calc.go 227 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.15 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/cmplx"
  19. "math/rand"
  20. "net/url"
  21. "reflect"
  22. "regexp"
  23. "sort"
  24. "strconv"
  25. "strings"
  26. "time"
  27. "unicode"
  28. "unsafe"
  29. "github.com/xuri/efp"
  30. "golang.org/x/text/language"
  31. "golang.org/x/text/message"
  32. )
  33. // Excel formula errors
  34. const (
  35. formulaErrorDIV = "#DIV/0!"
  36. formulaErrorNAME = "#NAME?"
  37. formulaErrorNA = "#N/A"
  38. formulaErrorNUM = "#NUM!"
  39. formulaErrorVALUE = "#VALUE!"
  40. formulaErrorREF = "#REF!"
  41. formulaErrorNULL = "#NULL"
  42. formulaErrorSPILL = "#SPILL!"
  43. formulaErrorCALC = "#CALC!"
  44. formulaErrorGETTINGDATA = "#GETTING_DATA"
  45. )
  46. // Numeric precision correct numeric values as legacy Excel application
  47. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  48. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  49. // has a decimal representation that is an infinite string of ones, Excel
  50. // displays only the leading 15 figures. In the second line, the number one
  51. // is added to the fraction, and again Excel displays only 15 figures.
  52. const numericPrecision = 1000000000000000
  53. // cellRef defines the structure of a cell reference.
  54. type cellRef struct {
  55. Col int
  56. Row int
  57. Sheet string
  58. }
  59. // cellRef defines the structure of a cell range.
  60. type cellRange struct {
  61. From cellRef
  62. To cellRef
  63. }
  64. // formula criteria condition enumeration.
  65. const (
  66. _ byte = iota
  67. criteriaEq
  68. criteriaLe
  69. criteriaGe
  70. criteriaL
  71. criteriaG
  72. criteriaBeg
  73. criteriaEnd
  74. criteriaErr
  75. )
  76. // formulaCriteria defined formula criteria parser result.
  77. type formulaCriteria struct {
  78. Type byte
  79. Condition string
  80. }
  81. // ArgType is the type if formula argument type.
  82. type ArgType byte
  83. // Formula argument types enumeration.
  84. const (
  85. ArgUnknown ArgType = iota
  86. ArgNumber
  87. ArgString
  88. ArgList
  89. ArgMatrix
  90. ArgError
  91. ArgEmpty
  92. )
  93. // formulaArg is the argument of a formula or function.
  94. type formulaArg struct {
  95. SheetName string
  96. Number float64
  97. String string
  98. List []formulaArg
  99. Matrix [][]formulaArg
  100. Boolean bool
  101. Error string
  102. Type ArgType
  103. cellRefs, cellRanges *list.List
  104. }
  105. // Value returns a string data type of the formula argument.
  106. func (fa formulaArg) Value() (value string) {
  107. switch fa.Type {
  108. case ArgNumber:
  109. if fa.Boolean {
  110. if fa.Number == 0 {
  111. return "FALSE"
  112. }
  113. return "TRUE"
  114. }
  115. return fmt.Sprintf("%g", fa.Number)
  116. case ArgString:
  117. return fa.String
  118. case ArgError:
  119. return fa.Error
  120. }
  121. return
  122. }
  123. // ToNumber returns a formula argument with number data type.
  124. func (fa formulaArg) ToNumber() formulaArg {
  125. var n float64
  126. var err error
  127. switch fa.Type {
  128. case ArgString:
  129. n, err = strconv.ParseFloat(fa.String, 64)
  130. if err != nil {
  131. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  132. }
  133. case ArgNumber:
  134. n = fa.Number
  135. }
  136. return newNumberFormulaArg(n)
  137. }
  138. // ToBool returns a formula argument with boolean data type.
  139. func (fa formulaArg) ToBool() formulaArg {
  140. var b bool
  141. var err error
  142. switch fa.Type {
  143. case ArgString:
  144. b, err = strconv.ParseBool(fa.String)
  145. if err != nil {
  146. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  147. }
  148. case ArgNumber:
  149. if fa.Boolean && fa.Number == 1 {
  150. b = true
  151. }
  152. }
  153. return newBoolFormulaArg(b)
  154. }
  155. // ToList returns a formula argument with array data type.
  156. func (fa formulaArg) ToList() []formulaArg {
  157. switch fa.Type {
  158. case ArgMatrix:
  159. list := []formulaArg{}
  160. for _, row := range fa.Matrix {
  161. list = append(list, row...)
  162. }
  163. return list
  164. case ArgList:
  165. return fa.List
  166. case ArgNumber, ArgString, ArgError, ArgUnknown:
  167. return []formulaArg{fa}
  168. }
  169. return nil
  170. }
  171. // formulaFuncs is the type of the formula functions.
  172. type formulaFuncs struct {
  173. f *File
  174. sheet, cell string
  175. }
  176. // tokenPriority defined basic arithmetic operator priority.
  177. var tokenPriority = map[string]int{
  178. "^": 5,
  179. "*": 4,
  180. "/": 4,
  181. "+": 3,
  182. "-": 3,
  183. "=": 2,
  184. "<>": 2,
  185. "<": 2,
  186. "<=": 2,
  187. ">": 2,
  188. ">=": 2,
  189. "&": 1,
  190. }
  191. // CalcCellValue provides a function to get calculated cell value. This
  192. // feature is currently in working processing. Array formula, table formula
  193. // and some other formulas are not supported currently.
  194. //
  195. // Supported formula functions:
  196. //
  197. // ABS
  198. // ACOS
  199. // ACOSH
  200. // ACOT
  201. // ACOTH
  202. // AND
  203. // ARABIC
  204. // ASIN
  205. // ASINH
  206. // ATAN
  207. // ATAN2
  208. // ATANH
  209. // AVERAGE
  210. // AVERAGEA
  211. // BASE
  212. // BESSELI
  213. // BESSELJ
  214. // BIN2DEC
  215. // BIN2HEX
  216. // BIN2OCT
  217. // BITAND
  218. // BITLSHIFT
  219. // BITOR
  220. // BITRSHIFT
  221. // BITXOR
  222. // CEILING
  223. // CEILING.MATH
  224. // CEILING.PRECISE
  225. // CHAR
  226. // CHOOSE
  227. // CLEAN
  228. // CODE
  229. // COLUMN
  230. // COLUMNS
  231. // COMBIN
  232. // COMBINA
  233. // COMPLEX
  234. // CONCAT
  235. // CONCATENATE
  236. // COS
  237. // COSH
  238. // COT
  239. // COTH
  240. // COUNT
  241. // COUNTA
  242. // COUNTBLANK
  243. // CSC
  244. // CSCH
  245. // CUMIPMT
  246. // CUMPRINC
  247. // DATE
  248. // DATEDIF
  249. // DB
  250. // DDB
  251. // DEC2BIN
  252. // DEC2HEX
  253. // DEC2OCT
  254. // DECIMAL
  255. // DEGREES
  256. // DOLLARDE
  257. // DOLLARFR
  258. // EFFECT
  259. // ENCODEURL
  260. // EVEN
  261. // EXACT
  262. // EXP
  263. // FACT
  264. // FACTDOUBLE
  265. // FALSE
  266. // FIND
  267. // FINDB
  268. // FISHER
  269. // FISHERINV
  270. // FIXED
  271. // FLOOR
  272. // FLOOR.MATH
  273. // FLOOR.PRECISE
  274. // FV
  275. // FVSCHEDULE
  276. // GAMMA
  277. // GAMMALN
  278. // GCD
  279. // HARMEAN
  280. // HEX2BIN
  281. // HEX2DEC
  282. // HEX2OCT
  283. // HLOOKUP
  284. // IF
  285. // IFERROR
  286. // IMABS
  287. // IMAGINARY
  288. // IMARGUMENT
  289. // IMCONJUGATE
  290. // IMCOS
  291. // IMCOSH
  292. // IMCOT
  293. // IMCSC
  294. // IMCSCH
  295. // IMDIV
  296. // IMEXP
  297. // IMLN
  298. // IMLOG10
  299. // IMLOG2
  300. // IMPOWER
  301. // IMPRODUCT
  302. // IMREAL
  303. // IMSEC
  304. // IMSECH
  305. // IMSIN
  306. // IMSINH
  307. // IMSQRT
  308. // IMSUB
  309. // IMSUM
  310. // IMTAN
  311. // INT
  312. // IPMT
  313. // ISBLANK
  314. // ISERR
  315. // ISERROR
  316. // ISEVEN
  317. // ISNA
  318. // ISNONTEXT
  319. // ISNUMBER
  320. // ISODD
  321. // ISTEXT
  322. // ISO.CEILING
  323. // ISPMT
  324. // KURT
  325. // LARGE
  326. // LCM
  327. // LEFT
  328. // LEFTB
  329. // LEN
  330. // LENB
  331. // LN
  332. // LOG
  333. // LOG10
  334. // LOOKUP
  335. // LOWER
  336. // MAX
  337. // MDETERM
  338. // MEDIAN
  339. // MID
  340. // MIDB
  341. // MIN
  342. // MINA
  343. // MOD
  344. // MROUND
  345. // MULTINOMIAL
  346. // MUNIT
  347. // N
  348. // NA
  349. // NOMINAL
  350. // NORM.DIST
  351. // NORMDIST
  352. // NORM.INV
  353. // NORMINV
  354. // NORM.S.DIST
  355. // NORMSDIST
  356. // NORM.S.INV
  357. // NORMSINV
  358. // NOT
  359. // NOW
  360. // NPER
  361. // NPV
  362. // OCT2BIN
  363. // OCT2DEC
  364. // OCT2HEX
  365. // ODD
  366. // OR
  367. // PDURATION
  368. // PERCENTILE.INC
  369. // PERCENTILE
  370. // PERMUT
  371. // PERMUTATIONA
  372. // PI
  373. // PMT
  374. // POISSON.DIST
  375. // POISSON
  376. // POWER
  377. // PPMT
  378. // PRODUCT
  379. // PROPER
  380. // QUARTILE
  381. // QUARTILE.INC
  382. // QUOTIENT
  383. // RADIANS
  384. // RAND
  385. // RANDBETWEEN
  386. // REPLACE
  387. // REPLACEB
  388. // REPT
  389. // RIGHT
  390. // RIGHTB
  391. // ROMAN
  392. // ROUND
  393. // ROUNDDOWN
  394. // ROUNDUP
  395. // ROW
  396. // ROWS
  397. // SEC
  398. // SECH
  399. // SHEET
  400. // SIGN
  401. // SIN
  402. // SINH
  403. // SKEW
  404. // SMALL
  405. // SQRT
  406. // SQRTPI
  407. // STDEV
  408. // STDEV.S
  409. // STDEVA
  410. // SUBSTITUTE
  411. // SUM
  412. // SUMIF
  413. // SUMSQ
  414. // T
  415. // TAN
  416. // TANH
  417. // TODAY
  418. // TRIM
  419. // TRUE
  420. // TRUNC
  421. // UNICHAR
  422. // UNICODE
  423. // UPPER
  424. // VAR.P
  425. // VARP
  426. // VLOOKUP
  427. //
  428. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  429. var (
  430. formula string
  431. token efp.Token
  432. )
  433. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  434. return
  435. }
  436. ps := efp.ExcelParser()
  437. tokens := ps.Parse(formula)
  438. if tokens == nil {
  439. return
  440. }
  441. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  442. return
  443. }
  444. result = token.TValue
  445. isNum, precision := isNumeric(result)
  446. if isNum && precision > 15 {
  447. num, _ := roundPrecision(result)
  448. result = strings.ToUpper(num)
  449. }
  450. return
  451. }
  452. // getPriority calculate arithmetic operator priority.
  453. func getPriority(token efp.Token) (pri int) {
  454. pri = tokenPriority[token.TValue]
  455. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  456. pri = 6
  457. }
  458. if isBeginParenthesesToken(token) { // (
  459. pri = 0
  460. }
  461. return
  462. }
  463. // newNumberFormulaArg constructs a number formula argument.
  464. func newNumberFormulaArg(n float64) formulaArg {
  465. if math.IsNaN(n) {
  466. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  467. }
  468. return formulaArg{Type: ArgNumber, Number: n}
  469. }
  470. // newStringFormulaArg constructs a string formula argument.
  471. func newStringFormulaArg(s string) formulaArg {
  472. return formulaArg{Type: ArgString, String: s}
  473. }
  474. // newMatrixFormulaArg constructs a matrix formula argument.
  475. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  476. return formulaArg{Type: ArgMatrix, Matrix: m}
  477. }
  478. // newListFormulaArg create a list formula argument.
  479. func newListFormulaArg(l []formulaArg) formulaArg {
  480. return formulaArg{Type: ArgList, List: l}
  481. }
  482. // newBoolFormulaArg constructs a boolean formula argument.
  483. func newBoolFormulaArg(b bool) formulaArg {
  484. var n float64
  485. if b {
  486. n = 1
  487. }
  488. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  489. }
  490. // newErrorFormulaArg create an error formula argument of a given type with a
  491. // specified error message.
  492. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  493. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  494. }
  495. // newEmptyFormulaArg create an empty formula argument.
  496. func newEmptyFormulaArg() formulaArg {
  497. return formulaArg{Type: ArgEmpty}
  498. }
  499. // evalInfixExp evaluate syntax analysis by given infix expression after
  500. // lexical analysis. Evaluate an infix expression containing formulas by
  501. // stacks:
  502. //
  503. // opd - Operand
  504. // opt - Operator
  505. // opf - Operation formula
  506. // opfd - Operand of the operation formula
  507. // opft - Operator of the operation formula
  508. // args - Arguments list of the operation formula
  509. //
  510. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  511. //
  512. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  513. var err error
  514. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  515. for i := 0; i < len(tokens); i++ {
  516. token := tokens[i]
  517. // out of function stack
  518. if opfStack.Len() == 0 {
  519. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  520. return efp.Token{}, err
  521. }
  522. }
  523. // function start
  524. if isFunctionStartToken(token) {
  525. opfStack.Push(token)
  526. argsStack.Push(list.New().Init())
  527. continue
  528. }
  529. // in function stack, walk 2 token at once
  530. if opfStack.Len() > 0 {
  531. var nextToken efp.Token
  532. if i+1 < len(tokens) {
  533. nextToken = tokens[i+1]
  534. }
  535. // current token is args or range, skip next token, order required: parse reference first
  536. if token.TSubType == efp.TokenSubTypeRange {
  537. if !opftStack.Empty() {
  538. // parse reference: must reference at here
  539. result, err := f.parseReference(sheet, token.TValue)
  540. if err != nil {
  541. return efp.Token{TValue: formulaErrorNAME}, err
  542. }
  543. if result.Type != ArgString {
  544. return efp.Token{}, errors.New(formulaErrorVALUE)
  545. }
  546. opfdStack.Push(efp.Token{
  547. TType: efp.TokenTypeOperand,
  548. TSubType: efp.TokenSubTypeNumber,
  549. TValue: result.String,
  550. })
  551. continue
  552. }
  553. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  554. // parse reference: reference or range at here
  555. result, err := f.parseReference(sheet, token.TValue)
  556. if err != nil {
  557. return efp.Token{TValue: formulaErrorNAME}, err
  558. }
  559. if result.Type == ArgUnknown {
  560. return efp.Token{}, errors.New(formulaErrorVALUE)
  561. }
  562. argsStack.Peek().(*list.List).PushBack(result)
  563. continue
  564. }
  565. }
  566. // check current token is opft
  567. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  568. return efp.Token{}, err
  569. }
  570. // current token is arg
  571. if token.TType == efp.TokenTypeArgument {
  572. for !opftStack.Empty() {
  573. // calculate trigger
  574. topOpt := opftStack.Peek().(efp.Token)
  575. if err := calculate(opfdStack, topOpt); err != nil {
  576. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  577. }
  578. opftStack.Pop()
  579. }
  580. if !opfdStack.Empty() {
  581. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  582. }
  583. continue
  584. }
  585. // current token is logical
  586. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  587. }
  588. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  589. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  590. }
  591. // current token is text
  592. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  593. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  594. }
  595. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  596. return efp.Token{}, err
  597. }
  598. }
  599. }
  600. for optStack.Len() != 0 {
  601. topOpt := optStack.Peek().(efp.Token)
  602. if err = calculate(opdStack, topOpt); err != nil {
  603. return efp.Token{}, err
  604. }
  605. optStack.Pop()
  606. }
  607. if opdStack.Len() == 0 {
  608. return efp.Token{}, errors.New("formula not valid")
  609. }
  610. return opdStack.Peek().(efp.Token), err
  611. }
  612. // evalInfixExpFunc evaluate formula function in the infix expression.
  613. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  614. if !isFunctionStopToken(token) {
  615. return nil
  616. }
  617. // current token is function stop
  618. for !opftStack.Empty() {
  619. // calculate trigger
  620. topOpt := opftStack.Peek().(efp.Token)
  621. if err := calculate(opfdStack, topOpt); err != nil {
  622. return err
  623. }
  624. opftStack.Pop()
  625. }
  626. // push opfd to args
  627. if opfdStack.Len() > 0 {
  628. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  629. }
  630. // call formula function to evaluate
  631. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  632. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  633. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  634. if arg.Type == ArgError && opfStack.Len() == 1 {
  635. return errors.New(arg.Value())
  636. }
  637. argsStack.Pop()
  638. opfStack.Pop()
  639. if opfStack.Len() > 0 { // still in function stack
  640. if nextToken.TType == efp.TokenTypeOperatorInfix {
  641. // mathematics calculate in formula function
  642. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  643. } else {
  644. argsStack.Peek().(*list.List).PushBack(arg)
  645. }
  646. } else {
  647. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  648. }
  649. return nil
  650. }
  651. // calcPow evaluate exponentiation arithmetic operations.
  652. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  653. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  654. if err != nil {
  655. return err
  656. }
  657. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  658. if err != nil {
  659. return err
  660. }
  661. result := math.Pow(lOpdVal, rOpdVal)
  662. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  663. return nil
  664. }
  665. // calcEq evaluate equal arithmetic operations.
  666. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  667. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  668. return nil
  669. }
  670. // calcNEq evaluate not equal arithmetic operations.
  671. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  672. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  673. return nil
  674. }
  675. // calcL evaluate less than arithmetic operations.
  676. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  677. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  678. if err != nil {
  679. return err
  680. }
  681. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  682. if err != nil {
  683. return err
  684. }
  685. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  686. return nil
  687. }
  688. // calcLe evaluate less than or equal arithmetic operations.
  689. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  690. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  691. if err != nil {
  692. return err
  693. }
  694. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  695. if err != nil {
  696. return err
  697. }
  698. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  699. return nil
  700. }
  701. // calcG evaluate greater than or equal arithmetic operations.
  702. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  703. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  704. if err != nil {
  705. return err
  706. }
  707. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  708. if err != nil {
  709. return err
  710. }
  711. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  712. return nil
  713. }
  714. // calcGe evaluate greater than or equal arithmetic operations.
  715. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  716. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  717. if err != nil {
  718. return err
  719. }
  720. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  721. if err != nil {
  722. return err
  723. }
  724. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  725. return nil
  726. }
  727. // calcSplice evaluate splice '&' operations.
  728. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  729. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  730. return nil
  731. }
  732. // calcAdd evaluate addition arithmetic operations.
  733. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  734. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  735. if err != nil {
  736. return err
  737. }
  738. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  739. if err != nil {
  740. return err
  741. }
  742. result := lOpdVal + rOpdVal
  743. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  744. return nil
  745. }
  746. // calcSubtract evaluate subtraction arithmetic operations.
  747. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  748. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  749. if err != nil {
  750. return err
  751. }
  752. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  753. if err != nil {
  754. return err
  755. }
  756. result := lOpdVal - rOpdVal
  757. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  758. return nil
  759. }
  760. // calcMultiply evaluate multiplication arithmetic operations.
  761. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  762. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  763. if err != nil {
  764. return err
  765. }
  766. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  767. if err != nil {
  768. return err
  769. }
  770. result := lOpdVal * rOpdVal
  771. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  772. return nil
  773. }
  774. // calcDiv evaluate division arithmetic operations.
  775. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  776. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  777. if err != nil {
  778. return err
  779. }
  780. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  781. if err != nil {
  782. return err
  783. }
  784. result := lOpdVal / rOpdVal
  785. if rOpdVal == 0 {
  786. return errors.New(formulaErrorDIV)
  787. }
  788. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  789. return nil
  790. }
  791. // calculate evaluate basic arithmetic operations.
  792. func calculate(opdStack *Stack, opt efp.Token) error {
  793. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  794. if opdStack.Len() < 1 {
  795. return errors.New("formula not valid")
  796. }
  797. opd := opdStack.Pop().(efp.Token)
  798. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  799. if err != nil {
  800. return err
  801. }
  802. result := 0 - opdVal
  803. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  804. }
  805. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  806. "^": calcPow,
  807. "*": calcMultiply,
  808. "/": calcDiv,
  809. "+": calcAdd,
  810. "=": calcEq,
  811. "<>": calcNEq,
  812. "<": calcL,
  813. "<=": calcLe,
  814. ">": calcG,
  815. ">=": calcGe,
  816. "&": calcSplice,
  817. }
  818. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  819. if opdStack.Len() < 2 {
  820. return errors.New("formula not valid")
  821. }
  822. rOpd := opdStack.Pop().(efp.Token)
  823. lOpd := opdStack.Pop().(efp.Token)
  824. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  825. return err
  826. }
  827. }
  828. fn, ok := tokenCalcFunc[opt.TValue]
  829. if ok {
  830. if opdStack.Len() < 2 {
  831. return errors.New("formula not valid")
  832. }
  833. rOpd := opdStack.Pop().(efp.Token)
  834. lOpd := opdStack.Pop().(efp.Token)
  835. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  836. return err
  837. }
  838. }
  839. return nil
  840. }
  841. // parseOperatorPrefixToken parse operator prefix token.
  842. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  843. if optStack.Len() == 0 {
  844. optStack.Push(token)
  845. } else {
  846. tokenPriority := getPriority(token)
  847. topOpt := optStack.Peek().(efp.Token)
  848. topOptPriority := getPriority(topOpt)
  849. if tokenPriority > topOptPriority {
  850. optStack.Push(token)
  851. } else {
  852. for tokenPriority <= topOptPriority {
  853. optStack.Pop()
  854. if err = calculate(opdStack, topOpt); err != nil {
  855. return
  856. }
  857. if optStack.Len() > 0 {
  858. topOpt = optStack.Peek().(efp.Token)
  859. topOptPriority = getPriority(topOpt)
  860. continue
  861. }
  862. break
  863. }
  864. optStack.Push(token)
  865. }
  866. }
  867. return
  868. }
  869. // isFunctionStartToken determine if the token is function stop.
  870. func isFunctionStartToken(token efp.Token) bool {
  871. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  872. }
  873. // isFunctionStopToken determine if the token is function stop.
  874. func isFunctionStopToken(token efp.Token) bool {
  875. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  876. }
  877. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  878. func isBeginParenthesesToken(token efp.Token) bool {
  879. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  880. }
  881. // isEndParenthesesToken determine if the token is end parentheses: ).
  882. func isEndParenthesesToken(token efp.Token) bool {
  883. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  884. }
  885. // isOperatorPrefixToken determine if the token is parse operator prefix
  886. // token.
  887. func isOperatorPrefixToken(token efp.Token) bool {
  888. _, ok := tokenPriority[token.TValue]
  889. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  890. return true
  891. }
  892. return false
  893. }
  894. // getDefinedNameRefTo convert defined name to reference range.
  895. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  896. for _, definedName := range f.GetDefinedName() {
  897. if definedName.Name == definedNameName {
  898. refTo = definedName.RefersTo
  899. // worksheet scope takes precedence over scope workbook when both definedNames exist
  900. if definedName.Scope == currentSheet {
  901. break
  902. }
  903. }
  904. }
  905. return refTo
  906. }
  907. // parseToken parse basic arithmetic operator priority and evaluate based on
  908. // operators and operands.
  909. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  910. // parse reference: must reference at here
  911. if token.TSubType == efp.TokenSubTypeRange {
  912. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  913. if refTo != "" {
  914. token.TValue = refTo
  915. }
  916. result, err := f.parseReference(sheet, token.TValue)
  917. if err != nil {
  918. return errors.New(formulaErrorNAME)
  919. }
  920. if result.Type != ArgString {
  921. return errors.New(formulaErrorVALUE)
  922. }
  923. token.TValue = result.String
  924. token.TType = efp.TokenTypeOperand
  925. token.TSubType = efp.TokenSubTypeNumber
  926. }
  927. if isOperatorPrefixToken(token) {
  928. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  929. return err
  930. }
  931. }
  932. if isBeginParenthesesToken(token) { // (
  933. optStack.Push(token)
  934. }
  935. if isEndParenthesesToken(token) { // )
  936. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  937. topOpt := optStack.Peek().(efp.Token)
  938. if err := calculate(opdStack, topOpt); err != nil {
  939. return err
  940. }
  941. optStack.Pop()
  942. }
  943. optStack.Pop()
  944. }
  945. // opd
  946. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  947. opdStack.Push(token)
  948. }
  949. return nil
  950. }
  951. // parseReference parse reference and extract values by given reference
  952. // characters and default sheet name.
  953. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  954. reference = strings.Replace(reference, "$", "", -1)
  955. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  956. for _, ref := range strings.Split(reference, ":") {
  957. tokens := strings.Split(ref, "!")
  958. cr := cellRef{}
  959. if len(tokens) == 2 { // have a worksheet name
  960. cr.Sheet = tokens[0]
  961. // cast to cell coordinates
  962. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  963. // cast to column
  964. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  965. // cast to row
  966. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  967. err = newInvalidColumnNameError(tokens[1])
  968. return
  969. }
  970. cr.Col = TotalColumns
  971. }
  972. }
  973. if refs.Len() > 0 {
  974. e := refs.Back()
  975. cellRefs.PushBack(e.Value.(cellRef))
  976. refs.Remove(e)
  977. }
  978. refs.PushBack(cr)
  979. continue
  980. }
  981. // cast to cell coordinates
  982. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  983. // cast to column
  984. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  985. // cast to row
  986. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  987. err = newInvalidColumnNameError(tokens[0])
  988. return
  989. }
  990. cr.Col = TotalColumns
  991. }
  992. cellRanges.PushBack(cellRange{
  993. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  994. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  995. })
  996. cellRefs.Init()
  997. arg, err = f.rangeResolver(cellRefs, cellRanges)
  998. return
  999. }
  1000. e := refs.Back()
  1001. if e == nil {
  1002. cr.Sheet = sheet
  1003. refs.PushBack(cr)
  1004. continue
  1005. }
  1006. cellRanges.PushBack(cellRange{
  1007. From: e.Value.(cellRef),
  1008. To: cr,
  1009. })
  1010. refs.Remove(e)
  1011. }
  1012. if refs.Len() > 0 {
  1013. e := refs.Back()
  1014. cellRefs.PushBack(e.Value.(cellRef))
  1015. refs.Remove(e)
  1016. }
  1017. arg, err = f.rangeResolver(cellRefs, cellRanges)
  1018. return
  1019. }
  1020. // prepareValueRange prepare value range.
