calc.go 153 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. )
  30. // Excel formula errors
  31. const (
  32. formulaErrorDIV = "#DIV/0!"
  33. formulaErrorNAME = "#NAME?"
  34. formulaErrorNA = "#N/A"
  35. formulaErrorNUM = "#NUM!"
  36. formulaErrorVALUE = "#VALUE!"
  37. formulaErrorREF = "#REF!"
  38. formulaErrorNULL = "#NULL"
  39. formulaErrorSPILL = "#SPILL!"
  40. formulaErrorCALC = "#CALC!"
  41. formulaErrorGETTINGDATA = "#GETTING_DATA"
  42. )
  43. // Numeric precision correct numeric values as legacy Excel application
  44. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  45. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  46. // has a decimal representation that is an infinite string of ones, Excel
  47. // displays only the leading 15 figures. In the second line, the number one
  48. // is added to the fraction, and again Excel displays only 15 figures.
  49. const numericPrecision = 1000000000000000
  50. // cellRef defines the structure of a cell reference.
  51. type cellRef struct {
  52. Col int
  53. Row int
  54. Sheet string
  55. }
  56. // cellRef defines the structure of a cell range.
  57. type cellRange struct {
  58. From cellRef
  59. To cellRef
  60. }
  61. // formula criteria condition enumeration.
  62. const (
  63. _ byte = iota
  64. criteriaEq
  65. criteriaLe
  66. criteriaGe
  67. criteriaL
  68. criteriaG
  69. criteriaBeg
  70. criteriaEnd
  71. criteriaErr
  72. )
  73. // formulaCriteria defined formula criteria parser result.
  74. type formulaCriteria struct {
  75. Type byte
  76. Condition string
  77. }
  78. // ArgType is the type if formula argument type.
  79. type ArgType byte
  80. // Formula argument types enumeration.
  81. const (
  82. ArgUnknown ArgType = iota
  83. ArgNumber
  84. ArgString
  85. ArgList
  86. ArgMatrix
  87. ArgError
  88. ArgEmpty
  89. )
  90. // formulaArg is the argument of a formula or function.
  91. type formulaArg struct {
  92. SheetName string
  93. Number float64
  94. String string
  95. List []formulaArg
  96. Matrix [][]formulaArg
  97. Boolean bool
  98. Error string
  99. Type ArgType
  100. cellRefs, cellRanges *list.List
  101. }
  102. // Value returns a string data type of the formula argument.
  103. func (fa formulaArg) Value() (value string) {
  104. switch fa.Type {
  105. case ArgNumber:
  106. if fa.Boolean {
  107. if fa.Number == 0 {
  108. return "FALSE"
  109. }
  110. return "TRUE"
  111. }
  112. return fmt.Sprintf("%g", fa.Number)
  113. case ArgString:
  114. return fa.String
  115. case ArgError:
  116. return fa.Error
  117. }
  118. return
  119. }
  120. // ToNumber returns a formula argument with number data type.
  121. func (fa formulaArg) ToNumber() formulaArg {
  122. var n float64
  123. var err error
  124. switch fa.Type {
  125. case ArgString:
  126. n, err = strconv.ParseFloat(fa.String, 64)
  127. if err != nil {
  128. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  129. }
  130. case ArgNumber:
  131. n = fa.Number
  132. }
  133. return newNumberFormulaArg(n)
  134. }
  135. // ToBool returns a formula argument with boolean data type.
  136. func (fa formulaArg) ToBool() formulaArg {
  137. var b bool
  138. var err error
  139. switch fa.Type {
  140. case ArgString:
  141. b, err = strconv.ParseBool(fa.String)
  142. if err != nil {
  143. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  144. }
  145. case ArgNumber:
  146. if fa.Boolean && fa.Number == 1 {
  147. b = true
  148. }
  149. }
  150. return newBoolFormulaArg(b)
  151. }
  152. // ToList returns a formula argument with array data type.
  153. func (fa formulaArg) ToList() []formulaArg {
  154. if fa.Type == ArgMatrix {
  155. list := []formulaArg{}
  156. for _, row := range fa.Matrix {
  157. list = append(list, row...)
  158. }
  159. return list
  160. }
  161. if fa.Type == ArgList {
  162. return fa.List
  163. }
  164. return nil
  165. }
  166. // formulaFuncs is the type of the formula functions.
  167. type formulaFuncs struct {
  168. f *File
  169. sheet, cell string
  170. }
  171. // tokenPriority defined basic arithmetic operator priority.
  172. var tokenPriority = map[string]int{
  173. "^": 5,
  174. "*": 4,
  175. "/": 4,
  176. "+": 3,
  177. "-": 3,
  178. "=": 2,
  179. "<>": 2,
  180. "<": 2,
  181. "<=": 2,
  182. ">": 2,
  183. ">=": 2,
  184. "&": 1,
  185. }
  186. // CalcCellValue provides a function to get calculated cell value. This
  187. // feature is currently in working processing. Array formula, table formula
  188. // and some other formulas are not supported currently.
  189. //
  190. // Supported formula functions:
  191. //
  192. // ABS
  193. // ACOS
  194. // ACOSH
  195. // ACOT
  196. // ACOTH
  197. // AND
  198. // ARABIC
  199. // ASIN
  200. // ASINH
  201. // ATAN
  202. // ATAN2
  203. // ATANH
  204. // AVERAGE
  205. // AVERAGEA
  206. // BASE
  207. // BIN2DEC
  208. // BIN2HEX
  209. // BIN2OCT
  210. // BITAND
  211. // BITLSHIFT
  212. // BITOR
  213. // BITRSHIFT
  214. // BITXOR
  215. // CEILING
  216. // CEILING.MATH
  217. // CEILING.PRECISE
  218. // CHOOSE
  219. // CLEAN
  220. // CODE
  221. // COLUMN
  222. // COMBIN
  223. // COMBINA
  224. // CONCAT
  225. // CONCATENATE
  226. // COS
  227. // COSH
  228. // COT
  229. // COTH
  230. // COUNT
  231. // COUNTA
  232. // COUNTBLANK
  233. // CSC
  234. // CSCH
  235. // DATE
  236. // DEC2BIN
  237. // DEC2HEX
  238. // DEC2OCT
  239. // DECIMAL
  240. // DEGREES
  241. // ENCODEURL
  242. // EVEN
  243. // EXACT
  244. // EXP
  245. // FACT
  246. // FACTDOUBLE
  247. // FALSE
  248. // FIND
  249. // FINDB
  250. // FISHER
  251. // FISHERINV
  252. // FLOOR
  253. // FLOOR.MATH
  254. // FLOOR.PRECISE
  255. // GAMMA
  256. // GAMMALN
  257. // GCD
  258. // HEX2BIN
  259. // HEX2DEC
  260. // HEX2OCT
  261. // HLOOKUP
  262. // IF
  263. // IFERROR
  264. // INT
  265. // ISBLANK
  266. // ISERR
  267. // ISERROR
  268. // ISEVEN
  269. // ISNA
  270. // ISNONTEXT
  271. // ISNUMBER
  272. // ISODD
  273. // ISTEXT
  274. // ISO.CEILING
  275. // KURT
  276. // LCM
  277. // LEFT
  278. // LEFTB
  279. // LEN
  280. // LENB
  281. // LN
  282. // LOG
  283. // LOG10
  284. // LOOKUP
  285. // LOWER
  286. // MAX
  287. // MDETERM
  288. // MEDIAN
  289. // MIN
  290. // MINA
  291. // MOD
  292. // MROUND
  293. // MULTINOMIAL
  294. // MUNIT
  295. // NA
  296. // NOT
  297. // OCT2BIN
  298. // OCT2DEC
  299. // OCT2HEX
  300. // ODD
  301. // OR
  302. // PERMUT
  303. // PI
  304. // POWER
  305. // PRODUCT
  306. // PROPER
  307. // QUOTIENT
  308. // RADIANS
  309. // RAND
  310. // RANDBETWEEN
  311. // REPT
  312. // RIGHT
  313. // RIGHTB
  314. // ROMAN
  315. // ROUND
  316. // ROUNDDOWN
  317. // ROUNDUP
  318. // SEC
  319. // SECH
  320. // SHEET
  321. // SIGN
  322. // SIN
  323. // SINH
  324. // SQRT
  325. // SQRTPI
  326. // STDEV
  327. // STDEVA
  328. // SUM
  329. // SUMIF
  330. // SUMSQ
  331. // TAN
  332. // TANH
  333. // TRIM
  334. // TRUE
  335. // TRUNC
  336. // UPPER
  337. // VLOOKUP
  338. //
  339. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  340. var (
  341. formula string
  342. token efp.Token
  343. )
  344. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  345. return
  346. }
  347. ps := efp.ExcelParser()
  348. tokens := ps.Parse(formula)
  349. if tokens == nil {
  350. return
  351. }
  352. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  353. return
  354. }
  355. result = token.TValue
  356. isNum, precision := isNumeric(result)
  357. if isNum && precision > 15 {
  358. num, _ := roundPrecision(result)
  359. result = strings.ToUpper(num)
  360. }
  361. return
  362. }
  363. // getPriority calculate arithmetic operator priority.
  364. func getPriority(token efp.Token) (pri int) {
  365. pri = tokenPriority[token.TValue]
  366. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  367. pri = 6
  368. }
  369. if isBeginParenthesesToken(token) { // (
  370. pri = 0
  371. }
  372. return
  373. }
  374. // newNumberFormulaArg constructs a number formula argument.
  375. func newNumberFormulaArg(n float64) formulaArg {
  376. if math.IsNaN(n) {
  377. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  378. }
  379. return formulaArg{Type: ArgNumber, Number: n}
  380. }
  381. // newStringFormulaArg constructs a string formula argument.
  382. func newStringFormulaArg(s string) formulaArg {
  383. return formulaArg{Type: ArgString, String: s}
  384. }
  385. // newMatrixFormulaArg constructs a matrix formula argument.
  386. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  387. return formulaArg{Type: ArgMatrix, Matrix: m}
  388. }
  389. // newListFormulaArg create a list formula argument.
  390. func newListFormulaArg(l []formulaArg) formulaArg {
  391. return formulaArg{Type: ArgList, List: l}
  392. }
  393. // newBoolFormulaArg constructs a boolean formula argument.
  394. func newBoolFormulaArg(b bool) formulaArg {
  395. var n float64
  396. if b {
  397. n = 1
  398. }
  399. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  400. }
  401. // newErrorFormulaArg create an error formula argument of a given type with a
  402. // specified error message.
  403. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  404. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  405. }
  406. // newEmptyFormulaArg create an empty formula argument.
  407. func newEmptyFormulaArg() formulaArg {
  408. return formulaArg{Type: ArgEmpty}
  409. }
  410. // evalInfixExp evaluate syntax analysis by given infix expression after
  411. // lexical analysis. Evaluate an infix expression containing formulas by
  412. // stacks:
  413. //
  414. // opd - Operand
  415. // opt - Operator
  416. // opf - Operation formula
  417. // opfd - Operand of the operation formula
  418. // opft - Operator of the operation formula
  419. //
  420. // Evaluate arguments of the operation formula by list:
  421. //
  422. // args - Arguments of the operation formula
  423. //
  424. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  425. //
  426. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  427. var err error
  428. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  429. for i := 0; i < len(tokens); i++ {
  430. token := tokens[i]
  431. // out of function stack
  432. if opfStack.Len() == 0 {
  433. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  434. return efp.Token{}, err
  435. }
  436. }
  437. // function start
  438. if isFunctionStartToken(token) {
  439. opfStack.Push(token)
  440. argsStack.Push(list.New().Init())
  441. continue
  442. }
  443. // in function stack, walk 2 token at once
  444. if opfStack.Len() > 0 {
  445. var nextToken efp.Token
  446. if i+1 < len(tokens) {
  447. nextToken = tokens[i+1]
  448. }
  449. // current token is args or range, skip next token, order required: parse reference first
  450. if token.TSubType == efp.TokenSubTypeRange {
  451. if !opftStack.Empty() {
  452. // parse reference: must reference at here
  453. result, err := f.parseReference(sheet, token.TValue)
  454. if err != nil {
  455. return efp.Token{TValue: formulaErrorNAME}, err
  456. }
  457. if result.Type != ArgString {
  458. return efp.Token{}, errors.New(formulaErrorVALUE)
  459. }
  460. opfdStack.Push(efp.Token{
  461. TType: efp.TokenTypeOperand,
  462. TSubType: efp.TokenSubTypeNumber,
  463. TValue: result.String,
  464. })
  465. continue
  466. }
  467. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  468. // parse reference: reference or range at here
  469. result, err := f.parseReference(sheet, token.TValue)
  470. if err != nil {
  471. return efp.Token{TValue: formulaErrorNAME}, err
  472. }
  473. if result.Type == ArgUnknown {
  474. return efp.Token{}, errors.New(formulaErrorVALUE)
  475. }
  476. argsStack.Peek().(*list.List).PushBack(result)
  477. continue
  478. }
  479. }
  480. // check current token is opft
  481. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  482. return efp.Token{}, err
  483. }
  484. // current token is arg
  485. if token.TType == efp.TokenTypeArgument {
  486. for !opftStack.Empty() {
  487. // calculate trigger
  488. topOpt := opftStack.Peek().(efp.Token)
  489. if err := calculate(opfdStack, topOpt); err != nil {
  490. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  491. }
  492. opftStack.Pop()
  493. }
  494. if !opfdStack.Empty() {
  495. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  496. }
  497. continue
  498. }
  499. // current token is logical
  500. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  501. }
  502. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  503. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  504. }
  505. // current token is text
  506. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  507. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  508. }
  509. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  510. return efp.Token{}, err
  511. }
  512. }
  513. }
  514. for optStack.Len() != 0 {
  515. topOpt := optStack.Peek().(efp.Token)
  516. if err = calculate(opdStack, topOpt); err != nil {
  517. return efp.Token{}, err
  518. }
  519. optStack.Pop()
  520. }
  521. if opdStack.Len() == 0 {
  522. return efp.Token{}, errors.New("formula not valid")
  523. }
  524. return opdStack.Peek().(efp.Token), err
  525. }
  526. // evalInfixExpFunc evaluate formula function in the infix expression.
  527. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  528. if !isFunctionStopToken(token) {
  529. return nil
  530. }
  531. // current token is function stop
  532. for !opftStack.Empty() {
  533. // calculate trigger
  534. topOpt := opftStack.Peek().(efp.Token)
  535. if err := calculate(opfdStack, topOpt); err != nil {
  536. return err
  537. }
  538. opftStack.Pop()
  539. }
  540. // push opfd to args
  541. if opfdStack.Len() > 0 {
  542. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  543. }
  544. // call formula function to evaluate
  545. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  546. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  547. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  548. if arg.Type == ArgError && opfStack.Len() == 1 {
  549. return errors.New(arg.Value())
  550. }
  551. argsStack.Pop()
  552. opfStack.Pop()
  553. if opfStack.Len() > 0 { // still in function stack
  554. if nextToken.TType == efp.TokenTypeOperatorInfix {
  555. // mathematics calculate in formula function
  556. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  557. } else {
  558. argsStack.Peek().(*list.List).PushBack(arg)
  559. }
  560. } else {
  561. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  562. }
  563. return nil
  564. }
  565. // calcPow evaluate exponentiation arithmetic operations.
  566. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  567. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  568. if err != nil {
  569. return err
  570. }
  571. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  572. if err != nil {
  573. return err
  574. }
  575. result := math.Pow(lOpdVal, rOpdVal)
  576. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  577. return nil
  578. }
  579. // calcEq evaluate equal arithmetic operations.
  580. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  581. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  582. return nil
  583. }
  584. // calcNEq evaluate not equal arithmetic operations.
  585. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  586. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  587. return nil
  588. }
  589. // calcL evaluate less than arithmetic operations.
  590. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  591. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  592. if err != nil {
  593. return err
  594. }
  595. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  596. if err != nil {
  597. return err
  598. }
  599. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  600. return nil
  601. }
  602. // calcLe evaluate less than or equal arithmetic operations.
  603. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  604. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  605. if err != nil {
  606. return err
  607. }
  608. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  609. if err != nil {
  610. return err
  611. }
  612. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  613. return nil
  614. }
  615. // calcG evaluate greater than or equal arithmetic operations.
  616. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  617. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  618. if err != nil {
  619. return err
  620. }
  621. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  622. if err != nil {
  623. return err
  624. }
  625. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  626. return nil
  627. }
  628. // calcGe evaluate greater than or equal arithmetic operations.
  629. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  630. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  631. if err != nil {
  632. return err
  633. }
  634. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  635. if err != nil {
  636. return err
  637. }
  638. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  639. return nil
  640. }
  641. // calcSplice evaluate splice '&' operations.
  642. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  643. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  644. return nil
  645. }
  646. // calcAdd evaluate addition arithmetic operations.
  647. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  648. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  649. if err != nil {
  650. return err
  651. }
  652. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  653. if err != nil {
  654. return err
  655. }
  656. result := lOpdVal + rOpdVal
  657. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  658. return nil
  659. }
  660. // calcSubtract evaluate subtraction arithmetic operations.
  661. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  662. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  663. if err != nil {
  664. return err
  665. }
  666. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  667. if err != nil {
  668. return err
  669. }
  670. result := lOpdVal - rOpdVal
  671. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  672. return nil
  673. }
  674. // calcMultiply evaluate multiplication arithmetic operations.
  675. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  676. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  677. if err != nil {
  678. return err
  679. }
  680. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  681. if err != nil {
  682. return err
  683. }
  684. result := lOpdVal * rOpdVal
  685. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  686. return nil
  687. }
  688. // calcDiv evaluate division arithmetic operations.
  689. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  690. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  691. if err != nil {
  692. return err
  693. }
  694. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  695. if err != nil {
  696. return err
  697. }
  698. result := lOpdVal / rOpdVal
  699. if rOpdVal == 0 {
  700. return errors.New(formulaErrorDIV)
  701. }
  702. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  703. return nil
  704. }
  705. // calculate evaluate basic arithmetic operations.
