  1052. }
  1053. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1054. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1055. // the function is:
  1056. //
  1057. // ACOS(number)
  1058. //
  1059. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1060. if argsList.Len() != 1 {
  1061. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1062. }
  1063. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1064. if arg.Type == ArgError {
  1065. return arg
  1066. }
  1067. return newNumberFormulaArg(math.Acos(arg.Number))
  1068. }
  1069. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1070. // of the function is:
  1071. //
  1072. // ACOSH(number)
  1073. //
  1074. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1075. if argsList.Len() != 1 {
  1076. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1077. }
  1078. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1079. if arg.Type == ArgError {
  1080. return arg
  1081. }
  1082. return newNumberFormulaArg(math.Acosh(arg.Number))
  1083. }
  1084. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1085. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1086. // of the function is:
  1087. //
  1088. // ACOT(number)
  1089. //
  1090. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1091. if argsList.Len() != 1 {
  1092. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1093. }
  1094. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1095. if arg.Type == ArgError {
  1096. return arg
  1097. }
  1098. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1099. }
  1100. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1101. // value. The syntax of the function is:
  1102. //
  1103. // ACOTH(number)
  1104. //
  1105. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1106. if argsList.Len() != 1 {
  1107. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1108. }
  1109. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1110. if arg.Type == ArgError {
  1111. return arg
  1112. }
  1113. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1114. }
  1115. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1116. // of the function is:
  1117. //
  1118. // ARABIC(text)
  1119. //
  1120. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1121. if argsList.Len() != 1 {
  1122. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1123. }
  1124. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1125. val, last, prefix := 0.0, 0.0, 1.0
  1126. for _, char := range argsList.Front().Value.(formulaArg).String {
  1127. digit := 0.0
  1128. if char == '-' {
  1129. prefix = -1
  1130. continue
  1131. }
  1132. digit, _ = charMap[char]
  1133. val += digit
  1134. switch {
  1135. case last == digit && (last == 5 || last == 50 || last == 500):
  1136. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1137. case 2*last == digit:
  1138. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1139. }
  1140. if last < digit {
  1141. val -= 2 * last
  1142. }
  1143. last = digit
  1144. }
  1145. return newNumberFormulaArg(prefix * val)
  1146. }
  1147. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1148. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1149. // of the function is:
  1150. //
  1151. // ASIN(number)
  1152. //
  1153. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1154. if argsList.Len() != 1 {
  1155. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1156. }
  1157. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1158. if arg.Type == ArgError {
  1159. return arg
  1160. }
  1161. return newNumberFormulaArg(math.Asin(arg.Number))
  1162. }
  1163. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1164. // The syntax of the function is:
  1165. //
  1166. // ASINH(number)
  1167. //
  1168. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1169. if argsList.Len() != 1 {
  1170. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1171. }
  1172. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1173. if arg.Type == ArgError {
  1174. return arg
  1175. }
  1176. return newNumberFormulaArg(math.Asinh(arg.Number))
  1177. }
  1178. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1179. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1180. // syntax of the function is:
  1181. //
  1182. // ATAN(number)
  1183. //
  1184. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1185. if argsList.Len() != 1 {
  1186. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1187. }
  1188. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1189. if arg.Type == ArgError {
  1190. return arg
  1191. }
  1192. return newNumberFormulaArg(math.Atan(arg.Number))
  1193. }
  1194. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1195. // number. The syntax of the function is:
  1196. //
  1197. // ATANH(number)
  1198. //
  1199. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1200. if argsList.Len() != 1 {
  1201. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1202. }
  1203. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1204. if arg.Type == ArgError {
  1205. return arg
  1206. }
  1207. return newNumberFormulaArg(math.Atanh(arg.Number))
  1208. }
  1209. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1210. // given set of x and y coordinates, and returns an angle, in radians, between
  1211. // -π/2 and +π/2. The syntax of the function is:
  1212. //
  1213. // ATAN2(x_num,y_num)
  1214. //
  1215. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1216. if argsList.Len() != 2 {
  1217. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1218. }
  1219. x := argsList.Back().Value.(formulaArg).ToNumber()
  1220. if x.Type == ArgError {
  1221. return x
  1222. }
  1223. y := argsList.Front().Value.(formulaArg).ToNumber()
  1224. if y.Type == ArgError {
  1225. return y
  1226. }
  1227. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1228. }
  1229. // BASE function converts a number into a supplied base (radix), and returns a
  1230. // text representation of the calculated value. The syntax of the function is:
  1231. //
  1232. // BASE(number,radix,[min_length])
  1233. //
  1234. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1235. if argsList.Len() < 2 {
  1236. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1237. }
  1238. if argsList.Len() > 3 {
  1239. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1240. }
  1241. var minLength int
  1242. var err error
  1243. number := argsList.Front().Value.(formulaArg).ToNumber()
  1244. if number.Type == ArgError {
  1245. return number
  1246. }
  1247. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1248. if radix.Type == ArgError {
  1249. return radix
  1250. }
  1251. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1252. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1253. }
  1254. if argsList.Len() > 2 {
  1255. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1256. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1257. }
  1258. }
  1259. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1260. if len(result) < minLength {
  1261. result = strings.Repeat("0", minLength-len(result)) + result
  1262. }
  1263. return newStringFormulaArg(strings.ToUpper(result))
  1264. }
  1265. // CEILING function rounds a supplied number away from zero, to the nearest
  1266. // multiple of a given number. The syntax of the function is:
  1267. //
  1268. // CEILING(number,significance)
  1269. //
  1270. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1271. if argsList.Len() == 0 {
  1272. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1273. }
  1274. if argsList.Len() > 2 {
  1275. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1276. }
  1277. number, significance, res := 0.0, 1.0, 0.0
  1278. n := argsList.Front().Value.(formulaArg).ToNumber()
  1279. if n.Type == ArgError {
  1280. return n
  1281. }
  1282. number = n.Number
  1283. if number < 0 {
  1284. significance = -1
  1285. }
  1286. if argsList.Len() > 1 {
  1287. s := argsList.Back().Value.(formulaArg).ToNumber()
  1288. if s.Type == ArgError {
  1289. return s
  1290. }
  1291. significance = s.Number
  1292. }
  1293. if significance < 0 && number > 0 {
  1294. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1295. }
  1296. if argsList.Len() == 1 {
  1297. return newNumberFormulaArg(math.Ceil(number))
  1298. }
  1299. number, res = math.Modf(number / significance)
  1300. if res > 0 {
  1301. number++
  1302. }
  1303. return newNumberFormulaArg(number * significance)
  1304. }
  1305. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1306. // significance. The syntax of the function is:
  1307. //
  1308. // CEILING.MATH(number,[significance],[mode])
  1309. //
  1310. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1311. if argsList.Len() == 0 {
  1312. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1313. }
  1314. if argsList.Len() > 3 {
  1315. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1316. }
  1317. number, significance, mode := 0.0, 1.0, 1.0
  1318. n := argsList.Front().Value.(formulaArg).ToNumber()
  1319. if n.Type == ArgError {
  1320. return n
  1321. }
  1322. number = n.Number
  1323. if number < 0 {
  1324. significance = -1
  1325. }
  1326. if argsList.Len() > 1 {
  1327. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1328. if s.Type == ArgError {
  1329. return s
  1330. }
  1331. significance = s.Number
  1332. }
  1333. if argsList.Len() == 1 {
  1334. return newNumberFormulaArg(math.Ceil(number))
  1335. }
  1336. if argsList.Len() > 2 {
  1337. m := argsList.Back().Value.(formulaArg).ToNumber()
  1338. if m.Type == ArgError {
  1339. return m
  1340. }
  1341. mode = m.Number
  1342. }
  1343. val, res := math.Modf(number / significance)
  1344. if res != 0 {
  1345. if number > 0 {
  1346. val++
  1347. } else if mode < 0 {
  1348. val--
  1349. }
  1350. }
  1351. return newNumberFormulaArg(val * significance)
  1352. }
  1353. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1354. // number's sign), to the nearest multiple of a given number. The syntax of
