calc.go 201 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.15 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/cmplx"
  19. "math/rand"
  20. "net/url"
  21. "reflect"
  22. "regexp"
  23. "sort"
  24. "strconv"
  25. "strings"
  26. "time"
  27. "unicode"
  28. "unsafe"
  29. "github.com/xuri/efp"
  30. "golang.org/x/text/language"
  31. "golang.org/x/text/message"
  32. )
  33. // Excel formula errors
  34. const (
  35. formulaErrorDIV = "#DIV/0!"
  36. formulaErrorNAME = "#NAME?"
  37. formulaErrorNA = "#N/A"
  38. formulaErrorNUM = "#NUM!"
  39. formulaErrorVALUE = "#VALUE!"
  40. formulaErrorREF = "#REF!"
  41. formulaErrorNULL = "#NULL"
  42. formulaErrorSPILL = "#SPILL!"
  43. formulaErrorCALC = "#CALC!"
  44. formulaErrorGETTINGDATA = "#GETTING_DATA"
  45. )
  46. // Numeric precision correct numeric values as legacy Excel application
  47. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  48. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  49. // has a decimal representation that is an infinite string of ones, Excel
  50. // displays only the leading 15 figures. In the second line, the number one
  51. // is added to the fraction, and again Excel displays only 15 figures.
  52. const numericPrecision = 1000000000000000
  53. // cellRef defines the structure of a cell reference.
  54. type cellRef struct {
  55. Col int
  56. Row int
  57. Sheet string
  58. }
  59. // cellRef defines the structure of a cell range.
  60. type cellRange struct {
  61. From cellRef
  62. To cellRef
  63. }
  64. // formula criteria condition enumeration.
  65. const (
  66. _ byte = iota
  67. criteriaEq
  68. criteriaLe
  69. criteriaGe
  70. criteriaL
  71. criteriaG
  72. criteriaBeg
  73. criteriaEnd
  74. criteriaErr
  75. )
  76. // formulaCriteria defined formula criteria parser result.
  77. type formulaCriteria struct {
  78. Type byte
  79. Condition string
  80. }
  81. // ArgType is the type if formula argument type.
  82. type ArgType byte
  83. // Formula argument types enumeration.
  84. const (
  85. ArgUnknown ArgType = iota
  86. ArgNumber
  87. ArgString
  88. ArgList
  89. ArgMatrix
  90. ArgError
  91. ArgEmpty
  92. )
  93. // formulaArg is the argument of a formula or function.
  94. type formulaArg struct {
  95. SheetName string
  96. Number float64
  97. String string
  98. List []formulaArg
  99. Matrix [][]formulaArg
  100. Boolean bool
  101. Error string
  102. Type ArgType
  103. cellRefs, cellRanges *list.List
  104. }
  105. // Value returns a string data type of the formula argument.
  106. func (fa formulaArg) Value() (value string) {
  107. switch fa.Type {
  108. case ArgNumber:
  109. if fa.Boolean {
  110. if fa.Number == 0 {
  111. return "FALSE"
  112. }
  113. return "TRUE"
  114. }
  115. return fmt.Sprintf("%g", fa.Number)
  116. case ArgString:
  117. return fa.String
  118. case ArgError:
  119. return fa.Error
  120. }
  121. return
  122. }
  123. // ToNumber returns a formula argument with number data type.
  124. func (fa formulaArg) ToNumber() formulaArg {
  125. var n float64
  126. var err error
  127. switch fa.Type {
  128. case ArgString:
  129. n, err = strconv.ParseFloat(fa.String, 64)
  130. if err != nil {
  131. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  132. }
  133. case ArgNumber:
  134. n = fa.Number
  135. }
  136. return newNumberFormulaArg(n)
  137. }
  138. // ToBool returns a formula argument with boolean data type.
  139. func (fa formulaArg) ToBool() formulaArg {
  140. var b bool
  141. var err error
  142. switch fa.Type {
  143. case ArgString:
  144. b, err = strconv.ParseBool(fa.String)
  145. if err != nil {
  146. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  147. }
  148. case ArgNumber:
  149. if fa.Boolean && fa.Number == 1 {
  150. b = true
  151. }
  152. }
  153. return newBoolFormulaArg(b)
  154. }
  155. // ToList returns a formula argument with array data type.
  156. func (fa formulaArg) ToList() []formulaArg {
  157. switch fa.Type {
  158. case ArgMatrix:
  159. list := []formulaArg{}
  160. for _, row := range fa.Matrix {
  161. list = append(list, row...)
  162. }
  163. return list
  164. case ArgList:
  165. return fa.List
  166. case ArgNumber, ArgString, ArgError, ArgUnknown:
  167. return []formulaArg{fa}
  168. }
  169. return nil
  170. }
  171. // formulaFuncs is the type of the formula functions.
  172. type formulaFuncs struct {
  173. f *File
  174. sheet, cell string
  175. }
  176. // tokenPriority defined basic arithmetic operator priority.
  177. var tokenPriority = map[string]int{
  178. "^": 5,
  179. "*": 4,
  180. "/": 4,
  181. "+": 3,
  182. "-": 3,
  183. "=": 2,
  184. "<>": 2,
  185. "<": 2,
  186. "<=": 2,
  187. ">": 2,
  188. ">=": 2,
  189. "&": 1,
  190. }
  191. // CalcCellValue provides a function to get calculated cell value. This
  192. // feature is currently in working processing. Array formula, table formula
  193. // and some other formulas are not supported currently.
  194. //
  195. // Supported formula functions:
  196. //
  197. // ABS
  198. // ACOS
  199. // ACOSH
  200. // ACOT
  201. // ACOTH
  202. // AND
  203. // ARABIC
  204. // ASIN
  205. // ASINH
  206. // ATAN
  207. // ATAN2
  208. // ATANH
  209. // AVERAGE
  210. // AVERAGEA
  211. // BASE
  212. // BESSELI
  213. // BESSELJ
  214. // BIN2DEC
  215. // BIN2HEX
  216. // BIN2OCT
  217. // BITAND
  218. // BITLSHIFT
  219. // BITOR
  220. // BITRSHIFT
  221. // BITXOR
  222. // CEILING
  223. // CEILING.MATH
  224. // CEILING.PRECISE
  225. // CHAR
  226. // CHOOSE
  227. // CLEAN
  228. // CODE
  229. // COLUMN
  230. // COLUMNS
  231. // COMBIN
  232. // COMBINA
  233. // COMPLEX
  234. // CONCAT
  235. // CONCATENATE
  236. // COS
  237. // COSH
  238. // COT
  239. // COTH
  240. // COUNT
  241. // COUNTA
  242. // COUNTBLANK
  243. // CSC
  244. // CSCH
  245. // DATE
  246. // DATEDIF
  247. // DEC2BIN
  248. // DEC2HEX
  249. // DEC2OCT
  250. // DECIMAL
  251. // DEGREES
  252. // ENCODEURL
  253. // EVEN
  254. // EXACT
  255. // EXP
  256. // FACT
  257. // FACTDOUBLE
  258. // FALSE
  259. // FIND
  260. // FINDB
  261. // FISHER
  262. // FISHERINV
  263. // FIXED
  264. // FLOOR
  265. // FLOOR.MATH
  266. // FLOOR.PRECISE
  267. // GAMMA
  268. // GAMMALN
  269. // GCD
  270. // HARMEAN
  271. // HEX2BIN
  272. // HEX2DEC
  273. // HEX2OCT
  274. // HLOOKUP
  275. // IF
  276. // IFERROR
  277. // IMABS
  278. // IMCOS
  279. // IMCOSH
  280. // IMCOT
  281. // IMCSC
  282. // IMCSCH
  283. // IMEXP
  284. // IMLN
  285. // IMLOG10
  286. // IMSIN
  287. // IMSINH
  288. // IMSQRT
  289. // IMSUB
  290. // IMSUM
  291. // IMTAN
  292. // INT
  293. // ISBLANK
  294. // ISERR
  295. // ISERROR
  296. // ISEVEN
  297. // ISNA
  298. // ISNONTEXT
  299. // ISNUMBER
  300. // ISODD
  301. // ISTEXT
  302. // ISO.CEILING
  303. // KURT
  304. // LARGE
  305. // LCM
  306. // LEFT
  307. // LEFTB
  308. // LEN
  309. // LENB
  310. // LN
  311. // LOG
  312. // LOG10
  313. // LOOKUP
  314. // LOWER
  315. // MAX
  316. // MDETERM
  317. // MEDIAN
  318. // MID
  319. // MIDB
  320. // MIN
  321. // MINA
  322. // MOD
  323. // MROUND
  324. // MULTINOMIAL
  325. // MUNIT
  326. // N
  327. // NA
  328. // NORM.DIST
  329. // NORMDIST
  330. // NORM.INV
  331. // NORMINV
  332. // NORM.S.DIST
  333. // NORMSDIST
  334. // NORM.S.INV
  335. // NORMSINV
  336. // NOT
  337. // NOW
  338. // OCT2BIN
  339. // OCT2DEC
  340. // OCT2HEX
  341. // ODD
  342. // OR
  343. // PERCENTILE.INC
  344. // PERCENTILE
  345. // PERMUT
  346. // PERMUTATIONA
  347. // PI
  348. // POISSON.DIST
  349. // POISSON
  350. // POWER
  351. // PRODUCT
  352. // PROPER
  353. // QUARTILE
  354. // QUARTILE.INC
  355. // QUOTIENT
  356. // RADIANS
  357. // RAND
  358. // RANDBETWEEN
  359. // REPLACE
  360. // REPLACEB
  361. // REPT
  362. // RIGHT
  363. // RIGHTB
  364. // ROMAN
  365. // ROUND
  366. // ROUNDDOWN
  367. // ROUNDUP
  368. // ROW
  369. // ROWS
  370. // SEC
  371. // SECH
  372. // SHEET
  373. // SIGN
  374. // SIN
  375. // SINH
  376. // SKEW
  377. // SMALL
  378. // SQRT
  379. // SQRTPI
  380. // STDEV
  381. // STDEV.S
  382. // STDEVA
  383. // SUBSTITUTE
  384. // SUM
  385. // SUMIF
  386. // SUMSQ
  387. // T
  388. // TAN
  389. // TANH
  390. // TODAY
  391. // TRIM
  392. // TRUE
  393. // TRUNC
  394. // UNICHAR
  395. // UNICODE
  396. // UPPER
  397. // VAR.P
  398. // VARP
  399. // VLOOKUP
  400. //
  401. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  402. var (
  403. formula string
  404. token efp.Token
  405. )
  406. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  407. return
  408. }
  409. ps := efp.ExcelParser()
  410. tokens := ps.Parse(formula)
  411. if tokens == nil {
  412. return
  413. }
  414. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  415. return
  416. }
  417. result = token.TValue
  418. isNum, precision := isNumeric(result)
  419. if isNum && precision > 15 {
  420. num, _ := roundPrecision(result)
  421. result = strings.ToUpper(num)
  422. }
  423. return
  424. }
  425. // getPriority calculate arithmetic operator priority.
  426. func getPriority(token efp.Token) (pri int) {
  427. pri = tokenPriority[token.TValue]
  428. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  429. pri = 6
  430. }
  431. if isBeginParenthesesToken(token) { // (
  432. pri = 0
  433. }
  434. return
  435. }
  436. // newNumberFormulaArg constructs a number formula argument.
  437. func newNumberFormulaArg(n float64) formulaArg {
  438. if math.IsNaN(n) {
  439. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  440. }
  441. return formulaArg{Type: ArgNumber, Number: n}
  442. }
  443. // newStringFormulaArg constructs a string formula argument.
  444. func newStringFormulaArg(s string) formulaArg {
  445. return formulaArg{Type: ArgString, String: s}
  446. }
  447. // newMatrixFormulaArg constructs a matrix formula argument.
  448. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  449. return formulaArg{Type: ArgMatrix, Matrix: m}
  450. }
  451. // newListFormulaArg create a list formula argument.
  452. func newListFormulaArg(l []formulaArg) formulaArg {
  453. return formulaArg{Type: ArgList, List: l}
  454. }
  455. // newBoolFormulaArg constructs a boolean formula argument.
  456. func newBoolFormulaArg(b bool) formulaArg {
  457. var n float64
  458. if b {
  459. n = 1
  460. }
  461. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  462. }
  463. // newErrorFormulaArg create an error formula argument of a given type with a
  464. // specified error message.
  465. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  466. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  467. }
  468. // newEmptyFormulaArg create an empty formula argument.