  706. func calculate(opdStack *Stack, opt efp.Token) error {
  707. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  708. if opdStack.Len() < 1 {
  709. return errors.New("formula not valid")
  710. }
  711. opd := opdStack.Pop().(efp.Token)
  712. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  713. if err != nil {
  714. return err
  715. }
  716. result := 0 - opdVal
  717. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  718. }
  719. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  720. "^": calcPow,
  721. "*": calcMultiply,
  722. "/": calcDiv,
  723. "+": calcAdd,
  724. "=": calcEq,
  725. "<>": calcNEq,
  726. "<": calcL,
  727. "<=": calcLe,
  728. ">": calcG,
  729. ">=": calcGe,
  730. "&": calcSplice,
  731. }
  732. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  733. if opdStack.Len() < 2 {
  734. return errors.New("formula not valid")
  735. }
  736. rOpd := opdStack.Pop().(efp.Token)
  737. lOpd := opdStack.Pop().(efp.Token)
  738. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  739. return err
  740. }
  741. }
  742. fn, ok := tokenCalcFunc[opt.TValue]
  743. if ok {
  744. if opdStack.Len() < 2 {
  745. return errors.New("formula not valid")
  746. }
  747. rOpd := opdStack.Pop().(efp.Token)
  748. lOpd := opdStack.Pop().(efp.Token)
  749. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  750. return err
  751. }
  752. }
  753. return nil
  754. }
  755. // parseOperatorPrefixToken parse operator prefix token.
  756. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  757. if optStack.Len() == 0 {
  758. optStack.Push(token)
  759. } else {
  760. tokenPriority := getPriority(token)
  761. topOpt := optStack.Peek().(efp.Token)
  762. topOptPriority := getPriority(topOpt)
  763. if tokenPriority > topOptPriority {
  764. optStack.Push(token)
  765. } else {
  766. for tokenPriority <= topOptPriority {
  767. optStack.Pop()
  768. if err = calculate(opdStack, topOpt); err != nil {
  769. return
  770. }
  771. if optStack.Len() > 0 {
  772. topOpt = optStack.Peek().(efp.Token)
  773. topOptPriority = getPriority(topOpt)
  774. continue
  775. }
  776. break
  777. }
  778. optStack.Push(token)
  779. }
  780. }
  781. return
  782. }
  783. // isFunctionStartToken determine if the token is function stop.
  784. func isFunctionStartToken(token efp.Token) bool {
  785. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  786. }
  787. // isFunctionStopToken determine if the token is function stop.
  788. func isFunctionStopToken(token efp.Token) bool {
  789. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  790. }
  791. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  792. func isBeginParenthesesToken(token efp.Token) bool {
  793. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  794. }
  795. // isEndParenthesesToken determine if the token is end parentheses: ).
  796. func isEndParenthesesToken(token efp.Token) bool {
  797. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  798. }
  799. // isOperatorPrefixToken determine if the token is parse operator prefix
  800. // token.
  801. func isOperatorPrefixToken(token efp.Token) bool {
  802. _, ok := tokenPriority[token.TValue]
  803. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  804. return true
  805. }
  806. return false
  807. }
  808. // getDefinedNameRefTo convert defined name to reference range.
  809. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  810. for _, definedName := range f.GetDefinedName() {
  811. if definedName.Name == definedNameName {
  812. refTo = definedName.RefersTo
  813. // worksheet scope takes precedence over scope workbook when both definedNames exist
  814. if definedName.Scope == currentSheet {
  815. break
  816. }
  817. }
  818. }
  819. return refTo
  820. }
  821. // parseToken parse basic arithmetic operator priority and evaluate based on
  822. // operators and operands.
  823. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  824. // parse reference: must reference at here
  825. if token.TSubType == efp.TokenSubTypeRange {
  826. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  827. if refTo != "" {
  828. token.TValue = refTo
  829. }
  830. result, err := f.parseReference(sheet, token.TValue)
  831. if err != nil {
  832. return errors.New(formulaErrorNAME)
  833. }
  834. if result.Type != ArgString {
  835. return errors.New(formulaErrorVALUE)
  836. }
  837. token.TValue = result.String
  838. token.TType = efp.TokenTypeOperand
  839. token.TSubType = efp.TokenSubTypeNumber
  840. }
  841. if isOperatorPrefixToken(token) {
  842. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  843. return err
  844. }
  845. }
  846. if isBeginParenthesesToken(token) { // (
  847. optStack.Push(token)
  848. }
  849. if isEndParenthesesToken(token) { // )
  850. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  851. topOpt := optStack.Peek().(efp.Token)
  852. if err := calculate(opdStack, topOpt); err != nil {
  853. return err
  854. }
  855. optStack.Pop()
  856. }
  857. optStack.Pop()
  858. }
  859. // opd
  860. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  861. opdStack.Push(token)
  862. }
  863. return nil
  864. }
  865. // parseReference parse reference and extract values by given reference
  866. // characters and default sheet name.
  867. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  868. reference = strings.Replace(reference, "$", "", -1)
  869. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  870. for _, ref := range strings.Split(reference, ":") {
  871. tokens := strings.Split(ref, "!")
  872. cr := cellRef{}
  873. if len(tokens) == 2 { // have a worksheet name
  874. cr.Sheet = tokens[0]
  875. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  876. return
  877. }
  878. if refs.Len() > 0 {
  879. e := refs.Back()
  880. cellRefs.PushBack(e.Value.(cellRef))
  881. refs.Remove(e)
  882. }
  883. refs.PushBack(cr)
  884. continue
  885. }
  886. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  887. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  888. return
  889. }
  890. cellRanges.PushBack(cellRange{
  891. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  892. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  893. })
  894. cellRefs.Init()
  895. arg, err = f.rangeResolver(cellRefs, cellRanges)
  896. return
  897. }
  898. e := refs.Back()
  899. if e == nil {
  900. cr.Sheet = sheet
  901. refs.PushBack(cr)
  902. continue
  903. }
  904. cellRanges.PushBack(cellRange{
  905. From: e.Value.(cellRef),
  906. To: cr,
  907. })
  908. refs.Remove(e)
  909. }
  910. if refs.Len() > 0 {
  911. e := refs.Back()
  912. cellRefs.PushBack(e.Value.(cellRef))
  913. refs.Remove(e)
  914. }
  915. arg, err = f.rangeResolver(cellRefs, cellRanges)
  916. return
  917. }
  918. // prepareValueRange prepare value range.
  919. func prepareValueRange(cr cellRange, valueRange []int) {
  920. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  921. valueRange[0] = cr.From.Row
  922. }
  923. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  924. valueRange[2] = cr.From.Col
  925. }
  926. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  927. valueRange[1] = cr.To.Row
  928. }
  929. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  930. valueRange[3] = cr.To.Col
  931. }
  932. }
  933. // prepareValueRef prepare value reference.
  934. func prepareValueRef(cr cellRef, valueRange []int) {
  935. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  936. valueRange[0] = cr.Row
  937. }
  938. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  939. valueRange[2] = cr.Col
  940. }
  941. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  942. valueRange[1] = cr.Row
  943. }
  944. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  945. valueRange[3] = cr.Col
  946. }
  947. }
  948. // rangeResolver extract value as string from given reference and range list.
  949. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  950. // be reference A1:B3.
  951. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  952. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  953. // value range order: from row, to row, from column, to column
  954. valueRange := []int{0, 0, 0, 0}
  955. var sheet string
  956. // prepare value range
  957. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  958. cr := temp.Value.(cellRange)
  959. if cr.From.Sheet != cr.To.Sheet {
  960. err = errors.New(formulaErrorVALUE)
  961. }
  962. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  963. _ = sortCoordinates(rng)
  964. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  965. prepareValueRange(cr, valueRange)
  966. if cr.From.Sheet != "" {
  967. sheet = cr.From.Sheet
  968. }
  969. }
  970. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  971. cr := temp.Value.(cellRef)
  972. if cr.Sheet != "" {
  973. sheet = cr.Sheet
  974. }
  975. prepareValueRef(cr, valueRange)
  976. }
  977. // extract value from ranges
  978. if cellRanges.Len() > 0 {
  979. arg.Type = ArgMatrix
  980. for row := valueRange[0]; row <= valueRange[1]; row++ {
  981. var matrixRow = []formulaArg{}
  982. for col := valueRange[2]; col <= valueRange[3]; col++ {
  983. var cell, value string
  984. if cell, err = CoordinatesToCellName(col, row); err != nil {
  985. return
  986. }
  987. if value, err = f.GetCellValue(sheet, cell); err != nil {
  988. return
  989. }
  990. matrixRow = append(matrixRow, formulaArg{
  991. String: value,
  992. Type: ArgString,
  993. })
  994. }
  995. arg.Matrix = append(arg.Matrix, matrixRow)
  996. }
  997. return
  998. }
  999. // extract value from references
  1000. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1001. cr := temp.Value.(cellRef)
  1002. var cell string
  1003. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1004. return
  1005. }
  1006. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1007. return
  1008. }
  1009. arg.Type = ArgString
  1010. }
  1011. return
  1012. }
  1013. // callFuncByName calls the no error or only error return function with
  1014. // reflect by given receiver, name and parameters.
  1015. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1016. function := reflect.ValueOf(receiver).MethodByName(name)
  1017. if function.IsValid() {
  1018. rt := function.Call(params)
  1019. if len(rt) == 0 {
  1020. return
  1021. }
  1022. arg = rt[0].Interface().(formulaArg)
  1023. return
  1024. }
  1025. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1026. }
  1027. // formulaCriteriaParser parse formula criteria.
  1028. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1029. fc = &formulaCriteria{}
  1030. if exp == "" {
  1031. return
  1032. }
  1033. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1034. fc.Type, fc.Condition = criteriaEq, match[1]
  1035. return
  1036. }
  1037. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1038. fc.Type, fc.Condition = criteriaEq, match[1]
  1039. return
  1040. }
  1041. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1042. fc.Type, fc.Condition = criteriaLe, match[1]
  1043. return
  1044. }
  1045. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1046. fc.Type, fc.Condition = criteriaGe, match[1]
  1047. return
  1048. }
  1049. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1050. fc.Type, fc.Condition = criteriaL, match[1]
  1051. return
  1052. }
  1053. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1054. fc.Type, fc.Condition = criteriaG, match[1]
  1055. return
  1056. }
  1057. if strings.Contains(exp, "*") {
  1058. if strings.HasPrefix(exp, "*") {
  1059. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1060. }
  1061. if strings.HasSuffix(exp, "*") {
  1062. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1063. }
  1064. return
  1065. }
  1066. fc.Type, fc.Condition = criteriaEq, exp
  1067. return
  1068. }
  1069. // formulaCriteriaEval evaluate formula criteria expression.
  1070. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1071. var value, expected float64
  1072. var e error
  1073. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1074. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1075. return
  1076. }
  1077. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1078. return
  1079. }
  1080. return
  1081. }
  1082. switch criteria.Type {
  1083. case criteriaEq:
  1084. return val == criteria.Condition, err
  1085. case criteriaLe:
  1086. value, expected, e = prepareValue(val, criteria.Condition)
  1087. return value <= expected && e == nil, err
  1088. case criteriaGe:
  1089. value, expected, e = prepareValue(val, criteria.Condition)
  1090. return value >= expected && e == nil, err
  1091. case criteriaL:
  1092. value, expected, e = prepareValue(val, criteria.Condition)
  1093. return value < expected && e == nil, err
  1094. case criteriaG:
  1095. value, expected, e = prepareValue(val, criteria.Condition)
  1096. return value > expected && e == nil, err
  1097. case criteriaBeg:
  1098. return strings.HasPrefix(val, criteria.Condition), err
  1099. case criteriaEnd:
  1100. return strings.HasSuffix(val, criteria.Condition), err
  1101. }
  1102. return
  1103. }
  1104. // Engineering Functions
  1105. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1106. // The syntax of the function is:
  1107. //
  1108. // BIN2DEC(number)
  1109. //
  1110. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1111. if argsList.Len() != 1 {
  1112. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1113. }
  1114. token := argsList.Front().Value.(formulaArg)
  1115. number := token.ToNumber()
  1116. if number.Type != ArgNumber {
  1117. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1118. }
  1119. return fn.bin2dec(token.Value())
  1120. }
  1121. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1122. // (Base 16) number. The syntax of the function is:
  1123. //
  1124. // BIN2HEX(number,[places])
  1125. //
  1126. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1127. if argsList.Len() < 1 {
  1128. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1129. }
  1130. if argsList.Len() > 2 {
  1131. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1132. }
  1133. token := argsList.Front().Value.(formulaArg)
  1134. number := token.ToNumber()
  1135. if number.Type != ArgNumber {
  1136. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1137. }
  1138. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1139. if decimal.Type != ArgNumber {
  1140. return decimal
  1141. }
  1142. newList.PushBack(decimal)
  1143. if argsList.Len() == 2 {
  1144. newList.PushBack(argsList.Back().Value.(formulaArg))
  1145. }
  1146. return fn.dec2x("BIN2HEX", newList)
  1147. }
  1148. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1149. // number. The syntax of the function is:
  1150. //
  1151. // BIN2OCT(number,[places])
  1152. //
  1153. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1154. if argsList.Len() < 1 {
  1155. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1156. }
  1157. if argsList.Len() > 2 {
  1158. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1159. }
  1160. token := argsList.Front().Value.(formulaArg)
  1161. number := token.ToNumber()
  1162. if number.Type != ArgNumber {
  1163. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1164. }
  1165. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1166. if decimal.Type != ArgNumber {
  1167. return decimal
  1168. }
  1169. newList.PushBack(decimal)
  1170. if argsList.Len() == 2 {
  1171. newList.PushBack(argsList.Back().Value.(formulaArg))
  1172. }
  1173. return fn.dec2x("BIN2OCT", newList)
  1174. }
  1175. // bin2dec is an implementation of the formula function BIN2DEC.
  1176. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1177. decimal, length := 0.0, len(number)
  1178. for i := length; i > 0; i-- {
  1179. s := string(number[length-i])
  1180. if 10 == i && s == "1" {
  1181. decimal += math.Pow(-2.0, float64(i-1))
  1182. continue
  1183. }
  1184. if s == "1" {
  1185. decimal += math.Pow(2.0, float64(i-1))
  1186. continue
  1187. }
  1188. if s != "0" {
  1189. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1190. }
  1191. }
  1192. return newNumberFormulaArg(decimal)
  1193. }
  1194. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1195. // syntax of the function is:
  1196. //
  1197. // BITAND(number1,number2)
  1198. //
  1199. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1200. return fn.bitwise("BITAND", argsList)
  1201. }
  1202. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1203. // number of bits. The syntax of the function is:
  1204. //
  1205. // BITLSHIFT(number1,shift_amount)
  1206. //
  1207. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1208. return fn.bitwise("BITLSHIFT", argsList)
  1209. }
  1210. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1211. // syntax of the function is:
  1212. //
  1213. // BITOR(number1,number2)
  1214. //
  1215. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1216. return fn.bitwise("BITOR", argsList)
  1217. }
  1218. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1219. // number of bits. The syntax of the function is:
  1220. //
  1221. // BITRSHIFT(number1,shift_amount)
  1222. //
  1223. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1224. return fn.bitwise("BITRSHIFT", argsList)
  1225. }
  1226. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1227. // integers. The syntax of the function is:
  1228. //
  1229. // BITXOR(number1,number2)
  1230. //
  1231. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1232. return fn.bitwise("BITXOR", argsList)
  1233. }
  1234. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1235. // BITOR, BITRSHIFT and BITXOR.
  1236. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1237. if argsList.Len() != 2 {
  1238. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1239. }
  1240. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1241. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1242. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1243. }
  1244. max := math.Pow(2, 48) - 1
  1245. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1246. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1247. }
  1248. bitwiseFuncMap := map[string]func(a, b int) int{
  1249. "BITAND": func(a, b int) int { return a & b },
  1250. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1251. "BITOR": func(a, b int) int { return a | b },
  1252. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1253. "BITXOR": func(a, b int) int { return a ^ b },
  1254. }
  1255. bitwiseFunc, _ := bitwiseFuncMap[name]
  1256. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1257. }
  1258. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1259. // The syntax of the function is:
  1260. //
  1261. // DEC2BIN(number,[places])
  1262. //
  1263. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1264. return fn.dec2x("DEC2BIN", argsList)
  1265. }
  1266. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1267. // number. The syntax of the function is:
  1268. //
  1269. // DEC2HEX(number,[places])
  1270. //
  1271. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1272. return fn.dec2x("DEC2HEX", argsList)
  1273. }
  1274. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1275. // The syntax of the function is:
  1276. //
  1277. // DEC2OCT(number,[places])
  1278. //
  1279. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1280. return fn.dec2x("DEC2OCT", argsList)
  1281. }
  1282. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1283. // DEC2OCT.