  1355. // the function is:
  1356. //
  1357. // CEILING.PRECISE(number,[significance])
  1358. //
  1359. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1360. if argsList.Len() == 0 {
  1361. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1362. }
  1363. if argsList.Len() > 2 {
  1364. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1365. }
  1366. number, significance := 0.0, 1.0
  1367. n := argsList.Front().Value.(formulaArg).ToNumber()
  1368. if n.Type == ArgError {
  1369. return n
  1370. }
  1371. number = n.Number
  1372. if number < 0 {
  1373. significance = -1
  1374. }
  1375. if argsList.Len() == 1 {
  1376. return newNumberFormulaArg(math.Ceil(number))
  1377. }
  1378. if argsList.Len() > 1 {
  1379. s := argsList.Back().Value.(formulaArg).ToNumber()
  1380. if s.Type == ArgError {
  1381. return s
  1382. }
  1383. significance = s.Number
  1384. significance = math.Abs(significance)
  1385. if significance == 0 {
  1386. return newNumberFormulaArg(significance)
  1387. }
  1388. }
  1389. val, res := math.Modf(number / significance)
  1390. if res != 0 {
  1391. if number > 0 {
  1392. val++
  1393. }
  1394. }
  1395. return newNumberFormulaArg(val * significance)
  1396. }
  1397. // COMBIN function calculates the number of combinations (in any order) of a
  1398. // given number objects from a set. The syntax of the function is:
  1399. //
  1400. // COMBIN(number,number_chosen)
  1401. //
  1402. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1403. if argsList.Len() != 2 {
  1404. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1405. }
  1406. number, chosen, val := 0.0, 0.0, 1.0
  1407. n := argsList.Front().Value.(formulaArg).ToNumber()
  1408. if n.Type == ArgError {
  1409. return n
  1410. }
  1411. number = n.Number
  1412. c := argsList.Back().Value.(formulaArg).ToNumber()
  1413. if c.Type == ArgError {
  1414. return c
  1415. }
  1416. chosen = c.Number
  1417. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1418. if chosen > number {
  1419. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1420. }
  1421. if chosen == number || chosen == 0 {
  1422. return newNumberFormulaArg(1)
  1423. }
  1424. for c := float64(1); c <= chosen; c++ {
  1425. val *= (number + 1 - c) / c
  1426. }
  1427. return newNumberFormulaArg(math.Ceil(val))
  1428. }
  1429. // COMBINA function calculates the number of combinations, with repetitions,
  1430. // of a given number objects from a set. The syntax of the function is:
  1431. //
  1432. // COMBINA(number,number_chosen)
  1433. //
  1434. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1435. if argsList.Len() != 2 {
  1436. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1437. }
  1438. var number, chosen float64
  1439. n := argsList.Front().Value.(formulaArg).ToNumber()
  1440. if n.Type == ArgError {
  1441. return n
  1442. }
  1443. number = n.Number
  1444. c := argsList.Back().Value.(formulaArg).ToNumber()
  1445. if c.Type == ArgError {
  1446. return c
  1447. }
  1448. chosen = c.Number
  1449. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1450. if number < chosen {
  1451. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1452. }
  1453. if number == 0 {
  1454. return newNumberFormulaArg(number)
  1455. }
  1456. args := list.New()
  1457. args.PushBack(formulaArg{
  1458. String: fmt.Sprintf("%g", number+chosen-1),
  1459. Type: ArgString,
  1460. })
  1461. args.PushBack(formulaArg{
  1462. String: fmt.Sprintf("%g", number-1),
  1463. Type: ArgString,
  1464. })
  1465. return fn.COMBIN(args)
  1466. }
  1467. // COS function calculates the cosine of a given angle. The syntax of the
  1468. // function is:
  1469. //
  1470. // COS(number)
  1471. //
  1472. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1473. if argsList.Len() != 1 {
  1474. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1475. }
  1476. val := argsList.Front().Value.(formulaArg).ToNumber()
  1477. if val.Type == ArgError {
  1478. return val
  1479. }
  1480. return newNumberFormulaArg(math.Cos(val.Number))
  1481. }
  1482. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1483. // The syntax of the function is:
  1484. //
  1485. // COSH(number)
  1486. //
  1487. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1488. if argsList.Len() != 1 {
  1489. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1490. }
  1491. val := argsList.Front().Value.(formulaArg).ToNumber()
  1492. if val.Type == ArgError {
  1493. return val
  1494. }
  1495. return newNumberFormulaArg(math.Cosh(val.Number))
  1496. }
  1497. // COT function calculates the cotangent of a given angle. The syntax of the
  1498. // function is:
  1499. //
  1500. // COT(number)
  1501. //
  1502. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1503. if argsList.Len() != 1 {
  1504. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1505. }
  1506. val := argsList.Front().Value.(formulaArg).ToNumber()
  1507. if val.Type == ArgError {
  1508. return val
  1509. }
  1510. if val.Number == 0 {
  1511. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1512. }
  1513. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1514. }
  1515. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1516. // angle. The syntax of the function is:
  1517. //
  1518. // COTH(number)
  1519. //
  1520. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1521. if argsList.Len() != 1 {
  1522. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1523. }
  1524. val := argsList.Front().Value.(formulaArg).ToNumber()
  1525. if val.Type == ArgError {
  1526. return val
  1527. }
  1528. if val.Number == 0 {
  1529. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1530. }
  1531. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1532. }
  1533. // CSC function calculates the cosecant of a given angle. The syntax of the
  1534. // function is:
  1535. //
  1536. // CSC(number)
  1537. //
  1538. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  1539. if argsList.Len() != 1 {
  1540. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  1541. }
  1542. val := argsList.Front().Value.(formulaArg).ToNumber()
  1543. if val.Type == ArgError {
  1544. return val
  1545. }
  1546. if val.Number == 0 {
  1547. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1548. }
  1549. return newNumberFormulaArg(1 / math.Sin(val.Number))
  1550. }
  1551. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  1552. // angle. The syntax of the function is:
  1553. //
  1554. // CSCH(number)
  1555. //
  1556. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  1557. if argsList.Len() != 1 {
  1558. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  1559. }
  1560. val := argsList.Front().Value.(formulaArg).ToNumber()
  1561. if val.Type == ArgError {
  1562. return val
  1563. }
  1564. if val.Number == 0 {
  1565. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1566. }
  1567. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  1568. }
  1569. // DECIMAL function converts a text representation of a number in a specified
  1570. // base, into a decimal value. The syntax of the function is:
  1571. //
  1572. // DECIMAL(text,radix)
  1573. //
  1574. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  1575. if argsList.Len() != 2 {
  1576. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  1577. }
  1578. var text = argsList.Front().Value.(formulaArg).String
  1579. var radix int
  1580. var err error
  1581. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  1582. if err != nil {
  1583. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1584. }
  1585. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  1586. text = text[2:]
  1587. }
  1588. val, err := strconv.ParseInt(text, radix, 64)
  1589. if err != nil {
  1590. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1591. }
  1592. return newNumberFormulaArg(float64(val))
  1593. }
  1594. // DEGREES function converts radians into degrees. The syntax of the function
  1595. // is:
  1596. //
  1597. // DEGREES(angle)
  1598. //
  1599. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  1600. if argsList.Len() != 1 {
  1601. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  1602. }
  1603. val := argsList.Front().Value.(formulaArg).ToNumber()
  1604. if val.Type == ArgError {
  1605. return val
  1606. }
  1607. if val.Number == 0 {
  1608. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1609. }
  1610. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  1611. }
  1612. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  1613. // positive number up and a negative number down), to the next even number.
  1614. // The syntax of the function is:
  1615. //
  1616. // EVEN(number)
  1617. //
  1618. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  1619. if argsList.Len() != 1 {
  1620. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  1621. }
  1622. number := argsList.Front().Value.(formulaArg).ToNumber()
  1623. if number.Type == ArgError {
  1624. return number
  1625. }
  1626. sign := math.Signbit(number.Number)
  1627. m, frac := math.Modf(number.Number / 2)
  1628. val := m * 2
  1629. if frac != 0 {
  1630. if !sign {
  1631. val += 2
  1632. } else {
  1633. val -= 2
  1634. }
  1635. }
  1636. return newNumberFormulaArg(val)
  1637. }
  1638. // EXP function calculates the value of the mathematical constant e, raised to
  1639. // the power of a given number. The syntax of the function is:
  1640. //
  1641. // EXP(number)
  1642. //
  1643. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  1644. if argsList.Len() != 1 {
  1645. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  1646. }
  1647. number := argsList.Front().Value.(formulaArg).ToNumber()
  1648. if number.Type == ArgError {
  1649. return number
  1650. }
  1651. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  1652. }
  1653. // fact returns the factorial of a supplied number.
