| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605 |
- // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
- // this source code is governed by a BSD-style license that can be found in
- // the LICENSE file.
- //
- // Package excelize providing a set of functions that allow you to write to
- // and read from XLSX / XLSM / XLTM files. Supports reading and writing
- // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
- // complex components by high compatibility, and provided streaming API for
- // generating or reading data from a worksheet with huge amounts of data. This
- // library needs Go version 1.10 or later.
- package excelize
- import (
- "container/list"
- "errors"
- "fmt"
- "math"
- "reflect"
- "strconv"
- "strings"
- "github.com/xuri/efp"
- )
- // Excel formula errors
- const (
- formulaErrorDIV = "#DIV/0!"
- formulaErrorNAME = "#NAME?"
- formulaErrorNA = "#N/A"
- formulaErrorNUM = "#NUM!"
- formulaErrorVALUE = "#VALUE!"
- formulaErrorREF = "#REF!"
- formulaErrorNULL = "#NULL"
- formulaErrorSPILL = "#SPILL!"
- formulaErrorCALC = "#CALC!"
- formulaErrorGETTINGDATA = "#GETTING_DATA"
- )
- // cellRef defines the structure of a cell reference
- type cellRef struct {
- Col int
- Row int
- Sheet string
- }
- // cellRef defines the structure of a cell range
- type cellRange struct {
- From cellRef
- To cellRef
- }
- type formulaFuncs struct{}
- // CalcCellValue provides a function to get calculated cell value. This
- // feature is currently in beta. Array formula, table formula and some other
- // formulas are not supported currently.
- func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
- var (
- formula string
- token efp.Token
- )
- if formula, err = f.GetCellFormula(sheet, cell); err != nil {
- return
- }
- ps := efp.ExcelParser()
- tokens := ps.Parse(formula)
- if tokens == nil {
- return
- }
- if token, err = f.evalInfixExp(sheet, tokens); err != nil {
- return
- }
- result = token.TValue
- return
- }
- // getPriority calculate arithmetic operator priority.
- func getPriority(token efp.Token) (pri int) {
- var priority = map[string]int{
- "*": 2,
- "/": 2,
- "+": 1,
- "-": 1,
- }
- pri, _ = priority[token.TValue]
- if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
- pri = 3
- }
- if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
- pri = 0
- }
- return
- }
- // evalInfixExp evaluate syntax analysis by given infix expression after
- // lexical analysis. Evaluate an infix expression containing formulas by
- // stacks:
- //
- // opd - Operand
- // opt - Operator
- // opf - Operation formula
- // opfd - Operand of the operation formula
- // opft - Operator of the operation formula
- // args - Arguments of the operation formula
- //
- func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
- var err error
- opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
- for i := 0; i < len(tokens); i++ {
- token := tokens[i]
- // out of function stack
- if opfStack.Len() == 0 {
- if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
- return efp.Token{}, err
- }
- }
- // function start
- if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
- opfStack.Push(token)
- continue
- }
- // in function stack, walk 2 token at once
- if opfStack.Len() > 0 {
- var nextToken efp.Token
- if i+1 < len(tokens) {
- nextToken = tokens[i+1]
- }
- // current token is args or range, skip next token, order required: parse reference first
- if token.TSubType == efp.TokenSubTypeRange {
- if !opftStack.Empty() {
- // parse reference: must reference at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if len(result) != 1 {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- opfdStack.Push(efp.Token{
- TType: efp.TokenTypeOperand,
- TSubType: efp.TokenSubTypeNumber,
- TValue: result[0],
- })
- continue
- }
- if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
- // parse reference: reference or range at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- for _, val := range result {
- argsStack.Push(efp.Token{
- TType: efp.TokenTypeOperand,
- TSubType: efp.TokenSubTypeNumber,
- TValue: val,
- })
- }
- if len(result) == 0 {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- continue
- }
- }
- // check current token is opft
- if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
- return efp.Token{}, err
- }
- // current token is arg
- if token.TType == efp.TokenTypeArgument {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- opftStack.Pop()
- }
- if !opfdStack.Empty() {
- argsStack.Push(opfdStack.Pop())
- }
- continue
- }
- // current token is function stop
- if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- opftStack.Pop()
- }
- // push opfd to args
- if opfdStack.Len() > 0 {
- argsStack.Push(opfdStack.Pop())
- }
- // call formula function to evaluate
- result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)})
- if err != nil {
- return efp.Token{}, err
- }
- opfStack.Pop()
- if opfStack.Len() > 0 { // still in function stack
- opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- } else {
- opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- }
- }
- }
- for optStack.Len() != 0 {
- topOpt := optStack.Peek().(efp.Token)
- if err = calculate(opdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- optStack.Pop()
- }
- return opdStack.Peek().(efp.Token), err
- }
- // calculate evaluate basic arithmetic operations.
- func calculate(opdStack *Stack, opt efp.Token) error {
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
- opd := opdStack.Pop().(efp.Token)
- opdVal, err := strconv.ParseFloat(opd.TValue, 64)
- if err != nil {
- return err
- }
- result := 0 - opdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "+" {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal + rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal - rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "*" {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal * rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "/" {
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal / rOpdVal
- if rOpdVal == 0 {
- return errors.New(formulaErrorDIV)
- }
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- return nil
- }
- // parseToken parse basic arithmetic operator priority and evaluate based on
- // operators and operands.