  469. func newEmptyFormulaArg() formulaArg {
  470. return formulaArg{Type: ArgEmpty}
  471. }
  472. // evalInfixExp evaluate syntax analysis by given infix expression after
  473. // lexical analysis. Evaluate an infix expression containing formulas by
  474. // stacks:
  475. //
  476. // opd - Operand
  477. // opt - Operator
  478. // opf - Operation formula
  479. // opfd - Operand of the operation formula
  480. // opft - Operator of the operation formula
  481. // args - Arguments list of the operation formula
  482. //
  483. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  484. //
  485. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  486. var err error
  487. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  488. for i := 0; i < len(tokens); i++ {
  489. token := tokens[i]
  490. // out of function stack
  491. if opfStack.Len() == 0 {
  492. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  493. return efp.Token{}, err
  494. }
  495. }
  496. // function start
  497. if isFunctionStartToken(token) {
  498. opfStack.Push(token)
  499. argsStack.Push(list.New().Init())
  500. continue
  501. }
  502. // in function stack, walk 2 token at once
  503. if opfStack.Len() > 0 {
  504. var nextToken efp.Token
  505. if i+1 < len(tokens) {
  506. nextToken = tokens[i+1]
  507. }
  508. // current token is args or range, skip next token, order required: parse reference first
  509. if token.TSubType == efp.TokenSubTypeRange {
  510. if !opftStack.Empty() {
  511. // parse reference: must reference at here
  512. result, err := f.parseReference(sheet, token.TValue)
  513. if err != nil {
  514. return efp.Token{TValue: formulaErrorNAME}, err
  515. }
  516. if result.Type != ArgString {
  517. return efp.Token{}, errors.New(formulaErrorVALUE)
  518. }
  519. opfdStack.Push(efp.Token{
  520. TType: efp.TokenTypeOperand,
  521. TSubType: efp.TokenSubTypeNumber,
  522. TValue: result.String,
  523. })
  524. continue
  525. }
  526. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  527. // parse reference: reference or range at here
  528. result, err := f.parseReference(sheet, token.TValue)
  529. if err != nil {
  530. return efp.Token{TValue: formulaErrorNAME}, err
  531. }
  532. if result.Type == ArgUnknown {
  533. return efp.Token{}, errors.New(formulaErrorVALUE)
  534. }
  535. argsStack.Peek().(*list.List).PushBack(result)
  536. continue
  537. }
  538. }
  539. // check current token is opft
  540. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  541. return efp.Token{}, err
  542. }
  543. // current token is arg
  544. if token.TType == efp.TokenTypeArgument {
  545. for !opftStack.Empty() {
  546. // calculate trigger
  547. topOpt := opftStack.Peek().(efp.Token)
  548. if err := calculate(opfdStack, topOpt); err != nil {
  549. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  550. }
  551. opftStack.Pop()
  552. }
  553. if !opfdStack.Empty() {
  554. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  555. }
  556. continue
  557. }
  558. // current token is logical
  559. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  560. }
  561. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  562. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  563. }
  564. // current token is text
  565. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  566. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  567. }
  568. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  569. return efp.Token{}, err
  570. }
  571. }
  572. }
  573. for optStack.Len() != 0 {
  574. topOpt := optStack.Peek().(efp.Token)
  575. if err = calculate(opdStack, topOpt); err != nil {
  576. return efp.Token{}, err
  577. }
  578. optStack.Pop()
  579. }
  580. if opdStack.Len() == 0 {
  581. return efp.Token{}, errors.New("formula not valid")
  582. }
  583. return opdStack.Peek().(efp.Token), err
  584. }
  585. // evalInfixExpFunc evaluate formula function in the infix expression.
  586. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  587. if !isFunctionStopToken(token) {
  588. return nil
  589. }
  590. // current token is function stop
  591. for !opftStack.Empty() {
  592. // calculate trigger
  593. topOpt := opftStack.Peek().(efp.Token)
  594. if err := calculate(opfdStack, topOpt); err != nil {
  595. return err
  596. }
  597. opftStack.Pop()
  598. }
  599. // push opfd to args
  600. if opfdStack.Len() > 0 {
  601. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  602. }
  603. // call formula function to evaluate
  604. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  605. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  606. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  607. if arg.Type == ArgError && opfStack.Len() == 1 {
  608. return errors.New(arg.Value())
  609. }
  610. argsStack.Pop()
  611. opfStack.Pop()
  612. if opfStack.Len() > 0 { // still in function stack
  613. if nextToken.TType == efp.TokenTypeOperatorInfix {
  614. // mathematics calculate in formula function
  615. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  616. } else {
  617. argsStack.Peek().(*list.List).PushBack(arg)
  618. }
  619. } else {
  620. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  621. }
  622. return nil
  623. }
  624. // calcPow evaluate exponentiation arithmetic operations.
  625. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  626. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  627. if err != nil {
  628. return err
  629. }
  630. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  631. if err != nil {
  632. return err
  633. }
  634. result := math.Pow(lOpdVal, rOpdVal)
  635. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  636. return nil
  637. }
  638. // calcEq evaluate equal arithmetic operations.
  639. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  640. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  641. return nil
  642. }
  643. // calcNEq evaluate not equal arithmetic operations.
  644. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  645. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  646. return nil
  647. }
  648. // calcL evaluate less than arithmetic operations.
  649. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  650. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  651. if err != nil {
  652. return err
  653. }
  654. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  655. if err != nil {
  656. return err
  657. }
  658. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  659. return nil
  660. }
  661. // calcLe evaluate less than or equal arithmetic operations.
  662. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  663. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  664. if err != nil {
  665. return err
  666. }
  667. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  668. if err != nil {
  669. return err
  670. }
  671. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  672. return nil
  673. }
  674. // calcG evaluate greater than or equal arithmetic operations.
  675. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  676. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  677. if err != nil {
  678. return err
  679. }
  680. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  681. if err != nil {
  682. return err
  683. }
  684. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  685. return nil
  686. }
  687. // calcGe evaluate greater than or equal arithmetic operations.
  688. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  689. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  690. if err != nil {
  691. return err
  692. }
  693. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  694. if err != nil {
  695. return err
  696. }
  697. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  698. return nil
  699. }
  700. // calcSplice evaluate splice '&' operations.
  701. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  702. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  703. return nil
  704. }
  705. // calcAdd evaluate addition arithmetic operations.
  706. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  707. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  708. if err != nil {
  709. return err
  710. }
  711. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  712. if err != nil {
  713. return err
  714. }
  715. result := lOpdVal + rOpdVal
  716. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  717. return nil
  718. }
  719. // calcSubtract evaluate subtraction arithmetic operations.
  720. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  721. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  722. if err != nil {
  723. return err
  724. }
  725. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  726. if err != nil {
  727. return err
  728. }
  729. result := lOpdVal - rOpdVal
  730. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  731. return nil
  732. }
  733. // calcMultiply evaluate multiplication arithmetic operations.
  734. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  735. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  736. if err != nil {
  737. return err
  738. }
  739. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  740. if err != nil {
  741. return err
  742. }
  743. result := lOpdVal * rOpdVal
  744. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  745. return nil
  746. }
  747. // calcDiv evaluate division arithmetic operations.
  748. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  749. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  750. if err != nil {
  751. return err
  752. }
  753. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  754. if err != nil {
  755. return err
  756. }
  757. result := lOpdVal / rOpdVal
  758. if rOpdVal == 0 {
  759. return errors.New(formulaErrorDIV)
  760. }
  761. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  762. return nil
  763. }
  764. // calculate evaluate basic arithmetic operations.
  765. func calculate(opdStack *Stack, opt efp.Token) error {
  766. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  767. if opdStack.Len() < 1 {
  768. return errors.New("formula not valid")
  769. }
  770. opd := opdStack.Pop().(efp.Token)
  771. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  772. if err != nil {
  773. return err
  774. }
  775. result := 0 - opdVal
  776. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  777. }
  778. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  779. "^": calcPow,
  780. "*": calcMultiply,
  781. "/": calcDiv,
  782. "+": calcAdd,
  783. "=": calcEq,
  784. "<>": calcNEq,
  785. "<": calcL,
  786. "<=": calcLe,
  787. ">": calcG,
  788. ">=": calcGe,
  789. "&": calcSplice,
  790. }
  791. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  792. if opdStack.Len() < 2 {
  793. return errors.New("formula not valid")
  794. }
  795. rOpd := opdStack.Pop().(efp.Token)
  796. lOpd := opdStack.Pop().(efp.Token)
  797. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  798. return err
  799. }
  800. }
  801. fn, ok := tokenCalcFunc[opt.TValue]
  802. if ok {
  803. if opdStack.Len() < 2 {
  804. return errors.New("formula not valid")
  805. }
  806. rOpd := opdStack.Pop().(efp.Token)
  807. lOpd := opdStack.Pop().(efp.Token)
  808. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  809. return err
  810. }
  811. }
  812. return nil
  813. }
  814. // parseOperatorPrefixToken parse operator prefix token.
  815. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  816. if optStack.Len() == 0 {
  817. optStack.Push(token)
  818. } else {
  819. tokenPriority := getPriority(token)
  820. topOpt := optStack.Peek().(efp.Token)
  821. topOptPriority := getPriority(topOpt)
  822. if tokenPriority > topOptPriority {
  823. optStack.Push(token)
  824. } else {
  825. for tokenPriority <= topOptPriority {
  826. optStack.Pop()
  827. if err = calculate(opdStack, topOpt); err != nil {
  828. return
  829. }
  830. if optStack.Len() > 0 {
  831. topOpt = optStack.Peek().(efp.Token)
  832. topOptPriority = getPriority(topOpt)
  833. continue
  834. }
  835. break
  836. }
  837. optStack.Push(token)
  838. }
  839. }
  840. return
  841. }
  842. // isFunctionStartToken determine if the token is function stop.
  843. func isFunctionStartToken(token efp.Token) bool {
  844. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  845. }
  846. // isFunctionStopToken determine if the token is function stop.
  847. func isFunctionStopToken(token efp.Token) bool {
  848. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  849. }
  850. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  851. func isBeginParenthesesToken(token efp.Token) bool {
  852. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  853. }
  854. // isEndParenthesesToken determine if the token is end parentheses: ).
  855. func isEndParenthesesToken(token efp.Token) bool {
  856. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  857. }
  858. // isOperatorPrefixToken determine if the token is parse operator prefix
  859. // token.
  860. func isOperatorPrefixToken(token efp.Token) bool {
  861. _, ok := tokenPriority[token.TValue]
  862. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  863. return true
  864. }
  865. return false
  866. }
  867. // getDefinedNameRefTo convert defined name to reference range.
  868. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  869. for _, definedName := range f.GetDefinedName() {
  870. if definedName.Name == definedNameName {
  871. refTo = definedName.RefersTo
  872. // worksheet scope takes precedence over scope workbook when both definedNames exist
  873. if definedName.Scope == currentSheet {
  874. break
  875. }
  876. }
  877. }
  878. return refTo
  879. }
  880. // parseToken parse basic arithmetic operator priority and evaluate based on
  881. // operators and operands.
  882. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  883. // parse reference: must reference at here
  884. if token.TSubType == efp.TokenSubTypeRange {
  885. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  886. if refTo != "" {
  887. token.TValue = refTo
  888. }
  889. result, err := f.parseReference(sheet, token.TValue)
  890. if err != nil {
  891. return errors.New(formulaErrorNAME)
  892. }
  893. if result.Type != ArgString {
  894. return errors.New(formulaErrorVALUE)
  895. }
  896. token.TValue = result.String
  897. token.TType = efp.TokenTypeOperand
  898. token.TSubType = efp.TokenSubTypeNumber
  899. }
  900. if isOperatorPrefixToken(token) {
  901. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  902. return err
  903. }
  904. }
  905. if isBeginParenthesesToken(token) { // (
  906. optStack.Push(token)
  907. }
  908. if isEndParenthesesToken(token) { // )
  909. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  910. topOpt := optStack.Peek().(efp.Token)
  911. if err := calculate(opdStack, topOpt); err != nil {
  912. return err
  913. }
  914. optStack.Pop()
  915. }
  916. optStack.Pop()
  917. }
  918. // opd
  919. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  920. opdStack.Push(token)
  921. }
  922. return nil
  923. }
  924. // parseReference parse reference and extract values by given reference
  925. // characters and default sheet name.
  926. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  927. reference = strings.Replace(reference, "$", "", -1)
  928. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  929. for _, ref := range strings.Split(reference, ":") {
  930. tokens := strings.Split(ref, "!")