  1654. func fact(number float64) float64 {
  1655. val := float64(1)
  1656. for i := float64(2); i <= number; i++ {
  1657. val *= i
  1658. }
  1659. return val
  1660. }
  1661. // FACT function returns the factorial of a supplied number. The syntax of the
  1662. // function is:
  1663. //
  1664. // FACT(number)
  1665. //
  1666. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  1667. if argsList.Len() != 1 {
  1668. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  1669. }
  1670. number := argsList.Front().Value.(formulaArg).ToNumber()
  1671. if number.Type == ArgError {
  1672. return number
  1673. }
  1674. if number.Number < 0 {
  1675. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1676. }
  1677. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
  1678. }
  1679. // FACTDOUBLE function returns the double factorial of a supplied number. The
  1680. // syntax of the function is:
  1681. //
  1682. // FACTDOUBLE(number)
  1683. //
  1684. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  1685. if argsList.Len() != 1 {
  1686. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  1687. }
  1688. val := 1.0
  1689. number := argsList.Front().Value.(formulaArg).ToNumber()
  1690. if number.Type == ArgError {
  1691. return number
  1692. }
  1693. if number.Number < 0 {
  1694. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1695. }
  1696. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  1697. val *= i
  1698. }
  1699. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  1700. }
  1701. // FLOOR function rounds a supplied number towards zero to the nearest
  1702. // multiple of a specified significance. The syntax of the function is:
  1703. //
  1704. // FLOOR(number,significance)
  1705. //
  1706. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  1707. if argsList.Len() != 2 {
  1708. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  1709. }
  1710. number := argsList.Front().Value.(formulaArg).ToNumber()
  1711. if number.Type == ArgError {
  1712. return number
  1713. }
  1714. significance := argsList.Back().Value.(formulaArg).ToNumber()
  1715. if significance.Type == ArgError {
  1716. return significance
  1717. }
  1718. if significance.Number < 0 && number.Number >= 0 {
  1719. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  1720. }
  1721. val := number.Number
  1722. val, res := math.Modf(val / significance.Number)
  1723. if res != 0 {
  1724. if number.Number < 0 && res < 0 {
  1725. val--
  1726. }
  1727. }
  1728. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  1729. }
  1730. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  1731. // significance. The syntax of the function is:
  1732. //
  1733. // FLOOR.MATH(number,[significance],[mode])
  1734. //
  1735. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  1736. if argsList.Len() == 0 {
  1737. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  1738. }
  1739. if argsList.Len() > 3 {
  1740. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  1741. }
  1742. significance, mode := 1.0, 1.0
  1743. number := argsList.Front().Value.(formulaArg).ToNumber()
  1744. if number.Type == ArgError {
  1745. return number
  1746. }
  1747. if number.Number < 0 {
  1748. significance = -1
  1749. }
  1750. if argsList.Len() > 1 {
  1751. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1752. if s.Type == ArgError {
  1753. return s
  1754. }
  1755. significance = s.Number
  1756. }
  1757. if argsList.Len() == 1 {
  1758. return newNumberFormulaArg(math.Floor(number.Number))
  1759. }
  1760. if argsList.Len() > 2 {
  1761. m := argsList.Back().Value.(formulaArg).ToNumber()
  1762. if m.Type == ArgError {
  1763. return m
  1764. }
  1765. mode = m.Number
  1766. }
  1767. val, res := math.Modf(number.Number / significance)
  1768. if res != 0 && number.Number < 0 && mode > 0 {
  1769. val--
  1770. }
  1771. return newNumberFormulaArg(val * significance)
  1772. }
  1773. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  1774. // of significance. The syntax of the function is:
  1775. //
  1776. // FLOOR.PRECISE(number,[significance])
  1777. //
  1778. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  1779. if argsList.Len() == 0 {
  1780. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  1781. }
  1782. if argsList.Len() > 2 {
  1783. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  1784. }
  1785. var significance float64
  1786. number := argsList.Front().Value.(formulaArg).ToNumber()
  1787. if number.Type == ArgError {
  1788. return number
  1789. }
  1790. if number.Number < 0 {
  1791. significance = -1
  1792. }
  1793. if argsList.Len() == 1 {
  1794. return newNumberFormulaArg(math.Floor(number.Number))
  1795. }
  1796. if argsList.Len() > 1 {
  1797. s := argsList.Back().Value.(formulaArg).ToNumber()
  1798. if s.Type == ArgError {
  1799. return s
  1800. }
  1801. significance = s.Number
  1802. significance = math.Abs(significance)
  1803. if significance == 0 {
  1804. return newNumberFormulaArg(significance)
  1805. }
  1806. }
  1807. val, res := math.Modf(number.Number / significance)
  1808. if res != 0 {
  1809. if number.Number < 0 {
  1810. val--
  1811. }
  1812. }
  1813. return newNumberFormulaArg(val * significance)
  1814. }
  1815. // gcd returns the greatest common divisor of two supplied integers.
  1816. func gcd(x, y float64) float64 {
  1817. x, y = math.Trunc(x), math.Trunc(y)
  1818. if x == 0 {
  1819. return y
  1820. }
  1821. if y == 0 {
  1822. return x
  1823. }
  1824. for x != y {
  1825. if x > y {
  1826. x = x - y
  1827. } else {
  1828. y = y - x
  1829. }
  1830. }
  1831. return x
  1832. }
  1833. // GCD function returns the greatest common divisor of two or more supplied
  1834. // integers. The syntax of the function is:
  1835. //
  1836. // GCD(number1,[number2],...)
  1837. //
  1838. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  1839. if argsList.Len() == 0 {
  1840. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  1841. }
  1842. var (
  1843. val float64
  1844. nums = []float64{}
  1845. err error
  1846. )
  1847. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1848. token := arg.Value.(formulaArg)
  1849. switch token.Type {
  1850. case ArgString:
  1851. if token.String == "" {
  1852. continue
  1853. }
  1854. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1855. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1856. }
  1857. break
  1858. case ArgNumber:
  1859. val = token.Number
  1860. break
  1861. }
  1862. nums = append(nums, val)
  1863. }
  1864. if nums[0] < 0 {
  1865. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1866. }
  1867. if len(nums) == 1 {
  1868. return newNumberFormulaArg(nums[0])
  1869. }
  1870. cd := nums[0]
  1871. for i := 1; i < len(nums); i++ {
  1872. if nums[i] < 0 {
  1873. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  1874. }
  1875. cd = gcd(cd, nums[i])
  1876. }
  1877. return newNumberFormulaArg(cd)
  1878. }
  1879. // INT function truncates a supplied number down to the closest integer. The
  1880. // syntax of the function is:
  1881. //
  1882. // INT(number)
  1883. //
  1884. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  1885. if argsList.Len() != 1 {
  1886. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  1887. }
  1888. number := argsList.Front().Value.(formulaArg).ToNumber()
  1889. if number.Type == ArgError {
  1890. return number
  1891. }
  1892. val, frac := math.Modf(number.Number)
  1893. if frac < 0 {
  1894. val--
  1895. }
  1896. return newNumberFormulaArg(val)
  1897. }
  1898. // ISOCEILING function rounds a supplied number up (regardless of the number's
  1899. // sign), to the nearest multiple of a supplied significance. The syntax of
  1900. // the function is:
  1901. //
  1902. // ISO.CEILING(number,[significance])
  1903. //
  1904. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  1905. if argsList.Len() == 0 {
  1906. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  1907. }
  1908. if argsList.Len() > 2 {
  1909. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  1910. }
  1911. var significance float64
  1912. number := argsList.Front().Value.(formulaArg).ToNumber()
  1913. if number.Type == ArgError {
  1914. return number
  1915. }
  1916. if number.Number < 0 {
  1917. significance = -1
  1918. }
  1919. if argsList.Len() == 1 {
  1920. return newNumberFormulaArg(math.Ceil(number.Number))
  1921. }
  1922. if argsList.Len() > 1 {
  1923. s := argsList.Back().Value.(formulaArg).ToNumber()
  1924. if s.Type == ArgError {
  1925. return s
  1926. }
  1927. significance = s.Number
  1928. significance = math.Abs(significance)
  1929. if significance == 0 {
  1930. return newNumberFormulaArg(significance)
  1931. }
  1932. }
  1933. val, res := math.Modf(number.Number / significance)
  1934. if res != 0 {
  1935. if number.Number > 0 {
  1936. val++
  1937. }
  1938. }
  1939. return newNumberFormulaArg(val * significance)
  1940. }
  1941. // lcm returns the least common multiple of two supplied integers.
  1942. func lcm(a, b float64) float64 {
  1943. a = math.Trunc(a)
  1944. b = math.Trunc(b)
  1945. if a == 0 && b == 0 {
  1946. return 0
  1947. }
  1948. return a * b / gcd(a, b)
  1949. }
  1950. // LCM function returns the least common multiple of two or more supplied
  1951. // integers. The syntax of the function is:
  1952. //
  1953. // LCM(number1,[number2],...)
  1954. //
  1955. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  1956. if argsList.Len() == 0 {
  1957. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  1958. }
  1959. var (
  1960. val float64
  1961. nums = []float64{}
  1962. err error
  1963. )
  1964. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1965. token := arg.Value.(formulaArg)
  1966. switch token.Type {
  1967. case ArgString:
  1968. if token.String == "" {
  1969. continue
  1970. }
  1971. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  1972. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1973. }
  1974. break
  1975. case ArgNumber:
  1976. val = token.Number
  1977. break
  1978. }
  1979. nums = append(nums, val)
  1980. }
  1981. if nums[0] < 0 {
  1982. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1983. }
  1984. if len(nums) == 1 {
  1985. return newNumberFormulaArg(nums[0])
  1986. }
  1987. cm := nums[0]
  1988. for i := 1; i < len(nums); i++ {
  1989. if nums[i] < 0 {
  1990. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  1991. }
  1992. cm = lcm(cm, nums[i])
  1993. }
  1994. return newNumberFormulaArg(cm)
  1995. }
  1996. // LN function calculates the natural logarithm of a given number. The syntax
  1997. // of the function is:
  1998. //
  1999. // LN(number)
  2000. //
  2001. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2002. if argsList.Len() != 1 {
  2003. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2004. }
  2005. number := argsList.Front().Value.(formulaArg).ToNumber()
  2006. if number.Type == ArgError {
  2007. return number
  2008. }
  2009. return newNumberFormulaArg(math.Log(number.Number))
  2010. }
  2011. // LOG function calculates the logarithm of a given number, to a supplied
  2012. // base. The syntax of the function is:
  2013. //
  2014. // LOG(number,[base])
  2015. //
  2016. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2017. if argsList.Len() == 0 {
  2018. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2019. }
  2020. if argsList.Len() > 2 {
  2021. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2022. }
  2023. base := 10.0
  2024. number := argsList.Front().Value.(formulaArg).ToNumber()
  2025. if number.Type == ArgError {
  2026. return number
  2027. }
  2028. if argsList.Len() > 1 {
  2029. b := argsList.Back().Value.(formulaArg).ToNumber()
  2030. if b.Type == ArgError {
  2031. return b
  2032. }
  2033. base = b.Number
  2034. }
  2035. if number.Number == 0 {
  2036. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2037. }
  2038. if base == 0 {
  2039. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2040. }
  2041. if base == 1 {
  2042. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2043. }
  2044. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2045. }
  2046. // LOG10 function calculates the base 10 logarithm of a given number. The
  2047. // syntax of the function is:
  2048. //
  2049. // LOG10(number)
  2050. //
  2051. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2052. if argsList.Len() != 1 {
  2053. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2054. }
  2055. number := argsList.Front().Value.(formulaArg).ToNumber()
  2056. if number.Type == ArgError {
  2057. return number
  2058. }
  2059. return newNumberFormulaArg(math.Log10(number.Number))
  2060. }
  2061. // minor function implement a minor of a matrix A is the determinant of some
  2062. // smaller square matrix.