  1284. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1285. if argsList.Len() < 1 {
  1286. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1287. }
  1288. if argsList.Len() > 2 {
  1289. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1290. }
  1291. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1292. if decimal.Type != ArgNumber {
  1293. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1294. }
  1295. maxLimitMap := map[string]float64{
  1296. "DEC2BIN": 511,
  1297. "HEX2BIN": 511,
  1298. "OCT2BIN": 511,
  1299. "BIN2HEX": 549755813887,
  1300. "DEC2HEX": 549755813887,
  1301. "OCT2HEX": 549755813887,
  1302. "BIN2OCT": 536870911,
  1303. "DEC2OCT": 536870911,
  1304. "HEX2OCT": 536870911,
  1305. }
  1306. minLimitMap := map[string]float64{
  1307. "DEC2BIN": -512,
  1308. "HEX2BIN": -512,
  1309. "OCT2BIN": -512,
  1310. "BIN2HEX": -549755813888,
  1311. "DEC2HEX": -549755813888,
  1312. "OCT2HEX": -549755813888,
  1313. "BIN2OCT": -536870912,
  1314. "DEC2OCT": -536870912,
  1315. "HEX2OCT": -536870912,
  1316. }
  1317. baseMap := map[string]int{
  1318. "DEC2BIN": 2,
  1319. "HEX2BIN": 2,
  1320. "OCT2BIN": 2,
  1321. "BIN2HEX": 16,
  1322. "DEC2HEX": 16,
  1323. "OCT2HEX": 16,
  1324. "BIN2OCT": 8,
  1325. "DEC2OCT": 8,
  1326. "HEX2OCT": 8,
  1327. }
  1328. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1329. base := baseMap[name]
  1330. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1331. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1332. }
  1333. n := int64(decimal.Number)
  1334. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1335. if argsList.Len() == 2 {
  1336. places := argsList.Back().Value.(formulaArg).ToNumber()
  1337. if places.Type != ArgNumber {
  1338. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1339. }
  1340. binaryPlaces := len(binary)
  1341. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1342. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1343. }
  1344. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1345. }
  1346. if decimal.Number < 0 && len(binary) > 10 {
  1347. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1348. }
  1349. return newStringFormulaArg(strings.ToUpper(binary))
  1350. }
  1351. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1352. // (Base 2) number. The syntax of the function is:
  1353. //
  1354. // HEX2BIN(number,[places])
  1355. //
  1356. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1357. if argsList.Len() < 1 {
  1358. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1359. }
  1360. if argsList.Len() > 2 {
  1361. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1362. }
  1363. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1364. if decimal.Type != ArgNumber {
  1365. return decimal
  1366. }
  1367. newList.PushBack(decimal)
  1368. if argsList.Len() == 2 {
  1369. newList.PushBack(argsList.Back().Value.(formulaArg))
  1370. }
  1371. return fn.dec2x("HEX2BIN", newList)
  1372. }
  1373. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1374. // number. The syntax of the function is:
  1375. //
  1376. // HEX2DEC(number)
  1377. //
  1378. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1379. if argsList.Len() != 1 {
  1380. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1381. }
  1382. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1383. }
  1384. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1385. // (Base 8) number. The syntax of the function is:
  1386. //
  1387. // HEX2OCT(number,[places])
  1388. //
  1389. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1390. if argsList.Len() < 1 {
  1391. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1392. }
  1393. if argsList.Len() > 2 {
  1394. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1395. }
  1396. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1397. if decimal.Type != ArgNumber {
  1398. return decimal
  1399. }
  1400. newList.PushBack(decimal)
  1401. if argsList.Len() == 2 {
  1402. newList.PushBack(argsList.Back().Value.(formulaArg))
  1403. }
  1404. return fn.dec2x("HEX2OCT", newList)
  1405. }
  1406. // hex2dec is an implementation of the formula function HEX2DEC.
  1407. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1408. decimal, length := 0.0, len(number)
  1409. for i := length; i > 0; i-- {
  1410. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1411. if err != nil {
  1412. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1413. }
  1414. if 10 == i && string(number[length-i]) == "F" {
  1415. decimal += math.Pow(-16.0, float64(i-1))
  1416. continue
  1417. }
  1418. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1419. }
  1420. return newNumberFormulaArg(decimal)
  1421. }
  1422. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1423. // number. The syntax of the function is:
  1424. //
  1425. // OCT2BIN(number,[places])
  1426. //
  1427. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1428. if argsList.Len() < 1 {
  1429. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1430. }
  1431. if argsList.Len() > 2 {
  1432. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1433. }
  1434. token := argsList.Front().Value.(formulaArg)
  1435. number := token.ToNumber()
  1436. if number.Type != ArgNumber {
  1437. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1438. }
  1439. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1440. newList.PushBack(decimal)
  1441. if argsList.Len() == 2 {
  1442. newList.PushBack(argsList.Back().Value.(formulaArg))
  1443. }
  1444. return fn.dec2x("OCT2BIN", newList)
  1445. }
  1446. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1447. // The syntax of the function is:
  1448. //
  1449. // OCT2DEC(number)
  1450. //
  1451. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1452. if argsList.Len() != 1 {
  1453. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1454. }
  1455. token := argsList.Front().Value.(formulaArg)
  1456. number := token.ToNumber()
  1457. if number.Type != ArgNumber {
  1458. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1459. }
  1460. return fn.oct2dec(token.Value())
  1461. }
  1462. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1463. // (Base 16) number. The syntax of the function is:
  1464. //
  1465. // OCT2HEX(number,[places])
  1466. //
  1467. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1468. if argsList.Len() < 1 {
  1469. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1470. }
  1471. if argsList.Len() > 2 {
  1472. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1473. }
  1474. token := argsList.Front().Value.(formulaArg)
  1475. number := token.ToNumber()
  1476. if number.Type != ArgNumber {
  1477. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1478. }
  1479. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1480. newList.PushBack(decimal)
  1481. if argsList.Len() == 2 {
  1482. newList.PushBack(argsList.Back().Value.(formulaArg))
  1483. }
  1484. return fn.dec2x("OCT2HEX", newList)
  1485. }
  1486. // oct2dec is an implementation of the formula function OCT2DEC.
  1487. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1488. decimal, length := 0.0, len(number)
  1489. for i := length; i > 0; i-- {
  1490. num, _ := strconv.Atoi(string(number[length-i]))
  1491. if 10 == i && string(number[length-i]) == "7" {
  1492. decimal += math.Pow(-8.0, float64(i-1))
  1493. continue
  1494. }
  1495. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1496. }
  1497. return newNumberFormulaArg(decimal)
  1498. }
  1499. // Math and Trigonometric Functions
  1500. // ABS function returns the absolute value of any supplied number. The syntax
  1501. // of the function is:
  1502. //
  1503. // ABS(number)
  1504. //
  1505. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1506. if argsList.Len() != 1 {
  1507. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1508. }
  1509. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1510. if arg.Type == ArgError {
  1511. return arg
  1512. }
  1513. return newNumberFormulaArg(math.Abs(arg.Number))
  1514. }
  1515. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1516. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1517. // the function is:
  1518. //
  1519. // ACOS(number)
  1520. //
  1521. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1522. if argsList.Len() != 1 {
  1523. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1524. }
  1525. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1526. if arg.Type == ArgError {
  1527. return arg
  1528. }
  1529. return newNumberFormulaArg(math.Acos(arg.Number))
  1530. }
  1531. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1532. // of the function is:
  1533. //
  1534. // ACOSH(number)
  1535. //
  1536. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1537. if argsList.Len() != 1 {
  1538. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1539. }
  1540. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1541. if arg.Type == ArgError {
  1542. return arg
  1543. }
  1544. return newNumberFormulaArg(math.Acosh(arg.Number))
  1545. }
  1546. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1547. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1548. // of the function is:
  1549. //
  1550. // ACOT(number)
  1551. //
  1552. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1553. if argsList.Len() != 1 {
  1554. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1555. }
  1556. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1557. if arg.Type == ArgError {
  1558. return arg
  1559. }
  1560. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1561. }
  1562. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1563. // value. The syntax of the function is:
  1564. //
  1565. // ACOTH(number)
  1566. //
  1567. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1568. if argsList.Len() != 1 {
  1569. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1570. }
  1571. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1572. if arg.Type == ArgError {
  1573. return arg
  1574. }
  1575. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1576. }
  1577. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1578. // of the function is:
  1579. //
  1580. // ARABIC(text)
  1581. //
  1582. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1583. if argsList.Len() != 1 {
  1584. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1585. }
  1586. charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1587. val, last, prefix := 0.0, 0.0, 1.0
  1588. for _, char := range argsList.Front().Value.(formulaArg).String {
  1589. digit := 0.0
  1590. if char == '-' {
  1591. prefix = -1
  1592. continue
  1593. }
  1594. digit = charMap[char]
  1595. val += digit
  1596. switch {
  1597. case last == digit && (last == 5 || last == 50 || last == 500):
  1598. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1599. case 2*last == digit:
  1600. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1601. }
  1602. if last < digit {
  1603. val -= 2 * last
  1604. }
  1605. last = digit
  1606. }
  1607. return newNumberFormulaArg(prefix * val)
  1608. }
  1609. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1610. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1611. // of the function is:
  1612. //
  1613. // ASIN(number)
  1614. //
  1615. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1616. if argsList.Len() != 1 {
  1617. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1618. }
  1619. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1620. if arg.Type == ArgError {
  1621. return arg
  1622. }
  1623. return newNumberFormulaArg(math.Asin(arg.Number))
  1624. }
  1625. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1626. // The syntax of the function is:
  1627. //
  1628. // ASINH(number)
  1629. //
  1630. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1631. if argsList.Len() != 1 {
  1632. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1633. }
  1634. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1635. if arg.Type == ArgError {
  1636. return arg
  1637. }
  1638. return newNumberFormulaArg(math.Asinh(arg.Number))
  1639. }
  1640. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1641. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1642. // syntax of the function is:
  1643. //
  1644. // ATAN(number)
  1645. //
  1646. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1647. if argsList.Len() != 1 {
  1648. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1649. }
  1650. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1651. if arg.Type == ArgError {
  1652. return arg
  1653. }
  1654. return newNumberFormulaArg(math.Atan(arg.Number))
  1655. }
  1656. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1657. // number. The syntax of the function is:
  1658. //
  1659. // ATANH(number)
  1660. //
  1661. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1662. if argsList.Len() != 1 {
  1663. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1664. }
  1665. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1666. if arg.Type == ArgError {
  1667. return arg
  1668. }
  1669. return newNumberFormulaArg(math.Atanh(arg.Number))
  1670. }
  1671. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1672. // given set of x and y coordinates, and returns an angle, in radians, between
  1673. // -π/2 and +π/2. The syntax of the function is:
  1674. //
  1675. // ATAN2(x_num,y_num)
  1676. //
  1677. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1678. if argsList.Len() != 2 {
  1679. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1680. }
  1681. x := argsList.Back().Value.(formulaArg).ToNumber()
  1682. if x.Type == ArgError {
  1683. return x
  1684. }
  1685. y := argsList.Front().Value.(formulaArg).ToNumber()
  1686. if y.Type == ArgError {
  1687. return y
  1688. }
  1689. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1690. }
  1691. // BASE function converts a number into a supplied base (radix), and returns a
  1692. // text representation of the calculated value. The syntax of the function is:
  1693. //
  1694. // BASE(number,radix,[min_length])
  1695. //
  1696. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1697. if argsList.Len() < 2 {
  1698. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1699. }
  1700. if argsList.Len() > 3 {
  1701. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1702. }
  1703. var minLength int
  1704. var err error
  1705. number := argsList.Front().Value.(formulaArg).ToNumber()
  1706. if number.Type == ArgError {
  1707. return number
  1708. }
  1709. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1710. if radix.Type == ArgError {
  1711. return radix
  1712. }
  1713. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1714. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1715. }
  1716. if argsList.Len() > 2 {
  1717. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1718. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1719. }
  1720. }
  1721. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1722. if len(result) < minLength {
  1723. result = strings.Repeat("0", minLength-len(result)) + result
  1724. }
  1725. return newStringFormulaArg(strings.ToUpper(result))
  1726. }
  1727. // CEILING function rounds a supplied number away from zero, to the nearest
  1728. // multiple of a given number. The syntax of the function is:
  1729. //
  1730. // CEILING(number,significance)
  1731. //
  1732. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1733. if argsList.Len() == 0 {
  1734. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1735. }
  1736. if argsList.Len() > 2 {
  1737. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1738. }
  1739. number, significance, res := 0.0, 1.0, 0.0
  1740. n := argsList.Front().Value.(formulaArg).ToNumber()
  1741. if n.Type == ArgError {
  1742. return n
  1743. }
  1744. number = n.Number
  1745. if number < 0 {
  1746. significance = -1
  1747. }
  1748. if argsList.Len() > 1 {
  1749. s := argsList.Back().Value.(formulaArg).ToNumber()
  1750. if s.Type == ArgError {
  1751. return s
  1752. }
  1753. significance = s.Number
  1754. }
  1755. if significance < 0 && number > 0 {
  1756. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1757. }
  1758. if argsList.Len() == 1 {
  1759. return newNumberFormulaArg(math.Ceil(number))
  1760. }
  1761. number, res = math.Modf(number / significance)
  1762. if res > 0 {
  1763. number++
  1764. }
  1765. return newNumberFormulaArg(number * significance)
  1766. }
  1767. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1768. // significance. The syntax of the function is:
  1769. //
  1770. // CEILING.MATH(number,[significance],[mode])
  1771. //
  1772. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1773. if argsList.Len() == 0 {
  1774. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1775. }
  1776. if argsList.Len() > 3 {
  1777. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1778. }
  1779. number, significance, mode := 0.0, 1.0, 1.0
  1780. n := argsList.Front().Value.(formulaArg).ToNumber()
  1781. if n.Type == ArgError {
  1782. return n
  1783. }
  1784. number = n.Number
  1785. if number < 0 {
  1786. significance = -1
  1787. }
  1788. if argsList.Len() > 1 {
  1789. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1790. if s.Type == ArgError {
  1791. return s
  1792. }
  1793. significance = s.Number
  1794. }
  1795. if argsList.Len() == 1 {
  1796. return newNumberFormulaArg(math.Ceil(number))
  1797. }
  1798. if argsList.Len() > 2 {
  1799. m := argsList.Back().Value.(formulaArg).ToNumber()
  1800. if m.Type == ArgError {
  1801. return m
  1802. }
  1803. mode = m.Number
  1804. }
  1805. val, res := math.Modf(number / significance)
  1806. if res != 0 {
  1807. if number > 0 {
  1808. val++
  1809. } else if mode < 0 {
  1810. val--
  1811. }
  1812. }
  1813. return newNumberFormulaArg(val * significance)
  1814. }
  1815. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1816. // number's sign), to the nearest multiple of a given number. The syntax of
  1817. // the function is:
  1818. //
  1819. // CEILING.PRECISE(number,[significance])
  1820. //
  1821. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1822. if argsList.Len() == 0 {
  1823. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1824. }
  1825. if argsList.Len() > 2 {
  1826. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1827. }
  1828. number, significance := 0.0, 1.0
  1829. n := argsList.Front().Value.(formulaArg).ToNumber()
  1830. if n.Type == ArgError {
  1831. return n
  1832. }
  1833. number = n.Number
  1834. if number < 0 {
  1835. significance = -1
  1836. }
  1837. if argsList.Len() == 1 {
  1838. return newNumberFormulaArg(math.Ceil(number))
  1839. }
  1840. if argsList.Len() > 1 {
  1841. s := argsList.Back().Value.(formulaArg).ToNumber()
  1842. if s.Type == ArgError {
  1843. return s
  1844. }
  1845. significance = s.Number
  1846. significance = math.Abs(significance)
  1847. if significance == 0 {
  1848. return newNumberFormulaArg(significance)
  1849. }
  1850. }
  1851. val, res := math.Modf(number / significance)
  1852. if res != 0 {
  1853. if number > 0 {
  1854. val++
  1855. }
  1856. }
  1857. return newNumberFormulaArg(val * significance)
  1858. }
  1859. // COMBIN function calculates the number of combinations (in any order) of a
  1860. // given number objects from a set. The syntax of the function is:
  1861. //
  1862. // COMBIN(number,number_chosen)
  1863. //
  1864. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1865. if argsList.Len() != 2 {
  1866. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1867. }
  1868. number, chosen, val := 0.0, 0.0, 1.0
  1869. n := argsList.Front().Value.(formulaArg).ToNumber()
  1870. if n.Type == ArgError {
  1871. return n
  1872. }
  1873. number = n.Number
  1874. c := argsList.Back().Value.(formulaArg).ToNumber()
  1875. if c.Type == ArgError {
  1876. return c
  1877. }
  1878. chosen = c.Number
  1879. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1880. if chosen > number {
  1881. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1882. }
  1883. if chosen == number || chosen == 0 {
  1884. return newNumberFormulaArg(1)
  1885. }
  1886. for c := float64(1); c <= chosen; c++ {
  1887. val *= (number + 1 - c) / c
  1888. }
  1889. return newNumberFormulaArg(math.Ceil(val))
  1890. }
  1891. // COMBINA function calculates the number of combinations, with repetitions,
  1892. // of a given number objects from a set. The syntax of the function is:
  1893. //
  1894. // COMBINA(number,number_chosen)
  1895. //
  1896. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1897. if argsList.Len() != 2 {
  1898. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1899. }
  1900. var number, chosen float64
  1901. n := argsList.Front().Value.(formulaArg).ToNumber()
  1902. if n.Type == ArgError {
  1903. return n
  1904. }
  1905. number = n.Number
  1906. c := argsList.Back().Value.(formulaArg).ToNumber()
  1907. if c.Type == ArgError {
  1908. return c
  1909. }
  1910. chosen = c.Number
  1911. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1912. if number < chosen {
  1913. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1914. }
  1915. if number == 0 {
  1916. return newNumberFormulaArg(number)
  1917. }
  1918. args := list.New()
  1919. args.PushBack(formulaArg{
  1920. String: fmt.Sprintf("%g", number+chosen-1),
  1921. Type: ArgString,
  1922. })
  1923. args.PushBack(formulaArg{
  1924. String: fmt.Sprintf("%g", number-1),
  1925. Type: ArgString,
  1926. })
  1927. return fn.COMBIN(args)
  1928. }
  1929. // COS function calculates the cosine of a given angle. The syntax of the
  1930. // function is:
  1931. //
  1932. // COS(number)
  1933. //
  1934. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1935. if argsList.Len() != 1 {
  1936. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1937. }
  1938. val := argsList.Front().Value.(formulaArg).ToNumber()
  1939. if val.Type == ArgError {
  1940. return val
  1941. }
  1942. return newNumberFormulaArg(math.Cos(val.Number))
  1943. }
  1944. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1945. // The syntax of the function is:
  1946. //
  1947. // COSH(number)
  1948. //
  1949. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  1950. if argsList.Len() != 1 {
  1951. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  1952. }
  1953. val := argsList.Front().Value.(formulaArg).ToNumber()
  1954. if val.Type == ArgError {
  1955. return val
  1956. }
  1957. return newNumberFormulaArg(math.Cosh(val.Number))
  1958. }
  1959. // COT function calculates the cotangent of a given angle. The syntax of the
  1960. // function is:
  1961. //
  1962. // COT(number)
  1963. //
  1964. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  1965. if argsList.Len() != 1 {
  1966. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  1967. }
  1968. val := argsList.Front().Value.(formulaArg).ToNumber()
  1969. if val.Type == ArgError {
  1970. return val
  1971. }
  1972. if val.Number == 0 {
  1973. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1974. }
  1975. return newNumberFormulaArg(1 / math.Tan(val.Number))
  1976. }
  1977. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  1978. // angle. The syntax of the function is:
  1979. //
  1980. // COTH(number)
  1981. //
  1982. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  1983. if argsList.Len() != 1 {
  1984. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  1985. }
  1986. val := argsList.Front().Value.(formulaArg).ToNumber()
  1987. if val.Type == ArgError {
  1988. return val
  1989. }
  1990. if val.Number == 0 {
  1991. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  1992. }
  1993. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  1994. }
  1995. // CSC function calculates the cosecant of a given angle. The syntax of the
  1996. // function is:
  1997. //
  1998. // CSC(number)
  1999. //
  2000. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2001. if argsList.Len() != 1 {
  2002. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2003. }
  2004. val := argsList.Front().Value.(formulaArg).ToNumber()
  2005. if val.Type == ArgError {
  2006. return val
  2007. }
  2008. if val.Number == 0 {
  2009. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2010. }
  2011. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2012. }
  2013. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2014. // angle. The syntax of the function is:
  2015. //
  2016. // CSCH(number)
  2017. //
  2018. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2019. if argsList.Len() != 1 {
  2020. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2021. }
  2022. val := argsList.Front().Value.(formulaArg).ToNumber()
  2023. if val.Type == ArgError {
  2024. return val
  2025. }
  2026. if val.Number == 0 {
  2027. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2028. }
  2029. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2030. }
  2031. // DECIMAL function converts a text representation of a number in a specified
  2032. // base, into a decimal value. The syntax of the function is:
  2033. //
  2034. // DECIMAL(text,radix)
  2035. //
  2036. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2037. if argsList.Len() != 2 {
  2038. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2039. }
  2040. var text = argsList.Front().Value.(formulaArg).String
  2041. var radix int
  2042. var err error
  2043. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2044. if err != nil {
  2045. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2046. }
  2047. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2048. text = text[2:]
  2049. }
  2050. val, err := strconv.ParseInt(text, radix, 64)
  2051. if err != nil {
  2052. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2053. }
  2054. return newNumberFormulaArg(float64(val))
  2055. }
  2056. // DEGREES function converts radians into degrees. The syntax of the function
  2057. // is:
  2058. //
  2059. // DEGREES(angle)
  2060. //
  2061. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2062. if argsList.Len() != 1 {
  2063. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2064. }
  2065. val := argsList.Front().Value.(formulaArg).ToNumber()
  2066. if val.Type == ArgError {
  2067. return val
  2068. }
  2069. if val.Number == 0 {
  2070. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2071. }
  2072. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2073. }
  2074. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2075. // positive number up and a negative number down), to the next even number.