  931. cr := cellRef{}
  932. if len(tokens) == 2 { // have a worksheet name
  933. cr.Sheet = tokens[0]
  934. // cast to cell coordinates
  935. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  936. // cast to column
  937. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  938. // cast to row
  939. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  940. err = newInvalidColumnNameError(tokens[1])
  941. return
  942. }
  943. cr.Col = TotalColumns
  944. }
  945. }
  946. if refs.Len() > 0 {
  947. e := refs.Back()
  948. cellRefs.PushBack(e.Value.(cellRef))
  949. refs.Remove(e)
  950. }
  951. refs.PushBack(cr)
  952. continue
  953. }
  954. // cast to cell coordinates
  955. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  956. // cast to column
  957. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  958. // cast to row
  959. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  960. err = newInvalidColumnNameError(tokens[0])
  961. return
  962. }
  963. cr.Col = TotalColumns
  964. }
  965. cellRanges.PushBack(cellRange{
  966. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  967. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  968. })
  969. cellRefs.Init()
  970. arg, err = f.rangeResolver(cellRefs, cellRanges)
  971. return
  972. }
  973. e := refs.Back()
  974. if e == nil {
  975. cr.Sheet = sheet
  976. refs.PushBack(cr)
  977. continue
  978. }
  979. cellRanges.PushBack(cellRange{
  980. From: e.Value.(cellRef),
  981. To: cr,
  982. })
  983. refs.Remove(e)
  984. }
  985. if refs.Len() > 0 {
  986. e := refs.Back()
  987. cellRefs.PushBack(e.Value.(cellRef))
  988. refs.Remove(e)
  989. }
  990. arg, err = f.rangeResolver(cellRefs, cellRanges)
  991. return
  992. }
  993. // prepareValueRange prepare value range.
  994. func prepareValueRange(cr cellRange, valueRange []int) {
  995. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  996. valueRange[0] = cr.From.Row
  997. }
  998. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  999. valueRange[2] = cr.From.Col
  1000. }
  1001. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  1002. valueRange[1] = cr.To.Row
  1003. }
  1004. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  1005. valueRange[3] = cr.To.Col
  1006. }
  1007. }
  1008. // prepareValueRef prepare value reference.
  1009. func prepareValueRef(cr cellRef, valueRange []int) {
  1010. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  1011. valueRange[0] = cr.Row
  1012. }
  1013. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  1014. valueRange[2] = cr.Col
  1015. }
  1016. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  1017. valueRange[1] = cr.Row
  1018. }
  1019. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  1020. valueRange[3] = cr.Col
  1021. }
  1022. }
  1023. // rangeResolver extract value as string from given reference and range list.
  1024. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1025. // be reference A1:B3.
  1026. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1027. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1028. // value range order: from row, to row, from column, to column
  1029. valueRange := []int{0, 0, 0, 0}
  1030. var sheet string
  1031. // prepare value range
  1032. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1033. cr := temp.Value.(cellRange)
  1034. if cr.From.Sheet != cr.To.Sheet {
  1035. err = errors.New(formulaErrorVALUE)
  1036. }
  1037. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1038. _ = sortCoordinates(rng)
  1039. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1040. prepareValueRange(cr, valueRange)
  1041. if cr.From.Sheet != "" {
  1042. sheet = cr.From.Sheet
  1043. }
  1044. }
  1045. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1046. cr := temp.Value.(cellRef)
  1047. if cr.Sheet != "" {
  1048. sheet = cr.Sheet
  1049. }
  1050. prepareValueRef(cr, valueRange)
  1051. }
  1052. // extract value from ranges
  1053. if cellRanges.Len() > 0 {
  1054. arg.Type = ArgMatrix
  1055. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1056. var matrixRow = []formulaArg{}
  1057. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1058. var cell, value string
  1059. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1060. return
  1061. }
  1062. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1063. return
  1064. }
  1065. matrixRow = append(matrixRow, formulaArg{
  1066. String: value,
  1067. Type: ArgString,
  1068. })
  1069. }
  1070. arg.Matrix = append(arg.Matrix, matrixRow)
  1071. }
  1072. return
  1073. }
  1074. // extract value from references
  1075. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1076. cr := temp.Value.(cellRef)
  1077. var cell string
  1078. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1079. return
  1080. }
  1081. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1082. return
  1083. }
  1084. arg.Type = ArgString
  1085. }
  1086. return
  1087. }
  1088. // callFuncByName calls the no error or only error return function with
  1089. // reflect by given receiver, name and parameters.
  1090. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1091. function := reflect.ValueOf(receiver).MethodByName(name)
  1092. if function.IsValid() {
  1093. rt := function.Call(params)
  1094. if len(rt) == 0 {
  1095. return
  1096. }
  1097. arg = rt[0].Interface().(formulaArg)
  1098. return
  1099. }
  1100. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1101. }
  1102. // formulaCriteriaParser parse formula criteria.
  1103. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1104. fc = &formulaCriteria{}
  1105. if exp == "" {
  1106. return
  1107. }
  1108. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1109. fc.Type, fc.Condition = criteriaEq, match[1]
  1110. return
  1111. }
  1112. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1113. fc.Type, fc.Condition = criteriaEq, match[1]
  1114. return
  1115. }
  1116. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1117. fc.Type, fc.Condition = criteriaLe, match[1]
  1118. return
  1119. }
  1120. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1121. fc.Type, fc.Condition = criteriaGe, match[1]
  1122. return
  1123. }
  1124. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1125. fc.Type, fc.Condition = criteriaL, match[1]
  1126. return
  1127. }
  1128. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1129. fc.Type, fc.Condition = criteriaG, match[1]
  1130. return
  1131. }
  1132. if strings.Contains(exp, "*") {
  1133. if strings.HasPrefix(exp, "*") {
  1134. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1135. }
  1136. if strings.HasSuffix(exp, "*") {
  1137. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1138. }
  1139. return
  1140. }
  1141. fc.Type, fc.Condition = criteriaEq, exp
  1142. return
  1143. }
  1144. // formulaCriteriaEval evaluate formula criteria expression.
  1145. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1146. var value, expected float64
  1147. var e error
  1148. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1149. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1150. return
  1151. }
  1152. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1153. return
  1154. }
  1155. return
  1156. }
  1157. switch criteria.Type {
  1158. case criteriaEq:
  1159. return val == criteria.Condition, err
  1160. case criteriaLe:
  1161. value, expected, e = prepareValue(val, criteria.Condition)
  1162. return value <= expected && e == nil, err
  1163. case criteriaGe:
  1164. value, expected, e = prepareValue(val, criteria.Condition)
  1165. return value >= expected && e == nil, err
  1166. case criteriaL:
  1167. value, expected, e = prepareValue(val, criteria.Condition)
  1168. return value < expected && e == nil, err
  1169. case criteriaG:
  1170. value, expected, e = prepareValue(val, criteria.Condition)
  1171. return value > expected && e == nil, err
  1172. case criteriaBeg:
  1173. return strings.HasPrefix(val, criteria.Condition), err
  1174. case criteriaEnd:
  1175. return strings.HasSuffix(val, criteria.Condition), err
  1176. }
  1177. return
  1178. }
  1179. // Engineering Functions
  1180. // BESSELI function the modified Bessel function, which is equivalent to the
  1181. // Bessel function evaluated for purely imaginary arguments. The syntax of
  1182. // the Besseli function is:
  1183. //
  1184. // BESSELI(x,n)
  1185. //
  1186. func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
  1187. if argsList.Len() != 2 {
  1188. return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
  1189. }
  1190. return fn.bassel(argsList, true)
  1191. }
  1192. // BESSELJ function returns the Bessel function, Jn(x), for a specified order
  1193. // and value of x. The syntax of the function is:
  1194. //
  1195. // BESSELJ(x,n)
  1196. //
  1197. func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
  1198. if argsList.Len() != 2 {
  1199. return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
  1200. }
  1201. return fn.bassel(argsList, false)
  1202. }
  1203. // bassel is an implementation of the formula function BESSELI and BESSELJ.
  1204. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
  1205. x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1206. if x.Type != ArgNumber {
  1207. return x
  1208. }
  1209. if n.Type != ArgNumber {
  1210. return n
  1211. }
  1212. max, x1 := 100, x.Number*0.5
  1213. x2 := x1 * x1
  1214. x1 = math.Pow(x1, n.Number)
  1215. n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
  1216. result := x1 / n1
  1217. t := result * 0.9
  1218. for result != t && max != 0 {
  1219. x1 *= x2
  1220. n3++
  1221. n1 *= n3
  1222. n4++
  1223. n2 *= n4
  1224. t = result
  1225. if modfied || add {
  1226. result += (x1 / n1 / n2)
  1227. } else {
  1228. result -= (x1 / n1 / n2)
  1229. }
  1230. max--
  1231. add = !add
  1232. }
  1233. return newNumberFormulaArg(result)
  1234. }
  1235. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1236. // The syntax of the function is:
  1237. //
  1238. // BIN2DEC(number)
  1239. //
  1240. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1241. if argsList.Len() != 1 {
  1242. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1243. }
  1244. token := argsList.Front().Value.(formulaArg)
  1245. number := token.ToNumber()
  1246. if number.Type != ArgNumber {
  1247. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1248. }
  1249. return fn.bin2dec(token.Value())
  1250. }
  1251. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1252. // (Base 16) number. The syntax of the function is:
  1253. //
  1254. // BIN2HEX(number,[places])
  1255. //
  1256. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1257. if argsList.Len() < 1 {
  1258. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1259. }
  1260. if argsList.Len() > 2 {
  1261. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1262. }
  1263. token := argsList.Front().Value.(formulaArg)
  1264. number := token.ToNumber()
  1265. if number.Type != ArgNumber {
  1266. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1267. }
  1268. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1269. if decimal.Type != ArgNumber {
  1270. return decimal
  1271. }
  1272. newList.PushBack(decimal)
  1273. if argsList.Len() == 2 {
  1274. newList.PushBack(argsList.Back().Value.(formulaArg))
  1275. }
  1276. return fn.dec2x("BIN2HEX", newList)
  1277. }
  1278. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1279. // number. The syntax of the function is:
  1280. //
  1281. // BIN2OCT(number,[places])
  1282. //
  1283. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1284. if argsList.Len() < 1 {
  1285. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1286. }
  1287. if argsList.Len() > 2 {
  1288. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1289. }
  1290. token := argsList.Front().Value.(formulaArg)
  1291. number := token.ToNumber()
  1292. if number.Type != ArgNumber {
  1293. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1294. }
  1295. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1296. if decimal.Type != ArgNumber {
  1297. return decimal
  1298. }
  1299. newList.PushBack(decimal)
  1300. if argsList.Len() == 2 {
  1301. newList.PushBack(argsList.Back().Value.(formulaArg))
  1302. }
  1303. return fn.dec2x("BIN2OCT", newList)
  1304. }
  1305. // bin2dec is an implementation of the formula function BIN2DEC.
  1306. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1307. decimal, length := 0.0, len(number)
  1308. for i := length; i > 0; i-- {
  1309. s := string(number[length-i])
  1310. if i == 10 && s == "1" {
  1311. decimal += math.Pow(-2.0, float64(i-1))
  1312. continue
  1313. }
  1314. if s == "1" {
  1315. decimal += math.Pow(2.0, float64(i-1))
  1316. continue
  1317. }
  1318. if s != "0" {
  1319. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1320. }
  1321. }
  1322. return newNumberFormulaArg(decimal)
  1323. }
  1324. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1325. // syntax of the function is:
  1326. //
  1327. // BITAND(number1,number2)
  1328. //
  1329. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1330. return fn.bitwise("BITAND", argsList)
  1331. }
  1332. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1333. // number of bits. The syntax of the function is:
  1334. //
  1335. // BITLSHIFT(number1,shift_amount)
  1336. //
  1337. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1338. return fn.bitwise("BITLSHIFT", argsList)
  1339. }
  1340. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1341. // syntax of the function is:
  1342. //
  1343. // BITOR(number1,number2)
  1344. //
  1345. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1346. return fn.bitwise("BITOR", argsList)
  1347. }
  1348. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1349. // number of bits. The syntax of the function is:
  1350. //
  1351. // BITRSHIFT(number1,shift_amount)
  1352. //
  1353. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1354. return fn.bitwise("BITRSHIFT", argsList)
  1355. }
  1356. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1357. // integers. The syntax of the function is:
  1358. //
  1359. // BITXOR(number1,number2)
  1360. //
  1361. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1362. return fn.bitwise("BITXOR", argsList)
  1363. }
  1364. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1365. // BITOR, BITRSHIFT and BITXOR.
  1366. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1367. if argsList.Len() != 2 {
  1368. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1369. }
  1370. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1371. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1372. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1373. }
  1374. max := math.Pow(2, 48) - 1
  1375. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1376. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1377. }
  1378. bitwiseFuncMap := map[string]func(a, b int) int{
  1379. "BITAND": func(a, b int) int { return a & b },
  1380. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1381. "BITOR": func(a, b int) int { return a | b },
  1382. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1383. "BITXOR": func(a, b int) int { return a ^ b },
  1384. }
  1385. bitwiseFunc := bitwiseFuncMap[name]
  1386. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1387. }
  1388. // COMPLEX function takes two arguments, representing the real and the
  1389. // imaginary coefficients of a complex number, and from these, creates a
  1390. // complex number. The syntax of the function is:
  1391. //
  1392. // COMPLEX(real_num,i_num,[suffix])
  1393. //
  1394. func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
  1395. if argsList.Len() < 2 {
  1396. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
  1397. }
  1398. if argsList.Len() > 3 {
  1399. return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
  1400. }
  1401. real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
  1402. if real.Type != ArgNumber {
  1403. return real
  1404. }
  1405. if i.Type != ArgNumber {
  1406. return i
  1407. }
  1408. if argsList.Len() == 3 {
  1409. if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
  1410. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1411. }
  1412. }
  1413. return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))
  1414. }
  1415. // cmplx2str replace complex number string characters.