  2063. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2064. ret := [][]float64{}
  2065. for i := range sqMtx {
  2066. if i == 0 {
  2067. continue
  2068. }
  2069. row := []float64{}
  2070. for j := range sqMtx {
  2071. if j == idx {
  2072. continue
  2073. }
  2074. row = append(row, sqMtx[i][j])
  2075. }
  2076. ret = append(ret, row)
  2077. }
  2078. return ret
  2079. }
  2080. // det determinant of the 2x2 matrix.
  2081. func det(sqMtx [][]float64) float64 {
  2082. if len(sqMtx) == 2 {
  2083. m00 := sqMtx[0][0]
  2084. m01 := sqMtx[0][1]
  2085. m10 := sqMtx[1][0]
  2086. m11 := sqMtx[1][1]
  2087. return m00*m11 - m10*m01
  2088. }
  2089. var res, sgn float64 = 0, 1
  2090. for j := range sqMtx {
  2091. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2092. sgn *= -1
  2093. }
  2094. return res
  2095. }
  2096. // MDETERM calculates the determinant of a square matrix. The
  2097. // syntax of the function is:
  2098. //
  2099. // MDETERM(array)
  2100. //
  2101. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2102. var (
  2103. num float64
  2104. numMtx = [][]float64{}
  2105. err error
  2106. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2107. )
  2108. if argsList.Len() < 1 {
  2109. return
  2110. }
  2111. var rows = len(strMtx)
  2112. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2113. if len(row) != rows {
  2114. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2115. }
  2116. numRow := []float64{}
  2117. for _, ele := range row {
  2118. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2119. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2120. }
  2121. numRow = append(numRow, num)
  2122. }
  2123. numMtx = append(numMtx, numRow)
  2124. }
  2125. return newNumberFormulaArg(det(numMtx))
  2126. }
  2127. // MOD function returns the remainder of a division between two supplied
  2128. // numbers. The syntax of the function is:
  2129. //
  2130. // MOD(number,divisor)
  2131. //
  2132. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2133. if argsList.Len() != 2 {
  2134. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2135. }
  2136. number := argsList.Front().Value.(formulaArg).ToNumber()
  2137. if number.Type == ArgError {
  2138. return number
  2139. }
  2140. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2141. if divisor.Type == ArgError {
  2142. return divisor
  2143. }
  2144. if divisor.Number == 0 {
  2145. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2146. }
  2147. trunc, rem := math.Modf(number.Number / divisor.Number)
  2148. if rem < 0 {
  2149. trunc--
  2150. }
  2151. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2152. }
  2153. // MROUND function rounds a supplied number up or down to the nearest multiple
  2154. // of a given number. The syntax of the function is:
  2155. //
  2156. // MROUND(number,multiple)
  2157. //
  2158. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2159. if argsList.Len() != 2 {
  2160. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2161. }
  2162. n := argsList.Front().Value.(formulaArg).ToNumber()
  2163. if n.Type == ArgError {
  2164. return n
  2165. }
  2166. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2167. if multiple.Type == ArgError {
  2168. return multiple
  2169. }
  2170. if multiple.Number == 0 {
  2171. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2172. }
  2173. if multiple.Number < 0 && n.Number > 0 ||
  2174. multiple.Number > 0 && n.Number < 0 {
  2175. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2176. }
  2177. number, res := math.Modf(n.Number / multiple.Number)
  2178. if math.Trunc(res+0.5) > 0 {
  2179. number++
  2180. }
  2181. return newNumberFormulaArg(number * multiple.Number)
  2182. }
  2183. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2184. // supplied values to the product of factorials of those values. The syntax of
  2185. // the function is:
  2186. //
  2187. // MULTINOMIAL(number1,[number2],...)
  2188. //
  2189. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2190. val, num, denom := 0.0, 0.0, 1.0
  2191. var err error
  2192. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2193. token := arg.Value.(formulaArg)
  2194. switch token.Type {
  2195. case ArgString:
  2196. if token.String == "" {
  2197. continue
  2198. }
  2199. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2200. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2201. }
  2202. break
  2203. case ArgNumber:
  2204. val = token.Number
  2205. break
  2206. }
  2207. num += val
  2208. denom *= fact(val)
  2209. }
  2210. return newNumberFormulaArg(fact(num) / denom)
  2211. }
  2212. // MUNIT function returns the unit matrix for a specified dimension. The
  2213. // syntax of the function is:
  2214. //
  2215. // MUNIT(dimension)
  2216. //
  2217. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2218. if argsList.Len() != 1 {
  2219. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2220. }
  2221. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2222. if dimension.Type == ArgError {
  2223. return dimension
  2224. }
  2225. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2226. for i := 0; i < int(dimension.Number); i++ {
  2227. row := make([]formulaArg, int(dimension.Number))
  2228. for j := 0; j < int(dimension.Number); j++ {
  2229. if i == j {
  2230. row[j] = newNumberFormulaArg(1.0)
  2231. } else {
  2232. row[j] = newNumberFormulaArg(0.0)
  2233. }
  2234. }
  2235. matrix = append(matrix, row)
  2236. }
  2237. return newMatrixFormulaArg(matrix)
  2238. }
  2239. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2240. // number up and a negative number down), to the next odd number. The syntax
  2241. // of the function is:
  2242. //
  2243. // ODD(number)
  2244. //
  2245. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2246. if argsList.Len() != 1 {
  2247. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2248. }
  2249. number := argsList.Back().Value.(formulaArg).ToNumber()
  2250. if number.Type == ArgError {
  2251. return number
  2252. }
  2253. if number.Number == 0 {
  2254. return newNumberFormulaArg(1)
  2255. }
  2256. sign := math.Signbit(number.Number)
  2257. m, frac := math.Modf((number.Number - 1) / 2)
  2258. val := m*2 + 1
  2259. if frac != 0 {
  2260. if !sign {
  2261. val += 2
  2262. } else {
  2263. val -= 2
  2264. }
  2265. }
  2266. return newNumberFormulaArg(val)
  2267. }
  2268. // PI function returns the value of the mathematical constant π (pi), accurate
  2269. // to 15 digits (14 decimal places). The syntax of the function is:
  2270. //
  2271. // PI()
  2272. //
  2273. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2274. if argsList.Len() != 0 {
  2275. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2276. }
  2277. return newNumberFormulaArg(math.Pi)
  2278. }
  2279. // POWER function calculates a given number, raised to a supplied power.
  2280. // The syntax of the function is:
  2281. //
  2282. // POWER(number,power)
  2283. //
  2284. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2285. if argsList.Len() != 2 {
  2286. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2287. }
  2288. x := argsList.Front().Value.(formulaArg).ToNumber()
  2289. if x.Type == ArgError {
  2290. return x
  2291. }
  2292. y := argsList.Back().Value.(formulaArg).ToNumber()
  2293. if y.Type == ArgError {
  2294. return y
  2295. }
  2296. if x.Number == 0 && y.Number == 0 {
  2297. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2298. }
  2299. if x.Number == 0 && y.Number < 0 {
  2300. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2301. }
  2302. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2303. }
  2304. // PRODUCT function returns the product (multiplication) of a supplied set of
  2305. // numerical values. The syntax of the function is:
  2306. //
  2307. // PRODUCT(number1,[number2],...)