  1021. func prepareValueRange(cr cellRange, valueRange []int) {
  1022. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  1023. valueRange[0] = cr.From.Row
  1024. }
  1025. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  1026. valueRange[2] = cr.From.Col
  1027. }
  1028. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  1029. valueRange[1] = cr.To.Row
  1030. }
  1031. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  1032. valueRange[3] = cr.To.Col
  1033. }
  1034. }
  1035. // prepareValueRef prepare value reference.
  1036. func prepareValueRef(cr cellRef, valueRange []int) {
  1037. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  1038. valueRange[0] = cr.Row
  1039. }
  1040. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  1041. valueRange[2] = cr.Col
  1042. }
  1043. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  1044. valueRange[1] = cr.Row
  1045. }
  1046. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1047. valueRange[3] = cr.Col
  1048. }
  1049. }
  1050. // rangeResolver extract value as string from given reference and range list.
  1051. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1052. // be reference A1:B3.
  1053. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1054. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1055. // value range order: from row, to row, from column, to column
  1056. valueRange := []int{0, 0, 0, 0}
  1057. var sheet string
  1058. // prepare value range
  1059. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1060. cr := temp.Value.(cellRange)
  1061. if cr.From.Sheet != cr.To.Sheet {
  1062. err = errors.New(formulaErrorVALUE)
  1063. }
  1064. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1065. _ = sortCoordinates(rng)
  1066. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1067. prepareValueRange(cr, valueRange)
  1068. if cr.From.Sheet != "" {
  1069. sheet = cr.From.Sheet
  1070. }
  1071. }
  1072. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1073. cr := temp.Value.(cellRef)
  1074. if cr.Sheet != "" {
  1075. sheet = cr.Sheet
  1076. }
  1077. prepareValueRef(cr, valueRange)
  1078. }
  1079. // extract value from ranges
  1080. if cellRanges.Len() > 0 {
  1081. arg.Type = ArgMatrix
  1082. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1083. var matrixRow = []formulaArg{}
  1084. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1085. var cell, value string
  1086. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1087. return
  1088. }
  1089. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1090. return
  1091. }
  1092. matrixRow = append(matrixRow, formulaArg{
  1093. String: value,
  1094. Type: ArgString,
  1095. })
  1096. }
  1097. arg.Matrix = append(arg.Matrix, matrixRow)
  1098. }
  1099. return
  1100. }
  1101. // extract value from references
  1102. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1103. cr := temp.Value.(cellRef)
  1104. var cell string
  1105. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1106. return
  1107. }
  1108. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1109. return
  1110. }
  1111. arg.Type = ArgString
  1112. }
  1113. return
  1114. }
  1115. // callFuncByName calls the no error or only error return function with
  1116. // reflect by given receiver, name and parameters.
  1117. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1118. function := reflect.ValueOf(receiver).MethodByName(name)
  1119. if function.IsValid() {
  1120. rt := function.Call(params)
  1121. if len(rt) == 0 {
  1122. return
  1123. }
  1124. arg = rt[0].Interface().(formulaArg)
  1125. return
  1126. }
  1127. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1128. }
  1129. // formulaCriteriaParser parse formula criteria.
  1130. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1131. fc = &formulaCriteria{}
  1132. if exp == "" {
  1133. return
  1134. }
  1135. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1136. fc.Type, fc.Condition = criteriaEq, match[1]
  1137. return
  1138. }
  1139. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1140. fc.Type, fc.Condition = criteriaEq, match[1]
  1141. return
  1142. }
  1143. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1144. fc.Type, fc.Condition = criteriaLe, match[1]
  1145. return
  1146. }
  1147. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1148. fc.Type, fc.Condition = criteriaGe, match[1]
  1149. return
  1150. }
  1151. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1152. fc.Type, fc.Condition = criteriaL, match[1]
  1153. return
  1154. }
  1155. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1156. fc.Type, fc.Condition = criteriaG, match[1]
  1157. return
  1158. }
  1159. if strings.Contains(exp, "*") {
  1160. if strings.HasPrefix(exp, "*") {
  1161. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1162. }
  1163. if strings.HasSuffix(exp, "*") {
  1164. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1165. }
  1166. return
  1167. }
  1168. fc.Type, fc.Condition = criteriaEq, exp
  1169. return
  1170. }
  1171. // formulaCriteriaEval evaluate formula criteria expression.
  1172. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1173. var value, expected float64
  1174. var e error
  1175. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1176. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1177. return
  1178. }
  1179. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1180. return
  1181. }
  1182. return
  1183. }
  1184. switch criteria.Type {
  1185. case criteriaEq:
  1186. return val == criteria.Condition, err
  1187. case criteriaLe:
  1188. value, expected, e = prepareValue(val, criteria.Condition)
  1189. return value <= expected && e == nil, err
  1190. case criteriaGe:
  1191. value, expected, e = prepareValue(val, criteria.Condition)
  1192. return value >= expected && e == nil, err
  1193. case criteriaL:
  1194. value, expected, e = prepareValue(val, criteria.Condition)
  1195. return value < expected && e == nil, err
  1196. case criteriaG:
  1197. value, expected, e = prepareValue(val, criteria.Condition)
  1198. return value > expected && e == nil, err
  1199. case criteriaBeg:
  1200. return strings.HasPrefix(val, criteria.Condition), err
  1201. case criteriaEnd:
  1202. return strings.HasSuffix(val, criteria.Condition), err
  1203. }
  1204. return
  1205. }
  1206. // Engineering Functions
  1207. // BESSELI function the modified Bessel function, which is equivalent to the
  1208. // Bessel function evaluated for purely imaginary arguments. The syntax of
  1209. // the Besseli function is:
  1210. //
  1211. // BESSELI(x,n)
  1212. //
  1213. func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
  1214. if argsList.Len() != 2 {
  1215. return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
  1216. }
  1217. return fn.bassel(argsList, true)
  1218. }
  1219. // BESSELJ function returns the Bessel function, Jn(x), for a specified order
  1220. // and value of x. The syntax of the function is:
  1221. //
  1222. // BESSELJ(x,n)
  1223. //
  1224. func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
  1225. if argsList.Len() != 2 {
  1226. return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
  1227. }
  1228. return fn.bassel(argsList, false)
  1229. }
  1230. // bassel is an implementation of the formula function BESSELI and BESSELJ.
  1231. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
  1232. x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1233. if x.Type != ArgNumber {
  1234. return x
  1235. }
  1236. if n.Type != ArgNumber {
  1237. return n
  1238. }
  1239. max, x1 := 100, x.Number*0.5
  1240. x2 := x1 * x1
  1241. x1 = math.Pow(x1, n.Number)
  1242. n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
  1243. result := x1 / n1
  1244. t := result * 0.9
  1245. for result != t && max != 0 {
  1246. x1 *= x2
  1247. n3++
  1248. n1 *= n3
  1249. n4++
  1250. n2 *= n4
  1251. t = result
  1252. if modfied || add {
  1253. result += (x1 / n1 / n2)
  1254. } else {
  1255. result -= (x1 / n1 / n2)
  1256. }
  1257. max--
  1258. add = !add
  1259. }
  1260. return newNumberFormulaArg(result)
  1261. }
  1262. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1263. // The syntax of the function is:
  1264. //
  1265. // BIN2DEC(number)
  1266. //
  1267. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1268. if argsList.Len() != 1 {
  1269. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1270. }
  1271. token := argsList.Front().Value.(formulaArg)
  1272. number := token.ToNumber()
  1273. if number.Type != ArgNumber {
  1274. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1275. }
  1276. return fn.bin2dec(token.Value())
  1277. }
  1278. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1279. // (Base 16) number. The syntax of the function is:
  1280. //
  1281. // BIN2HEX(number,[places])
  1282. //
  1283. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1284. if argsList.Len() < 1 {
  1285. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1286. }
  1287. if argsList.Len() > 2 {
  1288. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1289. }
  1290. token := argsList.Front().Value.(formulaArg)
  1291. number := token.ToNumber()
  1292. if number.Type != ArgNumber {
  1293. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1294. }
  1295. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1296. if decimal.Type != ArgNumber {
  1297. return decimal
  1298. }
  1299. newList.PushBack(decimal)
  1300. if argsList.Len() == 2 {
  1301. newList.PushBack(argsList.Back().Value.(formulaArg))
  1302. }
  1303. return fn.dec2x("BIN2HEX", newList)
  1304. }
  1305. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1306. // number. The syntax of the function is:
  1307. //
  1308. // BIN2OCT(number,[places])
  1309. //
  1310. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1311. if argsList.Len() < 1 {
  1312. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1313. }
  1314. if argsList.Len() > 2 {
  1315. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1316. }
  1317. token := argsList.Front().Value.(formulaArg)
  1318. number := token.ToNumber()
  1319. if number.Type != ArgNumber {
  1320. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1321. }
  1322. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1323. if decimal.Type != ArgNumber {
  1324. return decimal
  1325. }
  1326. newList.PushBack(decimal)
  1327. if argsList.Len() == 2 {
  1328. newList.PushBack(argsList.Back().Value.(formulaArg))
  1329. }
  1330. return fn.dec2x("BIN2OCT", newList)
  1331. }
  1332. // bin2dec is an implementation of the formula function BIN2DEC.
  1333. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1334. decimal, length := 0.0, len(number)
  1335. for i := length; i > 0; i-- {
  1336. s := string(number[length-i])
  1337. if i == 10 && s == "1" {
  1338. decimal += math.Pow(-2.0, float64(i-1))
  1339. continue
  1340. }
  1341. if s == "1" {
  1342. decimal += math.Pow(2.0, float64(i-1))
  1343. continue
  1344. }
  1345. if s != "0" {
  1346. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1347. }
  1348. }
  1349. return newNumberFormulaArg(decimal)
  1350. }
  1351. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1352. // syntax of the function is:
  1353. //
  1354. // BITAND(number1,number2)
  1355. //
  1356. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1357. return fn.bitwise("BITAND", argsList)
  1358. }
  1359. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1360. // number of bits. The syntax of the function is:
  1361. //
  1362. // BITLSHIFT(number1,shift_amount)
  1363. //
  1364. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1365. return fn.bitwise("BITLSHIFT", argsList)
  1366. }
  1367. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1368. // syntax of the function is:
  1369. //
  1370. // BITOR(number1,number2)
  1371. //
  1372. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1373. return fn.bitwise("BITOR", argsList)
  1374. }
  1375. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1376. // number of bits. The syntax of the function is:
  1377. //
  1378. // BITRSHIFT(number1,shift_amount)
  1379. //
  1380. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1381. return fn.bitwise("BITRSHIFT", argsList)
  1382. }
  1383. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1384. // integers. The syntax of the function is:
  1385. //
  1386. // BITXOR(number1,number2)
  1387. //
  1388. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1389. return fn.bitwise("BITXOR", argsList)
  1390. }
  1391. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1392. // BITOR, BITRSHIFT and BITXOR.
  1393. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1394. if argsList.Len() != 2 {
  1395. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1396. }
  1397. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1398. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1399. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1400. }
  1401. max := math.Pow(2, 48) - 1
  1402. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1403. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1404. }
  1405. bitwiseFuncMap := map[string]func(a, b int) int{
  1406. "BITAND": func(a, b int) int { return a & b },
  1407. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1408. "BITOR": func(a, b int) int { return a | b },
  1409. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1410. "BITXOR": func(a, b int) int { return a ^ b },
  1411. }
  1412. bitwiseFunc := bitwiseFuncMap[name]
  1413. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1414. }
  1415. // COMPLEX function takes two arguments, representing the real and the
  1416. // imaginary coefficients of a complex number, and from these, creates a
  1417. // complex number. The syntax of the function is:
  1418. //
  1419. // COMPLEX(real_num,i_num,[suffix])
  1420. //
  1421. func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
  1422. if argsList.Len() < 2 {
  1423. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
  1424. }
  1425. if argsList.Len() > 3 {
  1426. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
  1427. }
  1428. real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
  1429. if real.Type != ArgNumber {
  1430. return real
  1431. }
  1432. if i.Type != ArgNumber {
  1433. return i
  1434. }
  1435. if argsList.Len() == 3 {
  1436. if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
  1437. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1438. }
  1439. }
  1440. return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))
  1441. }
  1442. // cmplx2str replace complex number string characters.
  1443. func cmplx2str(c, suffix string) string {
  1444. if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" {
  1445. return "0"
  1446. }
  1447. c = strings.TrimPrefix(c, "(")
  1448. c = strings.TrimPrefix(c, "+0+")
  1449. c = strings.TrimPrefix(c, "-0+")
  1450. c = strings.TrimSuffix(c, ")")
  1451. c = strings.TrimPrefix(c, "0+")
  1452. if strings.HasPrefix(c, "0-") {
  1453. c = "-" + strings.TrimPrefix(c, "0-")
  1454. }
  1455. c = strings.TrimPrefix(c, "0+")
  1456. c = strings.TrimSuffix(c, "+0i")
  1457. c = strings.TrimSuffix(c, "-0i")
  1458. c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c)
  1459. c = strings.Replace(c, "i", suffix, -1)
  1460. return c
  1461. }
  1462. // str2cmplx convert complex number string characters.
  1463. func str2cmplx(c string) string {
  1464. c = strings.Replace(c, "j", "i", -1)
  1465. if c == "i" {
  1466. c = "1i"
  1467. }
  1468. c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)
  1469. return c
  1470. }
  1471. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1472. // The syntax of the function is:
  1473. //
  1474. // DEC2BIN(number,[places])
  1475. //
  1476. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1477. return fn.dec2x("DEC2BIN", argsList)
  1478. }
  1479. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1480. // number. The syntax of the function is:
  1481. //
  1482. // DEC2HEX(number,[places])
  1483. //
  1484. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1485. return fn.dec2x("DEC2HEX", argsList)
  1486. }
  1487. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1488. // The syntax of the function is:
  1489. //
  1490. // DEC2OCT(number,[places])
  1491. //
  1492. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1493. return fn.dec2x("DEC2OCT", argsList)
  1494. }
  1495. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1496. // DEC2OCT.
  1497. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1498. if argsList.Len() < 1 {
  1499. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1500. }
  1501. if argsList.Len() > 2 {
  1502. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1503. }
  1504. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1505. if decimal.Type != ArgNumber {
  1506. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1507. }
  1508. maxLimitMap := map[string]float64{
  1509. "DEC2BIN": 511,
  1510. "HEX2BIN": 511,
  1511. "OCT2BIN": 511,
  1512. "BIN2HEX": 549755813887,
  1513. "DEC2HEX": 549755813887,
  1514. "OCT2HEX": 549755813887,
  1515. "BIN2OCT": 536870911,
  1516. "DEC2OCT": 536870911,
  1517. "HEX2OCT": 536870911,
  1518. }
  1519. minLimitMap := map[string]float64{
  1520. "DEC2BIN": -512,
  1521. "HEX2BIN": -512,
  1522. "OCT2BIN": -512,
  1523. "BIN2HEX": -549755813888,
  1524. "DEC2HEX": -549755813888,
  1525. "OCT2HEX": -549755813888,
  1526. "BIN2OCT": -536870912,
  1527. "DEC2OCT": -536870912,
  1528. "HEX2OCT": -536870912,
  1529. }
  1530. baseMap := map[string]int{
  1531. "DEC2BIN": 2,
  1532. "HEX2BIN": 2,
  1533. "OCT2BIN": 2,
  1534. "BIN2HEX": 16,
  1535. "DEC2HEX": 16,
  1536. "OCT2HEX": 16,
  1537. "BIN2OCT": 8,
  1538. "DEC2OCT": 8,
  1539. "HEX2OCT": 8,
  1540. }
  1541. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1542. base := baseMap[name]
  1543. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1544. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1545. }
  1546. n := int64(decimal.Number)
  1547. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1548. if argsList.Len() == 2 {
  1549. places := argsList.Back().Value.(formulaArg).ToNumber()
  1550. if places.Type != ArgNumber {
  1551. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1552. }
  1553. binaryPlaces := len(binary)
  1554. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1555. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1556. }
  1557. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1558. }
  1559. if decimal.Number < 0 && len(binary) > 10 {
  1560. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1561. }
  1562. return newStringFormulaArg(strings.ToUpper(binary))
  1563. }
  1564. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1565. // (Base 2) number. The syntax of the function is:
  1566. //
  1567. // HEX2BIN(number,[places])
  1568. //
  1569. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1570. if argsList.Len() < 1 {
  1571. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1572. }
  1573. if argsList.Len() > 2 {
  1574. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1575. }
  1576. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1577. if decimal.Type != ArgNumber {
  1578. return decimal
  1579. }
  1580. newList.PushBack(decimal)
  1581. if argsList.Len() == 2 {
  1582. newList.PushBack(argsList.Back().Value.(formulaArg))
  1583. }
  1584. return fn.dec2x("HEX2BIN", newList)
  1585. }
  1586. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1587. // number. The syntax of the function is:
  1588. //
  1589. // HEX2DEC(number)
  1590. //
  1591. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1592. if argsList.Len() != 1 {
  1593. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1594. }
  1595. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1596. }
  1597. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1598. // (Base 8) number. The syntax of the function is:
  1599. //
  1600. // HEX2OCT(number,[places])
  1601. //
  1602. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1603. if argsList.Len() < 1 {
  1604. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1605. }
  1606. if argsList.Len() > 2 {
  1607. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1608. }
  1609. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1610. if decimal.Type != ArgNumber {
  1611. return decimal
  1612. }
  1613. newList.PushBack(decimal)
  1614. if argsList.Len() == 2 {
  1615. newList.PushBack(argsList.Back().Value.(formulaArg))
  1616. }
  1617. return fn.dec2x("HEX2OCT", newList)
  1618. }
  1619. // hex2dec is an implementation of the formula function HEX2DEC.
  1620. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1621. decimal, length := 0.0, len(number)
  1622. for i := length; i > 0; i-- {
  1623. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1624. if err != nil {
  1625. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1626. }
  1627. if i == 10 && string(number[length-i]) == "F" {
  1628. decimal += math.Pow(-16.0, float64(i-1))
  1629. continue
  1630. }
  1631. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1632. }
  1633. return newNumberFormulaArg(decimal)
  1634. }
  1635. // IMABS function returns the absolute value (the modulus) of a complex
  1636. // number. The syntax of the function is:
  1637. //
  1638. // IMABS(inumber)
  1639. //
  1640. func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
  1641. if argsList.Len() != 1 {
  1642. return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
  1643. }
  1644. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1645. if err != nil {
  1646. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1647. }
  1648. return newNumberFormulaArg(cmplx.Abs(inumber))
  1649. }
  1650. // IMAGINARY function returns the imaginary coefficient of a supplied complex
  1651. // number. The syntax of the function is:
  1652. //
  1653. // IMAGINARY(inumber)
  1654. //
  1655. func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg {
  1656. if argsList.Len() != 1 {
  1657. return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument")
  1658. }
  1659. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1660. if err != nil {
  1661. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1662. }
  1663. return newNumberFormulaArg(imag(inumber))
  1664. }
  1665. // IMARGUMENT function returns the phase (also called the argument) of a
  1666. // supplied complex number. The syntax of the function is:
  1667. //
  1668. // IMARGUMENT(inumber)
  1669. //
  1670. func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg {
  1671. if argsList.Len() != 1 {
  1672. return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument")
  1673. }
  1674. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1675. if err != nil {
  1676. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1677. }
  1678. return newNumberFormulaArg(cmplx.Phase(inumber))
  1679. }
  1680. // IMCONJUGATE function returns the complex conjugate of a supplied complex
  1681. // number. The syntax of the function is:
  1682. //
  1683. // IMCONJUGATE(inumber)
  1684. //
  1685. func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg {
  1686. if argsList.Len() != 1 {
  1687. return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument")
  1688. }
  1689. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1690. if err != nil {
  1691. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1692. }
  1693. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i"))
  1694. }
  1695. // IMCOS function returns the cosine of a supplied complex number. The syntax
  1696. // of the function is:
  1697. //
  1698. // IMCOS(inumber)
  1699. //
  1700. func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
  1701. if argsList.Len() != 1 {
  1702. return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
  1703. }
  1704. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1705. if err != nil {
  1706. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1707. }
  1708. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))
  1709. }
  1710. // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax
  1711. // of the function is:
  1712. //
  1713. // IMCOSH(inumber)
  1714. //
  1715. func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {
  1716. if argsList.Len() != 1 {
  1717. return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")
  1718. }
  1719. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1720. if err != nil {
  1721. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1722. }
  1723. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))
  1724. }
  1725. // IMCOT function returns the cotangent of a supplied complex number. The syntax
  1726. // of the function is:
  1727. //
  1728. // IMCOT(inumber)
  1729. //
  1730. func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {
  1731. if argsList.Len() != 1 {
  1732. return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")
  1733. }
  1734. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1735. if err != nil {
  1736. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1737. }
  1738. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))
  1739. }
  1740. // IMCSC function returns the cosecant of a supplied complex number. The syntax
  1741. // of the function is:
  1742. //
  1743. // IMCSC(inumber)
  1744. //
  1745. func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {
  1746. if argsList.Len() != 1 {
  1747. return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")
  1748. }
  1749. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1750. if err != nil {
  1751. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1752. }
  1753. num := 1 / cmplx.Sin(inumber)
  1754. if cmplx.IsInf(num) {
  1755. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1756. }
  1757. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1758. }
  1759. // IMCSCH function returns the hyperbolic cosecant of a supplied complex
  1760. // number. The syntax of the function is:
  1761. //
  1762. // IMCSCH(inumber)
  1763. //
  1764. func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
  1765. if argsList.Len() != 1 {
  1766. return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")
  1767. }
  1768. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1769. if err != nil {
  1770. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1771. }
  1772. num := 1 / cmplx.Sinh(inumber)
  1773. if cmplx.IsInf(num) {
  1774. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1775. }
  1776. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1777. }
  1778. // IMDIV function calculates the quotient of two complex numbers (i.e. divides
  1779. // one complex number by another). The syntax of the function is:
  1780. //
  1781. // IMDIV(inumber1,inumber2)
  1782. //
  1783. func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg {
  1784. if argsList.Len() != 2 {
  1785. return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments")
  1786. }
  1787. inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1788. if err != nil {
  1789. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1790. }
  1791. inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  1792. if err != nil {
  1793. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1794. }
  1795. num := inumber1 / inumber2
  1796. if cmplx.IsInf(num) {
  1797. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1798. }
  1799. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1800. }
  1801. // IMEXP function returns the exponential of a supplied complex number. The
  1802. // syntax of the function is:
  1803. //
  1804. // IMEXP(inumber)
  1805. //
  1806. func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {
  1807. if argsList.Len() != 1 {
  1808. return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")
  1809. }
  1810. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1811. if err != nil {
  1812. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1813. }
  1814. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))
  1815. }
  1816. // IMLN function returns the natural logarithm of a supplied complex number.
  1817. // The syntax of the function is:
  1818. //
  1819. // IMLN(inumber)
  1820. //
  1821. func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {
  1822. if argsList.Len() != 1 {
  1823. return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")
  1824. }
  1825. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1826. if err != nil {
  1827. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1828. }
  1829. num := cmplx.Log(inumber)
  1830. if cmplx.IsInf(num) {
  1831. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1832. }
  1833. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1834. }
  1835. // IMLOG10 function returns the common (base 10) logarithm of a supplied
  1836. // complex number. The syntax of the function is:
  1837. //
  1838. // IMLOG10(inumber)
  1839. //
  1840. func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {
  1841. if argsList.Len() != 1 {
  1842. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")
  1843. }
  1844. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1845. if err != nil {
  1846. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1847. }
  1848. num := cmplx.Log10(inumber)
  1849. if cmplx.IsInf(num) {
  1850. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1851. }
  1852. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1853. }
  1854. // IMLOG2 function calculates the base 2 logarithm of a supplied complex
  1855. // number. The syntax of the function is:
  1856. //
  1857. // IMLOG2(inumber)
  1858. //
  1859. func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg {
  1860. if argsList.Len() != 1 {
  1861. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument")
  1862. }
  1863. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1864. if err != nil {
  1865. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1866. }
  1867. num := cmplx.Log(inumber)
  1868. if cmplx.IsInf(num) {
  1869. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1870. }
  1871. return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i"))
  1872. }
  1873. // IMPOWER function returns a supplied complex number, raised to a given
  1874. // power. The syntax of the function is:
  1875. //
  1876. // IMPOWER(inumber,number)
  1877. //
  1878. func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg {
  1879. if argsList.Len() != 2 {
  1880. return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments")
  1881. }
  1882. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1883. if err != nil {
  1884. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1885. }
  1886. number, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  1887. if err != nil {
  1888. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1889. }
  1890. if inumber == 0 && number == 0 {
  1891. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1892. }
  1893. num := cmplx.Pow(inumber, number)
  1894. if cmplx.IsInf(num) {
  1895. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1896. }
  1897. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1898. }
  1899. // IMPRODUCT function calculates the product of two or more complex numbers.
  1900. // The syntax of the function is:
  1901. //
  1902. // IMPRODUCT(number1,[number2],...)
  1903. //
  1904. func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg {
  1905. product := complex128(1)
  1906. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1907. token := arg.Value.(formulaArg)
  1908. switch token.Type {
  1909. case ArgString:
  1910. if token.Value() == "" {
  1911. continue
  1912. }
  1913. val, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
  1914. if err != nil {
  1915. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1916. }
  1917. product = product * val
  1918. case ArgNumber:
  1919. product = product * complex(token.Number, 0)
  1920. case ArgMatrix:
  1921. for _, row := range token.Matrix {
  1922. for _, value := range row {
  1923. if value.Value() == "" {
  1924. continue
  1925. }
  1926. val, err := strconv.ParseComplex(str2cmplx(value.Value()), 128)
  1927. if err != nil {
  1928. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1929. }
  1930. product = product * val
  1931. }
  1932. }
  1933. }
  1934. }
  1935. return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i"))
  1936. }
  1937. // IMREAL function returns the real coefficient of a supplied complex number.
  1938. // The syntax of the function is:
  1939. //
  1940. // IMREAL(inumber)
  1941. //
  1942. func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg {
  1943. if argsList.Len() != 1 {
  1944. return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument")
  1945. }
  1946. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1947. if err != nil {
  1948. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1949. }
  1950. return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i"))
  1951. }
  1952. // IMSEC function returns the secant of a supplied complex number. The syntax
  1953. // of the function is:
  1954. //
  1955. // IMSEC(inumber)
  1956. //
  1957. func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg {
  1958. if argsList.Len() != 1 {
  1959. return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument")
  1960. }
  1961. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1962. if err != nil {
  1963. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1964. }
  1965. return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i"))
  1966. }
  1967. // IMSECH function returns the hyperbolic secant of a supplied complex number.
  1968. // The syntax of the function is:
  1969. //
  1970. // IMSECH(inumber)
  1971. //
  1972. func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg {
  1973. if argsList.Len() != 1 {
  1974. return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument")
  1975. }
  1976. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1977. if err != nil {
  1978. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1979. }
  1980. return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i"))
  1981. }
  1982. // IMSIN function returns the Sine of a supplied complex number. The syntax of
  1983. // the function is:
  1984. //
  1985. // IMSIN(inumber)
  1986. //
  1987. func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg {
  1988. if argsList.Len() != 1 {
  1989. return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument")
  1990. }
  1991. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1992. if err != nil {
  1993. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1994. }
  1995. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i"))
  1996. }
  1997. // IMSINH function returns the hyperbolic sine of a supplied complex number.