  1416. func cmplx2str(c, suffix string) string {
  1417. if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" {
  1418. return "0"
  1419. }
  1420. c = strings.TrimPrefix(c, "(")
  1421. c = strings.TrimPrefix(c, "+0+")
  1422. c = strings.TrimPrefix(c, "-0+")
  1423. c = strings.TrimSuffix(c, ")")
  1424. c = strings.TrimPrefix(c, "0+")
  1425. if strings.HasPrefix(c, "0-") {
  1426. c = "-" + strings.TrimPrefix(c, "0-")
  1427. }
  1428. c = strings.TrimPrefix(c, "0+")
  1429. c = strings.TrimSuffix(c, "+0i")
  1430. c = strings.TrimSuffix(c, "-0i")
  1431. c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c)
  1432. c = strings.Replace(c, "i", suffix, -1)
  1433. return c
  1434. }
  1435. // str2cmplx convert complex number string characters.
  1436. func str2cmplx(c string) string {
  1437. c = strings.Replace(c, "j", "i", -1)
  1438. if c == "i" {
  1439. c = "1i"
  1440. }
  1441. c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)
  1442. return c
  1443. }
  1444. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1445. // The syntax of the function is:
  1446. //
  1447. // DEC2BIN(number,[places])
  1448. //
  1449. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1450. return fn.dec2x("DEC2BIN", argsList)
  1451. }
  1452. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1453. // number. The syntax of the function is:
  1454. //
  1455. // DEC2HEX(number,[places])
  1456. //
  1457. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1458. return fn.dec2x("DEC2HEX", argsList)
  1459. }
  1460. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1461. // The syntax of the function is:
  1462. //
  1463. // DEC2OCT(number,[places])
  1464. //
  1465. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1466. return fn.dec2x("DEC2OCT", argsList)
  1467. }
  1468. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1469. // DEC2OCT.
  1470. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1471. if argsList.Len() < 1 {
  1472. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1473. }
  1474. if argsList.Len() > 2 {
  1475. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1476. }
  1477. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1478. if decimal.Type != ArgNumber {
  1479. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1480. }
  1481. maxLimitMap := map[string]float64{
  1482. "DEC2BIN": 511,
  1483. "HEX2BIN": 511,
  1484. "OCT2BIN": 511,
  1485. "BIN2HEX": 549755813887,
  1486. "DEC2HEX": 549755813887,
  1487. "OCT2HEX": 549755813887,
  1488. "BIN2OCT": 536870911,
  1489. "DEC2OCT": 536870911,
  1490. "HEX2OCT": 536870911,
  1491. }
  1492. minLimitMap := map[string]float64{
  1493. "DEC2BIN": -512,
  1494. "HEX2BIN": -512,
  1495. "OCT2BIN": -512,
  1496. "BIN2HEX": -549755813888,
  1497. "DEC2HEX": -549755813888,
  1498. "OCT2HEX": -549755813888,
  1499. "BIN2OCT": -536870912,
  1500. "DEC2OCT": -536870912,
  1501. "HEX2OCT": -536870912,
  1502. }
  1503. baseMap := map[string]int{
  1504. "DEC2BIN": 2,
  1505. "HEX2BIN": 2,
  1506. "OCT2BIN": 2,
  1507. "BIN2HEX": 16,
  1508. "DEC2HEX": 16,
  1509. "OCT2HEX": 16,
  1510. "BIN2OCT": 8,
  1511. "DEC2OCT": 8,
  1512. "HEX2OCT": 8,
  1513. }
  1514. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1515. base := baseMap[name]
  1516. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1517. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1518. }
  1519. n := int64(decimal.Number)
  1520. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1521. if argsList.Len() == 2 {
  1522. places := argsList.Back().Value.(formulaArg).ToNumber()
  1523. if places.Type != ArgNumber {
  1524. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1525. }
  1526. binaryPlaces := len(binary)
  1527. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1528. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1529. }
  1530. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1531. }
  1532. if decimal.Number < 0 && len(binary) > 10 {
  1533. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1534. }
  1535. return newStringFormulaArg(strings.ToUpper(binary))
  1536. }
  1537. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1538. // (Base 2) number. The syntax of the function is:
  1539. //
  1540. // HEX2BIN(number,[places])
  1541. //
  1542. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1543. if argsList.Len() < 1 {
  1544. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1545. }
  1546. if argsList.Len() > 2 {
  1547. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1548. }
  1549. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1550. if decimal.Type != ArgNumber {
  1551. return decimal
  1552. }
  1553. newList.PushBack(decimal)
  1554. if argsList.Len() == 2 {
  1555. newList.PushBack(argsList.Back().Value.(formulaArg))
  1556. }
  1557. return fn.dec2x("HEX2BIN", newList)
  1558. }
  1559. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1560. // number. The syntax of the function is:
  1561. //
  1562. // HEX2DEC(number)
  1563. //
  1564. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1565. if argsList.Len() != 1 {
  1566. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1567. }
  1568. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1569. }
  1570. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1571. // (Base 8) number. The syntax of the function is:
  1572. //
  1573. // HEX2OCT(number,[places])
  1574. //
  1575. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1576. if argsList.Len() < 1 {
  1577. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1578. }
  1579. if argsList.Len() > 2 {
  1580. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1581. }
  1582. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1583. if decimal.Type != ArgNumber {
  1584. return decimal
  1585. }
  1586. newList.PushBack(decimal)
  1587. if argsList.Len() == 2 {
  1588. newList.PushBack(argsList.Back().Value.(formulaArg))
  1589. }
  1590. return fn.dec2x("HEX2OCT", newList)
  1591. }
  1592. // hex2dec is an implementation of the formula function HEX2DEC.
  1593. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1594. decimal, length := 0.0, len(number)
  1595. for i := length; i > 0; i-- {
  1596. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1597. if err != nil {
  1598. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1599. }
  1600. if i == 10 && string(number[length-i]) == "F" {
  1601. decimal += math.Pow(-16.0, float64(i-1))
  1602. continue
  1603. }
  1604. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1605. }
  1606. return newNumberFormulaArg(decimal)
  1607. }
  1608. // IMABS function returns the absolute value (the modulus) of a complex
  1609. // number. The syntax of the function is:
  1610. //
  1611. // IMABS(inumber)
  1612. //
  1613. func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
  1614. if argsList.Len() != 1 {
  1615. return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
  1616. }
  1617. inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
  1618. if err != nil {
  1619. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1620. }
  1621. return newNumberFormulaArg(cmplx.Abs(inumber))
  1622. }
  1623. // IMCOS function returns the cosine of a supplied complex number. The syntax
  1624. // of the function is:
  1625. //
  1626. // IMCOS(inumber)
  1627. //
  1628. func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
  1629. if argsList.Len() != 1 {
  1630. return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
  1631. }
  1632. inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
  1633. if err != nil {
  1634. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1635. }
  1636. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))
  1637. }
  1638. // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax
  1639. // of the function is:
  1640. //
  1641. // IMCOSH(inumber)
  1642. //
  1643. func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {
  1644. if argsList.Len() != 1 {
  1645. return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")
  1646. }
  1647. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1648. if err != nil {
  1649. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1650. }
  1651. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))
  1652. }
  1653. // IMCOT function returns the cotangent of a supplied complex number. The syntax
  1654. // of the function is:
  1655. //
  1656. // IMCOT(inumber)
  1657. //
  1658. func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {
  1659. if argsList.Len() != 1 {
  1660. return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")
  1661. }
  1662. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1663. if err != nil {
  1664. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1665. }
  1666. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))
  1667. }
  1668. // IMCSC function returns the cosecant of a supplied complex number. The syntax
  1669. // of the function is:
  1670. //
  1671. // IMCSC(inumber)
  1672. //
  1673. func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {
  1674. if argsList.Len() != 1 {
  1675. return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")
  1676. }
  1677. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1678. if err != nil {
  1679. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1680. }
  1681. num := 1 / cmplx.Sin(inumber)
  1682. if cmplx.IsInf(num) {
  1683. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1684. }
  1685. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1686. }
  1687. // IMCSCH function returns the hyperbolic cosecant of a supplied complex
  1688. // number. The syntax of the function is:
  1689. //
  1690. // IMCSCH(inumber)
  1691. //
  1692. func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
  1693. if argsList.Len() != 1 {
  1694. return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")
  1695. }
  1696. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1697. if err != nil {
  1698. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1699. }
  1700. num := 1 / cmplx.Sinh(inumber)
  1701. if cmplx.IsInf(num) {
  1702. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1703. }
  1704. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1705. }
  1706. // IMEXP function returns the exponential of a supplied complex number. The
  1707. // syntax of the function is:
  1708. //
  1709. // IMEXP(inumber)
  1710. //
  1711. func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {
  1712. if argsList.Len() != 1 {
  1713. return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")
  1714. }
  1715. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1716. if err != nil {
  1717. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1718. }
  1719. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))
  1720. }
  1721. // IMLN function returns the natural logarithm of a supplied complex number.
  1722. // The syntax of the function is:
  1723. //
  1724. // IMLN(inumber)
  1725. //
  1726. func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {
  1727. if argsList.Len() != 1 {
  1728. return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")
  1729. }
  1730. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1731. if err != nil {
  1732. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1733. }
  1734. num := cmplx.Log(inumber)
  1735. if cmplx.IsInf(num) {
  1736. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1737. }
  1738. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1739. }
  1740. // IMLOG10 function returns the common (base 10) logarithm of a supplied
  1741. // complex number. The syntax of the function is:
  1742. //
  1743. // IMLOG10(inumber)
  1744. //
  1745. func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {
  1746. if argsList.Len() != 1 {
  1747. return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")
  1748. }
  1749. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1750. if err != nil {
  1751. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1752. }
  1753. num := cmplx.Log10(inumber)
  1754. if cmplx.IsInf(num) {
  1755. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1756. }
  1757. return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
  1758. }
  1759. // IMSIN function returns the Sine of a supplied complex number. The syntax of
  1760. // the function is:
  1761. //
  1762. // IMSIN(inumber)
  1763. //
  1764. func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg {
  1765. if argsList.Len() != 1 {
  1766. return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument")
  1767. }
  1768. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1769. if err != nil {
  1770. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1771. }
  1772. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i"))
  1773. }
  1774. // IMSINH function returns the hyperbolic sine of a supplied complex number.
  1775. // The syntax of the function is:
  1776. //
  1777. // IMSINH(inumber)
  1778. //
  1779. func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg {
  1780. if argsList.Len() != 1 {
  1781. return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument")
  1782. }
  1783. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1784. if err != nil {
  1785. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1786. }
  1787. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i"))
  1788. }
  1789. // IMSQRT function returns the square root of a supplied complex number. The
  1790. // syntax of the function is:
  1791. //
  1792. // IMSQRT(inumber)
  1793. //
  1794. func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg {
  1795. if argsList.Len() != 1 {
  1796. return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument")
  1797. }
  1798. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1799. if err != nil {
  1800. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1801. }
  1802. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i"))
  1803. }
  1804. // IMSUB function calculates the difference between two complex numbers
  1805. // (i.e. subtracts one complex number from another). The syntax of the
  1806. // function is:
  1807. //
  1808. // IMSUB(inumber1,inumber2)
  1809. //
  1810. func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg {
  1811. if argsList.Len() != 2 {
  1812. return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments")
  1813. }
  1814. i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1815. if err != nil {
  1816. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1817. }
  1818. i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
  1819. if err != nil {
  1820. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1821. }
  1822. return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i"))
  1823. }
  1824. // IMSUM function calculates the sum of two or more complex numbers. The
  1825. // syntax of the function is:
  1826. //
  1827. // IMSUM(inumber1,inumber2,...)