  2308. //
  2309. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2310. val, product := 0.0, 1.0
  2311. var err error
  2312. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2313. token := arg.Value.(formulaArg)
  2314. switch token.Type {
  2315. case ArgUnknown:
  2316. continue
  2317. case ArgString:
  2318. if token.String == "" {
  2319. continue
  2320. }
  2321. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2322. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2323. }
  2324. product = product * val
  2325. break
  2326. case ArgNumber:
  2327. product = product * token.Number
  2328. break
  2329. case ArgMatrix:
  2330. for _, row := range token.Matrix {
  2331. for _, value := range row {
  2332. if value.String == "" {
  2333. continue
  2334. }
  2335. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2336. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2337. }
  2338. product = product * val
  2339. }
  2340. }
  2341. }
  2342. }
  2343. return newNumberFormulaArg(product)
  2344. }
  2345. // QUOTIENT function returns the integer portion of a division between two
  2346. // supplied numbers. The syntax of the function is:
  2347. //
  2348. // QUOTIENT(numerator,denominator)
  2349. //
  2350. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2351. if argsList.Len() != 2 {
  2352. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2353. }
  2354. x := argsList.Front().Value.(formulaArg).ToNumber()
  2355. if x.Type == ArgError {
  2356. return x
  2357. }
  2358. y := argsList.Back().Value.(formulaArg).ToNumber()
  2359. if y.Type == ArgError {
  2360. return y
  2361. }
  2362. if y.Number == 0 {
  2363. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2364. }
  2365. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2366. }
  2367. // RADIANS function converts radians into degrees. The syntax of the function is:
  2368. //
  2369. // RADIANS(angle)
  2370. //
  2371. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2372. if argsList.Len() != 1 {
  2373. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2374. }
  2375. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2376. if angle.Type == ArgError {
  2377. return angle
  2378. }
  2379. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2380. }
  2381. // RAND function generates a random real number between 0 and 1. The syntax of
  2382. // the function is:
  2383. //
  2384. // RAND()
  2385. //
  2386. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2387. if argsList.Len() != 0 {
  2388. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2389. }
  2390. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2391. }
  2392. // RANDBETWEEN function generates a random integer between two supplied
  2393. // integers. The syntax of the function is:
  2394. //
  2395. // RANDBETWEEN(bottom,top)
  2396. //
  2397. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2398. if argsList.Len() != 2 {
  2399. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2400. }
  2401. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2402. if bottom.Type == ArgError {
  2403. return bottom
  2404. }
  2405. top := argsList.Back().Value.(formulaArg).ToNumber()
  2406. if top.Type == ArgError {
  2407. return top
  2408. }
  2409. if top.Number < bottom.Number {
  2410. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2411. }
  2412. return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
  2413. }
  2414. // romanNumerals defined a numeral system that originated in ancient Rome and
  2415. // remained the usual way of writing numbers throughout Europe well into the
  2416. // Late Middle Ages.
  2417. type romanNumerals struct {
  2418. n float64
  2419. s string
  2420. }
  2421. var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2422. {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2423. {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2424. {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
  2425. {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
  2426. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2427. // integer, the function returns a text string depicting the roman numeral
  2428. // form of the number. The syntax of the function is:
  2429. //
  2430. // ROMAN(number,[form])
  2431. //
  2432. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2433. if argsList.Len() == 0 {
  2434. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2435. }
  2436. if argsList.Len() > 2 {
  2437. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2438. }
  2439. var form int
  2440. number := argsList.Front().Value.(formulaArg).ToNumber()
  2441. if number.Type == ArgError {
  2442. return number
  2443. }
  2444. if argsList.Len() > 1 {
  2445. f := argsList.Back().Value.(formulaArg).ToNumber()
  2446. if f.Type == ArgError {
  2447. return f
  2448. }
  2449. form = int(f.Number)
  2450. if form < 0 {
  2451. form = 0
  2452. } else if form > 4 {
  2453. form = 4
  2454. }
  2455. }
  2456. decimalTable := romanTable[0]
  2457. switch form {
  2458. case 1:
  2459. decimalTable = romanTable[1]
  2460. case 2:
  2461. decimalTable = romanTable[2]
  2462. case 3:
  2463. decimalTable = romanTable[3]
  2464. case 4:
  2465. decimalTable = romanTable[4]
  2466. }
  2467. val := math.Trunc(number.Number)
  2468. buf := bytes.Buffer{}
  2469. for _, r := range decimalTable {
  2470. for val >= r.n {
  2471. buf.WriteString(r.s)
  2472. val -= r.n
  2473. }
  2474. }
  2475. return newStringFormulaArg(buf.String())
  2476. }
  2477. type roundMode byte
  2478. const (
  2479. closest roundMode = iota
  2480. down
  2481. up
  2482. )
  2483. // round rounds a supplied number up or down.
  2484. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2485. var significance float64
  2486. if digits > 0 {
  2487. significance = math.Pow(1/10.0, digits)
  2488. } else {
  2489. significance = math.Pow(10.0, -digits)
  2490. }
  2491. val, res := math.Modf(number / significance)
  2492. switch mode {
  2493. case closest:
  2494. const eps = 0.499999999
  2495. if res >= eps {
  2496. val++
  2497. } else if res <= -eps {
  2498. val--
  2499. }
  2500. case down:
  2501. case up:
  2502. if res > 0 {
  2503. val++
  2504. } else if res < 0 {
  2505. val--
  2506. }
  2507. }
  2508. return val * significance
  2509. }
  2510. // ROUND function rounds a supplied number up or down, to a specified number
  2511. // of decimal places. The syntax of the function is:
  2512. //
  2513. // ROUND(number,num_digits)
  2514. //
  2515. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2516. if argsList.Len() != 2 {
  2517. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2518. }
  2519. number := argsList.Front().Value.(formulaArg).ToNumber()
  2520. if number.Type == ArgError {
  2521. return number
  2522. }
  2523. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2524. if digits.Type == ArgError {
  2525. return digits
  2526. }
  2527. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  2528. }
  2529. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  2530. // specified number of decimal places. The syntax of the function is:
  2531. //
  2532. // ROUNDDOWN(number,num_digits)
  2533. //
  2534. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  2535. if argsList.Len() != 2 {
  2536. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  2537. }
  2538. number := argsList.Front().Value.(formulaArg).ToNumber()
  2539. if number.Type == ArgError {
  2540. return number
  2541. }
  2542. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2543. if digits.Type == ArgError {
  2544. return digits
  2545. }
  2546. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  2547. }
  2548. // ROUNDUP function rounds a supplied number up, away from zero, to a
  2549. // specified number of decimal places. The syntax of the function is:
  2550. //
  2551. // ROUNDUP(number,num_digits)
  2552. //
  2553. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  2554. if argsList.Len() != 2 {
  2555. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  2556. }
  2557. number := argsList.Front().Value.(formulaArg).ToNumber()
  2558. if number.Type == ArgError {
  2559. return number
  2560. }
  2561. digits := argsList.Back().Value.(formulaArg).ToNumber()
  2562. if digits.Type == ArgError {
  2563. return digits
  2564. }
  2565. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  2566. }
  2567. // SEC function calculates the secant of a given angle. The syntax of the
  2568. // function is:
  2569. //
  2570. // SEC(number)
  2571. //
  2572. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  2573. if argsList.Len() != 1 {
  2574. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  2575. }
  2576. number := argsList.Front().Value.(formulaArg).ToNumber()
  2577. if number.Type == ArgError {
  2578. return number
  2579. }
  2580. return newNumberFormulaArg(math.Cos(number.Number))
  2581. }
  2582. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  2583. // The syntax of the function is:
  2584. //
  2585. // SECH(number)
  2586. //
  2587. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  2588. if argsList.Len() != 1 {
  2589. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  2590. }
  2591. number := argsList.Front().Value.(formulaArg).ToNumber()
  2592. if number.Type == ArgError {
  2593. return number
  2594. }
  2595. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  2596. }
  2597. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  2598. // number. I.e. if the number is positive, the Sign function returns +1, if
  2599. // the number is negative, the function returns -1 and if the number is 0
  2600. // (zero), the function returns 0. The syntax of the function is:
  2601. //
  2602. // SIGN(number)
  2603. //
  2604. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  2605. if argsList.Len() != 1 {
  2606. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  2607. }
  2608. val := argsList.Front().Value.(formulaArg).ToNumber()
  2609. if val.Type == ArgError {
  2610. return val
  2611. }
  2612. if val.Number < 0 {
  2613. return newNumberFormulaArg(-1)
  2614. }
  2615. if val.Number > 0 {
  2616. return newNumberFormulaArg(1)
  2617. }
  2618. return newNumberFormulaArg(0)
  2619. }
  2620. // SIN function calculates the sine of a given angle. The syntax of the
  2621. // function is:
  2622. //
  2623. // SIN(number)
  2624. //
  2625. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  2626. if argsList.Len() != 1 {
  2627. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  2628. }
  2629. number := argsList.Front().Value.(formulaArg).ToNumber()
  2630. if number.Type == ArgError {
  2631. return number
  2632. }
  2633. return newNumberFormulaArg(math.Sin(number.Number))
  2634. }
  2635. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  2636. // The syntax of the function is:
  2637. //
  2638. // SINH(number)
  2639. //
  2640. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  2641. if argsList.Len() != 1 {
  2642. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  2643. }
  2644. number := argsList.Front().Value.(formulaArg).ToNumber()
  2645. if number.Type == ArgError {
  2646. return number
  2647. }
  2648. return newNumberFormulaArg(math.Sinh(number.Number))
  2649. }
  2650. // SQRT function calculates the positive square root of a supplied number. The
  2651. // syntax of the function is:
  2652. //
  2653. // SQRT(number)
  2654. //
  2655. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  2656. if argsList.Len() != 1 {
  2657. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  2658. }
  2659. value := argsList.Front().Value.(formulaArg).ToNumber()
  2660. if value.Type == ArgError {
  2661. return value
  2662. }
  2663. if value.Number < 0 {
  2664. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2665. }
  2666. return newNumberFormulaArg(math.Sqrt(value.Number))
  2667. }
  2668. // SQRTPI function returns the square root of a supplied number multiplied by
  2669. // the mathematical constant, π. The syntax of the function is:
  2670. //
  2671. // SQRTPI(number)
  2672. //
  2673. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  2674. if argsList.Len() != 1 {
  2675. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  2676. }
  2677. number := argsList.Front().Value.(formulaArg).ToNumber()
  2678. if number.Type == ArgError {
  2679. return number
  2680. }
  2681. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  2682. }
  2683. // SUM function adds together a supplied set of numbers and returns the sum of
  2684. // these values. The syntax of the function is:
  2685. //
  2686. // SUM(number1,[number2],...)