  2076. // The syntax of the function is:
  2077. //
  2078. // EVEN(number)
  2079. //
  2080. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2081. if argsList.Len() != 1 {
  2082. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2083. }
  2084. number := argsList.Front().Value.(formulaArg).ToNumber()
  2085. if number.Type == ArgError {
  2086. return number
  2087. }
  2088. sign := math.Signbit(number.Number)
  2089. m, frac := math.Modf(number.Number / 2)
  2090. val := m * 2
  2091. if frac != 0 {
  2092. if !sign {
  2093. val += 2
  2094. } else {
  2095. val -= 2
  2096. }
  2097. }
  2098. return newNumberFormulaArg(val)
  2099. }
  2100. // EXP function calculates the value of the mathematical constant e, raised to
  2101. // the power of a given number. The syntax of the function is:
  2102. //
  2103. // EXP(number)
  2104. //
  2105. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2106. if argsList.Len() != 1 {
  2107. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2108. }
  2109. number := argsList.Front().Value.(formulaArg).ToNumber()
  2110. if number.Type == ArgError {
  2111. return number
  2112. }
  2113. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2114. }
  2115. // fact returns the factorial of a supplied number.
  2116. func fact(number float64) float64 {
  2117. val := float64(1)
  2118. for i := float64(2); i <= number; i++ {
  2119. val *= i
  2120. }
  2121. return val
  2122. }
  2123. // FACT function returns the factorial of a supplied number. The syntax of the
  2124. // function is:
  2125. //
  2126. // FACT(number)
  2127. //
  2128. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2129. if argsList.Len() != 1 {
  2130. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2131. }
  2132. number := argsList.Front().Value.(formulaArg).ToNumber()
  2133. if number.Type == ArgError {
  2134. return number
  2135. }
  2136. if number.Number < 0 {
  2137. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2138. }
  2139. return newNumberFormulaArg(fact(number.Number))
  2140. }
  2141. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2142. // syntax of the function is:
  2143. //
  2144. // FACTDOUBLE(number)
  2145. //
  2146. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2147. if argsList.Len() != 1 {
  2148. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2149. }
  2150. val := 1.0
  2151. number := argsList.Front().Value.(formulaArg).ToNumber()
  2152. if number.Type == ArgError {
  2153. return number
  2154. }
  2155. if number.Number < 0 {
  2156. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2157. }
  2158. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2159. val *= i
  2160. }
  2161. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2162. }
  2163. // FLOOR function rounds a supplied number towards zero to the nearest
  2164. // multiple of a specified significance. The syntax of the function is:
  2165. //
  2166. // FLOOR(number,significance)
  2167. //
  2168. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2169. if argsList.Len() != 2 {
  2170. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2171. }
  2172. number := argsList.Front().Value.(formulaArg).ToNumber()
  2173. if number.Type == ArgError {
  2174. return number
  2175. }
  2176. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2177. if significance.Type == ArgError {
  2178. return significance
  2179. }
  2180. if significance.Number < 0 && number.Number >= 0 {
  2181. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2182. }
  2183. val := number.Number
  2184. val, res := math.Modf(val / significance.Number)
  2185. if res != 0 {
  2186. if number.Number < 0 && res < 0 {
  2187. val--
  2188. }
  2189. }
  2190. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2191. }
  2192. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  2193. // significance. The syntax of the function is:
  2194. //
  2195. // FLOOR.MATH(number,[significance],[mode])
  2196. //
  2197. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  2198. if argsList.Len() == 0 {
  2199. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2200. }
  2201. if argsList.Len() > 3 {
  2202. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2203. }
  2204. significance, mode := 1.0, 1.0
  2205. number := argsList.Front().Value.(formulaArg).ToNumber()
  2206. if number.Type == ArgError {
  2207. return number
  2208. }
  2209. if number.Number < 0 {
  2210. significance = -1
  2211. }
  2212. if argsList.Len() > 1 {
  2213. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2214. if s.Type == ArgError {
  2215. return s
  2216. }
  2217. significance = s.Number
  2218. }
  2219. if argsList.Len() == 1 {
  2220. return newNumberFormulaArg(math.Floor(number.Number))
  2221. }
  2222. if argsList.Len() > 2 {
  2223. m := argsList.Back().Value.(formulaArg).ToNumber()
  2224. if m.Type == ArgError {
  2225. return m
  2226. }
  2227. mode = m.Number
  2228. }
  2229. val, res := math.Modf(number.Number / significance)
  2230. if res != 0 && number.Number < 0 && mode > 0 {
  2231. val--
  2232. }
  2233. return newNumberFormulaArg(val * significance)
  2234. }
  2235. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  2236. // of significance. The syntax of the function is:
  2237. //
  2238. // FLOOR.PRECISE(number,[significance])
  2239. //
  2240. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  2241. if argsList.Len() == 0 {
  2242. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2243. }
  2244. if argsList.Len() > 2 {
  2245. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2246. }
  2247. var significance float64
  2248. number := argsList.Front().Value.(formulaArg).ToNumber()
  2249. if number.Type == ArgError {
  2250. return number
  2251. }
  2252. if number.Number < 0 {
  2253. significance = -1
  2254. }
  2255. if argsList.Len() == 1 {
  2256. return newNumberFormulaArg(math.Floor(number.Number))
  2257. }
  2258. if argsList.Len() > 1 {
  2259. s := argsList.Back().Value.(formulaArg).ToNumber()
  2260. if s.Type == ArgError {
  2261. return s
  2262. }
  2263. significance = s.Number
  2264. significance = math.Abs(significance)
  2265. if significance == 0 {
  2266. return newNumberFormulaArg(significance)
  2267. }
  2268. }
  2269. val, res := math.Modf(number.Number / significance)
  2270. if res != 0 {
  2271. if number.Number < 0 {
  2272. val--
  2273. }
  2274. }
  2275. return newNumberFormulaArg(val * significance)
  2276. }
  2277. // gcd returns the greatest common divisor of two supplied integers.
  2278. func gcd(x, y float64) float64 {
  2279. x, y = math.Trunc(x), math.Trunc(y)
  2280. if x == 0 {
  2281. return y
  2282. }
  2283. if y == 0 {
  2284. return x
  2285. }
  2286. for x != y {
  2287. if x > y {
  2288. x = x - y
  2289. } else {
  2290. y = y - x
  2291. }
  2292. }
  2293. return x
  2294. }
  2295. // GCD function returns the greatest common divisor of two or more supplied
  2296. // integers. The syntax of the function is:
  2297. //
  2298. // GCD(number1,[number2],...)
  2299. //
  2300. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2301. if argsList.Len() == 0 {
  2302. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2303. }
  2304. var (
  2305. val float64
  2306. nums = []float64{}
  2307. )
  2308. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2309. token := arg.Value.(formulaArg)
  2310. switch token.Type {
  2311. case ArgString:
  2312. num := token.ToNumber()
  2313. if num.Type == ArgError {
  2314. return num
  2315. }
  2316. val = num.Number
  2317. case ArgNumber:
  2318. val = token.Number
  2319. }
  2320. nums = append(nums, val)
  2321. }
  2322. if nums[0] < 0 {
  2323. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2324. }
  2325. if len(nums) == 1 {
  2326. return newNumberFormulaArg(nums[0])
  2327. }
  2328. cd := nums[0]
  2329. for i := 1; i < len(nums); i++ {
  2330. if nums[i] < 0 {
  2331. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2332. }
  2333. cd = gcd(cd, nums[i])
  2334. }
  2335. return newNumberFormulaArg(cd)
  2336. }
  2337. // INT function truncates a supplied number down to the closest integer. The
  2338. // syntax of the function is:
  2339. //
  2340. // INT(number)
  2341. //
  2342. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2343. if argsList.Len() != 1 {
  2344. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2345. }
  2346. number := argsList.Front().Value.(formulaArg).ToNumber()
  2347. if number.Type == ArgError {
  2348. return number
  2349. }
  2350. val, frac := math.Modf(number.Number)
  2351. if frac < 0 {
  2352. val--
  2353. }
  2354. return newNumberFormulaArg(val)
  2355. }
  2356. // ISOCEILING function rounds a supplied number up (regardless of the number's
  2357. // sign), to the nearest multiple of a supplied significance. The syntax of
  2358. // the function is:
  2359. //
  2360. // ISO.CEILING(number,[significance])
  2361. //
  2362. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  2363. if argsList.Len() == 0 {
  2364. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2365. }
  2366. if argsList.Len() > 2 {
  2367. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2368. }
  2369. var significance float64
  2370. number := argsList.Front().Value.(formulaArg).ToNumber()
  2371. if number.Type == ArgError {
  2372. return number
  2373. }
  2374. if number.Number < 0 {
  2375. significance = -1
  2376. }
  2377. if argsList.Len() == 1 {
  2378. return newNumberFormulaArg(math.Ceil(number.Number))
  2379. }
  2380. if argsList.Len() > 1 {
  2381. s := argsList.Back().Value.(formulaArg).ToNumber()
  2382. if s.Type == ArgError {
  2383. return s
  2384. }
  2385. significance = s.Number
  2386. significance = math.Abs(significance)
  2387. if significance == 0 {
  2388. return newNumberFormulaArg(significance)
  2389. }
  2390. }
  2391. val, res := math.Modf(number.Number / significance)
  2392. if res != 0 {
  2393. if number.Number > 0 {
  2394. val++
  2395. }
  2396. }
  2397. return newNumberFormulaArg(val * significance)
  2398. }
  2399. // lcm returns the least common multiple of two supplied integers.
  2400. func lcm(a, b float64) float64 {
  2401. a = math.Trunc(a)
  2402. b = math.Trunc(b)
  2403. if a == 0 && b == 0 {
  2404. return 0
  2405. }
  2406. return a * b / gcd(a, b)
  2407. }
  2408. // LCM function returns the least common multiple of two or more supplied
  2409. // integers. The syntax of the function is:
  2410. //
  2411. // LCM(number1,[number2],...)
  2412. //
  2413. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2414. if argsList.Len() == 0 {
  2415. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2416. }
  2417. var (
  2418. val float64
  2419. nums = []float64{}
  2420. err error
  2421. )
  2422. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2423. token := arg.Value.(formulaArg)
  2424. switch token.Type {
  2425. case ArgString:
  2426. if token.String == "" {
  2427. continue
  2428. }
  2429. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2430. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2431. }
  2432. case ArgNumber:
  2433. val = token.Number
  2434. }
  2435. nums = append(nums, val)
  2436. }
  2437. if nums[0] < 0 {
  2438. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2439. }
  2440. if len(nums) == 1 {
  2441. return newNumberFormulaArg(nums[0])
  2442. }
  2443. cm := nums[0]
  2444. for i := 1; i < len(nums); i++ {
  2445. if nums[i] < 0 {
  2446. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2447. }
  2448. cm = lcm(cm, nums[i])
  2449. }
  2450. return newNumberFormulaArg(cm)
  2451. }
  2452. // LN function calculates the natural logarithm of a given number. The syntax
  2453. // of the function is:
  2454. //
  2455. // LN(number)
  2456. //
  2457. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2458. if argsList.Len() != 1 {
  2459. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2460. }
  2461. number := argsList.Front().Value.(formulaArg).ToNumber()
  2462. if number.Type == ArgError {
  2463. return number
  2464. }
  2465. return newNumberFormulaArg(math.Log(number.Number))
  2466. }
  2467. // LOG function calculates the logarithm of a given number, to a supplied
  2468. // base. The syntax of the function is:
  2469. //
  2470. // LOG(number,[base])
  2471. //
  2472. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2473. if argsList.Len() == 0 {
  2474. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2475. }
  2476. if argsList.Len() > 2 {
  2477. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2478. }
  2479. base := 10.0
  2480. number := argsList.Front().Value.(formulaArg).ToNumber()
  2481. if number.Type == ArgError {
  2482. return number
  2483. }
  2484. if argsList.Len() > 1 {
  2485. b := argsList.Back().Value.(formulaArg).ToNumber()
  2486. if b.Type == ArgError {
  2487. return b
  2488. }
  2489. base = b.Number
  2490. }
  2491. if number.Number == 0 {
  2492. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2493. }
  2494. if base == 0 {
  2495. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2496. }
  2497. if base == 1 {
  2498. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2499. }
  2500. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2501. }
  2502. // LOG10 function calculates the base 10 logarithm of a given number. The
  2503. // syntax of the function is:
  2504. //
  2505. // LOG10(number)
  2506. //
  2507. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2508. if argsList.Len() != 1 {
  2509. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2510. }
  2511. number := argsList.Front().Value.(formulaArg).ToNumber()
  2512. if number.Type == ArgError {
  2513. return number
  2514. }
  2515. return newNumberFormulaArg(math.Log10(number.Number))
  2516. }
  2517. // minor function implement a minor of a matrix A is the determinant of some
  2518. // smaller square matrix.
  2519. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2520. ret := [][]float64{}
  2521. for i := range sqMtx {
  2522. if i == 0 {
  2523. continue
  2524. }
  2525. row := []float64{}
  2526. for j := range sqMtx {
  2527. if j == idx {
  2528. continue
  2529. }
  2530. row = append(row, sqMtx[i][j])
  2531. }
  2532. ret = append(ret, row)
  2533. }
  2534. return ret
  2535. }
  2536. // det determinant of the 2x2 matrix.
  2537. func det(sqMtx [][]float64) float64 {
  2538. if len(sqMtx) == 2 {
  2539. m00 := sqMtx[0][0]
  2540. m01 := sqMtx[0][1]
  2541. m10 := sqMtx[1][0]
  2542. m11 := sqMtx[1][1]
  2543. return m00*m11 - m10*m01
  2544. }
  2545. var res, sgn float64 = 0, 1
  2546. for j := range sqMtx {
  2547. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2548. sgn *= -1
  2549. }
  2550. return res
  2551. }
  2552. // MDETERM calculates the determinant of a square matrix. The
  2553. // syntax of the function is:
  2554. //
  2555. // MDETERM(array)
  2556. //
  2557. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2558. var (
  2559. num float64
  2560. numMtx = [][]float64{}
  2561. err error
  2562. strMtx [][]formulaArg
  2563. )
  2564. if argsList.Len() < 1 {
  2565. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2566. }
  2567. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2568. var rows = len(strMtx)
  2569. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2570. if len(row) != rows {
  2571. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2572. }
  2573. numRow := []float64{}
  2574. for _, ele := range row {
  2575. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2576. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2577. }
  2578. numRow = append(numRow, num)
  2579. }
  2580. numMtx = append(numMtx, numRow)
  2581. }
  2582. return newNumberFormulaArg(det(numMtx))
  2583. }
  2584. // MOD function returns the remainder of a division between two supplied
  2585. // numbers. The syntax of the function is:
  2586. //
  2587. // MOD(number,divisor)
  2588. //
  2589. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2590. if argsList.Len() != 2 {
  2591. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2592. }
  2593. number := argsList.Front().Value.(formulaArg).ToNumber()
  2594. if number.Type == ArgError {
  2595. return number
  2596. }
  2597. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2598. if divisor.Type == ArgError {
  2599. return divisor
  2600. }
  2601. if divisor.Number == 0 {
  2602. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2603. }
  2604. trunc, rem := math.Modf(number.Number / divisor.Number)
  2605. if rem < 0 {
  2606. trunc--
  2607. }
  2608. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2609. }
  2610. // MROUND function rounds a supplied number up or down to the nearest multiple
  2611. // of a given number. The syntax of the function is:
  2612. //
  2613. // MROUND(number,multiple)
  2614. //
  2615. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2616. if argsList.Len() != 2 {
  2617. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2618. }
  2619. n := argsList.Front().Value.(formulaArg).ToNumber()
  2620. if n.Type == ArgError {
  2621. return n
  2622. }
  2623. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2624. if multiple.Type == ArgError {
  2625. return multiple
  2626. }
  2627. if multiple.Number == 0 {
  2628. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2629. }
  2630. if multiple.Number < 0 && n.Number > 0 ||
  2631. multiple.Number > 0 && n.Number < 0 {
  2632. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2633. }
  2634. number, res := math.Modf(n.Number / multiple.Number)
  2635. if math.Trunc(res+0.5) > 0 {
  2636. number++
  2637. }
  2638. return newNumberFormulaArg(number * multiple.Number)
  2639. }
  2640. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2641. // supplied values to the product of factorials of those values. The syntax of
  2642. // the function is:
  2643. //
  2644. // MULTINOMIAL(number1,[number2],...)