  1828. //
  1829. func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg {
  1830. if argsList.Len() < 1 {
  1831. return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument")
  1832. }
  1833. var result complex128
  1834. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  1835. token := arg.Value.(formulaArg)
  1836. num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
  1837. if err != nil {
  1838. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1839. }
  1840. result += num
  1841. }
  1842. return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i"))
  1843. }
  1844. // IMTAN function returns the tangent of a supplied complex number. The syntax
  1845. // of the function is:
  1846. //
  1847. // IMTAN(inumber)
  1848. //
  1849. func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg {
  1850. if argsList.Len() != 1 {
  1851. return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument")
  1852. }
  1853. inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
  1854. if err != nil {
  1855. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1856. }
  1857. return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i"))
  1858. }
  1859. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1860. // number. The syntax of the function is:
  1861. //
  1862. // OCT2BIN(number,[places])
  1863. //
  1864. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1865. if argsList.Len() < 1 {
  1866. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1867. }
  1868. if argsList.Len() > 2 {
  1869. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1870. }
  1871. token := argsList.Front().Value.(formulaArg)
  1872. number := token.ToNumber()
  1873. if number.Type != ArgNumber {
  1874. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1875. }
  1876. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1877. newList.PushBack(decimal)
  1878. if argsList.Len() == 2 {
  1879. newList.PushBack(argsList.Back().Value.(formulaArg))
  1880. }
  1881. return fn.dec2x("OCT2BIN", newList)
  1882. }
  1883. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1884. // The syntax of the function is:
  1885. //
  1886. // OCT2DEC(number)
  1887. //
  1888. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1889. if argsList.Len() != 1 {
  1890. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1891. }
  1892. token := argsList.Front().Value.(formulaArg)
  1893. number := token.ToNumber()
  1894. if number.Type != ArgNumber {
  1895. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1896. }
  1897. return fn.oct2dec(token.Value())
  1898. }
  1899. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1900. // (Base 16) number. The syntax of the function is:
  1901. //
  1902. // OCT2HEX(number,[places])
  1903. //
  1904. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1905. if argsList.Len() < 1 {
  1906. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1907. }
  1908. if argsList.Len() > 2 {
  1909. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1910. }
  1911. token := argsList.Front().Value.(formulaArg)
  1912. number := token.ToNumber()
  1913. if number.Type != ArgNumber {
  1914. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1915. }
  1916. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1917. newList.PushBack(decimal)
  1918. if argsList.Len() == 2 {
  1919. newList.PushBack(argsList.Back().Value.(formulaArg))
  1920. }
  1921. return fn.dec2x("OCT2HEX", newList)
  1922. }
  1923. // oct2dec is an implementation of the formula function OCT2DEC.
  1924. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1925. decimal, length := 0.0, len(number)
  1926. for i := length; i > 0; i-- {
  1927. num, _ := strconv.Atoi(string(number[length-i]))
  1928. if i == 10 && string(number[length-i]) == "7" {
  1929. decimal += math.Pow(-8.0, float64(i-1))
  1930. continue
  1931. }
  1932. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1933. }
  1934. return newNumberFormulaArg(decimal)
  1935. }
  1936. // Math and Trigonometric Functions
  1937. // ABS function returns the absolute value of any supplied number. The syntax
  1938. // of the function is:
  1939. //
  1940. // ABS(number)
  1941. //
  1942. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1943. if argsList.Len() != 1 {
  1944. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1945. }
  1946. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1947. if arg.Type == ArgError {
  1948. return arg
  1949. }
  1950. return newNumberFormulaArg(math.Abs(arg.Number))
  1951. }
  1952. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1953. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1954. // the function is:
  1955. //
  1956. // ACOS(number)
  1957. //
  1958. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1959. if argsList.Len() != 1 {
  1960. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1961. }
  1962. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1963. if arg.Type == ArgError {
  1964. return arg
  1965. }
  1966. return newNumberFormulaArg(math.Acos(arg.Number))
  1967. }
  1968. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1969. // of the function is:
  1970. //
  1971. // ACOSH(number)
  1972. //
  1973. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1974. if argsList.Len() != 1 {
  1975. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1976. }
  1977. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1978. if arg.Type == ArgError {
  1979. return arg
  1980. }
  1981. return newNumberFormulaArg(math.Acosh(arg.Number))
  1982. }
  1983. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1984. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1985. // of the function is:
  1986. //
  1987. // ACOT(number)
  1988. //
  1989. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1990. if argsList.Len() != 1 {
  1991. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1992. }
  1993. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1994. if arg.Type == ArgError {
  1995. return arg
  1996. }
  1997. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1998. }
  1999. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  2000. // value. The syntax of the function is:
  2001. //
  2002. // ACOTH(number)
  2003. //
  2004. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  2005. if argsList.Len() != 1 {
  2006. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  2007. }
  2008. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2009. if arg.Type == ArgError {
  2010. return arg
  2011. }
  2012. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  2013. }
  2014. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  2015. // of the function is:
  2016. //
  2017. // ARABIC(text)
  2018. //
  2019. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  2020. if argsList.Len() != 1 {
  2021. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  2022. }
  2023. text := argsList.Front().Value.(formulaArg).Value()
  2024. if len(text) > 255 {
  2025. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2026. }
  2027. text = strings.ToUpper(text)
  2028. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  2029. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  2030. for index >= 0 && text[index] == ' ' {
  2031. index--
  2032. }
  2033. for actualStart <= index && text[actualStart] == ' ' {
  2034. actualStart++
  2035. }
  2036. if actualStart <= index && text[actualStart] == '-' {
  2037. isNegative = true
  2038. actualStart++
  2039. }
  2040. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  2041. for index >= actualStart {
  2042. startIndex = index
  2043. startChar := text[startIndex]
  2044. index--
  2045. for index >= actualStart && (text[index]|' ') == startChar {
  2046. index--
  2047. }
  2048. currentCharValue = charMap[rune(startChar)]
  2049. currentPartValue = (startIndex - index) * currentCharValue
  2050. if currentCharValue >= prevCharValue {
  2051. number += currentPartValue - subtractNumber
  2052. prevCharValue = currentCharValue
  2053. subtractNumber = 0
  2054. continue
  2055. }
  2056. subtractNumber += currentPartValue
  2057. }
  2058. if subtractNumber != 0 {
  2059. number -= subtractNumber
  2060. }
  2061. if isNegative {
  2062. number = -number
  2063. }
  2064. return newNumberFormulaArg(float64(number))
  2065. }
  2066. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  2067. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  2068. // of the function is:
  2069. //
  2070. // ASIN(number)
  2071. //
  2072. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  2073. if argsList.Len() != 1 {
  2074. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  2075. }
  2076. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2077. if arg.Type == ArgError {
  2078. return arg
  2079. }
  2080. return newNumberFormulaArg(math.Asin(arg.Number))
  2081. }
  2082. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  2083. // The syntax of the function is:
  2084. //
  2085. // ASINH(number)
  2086. //
  2087. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  2088. if argsList.Len() != 1 {
  2089. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  2090. }
  2091. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2092. if arg.Type == ArgError {
  2093. return arg
  2094. }
  2095. return newNumberFormulaArg(math.Asinh(arg.Number))
  2096. }
  2097. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  2098. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  2099. // syntax of the function is:
  2100. //
  2101. // ATAN(number)
  2102. //
  2103. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  2104. if argsList.Len() != 1 {
  2105. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  2106. }
  2107. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2108. if arg.Type == ArgError {
  2109. return arg
  2110. }
  2111. return newNumberFormulaArg(math.Atan(arg.Number))
  2112. }
  2113. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  2114. // number. The syntax of the function is:
  2115. //
  2116. // ATANH(number)
  2117. //
  2118. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  2119. if argsList.Len() != 1 {
  2120. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  2121. }
  2122. arg := argsList.Front().Value.(formulaArg).ToNumber()
  2123. if arg.Type == ArgError {
  2124. return arg
  2125. }
  2126. return newNumberFormulaArg(math.Atanh(arg.Number))
  2127. }
  2128. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  2129. // given set of x and y coordinates, and returns an angle, in radians, between
  2130. // -π/2 and +π/2. The syntax of the function is:
  2131. //
  2132. // ATAN2(x_num,y_num)
  2133. //
  2134. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  2135. if argsList.Len() != 2 {
  2136. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  2137. }
  2138. x := argsList.Back().Value.(formulaArg).ToNumber()
  2139. if x.Type == ArgError {
  2140. return x
  2141. }
  2142. y := argsList.Front().Value.(formulaArg).ToNumber()
  2143. if y.Type == ArgError {
  2144. return y
  2145. }
  2146. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  2147. }
  2148. // BASE function converts a number into a supplied base (radix), and returns a
  2149. // text representation of the calculated value. The syntax of the function is:
  2150. //
  2151. // BASE(number,radix,[min_length])
  2152. //
  2153. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  2154. if argsList.Len() < 2 {
  2155. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  2156. }
  2157. if argsList.Len() > 3 {
  2158. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  2159. }
  2160. var minLength int
  2161. var err error
  2162. number := argsList.Front().Value.(formulaArg).ToNumber()
  2163. if number.Type == ArgError {
  2164. return number
  2165. }
  2166. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2167. if radix.Type == ArgError {
  2168. return radix
  2169. }
  2170. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  2171. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  2172. }
  2173. if argsList.Len() > 2 {
  2174. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  2175. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2176. }
  2177. }
  2178. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  2179. if len(result) < minLength {
  2180. result = strings.Repeat("0", minLength-len(result)) + result
  2181. }
  2182. return newStringFormulaArg(strings.ToUpper(result))
  2183. }
  2184. // CEILING function rounds a supplied number away from zero, to the nearest
  2185. // multiple of a given number. The syntax of the function is:
  2186. //
  2187. // CEILING(number,significance)
  2188. //
  2189. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  2190. if argsList.Len() == 0 {
  2191. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  2192. }
  2193. if argsList.Len() > 2 {
  2194. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  2195. }
  2196. number, significance, res := 0.0, 1.0, 0.0
  2197. n := argsList.Front().Value.(formulaArg).ToNumber()
  2198. if n.Type == ArgError {
  2199. return n
  2200. }
  2201. number = n.Number
  2202. if number < 0 {
  2203. significance = -1
  2204. }
  2205. if argsList.Len() > 1 {
  2206. s := argsList.Back().Value.(formulaArg).ToNumber()
  2207. if s.Type == ArgError {
  2208. return s
  2209. }
  2210. significance = s.Number
  2211. }
  2212. if significance < 0 && number > 0 {
  2213. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  2214. }
  2215. if argsList.Len() == 1 {
  2216. return newNumberFormulaArg(math.Ceil(number))
  2217. }
  2218. number, res = math.Modf(number / significance)
  2219. if res > 0 {
  2220. number++
  2221. }
  2222. return newNumberFormulaArg(number * significance)
  2223. }
  2224. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  2225. // of significance. The syntax of the function is:
  2226. //
  2227. // CEILING.MATH(number,[significance],[mode])
  2228. //
  2229. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  2230. if argsList.Len() == 0 {
  2231. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  2232. }
  2233. if argsList.Len() > 3 {
  2234. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  2235. }
  2236. number, significance, mode := 0.0, 1.0, 1.0
  2237. n := argsList.Front().Value.(formulaArg).ToNumber()
  2238. if n.Type == ArgError {
  2239. return n
  2240. }
  2241. number = n.Number
  2242. if number < 0 {
  2243. significance = -1
  2244. }
  2245. if argsList.Len() > 1 {
  2246. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2247. if s.Type == ArgError {
  2248. return s
  2249. }
  2250. significance = s.Number
  2251. }
  2252. if argsList.Len() == 1 {
  2253. return newNumberFormulaArg(math.Ceil(number))
  2254. }
  2255. if argsList.Len() > 2 {
  2256. m := argsList.Back().Value.(formulaArg).ToNumber()
  2257. if m.Type == ArgError {
  2258. return m
  2259. }
  2260. mode = m.Number
  2261. }
  2262. val, res := math.Modf(number / significance)
  2263. if res != 0 {
  2264. if number > 0 {
  2265. val++
  2266. } else if mode < 0 {
  2267. val--
  2268. }
  2269. }
  2270. return newNumberFormulaArg(val * significance)
  2271. }
  2272. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  2273. // number's sign), to the nearest multiple of a given number. The syntax of
  2274. // the function is:
  2275. //
  2276. // CEILING.PRECISE(number,[significance])
  2277. //
  2278. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  2279. if argsList.Len() == 0 {