  2687. //
  2688. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  2689. var (
  2690. val, sum float64
  2691. err error
  2692. )
  2693. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2694. token := arg.Value.(formulaArg)
  2695. switch token.Type {
  2696. case ArgUnknown:
  2697. continue
  2698. case ArgString:
  2699. if token.String == "" {
  2700. continue
  2701. }
  2702. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2703. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2704. }
  2705. sum += val
  2706. case ArgNumber:
  2707. sum += token.Number
  2708. case ArgMatrix:
  2709. for _, row := range token.Matrix {
  2710. for _, value := range row {
  2711. if value.String == "" {
  2712. continue
  2713. }
  2714. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2715. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2716. }
  2717. sum += val
  2718. }
  2719. }
  2720. }
  2721. }
  2722. return newNumberFormulaArg(sum)
  2723. }
  2724. // SUMIF function finds the values in a supplied array, that satisfy a given
  2725. // criteria, and returns the sum of the corresponding values in a second
  2726. // supplied array. The syntax of the function is:
  2727. //
  2728. // SUMIF(range,criteria,[sum_range])
  2729. //
  2730. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  2731. if argsList.Len() < 2 {
  2732. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  2733. }
  2734. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  2735. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  2736. var sumRange [][]formulaArg
  2737. if argsList.Len() == 3 {
  2738. sumRange = argsList.Back().Value.(formulaArg).Matrix
  2739. }
  2740. var sum, val float64
  2741. var err error
  2742. for rowIdx, row := range rangeMtx {
  2743. for colIdx, col := range row {
  2744. var ok bool
  2745. fromVal := col.String
  2746. if col.String == "" {
  2747. continue
  2748. }
  2749. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  2750. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2751. }
  2752. if ok {
  2753. if argsList.Len() == 3 {
  2754. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  2755. continue
  2756. }
  2757. fromVal = sumRange[rowIdx][colIdx].String
  2758. }
  2759. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  2760. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2761. }
  2762. sum += val
  2763. }
  2764. }
  2765. }
  2766. return newNumberFormulaArg(sum)
  2767. }
  2768. // SUMSQ function returns the sum of squares of a supplied set of values. The
  2769. // syntax of the function is:
  2770. //
  2771. // SUMSQ(number1,[number2],...)
  2772. //
  2773. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  2774. var val, sq float64
  2775. var err error
  2776. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2777. token := arg.Value.(formulaArg)
  2778. switch token.Type {
  2779. case ArgString:
  2780. if token.String == "" {
  2781. continue
  2782. }
  2783. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2784. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2785. }
  2786. sq += val * val
  2787. break
  2788. case ArgNumber:
  2789. sq += token.Number
  2790. break
  2791. case ArgMatrix:
  2792. for _, row := range token.Matrix {
  2793. for _, value := range row {
  2794. if value.String == "" {
  2795. continue
  2796. }
  2797. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2798. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2799. }
  2800. sq += val * val
  2801. }
  2802. }
  2803. }
  2804. }
  2805. return newNumberFormulaArg(sq)
  2806. }
  2807. // TAN function calculates the tangent of a given angle. The syntax of the
  2808. // function is:
  2809. //
  2810. // TAN(number)
  2811. //
  2812. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  2813. if argsList.Len() != 1 {
  2814. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  2815. }
  2816. number := argsList.Front().Value.(formulaArg).ToNumber()
  2817. if number.Type == ArgError {
  2818. return number
  2819. }
  2820. return newNumberFormulaArg(math.Tan(number.Number))
  2821. }
  2822. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  2823. // number. The syntax of the function is:
  2824. //
  2825. // TANH(number)
  2826. //
  2827. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  2828. if argsList.Len() != 1 {
  2829. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  2830. }
  2831. number := argsList.Front().Value.(formulaArg).ToNumber()
  2832. if number.Type == ArgError {
  2833. return number
  2834. }
  2835. return newNumberFormulaArg(math.Tanh(number.Number))
  2836. }
  2837. // TRUNC function truncates a supplied number to a specified number of decimal
  2838. // places. The syntax of the function is:
  2839. //
  2840. // TRUNC(number,[number_digits])
  2841. //
  2842. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  2843. if argsList.Len() == 0 {
  2844. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  2845. }
  2846. var digits, adjust, rtrim float64
  2847. var err error
  2848. number := argsList.Front().Value.(formulaArg).ToNumber()
  2849. if number.Type == ArgError {
  2850. return number
  2851. }
  2852. if argsList.Len() > 1 {
  2853. d := argsList.Back().Value.(formulaArg).ToNumber()
  2854. if d.Type == ArgError {
  2855. return d
  2856. }
  2857. digits = d.Number
  2858. digits = math.Floor(digits)
  2859. }
  2860. adjust = math.Pow(10, digits)
  2861. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  2862. if x != 0 {
  2863. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  2864. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2865. }
  2866. }
  2867. if (digits > 0) && (rtrim < adjust/10) {
  2868. return newNumberFormulaArg(number.Number)
  2869. }
  2870. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  2871. }
  2872. // Statistical functions
  2873. // COUNTA function returns the number of non-blanks within a supplied set of
  2874. // cells or values. The syntax of the function is:
  2875. //
  2876. // COUNTA(value1,[value2],...)
  2877. //
  2878. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  2879. var count int
  2880. for token := argsList.Front(); token != nil; token = token.Next() {
  2881. arg := token.Value.(formulaArg)
  2882. switch arg.Type {
  2883. case ArgString:
  2884. if arg.String != "" {
  2885. count++
  2886. }
  2887. case ArgMatrix:
  2888. for _, row := range arg.Matrix {
  2889. for _, value := range row {
  2890. if value.String != "" {
  2891. count++
  2892. }
  2893. }
  2894. }
  2895. }
  2896. }
  2897. return newStringFormulaArg(fmt.Sprintf("%d", count))
  2898. }
  2899. // MEDIAN function returns the statistical median (the middle value) of a list
  2900. // of supplied numbers. The syntax of the function is:
  2901. //
  2902. // MEDIAN(number1,[number2],...)