  2645. //
  2646. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2647. val, num, denom := 0.0, 0.0, 1.0
  2648. var err error
  2649. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2650. token := arg.Value.(formulaArg)
  2651. switch token.Type {
  2652. case ArgString:
  2653. if token.String == "" {
  2654. continue
  2655. }
  2656. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2657. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2658. }
  2659. case ArgNumber:
  2660. val = token.Number
  2661. }
  2662. num += val
  2663. denom *= fact(val)
  2664. }
  2665. return newNumberFormulaArg(fact(num) / denom)
  2666. }
  2667. // MUNIT function returns the unit matrix for a specified dimension. The
  2668. // syntax of the function is:
  2669. //
  2670. // MUNIT(dimension)
  2671. //
  2672. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2673. if argsList.Len() != 1 {
  2674. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2675. }
  2676. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2677. if dimension.Type == ArgError || dimension.Number < 0 {
  2678. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2679. }
  2680. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2681. for i := 0; i < int(dimension.Number); i++ {
  2682. row := make([]formulaArg, int(dimension.Number))
  2683. for j := 0; j < int(dimension.Number); j++ {
  2684. if i == j {
  2685. row[j] = newNumberFormulaArg(1.0)
  2686. } else {
  2687. row[j] = newNumberFormulaArg(0.0)
  2688. }
  2689. }
  2690. matrix = append(matrix, row)
  2691. }
  2692. return newMatrixFormulaArg(matrix)
  2693. }
  2694. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2695. // number up and a negative number down), to the next odd number. The syntax
  2696. // of the function is:
  2697. //
  2698. // ODD(number)
  2699. //
  2700. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2701. if argsList.Len() != 1 {
  2702. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2703. }
  2704. number := argsList.Back().Value.(formulaArg).ToNumber()
  2705. if number.Type == ArgError {
  2706. return number
  2707. }
  2708. if number.Number == 0 {
  2709. return newNumberFormulaArg(1)
  2710. }
  2711. sign := math.Signbit(number.Number)
  2712. m, frac := math.Modf((number.Number - 1) / 2)
  2713. val := m*2 + 1
  2714. if frac != 0 {
  2715. if !sign {
  2716. val += 2
  2717. } else {
  2718. val -= 2
  2719. }
  2720. }
  2721. return newNumberFormulaArg(val)
  2722. }
  2723. // PI function returns the value of the mathematical constant π (pi), accurate
  2724. // to 15 digits (14 decimal places). The syntax of the function is:
  2725. //
  2726. // PI()
  2727. //
  2728. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2729. if argsList.Len() != 0 {
  2730. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2731. }
  2732. return newNumberFormulaArg(math.Pi)
  2733. }
  2734. // POWER function calculates a given number, raised to a supplied power.
  2735. // The syntax of the function is:
  2736. //
  2737. // POWER(number,power)
  2738. //
  2739. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2740. if argsList.Len() != 2 {
  2741. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2742. }
  2743. x := argsList.Front().Value.(formulaArg).ToNumber()
  2744. if x.Type == ArgError {
  2745. return x
  2746. }
  2747. y := argsList.Back().Value.(formulaArg).ToNumber()
  2748. if y.Type == ArgError {
  2749. return y
  2750. }
  2751. if x.Number == 0 && y.Number == 0 {
  2752. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2753. }
  2754. if x.Number == 0 && y.Number < 0 {
  2755. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2756. }
  2757. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2758. }
  2759. // PRODUCT function returns the product (multiplication) of a supplied set of
  2760. // numerical values. The syntax of the function is:
  2761. //
  2762. // PRODUCT(number1,[number2],...)
  2763. //
  2764. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2765. val, product := 0.0, 1.0
  2766. var err error
  2767. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2768. token := arg.Value.(formulaArg)
  2769. switch token.Type {
  2770. case ArgUnknown:
  2771. continue
  2772. case ArgString:
  2773. if token.String == "" {
  2774. continue
  2775. }
  2776. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2777. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2778. }
  2779. product = product * val
  2780. case ArgNumber:
  2781. product = product * token.Number
  2782. case ArgMatrix:
  2783. for _, row := range token.Matrix {
  2784. for _, value := range row {
  2785. if value.String == "" {
  2786. continue
  2787. }
  2788. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2789. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2790. }
  2791. product = product * val
  2792. }
  2793. }
  2794. }
  2795. }
  2796. return newNumberFormulaArg(product)
  2797. }
  2798. // QUOTIENT function returns the integer portion of a division between two
  2799. // supplied numbers. The syntax of the function is:
  2800. //
  2801. // QUOTIENT(numerator,denominator)
  2802. //
  2803. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2804. if argsList.Len() != 2 {
  2805. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2806. }
  2807. x := argsList.Front().Value.(formulaArg).ToNumber()
  2808. if x.Type == ArgError {
  2809. return x
  2810. }
  2811. y := argsList.Back().Value.(formulaArg).ToNumber()
  2812. if y.Type == ArgError {
  2813. return y
  2814. }
  2815. if y.Number == 0 {
  2816. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2817. }
  2818. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2819. }
  2820. // RADIANS function converts radians into degrees. The syntax of the function is:
  2821. //
  2822. // RADIANS(angle)
  2823. //
  2824. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2825. if argsList.Len() != 1 {
  2826. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2827. }
  2828. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2829. if angle.Type == ArgError {
  2830. return angle
  2831. }
  2832. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2833. }
  2834. // RAND function generates a random real number between 0 and 1. The syntax of
  2835. // the function is:
  2836. //
  2837. // RAND()
  2838. //
  2839. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2840. if argsList.Len() != 0 {
  2841. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2842. }
  2843. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2844. }
  2845. // RANDBETWEEN function generates a random integer between two supplied
  2846. // integers. The syntax of the function is:
  2847. //
  2848. // RANDBETWEEN(bottom,top)
  2849. //
  2850. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2851. if argsList.Len() != 2 {
  2852. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2853. }
  2854. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2855. if bottom.Type == ArgError {
  2856. return bottom
  2857. }
  2858. top := argsList.Back().Value.(formulaArg).ToNumber()
  2859. if top.Type == ArgError {
  2860. return top
  2861. }
  2862. if top.Number < bottom.Number {
  2863. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2864. }
  2865. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2866. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2867. }
  2868. // romanNumerals defined a numeral system that originated in ancient Rome and
  2869. // remained the usual way of writing numbers throughout Europe well into the
  2870. // Late Middle Ages.
  2871. type romanNumerals struct {
  2872. n float64
  2873. s string
  2874. }
  2875. var romanTable = [][]romanNumerals{
  2876. {
  2877. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2878. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2879. },
  2880. {
  2881. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2882. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2883. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2884. },
  2885. {
  2886. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2887. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2888. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2889. },
  2890. {
  2891. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2892. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2893. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2894. {5, "V"}, {4, "IV"}, {1, "I"},
  2895. },
  2896. {
  2897. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2898. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2899. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2900. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2901. },
  2902. }
  2903. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2904. // integer, the function returns a text string depicting the roman numeral
  2905. // form of the number. The syntax of the function is:
  2906. //
  2907. // ROMAN(number,[form])
  2908. //
  2909. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2910. if argsList.Len() == 0 {
  2911. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2912. }
  2913. if argsList.Len() > 2 {
  2914. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2915. }
  2916. var form int
  2917. number := argsList.Front().Value.(formulaArg).ToNumber()
  2918. if number.Type == ArgError {
  2919. return number
  2920. }
  2921. if argsList.Len() > 1 {
  2922. f := argsList.Back().Value.(formulaArg).ToNumber()
  2923. if f.Type == ArgError {
  2924. return f
  2925. }
  2926. form = int(f.Number)
  2927. if form < 0 {
  2928. form = 0
  2929. } else if form > 4 {
  2930. form = 4
  2931. }
  2932. }
  2933. decimalTable := romanTable[0]
  2934. switch form {
  2935. case 1:
  2936. decimalTable = romanTable[1]
  2937. case 2:
  2938. decimalTable = romanTable[2]
  2939. case 3:
  2940. decimalTable = romanTable[3]
  2941. case 4:
  2942. decimalTable = romanTable[4]
  2943. }
  2944. val := math.Trunc(number.Number)
  2945. buf := bytes.Buffer{}
  2946. for _, r := range decimalTable {
  2947. for val >= r.n {
  2948. buf.WriteString(r.s)
  2949. val -= r.n
  2950. }
  2951. }
  2952. return newStringFormulaArg(buf.String())
  2953. }
  2954. type roundMode byte
  2955. const (
  2956. closest roundMode = iota
  2957. down
  2958. up
  2959. )
  2960. // round rounds a supplied number up or down.
  2961. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  2962. var significance float64
  2963. if digits > 0 {
  2964. significance = math.Pow(1/10.0, digits)
  2965. } else {
  2966. significance = math.Pow(10.0, -digits)
  2967. }
  2968. val, res := math.Modf(number / significance)
  2969. switch mode {
  2970. case closest:
  2971. const eps = 0.499999999
  2972. if res >= eps {
  2973. val++
  2974. } else if res <= -eps {
  2975. val--
  2976. }
  2977. case down:
  2978. case up:
  2979. if res > 0 {
  2980. val++
  2981. } else if res < 0 {
  2982. val--
  2983. }
  2984. }
  2985. return val * significance
  2986. }
  2987. // ROUND function rounds a supplied number up or down, to a specified number
  2988. // of decimal places. The syntax of the function is:
  2989. //
  2990. // ROUND(number,num_digits)
  2991. //
  2992. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  2993. if argsList.Len() != 2 {
  2994. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  2995. }
  2996. number := argsList.Front().Value.(formulaArg).ToNumber()
  2997. if number.Type == ArgError {
  2998. return number
  2999. }
  3000. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3001. if digits.Type == ArgError {
  3002. return digits
  3003. }
  3004. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3005. }
  3006. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3007. // specified number of decimal places. The syntax of the function is:
  3008. //
  3009. // ROUNDDOWN(number,num_digits)
  3010. //
  3011. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3012. if argsList.Len() != 2 {
  3013. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3014. }
  3015. number := argsList.Front().Value.(formulaArg).ToNumber()
  3016. if number.Type == ArgError {
  3017. return number
  3018. }
  3019. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3020. if digits.Type == ArgError {
  3021. return digits
  3022. }
  3023. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3024. }
  3025. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3026. // specified number of decimal places. The syntax of the function is:
  3027. //
  3028. // ROUNDUP(number,num_digits)
  3029. //
  3030. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3031. if argsList.Len() != 2 {
  3032. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3033. }
  3034. number := argsList.Front().Value.(formulaArg).ToNumber()
  3035. if number.Type == ArgError {
  3036. return number
  3037. }
  3038. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3039. if digits.Type == ArgError {
  3040. return digits
  3041. }
  3042. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3043. }
  3044. // SEC function calculates the secant of a given angle. The syntax of the
  3045. // function is:
  3046. //
  3047. // SEC(number)
  3048. //
  3049. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3050. if argsList.Len() != 1 {
  3051. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3052. }
  3053. number := argsList.Front().Value.(formulaArg).ToNumber()
  3054. if number.Type == ArgError {
  3055. return number
  3056. }
  3057. return newNumberFormulaArg(math.Cos(number.Number))
  3058. }
  3059. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3060. // The syntax of the function is:
  3061. //
  3062. // SECH(number)
  3063. //
  3064. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3065. if argsList.Len() != 1 {
  3066. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3067. }
  3068. number := argsList.Front().Value.(formulaArg).ToNumber()
  3069. if number.Type == ArgError {
  3070. return number
  3071. }
  3072. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3073. }
  3074. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3075. // number. I.e. if the number is positive, the Sign function returns +1, if
  3076. // the number is negative, the function returns -1 and if the number is 0
  3077. // (zero), the function returns 0. The syntax of the function is:
  3078. //
  3079. // SIGN(number)
  3080. //
  3081. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3082. if argsList.Len() != 1 {
  3083. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3084. }
  3085. val := argsList.Front().Value.(formulaArg).ToNumber()
  3086. if val.Type == ArgError {
  3087. return val
  3088. }
  3089. if val.Number < 0 {
  3090. return newNumberFormulaArg(-1)
  3091. }
  3092. if val.Number > 0 {
  3093. return newNumberFormulaArg(1)
  3094. }
  3095. return newNumberFormulaArg(0)
  3096. }
  3097. // SIN function calculates the sine of a given angle. The syntax of the
  3098. // function is:
  3099. //
  3100. // SIN(number)
  3101. //
  3102. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3103. if argsList.Len() != 1 {
  3104. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3105. }
  3106. number := argsList.Front().Value.(formulaArg).ToNumber()
  3107. if number.Type == ArgError {
  3108. return number
  3109. }
  3110. return newNumberFormulaArg(math.Sin(number.Number))
  3111. }
  3112. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3113. // The syntax of the function is:
  3114. //
  3115. // SINH(number)
  3116. //
  3117. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3118. if argsList.Len() != 1 {
  3119. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3120. }
  3121. number := argsList.Front().Value.(formulaArg).ToNumber()
  3122. if number.Type == ArgError {
  3123. return number
  3124. }
  3125. return newNumberFormulaArg(math.Sinh(number.Number))
  3126. }
  3127. // SQRT function calculates the positive square root of a supplied number. The
  3128. // syntax of the function is:
  3129. //
  3130. // SQRT(number)
  3131. //
  3132. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3133. if argsList.Len() != 1 {
  3134. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3135. }
  3136. value := argsList.Front().Value.(formulaArg).ToNumber()
  3137. if value.Type == ArgError {
  3138. return value
  3139. }
  3140. if value.Number < 0 {
  3141. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3142. }
  3143. return newNumberFormulaArg(math.Sqrt(value.Number))
  3144. }
  3145. // SQRTPI function returns the square root of a supplied number multiplied by
  3146. // the mathematical constant, π. The syntax of the function is:
  3147. //
  3148. // SQRTPI(number)
  3149. //
  3150. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3151. if argsList.Len() != 1 {
  3152. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3153. }
  3154. number := argsList.Front().Value.(formulaArg).ToNumber()
  3155. if number.Type == ArgError {
  3156. return number
  3157. }
  3158. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3159. }
  3160. // STDEV function calculates the sample standard deviation of a supplied set
  3161. // of values. The syntax of the function is:
  3162. //
  3163. // STDEV(number1,[number2],...)
  3164. //
  3165. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3166. if argsList.Len() < 1 {
  3167. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3168. }
  3169. return fn.stdev(false, argsList)
  3170. }
  3171. // STDEVA function estimates standard deviation based on a sample. The
  3172. // standard deviation is a measure of how widely values are dispersed from
  3173. // the average value (the mean). The syntax of the function is:
  3174. //
  3175. // STDEVA(number1,[number2],...)
  3176. //
  3177. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3178. if argsList.Len() < 1 {
  3179. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3180. }
  3181. return fn.stdev(true, argsList)
  3182. }
  3183. // stdev is an implementation of the formula function STDEV and STDEVA.
  3184. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3185. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3186. if result == -1 {
  3187. result = math.Pow((n.Number - m.Number), 2)
  3188. } else {
  3189. result += math.Pow((n.Number - m.Number), 2)
  3190. }
  3191. count++
  3192. return result, count
  3193. }
  3194. count, result := -1.0, -1.0
  3195. var mean formulaArg
  3196. if stdeva {
  3197. mean = fn.AVERAGEA(argsList)
  3198. } else {
  3199. mean = fn.AVERAGE(argsList)
  3200. }
  3201. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3202. token := arg.Value.(formulaArg)
  3203. switch token.Type {
  3204. case ArgString, ArgNumber:
  3205. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3206. continue
  3207. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3208. num := token.ToBool()
  3209. if num.Type == ArgNumber {
  3210. result, count = pow(result, count, num, mean)
  3211. continue
  3212. }
  3213. } else {
  3214. num := token.ToNumber()
  3215. if num.Type == ArgNumber {
  3216. result, count = pow(result, count, num, mean)
  3217. }
  3218. }
  3219. case ArgList, ArgMatrix:
  3220. for _, row := range token.ToList() {
  3221. if row.Type == ArgNumber || row.Type == ArgString {
  3222. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3223. continue
  3224. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3225. num := row.ToBool()
  3226. if num.Type == ArgNumber {
  3227. result, count = pow(result, count, num, mean)
  3228. continue
  3229. }
  3230. } else {
  3231. num := row.ToNumber()
  3232. if num.Type == ArgNumber {
  3233. result, count = pow(result, count, num, mean)
  3234. }
  3235. }
  3236. }
  3237. }
  3238. }
  3239. }
  3240. if count > 0 && result >= 0 {
  3241. return newNumberFormulaArg(math.Sqrt(result / count))
  3242. }
  3243. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3244. }
  3245. // SUM function adds together a supplied set of numbers and returns the sum of
  3246. // these values. The syntax of the function is:
  3247. //
  3248. // SUM(number1,[number2],...)