  2280. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  2281. }
  2282. if argsList.Len() > 2 {
  2283. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  2284. }
  2285. number, significance := 0.0, 1.0
  2286. n := argsList.Front().Value.(formulaArg).ToNumber()
  2287. if n.Type == ArgError {
  2288. return n
  2289. }
  2290. number = n.Number
  2291. if number < 0 {
  2292. significance = -1
  2293. }
  2294. if argsList.Len() == 1 {
  2295. return newNumberFormulaArg(math.Ceil(number))
  2296. }
  2297. if argsList.Len() > 1 {
  2298. s := argsList.Back().Value.(formulaArg).ToNumber()
  2299. if s.Type == ArgError {
  2300. return s
  2301. }
  2302. significance = s.Number
  2303. significance = math.Abs(significance)
  2304. if significance == 0 {
  2305. return newNumberFormulaArg(significance)
  2306. }
  2307. }
  2308. val, res := math.Modf(number / significance)
  2309. if res != 0 {
  2310. if number > 0 {
  2311. val++
  2312. }
  2313. }
  2314. return newNumberFormulaArg(val * significance)
  2315. }
  2316. // COMBIN function calculates the number of combinations (in any order) of a
  2317. // given number objects from a set. The syntax of the function is:
  2318. //
  2319. // COMBIN(number,number_chosen)
  2320. //
  2321. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  2322. if argsList.Len() != 2 {
  2323. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  2324. }
  2325. number, chosen, val := 0.0, 0.0, 1.0
  2326. n := argsList.Front().Value.(formulaArg).ToNumber()
  2327. if n.Type == ArgError {
  2328. return n
  2329. }
  2330. number = n.Number
  2331. c := argsList.Back().Value.(formulaArg).ToNumber()
  2332. if c.Type == ArgError {
  2333. return c
  2334. }
  2335. chosen = c.Number
  2336. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2337. if chosen > number {
  2338. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  2339. }
  2340. if chosen == number || chosen == 0 {
  2341. return newNumberFormulaArg(1)
  2342. }
  2343. for c := float64(1); c <= chosen; c++ {
  2344. val *= (number + 1 - c) / c
  2345. }
  2346. return newNumberFormulaArg(math.Ceil(val))
  2347. }
  2348. // COMBINA function calculates the number of combinations, with repetitions,
  2349. // of a given number objects from a set. The syntax of the function is:
  2350. //
  2351. // COMBINA(number,number_chosen)
  2352. //
  2353. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  2354. if argsList.Len() != 2 {
  2355. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  2356. }
  2357. var number, chosen float64
  2358. n := argsList.Front().Value.(formulaArg).ToNumber()
  2359. if n.Type == ArgError {
  2360. return n
  2361. }
  2362. number = n.Number
  2363. c := argsList.Back().Value.(formulaArg).ToNumber()
  2364. if c.Type == ArgError {
  2365. return c
  2366. }
  2367. chosen = c.Number
  2368. number, chosen = math.Trunc(number), math.Trunc(chosen)
  2369. if number < chosen {
  2370. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  2371. }
  2372. if number == 0 {
  2373. return newNumberFormulaArg(number)
  2374. }
  2375. args := list.New()
  2376. args.PushBack(formulaArg{
  2377. String: fmt.Sprintf("%g", number+chosen-1),
  2378. Type: ArgString,
  2379. })
  2380. args.PushBack(formulaArg{
  2381. String: fmt.Sprintf("%g", number-1),
  2382. Type: ArgString,
  2383. })
  2384. return fn.COMBIN(args)
  2385. }
  2386. // COS function calculates the cosine of a given angle. The syntax of the
  2387. // function is:
  2388. //
  2389. // COS(number)
  2390. //
  2391. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2392. if argsList.Len() != 1 {
  2393. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2394. }
  2395. val := argsList.Front().Value.(formulaArg).ToNumber()
  2396. if val.Type == ArgError {
  2397. return val
  2398. }
  2399. return newNumberFormulaArg(math.Cos(val.Number))
  2400. }
  2401. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2402. // The syntax of the function is:
  2403. //
  2404. // COSH(number)
  2405. //
  2406. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2407. if argsList.Len() != 1 {
  2408. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2409. }
  2410. val := argsList.Front().Value.(formulaArg).ToNumber()
  2411. if val.Type == ArgError {
  2412. return val
  2413. }
  2414. return newNumberFormulaArg(math.Cosh(val.Number))
  2415. }
  2416. // COT function calculates the cotangent of a given angle. The syntax of the
  2417. // function is:
  2418. //
  2419. // COT(number)
  2420. //
  2421. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2422. if argsList.Len() != 1 {
  2423. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2424. }
  2425. val := argsList.Front().Value.(formulaArg).ToNumber()
  2426. if val.Type == ArgError {
  2427. return val
  2428. }
  2429. if val.Number == 0 {
  2430. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2431. }
  2432. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2433. }
  2434. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2435. // angle. The syntax of the function is:
  2436. //
  2437. // COTH(number)
  2438. //
  2439. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2440. if argsList.Len() != 1 {
  2441. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2442. }
  2443. val := argsList.Front().Value.(formulaArg).ToNumber()
  2444. if val.Type == ArgError {
  2445. return val
  2446. }
  2447. if val.Number == 0 {
  2448. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2449. }
  2450. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2451. }
  2452. // CSC function calculates the cosecant of a given angle. The syntax of the
  2453. // function is:
  2454. //
  2455. // CSC(number)
  2456. //
  2457. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2458. if argsList.Len() != 1 {
  2459. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2460. }
  2461. val := argsList.Front().Value.(formulaArg).ToNumber()
  2462. if val.Type == ArgError {
  2463. return val
  2464. }
  2465. if val.Number == 0 {
  2466. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2467. }
  2468. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2469. }
  2470. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2471. // angle. The syntax of the function is:
  2472. //
  2473. // CSCH(number)
  2474. //
  2475. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2476. if argsList.Len() != 1 {
  2477. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2478. }
  2479. val := argsList.Front().Value.(formulaArg).ToNumber()
  2480. if val.Type == ArgError {
  2481. return val
  2482. }
  2483. if val.Number == 0 {
  2484. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2485. }
  2486. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2487. }
  2488. // DECIMAL function converts a text representation of a number in a specified
  2489. // base, into a decimal value. The syntax of the function is:
  2490. //
  2491. // DECIMAL(text,radix)
  2492. //
  2493. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2494. if argsList.Len() != 2 {
  2495. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2496. }
  2497. var text = argsList.Front().Value.(formulaArg).String
  2498. var radix int
  2499. var err error
  2500. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2501. if err != nil {
  2502. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2503. }
  2504. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2505. text = text[2:]
  2506. }
  2507. val, err := strconv.ParseInt(text, radix, 64)
  2508. if err != nil {
  2509. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2510. }
  2511. return newNumberFormulaArg(float64(val))
  2512. }
  2513. // DEGREES function converts radians into degrees. The syntax of the function
  2514. // is:
  2515. //
  2516. // DEGREES(angle)
  2517. //
  2518. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2519. if argsList.Len() != 1 {
  2520. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2521. }
  2522. val := argsList.Front().Value.(formulaArg).ToNumber()
  2523. if val.Type == ArgError {
  2524. return val
  2525. }
  2526. if val.Number == 0 {
  2527. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2528. }
  2529. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2530. }
  2531. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2532. // positive number up and a negative number down), to the next even number.
  2533. // The syntax of the function is:
  2534. //
  2535. // EVEN(number)
  2536. //
  2537. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2538. if argsList.Len() != 1 {
  2539. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2540. }
  2541. number := argsList.Front().Value.(formulaArg).ToNumber()
  2542. if number.Type == ArgError {
  2543. return number
  2544. }
  2545. sign := math.Signbit(number.Number)
  2546. m, frac := math.Modf(number.Number / 2)
  2547. val := m * 2
  2548. if frac != 0 {
  2549. if !sign {
  2550. val += 2
  2551. } else {
  2552. val -= 2
  2553. }
  2554. }
  2555. return newNumberFormulaArg(val)
  2556. }
  2557. // EXP function calculates the value of the mathematical constant e, raised to
  2558. // the power of a given number. The syntax of the function is:
  2559. //
  2560. // EXP(number)
  2561. //
  2562. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2563. if argsList.Len() != 1 {
  2564. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2565. }
  2566. number := argsList.Front().Value.(formulaArg).ToNumber()
  2567. if number.Type == ArgError {
  2568. return number
  2569. }
  2570. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2571. }
  2572. // fact returns the factorial of a supplied number.
  2573. func fact(number float64) float64 {
  2574. val := float64(1)
  2575. for i := float64(2); i <= number; i++ {
  2576. val *= i
  2577. }
  2578. return val
  2579. }
  2580. // FACT function returns the factorial of a supplied number. The syntax of the
  2581. // function is:
  2582. //
  2583. // FACT(number)
  2584. //
  2585. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2586. if argsList.Len() != 1 {
  2587. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2588. }
  2589. number := argsList.Front().Value.(formulaArg).ToNumber()
  2590. if number.Type == ArgError {
  2591. return number
  2592. }
  2593. if number.Number < 0 {
  2594. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2595. }
  2596. return newNumberFormulaArg(fact(number.Number))
  2597. }
  2598. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2599. // syntax of the function is:
  2600. //
  2601. // FACTDOUBLE(number)
  2602. //
  2603. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2604. if argsList.Len() != 1 {
  2605. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2606. }
  2607. val := 1.0
  2608. number := argsList.Front().Value.(formulaArg).ToNumber()
  2609. if number.Type == ArgError {
  2610. return number
  2611. }
  2612. if number.Number < 0 {
  2613. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2614. }
  2615. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2616. val *= i
  2617. }
  2618. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2619. }
  2620. // FLOOR function rounds a supplied number towards zero to the nearest
  2621. // multiple of a specified significance. The syntax of the function is:
  2622. //
  2623. // FLOOR(number,significance)
  2624. //
  2625. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2626. if argsList.Len() != 2 {
  2627. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2628. }
  2629. number := argsList.Front().Value.(formulaArg).ToNumber()
  2630. if number.Type == ArgError {
  2631. return number
  2632. }
  2633. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2634. if significance.Type == ArgError {
  2635. return significance
  2636. }
  2637. if significance.Number < 0 && number.Number >= 0 {
  2638. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2639. }
  2640. val := number.Number
  2641. val, res := math.Modf(val / significance.Number)
  2642. if res != 0 {
  2643. if number.Number < 0 && res < 0 {
  2644. val--
  2645. }
  2646. }
  2647. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2648. }
  2649. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2650. // of significance. The syntax of the function is:
  2651. //
  2652. // FLOOR.MATH(number,[significance],[mode])
  2653. //
  2654. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2655. if argsList.Len() == 0 {
  2656. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2657. }
  2658. if argsList.Len() > 3 {
  2659. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2660. }
  2661. significance, mode := 1.0, 1.0
  2662. number := argsList.Front().Value.(formulaArg).ToNumber()
  2663. if number.Type == ArgError {
  2664. return number
  2665. }
  2666. if number.Number < 0 {
  2667. significance = -1
  2668. }
  2669. if argsList.Len() > 1 {
  2670. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2671. if s.Type == ArgError {
  2672. return s
  2673. }
  2674. significance = s.Number
  2675. }
  2676. if argsList.Len() == 1 {
  2677. return newNumberFormulaArg(math.Floor(number.Number))
  2678. }
  2679. if argsList.Len() > 2 {
  2680. m := argsList.Back().Value.(formulaArg).ToNumber()
  2681. if m.Type == ArgError {
  2682. return m
  2683. }
  2684. mode = m.Number
  2685. }
  2686. val, res := math.Modf(number.Number / significance)
  2687. if res != 0 && number.Number < 0 && mode > 0 {
  2688. val--
  2689. }
  2690. return newNumberFormulaArg(val * significance)
  2691. }
  2692. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2693. // multiple of significance. The syntax of the function is:
  2694. //
  2695. // FLOOR.PRECISE(number,[significance])
  2696. //
  2697. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2698. if argsList.Len() == 0 {
  2699. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2700. }
  2701. if argsList.Len() > 2 {
  2702. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2703. }
  2704. var significance float64
  2705. number := argsList.Front().Value.(formulaArg).ToNumber()
  2706. if number.Type == ArgError {
  2707. return number
  2708. }
  2709. if number.Number < 0 {
  2710. significance = -1
  2711. }
  2712. if argsList.Len() == 1 {
  2713. return newNumberFormulaArg(math.Floor(number.Number))
  2714. }
  2715. if argsList.Len() > 1 {
  2716. s := argsList.Back().Value.(formulaArg).ToNumber()
  2717. if s.Type == ArgError {
  2718. return s
  2719. }
  2720. significance = s.Number
  2721. significance = math.Abs(significance)
  2722. if significance == 0 {
  2723. return newNumberFormulaArg(significance)
  2724. }
  2725. }
  2726. val, res := math.Modf(number.Number / significance)
  2727. if res != 0 {
  2728. if number.Number < 0 {
  2729. val--
  2730. }
  2731. }
  2732. return newNumberFormulaArg(val * significance)
  2733. }
  2734. // gcd returns the greatest common divisor of two supplied integers.
  2735. func gcd(x, y float64) float64 {
  2736. x, y = math.Trunc(x), math.Trunc(y)
  2737. if x == 0 {
  2738. return y
  2739. }
  2740. if y == 0 {
  2741. return x
  2742. }
  2743. for x != y {
  2744. if x > y {
  2745. x = x - y
  2746. } else {
  2747. y = y - x
  2748. }
  2749. }
  2750. return x
  2751. }
  2752. // GCD function returns the greatest common divisor of two or more supplied
  2753. // integers. The syntax of the function is:
  2754. //
  2755. // GCD(number1,[number2],...)