  2903. //
  2904. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  2905. if argsList.Len() == 0 {
  2906. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  2907. }
  2908. var values = []float64{}
  2909. var median, digits float64
  2910. var err error
  2911. for token := argsList.Front(); token != nil; token = token.Next() {
  2912. arg := token.Value.(formulaArg)
  2913. switch arg.Type {
  2914. case ArgString:
  2915. if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
  2916. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2917. }
  2918. values = append(values, digits)
  2919. break
  2920. case ArgNumber:
  2921. values = append(values, arg.Number)
  2922. break
  2923. case ArgMatrix:
  2924. for _, row := range arg.Matrix {
  2925. for _, value := range row {
  2926. if value.String == "" {
  2927. continue
  2928. }
  2929. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  2930. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2931. }
  2932. values = append(values, digits)
  2933. }
  2934. }
  2935. }
  2936. }
  2937. sort.Float64s(values)
  2938. if len(values)%2 == 0 {
  2939. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  2940. } else {
  2941. median = values[len(values)/2]
  2942. }
  2943. return newNumberFormulaArg(median)
  2944. }
  2945. // Information functions
  2946. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  2947. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  2948. // function is:
  2949. //
  2950. // ISBLANK(value)
  2951. //
  2952. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  2953. if argsList.Len() != 1 {
  2954. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  2955. }
  2956. token := argsList.Front().Value.(formulaArg)
  2957. result := "FALSE"
  2958. switch token.Type {
  2959. case ArgUnknown:
  2960. result = "TRUE"
  2961. case ArgString:
  2962. if token.String == "" {
  2963. result = "TRUE"
  2964. }
  2965. }
  2966. return newStringFormulaArg(result)
  2967. }
  2968. // ISERR function tests if an initial supplied expression (or value) returns
  2969. // any Excel Error, except the #N/A error. If so, the function returns the
  2970. // logical value TRUE; If the supplied value is not an error or is the #N/A
  2971. // error, the ISERR function returns FALSE. The syntax of the function is:
  2972. //
  2973. // ISERR(value)
  2974. //
  2975. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  2976. if argsList.Len() != 1 {
  2977. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  2978. }
  2979. token := argsList.Front().Value.(formulaArg)
  2980. result := "FALSE"
  2981. if token.Type == ArgString {
  2982. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  2983. if errType == token.String {
  2984. result = "TRUE"
  2985. }
  2986. }
  2987. }
  2988. return newStringFormulaArg(result)
  2989. }
  2990. // ISERROR function tests if an initial supplied expression (or value) returns
  2991. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  2992. // function returns FALSE. The syntax of the function is:
  2993. //
  2994. // ISERROR(value)
  2995. //
  2996. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  2997. if argsList.Len() != 1 {
  2998. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  2999. }
  3000. token := argsList.Front().Value.(formulaArg)
  3001. result := "FALSE"
  3002. if token.Type == ArgString {
  3003. for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
  3004. if errType == token.String {
  3005. result = "TRUE"
  3006. }
  3007. }
  3008. }
  3009. return newStringFormulaArg(result)
  3010. }
  3011. // ISEVEN function tests if a supplied number (or numeric expression)
  3012. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  3013. // function returns FALSE. The syntax of the function is:
  3014. //
  3015. // ISEVEN(value)
  3016. //
  3017. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  3018. if argsList.Len() != 1 {
  3019. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  3020. }
  3021. var (
  3022. token = argsList.Front().Value.(formulaArg)
  3023. result = "FALSE"
  3024. numeric int
  3025. err error
  3026. )
  3027. if token.Type == ArgString {
  3028. if numeric, err = strconv.Atoi(token.String); err != nil {
  3029. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3030. }
  3031. if numeric == numeric/2*2 {
  3032. return newStringFormulaArg("TRUE")
  3033. }
  3034. }
  3035. return newStringFormulaArg(result)
  3036. }
  3037. // ISNA function tests if an initial supplied expression (or value) returns
  3038. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  3039. // returns FALSE. The syntax of the function is:
  3040. //
  3041. // ISNA(value)
  3042. //
  3043. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  3044. if argsList.Len() != 1 {
  3045. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  3046. }
  3047. token := argsList.Front().Value.(formulaArg)
  3048. result := "FALSE"
  3049. if token.Type == ArgString && token.String == formulaErrorNA {
  3050. result = "TRUE"
  3051. }
  3052. return newStringFormulaArg(result)
  3053. }
  3054. // ISNONTEXT function function tests if a supplied value is text. If not, the
  3055. // function returns TRUE; If the supplied value is text, the function returns
  3056. // FALSE. The syntax of the function is:
  3057. //
  3058. // ISNONTEXT(value)
  3059. //
  3060. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  3061. if argsList.Len() != 1 {
  3062. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  3063. }
  3064. token := argsList.Front().Value.(formulaArg)
  3065. result := "TRUE"
  3066. if token.Type == ArgString && token.String != "" {
  3067. result = "FALSE"
  3068. }
  3069. return newStringFormulaArg(result)
  3070. }
  3071. // ISNUMBER function function tests if a supplied value is a number. If so,
  3072. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  3073. // function is:
  3074. //
  3075. // ISNUMBER(value)
  3076. //
  3077. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  3078. if argsList.Len() != 1 {
  3079. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  3080. }
  3081. token, result := argsList.Front().Value.(formulaArg), false
  3082. if token.Type == ArgString && token.String != "" {
  3083. if _, err := strconv.Atoi(token.String); err == nil {
  3084. result = true
  3085. }
  3086. }
  3087. return newBoolFormulaArg(result)
  3088. }
  3089. // ISODD function tests if a supplied number (or numeric expression) evaluates
  3090. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  3091. // FALSE. The syntax of the function is:
  3092. //
  3093. // ISODD(value)
  3094. //
  3095. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  3096. if argsList.Len() != 1 {
  3097. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  3098. }
  3099. var (
  3100. token = argsList.Front().Value.(formulaArg)
  3101. result = "FALSE"
  3102. numeric int
  3103. err error
  3104. )
  3105. if token.Type == ArgString {
  3106. if numeric, err = strconv.Atoi(token.String); err != nil {
  3107. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3108. }
  3109. if numeric != numeric/2*2 {
  3110. return newStringFormulaArg("TRUE")
  3111. }
  3112. }
  3113. return newStringFormulaArg(result)
  3114. }
  3115. // NA function returns the Excel #N/A error. This error message has the
  3116. // meaning 'value not available' and is produced when an Excel Formula is
  3117. // unable to find a value that it needs. The syntax of the function is:
  3118. //
  3119. // NA()
  3120. //
  3121. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  3122. if argsList.Len() != 0 {
  3123. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  3124. }
  3125. return newStringFormulaArg(formulaErrorNA)
  3126. }
  3127. // Logical Functions
  3128. // AND function tests a number of supplied conditions and returns TRUE or
  3129. // FALSE. The syntax of the function is:
  3130. //
  3131. // AND(logical_test1,[logical_test2],...)
  3132. //
  3133. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  3134. if argsList.Len() == 0 {
  3135. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  3136. }
  3137. if argsList.Len() > 30 {
  3138. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  3139. }
  3140. var (
  3141. and = true
  3142. val float64
  3143. err error
  3144. )
  3145. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3146. token := arg.Value.(formulaArg)
  3147. switch token.Type {
  3148. case ArgUnknown:
  3149. continue
  3150. case ArgString:
  3151. if token.String == "TRUE" {
  3152. continue
  3153. }
  3154. if token.String == "FALSE" {
  3155. return newStringFormulaArg(token.String)
  3156. }
  3157. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3158. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3159. }
  3160. and = and && (val != 0)
  3161. case ArgMatrix:
  3162. // TODO
  3163. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3164. }
  3165. }
  3166. return newBoolFormulaArg(and)
  3167. }
  3168. // OR function tests a number of supplied conditions and returns either TRUE
  3169. // or FALSE. The syntax of the function is:
  3170. //
  3171. // OR(logical_test1,[logical_test2],...)
  3172. //
  3173. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  3174. if argsList.Len() == 0 {
  3175. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  3176. }
  3177. if argsList.Len() > 30 {
  3178. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  3179. }
  3180. var (
  3181. or bool
  3182. val float64
  3183. err error
  3184. )
  3185. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3186. token := arg.Value.(formulaArg)
  3187. switch token.Type {
  3188. case ArgUnknown:
  3189. continue
  3190. case ArgString:
  3191. if token.String == "FALSE" {
  3192. continue
  3193. }
  3194. if token.String == "TRUE" {
  3195. or = true
  3196. continue
  3197. }
  3198. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3199. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3200. }
  3201. or = val != 0
  3202. case ArgMatrix:
  3203. // TODO
  3204. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3205. }
  3206. }
  3207. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  3208. }
  3209. // Date and Time Functions
  3210. // DATE returns a date, from a user-supplied year, month and day. The syntax
  3211. // of the function is:
  3212. //
  3213. // DATE(year,month,day)
  3214. //
  3215. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  3216. if argsList.Len() != 3 {
  3217. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3218. }
  3219. var year, month, day int
  3220. var err error
  3221. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  3222. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3223. }
  3224. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  3225. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3226. }
  3227. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  3228. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  3229. }
  3230. d := makeDate(year, time.Month(month), day)
  3231. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  3232. }
  3233. // makeDate return date as a Unix time, the number of seconds elapsed since
  3234. // January 1, 1970 UTC.
  3235. func makeDate(y int, m time.Month, d int) int64 {
  3236. if y == 1900 && int(m) <= 2 {
  3237. d--
  3238. }
  3239. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  3240. return date.Unix()
  3241. }
  3242. // daysBetween return time interval of the given start timestamp and end
  3243. // timestamp.