  1998. // The syntax of the function is:
  1999. //
  2000. // IMSINH(inumber)
  2001. //
  2002. func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg {
  2003. if argsList.Len() != 1 {
  2004. return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument")
  2005. }
  2006. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  2007. if err != nil {
  2008. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2009. }
  2010. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i"))
  2011. }
  2012. // IMSQRT function returns the square root of a supplied complex number. The
  2013. // syntax of the function is:
  2014. //
  2015. // IMSQRT(inumber)
  2016. //
  2017. func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg {
  2018. if argsList.Len() != 1 {
  2019. return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument")
  2020. }
  2021. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  2022. if err != nil {
  2023. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2024. }
  2025. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i"))
  2026. }
  2027. // IMSUB function calculates the difference between two complex numbers
  2028. // (i.e. subtracts one complex number from another). The syntax of the
  2029. // function is:
  2030. //
  2031. // IMSUB(inumber1,inumber2)
  2032. //
  2033. func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg {
  2034. if argsList.Len() != 2 {
  2035. return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments")
  2036. }
  2037. i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  2038. if err != nil {
  2039. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2040. }
  2041. i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  2042. if err != nil {
  2043. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2044. }
  2045. return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i"))
  2046. }
  2047. // IMSUM function calculates the sum of two or more complex numbers. The
  2048. // syntax of the function is:
  2049. //
  2050. // IMSUM(inumber1,inumber2,...)
  2051. //
  2052. func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg {
  2053. if argsList.Len() < 1 {
  2054. return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument")
  2055. }
  2056. var result complex128
  2057. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2058. token := arg.Value.(formulaArg)
  2059. num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
  2060. if err != nil {
  2061. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2062. }
  2063. result += num
  2064. }
  2065. return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i"))
  2066. }
  2067. // IMTAN function returns the tangent of a supplied complex number. The syntax
  2068. // of the function is:
  2069. //
  2070. // IMTAN(inumber)
  2071. //
  2072. func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg {
  2073. if argsList.Len() != 1 {
  2074. return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument")
  2075. }
  2076. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  2077. if err != nil {
  2078. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  2079. }
  2080. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i"))
  2081. }
  2082. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  2083. // number. The syntax of the function is:
  2084. //
  2085. // OCT2BIN(number,[places])
  2086. //
  2087. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  2088. if argsList.Len() < 1 {
  2089. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  2090. }
  2091. if argsList.Len() > 2 {
  2092. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  2093. }
  2094. token := argsList.Front().Value.(formulaArg)
  2095. number := token.ToNumber()
  2096. if number.Type != ArgNumber {
  2097. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2098. }
  2099. decimal, newList := fn.oct2dec(token.Value()), list.New()
  2100. newList.PushBack(decimal)
  2101. if argsList.Len() == 2 {
  2102. newList.PushBack(argsList.Back().Value.(formulaArg))
  2103. }
  2104. return fn.dec2x("OCT2BIN", newList)
  2105. }
  2106. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  2107. // The syntax of the function is:
  2108. //
  2109. // OCT2DEC(number)
  2110. //
  2111. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  2112. if argsList.Len() != 1 {
  2113. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  2114. }
  2115. token := argsList.Front().Value.(formulaArg)
  2116. number := token.ToNumber()
  2117. if number.Type != ArgNumber {
  2118. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2119. }
  2120. return fn.oct2dec(token.Value())
  2121. }
  2122. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  2123. // (Base 16) number. The syntax of the function is:
  2124. //
  2125. // OCT2HEX(number,[places])
  2126. //
  2127. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  2128. if argsList.Len() < 1 {
  2129. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  2130. }
  2131. if argsList.Len() > 2 {
  2132. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  2133. }
  2134. token := argsList.Front().Value.(formulaArg)
  2135. number := token.ToNumber()
  2136. if number.Type != ArgNumber {
  2137. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  2138. }
  2139. decimal, newList := fn.oct2dec(token.Value()), list.New()
  2140. newList.PushBack(decimal)
  2141. if argsList.Len() == 2 {
  2142. newList.PushBack(argsList.Back().Value.(formulaArg))
  2143. }
  2144. return fn.dec2x("OCT2HEX", newList)
  2145. }
  2146. // oct2dec is an implementation of the formula function OCT2DEC.
  2147. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  2148. decimal, length := 0.0, len(number)
  2149. for i := length; i > 0; i-- {
  2150. num, _ := strconv.Atoi(string(number[length-i]))
  2151. if i == 10 && string(number[length-i]) == "7" {
  2152. decimal += math.Pow(-8.0, float64(i-1))
  2153. continue
  2154. }
  2155. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  2156. }
  2157. return newNumberFormulaArg(decimal)
  2158. }
  2159. // Math and Trigonometric Functions
  2160. // ABS function returns the absolute value of any supplied number. The syntax
  2161. // of the function is:
  2162. //
  2163. // ABS(number)
  2164. //
  2165. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  2166. if argsList.Len() != 1 {
  2167. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  2168. }
  2169. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2170. if arg.Type == ArgError {
  2171. return arg
  2172. }
  2173. return newNumberFormulaArg(math.Abs(arg.Number))
  2174. }
  2175. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  2176. // number, and returns an angle, in radians, between 0 and π. The syntax of
  2177. // the function is:
  2178. //
  2179. // ACOS(number)
  2180. //
  2181. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  2182. if argsList.Len() != 1 {
  2183. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  2184. }
  2185. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2186. if arg.Type == ArgError {
  2187. return arg
  2188. }
  2189. return newNumberFormulaArg(math.Acos(arg.Number))
  2190. }
  2191. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  2192. // of the function is:
  2193. //
  2194. // ACOSH(number)
  2195. //
  2196. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  2197. if argsList.Len() != 1 {
  2198. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  2199. }
  2200. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2201. if arg.Type == ArgError {
  2202. return arg
  2203. }
  2204. return newNumberFormulaArg(math.Acosh(arg.Number))
  2205. }
  2206. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  2207. // given number, and returns an angle, in radians, between 0 and π. The syntax
  2208. // of the function is:
  2209. //
  2210. // ACOT(number)
  2211. //
  2212. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  2213. if argsList.Len() != 1 {
  2214. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  2215. }
  2216. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2217. if arg.Type == ArgError {
  2218. return arg
  2219. }
  2220. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  2221. }
  2222. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  2223. // value. The syntax of the function is:
  2224. //
  2225. // ACOTH(number)
  2226. //
  2227. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  2228. if argsList.Len() != 1 {
  2229. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  2230. }
  2231. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2232. if arg.Type == ArgError {
  2233. return arg
  2234. }
  2235. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  2236. }
  2237. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  2238. // of the function is:
  2239. //
  2240. // ARABIC(text)
  2241. //
  2242. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  2243. if argsList.Len() != 1 {
  2244. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  2245. }
  2246. text := argsList.Front().Value.(formulaArg).Value()
  2247. if len(text) > 255 {
  2248. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2249. }
  2250. text = strings.ToUpper(text)
  2251. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  2252. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  2253. for index >= 0 && text[index] == ' ' {
  2254. index--
  2255. }
  2256. for actualStart <= index && text[actualStart] == ' ' {
  2257. actualStart++
  2258. }
  2259. if actualStart <= index && text[actualStart] == '-' {
  2260. isNegative = true
  2261. actualStart++
  2262. }
  2263. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  2264. for index >= actualStart {
  2265. startIndex = index
  2266. startChar := text[startIndex]
  2267. index--
  2268. for index >= actualStart && (text[index]|' ') == startChar {
  2269. index--
  2270. }
  2271. currentCharValue = charMap[rune(startChar)]
  2272. currentPartValue = (startIndex - index) * currentCharValue
  2273. if currentCharValue >= prevCharValue {
  2274. number += currentPartValue - subtractNumber
  2275. prevCharValue = currentCharValue
  2276. subtractNumber = 0
  2277. continue
  2278. }
  2279. subtractNumber += currentPartValue
  2280. }
  2281. if subtractNumber != 0 {
  2282. number -= subtractNumber
  2283. }
  2284. if isNegative {
  2285. number = -number
  2286. }
  2287. return newNumberFormulaArg(float64(number))
  2288. }
  2289. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  2290. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  2291. // of the function is:
  2292. //
  2293. // ASIN(number)
  2294. //
  2295. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  2296. if argsList.Len() != 1 {
  2297. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  2298. }
  2299. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2300. if arg.Type == ArgError {
  2301. return arg
  2302. }
  2303. return newNumberFormulaArg(math.Asin(arg.Number))
  2304. }
  2305. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  2306. // The syntax of the function is:
  2307. //
  2308. // ASINH(number)
  2309. //
  2310. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  2311. if argsList.Len() != 1 {
  2312. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  2313. }
  2314. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2315. if arg.Type == ArgError {
  2316. return arg
  2317. }
  2318. return newNumberFormulaArg(math.Asinh(arg.Number))
  2319. }
  2320. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  2321. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  2322. // syntax of the function is:
  2323. //
  2324. // ATAN(number)
  2325. //
  2326. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  2327. if argsList.Len() != 1 {
  2328. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  2329. }
  2330. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2331. if arg.Type == ArgError {
  2332. return arg
  2333. }
  2334. return newNumberFormulaArg(math.Atan(arg.Number))
  2335. }
  2336. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  2337. // number. The syntax of the function is:
  2338. //
  2339. // ATANH(number)
  2340. //
  2341. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  2342. if argsList.Len() != 1 {
  2343. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  2344. }
  2345. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2346. if arg.Type == ArgError {
  2347. return arg
  2348. }
  2349. return newNumberFormulaArg(math.Atanh(arg.Number))
  2350. }
  2351. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  2352. // given set of x and y coordinates, and returns an angle, in radians, between
  2353. // -π/2 and +π/2. The syntax of the function is:
  2354. //
  2355. // ATAN2(x_num,y_num)
  2356. //
  2357. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  2358. if argsList.Len() != 2 {
  2359. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  2360. }
  2361. x := argsList.Back().Value.(formulaArg).ToNumber()
  2362. if x.Type == ArgError {
  2363. return x
  2364. }
  2365. y := argsList.Front().Value.(formulaArg).ToNumber()
  2366. if y.Type == ArgError {
  2367. return y
  2368. }
  2369. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  2370. }
  2371. // BASE function converts a number into a supplied base (radix), and returns a
  2372. // text representation of the calculated value. The syntax of the function is:
  2373. //
  2374. // BASE(number,radix,[min_length])
  2375. //
  2376. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  2377. if argsList.Len() < 2 {
  2378. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  2379. }
  2380. if argsList.Len() > 3 {
  2381. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  2382. }
  2383. var minLength int
  2384. var err error
  2385. number := argsList.Front().Value.(formulaArg).ToNumber()
  2386. if number.Type == ArgError {
  2387. return number
  2388. }
  2389. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2390. if radix.Type == ArgError {
  2391. return radix
  2392. }
  2393. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  2394. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  2395. }
  2396. if argsList.Len() > 2 {
  2397. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2398. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2399. }
  2400. }
  2401. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  2402. if len(result) < minLength {
  2403. result = strings.Repeat("0", minLength-len(result)) + result
  2404. }
  2405. return newStringFormulaArg(strings.ToUpper(result))
  2406. }
  2407. // CEILING function rounds a supplied number away from zero, to the nearest
  2408. // multiple of a given number. The syntax of the function is:
  2409. //
  2410. // CEILING(number,significance)
  2411. //
  2412. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  2413. if argsList.Len() == 0 {
  2414. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  2415. }
  2416. if argsList.Len() > 2 {
  2417. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  2418. }
  2419. number, significance, res := 0.0, 1.0, 0.0
  2420. n := argsList.Front().Value.(formulaArg).ToNumber()
  2421. if n.Type == ArgError {
  2422. return n
  2423. }
  2424. number = n.Number
  2425. if number < 0 {
  2426. significance = -1
  2427. }
  2428. if argsList.Len() > 1 {
  2429. s := argsList.Back().Value.(formulaArg).ToNumber()
  2430. if s.Type == ArgError {
  2431. return s
  2432. }
  2433. significance = s.Number
  2434. }
  2435. if significance < 0 && number > 0 {
  2436. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  2437. }
  2438. if argsList.Len() == 1 {
  2439. return newNumberFormulaArg(math.Ceil(number))
  2440. }
  2441. number, res = math.Modf(number / significance)
  2442. if res > 0 {
  2443. number++
  2444. }
  2445. return newNumberFormulaArg(number * significance)
  2446. }
  2447. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  2448. // of significance. The syntax of the function is:
  2449. //
  2450. // CEILING.MATH(number,[significance],[mode])
  2451. //
  2452. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  2453. if argsList.Len() == 0 {
  2454. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  2455. }
  2456. if argsList.Len() > 3 {
  2457. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  2458. }
  2459. number, significance, mode := 0.0, 1.0, 1.0
  2460. n := argsList.Front().Value.(formulaArg).ToNumber()
  2461. if n.Type == ArgError {
  2462. return n
  2463. }
  2464. number = n.Number
  2465. if number < 0 {
  2466. significance = -1
  2467. }
  2468. if argsList.Len() > 1 {
  2469. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2470. if s.Type == ArgError {
  2471. return s
  2472. }
  2473. significance = s.Number
  2474. }
  2475. if argsList.Len() == 1 {
  2476. return newNumberFormulaArg(math.Ceil(number))
  2477. }
  2478. if argsList.Len() > 2 {
  2479. m := argsList.Back().Value.(formulaArg).ToNumber()
  2480. if m.Type == ArgError {
  2481. return m
  2482. }
  2483. mode = m.Number
  2484. }
  2485. val, res := math.Modf(number / significance)
  2486. if res != 0 {
  2487. if number > 0 {
  2488. val++
  2489. } else if mode < 0 {
  2490. val--
  2491. }
  2492. }
  2493. return newNumberFormulaArg(val * significance)
  2494. }
  2495. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  2496. // number's sign), to the nearest multiple of a given number. The syntax of
  2497. // the function is:
  2498. //
  2499. // CEILING.PRECISE(number,[significance])
  2500. //
  2501. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  2502. if argsList.Len() == 0 {
  2503. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  2504. }
  2505. if argsList.Len() > 2 {
  2506. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  2507. }
  2508. number, significance := 0.0, 1.0
  2509. n := argsList.Front().Value.(formulaArg).ToNumber()
  2510. if n.Type == ArgError {
  2511. return n
  2512. }
  2513. number = n.Number
  2514. if number < 0 {
  2515. significance = -1
  2516. }
  2517. if argsList.Len() == 1 {
  2518. return newNumberFormulaArg(math.Ceil(number))
  2519. }
  2520. if argsList.Len() > 1 {
  2521. s := argsList.Back().Value.(formulaArg).ToNumber()
  2522. if s.Type == ArgError {
  2523. return s
  2524. }
  2525. significance = s.Number
  2526. significance = math.Abs(significance)
  2527. if significance == 0 {
  2528. return newNumberFormulaArg(significance)
  2529. }
  2530. }
  2531. val, res := math.Modf(number / significance)
  2532. if res != 0 {
  2533. if number > 0 {
  2534. val++
  2535. }
  2536. }
  2537. return newNumberFormulaArg(val * significance)
  2538. }
  2539. // COMBIN function calculates the number of combinations (in any order) of a
  2540. // given number objects from a set. The syntax of the function is:
  2541. //
  2542. // COMBIN(number,number_chosen)
  2543. //
  2544. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  2545. if argsList.Len() != 2 {
  2546. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  2547. }
  2548. number, chosen, val := 0.0, 0.0, 1.0
  2549. n := argsList.Front().Value.(formulaArg).ToNumber()
  2550. if n.Type == ArgError {
  2551. return n
  2552. }
  2553. number = n.Number
  2554. c := argsList.Back().Value.(formulaArg).ToNumber()
  2555. if c.Type == ArgError {
  2556. return c
  2557. }
  2558. chosen = c.Number
  2559. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2560. if chosen > number {
  2561. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  2562. }
  2563. if chosen == number || chosen == 0 {
  2564. return newNumberFormulaArg(1)
  2565. }
  2566. for c := float64(1); c <= chosen; c++ {
  2567. val *= (number + 1 - c) / c
  2568. }
  2569. return newNumberFormulaArg(math.Ceil(val))
  2570. }
  2571. // COMBINA function calculates the number of combinations, with repetitions,
  2572. // of a given number objects from a set. The syntax of the function is:
  2573. //
  2574. // COMBINA(number,number_chosen)
  2575. //
  2576. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  2577. if argsList.Len() != 2 {
  2578. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  2579. }
  2580. var number, chosen float64
  2581. n := argsList.Front().Value.(formulaArg).ToNumber()
  2582. if n.Type == ArgError {
  2583. return n
  2584. }
  2585. number = n.Number
  2586. c := argsList.Back().Value.(formulaArg).ToNumber()
  2587. if c.Type == ArgError {
  2588. return c
  2589. }
  2590. chosen = c.Number
  2591. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2592. if number < chosen {
  2593. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  2594. }
  2595. if number == 0 {
  2596. return newNumberFormulaArg(number)
  2597. }
  2598. args := list.New()
  2599. args.PushBack(formulaArg{
  2600. String: fmt.Sprintf("%g", number+chosen-1),
  2601. Type: ArgString,
  2602. })
  2603. args.PushBack(formulaArg{
  2604. String: fmt.Sprintf("%g", number-1),
  2605. Type: ArgString,
  2606. })
  2607. return fn.COMBIN(args)
  2608. }
  2609. // COS function calculates the cosine of a given angle. The syntax of the
  2610. // function is:
  2611. //
  2612. // COS(number)
  2613. //
  2614. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2615. if argsList.Len() != 1 {
  2616. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2617. }
  2618. val := argsList.Front().Value.(formulaArg).ToNumber()
  2619. if val.Type == ArgError {
  2620. return val
  2621. }
  2622. return newNumberFormulaArg(math.Cos(val.Number))
  2623. }
  2624. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2625. // The syntax of the function is:
  2626. //
  2627. // COSH(number)
  2628. //
  2629. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2630. if argsList.Len() != 1 {
  2631. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2632. }
  2633. val := argsList.Front().Value.(formulaArg).ToNumber()
  2634. if val.Type == ArgError {
  2635. return val
  2636. }
  2637. return newNumberFormulaArg(math.Cosh(val.Number))
  2638. }
  2639. // COT function calculates the cotangent of a given angle. The syntax of the
  2640. // function is:
  2641. //
  2642. // COT(number)
  2643. //
  2644. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2645. if argsList.Len() != 1 {
  2646. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2647. }
  2648. val := argsList.Front().Value.(formulaArg).ToNumber()
  2649. if val.Type == ArgError {
  2650. return val
  2651. }
  2652. if val.Number == 0 {
  2653. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2654. }
  2655. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2656. }
  2657. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2658. // angle. The syntax of the function is:
  2659. //
  2660. // COTH(number)
  2661. //
  2662. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2663. if argsList.Len() != 1 {
  2664. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2665. }
  2666. val := argsList.Front().Value.(formulaArg).ToNumber()
  2667. if val.Type == ArgError {
  2668. return val
  2669. }
  2670. if val.Number == 0 {
  2671. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2672. }
  2673. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2674. }
  2675. // CSC function calculates the cosecant of a given angle. The syntax of the
  2676. // function is:
  2677. //
  2678. // CSC(number)
  2679. //
  2680. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2681. if argsList.Len() != 1 {
  2682. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2683. }
  2684. val := argsList.Front().Value.(formulaArg).ToNumber()
  2685. if val.Type == ArgError {
  2686. return val
  2687. }
  2688. if val.Number == 0 {
  2689. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2690. }
  2691. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2692. }
  2693. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2694. // angle. The syntax of the function is:
  2695. //
  2696. // CSCH(number)
  2697. //
  2698. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2699. if argsList.Len() != 1 {
  2700. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2701. }
  2702. val := argsList.Front().Value.(formulaArg).ToNumber()
  2703. if val.Type == ArgError {
  2704. return val
  2705. }
  2706. if val.Number == 0 {
  2707. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2708. }
  2709. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2710. }
  2711. // DECIMAL function converts a text representation of a number in a specified
  2712. // base, into a decimal value. The syntax of the function is:
  2713. //
  2714. // DECIMAL(text,radix)
  2715. //
  2716. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2717. if argsList.Len() != 2 {
  2718. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2719. }
  2720. var text = argsList.Front().Value.(formulaArg).String
  2721. var radix int
  2722. var err error
  2723. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2724. if err != nil {
  2725. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2726. }
  2727. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2728. text = text[2:]
  2729. }
  2730. val, err := strconv.ParseInt(text, radix, 64)
  2731. if err != nil {
  2732. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2733. }
  2734. return newNumberFormulaArg(float64(val))
  2735. }
  2736. // DEGREES function converts radians into degrees. The syntax of the function
  2737. // is:
  2738. //
  2739. // DEGREES(angle)
  2740. //
  2741. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2742. if argsList.Len() != 1 {
  2743. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2744. }
  2745. val := argsList.Front().Value.(formulaArg).ToNumber()
  2746. if val.Type == ArgError {
  2747. return val
  2748. }
  2749. if val.Number == 0 {
  2750. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2751. }
  2752. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2753. }
  2754. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2755. // positive number up and a negative number down), to the next even number.
  2756. // The syntax of the function is:
  2757. //
  2758. // EVEN(number)
  2759. //
  2760. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2761. if argsList.Len() != 1 {
  2762. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2763. }
  2764. number := argsList.Front().Value.(formulaArg).ToNumber()
  2765. if number.Type == ArgError {
  2766. return number
  2767. }
  2768. sign := math.Signbit(number.Number)
  2769. m, frac := math.Modf(number.Number / 2)
  2770. val := m * 2
  2771. if frac != 0 {
  2772. if !sign {
  2773. val += 2
  2774. } else {
  2775. val -= 2
  2776. }
  2777. }
  2778. return newNumberFormulaArg(val)
  2779. }
  2780. // EXP function calculates the value of the mathematical constant e, raised to
  2781. // the power of a given number. The syntax of the function is:
  2782. //
  2783. // EXP(number)
  2784. //
  2785. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2786. if argsList.Len() != 1 {
  2787. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2788. }
  2789. number := argsList.Front().Value.(formulaArg).ToNumber()
  2790. if number.Type == ArgError {
  2791. return number
  2792. }
  2793. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2794. }
  2795. // fact returns the factorial of a supplied number.
  2796. func fact(number float64) float64 {
  2797. val := float64(1)
  2798. for i := float64(2); i <= number; i++ {
  2799. val *= i
  2800. }
  2801. return val
  2802. }
  2803. // FACT function returns the factorial of a supplied number. The syntax of the
  2804. // function is:
  2805. //
  2806. // FACT(number)
  2807. //
  2808. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2809. if argsList.Len() != 1 {
  2810. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2811. }
  2812. number := argsList.Front().Value.(formulaArg).ToNumber()
  2813. if number.Type == ArgError {
  2814. return number
  2815. }
  2816. if number.Number < 0 {
  2817. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2818. }
  2819. return newNumberFormulaArg(fact(number.Number))
  2820. }
  2821. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2822. // syntax of the function is:
  2823. //
  2824. // FACTDOUBLE(number)
  2825. //
  2826. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2827. if argsList.Len() != 1 {
  2828. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2829. }
  2830. val := 1.0
  2831. number := argsList.Front().Value.(formulaArg).ToNumber()
  2832. if number.Type == ArgError {
  2833. return number
  2834. }
  2835. if number.Number < 0 {
  2836. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2837. }
  2838. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2839. val *= i
  2840. }
  2841. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2842. }
  2843. // FLOOR function rounds a supplied number towards zero to the nearest
  2844. // multiple of a specified significance. The syntax of the function is:
  2845. //
  2846. // FLOOR(number,significance)
  2847. //
  2848. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2849. if argsList.Len() != 2 {
  2850. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2851. }
  2852. number := argsList.Front().Value.(formulaArg).ToNumber()
  2853. if number.Type == ArgError {
  2854. return number
  2855. }
  2856. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2857. if significance.Type == ArgError {
  2858. return significance
  2859. }
  2860. if significance.Number < 0 && number.Number >= 0 {
  2861. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2862. }
  2863. val := number.Number
  2864. val, res := math.Modf(val / significance.Number)
  2865. if res != 0 {
  2866. if number.Number < 0 && res < 0 {
  2867. val--
  2868. }
  2869. }
  2870. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2871. }
  2872. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2873. // of significance. The syntax of the function is:
  2874. //
  2875. // FLOOR.MATH(number,[significance],[mode])
  2876. //
  2877. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2878. if argsList.Len() == 0 {
  2879. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2880. }
  2881. if argsList.Len() > 3 {
  2882. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2883. }
  2884. significance, mode := 1.0, 1.0
  2885. number := argsList.Front().Value.(formulaArg).ToNumber()
  2886. if number.Type == ArgError {
  2887. return number
  2888. }
  2889. if number.Number < 0 {
  2890. significance = -1
  2891. }
  2892. if argsList.Len() > 1 {
  2893. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2894. if s.Type == ArgError {
  2895. return s
  2896. }
  2897. significance = s.Number
  2898. }
  2899. if argsList.Len() == 1 {
  2900. return newNumberFormulaArg(math.Floor(number.Number))
  2901. }
  2902. if argsList.Len() > 2 {
  2903. m := argsList.Back().Value.(formulaArg).ToNumber()
  2904. if m.Type == ArgError {
  2905. return m
  2906. }
  2907. mode = m.Number
  2908. }
  2909. val, res := math.Modf(number.Number / significance)
  2910. if res != 0 && number.Number < 0 && mode > 0 {
  2911. val--
  2912. }
  2913. return newNumberFormulaArg(val * significance)
  2914. }
  2915. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2916. // multiple of significance. The syntax of the function is:
  2917. //
  2918. // FLOOR.PRECISE(number,[significance])
  2919. //
  2920. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2921. if argsList.Len() == 0 {
  2922. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2923. }
  2924. if argsList.Len() > 2 {
  2925. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2926. }
  2927. var significance float64
  2928. number := argsList.Front().Value.(formulaArg).ToNumber()
  2929. if number.Type == ArgError {
  2930. return number
  2931. }
  2932. if number.Number < 0 {
  2933. significance = -1
  2934. }
  2935. if argsList.Len() == 1 {
  2936. return newNumberFormulaArg(math.Floor(number.Number))
  2937. }
  2938. if argsList.Len() > 1 {
  2939. s := argsList.Back().Value.(formulaArg).ToNumber()
  2940. if s.Type == ArgError {
  2941. return s
  2942. }
  2943. significance = s.Number
  2944. significance = math.Abs(significance)
  2945. if significance == 0 {
  2946. return newNumberFormulaArg(significance)
  2947. }
  2948. }
  2949. val, res := math.Modf(number.Number / significance)
  2950. if res != 0 {
  2951. if number.Number < 0 {
  2952. val--
  2953. }
  2954. }
  2955. return newNumberFormulaArg(val * significance)
  2956. }
  2957. // gcd returns the greatest common divisor of two supplied integers.