  3249. //
  3250. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3251. var sum float64
  3252. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3253. token := arg.Value.(formulaArg)
  3254. switch token.Type {
  3255. case ArgUnknown:
  3256. continue
  3257. case ArgString:
  3258. if num := token.ToNumber(); num.Type == ArgNumber {
  3259. sum += num.Number
  3260. }
  3261. case ArgNumber:
  3262. sum += token.Number
  3263. case ArgMatrix:
  3264. for _, row := range token.Matrix {
  3265. for _, value := range row {
  3266. if num := value.ToNumber(); num.Type == ArgNumber {
  3267. sum += num.Number
  3268. }
  3269. }
  3270. }
  3271. }
  3272. }
  3273. return newNumberFormulaArg(sum)
  3274. }
  3275. // SUMIF function finds the values in a supplied array, that satisfy a given
  3276. // criteria, and returns the sum of the corresponding values in a second
  3277. // supplied array. The syntax of the function is:
  3278. //
  3279. // SUMIF(range,criteria,[sum_range])
  3280. //
  3281. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3282. if argsList.Len() < 2 {
  3283. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3284. }
  3285. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3286. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3287. var sumRange [][]formulaArg
  3288. if argsList.Len() == 3 {
  3289. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3290. }
  3291. var sum, val float64
  3292. var err error
  3293. for rowIdx, row := range rangeMtx {
  3294. for colIdx, col := range row {
  3295. var ok bool
  3296. fromVal := col.String
  3297. if col.String == "" {
  3298. continue
  3299. }
  3300. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3301. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3302. }
  3303. if ok {
  3304. if argsList.Len() == 3 {
  3305. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3306. continue
  3307. }
  3308. fromVal = sumRange[rowIdx][colIdx].String
  3309. }
  3310. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3311. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3312. }
  3313. sum += val
  3314. }
  3315. }
  3316. }
  3317. return newNumberFormulaArg(sum)
  3318. }
  3319. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3320. // syntax of the function is:
  3321. //
  3322. // SUMSQ(number1,[number2],...)
  3323. //
  3324. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3325. var val, sq float64
  3326. var err error
  3327. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3328. token := arg.Value.(formulaArg)
  3329. switch token.Type {
  3330. case ArgString:
  3331. if token.String == "" {
  3332. continue
  3333. }
  3334. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3335. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3336. }
  3337. sq += val * val
  3338. case ArgNumber:
  3339. sq += token.Number
  3340. case ArgMatrix:
  3341. for _, row := range token.Matrix {
  3342. for _, value := range row {
  3343. if value.String == "" {
  3344. continue
  3345. }
  3346. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3347. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3348. }
  3349. sq += val * val
  3350. }
  3351. }
  3352. }
  3353. }
  3354. return newNumberFormulaArg(sq)
  3355. }
  3356. // TAN function calculates the tangent of a given angle. The syntax of the
  3357. // function is:
  3358. //
  3359. // TAN(number)
  3360. //
  3361. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3362. if argsList.Len() != 1 {
  3363. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3364. }
  3365. number := argsList.Front().Value.(formulaArg).ToNumber()
  3366. if number.Type == ArgError {
  3367. return number
  3368. }
  3369. return newNumberFormulaArg(math.Tan(number.Number))
  3370. }
  3371. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3372. // number. The syntax of the function is:
  3373. //
  3374. // TANH(number)
  3375. //
  3376. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3377. if argsList.Len() != 1 {
  3378. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3379. }
  3380. number := argsList.Front().Value.(formulaArg).ToNumber()
  3381. if number.Type == ArgError {
  3382. return number
  3383. }
  3384. return newNumberFormulaArg(math.Tanh(number.Number))
  3385. }
  3386. // TRUNC function truncates a supplied number to a specified number of decimal
  3387. // places. The syntax of the function is:
  3388. //
  3389. // TRUNC(number,[number_digits])
  3390. //
  3391. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3392. if argsList.Len() == 0 {
  3393. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3394. }
  3395. var digits, adjust, rtrim float64
  3396. var err error
  3397. number := argsList.Front().Value.(formulaArg).ToNumber()
  3398. if number.Type == ArgError {
  3399. return number
  3400. }
  3401. if argsList.Len() > 1 {
  3402. d := argsList.Back().Value.(formulaArg).ToNumber()
  3403. if d.Type == ArgError {
  3404. return d
  3405. }
  3406. digits = d.Number
  3407. digits = math.Floor(digits)
  3408. }
  3409. adjust = math.Pow(10, digits)
  3410. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3411. if x != 0 {
  3412. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3413. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3414. }
  3415. }
  3416. if (digits > 0) && (rtrim < adjust/10) {
  3417. return newNumberFormulaArg(number.Number)
  3418. }
  3419. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3420. }
  3421. // Statistical Functions
  3422. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3423. // The syntax of the function is:
  3424. //
  3425. // AVERAGE(number1,[number2],...)
  3426. //
  3427. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3428. args := []formulaArg{}
  3429. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3430. args = append(args, arg.Value.(formulaArg))
  3431. }
  3432. count, sum := fn.countSum(false, args)
  3433. if count == 0 {
  3434. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3435. }
  3436. return newNumberFormulaArg(sum / count)
  3437. }
  3438. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3439. // with text cell and zero values. The syntax of the function is:
  3440. //
  3441. // AVERAGEA(number1,[number2],...)
  3442. //
  3443. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3444. args := []formulaArg{}
  3445. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3446. args = append(args, arg.Value.(formulaArg))
  3447. }
  3448. count, sum := fn.countSum(true, args)
  3449. if count == 0 {
  3450. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3451. }
  3452. return newNumberFormulaArg(sum / count)
  3453. }
  3454. // countSum get count and sum for a formula arguments array.
  3455. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3456. for _, arg := range args {
  3457. switch arg.Type {
  3458. case ArgNumber:
  3459. if countText || !arg.Boolean {
  3460. sum += arg.Number
  3461. count++
  3462. }
  3463. case ArgString:
  3464. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3465. continue
  3466. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3467. num := arg.ToBool()
  3468. if num.Type == ArgNumber {
  3469. count++
  3470. sum += num.Number
  3471. continue
  3472. }
  3473. }
  3474. num := arg.ToNumber()
  3475. if countText && num.Type == ArgError && arg.String != "" {
  3476. count++
  3477. }
  3478. if num.Type == ArgNumber {
  3479. sum += num.Number
  3480. count++
  3481. }
  3482. case ArgList, ArgMatrix:
  3483. cnt, summary := fn.countSum(countText, arg.ToList())
  3484. sum += summary
  3485. count += cnt
  3486. }
  3487. }
  3488. return
  3489. }
  3490. // COUNT function returns the count of numeric values in a supplied set of
  3491. // cells or values. This count includes both numbers and dates. The syntax of
  3492. // the function is:
  3493. //
  3494. // COUNT(value1,[value2],...)
  3495. //
  3496. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3497. var count int
  3498. for token := argsList.Front(); token != nil; token = token.Next() {
  3499. arg := token.Value.(formulaArg)
  3500. switch arg.Type {
  3501. case ArgString:
  3502. if arg.ToNumber().Type != ArgError {
  3503. count++
  3504. }
  3505. case ArgNumber:
  3506. count++
  3507. case ArgMatrix:
  3508. for _, row := range arg.Matrix {
  3509. for _, value := range row {
  3510. if value.ToNumber().Type != ArgError {
  3511. count++
  3512. }
  3513. }
  3514. }
  3515. }
  3516. }
  3517. return newNumberFormulaArg(float64(count))
  3518. }
  3519. // COUNTA function returns the number of non-blanks within a supplied set of
  3520. // cells or values. The syntax of the function is:
  3521. //
  3522. // COUNTA(value1,[value2],...)
  3523. //
  3524. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3525. var count int
  3526. for token := argsList.Front(); token != nil; token = token.Next() {
  3527. arg := token.Value.(formulaArg)
  3528. switch arg.Type {
  3529. case ArgString:
  3530. if arg.String != "" {
  3531. count++
  3532. }
  3533. case ArgNumber:
  3534. count++
  3535. case ArgMatrix:
  3536. for _, row := range arg.ToList() {
  3537. switch row.Type {
  3538. case ArgString:
  3539. if row.String != "" {
  3540. count++
  3541. }
  3542. case ArgNumber:
  3543. count++
  3544. }
  3545. }
  3546. }
  3547. }
  3548. return newNumberFormulaArg(float64(count))
  3549. }
  3550. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3551. // The syntax of the function is:
  3552. //
  3553. // COUNTBLANK(range)
  3554. //
  3555. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3556. if argsList.Len() != 1 {
  3557. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3558. }
  3559. var count int
  3560. token := argsList.Front().Value.(formulaArg)
  3561. switch token.Type {
  3562. case ArgString:
  3563. if token.String == "" {
  3564. count++
  3565. }
  3566. case ArgList, ArgMatrix:
  3567. for _, row := range token.ToList() {
  3568. switch row.Type {
  3569. case ArgString:
  3570. if row.String == "" {
  3571. count++
  3572. }
  3573. case ArgEmpty:
  3574. count++
  3575. }
  3576. }
  3577. case ArgEmpty:
  3578. count++
  3579. }
  3580. return newNumberFormulaArg(float64(count))
  3581. }
  3582. // FISHER function calculates the Fisher Transformation for a supplied value.
  3583. // The syntax of the function is:
  3584. //
  3585. // FISHER(x)
  3586. //
  3587. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3588. if argsList.Len() != 1 {
  3589. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3590. }
  3591. token := argsList.Front().Value.(formulaArg)
  3592. switch token.Type {
  3593. case ArgString:
  3594. arg := token.ToNumber()
  3595. if arg.Type == ArgNumber {
  3596. if arg.Number <= -1 || arg.Number >= 1 {
  3597. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3598. }
  3599. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3600. }
  3601. case ArgNumber:
  3602. if token.Number <= -1 || token.Number >= 1 {
  3603. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3604. }
  3605. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3606. }
  3607. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3608. }
  3609. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3610. // returns a value between -1 and +1. The syntax of the function is:
  3611. //
  3612. // FISHERINV(y)
  3613. //
  3614. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3615. if argsList.Len() != 1 {
  3616. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3617. }
  3618. token := argsList.Front().Value.(formulaArg)
  3619. switch token.Type {
  3620. case ArgString:
  3621. arg := token.ToNumber()
  3622. if arg.Type == ArgNumber {
  3623. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3624. }
  3625. case ArgNumber:
  3626. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3627. }
  3628. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3629. }
  3630. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3631. // specified number, n. The syntax of the function is:
  3632. //
  3633. // GAMMA(number)
  3634. //
  3635. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3636. if argsList.Len() != 1 {
  3637. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3638. }
  3639. token := argsList.Front().Value.(formulaArg)
  3640. switch token.Type {
  3641. case ArgString:
  3642. arg := token.ToNumber()
  3643. if arg.Type == ArgNumber {
  3644. if arg.Number <= 0 {
  3645. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3646. }
  3647. return newNumberFormulaArg(math.Gamma(arg.Number))
  3648. }
  3649. case ArgNumber:
  3650. if token.Number <= 0 {
  3651. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3652. }
  3653. return newNumberFormulaArg(math.Gamma(token.Number))
  3654. }
  3655. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3656. }
  3657. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3658. // (n). The syntax of the function is:
  3659. //
  3660. // GAMMALN(x)
  3661. //
  3662. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3663. if argsList.Len() != 1 {
  3664. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3665. }
  3666. token := argsList.Front().Value.(formulaArg)
  3667. switch token.Type {
  3668. case ArgString:
  3669. arg := token.ToNumber()
  3670. if arg.Type == ArgNumber {
  3671. if arg.Number <= 0 {
  3672. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3673. }
  3674. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3675. }
  3676. case ArgNumber:
  3677. if token.Number <= 0 {
  3678. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3679. }
  3680. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3681. }
  3682. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3683. }
  3684. // KURT function calculates the kurtosis of a supplied set of values. The
  3685. // syntax of the function is:
  3686. //
  3687. // KURT(number1,[number2],...)
  3688. //
  3689. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3690. if argsList.Len() < 1 {
  3691. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3692. }
  3693. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3694. if stdev.Number > 0 {
  3695. count, summer := 0.0, 0.0
  3696. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3697. token := arg.Value.(formulaArg)
  3698. switch token.Type {
  3699. case ArgString, ArgNumber:
  3700. num := token.ToNumber()
  3701. if num.Type == ArgError {
  3702. continue
  3703. }
  3704. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3705. count++
  3706. case ArgList, ArgMatrix:
  3707. for _, row := range token.ToList() {
  3708. if row.Type == ArgNumber || row.Type == ArgString {
  3709. num := row.ToNumber()
  3710. if num.Type == ArgError {
  3711. continue
  3712. }
  3713. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3714. count++
  3715. }
  3716. }
  3717. }
  3718. }
  3719. if count > 3 {
  3720. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3721. }
  3722. }
  3723. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3724. }
  3725. // MAX function returns the largest value from a supplied set of numeric
  3726. // values. The syntax of the function is:
  3727. //
  3728. // MAX(number1,[number2],...)
  3729. //
  3730. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3731. if argsList.Len() == 0 {
  3732. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3733. }
  3734. return fn.max(false, argsList)
  3735. }
  3736. // MAXA function returns the largest value from a supplied set of numeric
  3737. // values, while counting text and the logical value FALSE as the value 0 and
  3738. // counting the logical value TRUE as the value 1. The syntax of the function
  3739. // is:
  3740. //
  3741. // MAXA(number1,[number2],...)
  3742. //
  3743. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3744. if argsList.Len() == 0 {
  3745. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3746. }
  3747. return fn.max(true, argsList)
  3748. }
  3749. // max is an implementation of the formula function MAX and MAXA.
  3750. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3751. max := -math.MaxFloat64
  3752. for token := argsList.Front(); token != nil; token = token.Next() {
  3753. arg := token.Value.(formulaArg)
  3754. switch arg.Type {
  3755. case ArgString:
  3756. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3757. continue
  3758. } else {
  3759. num := arg.ToBool()
  3760. if num.Type == ArgNumber && num.Number > max {
  3761. max = num.Number
  3762. continue
  3763. }
  3764. }
  3765. num := arg.ToNumber()
  3766. if num.Type != ArgError && num.Number > max {
  3767. max = num.Number
  3768. }
  3769. case ArgNumber:
  3770. if arg.Number > max {
  3771. max = arg.Number
  3772. }
  3773. case ArgList, ArgMatrix:
  3774. for _, row := range arg.ToList() {
  3775. switch row.Type {
  3776. case ArgString:
  3777. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3778. continue
  3779. } else {
  3780. num := row.ToBool()
  3781. if num.Type == ArgNumber && num.Number > max {
  3782. max = num.Number
  3783. continue
  3784. }
  3785. }
  3786. num := row.ToNumber()
  3787. if num.Type != ArgError && num.Number > max {
  3788. max = num.Number
  3789. }
  3790. case ArgNumber:
  3791. if row.Number > max {
  3792. max = row.Number
  3793. }
  3794. }
  3795. }
  3796. case ArgError:
  3797. return arg
  3798. }
  3799. }
  3800. if max == -math.MaxFloat64 {
  3801. max = 0
  3802. }
  3803. return newNumberFormulaArg(max)
  3804. }
  3805. // MEDIAN function returns the statistical median (the middle value) of a list
  3806. // of supplied numbers. The syntax of the function is:
  3807. //
  3808. // MEDIAN(number1,[number2],...)
  3809. //
  3810. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3811. if argsList.Len() == 0 {
  3812. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3813. }
  3814. var values = []float64{}
  3815. var median, digits float64
  3816. var err error
  3817. for token := argsList.Front(); token != nil; token = token.Next() {
  3818. arg := token.Value.(formulaArg)
  3819. switch arg.Type {
  3820. case ArgString:
  3821. num := arg.ToNumber()
  3822. if num.Type == ArgError {
  3823. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3824. }
  3825. values = append(values, num.Number)
  3826. case ArgNumber:
  3827. values = append(values, arg.Number)
  3828. case ArgMatrix:
  3829. for _, row := range arg.Matrix {
  3830. for _, value := range row {
  3831. if value.String == "" {
  3832. continue
  3833. }
  3834. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3835. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3836. }
  3837. values = append(values, digits)
  3838. }
  3839. }
  3840. }
  3841. }
  3842. sort.Float64s(values)
  3843. if len(values)%2 == 0 {
  3844. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3845. } else {
  3846. median = values[len(values)/2]
  3847. }
  3848. return newNumberFormulaArg(median)
  3849. }
  3850. // MIN function returns the smallest value from a supplied set of numeric
  3851. // values. The syntax of the function is:
  3852. //
  3853. // MIN(number1,[number2],...)
  3854. //
  3855. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3856. if argsList.Len() == 0 {
  3857. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3858. }
  3859. return fn.min(false, argsList)
  3860. }
  3861. // MINA function returns the smallest value from a supplied set of numeric
  3862. // values, while counting text and the logical value FALSE as the value 0 and
  3863. // counting the logical value TRUE as the value 1. The syntax of the function
  3864. // is:
  3865. //
  3866. // MINA(number1,[number2],...)
  3867. //
  3868. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3869. if argsList.Len() == 0 {
  3870. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3871. }
  3872. return fn.min(true, argsList)
  3873. }
  3874. // min is an implementation of the formula function MIN and MINA.