  2756. //
  2757. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2758. if argsList.Len() == 0 {
  2759. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2760. }
  2761. var (
  2762. val float64
  2763. nums = []float64{}
  2764. )
  2765. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2766. token := arg.Value.(formulaArg)
  2767. switch token.Type {
  2768. case ArgString:
  2769. num := token.ToNumber()
  2770. if num.Type == ArgError {
  2771. return num
  2772. }
  2773. val = num.Number
  2774. case ArgNumber:
  2775. val = token.Number
  2776. }
  2777. nums = append(nums, val)
  2778. }
  2779. if nums[0] < 0 {
  2780. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2781. }
  2782. if len(nums) == 1 {
  2783. return newNumberFormulaArg(nums[0])
  2784. }
  2785. cd := nums[0]
  2786. for i := 1; i < len(nums); i++ {
  2787. if nums[i] < 0 {
  2788. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2789. }
  2790. cd = gcd(cd, nums[i])
  2791. }
  2792. return newNumberFormulaArg(cd)
  2793. }
  2794. // INT function truncates a supplied number down to the closest integer. The
  2795. // syntax of the function is:
  2796. //
  2797. // INT(number)
  2798. //
  2799. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2800. if argsList.Len() != 1 {
  2801. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2802. }
  2803. number := argsList.Front().Value.(formulaArg).ToNumber()
  2804. if number.Type == ArgError {
  2805. return number
  2806. }
  2807. val, frac := math.Modf(number.Number)
  2808. if frac < 0 {
  2809. val--
  2810. }
  2811. return newNumberFormulaArg(val)
  2812. }
  2813. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2814. // number's sign), to the nearest multiple of a supplied significance. The
  2815. // syntax of the function is:
  2816. //
  2817. // ISO.CEILING(number,[significance])
  2818. //
  2819. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2820. if argsList.Len() == 0 {
  2821. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2822. }
  2823. if argsList.Len() > 2 {
  2824. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2825. }
  2826. var significance float64
  2827. number := argsList.Front().Value.(formulaArg).ToNumber()
  2828. if number.Type == ArgError {
  2829. return number
  2830. }
  2831. if number.Number < 0 {
  2832. significance = -1
  2833. }
  2834. if argsList.Len() == 1 {
  2835. return newNumberFormulaArg(math.Ceil(number.Number))
  2836. }
  2837. if argsList.Len() > 1 {
  2838. s := argsList.Back().Value.(formulaArg).ToNumber()
  2839. if s.Type == ArgError {
  2840. return s
  2841. }
  2842. significance = s.Number
  2843. significance = math.Abs(significance)
  2844. if significance == 0 {
  2845. return newNumberFormulaArg(significance)
  2846. }
  2847. }
  2848. val, res := math.Modf(number.Number / significance)
  2849. if res != 0 {
  2850. if number.Number > 0 {
  2851. val++
  2852. }
  2853. }
  2854. return newNumberFormulaArg(val * significance)
  2855. }
  2856. // lcm returns the least common multiple of two supplied integers.
  2857. func lcm(a, b float64) float64 {
  2858. a = math.Trunc(a)
  2859. b = math.Trunc(b)
  2860. if a == 0 && b == 0 {
  2861. return 0
  2862. }
  2863. return a * b / gcd(a, b)
  2864. }
  2865. // LCM function returns the least common multiple of two or more supplied
  2866. // integers. The syntax of the function is:
  2867. //
  2868. // LCM(number1,[number2],...)
  2869. //
  2870. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2871. if argsList.Len() == 0 {
  2872. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2873. }
  2874. var (
  2875. val float64
  2876. nums = []float64{}
  2877. err error
  2878. )
  2879. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2880. token := arg.Value.(formulaArg)
  2881. switch token.Type {
  2882. case ArgString:
  2883. if token.String == "" {
  2884. continue
  2885. }
  2886. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2887. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2888. }
  2889. case ArgNumber:
  2890. val = token.Number
  2891. }
  2892. nums = append(nums, val)
  2893. }
  2894. if nums[0] < 0 {
  2895. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2896. }
  2897. if len(nums) == 1 {
  2898. return newNumberFormulaArg(nums[0])
  2899. }
  2900. cm := nums[0]
  2901. for i := 1; i < len(nums); i++ {
  2902. if nums[i] < 0 {
  2903. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2904. }
  2905. cm = lcm(cm, nums[i])
  2906. }
  2907. return newNumberFormulaArg(cm)
  2908. }
  2909. // LN function calculates the natural logarithm of a given number. The syntax
  2910. // of the function is:
  2911. //
  2912. // LN(number)
  2913. //
  2914. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2915. if argsList.Len() != 1 {
  2916. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2917. }
  2918. number := argsList.Front().Value.(formulaArg).ToNumber()
  2919. if number.Type == ArgError {
  2920. return number
  2921. }
  2922. return newNumberFormulaArg(math.Log(number.Number))
  2923. }
  2924. // LOG function calculates the logarithm of a given number, to a supplied
  2925. // base. The syntax of the function is:
  2926. //
  2927. // LOG(number,[base])
  2928. //
  2929. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2930. if argsList.Len() == 0 {
  2931. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2932. }
  2933. if argsList.Len() > 2 {
  2934. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2935. }
  2936. base := 10.0
  2937. number := argsList.Front().Value.(formulaArg).ToNumber()
  2938. if number.Type == ArgError {
  2939. return number
  2940. }
  2941. if argsList.Len() > 1 {
  2942. b := argsList.Back().Value.(formulaArg).ToNumber()
  2943. if b.Type == ArgError {
  2944. return b
  2945. }
  2946. base = b.Number
  2947. }
  2948. if number.Number == 0 {
  2949. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2950. }
  2951. if base == 0 {
  2952. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2953. }
  2954. if base == 1 {
  2955. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2956. }
  2957. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2958. }
  2959. // LOG10 function calculates the base 10 logarithm of a given number. The
  2960. // syntax of the function is:
  2961. //
  2962. // LOG10(number)
  2963. //
  2964. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2965. if argsList.Len() != 1 {
  2966. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2967. }
  2968. number := argsList.Front().Value.(formulaArg).ToNumber()
  2969. if number.Type == ArgError {
  2970. return number
  2971. }
  2972. return newNumberFormulaArg(math.Log10(number.Number))
  2973. }
  2974. // minor function implement a minor of a matrix A is the determinant of some
  2975. // smaller square matrix.
  2976. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2977. ret := [][]float64{}
  2978. for i := range sqMtx {
  2979. if i == 0 {
  2980. continue
  2981. }
  2982. row := []float64{}
  2983. for j := range sqMtx {
  2984. if j == idx {
  2985. continue
  2986. }
  2987. row = append(row, sqMtx[i][j])
  2988. }
  2989. ret = append(ret, row)
  2990. }
  2991. return ret
  2992. }
  2993. // det determinant of the 2x2 matrix.
  2994. func det(sqMtx [][]float64) float64 {
  2995. if len(sqMtx) == 2 {
  2996. m00 := sqMtx[0][0]
  2997. m01 := sqMtx[0][1]
  2998. m10 := sqMtx[1][0]
  2999. m11 := sqMtx[1][1]
  3000. return m00*m11 - m10*m01
  3001. }
  3002. var res, sgn float64 = 0, 1
  3003. for j := range sqMtx {
  3004. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  3005. sgn *= -1
  3006. }
  3007. return res
  3008. }
  3009. // MDETERM calculates the determinant of a square matrix. The
  3010. // syntax of the function is:
  3011. //
  3012. // MDETERM(array)
  3013. //
  3014. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  3015. var (
  3016. num float64
  3017. numMtx = [][]float64{}
  3018. err error
  3019. strMtx [][]formulaArg
  3020. )
  3021. if argsList.Len() < 1 {
  3022. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  3023. }
  3024. strMtx = argsList.Front().Value.(formulaArg).Matrix
  3025. var rows = len(strMtx)
  3026. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  3027. if len(row) != rows {
  3028. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  3029. }
  3030. numRow := []float64{}
  3031. for _, ele := range row {
  3032. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  3033. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3034. }
  3035. numRow = append(numRow, num)
  3036. }
  3037. numMtx = append(numMtx, numRow)
  3038. }
  3039. return newNumberFormulaArg(det(numMtx))
  3040. }
  3041. // MOD function returns the remainder of a division between two supplied
  3042. // numbers. The syntax of the function is:
  3043. //
  3044. // MOD(number,divisor)
  3045. //
  3046. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  3047. if argsList.Len() != 2 {
  3048. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  3049. }
  3050. number := argsList.Front().Value.(formulaArg).ToNumber()
  3051. if number.Type == ArgError {
  3052. return number
  3053. }
  3054. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  3055. if divisor.Type == ArgError {
  3056. return divisor
  3057. }
  3058. if divisor.Number == 0 {
  3059. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  3060. }
  3061. trunc, rem := math.Modf(number.Number / divisor.Number)
  3062. if rem < 0 {
  3063. trunc--
  3064. }
  3065. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  3066. }
  3067. // MROUND function rounds a supplied number up or down to the nearest multiple
  3068. // of a given number. The syntax of the function is:
  3069. //
  3070. // MROUND(number,multiple)
  3071. //
  3072. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  3073. if argsList.Len() != 2 {
  3074. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  3075. }
  3076. n := argsList.Front().Value.(formulaArg).ToNumber()
  3077. if n.Type == ArgError {
  3078. return n
  3079. }
  3080. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  3081. if multiple.Type == ArgError {
  3082. return multiple
  3083. }
  3084. if multiple.Number == 0 {
  3085. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3086. }
  3087. if multiple.Number < 0 && n.Number > 0 ||
  3088. multiple.Number > 0 && n.Number < 0 {
  3089. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3090. }
  3091. number, res := math.Modf(n.Number / multiple.Number)
  3092. if math.Trunc(res+0.5) > 0 {
  3093. number++
  3094. }
  3095. return newNumberFormulaArg(number * multiple.Number)
  3096. }
  3097. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  3098. // supplied values to the product of factorials of those values. The syntax of
  3099. // the function is:
  3100. //
  3101. // MULTINOMIAL(number1,[number2],...)
  3102. //
  3103. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  3104. val, num, denom := 0.0, 0.0, 1.0
  3105. var err error
  3106. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3107. token := arg.Value.(formulaArg)
  3108. switch token.Type {
  3109. case ArgString:
  3110. if token.String == "" {
  3111. continue
  3112. }
  3113. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3114. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3115. }
  3116. case ArgNumber:
  3117. val = token.Number
  3118. }
  3119. num += val
  3120. denom *= fact(val)
  3121. }
  3122. return newNumberFormulaArg(fact(num) / denom)
  3123. }
  3124. // MUNIT function returns the unit matrix for a specified dimension. The
  3125. // syntax of the function is:
  3126. //
  3127. // MUNIT(dimension)
  3128. //
  3129. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  3130. if argsList.Len() != 1 {
  3131. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  3132. }
  3133. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  3134. if dimension.Type == ArgError || dimension.Number < 0 {
  3135. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  3136. }
  3137. matrix := make([][]formulaArg, 0, int(dimension.Number))
  3138. for i := 0; i < int(dimension.Number); i++ {
  3139. row := make([]formulaArg, int(dimension.Number))
  3140. for j := 0; j < int(dimension.Number); j++ {
  3141. if i == j {
  3142. row[j] = newNumberFormulaArg(1.0)
  3143. } else {
  3144. row[j] = newNumberFormulaArg(0.0)
  3145. }
  3146. }
  3147. matrix = append(matrix, row)
  3148. }
  3149. return newMatrixFormulaArg(matrix)
  3150. }
  3151. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  3152. // number up and a negative number down), to the next odd number. The syntax
  3153. // of the function is:
  3154. //
  3155. // ODD(number)
  3156. //
  3157. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  3158. if argsList.Len() != 1 {
  3159. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  3160. }
  3161. number := argsList.Back().Value.(formulaArg).ToNumber()
  3162. if number.Type == ArgError {
  3163. return number
  3164. }
  3165. if number.Number == 0 {
  3166. return newNumberFormulaArg(1)
  3167. }
  3168. sign := math.Signbit(number.Number)
  3169. m, frac := math.Modf((number.Number - 1) / 2)
  3170. val := m*2 + 1
  3171. if frac != 0 {
  3172. if !sign {
  3173. val += 2
  3174. } else {
  3175. val -= 2
  3176. }
  3177. }
  3178. return newNumberFormulaArg(val)
  3179. }
  3180. // PI function returns the value of the mathematical constant π (pi), accurate
  3181. // to 15 digits (14 decimal places). The syntax of the function is:
  3182. //
  3183. // PI()
  3184. //
  3185. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  3186. if argsList.Len() != 0 {
  3187. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  3188. }
  3189. return newNumberFormulaArg(math.Pi)
  3190. }
  3191. // POWER function calculates a given number, raised to a supplied power.
  3192. // The syntax of the function is:
  3193. //
  3194. // POWER(number,power)
  3195. //
  3196. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  3197. if argsList.Len() != 2 {
  3198. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  3199. }
  3200. x := argsList.Front().Value.(formulaArg).ToNumber()
  3201. if x.Type == ArgError {
  3202. return x
  3203. }
  3204. y := argsList.Back().Value.(formulaArg).ToNumber()
  3205. if y.Type == ArgError {
  3206. return y
  3207. }
  3208. if x.Number == 0 && y.Number == 0 {
  3209. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3210. }
  3211. if x.Number == 0 && y.Number < 0 {
  3212. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3213. }
  3214. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  3215. }
  3216. // PRODUCT function returns the product (multiplication) of a supplied set of
  3217. // numerical values. The syntax of the function is:
  3218. //
  3219. // PRODUCT(number1,[number2],...)