  2958. func gcd(x, y float64) float64 {
  2959. x, y = math.Trunc(x), math.Trunc(y)
  2960. if x == 0 {
  2961. return y
  2962. }
  2963. if y == 0 {
  2964. return x
  2965. }
  2966. for x != y {
  2967. if x > y {
  2968. x = x - y
  2969. } else {
  2970. y = y - x
  2971. }
  2972. }
  2973. return x
  2974. }
  2975. // GCD function returns the greatest common divisor of two or more supplied
  2976. // integers. The syntax of the function is:
  2977. //
  2978. // GCD(number1,[number2],...)
  2979. //
  2980. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2981. if argsList.Len() == 0 {
  2982. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2983. }
  2984. var (
  2985. val float64
  2986. nums = []float64{}
  2987. )
  2988. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2989. token := arg.Value.(formulaArg)
  2990. switch token.Type {
  2991. case ArgString:
  2992. num := token.ToNumber()
  2993. if num.Type == ArgError {
  2994. return num
  2995. }
  2996. val = num.Number
  2997. case ArgNumber:
  2998. val = token.Number
  2999. }
  3000. nums = append(nums, val)
  3001. }
  3002. if nums[0] < 0 {
  3003. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  3004. }
  3005. if len(nums) == 1 {
  3006. return newNumberFormulaArg(nums[0])
  3007. }
  3008. cd := nums[0]
  3009. for i := 1; i < len(nums); i++ {
  3010. if nums[i] < 0 {
  3011. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  3012. }
  3013. cd = gcd(cd, nums[i])
  3014. }
  3015. return newNumberFormulaArg(cd)
  3016. }
  3017. // INT function truncates a supplied number down to the closest integer. The
  3018. // syntax of the function is:
  3019. //
  3020. // INT(number)
  3021. //
  3022. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  3023. if argsList.Len() != 1 {
  3024. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  3025. }
  3026. number := argsList.Front().Value.(formulaArg).ToNumber()
  3027. if number.Type == ArgError {
  3028. return number
  3029. }
  3030. val, frac := math.Modf(number.Number)
  3031. if frac < 0 {
  3032. val--
  3033. }
  3034. return newNumberFormulaArg(val)
  3035. }
  3036. // ISOdotCEILING function rounds a supplied number up (regardless of the
  3037. // number's sign), to the nearest multiple of a supplied significance. The
  3038. // syntax of the function is:
  3039. //
  3040. // ISO.CEILING(number,[significance])
  3041. //
  3042. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  3043. if argsList.Len() == 0 {
  3044. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  3045. }
  3046. if argsList.Len() > 2 {
  3047. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  3048. }
  3049. var significance float64
  3050. number := argsList.Front().Value.(formulaArg).ToNumber()
  3051. if number.Type == ArgError {
  3052. return number
  3053. }
  3054. if number.Number < 0 {
  3055. significance = -1
  3056. }
  3057. if argsList.Len() == 1 {
  3058. return newNumberFormulaArg(math.Ceil(number.Number))
  3059. }
  3060. if argsList.Len() > 1 {
  3061. s := argsList.Back().Value.(formulaArg).ToNumber()
  3062. if s.Type == ArgError {
  3063. return s
  3064. }
  3065. significance = s.Number
  3066. significance = math.Abs(significance)
  3067. if significance == 0 {
  3068. return newNumberFormulaArg(significance)
  3069. }
  3070. }
  3071. val, res := math.Modf(number.Number / significance)
  3072. if res != 0 {
  3073. if number.Number > 0 {
  3074. val++
  3075. }
  3076. }
  3077. return newNumberFormulaArg(val * significance)
  3078. }
  3079. // lcm returns the least common multiple of two supplied integers.
  3080. func lcm(a, b float64) float64 {
  3081. a = math.Trunc(a)
  3082. b = math.Trunc(b)
  3083. if a == 0 && b == 0 {
  3084. return 0
  3085. }
  3086. return a * b / gcd(a, b)
  3087. }
  3088. // LCM function returns the least common multiple of two or more supplied
  3089. // integers. The syntax of the function is:
  3090. //
  3091. // LCM(number1,[number2],...)
  3092. //
  3093. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  3094. if argsList.Len() == 0 {
  3095. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  3096. }
  3097. var (
  3098. val float64
  3099. nums = []float64{}
  3100. err error
  3101. )
  3102. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3103. token := arg.Value.(formulaArg)
  3104. switch token.Type {
  3105. case ArgString:
  3106. if token.String == "" {
  3107. continue
  3108. }
  3109. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3110. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3111. }
  3112. case ArgNumber:
  3113. val = token.Number
  3114. }
  3115. nums = append(nums, val)
  3116. }
  3117. if nums[0] < 0 {
  3118. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  3119. }
  3120. if len(nums) == 1 {
  3121. return newNumberFormulaArg(nums[0])
  3122. }
  3123. cm := nums[0]
  3124. for i := 1; i < len(nums); i++ {
  3125. if nums[i] < 0 {
  3126. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  3127. }
  3128. cm = lcm(cm, nums[i])
  3129. }
  3130. return newNumberFormulaArg(cm)
  3131. }
  3132. // LN function calculates the natural logarithm of a given number. The syntax
  3133. // of the function is:
  3134. //
  3135. // LN(number)
  3136. //
  3137. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  3138. if argsList.Len() != 1 {
  3139. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  3140. }
  3141. number := argsList.Front().Value.(formulaArg).ToNumber()
  3142. if number.Type == ArgError {
  3143. return number
  3144. }
  3145. return newNumberFormulaArg(math.Log(number.Number))
  3146. }
  3147. // LOG function calculates the logarithm of a given number, to a supplied
  3148. // base. The syntax of the function is:
  3149. //
  3150. // LOG(number,[base])
  3151. //
  3152. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  3153. if argsList.Len() == 0 {
  3154. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  3155. }
  3156. if argsList.Len() > 2 {
  3157. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  3158. }
  3159. base := 10.0
  3160. number := argsList.Front().Value.(formulaArg).ToNumber()
  3161. if number.Type == ArgError {
  3162. return number
  3163. }
  3164. if argsList.Len() > 1 {
  3165. b := argsList.Back().Value.(formulaArg).ToNumber()
  3166. if b.Type == ArgError {
  3167. return b
  3168. }
  3169. base = b.Number
  3170. }
  3171. if number.Number == 0 {
  3172. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  3173. }
  3174. if base == 0 {
  3175. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  3176. }
  3177. if base == 1 {
  3178. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3179. }
  3180. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  3181. }
  3182. // LOG10 function calculates the base 10 logarithm of a given number. The
  3183. // syntax of the function is:
  3184. //
  3185. // LOG10(number)
  3186. //
  3187. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  3188. if argsList.Len() != 1 {
  3189. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  3190. }
  3191. number := argsList.Front().Value.(formulaArg).ToNumber()
  3192. if number.Type == ArgError {
  3193. return number
  3194. }
  3195. return newNumberFormulaArg(math.Log10(number.Number))
  3196. }
  3197. // minor function implement a minor of a matrix A is the determinant of some
  3198. // smaller square matrix.
  3199. func minor(sqMtx [][]float64, idx int) [][]float64 {
  3200. ret := [][]float64{}
  3201. for i := range sqMtx {
  3202. if i == 0 {
  3203. continue
  3204. }
  3205. row := []float64{}
  3206. for j := range sqMtx {
  3207. if j == idx {
  3208. continue
  3209. }
  3210. row = append(row, sqMtx[i][j])
  3211. }
  3212. ret = append(ret, row)
  3213. }
  3214. return ret
  3215. }
  3216. // det determinant of the 2x2 matrix.
  3217. func det(sqMtx [][]float64) float64 {
  3218. if len(sqMtx) == 2 {
  3219. m00 := sqMtx[0][0]
  3220. m01 := sqMtx[0][1]
  3221. m10 := sqMtx[1][0]
  3222. m11 := sqMtx[1][1]
  3223. return m00*m11 - m10*m01
  3224. }
  3225. var res, sgn float64 = 0, 1
  3226. for j := range sqMtx {
  3227. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  3228. sgn *= -1
  3229. }
  3230. return res
  3231. }
  3232. // MDETERM calculates the determinant of a square matrix. The
  3233. // syntax of the function is:
  3234. //
  3235. // MDETERM(array)
  3236. //
  3237. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  3238. var (
  3239. num float64
  3240. numMtx = [][]float64{}
  3241. err error
  3242. strMtx [][]formulaArg
  3243. )
  3244. if argsList.Len() < 1 {
  3245. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  3246. }
  3247. strMtx = argsList.Front().Value.(formulaArg).Matrix
  3248. var rows = len(strMtx)
  3249. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  3250. if len(row) != rows {
  3251. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3252. }
  3253. numRow := []float64{}
  3254. for _, ele := range row {
  3255. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  3256. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3257. }
  3258. numRow = append(numRow, num)
  3259. }
  3260. numMtx = append(numMtx, numRow)
  3261. }
  3262. return newNumberFormulaArg(det(numMtx))
  3263. }
  3264. // MOD function returns the remainder of a division between two supplied
  3265. // numbers. The syntax of the function is:
  3266. //
  3267. // MOD(number,divisor)
  3268. //
  3269. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  3270. if argsList.Len() != 2 {
  3271. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  3272. }
  3273. number := argsList.Front().Value.(formulaArg).ToNumber()
  3274. if number.Type == ArgError {
  3275. return number
  3276. }
  3277. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  3278. if divisor.Type == ArgError {
  3279. return divisor
  3280. }
  3281. if divisor.Number == 0 {
  3282. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  3283. }
  3284. trunc, rem := math.Modf(number.Number / divisor.Number)
  3285. if rem < 0 {
  3286. trunc--
  3287. }
  3288. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  3289. }
  3290. // MROUND function rounds a supplied number up or down to the nearest multiple
  3291. // of a given number. The syntax of the function is:
  3292. //
  3293. // MROUND(number,multiple)
  3294. //
  3295. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  3296. if argsList.Len() != 2 {
  3297. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  3298. }
  3299. n := argsList.Front().Value.(formulaArg).ToNumber()
  3300. if n.Type == ArgError {
  3301. return n
  3302. }
  3303. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  3304. if multiple.Type == ArgError {
  3305. return multiple
  3306. }
  3307. if multiple.Number == 0 {
  3308. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3309. }
  3310. if multiple.Number < 0 && n.Number > 0 ||
  3311. multiple.Number > 0 && n.Number < 0 {
  3312. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3313. }
  3314. number, res := math.Modf(n.Number / multiple.Number)
  3315. if math.Trunc(res+0.5) > 0 {
  3316. number++
  3317. }
  3318. return newNumberFormulaArg(number * multiple.Number)
  3319. }
  3320. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  3321. // supplied values to the product of factorials of those values. The syntax of
  3322. // the function is:
  3323. //
  3324. // MULTINOMIAL(number1,[number2],...)
  3325. //
  3326. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  3327. val, num, denom := 0.0, 0.0, 1.0
  3328. var err error
  3329. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3330. token := arg.Value.(formulaArg)
  3331. switch token.Type {
  3332. case ArgString:
  3333. if token.String == "" {
  3334. continue
  3335. }
  3336. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3337. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3338. }
  3339. case ArgNumber:
  3340. val = token.Number
  3341. }
  3342. num += val
  3343. denom *= fact(val)
  3344. }
  3345. return newNumberFormulaArg(fact(num) / denom)
  3346. }
  3347. // MUNIT function returns the unit matrix for a specified dimension. The
  3348. // syntax of the function is:
  3349. //
  3350. // MUNIT(dimension)
  3351. //
  3352. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  3353. if argsList.Len() != 1 {
  3354. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  3355. }
  3356. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  3357. if dimension.Type == ArgError || dimension.Number < 0 {
  3358. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  3359. }
  3360. matrix := make([][]formulaArg, 0, int(dimension.Number))
  3361. for i := 0; i < int(dimension.Number); i++ {
  3362. row := make([]formulaArg, int(dimension.Number))
  3363. for j := 0; j < int(dimension.Number); j++ {
  3364. if i == j {
  3365. row[j] = newNumberFormulaArg(1.0)
  3366. } else {
  3367. row[j] = newNumberFormulaArg(0.0)
  3368. }
  3369. }
  3370. matrix = append(matrix, row)
  3371. }
  3372. return newMatrixFormulaArg(matrix)
  3373. }
  3374. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  3375. // number up and a negative number down), to the next odd number. The syntax
  3376. // of the function is:
  3377. //
  3378. // ODD(number)
  3379. //
  3380. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  3381. if argsList.Len() != 1 {
  3382. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  3383. }
  3384. number := argsList.Back().Value.(formulaArg).ToNumber()
  3385. if number.Type == ArgError {
  3386. return number
  3387. }
  3388. if number.Number == 0 {
  3389. return newNumberFormulaArg(1)
  3390. }
  3391. sign := math.Signbit(number.Number)
  3392. m, frac := math.Modf((number.Number - 1) / 2)
  3393. val := m*2 + 1
  3394. if frac != 0 {
  3395. if !sign {
  3396. val += 2
  3397. } else {
  3398. val -= 2
  3399. }
  3400. }
  3401. return newNumberFormulaArg(val)
  3402. }
  3403. // PI function returns the value of the mathematical constant π (pi), accurate
  3404. // to 15 digits (14 decimal places). The syntax of the function is:
  3405. //
  3406. // PI()
  3407. //
  3408. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  3409. if argsList.Len() != 0 {
  3410. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  3411. }
  3412. return newNumberFormulaArg(math.Pi)
  3413. }
  3414. // POWER function calculates a given number, raised to a supplied power.
  3415. // The syntax of the function is:
  3416. //
  3417. // POWER(number,power)
  3418. //
  3419. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  3420. if argsList.Len() != 2 {
  3421. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  3422. }
  3423. x := argsList.Front().Value.(formulaArg).ToNumber()
  3424. if x.Type == ArgError {
  3425. return x
  3426. }
  3427. y := argsList.Back().Value.(formulaArg).ToNumber()
  3428. if y.Type == ArgError {
  3429. return y
  3430. }
  3431. if x.Number == 0 && y.Number == 0 {
  3432. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3433. }
  3434. if x.Number == 0 && y.Number < 0 {
  3435. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3436. }
  3437. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  3438. }
  3439. // PRODUCT function returns the product (multiplication) of a supplied set of
  3440. // numerical values. The syntax of the function is:
  3441. //
  3442. // PRODUCT(number1,[number2],...)
  3443. //
  3444. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  3445. val, product := 0.0, 1.0
  3446. var err error
  3447. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3448. token := arg.Value.(formulaArg)
  3449. switch token.Type {
  3450. case ArgUnknown:
  3451. continue
  3452. case ArgString:
  3453. if token.String == "" {
  3454. continue
  3455. }
  3456. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3457. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3458. }
  3459. product = product * val
  3460. case ArgNumber:
  3461. product = product * token.Number
  3462. case ArgMatrix:
  3463. for _, row := range token.Matrix {
  3464. for _, value := range row {
  3465. if value.String == "" {
  3466. continue
  3467. }
  3468. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3469. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3470. }
  3471. product = product * val
  3472. }
  3473. }
  3474. }
  3475. }
  3476. return newNumberFormulaArg(product)
  3477. }
  3478. // QUOTIENT function returns the integer portion of a division between two
  3479. // supplied numbers. The syntax of the function is:
  3480. //
  3481. // QUOTIENT(numerator,denominator)
  3482. //
  3483. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  3484. if argsList.Len() != 2 {
  3485. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  3486. }
  3487. x := argsList.Front().Value.(formulaArg).ToNumber()
  3488. if x.Type == ArgError {
  3489. return x
  3490. }
  3491. y := argsList.Back().Value.(formulaArg).ToNumber()
  3492. if y.Type == ArgError {
  3493. return y
  3494. }
  3495. if y.Number == 0 {
  3496. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3497. }
  3498. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  3499. }
  3500. // RADIANS function converts radians into degrees. The syntax of the function is:
  3501. //
  3502. // RADIANS(angle)
  3503. //
  3504. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  3505. if argsList.Len() != 1 {
  3506. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  3507. }
  3508. angle := argsList.Front().Value.(formulaArg).ToNumber()
  3509. if angle.Type == ArgError {
  3510. return angle
  3511. }
  3512. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  3513. }
  3514. // RAND function generates a random real number between 0 and 1. The syntax of
  3515. // the function is:
  3516. //
  3517. // RAND()
  3518. //
  3519. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  3520. if argsList.Len() != 0 {
  3521. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  3522. }
  3523. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  3524. }
  3525. // RANDBETWEEN function generates a random integer between two supplied
  3526. // integers. The syntax of the function is:
  3527. //
  3528. // RANDBETWEEN(bottom,top)
  3529. //
  3530. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  3531. if argsList.Len() != 2 {
  3532. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  3533. }
  3534. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  3535. if bottom.Type == ArgError {
  3536. return bottom
  3537. }
  3538. top := argsList.Back().Value.(formulaArg).ToNumber()
  3539. if top.Type == ArgError {
  3540. return top
  3541. }
  3542. if top.Number < bottom.Number {
  3543. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3544. }
  3545. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  3546. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  3547. }
  3548. // romanNumerals defined a numeral system that originated in ancient Rome and
  3549. // remained the usual way of writing numbers throughout Europe well into the
  3550. // Late Middle Ages.
  3551. type romanNumerals struct {
  3552. n float64
  3553. s string
  3554. }
  3555. var romanTable = [][]romanNumerals{
  3556. {
  3557. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  3558. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3559. },
  3560. {
  3561. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  3562. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3563. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3564. },
  3565. {
  3566. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  3567. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  3568. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3569. },
  3570. {
  3571. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  3572. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  3573. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  3574. {5, "V"}, {4, "IV"}, {1, "I"},
  3575. },
  3576. {
  3577. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  3578. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  3579. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3580. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3581. },
  3582. }
  3583. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  3584. // integer, the function returns a text string depicting the roman numeral
  3585. // form of the number. The syntax of the function is:
  3586. //
  3587. // ROMAN(number,[form])
  3588. //
  3589. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  3590. if argsList.Len() == 0 {
  3591. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  3592. }
  3593. if argsList.Len() > 2 {
  3594. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  3595. }
  3596. var form int
  3597. number := argsList.Front().Value.(formulaArg).ToNumber()
  3598. if number.Type == ArgError {
  3599. return number
  3600. }
  3601. if argsList.Len() > 1 {
  3602. f := argsList.Back().Value.(formulaArg).ToNumber()
  3603. if f.Type == ArgError {
  3604. return f
  3605. }
  3606. form = int(f.Number)
  3607. if form < 0 {
  3608. form = 0
  3609. } else if form > 4 {
  3610. form = 4
  3611. }
  3612. }
  3613. decimalTable := romanTable[0]
  3614. switch form {
  3615. case 1:
  3616. decimalTable = romanTable[1]
  3617. case 2:
  3618. decimalTable = romanTable[2]
  3619. case 3:
  3620. decimalTable = romanTable[3]
  3621. case 4:
  3622. decimalTable = romanTable[4]
  3623. }
  3624. val := math.Trunc(number.Number)
  3625. buf := bytes.Buffer{}
  3626. for _, r := range decimalTable {
  3627. for val >= r.n {
  3628. buf.WriteString(r.s)
  3629. val -= r.n
  3630. }
  3631. }
  3632. return newStringFormulaArg(buf.String())
  3633. }
  3634. type roundMode byte
  3635. const (
  3636. closest roundMode = iota
  3637. down
  3638. up
  3639. )
  3640. // round rounds a supplied number up or down.
  3641. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3642. var significance float64
  3643. if digits > 0 {
  3644. significance = math.Pow(1/10.0, digits)
  3645. } else {
  3646. significance = math.Pow(10.0, -digits)
  3647. }
  3648. val, res := math.Modf(number / significance)
  3649. switch mode {
  3650. case closest:
  3651. const eps = 0.499999999
  3652. if res >= eps {
  3653. val++
  3654. } else if res <= -eps {
  3655. val--
  3656. }
  3657. case down:
  3658. case up:
  3659. if res > 0 {
  3660. val++
  3661. } else if res < 0 {
  3662. val--
  3663. }
  3664. }
  3665. return val * significance
  3666. }
  3667. // ROUND function rounds a supplied number up or down, to a specified number
  3668. // of decimal places. The syntax of the function is:
  3669. //
  3670. // ROUND(number,num_digits)
  3671. //
  3672. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3673. if argsList.Len() != 2 {
  3674. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3675. }
  3676. number := argsList.Front().Value.(formulaArg).ToNumber()
  3677. if number.Type == ArgError {
  3678. return number
  3679. }
  3680. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3681. if digits.Type == ArgError {
  3682. return digits
  3683. }
  3684. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3685. }
  3686. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3687. // specified number of decimal places. The syntax of the function is:
  3688. //
  3689. // ROUNDDOWN(number,num_digits)
  3690. //
  3691. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3692. if argsList.Len() != 2 {
  3693. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3694. }
  3695. number := argsList.Front().Value.(formulaArg).ToNumber()
  3696. if number.Type == ArgError {
  3697. return number
  3698. }
  3699. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3700. if digits.Type == ArgError {
  3701. return digits
  3702. }
  3703. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3704. }
  3705. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3706. // specified number of decimal places. The syntax of the function is:
  3707. //
  3708. // ROUNDUP(number,num_digits)
  3709. //
  3710. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3711. if argsList.Len() != 2 {
  3712. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3713. }
  3714. number := argsList.Front().Value.(formulaArg).ToNumber()
  3715. if number.Type == ArgError {
  3716. return number
  3717. }
  3718. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3719. if digits.Type == ArgError {
  3720. return digits
  3721. }
  3722. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3723. }
  3724. // SEC function calculates the secant of a given angle. The syntax of the
  3725. // function is:
  3726. //
  3727. // SEC(number)
  3728. //
  3729. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3730. if argsList.Len() != 1 {
  3731. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3732. }
  3733. number := argsList.Front().Value.(formulaArg).ToNumber()
  3734. if number.Type == ArgError {
  3735. return number
  3736. }
  3737. return newNumberFormulaArg(math.Cos(number.Number))
  3738. }
  3739. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3740. // The syntax of the function is:
  3741. //
  3742. // SECH(number)
  3743. //
  3744. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3745. if argsList.Len() != 1 {
  3746. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3747. }
  3748. number := argsList.Front().Value.(formulaArg).ToNumber()
  3749. if number.Type == ArgError {
  3750. return number
  3751. }
  3752. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3753. }
  3754. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3755. // number. I.e. if the number is positive, the Sign function returns +1, if
  3756. // the number is negative, the function returns -1 and if the number is 0
  3757. // (zero), the function returns 0. The syntax of the function is:
  3758. //
  3759. // SIGN(number)
  3760. //
  3761. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3762. if argsList.Len() != 1 {
  3763. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3764. }
  3765. val := argsList.Front().Value.(formulaArg).ToNumber()
  3766. if val.Type == ArgError {
  3767. return val
  3768. }
  3769. if val.Number < 0 {
  3770. return newNumberFormulaArg(-1)
  3771. }
  3772. if val.Number > 0 {
  3773. return newNumberFormulaArg(1)
  3774. }
  3775. return newNumberFormulaArg(0)
  3776. }
  3777. // SIN function calculates the sine of a given angle. The syntax of the
  3778. // function is:
  3779. //
  3780. // SIN(number)
  3781. //
  3782. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3783. if argsList.Len() != 1 {
  3784. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3785. }
  3786. number := argsList.Front().Value.(formulaArg).ToNumber()
  3787. if number.Type == ArgError {
  3788. return number
  3789. }
  3790. return newNumberFormulaArg(math.Sin(number.Number))
  3791. }
  3792. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3793. // The syntax of the function is:
  3794. //
  3795. // SINH(number)
  3796. //
  3797. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3798. if argsList.Len() != 1 {
  3799. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3800. }
  3801. number := argsList.Front().Value.(formulaArg).ToNumber()
  3802. if number.Type == ArgError {
  3803. return number
  3804. }
  3805. return newNumberFormulaArg(math.Sinh(number.Number))
  3806. }
  3807. // SQRT function calculates the positive square root of a supplied number. The
  3808. // syntax of the function is:
  3809. //
  3810. // SQRT(number)
  3811. //
  3812. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3813. if argsList.Len() != 1 {
  3814. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3815. }
  3816. value := argsList.Front().Value.(formulaArg).ToNumber()
  3817. if value.Type == ArgError {
  3818. return value
  3819. }
  3820. if value.Number < 0 {
  3821. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3822. }
  3823. return newNumberFormulaArg(math.Sqrt(value.Number))
  3824. }
  3825. // SQRTPI function returns the square root of a supplied number multiplied by
  3826. // the mathematical constant, π. The syntax of the function is:
  3827. //
  3828. // SQRTPI(number)
  3829. //
  3830. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3831. if argsList.Len() != 1 {
  3832. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3833. }
  3834. number := argsList.Front().Value.(formulaArg).ToNumber()
  3835. if number.Type == ArgError {
  3836. return number
  3837. }
  3838. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3839. }
  3840. // STDEV function calculates the sample standard deviation of a supplied set
  3841. // of values. The syntax of the function is:
  3842. //
  3843. // STDEV(number1,[number2],...)
  3844. //
  3845. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3846. if argsList.Len() < 1 {
  3847. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3848. }
  3849. return fn.stdev(false, argsList)
  3850. }
  3851. // STDEVdotS function calculates the sample standard deviation of a supplied
  3852. // set of values. The syntax of the function is:
  3853. //
  3854. // STDEV.S(number1,[number2],...)
  3855. //
  3856. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3857. if argsList.Len() < 1 {
  3858. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3859. }
  3860. return fn.stdev(false, argsList)
  3861. }
  3862. // STDEVA function estimates standard deviation based on a sample. The
  3863. // standard deviation is a measure of how widely values are dispersed from
  3864. // the average value (the mean). The syntax of the function is:
  3865. //
  3866. // STDEVA(number1,[number2],...)
  3867. //
  3868. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3869. if argsList.Len() < 1 {
  3870. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3871. }
  3872. return fn.stdev(true, argsList)
  3873. }
  3874. // stdev is an implementation of the formula function STDEV and STDEVA.