  3875. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3876. min := math.MaxFloat64
  3877. for token := argsList.Front(); token != nil; token = token.Next() {
  3878. arg := token.Value.(formulaArg)
  3879. switch arg.Type {
  3880. case ArgString:
  3881. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3882. continue
  3883. } else {
  3884. num := arg.ToBool()
  3885. if num.Type == ArgNumber && num.Number < min {
  3886. min = num.Number
  3887. continue
  3888. }
  3889. }
  3890. num := arg.ToNumber()
  3891. if num.Type != ArgError && num.Number < min {
  3892. min = num.Number
  3893. }
  3894. case ArgNumber:
  3895. if arg.Number < min {
  3896. min = arg.Number
  3897. }
  3898. case ArgList, ArgMatrix:
  3899. for _, row := range arg.ToList() {
  3900. switch row.Type {
  3901. case ArgString:
  3902. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3903. continue
  3904. } else {
  3905. num := row.ToBool()
  3906. if num.Type == ArgNumber && num.Number < min {
  3907. min = num.Number
  3908. continue
  3909. }
  3910. }
  3911. num := row.ToNumber()
  3912. if num.Type != ArgError && num.Number < min {
  3913. min = num.Number
  3914. }
  3915. case ArgNumber:
  3916. if row.Number < min {
  3917. min = row.Number
  3918. }
  3919. }
  3920. }
  3921. case ArgError:
  3922. return arg
  3923. }
  3924. }
  3925. if min == math.MaxFloat64 {
  3926. min = 0
  3927. }
  3928. return newNumberFormulaArg(min)
  3929. }
  3930. // PERMUT function calculates the number of permutations of a specified number
  3931. // of objects from a set of objects. The syntax of the function is:
  3932. //
  3933. // PERMUT(number,number_chosen)
  3934. //
  3935. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  3936. if argsList.Len() != 2 {
  3937. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  3938. }
  3939. number := argsList.Front().Value.(formulaArg).ToNumber()
  3940. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  3941. if number.Type != ArgNumber {
  3942. return number
  3943. }
  3944. if chosen.Type != ArgNumber {
  3945. return chosen
  3946. }
  3947. if number.Number < chosen.Number {
  3948. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3949. }
  3950. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  3951. }
  3952. // Information Functions
  3953. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  3954. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  3955. // function is:
  3956. //
  3957. // ISBLANK(value)
  3958. //
  3959. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  3960. if argsList.Len() != 1 {
  3961. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  3962. }
  3963. token := argsList.Front().Value.(formulaArg)
  3964. result := "FALSE"
  3965. switch token.Type {
  3966. case ArgUnknown:
  3967. result = "TRUE"
  3968. case ArgString:
  3969. if token.String == "" {
  3970. result = "TRUE"
  3971. }
  3972. }
  3973. return newStringFormulaArg(result)
  3974. }
  3975. // ISERR function tests if an initial supplied expression (or value) returns
  3976. // any Excel Error, except the #N/A error. If so, the function returns the
  3977. // logical value TRUE; If the supplied value is not an error or is the #N/A
  3978. // error, the ISERR function returns FALSE. The syntax of the function is:
  3979. //
  3980. // ISERR(value)
  3981. //
  3982. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  3983. if argsList.Len() != 1 {
  3984. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  3985. }
  3986. token := argsList.Front().Value.(formulaArg)
  3987. result := "FALSE"
  3988. if token.Type == ArgError {
  3989. for _, errType := range []string{
  3990. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  3991. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  3992. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  3993. } {
  3994. if errType == token.String {
  3995. result = "TRUE"
  3996. }
  3997. }
  3998. }
  3999. return newStringFormulaArg(result)
  4000. }
  4001. // ISERROR function tests if an initial supplied expression (or value) returns
  4002. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4003. // function returns FALSE. The syntax of the function is:
  4004. //
  4005. // ISERROR(value)
  4006. //
  4007. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4008. if argsList.Len() != 1 {
  4009. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4010. }
  4011. token := argsList.Front().Value.(formulaArg)
  4012. result := "FALSE"
  4013. if token.Type == ArgError {
  4014. for _, errType := range []string{
  4015. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4016. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4017. formulaErrorCALC, formulaErrorGETTINGDATA,
  4018. } {
  4019. if errType == token.String {
  4020. result = "TRUE"
  4021. }
  4022. }
  4023. }
  4024. return newStringFormulaArg(result)
  4025. }
  4026. // ISEVEN function tests if a supplied number (or numeric expression)
  4027. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4028. // function returns FALSE. The syntax of the function is:
  4029. //
  4030. // ISEVEN(value)
  4031. //
  4032. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4033. if argsList.Len() != 1 {
  4034. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4035. }
  4036. var (
  4037. token = argsList.Front().Value.(formulaArg)
  4038. result = "FALSE"
  4039. numeric int
  4040. err error
  4041. )
  4042. if token.Type == ArgString {
  4043. if numeric, err = strconv.Atoi(token.String); err != nil {
  4044. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4045. }
  4046. if numeric == numeric/2*2 {
  4047. return newStringFormulaArg("TRUE")
  4048. }
  4049. }
  4050. return newStringFormulaArg(result)
  4051. }
  4052. // ISNA function tests if an initial supplied expression (or value) returns
  4053. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4054. // returns FALSE. The syntax of the function is:
  4055. //
  4056. // ISNA(value)
  4057. //
  4058. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4059. if argsList.Len() != 1 {
  4060. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4061. }
  4062. token := argsList.Front().Value.(formulaArg)
  4063. result := "FALSE"
  4064. if token.Type == ArgError && token.String == formulaErrorNA {
  4065. result = "TRUE"
  4066. }
  4067. return newStringFormulaArg(result)
  4068. }
  4069. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4070. // function returns TRUE; If the supplied value is text, the function returns
  4071. // FALSE. The syntax of the function is:
  4072. //
  4073. // ISNONTEXT(value)
  4074. //
  4075. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4076. if argsList.Len() != 1 {
  4077. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4078. }
  4079. token := argsList.Front().Value.(formulaArg)
  4080. result := "TRUE"
  4081. if token.Type == ArgString && token.String != "" {
  4082. result = "FALSE"
  4083. }
  4084. return newStringFormulaArg(result)
  4085. }
  4086. // ISNUMBER function function tests if a supplied value is a number. If so,
  4087. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4088. // function is:
  4089. //
  4090. // ISNUMBER(value)
  4091. //
  4092. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4093. if argsList.Len() != 1 {
  4094. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4095. }
  4096. token, result := argsList.Front().Value.(formulaArg), false
  4097. if token.Type == ArgString && token.String != "" {
  4098. if _, err := strconv.Atoi(token.String); err == nil {
  4099. result = true
  4100. }
  4101. }
  4102. return newBoolFormulaArg(result)
  4103. }
  4104. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4105. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4106. // FALSE. The syntax of the function is:
  4107. //
  4108. // ISODD(value)
  4109. //
  4110. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4111. if argsList.Len() != 1 {
  4112. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4113. }
  4114. var (
  4115. token = argsList.Front().Value.(formulaArg)
  4116. result = "FALSE"
  4117. numeric int
  4118. err error
  4119. )
  4120. if token.Type == ArgString {
  4121. if numeric, err = strconv.Atoi(token.String); err != nil {
  4122. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4123. }
  4124. if numeric != numeric/2*2 {
  4125. return newStringFormulaArg("TRUE")
  4126. }
  4127. }
  4128. return newStringFormulaArg(result)
  4129. }
  4130. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4131. // Otherwise, the function returns FALSE. The syntax of the function is:
  4132. //
  4133. // ISTEXT(value)
  4134. //
  4135. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4136. if argsList.Len() != 1 {
  4137. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4138. }
  4139. token := argsList.Front().Value.(formulaArg)
  4140. if token.ToNumber().Type != ArgError {
  4141. return newBoolFormulaArg(false)
  4142. }
  4143. return newBoolFormulaArg(token.Type == ArgString)
  4144. }
  4145. // NA function returns the Excel #N/A error. This error message has the
  4146. // meaning 'value not available' and is produced when an Excel Formula is
  4147. // unable to find a value that it needs. The syntax of the function is:
  4148. //
  4149. // NA()
  4150. //
  4151. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4152. if argsList.Len() != 0 {
  4153. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4154. }
  4155. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4156. }
  4157. // SHEET function returns the Sheet number for a specified reference. The
  4158. // syntax of the function is:
  4159. //
  4160. // SHEET()
  4161. //
  4162. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4163. if argsList.Len() != 0 {
  4164. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4165. }
  4166. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4167. }
  4168. // Logical Functions
  4169. // AND function tests a number of supplied conditions and returns TRUE or
  4170. // FALSE. The syntax of the function is:
  4171. //
  4172. // AND(logical_test1,[logical_test2],...)
  4173. //
  4174. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4175. if argsList.Len() == 0 {
  4176. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4177. }
  4178. if argsList.Len() > 30 {
  4179. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4180. }
  4181. var (
  4182. and = true
  4183. val float64
  4184. err error
  4185. )
  4186. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4187. token := arg.Value.(formulaArg)
  4188. switch token.Type {
  4189. case ArgUnknown:
  4190. continue
  4191. case ArgString:
  4192. if token.String == "TRUE" {
  4193. continue
  4194. }
  4195. if token.String == "FALSE" {
  4196. return newStringFormulaArg(token.String)
  4197. }
  4198. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4199. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4200. }
  4201. and = and && (val != 0)
  4202. case ArgMatrix:
  4203. // TODO
  4204. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4205. }
  4206. }
  4207. return newBoolFormulaArg(and)
  4208. }
  4209. // FALSE function function returns the logical value FALSE. The syntax of the
  4210. // function is:
  4211. //
  4212. // FALSE()
  4213. //
  4214. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4215. if argsList.Len() != 0 {
  4216. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4217. }
  4218. return newBoolFormulaArg(false)
  4219. }
  4220. // IFERROR function receives two values (or expressions) and tests if the
  4221. // first of these evaluates to an error. The syntax of the function is:
  4222. //
  4223. // IFERROR(value,value_if_error)
  4224. //
  4225. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4226. if argsList.Len() != 2 {
  4227. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4228. }
  4229. value := argsList.Front().Value.(formulaArg)
  4230. if value.Type != ArgError {
  4231. if value.Type == ArgEmpty {
  4232. return newNumberFormulaArg(0)
  4233. }
  4234. return value
  4235. }
  4236. return argsList.Back().Value.(formulaArg)
  4237. }
  4238. // NOT function returns the opposite to a supplied logical value. The syntax
  4239. // of the function is:
  4240. //
  4241. // NOT(logical)
  4242. //
  4243. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4244. if argsList.Len() != 1 {
  4245. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4246. }
  4247. token := argsList.Front().Value.(formulaArg)
  4248. switch token.Type {
  4249. case ArgString, ArgList:
  4250. if strings.ToUpper(token.String) == "TRUE" {
  4251. return newBoolFormulaArg(false)
  4252. }
  4253. if strings.ToUpper(token.String) == "FALSE" {
  4254. return newBoolFormulaArg(true)
  4255. }
  4256. case ArgNumber:
  4257. return newBoolFormulaArg(!(token.Number != 0))
  4258. case ArgError:
  4259. return token
  4260. }
  4261. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4262. }
  4263. // OR function tests a number of supplied conditions and returns either TRUE
  4264. // or FALSE. The syntax of the function is:
  4265. //
  4266. // OR(logical_test1,[logical_test2],...)
  4267. //
  4268. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4269. if argsList.Len() == 0 {
  4270. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4271. }
  4272. if argsList.Len() > 30 {
  4273. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4274. }
  4275. var (
  4276. or bool
  4277. val float64
  4278. err error
  4279. )
  4280. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4281. token := arg.Value.(formulaArg)
  4282. switch token.Type {
  4283. case ArgUnknown:
  4284. continue
  4285. case ArgString:
  4286. if token.String == "FALSE" {
  4287. continue
  4288. }
  4289. if token.String == "TRUE" {
  4290. or = true
  4291. continue
  4292. }
  4293. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4294. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4295. }
  4296. or = val != 0
  4297. case ArgMatrix:
  4298. // TODO
  4299. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4300. }
  4301. }
  4302. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4303. }
  4304. // TRUE function returns the logical value TRUE. The syntax of the function
  4305. // is:
  4306. //
  4307. // TRUE()
  4308. //
  4309. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4310. if argsList.Len() != 0 {
  4311. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4312. }
  4313. return newBoolFormulaArg(true)
  4314. }
  4315. // Date and Time Functions
  4316. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4317. // of the function is:
  4318. //
  4319. // DATE(year,month,day)
  4320. //
  4321. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4322. if argsList.Len() != 3 {
  4323. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4324. }
  4325. var year, month, day int
  4326. var err error
  4327. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  4328. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4329. }
  4330. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  4331. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4332. }
  4333. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  4334. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4335. }
  4336. d := makeDate(year, time.Month(month), day)
  4337. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4338. }
  4339. // makeDate return date as a Unix time, the number of seconds elapsed since
  4340. // January 1, 1970 UTC.
  4341. func makeDate(y int, m time.Month, d int) int64 {
  4342. if y == 1900 && int(m) <= 2 {
  4343. d--
  4344. }
  4345. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4346. return date.Unix()
  4347. }
  4348. // daysBetween return time interval of the given start timestamp and end
  4349. // timestamp.
  4350. func daysBetween(startDate, endDate int64) float64 {
  4351. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4352. }
  4353. // Text Functions
  4354. // CLEAN removes all non-printable characters from a supplied text string. The
  4355. // syntax of the function is:
  4356. //
  4357. // CLEAN(text)
  4358. //
  4359. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4360. if argsList.Len() != 1 {
  4361. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4362. }
  4363. b := bytes.Buffer{}
  4364. for _, c := range argsList.Front().Value.(formulaArg).String {
  4365. if c > 31 {
  4366. b.WriteRune(c)
  4367. }
  4368. }
  4369. return newStringFormulaArg(b.String())
  4370. }
  4371. // CODE function converts the first character of a supplied text string into
  4372. // the associated numeric character set code used by your computer. The
  4373. // syntax of the function is:
  4374. //
  4375. // CODE(text)
  4376. //
  4377. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  4378. if argsList.Len() != 1 {
  4379. return newErrorFormulaArg(formulaErrorVALUE, "CODE requires 1 argument")
  4380. }
  4381. text := argsList.Front().Value.(formulaArg).Value()
  4382. if len(text) == 0 {
  4383. return newNumberFormulaArg(0)
  4384. }
  4385. return newNumberFormulaArg(float64(text[0]))
  4386. }
  4387. // CONCAT function joins together a series of supplied text strings into one
  4388. // combined text string.
  4389. //
  4390. // CONCAT(text1,[text2],...)
  4391. //
  4392. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4393. return fn.concat("CONCAT", argsList)
  4394. }
  4395. // CONCATENATE function joins together a series of supplied text strings into
  4396. // one combined text string.
  4397. //
  4398. // CONCATENATE(text1,[text2],...)
  4399. //
  4400. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4401. return fn.concat("CONCATENATE", argsList)
  4402. }
  4403. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4404. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4405. buf := bytes.Buffer{}
  4406. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4407. token := arg.Value.(formulaArg)
  4408. switch token.Type {
  4409. case ArgString:
  4410. buf.WriteString(token.String)
  4411. case ArgNumber:
  4412. if token.Boolean {
  4413. if token.Number == 0 {
  4414. buf.WriteString("FALSE")
  4415. } else {
  4416. buf.WriteString("TRUE")
  4417. }
  4418. } else {
  4419. buf.WriteString(token.Value())
  4420. }
  4421. default:
  4422. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4423. }
  4424. }
  4425. return newStringFormulaArg(buf.String())
  4426. }
  4427. // EXACT function tests if two supplied text strings or values are exactly
  4428. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4429. // function is case-sensitive. The syntax of the function is:
  4430. //
  4431. // EXACT(text1,text2)
  4432. //
  4433. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4434. if argsList.Len() != 2 {
  4435. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4436. }
  4437. text1 := argsList.Front().Value.(formulaArg).Value()
  4438. text2 := argsList.Back().Value.(formulaArg).Value()
  4439. return newBoolFormulaArg(text1 == text2)
  4440. }
  4441. // FIND function returns the position of a specified character or sub-string
  4442. // within a supplied text string. The function is case-sensitive. The syntax
  4443. // of the function is:
  4444. //
  4445. // FIND(find_text,within_text,[start_num])
  4446. //
  4447. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  4448. return fn.find("FIND", argsList)
  4449. }
  4450. // FINDB counts each double-byte character as 2 when you have enabled the
  4451. // editing of a language that supports DBCS and then set it as the default
  4452. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  4453. // function is:
  4454. //
  4455. // FINDB(find_text,within_text,[start_num])
  4456. //
  4457. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  4458. return fn.find("FINDB", argsList)
  4459. }
  4460. // find is an implementation of the formula function FIND and FINDB.
  4461. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  4462. if argsList.Len() < 2 {
  4463. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  4464. }
  4465. if argsList.Len() > 3 {
  4466. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  4467. }
  4468. findText := argsList.Front().Value.(formulaArg).Value()
  4469. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  4470. startNum, result := 1, 1
  4471. if argsList.Len() == 3 {
  4472. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4473. if numArg.Type != ArgNumber {
  4474. return numArg
  4475. }
  4476. if numArg.Number < 0 {
  4477. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4478. }
  4479. startNum = int(numArg.Number)
  4480. }
  4481. if findText == "" {
  4482. return newNumberFormulaArg(float64(startNum))
  4483. }
  4484. for idx := range withinText {
  4485. if result < startNum {
  4486. result++
  4487. }
  4488. if strings.Index(withinText[idx:], findText) == 0 {
  4489. return newNumberFormulaArg(float64(result))
  4490. }
  4491. result++
  4492. }
  4493. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4494. }
  4495. // LEFT function returns a specified number of characters from the start of a
  4496. // supplied text string. The syntax of the function is:
  4497. //
  4498. // LEFT(text,[num_chars])
  4499. //
  4500. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  4501. return fn.leftRight("LEFT", argsList)
  4502. }
  4503. // LEFTB returns the first character or characters in a text string, based on
  4504. // the number of bytes you specify. The syntax of the function is:
  4505. //
  4506. // LEFTB(text,[num_bytes])
  4507. //
  4508. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  4509. return fn.leftRight("LEFTB", argsList)
  4510. }
  4511. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  4512. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  4513. // (Traditional), and Korean.
  4514. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  4515. if argsList.Len() < 1 {
  4516. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  4517. }
  4518. if argsList.Len() > 2 {
  4519. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  4520. }
  4521. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  4522. if argsList.Len() == 2 {
  4523. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4524. if numArg.Type != ArgNumber {
  4525. return numArg
  4526. }
  4527. if numArg.Number < 0 {
  4528. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4529. }
  4530. numChars = int(numArg.Number)
  4531. }
  4532. if len(text) > numChars {
  4533. if name == "LEFT" || name == "LEFTB" {
  4534. return newStringFormulaArg(text[:numChars])
  4535. }
  4536. return newStringFormulaArg(text[len(text)-numChars:])
  4537. }
  4538. return newStringFormulaArg(text)
  4539. }
  4540. // LEN returns the length of a supplied text string. The syntax of the
  4541. // function is:
  4542. //
  4543. // LEN(text)
  4544. //
  4545. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4546. if argsList.Len() != 1 {
  4547. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4548. }
  4549. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4550. }
  4551. // LENB returns the number of bytes used to represent the characters in a text
  4552. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4553. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4554. // 1 byte per character. The syntax of the function is:
  4555. //
  4556. // LENB(text)
  4557. //
  4558. // TODO: the languages that support DBCS include Japanese, Chinese
  4559. // (Simplified), Chinese (Traditional), and Korean.