- func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
- // parse reference: must reference at here
- if token.TSubType == efp.TokenSubTypeRange {
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return errors.New(formulaErrorNAME)
- }
- if len(result) != 1 {
- return errors.New(formulaErrorVALUE)
- }
- token.TValue = result[0]
- token.TType = efp.TokenTypeOperand
- token.TSubType = efp.TokenSubTypeNumber
- }
- if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
- if optStack.Len() == 0 {
- optStack.Push(token)
- } else {
- tokenPriority := getPriority(token)
- topOpt := optStack.Peek().(efp.Token)
- topOptPriority := getPriority(topOpt)
- if tokenPriority > topOptPriority {
- optStack.Push(token)
- } else {
- for tokenPriority <= topOptPriority {
- optStack.Pop()
- if err := calculate(opdStack, topOpt); err != nil {
- return err
- }
- if optStack.Len() > 0 {
- topOpt = optStack.Peek().(efp.Token)
- topOptPriority = getPriority(topOpt)
- continue
- }
- break
- }
- optStack.Push(token)
- }
- }
- }
- if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
- optStack.Push(token)
- }
- if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
- for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
- topOpt := optStack.Peek().(efp.Token)
- if err := calculate(opdStack, topOpt); err != nil {
- return err
- }
- optStack.Pop()
- }
- optStack.Pop()
- }
- // opd
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
- opdStack.Push(token)
- }
- return nil
- }
- // parseReference parse reference and extract values by given reference
- // characters and default sheet name.
- func (f *File) parseReference(sheet, reference string) (result []string, err error) {
- reference = strings.Replace(reference, "$", "", -1)
- refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
- for _, ref := range strings.Split(reference, ":") {
- tokens := strings.Split(ref, "!")
- cr := cellRef{}
- if len(tokens) == 2 { // have a worksheet name
- cr.Sheet = tokens[0]
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
- return
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- refs.PushBack(cr)
- continue
- }
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
- return
- }
- e := refs.Back()
- if e == nil {
- cr.Sheet = sheet
- refs.PushBack(cr)
- continue
- }
- cellRanges.PushBack(cellRange{
- From: e.Value.(cellRef),
- To: cr,
- })
- refs.Remove(e)
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- result, err = f.rangeResolver(cellRefs, cellRanges)
- return
- }
- // rangeResolver extract value as string from given reference and range list.
- // This function will not ignore the empty cell. Note that the result of 3D
- // range references may be different from Excel in some cases, for example,
- // A1:A2:A2:B3 in Excel will include B2, but we wont.
- func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, err error) {
- filter := map[string]string{}
- // extract value from ranges
- for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRange)
- if cr.From.Sheet != cr.To.Sheet {
- err = errors.New(formulaErrorVALUE)
- }
- rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
- sortCoordinates(rng)
- for col := rng[0]; col <= rng[2]; col++ {
- for row := rng[1]; row <= rng[3]; row++ {
- var cell string
- if cell, err = CoordinatesToCellName(col, row); err != nil {
- return
- }
- if filter[cell], err = f.GetCellValue(cr.From.Sheet, cell); err != nil {
- return
- }
- }
- }
- }
- // extract value from references
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- var cell string
- if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
- return
- }
- if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
- return
- }
- }
- for _, val := range filter {
- result = append(result, val)
- }
- return
- }
- // callFuncByName calls the no error or only error return function with
- // reflect by given receiver, name and parameters.
- func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
- function := reflect.ValueOf(receiver).MethodByName(name)
- if function.IsValid() {
- rt := function.Call(params)
- if len(rt) == 0 {
- return
- }
- if !rt[1].IsNil() {
- err = rt[1].Interface().(error)
- return
- }
- result = rt[0].Interface().(string)
- return
- }
- err = fmt.Errorf("not support %s function", name)
- return
- }
- // Math and Trigonometric functions
- // SUM function adds together a supplied set of numbers and returns the sum of
- // these values. The syntax of the function is:
- //
- // SUM(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
- var val float64
- var sum float64
- for !argsStack.Empty() {
- token := argsStack.Pop().(efp.Token)
- if token.TValue == "" {
- continue
- }
- val, err = strconv.ParseFloat(token.TValue, 64)
- if err != nil {
- return
- }
- sum += val
- }
- result = fmt.Sprintf("%g", sum)
- return
- }
- // PRODUCT function returns the product (multiplication) of a supplied set of numerical values.
- // The syntax of the function is:
- //
- // PRODUCT(number1,[number2],...)
- //
- func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
- var (
- val float64
- product float64 = 1
- )
- for !argsStack.Empty() {
- token := argsStack.Pop().(efp.Token)
- if token.TValue == "" {
- continue
- }
- val, err = strconv.ParseFloat(token.TValue, 64)
- if err != nil {
- return
- }
- product = product * val
- }
- result = fmt.Sprintf("%g", product)
- return
- }
- // PRODUCT function calculates a given number, raised to a supplied power.
- // The syntax of the function is:
- //
- // POWER(number,power)
- //
- func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 2 {
- err = errors.New("POWER requires 2 numeric arguments")
- return
- }
- var x, y float64
- y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
- if err != nil {
- return
- }
- x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
- if err != nil {
- return
- }
- if x == 0 && y == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if x == 0 && y < 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Pow(x, y))
- return
- }
- // SQRT function calculates the positive square root of a supplied number.
- // The syntax of the function is:
- //
- // SQRT(number)
- //
- func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 1 {
- err = errors.New("SQRT requires 1 numeric arguments")
- return
- }
- var val float64
- val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
- if err != nil {
- return
- }
- if val < 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- result = fmt.Sprintf("%g", math.Sqrt(val))
- return
- }
- // QUOTIENT function returns the integer portion of a division between two supplied numbers.
- // The syntax of the function is:
- //
- // QUOTIENT(numerator,denominator)
- //
- func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) {
- if argsStack.Len() != 2 {
- err = errors.New("QUOTIENT requires 2 numeric arguments")
- return
- }
- var x, y float64
- y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
- if err != nil {
- return
- }
- x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
- if err != nil {
- return
- }
- if y == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Trunc(x/y))
- return
- }
|