  3875. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3876. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3877. if result == -1 {
  3878. result = math.Pow((n.Number - m.Number), 2)
  3879. } else {
  3880. result += math.Pow((n.Number - m.Number), 2)
  3881. }
  3882. count++
  3883. return result, count
  3884. }
  3885. count, result := -1.0, -1.0
  3886. var mean formulaArg
  3887. if stdeva {
  3888. mean = fn.AVERAGEA(argsList)
  3889. } else {
  3890. mean = fn.AVERAGE(argsList)
  3891. }
  3892. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3893. token := arg.Value.(formulaArg)
  3894. switch token.Type {
  3895. case ArgString, ArgNumber:
  3896. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3897. continue
  3898. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3899. num := token.ToBool()
  3900. if num.Type == ArgNumber {
  3901. result, count = pow(result, count, num, mean)
  3902. continue
  3903. }
  3904. } else {
  3905. num := token.ToNumber()
  3906. if num.Type == ArgNumber {
  3907. result, count = pow(result, count, num, mean)
  3908. }
  3909. }
  3910. case ArgList, ArgMatrix:
  3911. for _, row := range token.ToList() {
  3912. if row.Type == ArgNumber || row.Type == ArgString {
  3913. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3914. continue
  3915. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3916. num := row.ToBool()
  3917. if num.Type == ArgNumber {
  3918. result, count = pow(result, count, num, mean)
  3919. continue
  3920. }
  3921. } else {
  3922. num := row.ToNumber()
  3923. if num.Type == ArgNumber {
  3924. result, count = pow(result, count, num, mean)
  3925. }
  3926. }
  3927. }
  3928. }
  3929. }
  3930. }
  3931. if count > 0 && result >= 0 {
  3932. return newNumberFormulaArg(math.Sqrt(result / count))
  3933. }
  3934. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3935. }
  3936. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3937. // the Cumulative Poisson Probability Function for a supplied set of
  3938. // parameters. The syntax of the function is:
  3939. //
  3940. // POISSON.DIST(x,mean,cumulative)
  3941. //
  3942. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3943. if argsList.Len() != 3 {
  3944. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3945. }
  3946. return fn.POISSON(argsList)
  3947. }
  3948. // POISSON function calculates the Poisson Probability Mass Function or the
  3949. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3950. // The syntax of the function is:
  3951. //
  3952. // POISSON(x,mean,cumulative)
  3953. //
  3954. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3955. if argsList.Len() != 3 {
  3956. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3957. }
  3958. var x, mean, cumulative formulaArg
  3959. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3960. return x
  3961. }
  3962. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3963. return mean
  3964. }
  3965. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3966. return cumulative
  3967. }
  3968. if x.Number < 0 || mean.Number <= 0 {
  3969. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3970. }
  3971. if cumulative.Number == 1 {
  3972. summer := 0.0
  3973. floor := math.Floor(x.Number)
  3974. for i := 0; i <= int(floor); i++ {
  3975. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3976. }
  3977. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3978. }
  3979. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3980. }
  3981. // SUM function adds together a supplied set of numbers and returns the sum of
  3982. // these values. The syntax of the function is:
  3983. //
  3984. // SUM(number1,[number2],...)
  3985. //
  3986. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3987. var sum float64
  3988. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3989. token := arg.Value.(formulaArg)
  3990. switch token.Type {
  3991. case ArgUnknown:
  3992. continue
  3993. case ArgString:
  3994. if num := token.ToNumber(); num.Type == ArgNumber {
  3995. sum += num.Number
  3996. }
  3997. case ArgNumber:
  3998. sum += token.Number
  3999. case ArgMatrix:
  4000. for _, row := range token.Matrix {
  4001. for _, value := range row {
  4002. if num := value.ToNumber(); num.Type == ArgNumber {
  4003. sum += num.Number
  4004. }
  4005. }
  4006. }
  4007. }
  4008. }
  4009. return newNumberFormulaArg(sum)
  4010. }
  4011. // SUMIF function finds the values in a supplied array, that satisfy a given
  4012. // criteria, and returns the sum of the corresponding values in a second
  4013. // supplied array. The syntax of the function is:
  4014. //
  4015. // SUMIF(range,criteria,[sum_range])
  4016. //
  4017. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  4018. if argsList.Len() < 2 {
  4019. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  4020. }
  4021. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  4022. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  4023. var sumRange [][]formulaArg
  4024. if argsList.Len() == 3 {
  4025. sumRange = argsList.Back().Value.(formulaArg).Matrix
  4026. }
  4027. var sum, val float64
  4028. var err error
  4029. for rowIdx, row := range rangeMtx {
  4030. for colIdx, col := range row {
  4031. var ok bool
  4032. fromVal := col.String
  4033. if col.String == "" {
  4034. continue
  4035. }
  4036. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  4037. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4038. }
  4039. if ok {
  4040. if argsList.Len() == 3 {
  4041. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  4042. continue
  4043. }
  4044. fromVal = sumRange[rowIdx][colIdx].String
  4045. }
  4046. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  4047. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4048. }
  4049. sum += val
  4050. }
  4051. }
  4052. }
  4053. return newNumberFormulaArg(sum)
  4054. }
  4055. // SUMSQ function returns the sum of squares of a supplied set of values. The
  4056. // syntax of the function is:
  4057. //
  4058. // SUMSQ(number1,[number2],...)
  4059. //
  4060. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  4061. var val, sq float64
  4062. var err error
  4063. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4064. token := arg.Value.(formulaArg)
  4065. switch token.Type {
  4066. case ArgString:
  4067. if token.String == "" {
  4068. continue
  4069. }
  4070. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4071. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4072. }
  4073. sq += val * val
  4074. case ArgNumber:
  4075. sq += token.Number
  4076. case ArgMatrix:
  4077. for _, row := range token.Matrix {
  4078. for _, value := range row {
  4079. if value.String == "" {
  4080. continue
  4081. }
  4082. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  4083. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4084. }
  4085. sq += val * val
  4086. }
  4087. }
  4088. }
  4089. }
  4090. return newNumberFormulaArg(sq)
  4091. }
  4092. // TAN function calculates the tangent of a given angle. The syntax of the
  4093. // function is:
  4094. //
  4095. // TAN(number)
  4096. //
  4097. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  4098. if argsList.Len() != 1 {
  4099. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  4100. }
  4101. number := argsList.Front().Value.(formulaArg).ToNumber()
  4102. if number.Type == ArgError {
  4103. return number
  4104. }
  4105. return newNumberFormulaArg(math.Tan(number.Number))
  4106. }
  4107. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  4108. // number. The syntax of the function is:
  4109. //
  4110. // TANH(number)
  4111. //
  4112. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  4113. if argsList.Len() != 1 {
  4114. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  4115. }
  4116. number := argsList.Front().Value.(formulaArg).ToNumber()
  4117. if number.Type == ArgError {
  4118. return number
  4119. }
  4120. return newNumberFormulaArg(math.Tanh(number.Number))
  4121. }
  4122. // TRUNC function truncates a supplied number to a specified number of decimal
  4123. // places. The syntax of the function is:
  4124. //
  4125. // TRUNC(number,[number_digits])
  4126. //
  4127. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  4128. if argsList.Len() == 0 {
  4129. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  4130. }
  4131. var digits, adjust, rtrim float64
  4132. var err error
  4133. number := argsList.Front().Value.(formulaArg).ToNumber()
  4134. if number.Type == ArgError {
  4135. return number
  4136. }
  4137. if argsList.Len() > 1 {
  4138. d := argsList.Back().Value.(formulaArg).ToNumber()
  4139. if d.Type == ArgError {
  4140. return d
  4141. }
  4142. digits = d.Number
  4143. digits = math.Floor(digits)
  4144. }
  4145. adjust = math.Pow(10, digits)
  4146. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  4147. if x != 0 {
  4148. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  4149. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4150. }
  4151. }
  4152. if (digits > 0) && (rtrim < adjust/10) {
  4153. return newNumberFormulaArg(number.Number)
  4154. }
  4155. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  4156. }
  4157. // Statistical Functions
  4158. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  4159. // The syntax of the function is:
  4160. //
  4161. // AVERAGE(number1,[number2],...)
  4162. //
  4163. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  4164. args := []formulaArg{}
  4165. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4166. args = append(args, arg.Value.(formulaArg))
  4167. }
  4168. count, sum := fn.countSum(false, args)
  4169. if count == 0 {
  4170. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  4171. }
  4172. return newNumberFormulaArg(sum / count)
  4173. }
  4174. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  4175. // with text cell and zero values. The syntax of the function is:
  4176. //
  4177. // AVERAGEA(number1,[number2],...)
  4178. //
  4179. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  4180. args := []formulaArg{}
  4181. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4182. args = append(args, arg.Value.(formulaArg))
  4183. }
  4184. count, sum := fn.countSum(true, args)
  4185. if count == 0 {
  4186. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  4187. }
  4188. return newNumberFormulaArg(sum / count)
  4189. }
  4190. // countSum get count and sum for a formula arguments array.
  4191. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  4192. for _, arg := range args {
  4193. switch arg.Type {
  4194. case ArgNumber:
  4195. if countText || !arg.Boolean {
  4196. sum += arg.Number
  4197. count++
  4198. }
  4199. case ArgString:
  4200. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4201. continue
  4202. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4203. num := arg.ToBool()
  4204. if num.Type == ArgNumber {
  4205. count++
  4206. sum += num.Number
  4207. continue
  4208. }
  4209. }
  4210. num := arg.ToNumber()
  4211. if countText && num.Type == ArgError && arg.String != "" {
  4212. count++
  4213. }
  4214. if num.Type == ArgNumber {
  4215. sum += num.Number
  4216. count++
  4217. }
  4218. case ArgList, ArgMatrix:
  4219. cnt, summary := fn.countSum(countText, arg.ToList())
  4220. sum += summary
  4221. count += cnt
  4222. }
  4223. }
  4224. return
  4225. }
  4226. // COUNT function returns the count of numeric values in a supplied set of
  4227. // cells or values. This count includes both numbers and dates. The syntax of
  4228. // the function is:
  4229. //
  4230. // COUNT(value1,[value2],...)
  4231. //
  4232. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  4233. var count int
  4234. for token := argsList.Front(); token != nil; token = token.Next() {
  4235. arg := token.Value.(formulaArg)
  4236. switch arg.Type {
  4237. case ArgString:
  4238. if arg.ToNumber().Type != ArgError {
  4239. count++
  4240. }
  4241. case ArgNumber:
  4242. count++
  4243. case ArgMatrix:
  4244. for _, row := range arg.Matrix {
  4245. for _, value := range row {
  4246. if value.ToNumber().Type != ArgError {
  4247. count++
  4248. }
  4249. }
  4250. }
  4251. }
  4252. }
  4253. return newNumberFormulaArg(float64(count))
  4254. }
  4255. // COUNTA function returns the number of non-blanks within a supplied set of
  4256. // cells or values. The syntax of the function is:
  4257. //
  4258. // COUNTA(value1,[value2],...)
  4259. //
  4260. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  4261. var count int
  4262. for token := argsList.Front(); token != nil; token = token.Next() {
  4263. arg := token.Value.(formulaArg)
  4264. switch arg.Type {
  4265. case ArgString:
  4266. if arg.String != "" {
  4267. count++
  4268. }
  4269. case ArgNumber:
  4270. count++
  4271. case ArgMatrix:
  4272. for _, row := range arg.ToList() {
  4273. switch row.Type {
  4274. case ArgString:
  4275. if row.String != "" {
  4276. count++
  4277. }
  4278. case ArgNumber:
  4279. count++
  4280. }
  4281. }
  4282. }
  4283. }
  4284. return newNumberFormulaArg(float64(count))
  4285. }
  4286. // COUNTBLANK function returns the number of blank cells in a supplied range.
  4287. // The syntax of the function is:
  4288. //
  4289. // COUNTBLANK(range)
  4290. //
  4291. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  4292. if argsList.Len() != 1 {
  4293. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  4294. }
  4295. var count int
  4296. token := argsList.Front().Value.(formulaArg)
  4297. switch token.Type {
  4298. case ArgString:
  4299. if token.String == "" {
  4300. count++
  4301. }
  4302. case ArgList, ArgMatrix:
  4303. for _, row := range token.ToList() {
  4304. switch row.Type {
  4305. case ArgString:
  4306. if row.String == "" {
  4307. count++
  4308. }
  4309. case ArgEmpty:
  4310. count++
  4311. }
  4312. }
  4313. case ArgEmpty:
  4314. count++
  4315. }
  4316. return newNumberFormulaArg(float64(count))
  4317. }
  4318. // FISHER function calculates the Fisher Transformation for a supplied value.
  4319. // The syntax of the function is:
  4320. //
  4321. // FISHER(x)
  4322. //
  4323. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  4324. if argsList.Len() != 1 {
  4325. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4326. }
  4327. token := argsList.Front().Value.(formulaArg)
  4328. switch token.Type {
  4329. case ArgString:
  4330. arg := token.ToNumber()
  4331. if arg.Type == ArgNumber {
  4332. if arg.Number <= -1 || arg.Number >= 1 {
  4333. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4334. }
  4335. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  4336. }
  4337. case ArgNumber:
  4338. if token.Number <= -1 || token.Number >= 1 {
  4339. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4340. }
  4341. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  4342. }
  4343. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4344. }
  4345. // FISHERINV function calculates the inverse of the Fisher Transformation and
  4346. // returns a value between -1 and +1. The syntax of the function is:
  4347. //
  4348. // FISHERINV(y)
  4349. //
  4350. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  4351. if argsList.Len() != 1 {
  4352. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4353. }
  4354. token := argsList.Front().Value.(formulaArg)
  4355. switch token.Type {
  4356. case ArgString:
  4357. arg := token.ToNumber()
  4358. if arg.Type == ArgNumber {
  4359. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  4360. }
  4361. case ArgNumber:
  4362. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  4363. }
  4364. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4365. }
  4366. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  4367. // specified number, n. The syntax of the function is:
  4368. //
  4369. // GAMMA(number)
  4370. //
  4371. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  4372. if argsList.Len() != 1 {
  4373. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4374. }
  4375. token := argsList.Front().Value.(formulaArg)
  4376. switch token.Type {
  4377. case ArgString:
  4378. arg := token.ToNumber()
  4379. if arg.Type == ArgNumber {
  4380. if arg.Number <= 0 {
  4381. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4382. }
  4383. return newNumberFormulaArg(math.Gamma(arg.Number))
  4384. }
  4385. case ArgNumber:
  4386. if token.Number <= 0 {
  4387. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4388. }
  4389. return newNumberFormulaArg(math.Gamma(token.Number))
  4390. }
  4391. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4392. }
  4393. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  4394. // (n). The syntax of the function is:
  4395. //
  4396. // GAMMALN(x)
  4397. //
  4398. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  4399. if argsList.Len() != 1 {
  4400. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4401. }
  4402. token := argsList.Front().Value.(formulaArg)
  4403. switch token.Type {
  4404. case ArgString:
  4405. arg := token.ToNumber()
  4406. if arg.Type == ArgNumber {
  4407. if arg.Number <= 0 {
  4408. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4409. }
  4410. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  4411. }
  4412. case ArgNumber:
  4413. if token.Number <= 0 {
  4414. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4415. }
  4416. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  4417. }
  4418. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4419. }
  4420. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  4421. // The syntax of the function is:
  4422. //
  4423. // HARMEAN(number1,[number2],...)
  4424. //
  4425. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  4426. if argsList.Len() < 1 {
  4427. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  4428. }
  4429. if min := fn.MIN(argsList); min.Number < 0 {
  4430. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4431. }
  4432. number, val, cnt := 0.0, 0.0, 0.0
  4433. for token := argsList.Front(); token != nil; token = token.Next() {
  4434. arg := token.Value.(formulaArg)
  4435. switch arg.Type {
  4436. case ArgString:
  4437. num := arg.ToNumber()
  4438. if num.Type != ArgNumber {
  4439. continue
  4440. }
  4441. number = num.Number
  4442. case ArgNumber:
  4443. number = arg.Number
  4444. }
  4445. if number <= 0 {
  4446. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4447. }
  4448. val += (1 / number)
  4449. cnt++
  4450. }
  4451. return newNumberFormulaArg(1 / (val / cnt))
  4452. }
  4453. // KURT function calculates the kurtosis of a supplied set of values. The
  4454. // syntax of the function is:
  4455. //
  4456. // KURT(number1,[number2],...)
  4457. //
  4458. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  4459. if argsList.Len() < 1 {
  4460. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  4461. }
  4462. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  4463. if stdev.Number > 0 {
  4464. count, summer := 0.0, 0.0
  4465. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4466. token := arg.Value.(formulaArg)
  4467. switch token.Type {
  4468. case ArgString, ArgNumber:
  4469. num := token.ToNumber()
  4470. if num.Type == ArgError {
  4471. continue
  4472. }
  4473. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4474. count++
  4475. case ArgList, ArgMatrix:
  4476. for _, row := range token.ToList() {
  4477. if row.Type == ArgNumber || row.Type == ArgString {
  4478. num := row.ToNumber()
  4479. if num.Type == ArgError {
  4480. continue
  4481. }
  4482. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4483. count++
  4484. }
  4485. }
  4486. }
  4487. }
  4488. if count > 3 {
  4489. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  4490. }
  4491. }
  4492. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4493. }
  4494. // NORMdotDIST function calculates the Normal Probability Density Function or
  4495. // the Cumulative Normal Distribution. Function for a supplied set of
  4496. // parameters. The syntax of the function is:
  4497. //
  4498. // NORM.DIST(x,mean,standard_dev,cumulative)
  4499. //
  4500. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  4501. if argsList.Len() != 4 {
  4502. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  4503. }
  4504. return fn.NORMDIST(argsList)
  4505. }
  4506. // NORMDIST function calculates the Normal Probability Density Function or the
  4507. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  4508. // The syntax of the function is:
  4509. //
  4510. // NORMDIST(x,mean,standard_dev,cumulative)
  4511. //
  4512. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  4513. if argsList.Len() != 4 {
  4514. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  4515. }
  4516. var x, mean, stdDev, cumulative formulaArg
  4517. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  4518. return x
  4519. }
  4520. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4521. return mean
  4522. }
  4523. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4524. return stdDev
  4525. }
  4526. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  4527. return cumulative
  4528. }
  4529. if stdDev.Number < 0 {
  4530. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4531. }
  4532. if cumulative.Number == 1 {
  4533. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  4534. }
  4535. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  4536. }
  4537. // NORMdotINV function calculates the inverse of the Cumulative Normal
  4538. // Distribution Function for a supplied value of x, and a supplied
  4539. // distribution mean & standard deviation. The syntax of the function is:
  4540. //
  4541. // NORM.INV(probability,mean,standard_dev)
  4542. //
  4543. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  4544. if argsList.Len() != 3 {
  4545. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  4546. }
  4547. return fn.NORMINV(argsList)
  4548. }
  4549. // NORMINV function calculates the inverse of the Cumulative Normal
  4550. // Distribution Function for a supplied value of x, and a supplied
  4551. // distribution mean & standard deviation. The syntax of the function is:
  4552. //
  4553. // NORMINV(probability,mean,standard_dev)
  4554. //
  4555. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  4556. if argsList.Len() != 3 {
  4557. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  4558. }
  4559. var prob, mean, stdDev formulaArg
  4560. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  4561. return prob
  4562. }
  4563. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4564. return mean
  4565. }
  4566. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4567. return stdDev
  4568. }
  4569. if prob.Number < 0 || prob.Number > 1 {
  4570. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4571. }
  4572. if stdDev.Number < 0 {
  4573. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4574. }
  4575. inv, err := norminv(prob.Number)
  4576. if err != nil {
  4577. return newErrorFormulaArg(err.Error(), err.Error())
  4578. }
  4579. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  4580. }
  4581. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  4582. // Distribution Function for a supplied value. The syntax of the function
  4583. // is:
  4584. //
  4585. // NORM.S.DIST(z)
  4586. //
  4587. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  4588. if argsList.Len() != 2 {
  4589. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  4590. }
  4591. args := list.New().Init()
  4592. args.PushBack(argsList.Front().Value.(formulaArg))
  4593. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4594. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4595. args.PushBack(argsList.Back().Value.(formulaArg))
  4596. return fn.NORMDIST(args)
  4597. }
  4598. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  4599. // Function for a supplied value. The syntax of the function is:
  4600. //
  4601. // NORMSDIST(z)
  4602. //
  4603. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4604. if argsList.Len() != 1 {
  4605. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4606. }
  4607. args := list.New().Init()
  4608. args.PushBack(argsList.Front().Value.(formulaArg))
  4609. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4610. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4611. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4612. return fn.NORMDIST(args)
  4613. }
  4614. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4615. // Distribution Function for a supplied probability value. The syntax of the
  4616. // function is:
  4617. //
  4618. // NORMSINV(probability)
  4619. //
  4620. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4621. if argsList.Len() != 1 {
  4622. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4623. }
  4624. args := list.New().Init()
  4625. args.PushBack(argsList.Front().Value.(formulaArg))
  4626. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4627. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4628. return fn.NORMINV(args)
  4629. }
  4630. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4631. // Cumulative Distribution Function for a supplied probability value. The
  4632. // syntax of the function is:
  4633. //
  4634. // NORM.S.INV(probability)
  4635. //
  4636. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4637. if argsList.Len() != 1 {
  4638. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4639. }
  4640. args := list.New().Init()
  4641. args.PushBack(argsList.Front().Value.(formulaArg))
  4642. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4643. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4644. return fn.NORMINV(args)
  4645. }
  4646. // norminv returns the inverse of the normal cumulative distribution for the
  4647. // specified value.
  4648. func norminv(p float64) (float64, error) {
  4649. a := map[int]float64{
  4650. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4651. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4652. }
  4653. b := map[int]float64{
  4654. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4655. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4656. }
  4657. c := map[int]float64{
  4658. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4659. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4660. }
  4661. d := map[int]float64{
  4662. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4663. 4: 3.754408661907416e+00,
  4664. }
  4665. pLow := 0.02425 // Use lower region approx. below this
  4666. pHigh := 1 - pLow // Use upper region approx. above this
  4667. if 0 < p && p < pLow {
  4668. // Rational approximation for lower region.
  4669. q := math.Sqrt(-2 * math.Log(p))
  4670. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4671. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4672. } else if pLow <= p && p <= pHigh {
  4673. // Rational approximation for central region.
  4674. q := p - 0.5
  4675. r := q * q
  4676. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4677. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4678. } else if pHigh < p && p < 1 {
  4679. // Rational approximation for upper region.
  4680. q := math.Sqrt(-2 * math.Log(1-p))
  4681. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4682. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4683. }
  4684. return 0, errors.New(formulaErrorNUM)
  4685. }
  4686. // kth is an implementation of the formula function LARGE and SMALL.
  4687. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4688. if argsList.Len() != 2 {
  4689. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4690. }
  4691. array := argsList.Front().Value.(formulaArg).ToList()
  4692. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4693. if kArg.Type != ArgNumber {
  4694. return kArg
  4695. }
  4696. k := int(kArg.Number)
  4697. if k < 1 {
  4698. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4699. }
  4700. data := []float64{}
  4701. for _, arg := range array {
  4702. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4703. data = append(data, numArg.Number)
  4704. }
  4705. }
  4706. if len(data) < k {
  4707. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4708. }
  4709. sort.Float64s(data)
  4710. if name == "LARGE" {
  4711. return newNumberFormulaArg(data[len(data)-k])
  4712. }
  4713. return newNumberFormulaArg(data[k-1])
  4714. }
  4715. // LARGE function returns the k'th largest value from an array of numeric
  4716. // values. The syntax of the function is:
  4717. //
  4718. // LARGE(array,k)
  4719. //
  4720. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4721. return fn.kth("LARGE", argsList)
  4722. }
  4723. // MAX function returns the largest value from a supplied set of numeric
  4724. // values. The syntax of the function is:
  4725. //
  4726. // MAX(number1,[number2],...)
  4727. //
  4728. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4729. if argsList.Len() == 0 {
  4730. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4731. }
  4732. return fn.max(false, argsList)
  4733. }
  4734. // MAXA function returns the largest value from a supplied set of numeric
  4735. // values, while counting text and the logical value FALSE as the value 0 and
  4736. // counting the logical value TRUE as the value 1. The syntax of the function
  4737. // is:
  4738. //
  4739. // MAXA(number1,[number2],...)
  4740. //
  4741. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4742. if argsList.Len() == 0 {
  4743. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4744. }
  4745. return fn.max(true, argsList)
  4746. }
  4747. // max is an implementation of the formula function MAX and MAXA.
  4748. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4749. max := -math.MaxFloat64
  4750. for token := argsList.Front(); token != nil; token = token.Next() {
  4751. arg := token.Value.(formulaArg)
  4752. switch arg.Type {
  4753. case ArgString:
  4754. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4755. continue
  4756. } else {
  4757. num := arg.ToBool()
  4758. if num.Type == ArgNumber && num.Number > max {
  4759. max = num.Number
  4760. continue
  4761. }
  4762. }
  4763. num := arg.ToNumber()
  4764. if num.Type != ArgError && num.Number > max {
  4765. max = num.Number
  4766. }
  4767. case ArgNumber:
  4768. if arg.Number > max {
  4769. max = arg.Number
  4770. }
  4771. case ArgList, ArgMatrix:
  4772. for _, row := range arg.ToList() {
  4773. switch row.Type {
  4774. case ArgString:
  4775. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4776. continue
  4777. } else {
  4778. num := row.ToBool()
  4779. if num.Type == ArgNumber && num.Number > max {
  4780. max = num.Number
  4781. continue
  4782. }
  4783. }
  4784. num := row.ToNumber()
  4785. if num.Type != ArgError && num.Number > max {
  4786. max = num.Number
  4787. }
  4788. case ArgNumber:
  4789. if row.Number > max {
  4790. max = row.Number
  4791. }
  4792. }
  4793. }
  4794. case ArgError:
  4795. return arg
  4796. }
  4797. }
  4798. if max == -math.MaxFloat64 {
  4799. max = 0
  4800. }
  4801. return newNumberFormulaArg(max)
  4802. }
  4803. // MEDIAN function returns the statistical median (the middle value) of a list
  4804. // of supplied numbers. The syntax of the function is:
  4805. //
  4806. // MEDIAN(number1,[number2],...)
  4807. //
  4808. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4809. if argsList.Len() == 0 {
  4810. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4811. }
  4812. var values = []float64{}
  4813. var median, digits float64
  4814. var err error
  4815. for token := argsList.Front(); token != nil; token = token.Next() {
  4816. arg := token.Value.(formulaArg)
  4817. switch arg.Type {
  4818. case ArgString:
  4819. num := arg.ToNumber()
  4820. if num.Type == ArgError {
  4821. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4822. }
  4823. values = append(values, num.Number)
  4824. case ArgNumber:
  4825. values = append(values, arg.Number)
  4826. case ArgMatrix:
  4827. for _, row := range arg.Matrix {
  4828. for _, value := range row {
  4829. if value.String == "" {
  4830. continue
  4831. }
  4832. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4833. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4834. }
  4835. values = append(values, digits)
  4836. }
  4837. }
  4838. }
  4839. }
  4840. sort.Float64s(values)
  4841. if len(values)%2 == 0 {
  4842. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4843. } else {
  4844. median = values[len(values)/2]
  4845. }
  4846. return newNumberFormulaArg(median)
  4847. }
  4848. // MIN function returns the smallest value from a supplied set of numeric
  4849. // values. The syntax of the function is:
  4850. //
  4851. // MIN(number1,[number2],...)
  4852. //
  4853. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4854. if argsList.Len() == 0 {
  4855. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4856. }
  4857. return fn.min(false, argsList)
  4858. }
  4859. // MINA function returns the smallest value from a supplied set of numeric
  4860. // values, while counting text and the logical value FALSE as the value 0 and
  4861. // counting the logical value TRUE as the value 1. The syntax of the function
  4862. // is:
  4863. //
  4864. // MINA(number1,[number2],...)
  4865. //
  4866. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4867. if argsList.Len() == 0 {
  4868. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4869. }
  4870. return fn.min(true, argsList)
  4871. }
  4872. // min is an implementation of the formula function MIN and MINA.