  4560. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4561. if argsList.Len() != 1 {
  4562. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4563. }
  4564. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4565. }
  4566. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  4567. // words or characters) from a supplied text string. The syntax of the
  4568. // function is:
  4569. //
  4570. // TRIM(text)
  4571. //
  4572. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  4573. if argsList.Len() != 1 {
  4574. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  4575. }
  4576. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  4577. }
  4578. // LOWER converts all characters in a supplied text string to lower case. The
  4579. // syntax of the function is:
  4580. //
  4581. // LOWER(text)
  4582. //
  4583. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4584. if argsList.Len() != 1 {
  4585. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4586. }
  4587. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4588. }
  4589. // PROPER converts all characters in a supplied text string to proper case
  4590. // (i.e. all letters that do not immediately follow another letter are set to
  4591. // upper case and all other characters are lower case). The syntax of the
  4592. // function is:
  4593. //
  4594. // PROPER(text)
  4595. //
  4596. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4597. if argsList.Len() != 1 {
  4598. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4599. }
  4600. buf := bytes.Buffer{}
  4601. isLetter := false
  4602. for _, char := range argsList.Front().Value.(formulaArg).String {
  4603. if !isLetter && unicode.IsLetter(char) {
  4604. buf.WriteRune(unicode.ToUpper(char))
  4605. } else {
  4606. buf.WriteRune(unicode.ToLower(char))
  4607. }
  4608. isLetter = unicode.IsLetter(char)
  4609. }
  4610. return newStringFormulaArg(buf.String())
  4611. }
  4612. // REPT function returns a supplied text string, repeated a specified number
  4613. // of times. The syntax of the function is:
  4614. //
  4615. // REPT(text,number_times)
  4616. //
  4617. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4618. if argsList.Len() != 2 {
  4619. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4620. }
  4621. text := argsList.Front().Value.(formulaArg)
  4622. if text.Type != ArgString {
  4623. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4624. }
  4625. times := argsList.Back().Value.(formulaArg).ToNumber()
  4626. if times.Type != ArgNumber {
  4627. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4628. }
  4629. if times.Number < 0 {
  4630. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4631. }
  4632. if times.Number == 0 {
  4633. return newStringFormulaArg("")
  4634. }
  4635. buf := bytes.Buffer{}
  4636. for i := 0; i < int(times.Number); i++ {
  4637. buf.WriteString(text.String)
  4638. }
  4639. return newStringFormulaArg(buf.String())
  4640. }
  4641. // RIGHT function returns a specified number of characters from the end of a
  4642. // supplied text string. The syntax of the function is:
  4643. //
  4644. // RIGHT(text,[num_chars])
  4645. //
  4646. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  4647. return fn.leftRight("RIGHT", argsList)
  4648. }
  4649. // RIGHTB returns the last character or characters in a text string, based on
  4650. // the number of bytes you specify. The syntax of the function is:
  4651. //
  4652. // RIGHTB(text,[num_bytes])
  4653. //
  4654. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  4655. return fn.leftRight("RIGHTB", argsList)
  4656. }
  4657. // UPPER converts all characters in a supplied text string to upper case. The
  4658. // syntax of the function is:
  4659. //
  4660. // UPPER(text)
  4661. //
  4662. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  4663. if argsList.Len() != 1 {
  4664. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  4665. }
  4666. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  4667. }
  4668. // Conditional Functions
  4669. // IF function tests a supplied condition and returns one result if the
  4670. // condition evaluates to TRUE, and another result if the condition evaluates
  4671. // to FALSE. The syntax of the function is:
  4672. //
  4673. // IF(logical_test,value_if_true,value_if_false)
  4674. //
  4675. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  4676. if argsList.Len() == 0 {
  4677. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  4678. }
  4679. if argsList.Len() > 3 {
  4680. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  4681. }
  4682. token := argsList.Front().Value.(formulaArg)
  4683. var (
  4684. cond bool
  4685. err error
  4686. result string
  4687. )
  4688. switch token.Type {
  4689. case ArgString:
  4690. if cond, err = strconv.ParseBool(token.String); err != nil {
  4691. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4692. }
  4693. if argsList.Len() == 1 {
  4694. return newBoolFormulaArg(cond)
  4695. }
  4696. if cond {
  4697. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  4698. }
  4699. if argsList.Len() == 3 {
  4700. result = argsList.Back().Value.(formulaArg).String
  4701. }
  4702. }
  4703. return newStringFormulaArg(result)
  4704. }
  4705. // Lookup and Reference Functions
  4706. // CHOOSE function returns a value from an array, that corresponds to a
  4707. // supplied index number (position). The syntax of the function is:
  4708. //
  4709. // CHOOSE(index_num,value1,[value2],...)
  4710. //
  4711. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  4712. if argsList.Len() < 2 {
  4713. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  4714. }
  4715. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  4716. if err != nil {
  4717. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  4718. }
  4719. if argsList.Len() <= idx {
  4720. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  4721. }
  4722. arg := argsList.Front()
  4723. for i := 0; i < idx; i++ {
  4724. arg = arg.Next()
  4725. }
  4726. var result formulaArg
  4727. switch arg.Value.(formulaArg).Type {
  4728. case ArgString:
  4729. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  4730. case ArgMatrix:
  4731. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  4732. }
  4733. return result
  4734. }
  4735. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  4736. // string.
  4737. func deepMatchRune(str, pattern []rune, simple bool) bool {
  4738. for len(pattern) > 0 {
  4739. switch pattern[0] {
  4740. default:
  4741. if len(str) == 0 || str[0] != pattern[0] {
  4742. return false
  4743. }
  4744. case '?':
  4745. if len(str) == 0 && !simple {
  4746. return false
  4747. }
  4748. case '*':
  4749. return deepMatchRune(str, pattern[1:], simple) ||
  4750. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  4751. }
  4752. str = str[1:]
  4753. pattern = pattern[1:]
  4754. }
  4755. return len(str) == 0 && len(pattern) == 0
  4756. }
  4757. // matchPattern finds whether the text matches or satisfies the pattern
  4758. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  4759. func matchPattern(pattern, name string) (matched bool) {
  4760. if pattern == "" {
  4761. return name == pattern
  4762. }
  4763. if pattern == "*" {
  4764. return true
  4765. }
  4766. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  4767. for _, r := range name {
  4768. rname = append(rname, r)
  4769. }
  4770. for _, r := range pattern {
  4771. rpattern = append(rpattern, r)
  4772. }
  4773. simple := false // Does extended wildcard '*' and '?' match.
  4774. return deepMatchRune(rname, rpattern, simple)
  4775. }
  4776. // compareFormulaArg compares the left-hand sides and the right-hand sides
  4777. // formula arguments by given conditions such as case sensitive, if exact
  4778. // match, and make compare result as formula criteria condition type.
  4779. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4780. if lhs.Type != rhs.Type {
  4781. return criteriaErr
  4782. }
  4783. switch lhs.Type {
  4784. case ArgNumber:
  4785. if lhs.Number == rhs.Number {
  4786. return criteriaEq
  4787. }
  4788. if lhs.Number < rhs.Number {
  4789. return criteriaL
  4790. }
  4791. return criteriaG
  4792. case ArgString:
  4793. ls, rs := lhs.String, rhs.String
  4794. if !caseSensitive {
  4795. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  4796. }
  4797. if exactMatch {
  4798. match := matchPattern(rs, ls)
  4799. if match {
  4800. return criteriaEq
  4801. }
  4802. return criteriaG
  4803. }
  4804. switch strings.Compare(ls, rs) {
  4805. case 1:
  4806. return criteriaG
  4807. case -1:
  4808. return criteriaL
  4809. case 0:
  4810. return criteriaEq
  4811. }
  4812. return criteriaErr
  4813. case ArgEmpty:
  4814. return criteriaEq
  4815. case ArgList:
  4816. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  4817. case ArgMatrix:
  4818. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  4819. }
  4820. return criteriaErr
  4821. }
  4822. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  4823. // list type formula arguments.
  4824. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4825. if len(lhs.List) < len(rhs.List) {
  4826. return criteriaL
  4827. }
  4828. if len(lhs.List) > len(rhs.List) {
  4829. return criteriaG
  4830. }
  4831. for arg := range lhs.List {
  4832. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  4833. if criteria != criteriaEq {
  4834. return criteria
  4835. }
  4836. }
  4837. return criteriaEq
  4838. }
  4839. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  4840. // matrix type formula arguments.
  4841. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  4842. if len(lhs.Matrix) < len(rhs.Matrix) {
  4843. return criteriaL
  4844. }
  4845. if len(lhs.Matrix) > len(rhs.Matrix) {
  4846. return criteriaG
  4847. }
  4848. for i := range lhs.Matrix {
  4849. left := lhs.Matrix[i]
  4850. right := lhs.Matrix[i]
  4851. if len(left) < len(right) {
  4852. return criteriaL
  4853. }
  4854. if len(left) > len(right) {
  4855. return criteriaG
  4856. }
  4857. for arg := range left {
  4858. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  4859. if criteria != criteriaEq {
  4860. return criteria
  4861. }
  4862. }
  4863. }
  4864. return criteriaEq
  4865. }
  4866. // COLUMN function returns the first column number within a supplied reference
  4867. // or the number of the current column. The syntax of the function is:
  4868. //
  4869. // COLUMN([reference])
  4870. //
  4871. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  4872. if argsList.Len() > 1 {
  4873. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  4874. }
  4875. if argsList.Len() == 1 {
  4876. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  4877. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  4878. }
  4879. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  4880. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  4881. }
  4882. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  4883. }
  4884. col, _, _ := CellNameToCoordinates(fn.cell)
  4885. return newNumberFormulaArg(float64(col))
  4886. }
  4887. // HLOOKUP function 'looks up' a given value in the top row of a data array
  4888. // (or table), and returns the corresponding value from another row of the
  4889. // array. The syntax of the function is:
  4890. //
  4891. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  4892. //
  4893. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  4894. if argsList.Len() < 3 {
  4895. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  4896. }
  4897. if argsList.Len() > 4 {
  4898. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  4899. }
  4900. lookupValue := argsList.Front().Value.(formulaArg)
  4901. tableArray := argsList.Front().Next().Value.(formulaArg)
  4902. if tableArray.Type != ArgMatrix {
  4903. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  4904. }
  4905. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4906. if rowArg.Type != ArgNumber {
  4907. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  4908. }
  4909. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  4910. if argsList.Len() == 4 {
  4911. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4912. if rangeLookup.Type == ArgError {
  4913. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4914. }
  4915. if rangeLookup.Number == 0 {
  4916. exactMatch = true
  4917. }
  4918. }
  4919. row := tableArray.Matrix[0]
  4920. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4921. start:
  4922. for idx, mtx := range row {
  4923. lhs := mtx
  4924. switch lookupValue.Type {
  4925. case ArgNumber:
  4926. if !lookupValue.Boolean {
  4927. lhs = mtx.ToNumber()
  4928. if lhs.Type == ArgError {
  4929. lhs = mtx
  4930. }
  4931. }
  4932. case ArgMatrix:
  4933. lhs = tableArray
  4934. }
  4935. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  4936. matchIdx = idx
  4937. wasExact = true
  4938. break start
  4939. }
  4940. }
  4941. } else {
  4942. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  4943. }
  4944. if matchIdx == -1 {
  4945. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4946. }
  4947. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  4948. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  4949. }
  4950. row = tableArray.Matrix[rowIdx]
  4951. if wasExact || !exactMatch {
  4952. return row[matchIdx]
  4953. }
  4954. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  4955. }
  4956. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  4957. // data array (or table), and returns the corresponding value from another
  4958. // column of the array. The syntax of the function is:
  4959. //
  4960. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  4961. //
  4962. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  4963. if argsList.Len() < 3 {
  4964. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  4965. }
  4966. if argsList.Len() > 4 {
  4967. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  4968. }
  4969. lookupValue := argsList.Front().Value.(formulaArg)
  4970. tableArray := argsList.Front().Next().Value.(formulaArg)
  4971. if tableArray.Type != ArgMatrix {
  4972. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  4973. }
  4974. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4975. if colIdx.Type != ArgNumber {
  4976. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  4977. }
  4978. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  4979. if argsList.Len() == 4 {
  4980. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  4981. if rangeLookup.Type == ArgError {
  4982. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  4983. }
  4984. if rangeLookup.Number == 0 {
  4985. exactMatch = true
  4986. }
  4987. }
  4988. if exactMatch || len(tableArray.Matrix) == TotalRows {
  4989. start:
  4990. for idx, mtx := range tableArray.Matrix {
  4991. lhs := mtx[0]
  4992. switch lookupValue.Type {
  4993. case ArgNumber:
  4994. if !lookupValue.Boolean {
  4995. lhs = mtx[0].ToNumber()
  4996. if lhs.Type == ArgError {
  4997. lhs = mtx[0]
  4998. }
  4999. }
  5000. case ArgMatrix:
  5001. lhs = tableArray
  5002. }
  5003. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5004. matchIdx = idx
  5005. wasExact = true
  5006. break start
  5007. }
  5008. }
  5009. } else {
  5010. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  5011. }
  5012. if matchIdx == -1 {
  5013. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5014. }
  5015. mtx := tableArray.Matrix[matchIdx]
  5016. if col < 0 || col >= len(mtx) {
  5017. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  5018. }
  5019. if wasExact || !exactMatch {
  5020. return mtx[col]
  5021. }
  5022. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5023. }
  5024. // vlookupBinarySearch finds the position of a target value when range lookup
  5025. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5026. // return wrong result.
  5027. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5028. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  5029. for low <= high {
  5030. var mid int = low + (high-low)/2
  5031. mtx := tableArray.Matrix[mid]
  5032. lhs := mtx[0]
  5033. switch lookupValue.Type {
  5034. case ArgNumber:
  5035. if !lookupValue.Boolean {
  5036. lhs = mtx[0].ToNumber()
  5037. if lhs.Type == ArgError {
  5038. lhs = mtx[0]
  5039. }
  5040. }
  5041. case ArgMatrix:
  5042. lhs = tableArray
  5043. }
  5044. result := compareFormulaArg(lhs, lookupValue, false, false)
  5045. if result == criteriaEq {
  5046. matchIdx, wasExact = mid, true
  5047. return
  5048. } else if result == criteriaG {
  5049. high = mid - 1
  5050. } else if result == criteriaL {
  5051. matchIdx, low = mid, mid+1
  5052. if lhs.Value() != "" {
  5053. lastMatchIdx = matchIdx
  5054. }
  5055. } else {
  5056. return -1, false
  5057. }
  5058. }
  5059. matchIdx, wasExact = lastMatchIdx, true
  5060. return
  5061. }
  5062. // vlookupBinarySearch finds the position of a target value when range lookup
  5063. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5064. // return wrong result.
  5065. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5066. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  5067. for low <= high {
  5068. var mid int = low + (high-low)/2
  5069. mtx := row[mid]
  5070. result := compareFormulaArg(mtx, lookupValue, false, false)
  5071. if result == criteriaEq {
  5072. matchIdx, wasExact = mid, true
  5073. return
  5074. } else if result == criteriaG {
  5075. high = mid - 1
  5076. } else if result == criteriaL {
  5077. low, lastMatchIdx = mid+1, mid
  5078. } else {
  5079. return -1, false
  5080. }
  5081. }
  5082. matchIdx, wasExact = lastMatchIdx, true
  5083. return
  5084. }
  5085. // LOOKUP function performs an approximate match lookup in a one-column or
  5086. // one-row range, and returns the corresponding value from another one-column
  5087. // or one-row range. The syntax of the function is:
  5088. //
  5089. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  5090. //
  5091. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  5092. if argsList.Len() < 2 {
  5093. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  5094. }
  5095. if argsList.Len() > 3 {
  5096. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  5097. }
  5098. lookupValue := argsList.Front().Value.(formulaArg)
  5099. lookupVector := argsList.Front().Next().Value.(formulaArg)
  5100. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  5101. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  5102. }
  5103. cols, matchIdx := lookupCol(lookupVector), -1
  5104. for idx, col := range cols {
  5105. lhs := lookupValue
  5106. switch col.Type {
  5107. case ArgNumber:
  5108. lhs = lhs.ToNumber()
  5109. if !col.Boolean {
  5110. if lhs.Type == ArgError {
  5111. lhs = lookupValue
  5112. }
  5113. }
  5114. }
  5115. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  5116. matchIdx = idx
  5117. break
  5118. }
  5119. }
  5120. column := cols
  5121. if argsList.Len() == 3 {
  5122. column = lookupCol(argsList.Back().Value.(formulaArg))
  5123. }
  5124. if matchIdx < 0 || matchIdx >= len(column) {
  5125. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  5126. }
  5127. return column[matchIdx]
  5128. }
  5129. // lookupCol extract columns for LOOKUP.
  5130. func lookupCol(arr formulaArg) []formulaArg {
  5131. col := arr.List
  5132. if arr.Type == ArgMatrix {
  5133. col = nil
  5134. for _, r := range arr.Matrix {
  5135. if len(r) > 0 {
  5136. col = append(col, r[0])
  5137. continue
  5138. }
  5139. col = append(col, newEmptyFormulaArg())
  5140. }
  5141. }
  5142. return col
  5143. }
  5144. // Web Functions
  5145. // ENCODEURL function returns a URL-encoded string, replacing certain
  5146. // non-alphanumeric characters with the percentage symbol (%) and a
  5147. // hexadecimal number. The syntax of the function is:
  5148. //
  5149. // ENCODEURL(url)
  5150. //
  5151. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  5152. if argsList.Len() != 1 {
  5153. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  5154. }
  5155. token := argsList.Front().Value.(formulaArg).Value()
  5156. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  5157. }