  3244. func daysBetween(startDate, endDate int64) float64 {
  3245. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  3246. }
  3247. // Text Functions
  3248. // CLEAN removes all non-printable characters from a supplied text string. The
  3249. // syntax of the function is:
  3250. //
  3251. // CLEAN(text)
  3252. //
  3253. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  3254. if argsList.Len() != 1 {
  3255. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  3256. }
  3257. b := bytes.Buffer{}
  3258. for _, c := range argsList.Front().Value.(formulaArg).String {
  3259. if c > 31 {
  3260. b.WriteRune(c)
  3261. }
  3262. }
  3263. return newStringFormulaArg(b.String())
  3264. }
  3265. // LEN returns the length of a supplied text string. The syntax of the
  3266. // function is:
  3267. //
  3268. // LEN(text)
  3269. //
  3270. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  3271. if argsList.Len() != 1 {
  3272. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  3273. }
  3274. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  3275. }
  3276. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  3277. // words or characters) from a supplied text string. The syntax of the
  3278. // function is:
  3279. //
  3280. // TRIM(text)
  3281. //
  3282. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  3283. if argsList.Len() != 1 {
  3284. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  3285. }
  3286. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  3287. }
  3288. // LOWER converts all characters in a supplied text string to lower case. The
  3289. // syntax of the function is:
  3290. //
  3291. // LOWER(text)
  3292. //
  3293. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  3294. if argsList.Len() != 1 {
  3295. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  3296. }
  3297. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  3298. }
  3299. // PROPER converts all characters in a supplied text string to proper case
  3300. // (i.e. all letters that do not immediately follow another letter are set to
  3301. // upper case and all other characters are lower case). The syntax of the
  3302. // function is:
  3303. //
  3304. // PROPER(text)
  3305. //
  3306. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  3307. if argsList.Len() != 1 {
  3308. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  3309. }
  3310. buf := bytes.Buffer{}
  3311. isLetter := false
  3312. for _, char := range argsList.Front().Value.(formulaArg).String {
  3313. if !isLetter && unicode.IsLetter(char) {
  3314. buf.WriteRune(unicode.ToUpper(char))
  3315. } else {
  3316. buf.WriteRune(unicode.ToLower(char))
  3317. }
  3318. isLetter = unicode.IsLetter(char)
  3319. }
  3320. return newStringFormulaArg(buf.String())
  3321. }
  3322. // UPPER converts all characters in a supplied text string to upper case. The
  3323. // syntax of the function is:
  3324. //
  3325. // UPPER(text)
  3326. //
  3327. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  3328. if argsList.Len() != 1 {
  3329. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  3330. }
  3331. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  3332. }
  3333. // Conditional Functions
  3334. // IF function tests a supplied condition and returns one result if the
  3335. // condition evaluates to TRUE, and another result if the condition evaluates
  3336. // to FALSE. The syntax of the function is:
  3337. //
  3338. // IF(logical_test,value_if_true,value_if_false)
  3339. //
  3340. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  3341. if argsList.Len() == 0 {
  3342. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  3343. }
  3344. if argsList.Len() > 3 {
  3345. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  3346. }
  3347. token := argsList.Front().Value.(formulaArg)
  3348. var (
  3349. cond bool
  3350. err error
  3351. result string
  3352. )
  3353. switch token.Type {
  3354. case ArgString:
  3355. if cond, err = strconv.ParseBool(token.String); err != nil {
  3356. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3357. }
  3358. if argsList.Len() == 1 {
  3359. return newBoolFormulaArg(cond)
  3360. }
  3361. if cond {
  3362. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  3363. }
  3364. if argsList.Len() == 3 {
  3365. result = argsList.Back().Value.(formulaArg).String
  3366. }
  3367. }
  3368. return newStringFormulaArg(result)
  3369. }
  3370. // Excel Lookup and Reference Functions
  3371. // CHOOSE function returns a value from an array, that corresponds to a
  3372. // supplied index number (position). The syntax of the function is:
  3373. //
  3374. // CHOOSE(index_num,value1,[value2],...)
  3375. //
  3376. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  3377. if argsList.Len() < 2 {
  3378. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  3379. }
  3380. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  3381. if err != nil {
  3382. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  3383. }
  3384. if argsList.Len() <= idx {
  3385. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  3386. }
  3387. arg := argsList.Front()
  3388. for i := 0; i < idx; i++ {
  3389. arg = arg.Next()
  3390. }
  3391. var result formulaArg
  3392. switch arg.Value.(formulaArg).Type {
  3393. case ArgString:
  3394. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  3395. case ArgMatrix:
  3396. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  3397. }
  3398. return result
  3399. }
  3400. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  3401. // string.
  3402. func deepMatchRune(str, pattern []rune, simple bool) bool {
  3403. for len(pattern) > 0 {
  3404. switch pattern[0] {
  3405. default:
  3406. if len(str) == 0 || str[0] != pattern[0] {
  3407. return false
  3408. }
  3409. case '?':
  3410. if len(str) == 0 && !simple {
  3411. return false
  3412. }
  3413. case '*':
  3414. return deepMatchRune(str, pattern[1:], simple) ||
  3415. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  3416. }
  3417. str = str[1:]
  3418. pattern = pattern[1:]
  3419. }
  3420. return len(str) == 0 && len(pattern) == 0
  3421. }
  3422. // matchPattern finds whether the text matches or satisfies the pattern
  3423. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  3424. func matchPattern(pattern, name string) (matched bool) {
  3425. if pattern == "" {
  3426. return name == pattern
  3427. }
  3428. if pattern == "*" {
  3429. return true
  3430. }
  3431. rname := make([]rune, 0, len(name))
  3432. rpattern := make([]rune, 0, len(pattern))
  3433. for _, r := range name {
  3434. rname = append(rname, r)
  3435. }
  3436. for _, r := range pattern {
  3437. rpattern = append(rpattern, r)
  3438. }
  3439. simple := false // Does extended wildcard '*' and '?' match.
  3440. return deepMatchRune(rname, rpattern, simple)
  3441. }
  3442. // compareFormulaArg compares the left-hand sides and the right-hand sides
  3443. // formula arguments by given conditions such as case sensitive, if exact
  3444. // match, and make compare result as formula criteria condition type.
  3445. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  3446. if lhs.Type != rhs.Type {
  3447. return criteriaErr
  3448. }
  3449. switch lhs.Type {
  3450. case ArgNumber:
  3451. if lhs.Number == rhs.Number {
  3452. return criteriaEq
  3453. }
  3454. if lhs.Number < rhs.Number {
  3455. return criteriaL
  3456. }
  3457. return criteriaG
  3458. case ArgString:
  3459. ls := lhs.String
  3460. rs := rhs.String
  3461. if !caseSensitive {
  3462. ls = strings.ToLower(ls)
  3463. rs = strings.ToLower(rs)
  3464. }
  3465. if exactMatch {
  3466. match := matchPattern(rs, ls)
  3467. if match {
  3468. return criteriaEq
  3469. }
  3470. return criteriaG
  3471. }
  3472. return byte(strings.Compare(ls, rs))
  3473. case ArgEmpty:
  3474. return criteriaEq
  3475. case ArgList:
  3476. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  3477. case ArgMatrix:
  3478. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  3479. }
  3480. return criteriaErr
  3481. }
  3482. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  3483. // list type formula arguments.
  3484. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  3485. if len(lhs.List) < len(rhs.List) {
  3486. return criteriaL
  3487. }
  3488. if len(lhs.List) > len(rhs.List) {
  3489. return criteriaG
  3490. }
  3491. for arg := range lhs.List {
  3492. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  3493. if criteria != criteriaEq {
  3494. return criteria
  3495. }
  3496. }
  3497. return criteriaEq
  3498. }
  3499. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  3500. // matrix type formula arguments.
  3501. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  3502. if len(lhs.Matrix) < len(rhs.Matrix) {
  3503. return criteriaL
  3504. }
  3505. if len(lhs.Matrix) > len(rhs.Matrix) {
  3506. return criteriaG
  3507. }
  3508. for i := range lhs.Matrix {
  3509. left := lhs.Matrix[i]
  3510. right := lhs.Matrix[i]
  3511. if len(left) < len(right) {
  3512. return criteriaL
  3513. }
  3514. if len(left) > len(right) {
  3515. return criteriaG
  3516. }
  3517. for arg := range left {
  3518. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  3519. if criteria != criteriaEq {
  3520. return criteria
  3521. }
  3522. }
  3523. }
  3524. return criteriaEq
  3525. }
  3526. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  3527. // data array (or table), and returns the corresponding value from another
  3528. // column of the array. The syntax of the function is:
  3529. //
  3530. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  3531. //
  3532. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  3533. if argsList.Len() < 3 {
  3534. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  3535. }
  3536. if argsList.Len() > 4 {
  3537. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  3538. }
  3539. lookupValue := argsList.Front().Value.(formulaArg)
  3540. tableArray := argsList.Front().Next().Value.(formulaArg)
  3541. if tableArray.Type != ArgMatrix {
  3542. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  3543. }
  3544. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  3545. if colIdx.Type != ArgNumber {
  3546. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  3547. }
  3548. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  3549. if argsList.Len() == 4 {
  3550. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  3551. if rangeLookup.Type == ArgError {
  3552. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  3553. }
  3554. if rangeLookup.Number == 0 {
  3555. exactMatch = true
  3556. }
  3557. }
  3558. start:
  3559. for idx, mtx := range tableArray.Matrix {
  3560. if len(mtx) == 0 {
  3561. continue
  3562. }
  3563. lhs := mtx[0]
  3564. switch lookupValue.Type {
  3565. case ArgNumber:
  3566. if !lookupValue.Boolean {
  3567. lhs = mtx[0].ToNumber()
  3568. if lhs.Type == ArgError {
  3569. lhs = mtx[0]
  3570. }
  3571. }
  3572. case ArgMatrix:
  3573. lhs = tableArray
  3574. }
  3575. switch compareFormulaArg(lhs, lookupValue, false, exactMatch) {
  3576. case criteriaL:
  3577. matchIdx = idx
  3578. case criteriaEq:
  3579. matchIdx = idx
  3580. wasExact = true
  3581. break start
  3582. }
  3583. }
  3584. if matchIdx == -1 {
  3585. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  3586. }
  3587. mtx := tableArray.Matrix[matchIdx]
  3588. if col < 0 || col >= len(mtx) {
  3589. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  3590. }
  3591. if wasExact || !exactMatch {
  3592. return mtx[col]
  3593. }
  3594. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  3595. }