  4873. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4874. min := math.MaxFloat64
  4875. for token := argsList.Front(); token != nil; token = token.Next() {
  4876. arg := token.Value.(formulaArg)
  4877. switch arg.Type {
  4878. case ArgString:
  4879. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4880. continue
  4881. } else {
  4882. num := arg.ToBool()
  4883. if num.Type == ArgNumber && num.Number < min {
  4884. min = num.Number
  4885. continue
  4886. }
  4887. }
  4888. num := arg.ToNumber()
  4889. if num.Type != ArgError && num.Number < min {
  4890. min = num.Number
  4891. }
  4892. case ArgNumber:
  4893. if arg.Number < min {
  4894. min = arg.Number
  4895. }
  4896. case ArgList, ArgMatrix:
  4897. for _, row := range arg.ToList() {
  4898. switch row.Type {
  4899. case ArgString:
  4900. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4901. continue
  4902. } else {
  4903. num := row.ToBool()
  4904. if num.Type == ArgNumber && num.Number < min {
  4905. min = num.Number
  4906. continue
  4907. }
  4908. }
  4909. num := row.ToNumber()
  4910. if num.Type != ArgError && num.Number < min {
  4911. min = num.Number
  4912. }
  4913. case ArgNumber:
  4914. if row.Number < min {
  4915. min = row.Number
  4916. }
  4917. }
  4918. }
  4919. case ArgError:
  4920. return arg
  4921. }
  4922. }
  4923. if min == math.MaxFloat64 {
  4924. min = 0
  4925. }
  4926. return newNumberFormulaArg(min)
  4927. }
  4928. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4929. // which k% of the data values fall) for a supplied range of values and a
  4930. // supplied k. The syntax of the function is:
  4931. //
  4932. // PERCENTILE.INC(array,k)
  4933. //
  4934. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4935. if argsList.Len() != 2 {
  4936. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4937. }
  4938. return fn.PERCENTILE(argsList)
  4939. }
  4940. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4941. // k% of the data values fall) for a supplied range of values and a supplied
  4942. // k. The syntax of the function is:
  4943. //
  4944. // PERCENTILE(array,k)
  4945. //
  4946. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4947. if argsList.Len() != 2 {
  4948. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4949. }
  4950. array := argsList.Front().Value.(formulaArg).ToList()
  4951. k := argsList.Back().Value.(formulaArg).ToNumber()
  4952. if k.Type != ArgNumber {
  4953. return k
  4954. }
  4955. if k.Number < 0 || k.Number > 1 {
  4956. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4957. }
  4958. numbers := []float64{}
  4959. for _, arg := range array {
  4960. if arg.Type == ArgError {
  4961. return arg
  4962. }
  4963. num := arg.ToNumber()
  4964. if num.Type == ArgNumber {
  4965. numbers = append(numbers, num.Number)
  4966. }
  4967. }
  4968. cnt := len(numbers)
  4969. sort.Float64s(numbers)
  4970. idx := k.Number * (float64(cnt) - 1)
  4971. base := math.Floor(idx)
  4972. if idx == base {
  4973. return newNumberFormulaArg(numbers[int(idx)])
  4974. }
  4975. next := base + 1
  4976. proportion := idx - base
  4977. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4978. }
  4979. // PERMUT function calculates the number of permutations of a specified number
  4980. // of objects from a set of objects. The syntax of the function is:
  4981. //
  4982. // PERMUT(number,number_chosen)
  4983. //
  4984. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4985. if argsList.Len() != 2 {
  4986. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4987. }
  4988. number := argsList.Front().Value.(formulaArg).ToNumber()
  4989. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4990. if number.Type != ArgNumber {
  4991. return number
  4992. }
  4993. if chosen.Type != ArgNumber {
  4994. return chosen
  4995. }
  4996. if number.Number < chosen.Number {
  4997. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4998. }
  4999. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  5000. }
  5001. // PERMUTATIONA function calculates the number of permutations, with
  5002. // repetitions, of a specified number of objects from a set. The syntax of
  5003. // the function is:
  5004. //
  5005. // PERMUTATIONA(number,number_chosen)
  5006. //
  5007. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  5008. if argsList.Len() < 1 {
  5009. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  5010. }
  5011. number := argsList.Front().Value.(formulaArg).ToNumber()
  5012. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  5013. if number.Type != ArgNumber {
  5014. return number
  5015. }
  5016. if chosen.Type != ArgNumber {
  5017. return chosen
  5018. }
  5019. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  5020. if num < 0 || numChosen < 0 {
  5021. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  5022. }
  5023. return newNumberFormulaArg(math.Pow(num, numChosen))
  5024. }
  5025. // QUARTILE function returns a requested quartile of a supplied range of
  5026. // values. The syntax of the function is:
  5027. //
  5028. // QUARTILE(array,quart)
  5029. //
  5030. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  5031. if argsList.Len() != 2 {
  5032. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  5033. }
  5034. quart := argsList.Back().Value.(formulaArg).ToNumber()
  5035. if quart.Type != ArgNumber {
  5036. return quart
  5037. }
  5038. if quart.Number < 0 || quart.Number > 4 {
  5039. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  5040. }
  5041. args := list.New().Init()
  5042. args.PushBack(argsList.Front().Value.(formulaArg))
  5043. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  5044. return fn.PERCENTILE(args)
  5045. }
  5046. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  5047. // values. The syntax of the function is:
  5048. //
  5049. // QUARTILE.INC(array,quart)
  5050. //
  5051. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  5052. if argsList.Len() != 2 {
  5053. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  5054. }
  5055. return fn.QUARTILE(argsList)
  5056. }
  5057. // SKEW function calculates the skewness of the distribution of a supplied set
  5058. // of values. The syntax of the function is:
  5059. //
  5060. // SKEW(number1,[number2],...)
  5061. //
  5062. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  5063. if argsList.Len() < 1 {
  5064. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  5065. }
  5066. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  5067. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5068. token := arg.Value.(formulaArg)
  5069. switch token.Type {
  5070. case ArgNumber, ArgString:
  5071. num := token.ToNumber()
  5072. if num.Type == ArgError {
  5073. return num
  5074. }
  5075. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  5076. count++
  5077. case ArgList, ArgMatrix:
  5078. for _, row := range token.ToList() {
  5079. numArg := row.ToNumber()
  5080. if numArg.Type != ArgNumber {
  5081. continue
  5082. }
  5083. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  5084. count++
  5085. }
  5086. }
  5087. }
  5088. if count > 2 {
  5089. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  5090. }
  5091. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  5092. }
  5093. // SMALL function returns the k'th smallest value from an array of numeric
  5094. // values. The syntax of the function is:
  5095. //
  5096. // SMALL(array,k)
  5097. //
  5098. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  5099. return fn.kth("SMALL", argsList)
  5100. }
  5101. // VARP function returns the Variance of a given set of values. The syntax of
  5102. // the function is:
  5103. //
  5104. // VARP(number1,[number2],...)
  5105. //
  5106. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  5107. if argsList.Len() < 1 {
  5108. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  5109. }
  5110. summerA, summerB, count := 0.0, 0.0, 0.0
  5111. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5112. for _, token := range arg.Value.(formulaArg).ToList() {
  5113. if num := token.ToNumber(); num.Type == ArgNumber {
  5114. summerA += (num.Number * num.Number)
  5115. summerB += num.Number
  5116. count++
  5117. }
  5118. }
  5119. }
  5120. if count > 0 {
  5121. summerA *= count
  5122. summerB *= summerB
  5123. return newNumberFormulaArg((summerA - summerB) / (count * count))
  5124. }
  5125. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  5126. }
  5127. // VARdotP function returns the Variance of a given set of values. The syntax
  5128. // of the function is:
  5129. //
  5130. // VAR.P(number1,[number2],...)
  5131. //
  5132. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  5133. if argsList.Len() < 1 {
  5134. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  5135. }
  5136. return fn.VARP(argsList)
  5137. }
  5138. // Information Functions
  5139. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  5140. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  5141. // function is:
  5142. //
  5143. // ISBLANK(value)
  5144. //
  5145. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  5146. if argsList.Len() != 1 {
  5147. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  5148. }
  5149. token := argsList.Front().Value.(formulaArg)
  5150. result := "FALSE"
  5151. switch token.Type {
  5152. case ArgUnknown:
  5153. result = "TRUE"
  5154. case ArgString:
  5155. if token.String == "" {
  5156. result = "TRUE"
  5157. }
  5158. }
  5159. return newStringFormulaArg(result)
  5160. }
  5161. // ISERR function tests if an initial supplied expression (or value) returns
  5162. // any Excel Error, except the #N/A error. If so, the function returns the
  5163. // logical value TRUE; If the supplied value is not an error or is the #N/A
  5164. // error, the ISERR function returns FALSE. The syntax of the function is:
  5165. //
  5166. // ISERR(value)
  5167. //
  5168. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  5169. if argsList.Len() != 1 {
  5170. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  5171. }
  5172. token := argsList.Front().Value.(formulaArg)
  5173. result := "FALSE"
  5174. if token.Type == ArgError {
  5175. for _, errType := range []string{
  5176. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  5177. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  5178. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  5179. } {
  5180. if errType == token.String {
  5181. result = "TRUE"
  5182. }
  5183. }
  5184. }
  5185. return newStringFormulaArg(result)
  5186. }
  5187. // ISERROR function tests if an initial supplied expression (or value) returns
  5188. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  5189. // function returns FALSE. The syntax of the function is:
  5190. //
  5191. // ISERROR(value)
  5192. //
  5193. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  5194. if argsList.Len() != 1 {
  5195. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  5196. }
  5197. token := argsList.Front().Value.(formulaArg)
  5198. result := "FALSE"
  5199. if token.Type == ArgError {
  5200. for _, errType := range []string{
  5201. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  5202. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  5203. formulaErrorCALC, formulaErrorGETTINGDATA,
  5204. } {
  5205. if errType == token.String {
  5206. result = "TRUE"
  5207. }
  5208. }
  5209. }
  5210. return newStringFormulaArg(result)
  5211. }
  5212. // ISEVEN function tests if a supplied number (or numeric expression)
  5213. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  5214. // function returns FALSE. The syntax of the function is:
  5215. //
  5216. // ISEVEN(value)
  5217. //
  5218. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  5219. if argsList.Len() != 1 {
  5220. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  5221. }
  5222. var (
  5223. token = argsList.Front().Value.(formulaArg)
  5224. result = "FALSE"
  5225. numeric int
  5226. err error
  5227. )
  5228. if token.Type == ArgString {
  5229. if numeric, err = strconv.Atoi(token.String); err != nil {
  5230. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5231. }
  5232. if numeric == numeric/2*2 {
  5233. return newStringFormulaArg("TRUE")
  5234. }
  5235. }
  5236. return newStringFormulaArg(result)
  5237. }
  5238. // ISNA function tests if an initial supplied expression (or value) returns
  5239. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  5240. // returns FALSE. The syntax of the function is:
  5241. //
  5242. // ISNA(value)
  5243. //
  5244. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  5245. if argsList.Len() != 1 {
  5246. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  5247. }
  5248. token := argsList.Front().Value.(formulaArg)
  5249. result := "FALSE"
  5250. if token.Type == ArgError && token.String == formulaErrorNA {
  5251. result = "TRUE"
  5252. }
  5253. return newStringFormulaArg(result)
  5254. }
  5255. // ISNONTEXT function function tests if a supplied value is text. If not, the
  5256. // function returns TRUE; If the supplied value is text, the function returns
  5257. // FALSE. The syntax of the function is:
  5258. //
  5259. // ISNONTEXT(value)
  5260. //
  5261. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  5262. if argsList.Len() != 1 {
  5263. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  5264. }
  5265. token := argsList.Front().Value.(formulaArg)
  5266. result := "TRUE"
  5267. if token.Type == ArgString && token.String != "" {
  5268. result = "FALSE"
  5269. }
  5270. return newStringFormulaArg(result)
  5271. }
  5272. // ISNUMBER function function tests if a supplied value is a number. If so,
  5273. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  5274. // function is:
  5275. //
  5276. // ISNUMBER(value)
  5277. //
  5278. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  5279. if argsList.Len() != 1 {
  5280. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  5281. }
  5282. token, result := argsList.Front().Value.(formulaArg), false
  5283. if token.Type == ArgString && token.String != "" {
  5284. if _, err := strconv.Atoi(token.String); err == nil {
  5285. result = true
  5286. }
  5287. }
  5288. return newBoolFormulaArg(result)
  5289. }
  5290. // ISODD function tests if a supplied number (or numeric expression) evaluates
  5291. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  5292. // FALSE. The syntax of the function is:
  5293. //
  5294. // ISODD(value)
  5295. //
  5296. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  5297. if argsList.Len() != 1 {
  5298. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  5299. }
  5300. var (
  5301. token = argsList.Front().Value.(formulaArg)
  5302. result = "FALSE"
  5303. numeric int
  5304. err error
  5305. )
  5306. if token.Type == ArgString {
  5307. if numeric, err = strconv.Atoi(token.String); err != nil {
  5308. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5309. }
  5310. if numeric != numeric/2*2 {
  5311. return newStringFormulaArg("TRUE")
  5312. }
  5313. }
  5314. return newStringFormulaArg(result)
  5315. }
  5316. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  5317. // Otherwise, the function returns FALSE. The syntax of the function is:
  5318. //
  5319. // ISTEXT(value)
  5320. //
  5321. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  5322. if argsList.Len() != 1 {
  5323. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  5324. }
  5325. token := argsList.Front().Value.(formulaArg)
  5326. if token.ToNumber().Type != ArgError {
  5327. return newBoolFormulaArg(false)
  5328. }
  5329. return newBoolFormulaArg(token.Type == ArgString)
  5330. }
  5331. // N function converts data into a numeric value. The syntax of the function
  5332. // is:
  5333. //
  5334. // N(value)
  5335. //
  5336. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  5337. if argsList.Len() != 1 {
  5338. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  5339. }
  5340. token, num := argsList.Front().Value.(formulaArg), 0.0
  5341. if token.Type == ArgError {
  5342. return token
  5343. }
  5344. if arg := token.ToNumber(); arg.Type == ArgNumber {
  5345. num = arg.Number
  5346. }
  5347. if token.Value() == "TRUE" {
  5348. num = 1
  5349. }
  5350. return newNumberFormulaArg(num)
  5351. }
  5352. // NA function returns the Excel #N/A error. This error message has the
  5353. // meaning 'value not available' and is produced when an Excel Formula is
  5354. // unable to find a value that it needs. The syntax of the function is:
  5355. //
  5356. // NA()
  5357. //
  5358. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  5359. if argsList.Len() != 0 {
  5360. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  5361. }
  5362. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  5363. }
  5364. // SHEET function returns the Sheet number for a specified reference. The
  5365. // syntax of the function is:
  5366. //
  5367. // SHEET()
  5368. //
  5369. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  5370. if argsList.Len() != 0 {
  5371. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  5372. }
  5373. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  5374. }
  5375. // T function tests if a supplied value is text and if so, returns the
  5376. // supplied text; Otherwise, the function returns an empty text string. The
  5377. // syntax of the function is:
  5378. //
  5379. // T(value)
  5380. //
  5381. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  5382. if argsList.Len() != 1 {
  5383. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  5384. }
  5385. token := argsList.Front().Value.(formulaArg)
  5386. if token.Type == ArgError {
  5387. return token
  5388. }
  5389. if token.Type == ArgNumber {
  5390. return newStringFormulaArg("")
  5391. }
  5392. return newStringFormulaArg(token.Value())
  5393. }
  5394. // Logical Functions
  5395. // AND function tests a number of supplied conditions and returns TRUE or
  5396. // FALSE. The syntax of the function is:
  5397. //
  5398. // AND(logical_test1,[logical_test2],...)
  5399. //
  5400. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  5401. if argsList.Len() == 0 {
  5402. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  5403. }
  5404. if argsList.Len() > 30 {
  5405. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  5406. }
  5407. var (
  5408. and = true
  5409. val float64
  5410. err error
  5411. )
  5412. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5413. token := arg.Value.(formulaArg)
  5414. switch token.Type {
  5415. case ArgUnknown:
  5416. continue
  5417. case ArgString:
  5418. if token.String == "TRUE" {
  5419. continue
  5420. }
  5421. if token.String == "FALSE" {
  5422. return newStringFormulaArg(token.String)
  5423. }
  5424. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5425. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5426. }
  5427. and = and && (val != 0)
  5428. case ArgMatrix:
  5429. // TODO
  5430. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5431. }
  5432. }
  5433. return newBoolFormulaArg(and)
  5434. }
  5435. // FALSE function function returns the logical value FALSE. The syntax of the
  5436. // function is:
  5437. //
  5438. // FALSE()
  5439. //
  5440. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  5441. if argsList.Len() != 0 {
  5442. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  5443. }
  5444. return newBoolFormulaArg(false)
  5445. }
  5446. // IFERROR function receives two values (or expressions) and tests if the
  5447. // first of these evaluates to an error. The syntax of the function is:
  5448. //
  5449. // IFERROR(value,value_if_error)
  5450. //
  5451. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  5452. if argsList.Len() != 2 {
  5453. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  5454. }
  5455. value := argsList.Front().Value.(formulaArg)
  5456. if value.Type != ArgError {
  5457. if value.Type == ArgEmpty {
  5458. return newNumberFormulaArg(0)
  5459. }
  5460. return value
  5461. }
  5462. return argsList.Back().Value.(formulaArg)
  5463. }
  5464. // NOT function returns the opposite to a supplied logical value. The syntax
  5465. // of the function is:
  5466. //
  5467. // NOT(logical)
  5468. //
  5469. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  5470. if argsList.Len() != 1 {
  5471. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  5472. }
  5473. token := argsList.Front().Value.(formulaArg)
  5474. switch token.Type {
  5475. case ArgString, ArgList:
  5476. if strings.ToUpper(token.String) == "TRUE" {
  5477. return newBoolFormulaArg(false)
  5478. }
  5479. if strings.ToUpper(token.String) == "FALSE" {
  5480. return newBoolFormulaArg(true)
  5481. }
  5482. case ArgNumber:
  5483. return newBoolFormulaArg(!(token.Number != 0))
  5484. case ArgError:
  5485. return token
  5486. }
  5487. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  5488. }
  5489. // OR function tests a number of supplied conditions and returns either TRUE
  5490. // or FALSE. The syntax of the function is:
  5491. //
  5492. // OR(logical_test1,[logical_test2],...)
  5493. //
  5494. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  5495. if argsList.Len() == 0 {
  5496. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  5497. }
  5498. if argsList.Len() > 30 {
  5499. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  5500. }
  5501. var (
  5502. or bool
  5503. val float64
  5504. err error
  5505. )
  5506. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5507. token := arg.Value.(formulaArg)
  5508. switch token.Type {
  5509. case ArgUnknown:
  5510. continue
  5511. case ArgString:
  5512. if token.String == "FALSE" {
  5513. continue
  5514. }
  5515. if token.String == "TRUE" {
  5516. or = true
  5517. continue
  5518. }
  5519. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5520. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5521. }
  5522. or = val != 0
  5523. case ArgMatrix:
  5524. // TODO
  5525. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5526. }
  5527. }
  5528. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  5529. }
  5530. // TRUE function returns the logical value TRUE. The syntax of the function
  5531. // is:
  5532. //
  5533. // TRUE()
  5534. //
  5535. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  5536. if argsList.Len() != 0 {
  5537. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  5538. }
  5539. return newBoolFormulaArg(true)
  5540. }
  5541. // Date and Time Functions
  5542. // DATE returns a date, from a user-supplied year, month and day. The syntax
  5543. // of the function is:
  5544. //
  5545. // DATE(year,month,day)
  5546. //
  5547. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  5548. if argsList.Len() != 3 {
  5549. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5550. }
  5551. year := argsList.Front().Value.(formulaArg).ToNumber()
  5552. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5553. day := argsList.Back().Value.(formulaArg).ToNumber()
  5554. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  5555. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5556. }
  5557. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  5558. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  5559. }
  5560. // DATEDIF function calculates the number of days, months, or years between
  5561. // two dates. The syntax of the function is:
  5562. //
  5563. // DATEDIF(start_date,end_date,unit)
  5564. //
  5565. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  5566. if argsList.Len() != 3 {
  5567. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  5568. }
  5569. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  5570. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  5571. return startArg
  5572. }
  5573. if startArg.Number > endArg.Number {
  5574. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  5575. }
  5576. if startArg.Number == endArg.Number {
  5577. return newNumberFormulaArg(0)
  5578. }
  5579. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  5580. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  5581. sy, smm, sd := startDate.Date()
  5582. ey, emm, ed := endDate.Date()
  5583. sm, em, diff := int(smm), int(emm), 0.0
  5584. switch unit {
  5585. case "d":
  5586. return newNumberFormulaArg(endArg.Number - startArg.Number)
  5587. case "y":
  5588. diff = float64(ey - sy)
  5589. if em < sm || (em == sm && ed < sd) {
  5590. diff--
  5591. }
  5592. case "m":
  5593. ydiff := ey - sy
  5594. mdiff := em - sm
  5595. if ed < sd {
  5596. mdiff--
  5597. }
  5598. if mdiff < 0 {
  5599. ydiff--
  5600. mdiff += 12
  5601. }
  5602. diff = float64(ydiff*12 + mdiff)
  5603. case "md":
  5604. smMD := em
  5605. if ed < sd {
  5606. smMD--
  5607. }
  5608. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5609. case "ym":
  5610. diff = float64(em - sm)
  5611. if ed < sd {
  5612. diff--
  5613. }
  5614. if diff < 0 {
  5615. diff += 12
  5616. }
  5617. case "yd":
  5618. syYD := sy
  5619. if em < sm || (em == sm && ed < sd) {
  5620. syYD++
  5621. }
  5622. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5623. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5624. diff = s - e
  5625. default:
  5626. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5627. }
  5628. return newNumberFormulaArg(diff)
  5629. }
  5630. // NOW function returns the current date and time. The function receives no
  5631. // arguments and therefore. The syntax of the function is:
  5632. //
  5633. // NOW()
  5634. //
  5635. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5636. if argsList.Len() != 0 {
  5637. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5638. }
  5639. now := time.Now()
  5640. _, offset := now.Zone()
  5641. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5642. }
  5643. // TODAY function returns the current date. The function has no arguments and
  5644. // therefore. The syntax of the function is:
  5645. //
  5646. // TODAY()
  5647. //
  5648. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5649. if argsList.Len() != 0 {
  5650. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5651. }
  5652. now := time.Now()
  5653. _, offset := now.Zone()
  5654. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5655. }
  5656. // makeDate return date as a Unix time, the number of seconds elapsed since
  5657. // January 1, 1970 UTC.
  5658. func makeDate(y int, m time.Month, d int) int64 {
  5659. if y == 1900 && int(m) <= 2 {
  5660. d--
  5661. }
  5662. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5663. return date.Unix()
  5664. }
  5665. // daysBetween return time interval of the given start timestamp and end
  5666. // timestamp.
  5667. func daysBetween(startDate, endDate int64) float64 {
  5668. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5669. }
  5670. // Text Functions
  5671. // CHAR function returns the character relating to a supplied character set
  5672. // number (from 1 to 255). syntax of the function is:
  5673. //
  5674. // CHAR(number)
  5675. //
  5676. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5677. if argsList.Len() != 1 {
  5678. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5679. }
  5680. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5681. if arg.Type != ArgNumber {
  5682. return arg
  5683. }
  5684. num := int(arg.Number)
  5685. if num < 0 || num > 255 {
  5686. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5687. }
  5688. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5689. }
  5690. // CLEAN removes all non-printable characters from a supplied text string. The
  5691. // syntax of the function is:
  5692. //
  5693. // CLEAN(text)
  5694. //
  5695. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5696. if argsList.Len() != 1 {
  5697. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5698. }
  5699. b := bytes.Buffer{}
  5700. for _, c := range argsList.Front().Value.(formulaArg).String {
  5701. if c > 31 {
  5702. b.WriteRune(c)
  5703. }
  5704. }
  5705. return newStringFormulaArg(b.String())
  5706. }
  5707. // CODE function converts the first character of a supplied text string into
  5708. // the associated numeric character set code used by your computer. The
  5709. // syntax of the function is:
  5710. //
  5711. // CODE(text)
  5712. //
  5713. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5714. return fn.code("CODE", argsList)
  5715. }
  5716. // code is an implementation of the formula function CODE and UNICODE.
  5717. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5718. if argsList.Len() != 1 {
  5719. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5720. }
  5721. text := argsList.Front().Value.(formulaArg).Value()
  5722. if len(text) == 0 {
  5723. if name == "CODE" {
  5724. return newNumberFormulaArg(0)
  5725. }
  5726. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5727. }
  5728. return newNumberFormulaArg(float64(text[0]))
  5729. }
  5730. // CONCAT function joins together a series of supplied text strings into one
  5731. // combined text string.
  5732. //
  5733. // CONCAT(text1,[text2],...)
  5734. //
  5735. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5736. return fn.concat("CONCAT", argsList)
  5737. }
  5738. // CONCATENATE function joins together a series of supplied text strings into
  5739. // one combined text string.
  5740. //
  5741. // CONCATENATE(text1,[text2],...)
  5742. //
  5743. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5744. return fn.concat("CONCATENATE", argsList)
  5745. }
  5746. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5747. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5748. buf := bytes.Buffer{}
  5749. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5750. token := arg.Value.(formulaArg)
  5751. switch token.Type {
  5752. case ArgString:
  5753. buf.WriteString(token.String)
  5754. case ArgNumber:
  5755. if token.Boolean {
  5756. if token.Number == 0 {
  5757. buf.WriteString("FALSE")
  5758. } else {
  5759. buf.WriteString("TRUE")
  5760. }
  5761. } else {
  5762. buf.WriteString(token.Value())
  5763. }
  5764. default:
  5765. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5766. }
  5767. }
  5768. return newStringFormulaArg(buf.String())
  5769. }
  5770. // EXACT function tests if two supplied text strings or values are exactly
  5771. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5772. // function is case-sensitive. The syntax of the function is:
  5773. //
  5774. // EXACT(text1,text2)
  5775. //
  5776. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5777. if argsList.Len() != 2 {
  5778. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5779. }
  5780. text1 := argsList.Front().Value.(formulaArg).Value()
  5781. text2 := argsList.Back().Value.(formulaArg).Value()
  5782. return newBoolFormulaArg(text1 == text2)
  5783. }
  5784. // FIXED function rounds a supplied number to a specified number of decimal
  5785. // places and then converts this into text. The syntax of the function is:
  5786. //
  5787. // FIXED(number,[decimals],[no_commas])
  5788. //
  5789. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5790. if argsList.Len() < 1 {
  5791. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5792. }
  5793. if argsList.Len() > 3 {
  5794. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5795. }
  5796. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5797. if numArg.Type != ArgNumber {
  5798. return numArg
  5799. }
  5800. precision, decimals, noCommas := 0, 0, false
  5801. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5802. if argsList.Len() == 1 && len(s) == 2 {
  5803. precision = len(s[1])
  5804. decimals = len(s[1])
  5805. }
  5806. if argsList.Len() >= 2 {
  5807. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5808. if decimalsArg.Type != ArgNumber {
  5809. return decimalsArg
  5810. }
  5811. decimals = int(decimalsArg.Number)
  5812. }
  5813. if argsList.Len() == 3 {
  5814. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5815. if noCommasArg.Type == ArgError {
  5816. return noCommasArg
  5817. }
  5818. noCommas = noCommasArg.Boolean
  5819. }
  5820. n := math.Pow(10, float64(decimals))
  5821. r := numArg.Number * n
  5822. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5823. if decimals > 0 {
  5824. precision = decimals
  5825. }
  5826. if noCommas {
  5827. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5828. }
  5829. p := message.NewPrinter(language.English)
  5830. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5831. }
  5832. // FIND function returns the position of a specified character or sub-string
  5833. // within a supplied text string. The function is case-sensitive. The syntax
  5834. // of the function is:
  5835. //
  5836. // FIND(find_text,within_text,[start_num])
  5837. //
  5838. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5839. return fn.find("FIND", argsList)
  5840. }
  5841. // FINDB counts each double-byte character as 2 when you have enabled the
  5842. // editing of a language that supports DBCS and then set it as the default
  5843. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5844. // function is:
  5845. //
  5846. // FINDB(find_text,within_text,[start_num])
  5847. //
  5848. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5849. return fn.find("FINDB", argsList)
  5850. }
  5851. // find is an implementation of the formula function FIND and FINDB.
  5852. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5853. if argsList.Len() < 2 {
  5854. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5855. }
  5856. if argsList.Len() > 3 {
  5857. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5858. }
  5859. findText := argsList.Front().Value.(formulaArg).Value()
  5860. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5861. startNum, result := 1, 1
  5862. if argsList.Len() == 3 {
  5863. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5864. if numArg.Type != ArgNumber {
  5865. return numArg
  5866. }
  5867. if numArg.Number < 0 {
  5868. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5869. }
  5870. startNum = int(numArg.Number)
  5871. }
  5872. if findText == "" {
  5873. return newNumberFormulaArg(float64(startNum))
  5874. }
  5875. for idx := range withinText {
  5876. if result < startNum {
  5877. result++
  5878. }
  5879. if strings.Index(withinText[idx:], findText) == 0 {
  5880. return newNumberFormulaArg(float64(result))
  5881. }
  5882. result++
  5883. }
  5884. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5885. }
  5886. // LEFT function returns a specified number of characters from the start of a
  5887. // supplied text string. The syntax of the function is:
  5888. //
  5889. // LEFT(text,[num_chars])
  5890. //
  5891. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5892. return fn.leftRight("LEFT", argsList)
  5893. }
  5894. // LEFTB returns the first character or characters in a text string, based on
  5895. // the number of bytes you specify. The syntax of the function is:
  5896. //
  5897. // LEFTB(text,[num_bytes])
  5898. //
  5899. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5900. return fn.leftRight("LEFTB", argsList)
  5901. }
  5902. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5903. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5904. // (Traditional), and Korean.
  5905. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5906. if argsList.Len() < 1 {
  5907. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5908. }
  5909. if argsList.Len() > 2 {
  5910. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5911. }
  5912. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5913. if argsList.Len() == 2 {
  5914. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5915. if numArg.Type != ArgNumber {
  5916. return numArg
  5917. }
  5918. if numArg.Number < 0 {
  5919. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5920. }
  5921. numChars = int(numArg.Number)
  5922. }
  5923. if len(text) > numChars {
  5924. if name == "LEFT" || name == "LEFTB" {
  5925. return newStringFormulaArg(text[:numChars])
  5926. }
  5927. return newStringFormulaArg(text[len(text)-numChars:])
  5928. }
  5929. return newStringFormulaArg(text)
  5930. }
  5931. // LEN returns the length of a supplied text string. The syntax of the
  5932. // function is:
  5933. //
  5934. // LEN(text)
  5935. //
  5936. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5937. if argsList.Len() != 1 {
  5938. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5939. }
  5940. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5941. }
  5942. // LENB returns the number of bytes used to represent the characters in a text
  5943. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5944. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5945. // 1 byte per character. The syntax of the function is:
  5946. //
  5947. // LENB(text)
  5948. //
  5949. // TODO: the languages that support DBCS include Japanese, Chinese
  5950. // (Simplified), Chinese (Traditional), and Korean.
  5951. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5952. if argsList.Len() != 1 {
  5953. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5954. }
  5955. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5956. }
  5957. // LOWER converts all characters in a supplied text string to lower case. The
  5958. // syntax of the function is:
  5959. //
  5960. // LOWER(text)
  5961. //
  5962. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5963. if argsList.Len() != 1 {
  5964. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5965. }
  5966. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5967. }
  5968. // MID function returns a specified number of characters from the middle of a
  5969. // supplied text string. The syntax of the function is:
  5970. //
  5971. // MID(text,start_num,num_chars)
  5972. //
  5973. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5974. return fn.mid("MID", argsList)
  5975. }
  5976. // MIDB returns a specific number of characters from a text string, starting
  5977. // at the position you specify, based on the number of bytes you specify. The
  5978. // syntax of the function is:
  5979. //
  5980. // MID(text,start_num,num_chars)
  5981. //
  5982. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5983. return fn.mid("MIDB", argsList)
  5984. }
  5985. // mid is an implementation of the formula function MID and MIDB. TODO:
  5986. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5987. // (Traditional), and Korean.
  5988. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5989. if argsList.Len() != 3 {
  5990. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5991. }
  5992. text := argsList.Front().Value.(formulaArg).Value()
  5993. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5994. if startNumArg.Type != ArgNumber {
  5995. return startNumArg
  5996. }
  5997. if numCharsArg.Type != ArgNumber {
  5998. return numCharsArg
  5999. }
  6000. startNum := int(startNumArg.Number)
  6001. if startNum < 0 {
  6002. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  6003. }
  6004. textLen := len(text)
  6005. if startNum > textLen {
  6006. return newStringFormulaArg("")
  6007. }
  6008. startNum--
  6009. endNum := startNum + int(numCharsArg.Number)
  6010. if endNum > textLen+1 {
  6011. return newStringFormulaArg(text[startNum:])
  6012. }
  6013. return newStringFormulaArg(text[startNum:endNum])
  6014. }
  6015. // PROPER converts all characters in a supplied text string to proper case
  6016. // (i.e. all letters that do not immediately follow another letter are set to
  6017. // upper case and all other characters are lower case). The syntax of the
  6018. // function is:
  6019. //
  6020. // PROPER(text)
  6021. //
  6022. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  6023. if argsList.Len() != 1 {
  6024. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  6025. }
  6026. buf := bytes.Buffer{}
  6027. isLetter := false
  6028. for _, char := range argsList.Front().Value.(formulaArg).String {
  6029. if !isLetter && unicode.IsLetter(char) {
  6030. buf.WriteRune(unicode.ToUpper(char))
  6031. } else {
  6032. buf.WriteRune(unicode.ToLower(char))
  6033. }
  6034. isLetter = unicode.IsLetter(char)
  6035. }
  6036. return newStringFormulaArg(buf.String())
  6037. }
  6038. // REPLACE function replaces all or part of a text string with another string.
  6039. // The syntax of the function is:
  6040. //
  6041. // REPLACE(old_text,start_num,num_chars,new_text)
  6042. //
  6043. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  6044. return fn.replace("REPLACE", argsList)
  6045. }
  6046. // REPLACEB replaces part of a text string, based on the number of bytes you
  6047. // specify, with a different text string.
  6048. //
  6049. // REPLACEB(old_text,start_num,num_chars,new_text)
  6050. //
  6051. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  6052. return fn.replace("REPLACEB", argsList)
  6053. }
  6054. // replace is an implementation of the formula function REPLACE and REPLACEB.
  6055. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  6056. // (Traditional), and Korean.
  6057. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  6058. if argsList.Len() != 4 {
  6059. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  6060. }
  6061. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  6062. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6063. if startNumArg.Type != ArgNumber {
  6064. return startNumArg
  6065. }
  6066. if numCharsArg.Type != ArgNumber {
  6067. return numCharsArg
  6068. }
  6069. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  6070. if startIdx > oldTextLen {
  6071. startIdx = oldTextLen + 1
  6072. }
  6073. endIdx := startIdx + int(numCharsArg.Number)
  6074. if endIdx > oldTextLen {
  6075. endIdx = oldTextLen + 1
  6076. }
  6077. if startIdx < 1 || endIdx < 1 {
  6078. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  6079. }
  6080. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  6081. return newStringFormulaArg(result)
  6082. }
  6083. // REPT function returns a supplied text string, repeated a specified number
  6084. // of times. The syntax of the function is:
  6085. //
  6086. // REPT(text,number_times)
  6087. //
  6088. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  6089. if argsList.Len() != 2 {
  6090. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  6091. }
  6092. text := argsList.Front().Value.(formulaArg)
  6093. if text.Type != ArgString {
  6094. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  6095. }
  6096. times := argsList.Back().Value.(formulaArg).ToNumber()
  6097. if times.Type != ArgNumber {
  6098. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  6099. }
  6100. if times.Number < 0 {
  6101. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  6102. }
  6103. if times.Number == 0 {
  6104. return newStringFormulaArg("")
  6105. }
  6106. buf := bytes.Buffer{}
  6107. for i := 0; i < int(times.Number); i++ {
  6108. buf.WriteString(text.String)
  6109. }
  6110. return newStringFormulaArg(buf.String())
  6111. }
  6112. // RIGHT function returns a specified number of characters from the end of a
  6113. // supplied text string. The syntax of the function is:
  6114. //
  6115. // RIGHT(text,[num_chars])
  6116. //
  6117. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  6118. return fn.leftRight("RIGHT", argsList)
  6119. }
  6120. // RIGHTB returns the last character or characters in a text string, based on
  6121. // the number of bytes you specify. The syntax of the function is:
  6122. //
  6123. // RIGHTB(text,[num_bytes])
  6124. //
  6125. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  6126. return fn.leftRight("RIGHTB", argsList)
  6127. }
  6128. // SUBSTITUTE function replaces one or more instances of a given text string,
  6129. // within an original text string. The syntax of the function is:
  6130. //
  6131. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  6132. //
  6133. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  6134. if argsList.Len() != 3 && argsList.Len() != 4 {
  6135. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  6136. }
  6137. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  6138. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  6139. if argsList.Len() == 3 {
  6140. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  6141. }
  6142. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  6143. if instanceNumArg.Type != ArgNumber {
  6144. return instanceNumArg
  6145. }
  6146. instanceNum = int(instanceNumArg.Number)
  6147. if instanceNum < 1 {
  6148. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  6149. }
  6150. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  6151. for {
  6152. count--
  6153. index := strings.Index(str, oldText.Value())
  6154. if index == -1 {
  6155. pos = -1
  6156. break
  6157. } else {
  6158. pos = index + chars
  6159. if count == 0 {
  6160. break
  6161. }
  6162. idx := oldTextLen + index
  6163. chars += idx
  6164. str = str[idx:]
  6165. }
  6166. }
  6167. if pos == -1 {
  6168. return newStringFormulaArg(text.Value())
  6169. }
  6170. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  6171. return newStringFormulaArg(pre + newText.Value() + post)
  6172. }
  6173. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  6174. // words or characters) from a supplied text string. The syntax of the
  6175. // function is:
  6176. //
  6177. // TRIM(text)
  6178. //
  6179. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  6180. if argsList.Len() != 1 {
  6181. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  6182. }
  6183. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  6184. }
  6185. // UNICHAR returns the Unicode character that is referenced by the given
  6186. // numeric value. The syntax of the function is:
  6187. //
  6188. // UNICHAR(number)
  6189. //
  6190. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  6191. if argsList.Len() != 1 {
  6192. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  6193. }
  6194. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  6195. if numArg.Type != ArgNumber {
  6196. return numArg
  6197. }
  6198. if numArg.Number <= 0 || numArg.Number > 55295 {
  6199. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  6200. }
  6201. return newStringFormulaArg(string(rune(numArg.Number)))
  6202. }
  6203. // UNICODE function returns the code point for the first character of a
  6204. // supplied text string. The syntax of the function is:
  6205. //
  6206. // UNICODE(text)
  6207. //
  6208. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  6209. return fn.code("UNICODE", argsList)
  6210. }
  6211. // UPPER converts all characters in a supplied text string to upper case. The
  6212. // syntax of the function is:
  6213. //
  6214. // UPPER(text)
  6215. //
  6216. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  6217. if argsList.Len() != 1 {
  6218. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  6219. }
  6220. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  6221. }
  6222. // Conditional Functions
  6223. // IF function tests a supplied condition and returns one result if the
  6224. // condition evaluates to TRUE, and another result if the condition evaluates
  6225. // to FALSE. The syntax of the function is:
  6226. //
  6227. // IF(logical_test,value_if_true,value_if_false)
  6228. //
  6229. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  6230. if argsList.Len() == 0 {
  6231. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  6232. }
  6233. if argsList.Len() > 3 {
  6234. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  6235. }
  6236. token := argsList.Front().Value.(formulaArg)
  6237. var (
  6238. cond bool
  6239. err error
  6240. result string
  6241. )
  6242. switch token.Type {
  6243. case ArgString:
  6244. if cond, err = strconv.ParseBool(token.String); err != nil {
  6245. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  6246. }
  6247. if argsList.Len() == 1 {
  6248. return newBoolFormulaArg(cond)
  6249. }
  6250. if cond {
  6251. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  6252. }
  6253. if argsList.Len() == 3 {
  6254. result = argsList.Back().Value.(formulaArg).String
  6255. }
  6256. }
  6257. return newStringFormulaArg(result)
  6258. }
  6259. // Lookup and Reference Functions
  6260. // CHOOSE function returns a value from an array, that corresponds to a
  6261. // supplied index number (position). The syntax of the function is:
  6262. //
  6263. // CHOOSE(index_num,value1,[value2],...)
  6264. //
  6265. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  6266. if argsList.Len() < 2 {
  6267. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  6268. }
  6269. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  6270. if err != nil {
  6271. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  6272. }
  6273. if argsList.Len() <= idx {
  6274. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  6275. }
  6276. arg := argsList.Front()
  6277. for i := 0; i < idx; i++ {
  6278. arg = arg.Next()
  6279. }
  6280. var result formulaArg
  6281. switch arg.Value.(formulaArg).Type {
  6282. case ArgString:
  6283. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  6284. case ArgMatrix:
  6285. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  6286. }
  6287. return result
  6288. }
  6289. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  6290. // string.
  6291. func deepMatchRune(str, pattern []rune, simple bool) bool {
  6292. for len(pattern) > 0 {
  6293. switch pattern[0] {
  6294. default:
  6295. if len(str) == 0 || str[0] != pattern[0] {
  6296. return false
  6297. }
  6298. case '?':
  6299. if len(str) == 0 && !simple {
  6300. return false
  6301. }
  6302. case '*':
  6303. return deepMatchRune(str, pattern[1:], simple) ||
  6304. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  6305. }
  6306. str = str[1:]
  6307. pattern = pattern[1:]
  6308. }
  6309. return len(str) == 0 && len(pattern) == 0
  6310. }
  6311. // matchPattern finds whether the text matches or satisfies the pattern
  6312. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  6313. func matchPattern(pattern, name string) (matched bool) {
  6314. if pattern == "" {
  6315. return name == pattern
  6316. }
  6317. if pattern == "*" {
  6318. return true
  6319. }
  6320. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  6321. for _, r := range name {
  6322. rname = append(rname, r)
  6323. }
  6324. for _, r := range pattern {
  6325. rpattern = append(rpattern, r)
  6326. }
  6327. simple := false // Does extended wildcard '*' and '?' match.
  6328. return deepMatchRune(rname, rpattern, simple)
  6329. }
  6330. // compareFormulaArg compares the left-hand sides and the right-hand sides
  6331. // formula arguments by given conditions such as case sensitive, if exact
  6332. // match, and make compare result as formula criteria condition type.
  6333. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6334. if lhs.Type != rhs.Type {
  6335. return criteriaErr
  6336. }
  6337. switch lhs.Type {
  6338. case ArgNumber:
  6339. if lhs.Number == rhs.Number {
  6340. return criteriaEq
  6341. }
  6342. if lhs.Number < rhs.Number {
  6343. return criteriaL
  6344. }
  6345. return criteriaG
  6346. case ArgString:
  6347. ls, rs := lhs.String, rhs.String
  6348. if !caseSensitive {
  6349. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  6350. }
  6351. if exactMatch {
  6352. match := matchPattern(rs, ls)
  6353. if match {
  6354. return criteriaEq
  6355. }
  6356. return criteriaG
  6357. }
  6358. switch strings.Compare(ls, rs) {
  6359. case 1:
  6360. return criteriaG
  6361. case -1:
  6362. return criteriaL
  6363. case 0:
  6364. return criteriaEq
  6365. }
  6366. return criteriaErr
  6367. case ArgEmpty:
  6368. return criteriaEq
  6369. case ArgList:
  6370. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  6371. case ArgMatrix:
  6372. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  6373. }
  6374. return criteriaErr
  6375. }
  6376. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  6377. // list type formula arguments.
  6378. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6379. if len(lhs.List) < len(rhs.List) {
  6380. return criteriaL
  6381. }
  6382. if len(lhs.List) > len(rhs.List) {
  6383. return criteriaG
  6384. }
  6385. for arg := range lhs.List {
  6386. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  6387. if criteria != criteriaEq {
  6388. return criteria
  6389. }
  6390. }
  6391. return criteriaEq
  6392. }
  6393. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  6394. // matrix type formula arguments.
  6395. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6396. if len(lhs.Matrix) < len(rhs.Matrix) {
  6397. return criteriaL
  6398. }
  6399. if len(lhs.Matrix) > len(rhs.Matrix) {
  6400. return criteriaG
  6401. }
  6402. for i := range lhs.Matrix {
  6403. left := lhs.Matrix[i]
  6404. right := lhs.Matrix[i]
  6405. if len(left) < len(right) {
  6406. return criteriaL
  6407. }
  6408. if len(left) > len(right) {
  6409. return criteriaG
  6410. }
  6411. for arg := range left {
  6412. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  6413. if criteria != criteriaEq {
  6414. return criteria
  6415. }
  6416. }
  6417. }
  6418. return criteriaEq
  6419. }
  6420. // COLUMN function returns the first column number within a supplied reference
  6421. // or the number of the current column. The syntax of the function is:
  6422. //
  6423. // COLUMN([reference])
  6424. //
  6425. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  6426. if argsList.Len() > 1 {
  6427. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  6428. }
  6429. if argsList.Len() == 1 {
  6430. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6431. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  6432. }
  6433. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6434. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  6435. }
  6436. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6437. }
  6438. col, _, _ := CellNameToCoordinates(fn.cell)
  6439. return newNumberFormulaArg(float64(col))
  6440. }
  6441. // COLUMNS function receives an Excel range and returns the number of columns
  6442. // that are contained within the range. The syntax of the function is:
  6443. //
  6444. // COLUMNS(array)
  6445. //
  6446. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  6447. if argsList.Len() != 1 {
  6448. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  6449. }
  6450. var min, max int
  6451. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6452. crs := argsList.Front().Value.(formulaArg).cellRanges
  6453. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6454. if min == 0 {
  6455. min = cr.Value.(cellRange).From.Col
  6456. }
  6457. if min > cr.Value.(cellRange).From.Col {
  6458. min = cr.Value.(cellRange).From.Col
  6459. }
  6460. if min > cr.Value.(cellRange).To.Col {
  6461. min = cr.Value.(cellRange).To.Col
  6462. }
  6463. if max < cr.Value.(cellRange).To.Col {
  6464. max = cr.Value.(cellRange).To.Col
  6465. }
  6466. if max < cr.Value.(cellRange).From.Col {
  6467. max = cr.Value.(cellRange).From.Col
  6468. }
  6469. }
  6470. }
  6471. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6472. cr := argsList.Front().Value.(formulaArg).cellRefs
  6473. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6474. if min == 0 {
  6475. min = refs.Value.(cellRef).Col
  6476. }
  6477. if min > refs.Value.(cellRef).Col {
  6478. min = refs.Value.(cellRef).Col
  6479. }
  6480. if max < refs.Value.(cellRef).Col {
  6481. max = refs.Value.(cellRef).Col
  6482. }
  6483. }
  6484. }
  6485. if max == TotalColumns {
  6486. return newNumberFormulaArg(float64(TotalColumns))
  6487. }
  6488. result := max - min + 1
  6489. if max == min {
  6490. if min == 0 {
  6491. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6492. }
  6493. return newNumberFormulaArg(float64(1))
  6494. }
  6495. return newNumberFormulaArg(float64(result))
  6496. }
  6497. // HLOOKUP function 'looks up' a given value in the top row of a data array
  6498. // (or table), and returns the corresponding value from another row of the
  6499. // array. The syntax of the function is:
  6500. //
  6501. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  6502. //
  6503. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  6504. if argsList.Len() < 3 {
  6505. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  6506. }
  6507. if argsList.Len() > 4 {
  6508. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  6509. }
  6510. lookupValue := argsList.Front().Value.(formulaArg)
  6511. tableArray := argsList.Front().Next().Value.(formulaArg)
  6512. if tableArray.Type != ArgMatrix {
  6513. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  6514. }
  6515. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6516. if rowArg.Type != ArgNumber {
  6517. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  6518. }
  6519. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  6520. if argsList.Len() == 4 {
  6521. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6522. if rangeLookup.Type == ArgError {
  6523. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6524. }
  6525. if rangeLookup.Number == 0 {
  6526. exactMatch = true
  6527. }
  6528. }
  6529. row := tableArray.Matrix[0]
  6530. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6531. start:
  6532. for idx, mtx := range row {
  6533. lhs := mtx
  6534. switch lookupValue.Type {
  6535. case ArgNumber:
  6536. if !lookupValue.Boolean {
  6537. lhs = mtx.ToNumber()
  6538. if lhs.Type == ArgError {
  6539. lhs = mtx
  6540. }
  6541. }
  6542. case ArgMatrix:
  6543. lhs = tableArray
  6544. }
  6545. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6546. matchIdx = idx
  6547. wasExact = true
  6548. break start
  6549. }
  6550. }
  6551. } else {
  6552. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  6553. }
  6554. if matchIdx == -1 {
  6555. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6556. }
  6557. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  6558. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  6559. }
  6560. row = tableArray.Matrix[rowIdx]
  6561. if wasExact || !exactMatch {
  6562. return row[matchIdx]
  6563. }
  6564. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6565. }
  6566. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  6567. // data array (or table), and returns the corresponding value from another
  6568. // column of the array. The syntax of the function is:
  6569. //
  6570. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  6571. //
  6572. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  6573. if argsList.Len() < 3 {
  6574. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  6575. }
  6576. if argsList.Len() > 4 {
  6577. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  6578. }
  6579. lookupValue := argsList.Front().Value.(formulaArg)
  6580. tableArray := argsList.Front().Next().Value.(formulaArg)
  6581. if tableArray.Type != ArgMatrix {
  6582. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  6583. }
  6584. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6585. if colIdx.Type != ArgNumber {
  6586. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  6587. }
  6588. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  6589. if argsList.Len() == 4 {
  6590. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6591. if rangeLookup.Type == ArgError {
  6592. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6593. }
  6594. if rangeLookup.Number == 0 {
  6595. exactMatch = true
  6596. }
  6597. }
  6598. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6599. start:
  6600. for idx, mtx := range tableArray.Matrix {
  6601. lhs := mtx[0]
  6602. switch lookupValue.Type {
  6603. case ArgNumber:
  6604. if !lookupValue.Boolean {
  6605. lhs = mtx[0].ToNumber()
  6606. if lhs.Type == ArgError {
  6607. lhs = mtx[0]
  6608. }
  6609. }
  6610. case ArgMatrix:
  6611. lhs = tableArray
  6612. }
  6613. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6614. matchIdx = idx
  6615. wasExact = true
  6616. break start
  6617. }
  6618. }
  6619. } else {
  6620. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6621. }
  6622. if matchIdx == -1 {
  6623. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6624. }
  6625. mtx := tableArray.Matrix[matchIdx]
  6626. if col < 0 || col >= len(mtx) {
  6627. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6628. }
  6629. if wasExact || !exactMatch {
  6630. return mtx[col]
  6631. }
  6632. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6633. }
  6634. // vlookupBinarySearch finds the position of a target value when range lookup
  6635. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6636. // return wrong result.
  6637. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6638. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6639. for low <= high {
  6640. var mid int = low + (high-low)/2
  6641. mtx := tableArray.Matrix[mid]
  6642. lhs := mtx[0]
  6643. switch lookupValue.Type {
  6644. case ArgNumber:
  6645. if !lookupValue.Boolean {
  6646. lhs = mtx[0].ToNumber()
  6647. if lhs.Type == ArgError {
  6648. lhs = mtx[0]
  6649. }
  6650. }
  6651. case ArgMatrix:
  6652. lhs = tableArray
  6653. }
  6654. result := compareFormulaArg(lhs, lookupValue, false, false)
  6655. if result == criteriaEq {
  6656. matchIdx, wasExact = mid, true
  6657. return
  6658. } else if result == criteriaG {
  6659. high = mid - 1
  6660. } else if result == criteriaL {
  6661. matchIdx, low = mid, mid+1
  6662. if lhs.Value() != "" {
  6663. lastMatchIdx = matchIdx
  6664. }
  6665. } else {
  6666. return -1, false
  6667. }
  6668. }
  6669. matchIdx, wasExact = lastMatchIdx, true
  6670. return
  6671. }
  6672. // vlookupBinarySearch finds the position of a target value when range lookup
  6673. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6674. // return wrong result.
  6675. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6676. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6677. for low <= high {
  6678. var mid int = low + (high-low)/2
  6679. mtx := row[mid]
  6680. result := compareFormulaArg(mtx, lookupValue, false, false)
  6681. if result == criteriaEq {
  6682. matchIdx, wasExact = mid, true
  6683. return
  6684. } else if result == criteriaG {
  6685. high = mid - 1
  6686. } else if result == criteriaL {
  6687. low, lastMatchIdx = mid+1, mid
  6688. } else {
  6689. return -1, false
  6690. }
  6691. }
  6692. matchIdx, wasExact = lastMatchIdx, true
  6693. return
  6694. }
  6695. // LOOKUP function performs an approximate match lookup in a one-column or
  6696. // one-row range, and returns the corresponding value from another one-column
  6697. // or one-row range. The syntax of the function is:
  6698. //
  6699. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6700. //
  6701. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6702. if argsList.Len() < 2 {
  6703. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6704. }
  6705. if argsList.Len() > 3 {
  6706. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6707. }
  6708. lookupValue := argsList.Front().Value.(formulaArg)
  6709. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6710. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6711. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6712. }
  6713. cols, matchIdx := lookupCol(lookupVector), -1
  6714. for idx, col := range cols {
  6715. lhs := lookupValue
  6716. switch col.Type {
  6717. case ArgNumber:
  6718. lhs = lhs.ToNumber()
  6719. if !col.Boolean {
  6720. if lhs.Type == ArgError {
  6721. lhs = lookupValue
  6722. }
  6723. }
  6724. }
  6725. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6726. matchIdx = idx
  6727. break
  6728. }
  6729. }
  6730. column := cols
  6731. if argsList.Len() == 3 {
  6732. column = lookupCol(argsList.Back().Value.(formulaArg))
  6733. }
  6734. if matchIdx < 0 || matchIdx >= len(column) {
  6735. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6736. }
  6737. return column[matchIdx]
  6738. }
  6739. // lookupCol extract columns for LOOKUP.
  6740. func lookupCol(arr formulaArg) []formulaArg {
  6741. col := arr.List
  6742. if arr.Type == ArgMatrix {
  6743. col = nil
  6744. for _, r := range arr.Matrix {
  6745. if len(r) > 0 {
  6746. col = append(col, r[0])
  6747. continue
  6748. }
  6749. col = append(col, newEmptyFormulaArg())
  6750. }
  6751. }
  6752. return col
  6753. }
  6754. // ROW function returns the first row number within a supplied reference or
  6755. // the number of the current row. The syntax of the function is:
  6756. //
  6757. // ROW([reference])
  6758. //
  6759. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6760. if argsList.Len() > 1 {
  6761. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6762. }
  6763. if argsList.Len() == 1 {
  6764. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6765. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6766. }
  6767. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6768. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6769. }
  6770. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6771. }
  6772. _, row, _ := CellNameToCoordinates(fn.cell)
  6773. return newNumberFormulaArg(float64(row))
  6774. }
  6775. // ROWS function takes an Excel range and returns the number of rows that are
  6776. // contained within the range. The syntax of the function is:
  6777. //
  6778. // ROWS(array)
  6779. //
  6780. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6781. if argsList.Len() != 1 {
  6782. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6783. }
  6784. var min, max int
  6785. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6786. crs := argsList.Front().Value.(formulaArg).cellRanges
  6787. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6788. if min == 0 {
  6789. min = cr.Value.(cellRange).From.Row
  6790. }
  6791. if min > cr.Value.(cellRange).From.Row {
  6792. min = cr.Value.(cellRange).From.Row
  6793. }
  6794. if min > cr.Value.(cellRange).To.Row {
  6795. min = cr.Value.(cellRange).To.Row
  6796. }
  6797. if max < cr.Value.(cellRange).To.Row {
  6798. max = cr.Value.(cellRange).To.Row
  6799. }
  6800. if max < cr.Value.(cellRange).From.Row {
  6801. max = cr.Value.(cellRange).From.Row
  6802. }
  6803. }
  6804. }
  6805. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6806. cr := argsList.Front().Value.(formulaArg).cellRefs
  6807. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6808. if min == 0 {
  6809. min = refs.Value.(cellRef).Row
  6810. }
  6811. if min > refs.Value.(cellRef).Row {
  6812. min = refs.Value.(cellRef).Row
  6813. }
  6814. if max < refs.Value.(cellRef).Row {
  6815. max = refs.Value.(cellRef).Row
  6816. }
  6817. }
  6818. }
  6819. if max == TotalRows {
  6820. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6821. }
  6822. result := max - min + 1
  6823. if max == min {
  6824. if min == 0 {
  6825. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6826. }
  6827. return newNumberFormulaArg(float64(1))
  6828. }
  6829. return newStringFormulaArg(strconv.Itoa(result))
  6830. }
  6831. // Web Functions
  6832. // ENCODEURL function returns a URL-encoded string, replacing certain
  6833. // non-alphanumeric characters with the percentage symbol (%) and a
  6834. // hexadecimal number. The syntax of the function is:
  6835. //
  6836. // ENCODEURL(url)
  6837. //
  6838. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6839. if argsList.Len() != 1 {
  6840. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6841. }
  6842. token := argsList.Front().Value.(formulaArg).Value()
  6843. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6844. }
  6845. // Financial Functions
  6846. // CUMIPMT function calculates the cumulative interest paid on a loan or
  6847. // investment, between two specified periods. The syntax of the function is:
  6848. //
  6849. // CUMIPMT(rate,nper,pv,start_period,end_period,type)
  6850. //
  6851. func (fn *formulaFuncs) CUMIPMT(argsList *list.List) formulaArg {
  6852. return fn.cumip("CUMIPMT", argsList)
  6853. }
  6854. // CUMPRINC function calculates the cumulative payment on the principal of a
  6855. // loan or investment, between two specified periods. The syntax of the
  6856. // function is:
  6857. //
  6858. // CUMPRINC(rate,nper,pv,start_period,end_period,type)
  6859. //
  6860. func (fn *formulaFuncs) CUMPRINC(argsList *list.List) formulaArg {
  6861. return fn.cumip("CUMPRINC", argsList)
  6862. }
  6863. // cumip is an implementation of the formula function CUMIPMT and CUMPRINC.
  6864. func (fn *formulaFuncs) cumip(name string, argsList *list.List) formulaArg {
  6865. if argsList.Len() != 6 {
  6866. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 6 arguments", name))
  6867. }
  6868. rate := argsList.Front().Value.(formulaArg).ToNumber()
  6869. if rate.Type != ArgNumber {
  6870. return rate
  6871. }
  6872. nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
  6873. if nper.Type != ArgNumber {
  6874. return nper
  6875. }
  6876. pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6877. if pv.Type != ArgNumber {
  6878. return pv
  6879. }
  6880. start := argsList.Back().Prev().Prev().Value.(formulaArg).ToNumber()
  6881. if start.Type != ArgNumber {
  6882. return start
  6883. }
  6884. end := argsList.Back().Prev().Value.(formulaArg).ToNumber()
  6885. if end.Type != ArgNumber {
  6886. return end
  6887. }
  6888. typ := argsList.Back().Value.(formulaArg).ToNumber()
  6889. if typ.Type != ArgNumber {
  6890. return typ
  6891. }
  6892. if typ.Number != 0 && typ.Number != 1 {
  6893. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  6894. }
  6895. if start.Number < 1 || start.Number > end.Number {
  6896. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  6897. }
  6898. num, ipmt := 0.0, newNumberFormulaArg(0)
  6899. for per := start.Number; per <= end.Number; per++ {
  6900. args := list.New().Init()
  6901. args.PushBack(rate)
  6902. args.PushBack(newNumberFormulaArg(per))
  6903. args.PushBack(nper)
  6904. args.PushBack(pv)
  6905. args.PushBack(newNumberFormulaArg(0))
  6906. args.PushBack(typ)
  6907. if name == "CUMIPMT" {
  6908. ipmt = fn.IPMT(args)
  6909. } else {
  6910. ipmt = fn.PPMT(args)
  6911. }
  6912. num += ipmt.Number
  6913. }
  6914. return newNumberFormulaArg(num)
  6915. }
  6916. // DB function calculates the depreciation of an asset, using the Fixed
  6917. // Declining Balance Method, for each period of the asset's lifetime. The
  6918. // syntax of the function is:
  6919. //
  6920. // DB(cost,salvage,life,period,[month])
  6921. //
  6922. func (fn *formulaFuncs) DB(argsList *list.List) formulaArg {
  6923. if argsList.Len() < 4 {
  6924. return newErrorFormulaArg(formulaErrorVALUE, "DB requires at least 4 arguments")
  6925. }
  6926. if argsList.Len() > 5 {
  6927. return newErrorFormulaArg(formulaErrorVALUE, "DB allows at most 5 arguments")
  6928. }
  6929. cost := argsList.Front().Value.(formulaArg).ToNumber()
  6930. if cost.Type != ArgNumber {
  6931. return cost
  6932. }
  6933. salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()
  6934. if salvage.Type != ArgNumber {
  6935. return salvage
  6936. }
  6937. life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6938. if life.Type != ArgNumber {
  6939. return life
  6940. }
  6941. period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
  6942. if period.Type != ArgNumber {
  6943. return period
  6944. }
  6945. month := newNumberFormulaArg(12)
  6946. if argsList.Len() == 5 {
  6947. if month = argsList.Back().Value.(formulaArg).ToNumber(); month.Type != ArgNumber {
  6948. return month
  6949. }
  6950. }
  6951. if cost.Number == 0 {
  6952. return newNumberFormulaArg(0)
  6953. }
  6954. if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (month.Number < 1) {
  6955. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  6956. }
  6957. dr := 1 - math.Pow(salvage.Number/cost.Number, 1/life.Number)
  6958. dr = math.Round(dr*1000) / 1000
  6959. pd, depreciation := 0.0, 0.0
  6960. for per := 1; per <= int(period.Number); per++ {
  6961. if per == 1 {
  6962. depreciation = cost.Number * dr * month.Number / 12
  6963. } else if per == int(life.Number+1) {
  6964. depreciation = (cost.Number - pd) * dr * (12 - month.Number) / 12
  6965. } else {
  6966. depreciation = (cost.Number - pd) * dr
  6967. }
  6968. pd += depreciation
  6969. }
  6970. return newNumberFormulaArg(depreciation)
  6971. }
  6972. // DDB function calculates the depreciation of an asset, using the Double
  6973. // Declining Balance Method, or another specified depreciation rate. The
  6974. // syntax of the function is:
  6975. //
  6976. // DDB(cost,salvage,life,period,[factor])
  6977. //
  6978. func (fn *formulaFuncs) DDB(argsList *list.List) formulaArg {
  6979. if argsList.Len() < 4 {
  6980. return newErrorFormulaArg(formulaErrorVALUE, "DDB requires at least 4 arguments")
  6981. }
  6982. if argsList.Len() > 5 {
  6983. return newErrorFormulaArg(formulaErrorVALUE, "DDB allows at most 5 arguments")
  6984. }
  6985. cost := argsList.Front().Value.(formulaArg).ToNumber()
  6986. if cost.Type != ArgNumber {
  6987. return cost
  6988. }
  6989. salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()
  6990. if salvage.Type != ArgNumber {
  6991. return salvage
  6992. }
  6993. life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6994. if life.Type != ArgNumber {
  6995. return life
  6996. }
  6997. period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
  6998. if period.Type != ArgNumber {
  6999. return period
  7000. }
  7001. factor := newNumberFormulaArg(2)
  7002. if argsList.Len() == 5 {
  7003. if factor = argsList.Back().Value.(formulaArg).ToNumber(); factor.Type != ArgNumber {
  7004. return factor
  7005. }
  7006. }
  7007. if cost.Number == 0 {
  7008. return newNumberFormulaArg(0)
  7009. }
  7010. if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (factor.Number <= 0.0) || (period.Number > life.Number) {
  7011. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  7012. }
  7013. pd, depreciation := 0.0, 0.0
  7014. for per := 1; per <= int(period.Number); per++ {
  7015. depreciation = math.Min((cost.Number-pd)*(factor.Number/life.Number), (cost.Number - salvage.Number - pd))
  7016. pd += depreciation
  7017. }
  7018. return newNumberFormulaArg(depreciation)
  7019. }
  7020. // DOLLARDE function converts a dollar value in fractional notation, into a
  7021. // dollar value expressed as a decimal. The syntax of the function is:
  7022. //
  7023. // DOLLARDE(fractional_dollar,fraction)
  7024. //
  7025. func (fn *formulaFuncs) DOLLARDE(argsList *list.List) formulaArg {
  7026. return fn.dollar("DOLLARDE", argsList)
  7027. }
  7028. // DOLLARFR function converts a dollar value in decimal notation, into a
  7029. // dollar value that is expressed in fractional notation. The syntax of the
  7030. // function is:
  7031. //
  7032. // DOLLARFR(decimal_dollar,fraction)
  7033. //
  7034. func (fn *formulaFuncs) DOLLARFR(argsList *list.List) formulaArg {
  7035. return fn.dollar("DOLLARFR", argsList)
  7036. }
  7037. // dollar is an implementation of the formula function DOLLARDE and DOLLARFR.
  7038. func (fn *formulaFuncs) dollar(name string, argsList *list.List) formulaArg {
  7039. if argsList.Len() != 2 {
  7040. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  7041. }
  7042. dollar := argsList.Front().Value.(formulaArg).ToNumber()
  7043. if dollar.Type != ArgNumber {
  7044. return dollar
  7045. }
  7046. frac := argsList.Back().Value.(formulaArg).ToNumber()
  7047. if frac.Type != ArgNumber {
  7048. return frac
  7049. }
  7050. if frac.Number < 0 {
  7051. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  7052. }
  7053. if frac.Number == 0 {
  7054. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  7055. }
  7056. cents := math.Mod(dollar.Number, 1)
  7057. if name == "DOLLARDE" {
  7058. cents /= frac.Number
  7059. cents *= math.Pow(10, math.Ceil(math.Log10(frac.Number)))
  7060. } else {
  7061. cents *= frac.Number
  7062. cents *= math.Pow(10, -math.Ceil(math.Log10(frac.Number)))
  7063. }
  7064. return newNumberFormulaArg(math.Floor(dollar.Number) + cents)
  7065. }
  7066. // EFFECT function returns the effective annual interest rate for a given
  7067. // nominal interest rate and number of compounding periods per year. The
  7068. // syntax of the function is:
  7069. //
  7070. // EFFECT(nominal_rate,npery)
  7071. //
  7072. func (fn *formulaFuncs) EFFECT(argsList *list.List) formulaArg {
  7073. if argsList.Len() != 2 {
  7074. return newErrorFormulaArg(formulaErrorVALUE, "EFFECT requires 2 arguments")
  7075. }
  7076. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7077. if rate.Type != ArgNumber {
  7078. return rate
  7079. }
  7080. npery := argsList.Back().Value.(formulaArg).ToNumber()
  7081. if npery.Type != ArgNumber {
  7082. return npery
  7083. }
  7084. if rate.Number <= 0 || npery.Number < 1 {
  7085. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  7086. }
  7087. return newNumberFormulaArg(math.Pow((1+rate.Number/npery.Number), npery.Number) - 1)
  7088. }
  7089. // FV function calculates the Future Value of an investment with periodic
  7090. // constant payments and a constant interest rate. The syntax of the function
  7091. // is:
  7092. //
  7093. // FV(rate,nper,[pmt],[pv],[type])
  7094. //
  7095. func (fn *formulaFuncs) FV(argsList *list.List) formulaArg {
  7096. if argsList.Len() < 3 {
  7097. return newErrorFormulaArg(formulaErrorVALUE, "FV requires at least 3 arguments")
  7098. }
  7099. if argsList.Len() > 5 {
  7100. return newErrorFormulaArg(formulaErrorVALUE, "FV allows at most 5 arguments")
  7101. }
  7102. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7103. if rate.Type != ArgNumber {
  7104. return rate
  7105. }
  7106. nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
  7107. if nper.Type != ArgNumber {
  7108. return nper
  7109. }
  7110. pmt := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  7111. if pmt.Type != ArgNumber {
  7112. return pmt
  7113. }
  7114. pv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
  7115. if argsList.Len() >= 4 {
  7116. if pv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); pv.Type != ArgNumber {
  7117. return pv
  7118. }
  7119. }
  7120. if argsList.Len() == 5 {
  7121. if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
  7122. return typ
  7123. }
  7124. }
  7125. if typ.Number != 0 && typ.Number != 1 {
  7126. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  7127. }
  7128. if rate.Number != 0 {
  7129. return newNumberFormulaArg(-pv.Number*math.Pow(1+rate.Number, nper.Number) - pmt.Number*(1+rate.Number*typ.Number)*(math.Pow(1+rate.Number, nper.Number)-1)/rate.Number)
  7130. }
  7131. return newNumberFormulaArg(-pv.Number - pmt.Number*nper.Number)
  7132. }
  7133. // FVSCHEDULE function calculates the Future Value of an investment with a
  7134. // variable interest rate. The syntax of the function is:
  7135. //
  7136. // FVSCHEDULE(principal,schedule)
  7137. //
  7138. func (fn *formulaFuncs) FVSCHEDULE(argsList *list.List) formulaArg {
  7139. if argsList.Len() != 2 {
  7140. return newErrorFormulaArg(formulaErrorVALUE, "FVSCHEDULE requires 2 arguments")
  7141. }
  7142. pri := argsList.Front().Value.(formulaArg).ToNumber()
  7143. if pri.Type != ArgNumber {
  7144. return pri
  7145. }
  7146. principal := pri.Number
  7147. for _, arg := range argsList.Back().Value.(formulaArg).ToList() {
  7148. if arg.Value() == "" {
  7149. continue
  7150. }
  7151. rate := arg.ToNumber()
  7152. if rate.Type != ArgNumber {
  7153. return rate
  7154. }
  7155. principal *= (1 + rate.Number)
  7156. }
  7157. return newNumberFormulaArg(principal)
  7158. }
  7159. // IPMT function calculates the interest payment, during a specific period of a
  7160. // loan or investment that is paid in constant periodic payments, with a
  7161. // constant interest rate. The syntax of the function is:
  7162. //
  7163. // IPMT(rate,per,nper,pv,[fv],[type])
  7164. //
  7165. func (fn *formulaFuncs) IPMT(argsList *list.List) formulaArg {
  7166. return fn.ipmt("IPMT", argsList)
  7167. }
  7168. // ipmt is an implementation of the formula function IPMT and PPMT.
  7169. func (fn *formulaFuncs) ipmt(name string, argsList *list.List) formulaArg {
  7170. if argsList.Len() < 4 {
  7171. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 4 arguments", name))
  7172. }
  7173. if argsList.Len() > 6 {
  7174. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 6 arguments", name))
  7175. }
  7176. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7177. if rate.Type != ArgNumber {
  7178. return rate
  7179. }
  7180. per := argsList.Front().Next().Value.(formulaArg).ToNumber()
  7181. if per.Type != ArgNumber {
  7182. return per
  7183. }
  7184. nper := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  7185. if nper.Type != ArgNumber {
  7186. return nper
  7187. }
  7188. pv := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
  7189. if pv.Type != ArgNumber {
  7190. return pv
  7191. }
  7192. fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
  7193. if argsList.Len() >= 5 {
  7194. if fv = argsList.Front().Next().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
  7195. return fv
  7196. }
  7197. }
  7198. if argsList.Len() == 6 {
  7199. if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
  7200. return typ
  7201. }
  7202. }
  7203. if typ.Number != 0 && typ.Number != 1 {
  7204. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  7205. }
  7206. if per.Number <= 0 || per.Number > nper.Number {
  7207. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  7208. }
  7209. args := list.New().Init()
  7210. args.PushBack(rate)
  7211. args.PushBack(nper)
  7212. args.PushBack(pv)
  7213. args.PushBack(fv)
  7214. args.PushBack(typ)
  7215. pmt, capital, interest, principal := fn.PMT(args), pv.Number, 0.0, 0.0
  7216. for i := 1; i <= int(per.Number); i++ {
  7217. if typ.Number != 0 && i == 1 {
  7218. interest = 0
  7219. } else {
  7220. interest = -capital * rate.Number
  7221. }
  7222. principal = pmt.Number - interest
  7223. capital += principal
  7224. }
  7225. if name == "IPMT" {
  7226. return newNumberFormulaArg(interest)
  7227. }
  7228. return newNumberFormulaArg(principal)
  7229. }
  7230. // ISPMT function calculates the interest paid during a specific period of a
  7231. // loan or investment. The syntax of the function is:
  7232. //
  7233. // ISPMT(rate,per,nper,pv)
  7234. //
  7235. func (fn *formulaFuncs) ISPMT(argsList *list.List) formulaArg {
  7236. if argsList.Len() != 4 {
  7237. return newErrorFormulaArg(formulaErrorVALUE, "ISPMT requires 4 arguments")
  7238. }
  7239. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7240. if rate.Type != ArgNumber {
  7241. return rate
  7242. }
  7243. per := argsList.Front().Next().Value.(formulaArg).ToNumber()
  7244. if per.Type != ArgNumber {
  7245. return per
  7246. }
  7247. nper := argsList.Back().Prev().Value.(formulaArg).ToNumber()
  7248. if nper.Type != ArgNumber {
  7249. return nper
  7250. }
  7251. pv := argsList.Back().Value.(formulaArg).ToNumber()
  7252. if pv.Type != ArgNumber {
  7253. return pv
  7254. }
  7255. pr, payment, num := pv.Number, pv.Number/nper.Number, 0.0
  7256. for i := 0; i <= int(per.Number); i++ {
  7257. num = rate.Number * pr * -1
  7258. pr -= payment
  7259. if i == int(nper.Number) {
  7260. num = 0
  7261. }
  7262. }
  7263. return newNumberFormulaArg(num)
  7264. }
  7265. // NOMINAL function returns the nominal interest rate for a given effective
  7266. // interest rate and number of compounding periods per year. The syntax of
  7267. // the function is:
  7268. //
  7269. // NOMINAL(effect_rate,npery)
  7270. //
  7271. func (fn *formulaFuncs) NOMINAL(argsList *list.List) formulaArg {
  7272. if argsList.Len() != 2 {
  7273. return newErrorFormulaArg(formulaErrorVALUE, "NOMINAL requires 2 arguments")
  7274. }
  7275. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7276. if rate.Type != ArgNumber {
  7277. return rate
  7278. }
  7279. npery := argsList.Back().Value.(formulaArg).ToNumber()
  7280. if npery.Type != ArgNumber {
  7281. return npery
  7282. }
  7283. if rate.Number <= 0 || npery.Number < 1 {
  7284. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  7285. }
  7286. return newNumberFormulaArg(npery.Number * (math.Pow(rate.Number+1, 1/npery.Number) - 1))
  7287. }
  7288. // NPER function calculates the number of periods required to pay off a loan,
  7289. // for a constant periodic payment and a constant interest rate. The syntax
  7290. // of the function is:
  7291. //
  7292. // NPER(rate,pmt,pv,[fv],[type])
  7293. //
  7294. func (fn *formulaFuncs) NPER(argsList *list.List) formulaArg {
  7295. if argsList.Len() < 3 {
  7296. return newErrorFormulaArg(formulaErrorVALUE, "NPER requires at least 3 arguments")
  7297. }
  7298. if argsList.Len() > 5 {
  7299. return newErrorFormulaArg(formulaErrorVALUE, "NPER allows at most 5 arguments")
  7300. }
  7301. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7302. if rate.Type != ArgNumber {
  7303. return rate
  7304. }
  7305. pmt := argsList.Front().Next().Value.(formulaArg).ToNumber()
  7306. if pmt.Type != ArgNumber {
  7307. return pmt
  7308. }
  7309. pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  7310. if pv.Type != ArgNumber {
  7311. return pv
  7312. }
  7313. fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
  7314. if argsList.Len() >= 4 {
  7315. if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
  7316. return fv
  7317. }
  7318. }
  7319. if argsList.Len() == 5 {
  7320. if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
  7321. return typ
  7322. }
  7323. }
  7324. if typ.Number != 0 && typ.Number != 1 {
  7325. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  7326. }
  7327. if pmt.Number == 0 {
  7328. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  7329. }
  7330. if rate.Number != 0 {
  7331. p := math.Log((pmt.Number*(1+rate.Number*typ.Number)/rate.Number-fv.Number)/(pv.Number+pmt.Number*(1+rate.Number*typ.Number)/rate.Number)) / math.Log(1+rate.Number)
  7332. return newNumberFormulaArg(p)
  7333. }
  7334. return newNumberFormulaArg((-pv.Number - fv.Number) / pmt.Number)
  7335. }
  7336. // NPV function calculates the Net Present Value of an investment, based on a
  7337. // supplied discount rate, and a series of future payments and income. The
  7338. // syntax of the function is:
  7339. //
  7340. // NPV(rate,value1,[value2],[value3],...)
  7341. //
  7342. func (fn *formulaFuncs) NPV(argsList *list.List) formulaArg {
  7343. if argsList.Len() < 2 {
  7344. return newErrorFormulaArg(formulaErrorVALUE, "NPV requires at least 2 arguments")
  7345. }
  7346. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7347. if rate.Type != ArgNumber {
  7348. return rate
  7349. }
  7350. val, i := 0.0, 1
  7351. for arg := argsList.Front().Next(); arg != nil; arg = arg.Next() {
  7352. num := arg.Value.(formulaArg).ToNumber()
  7353. if num.Type != ArgNumber {
  7354. continue
  7355. }
  7356. val += num.Number / math.Pow(1+rate.Number, float64(i))
  7357. i++
  7358. }
  7359. return newNumberFormulaArg(val)
  7360. }
  7361. // PDURATION function calculates the number of periods required for an
  7362. // investment to reach a specified future value. The syntax of the function
  7363. // is:
  7364. //
  7365. // PDURATION(rate,pv,fv)
  7366. //
  7367. func (fn *formulaFuncs) PDURATION(argsList *list.List) formulaArg {
  7368. if argsList.Len() != 3 {
  7369. return newErrorFormulaArg(formulaErrorVALUE, "PDURATION requires 3 arguments")
  7370. }
  7371. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7372. if rate.Type != ArgNumber {
  7373. return rate
  7374. }
  7375. pv := argsList.Front().Next().Value.(formulaArg).ToNumber()
  7376. if pv.Type != ArgNumber {
  7377. return pv
  7378. }
  7379. fv := argsList.Back().Value.(formulaArg).ToNumber()
  7380. if fv.Type != ArgNumber {
  7381. return fv
  7382. }
  7383. if rate.Number <= 0 || pv.Number <= 0 || fv.Number <= 0 {
  7384. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  7385. }
  7386. return newNumberFormulaArg((math.Log(fv.Number) - math.Log(pv.Number)) / math.Log(1+rate.Number))
  7387. }
  7388. // PMT function calculates the constant periodic payment required to pay off
  7389. // (or partially pay off) a loan or investment, with a constant interest
  7390. // rate, over a specified period. The syntax of the function is:
  7391. //
  7392. // PMT(rate,nper,pv,[fv],[type])
  7393. //
  7394. func (fn *formulaFuncs) PMT(argsList *list.List) formulaArg {
  7395. if argsList.Len() < 3 {
  7396. return newErrorFormulaArg(formulaErrorVALUE, "PMT requires at least 3 arguments")
  7397. }
  7398. if argsList.Len() > 5 {
  7399. return newErrorFormulaArg(formulaErrorVALUE, "PMT allows at most 5 arguments")
  7400. }
  7401. rate := argsList.Front().Value.(formulaArg).ToNumber()
  7402. if rate.Type != ArgNumber {
  7403. return rate
  7404. }
  7405. nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
  7406. if nper.Type != ArgNumber {
  7407. return nper
  7408. }
  7409. pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  7410. if pv.Type != ArgNumber {
  7411. return pv
  7412. }
  7413. fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
  7414. if argsList.Len() >= 4 {
  7415. if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
  7416. return fv
  7417. }
  7418. }
  7419. if argsList.Len() == 5 {
  7420. if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
  7421. return typ
  7422. }
  7423. }
  7424. if typ.Number != 0 && typ.Number != 1 {
  7425. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  7426. }
  7427. if rate.Number != 0 {
  7428. p := (-fv.Number - pv.Number*math.Pow((1+rate.Number), nper.Number)) / (1 + rate.Number*typ.Number) / ((math.Pow((1+rate.Number), nper.Number) - 1) / rate.Number)
  7429. return newNumberFormulaArg(p)
  7430. }
  7431. return newNumberFormulaArg((-pv.Number - fv.Number) / nper.Number)
  7432. }
  7433. // PPMT function calculates the payment on the principal, during a specific
  7434. // period of a loan or investment that is paid in constant periodic payments,
  7435. // with a constant interest rate. The syntax of the function is:
  7436. //
  7437. // PPMT(rate,per,nper,pv,[fv],[type])
  7438. //
  7439. func (fn *formulaFuncs) PPMT(argsList *list.List) formulaArg {
  7440. return fn.ipmt("PPMT", argsList)
  7441. }