  3220. //
  3221. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  3222. val, product := 0.0, 1.0
  3223. var err error
  3224. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3225. token := arg.Value.(formulaArg)
  3226. switch token.Type {
  3227. case ArgUnknown:
  3228. continue
  3229. case ArgString:
  3230. if token.String == "" {
  3231. continue
  3232. }
  3233. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3234. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3235. }
  3236. product = product * val
  3237. case ArgNumber:
  3238. product = product * token.Number
  3239. case ArgMatrix:
  3240. for _, row := range token.Matrix {
  3241. for _, value := range row {
  3242. if value.String == "" {
  3243. continue
  3244. }
  3245. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3246. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3247. }
  3248. product = product * val
  3249. }
  3250. }
  3251. }
  3252. }
  3253. return newNumberFormulaArg(product)
  3254. }
  3255. // QUOTIENT function returns the integer portion of a division between two
  3256. // supplied numbers. The syntax of the function is:
  3257. //
  3258. // QUOTIENT(numerator,denominator)
  3259. //
  3260. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  3261. if argsList.Len() != 2 {
  3262. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  3263. }
  3264. x := argsList.Front().Value.(formulaArg).ToNumber()
  3265. if x.Type == ArgError {
  3266. return x
  3267. }
  3268. y := argsList.Back().Value.(formulaArg).ToNumber()
  3269. if y.Type == ArgError {
  3270. return y
  3271. }
  3272. if y.Number == 0 {
  3273. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3274. }
  3275. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  3276. }
  3277. // RADIANS function converts radians into degrees. The syntax of the function is:
  3278. //
  3279. // RADIANS(angle)
  3280. //
  3281. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  3282. if argsList.Len() != 1 {
  3283. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  3284. }
  3285. angle := argsList.Front().Value.(formulaArg).ToNumber()
  3286. if angle.Type == ArgError {
  3287. return angle
  3288. }
  3289. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  3290. }
  3291. // RAND function generates a random real number between 0 and 1. The syntax of
  3292. // the function is:
  3293. //
  3294. // RAND()
  3295. //
  3296. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  3297. if argsList.Len() != 0 {
  3298. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  3299. }
  3300. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  3301. }
  3302. // RANDBETWEEN function generates a random integer between two supplied
  3303. // integers. The syntax of the function is:
  3304. //
  3305. // RANDBETWEEN(bottom,top)
  3306. //
  3307. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  3308. if argsList.Len() != 2 {
  3309. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  3310. }
  3311. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  3312. if bottom.Type == ArgError {
  3313. return bottom
  3314. }
  3315. top := argsList.Back().Value.(formulaArg).ToNumber()
  3316. if top.Type == ArgError {
  3317. return top
  3318. }
  3319. if top.Number < bottom.Number {
  3320. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3321. }
  3322. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  3323. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  3324. }
  3325. // romanNumerals defined a numeral system that originated in ancient Rome and
  3326. // remained the usual way of writing numbers throughout Europe well into the
  3327. // Late Middle Ages.
  3328. type romanNumerals struct {
  3329. n float64
  3330. s string
  3331. }
  3332. var romanTable = [][]romanNumerals{
  3333. {
  3334. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  3335. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3336. },
  3337. {
  3338. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  3339. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3340. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3341. },
  3342. {
  3343. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  3344. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  3345. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3346. },
  3347. {
  3348. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  3349. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  3350. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  3351. {5, "V"}, {4, "IV"}, {1, "I"},
  3352. },
  3353. {
  3354. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  3355. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  3356. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  3357. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  3358. },
  3359. }
  3360. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  3361. // integer, the function returns a text string depicting the roman numeral
  3362. // form of the number. The syntax of the function is:
  3363. //
  3364. // ROMAN(number,[form])
  3365. //
  3366. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  3367. if argsList.Len() == 0 {
  3368. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  3369. }
  3370. if argsList.Len() > 2 {
  3371. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  3372. }
  3373. var form int
  3374. number := argsList.Front().Value.(formulaArg).ToNumber()
  3375. if number.Type == ArgError {
  3376. return number
  3377. }
  3378. if argsList.Len() > 1 {
  3379. f := argsList.Back().Value.(formulaArg).ToNumber()
  3380. if f.Type == ArgError {
  3381. return f
  3382. }
  3383. form = int(f.Number)
  3384. if form < 0 {
  3385. form = 0
  3386. } else if form > 4 {
  3387. form = 4
  3388. }
  3389. }
  3390. decimalTable := romanTable[0]
  3391. switch form {
  3392. case 1:
  3393. decimalTable = romanTable[1]
  3394. case 2:
  3395. decimalTable = romanTable[2]
  3396. case 3:
  3397. decimalTable = romanTable[3]
  3398. case 4:
  3399. decimalTable = romanTable[4]
  3400. }
  3401. val := math.Trunc(number.Number)
  3402. buf := bytes.Buffer{}
  3403. for _, r := range decimalTable {
  3404. for val >= r.n {
  3405. buf.WriteString(r.s)
  3406. val -= r.n
  3407. }
  3408. }
  3409. return newStringFormulaArg(buf.String())
  3410. }
  3411. type roundMode byte
  3412. const (
  3413. closest roundMode = iota
  3414. down
  3415. up
  3416. )
  3417. // round rounds a supplied number up or down.
  3418. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3419. var significance float64
  3420. if digits > 0 {
  3421. significance = math.Pow(1/10.0, digits)
  3422. } else {
  3423. significance = math.Pow(10.0, -digits)
  3424. }
  3425. val, res := math.Modf(number / significance)
  3426. switch mode {
  3427. case closest:
  3428. const eps = 0.499999999
  3429. if res >= eps {
  3430. val++
  3431. } else if res <= -eps {
  3432. val--
  3433. }
  3434. case down:
  3435. case up:
  3436. if res > 0 {
  3437. val++
  3438. } else if res < 0 {
  3439. val--
  3440. }
  3441. }
  3442. return val * significance
  3443. }
  3444. // ROUND function rounds a supplied number up or down, to a specified number
  3445. // of decimal places. The syntax of the function is:
  3446. //
  3447. // ROUND(number,num_digits)
  3448. //
  3449. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3450. if argsList.Len() != 2 {
  3451. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3452. }
  3453. number := argsList.Front().Value.(formulaArg).ToNumber()
  3454. if number.Type == ArgError {
  3455. return number
  3456. }
  3457. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3458. if digits.Type == ArgError {
  3459. return digits
  3460. }
  3461. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3462. }
  3463. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3464. // specified number of decimal places. The syntax of the function is:
  3465. //
  3466. // ROUNDDOWN(number,num_digits)
  3467. //
  3468. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3469. if argsList.Len() != 2 {
  3470. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3471. }
  3472. number := argsList.Front().Value.(formulaArg).ToNumber()
  3473. if number.Type == ArgError {
  3474. return number
  3475. }
  3476. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3477. if digits.Type == ArgError {
  3478. return digits
  3479. }
  3480. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3481. }
  3482. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3483. // specified number of decimal places. The syntax of the function is:
  3484. //
  3485. // ROUNDUP(number,num_digits)
  3486. //
  3487. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3488. if argsList.Len() != 2 {
  3489. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3490. }
  3491. number := argsList.Front().Value.(formulaArg).ToNumber()
  3492. if number.Type == ArgError {
  3493. return number
  3494. }
  3495. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3496. if digits.Type == ArgError {
  3497. return digits
  3498. }
  3499. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3500. }
  3501. // SEC function calculates the secant of a given angle. The syntax of the
  3502. // function is:
  3503. //
  3504. // SEC(number)
  3505. //
  3506. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3507. if argsList.Len() != 1 {
  3508. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3509. }
  3510. number := argsList.Front().Value.(formulaArg).ToNumber()
  3511. if number.Type == ArgError {
  3512. return number
  3513. }
  3514. return newNumberFormulaArg(math.Cos(number.Number))
  3515. }
  3516. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3517. // The syntax of the function is:
  3518. //
  3519. // SECH(number)
  3520. //
  3521. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3522. if argsList.Len() != 1 {
  3523. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3524. }
  3525. number := argsList.Front().Value.(formulaArg).ToNumber()
  3526. if number.Type == ArgError {
  3527. return number
  3528. }
  3529. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3530. }
  3531. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3532. // number. I.e. if the number is positive, the Sign function returns +1, if
  3533. // the number is negative, the function returns -1 and if the number is 0
  3534. // (zero), the function returns 0. The syntax of the function is:
  3535. //
  3536. // SIGN(number)
  3537. //
  3538. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3539. if argsList.Len() != 1 {
  3540. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3541. }
  3542. val := argsList.Front().Value.(formulaArg).ToNumber()
  3543. if val.Type == ArgError {
  3544. return val
  3545. }
  3546. if val.Number < 0 {
  3547. return newNumberFormulaArg(-1)
  3548. }
  3549. if val.Number > 0 {
  3550. return newNumberFormulaArg(1)
  3551. }
  3552. return newNumberFormulaArg(0)
  3553. }
  3554. // SIN function calculates the sine of a given angle. The syntax of the
  3555. // function is:
  3556. //
  3557. // SIN(number)
  3558. //
  3559. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3560. if argsList.Len() != 1 {
  3561. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3562. }
  3563. number := argsList.Front().Value.(formulaArg).ToNumber()
  3564. if number.Type == ArgError {
  3565. return number
  3566. }
  3567. return newNumberFormulaArg(math.Sin(number.Number))
  3568. }
  3569. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3570. // The syntax of the function is:
  3571. //
  3572. // SINH(number)
  3573. //
  3574. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3575. if argsList.Len() != 1 {
  3576. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3577. }
  3578. number := argsList.Front().Value.(formulaArg).ToNumber()
  3579. if number.Type == ArgError {
  3580. return number
  3581. }
  3582. return newNumberFormulaArg(math.Sinh(number.Number))
  3583. }
  3584. // SQRT function calculates the positive square root of a supplied number. The
  3585. // syntax of the function is:
  3586. //
  3587. // SQRT(number)
  3588. //
  3589. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3590. if argsList.Len() != 1 {
  3591. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3592. }
  3593. value := argsList.Front().Value.(formulaArg).ToNumber()
  3594. if value.Type == ArgError {
  3595. return value
  3596. }
  3597. if value.Number < 0 {
  3598. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3599. }
  3600. return newNumberFormulaArg(math.Sqrt(value.Number))
  3601. }
  3602. // SQRTPI function returns the square root of a supplied number multiplied by
  3603. // the mathematical constant, π. The syntax of the function is:
  3604. //
  3605. // SQRTPI(number)
  3606. //
  3607. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3608. if argsList.Len() != 1 {
  3609. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3610. }
  3611. number := argsList.Front().Value.(formulaArg).ToNumber()
  3612. if number.Type == ArgError {
  3613. return number
  3614. }
  3615. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3616. }
  3617. // STDEV function calculates the sample standard deviation of a supplied set
  3618. // of values. The syntax of the function is:
  3619. //
  3620. // STDEV(number1,[number2],...)
  3621. //
  3622. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3623. if argsList.Len() < 1 {
  3624. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3625. }
  3626. return fn.stdev(false, argsList)
  3627. }
  3628. // STDEVdotS function calculates the sample standard deviation of a supplied
  3629. // set of values. The syntax of the function is:
  3630. //
  3631. // STDEV.S(number1,[number2],...)
  3632. //
  3633. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3634. if argsList.Len() < 1 {
  3635. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3636. }
  3637. return fn.stdev(false, argsList)
  3638. }
  3639. // STDEVA function estimates standard deviation based on a sample. The
  3640. // standard deviation is a measure of how widely values are dispersed from
  3641. // the average value (the mean). The syntax of the function is:
  3642. //
  3643. // STDEVA(number1,[number2],...)
  3644. //
  3645. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3646. if argsList.Len() < 1 {
  3647. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3648. }
  3649. return fn.stdev(true, argsList)
  3650. }
  3651. // stdev is an implementation of the formula function STDEV and STDEVA.
  3652. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3653. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3654. if result == -1 {
  3655. result = math.Pow((n.Number - m.Number), 2)
  3656. } else {
  3657. result += math.Pow((n.Number - m.Number), 2)
  3658. }
  3659. count++
  3660. return result, count
  3661. }
  3662. count, result := -1.0, -1.0
  3663. var mean formulaArg
  3664. if stdeva {
  3665. mean = fn.AVERAGEA(argsList)
  3666. } else {
  3667. mean = fn.AVERAGE(argsList)
  3668. }
  3669. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3670. token := arg.Value.(formulaArg)
  3671. switch token.Type {
  3672. case ArgString, ArgNumber:
  3673. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3674. continue
  3675. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3676. num := token.ToBool()
  3677. if num.Type == ArgNumber {
  3678. result, count = pow(result, count, num, mean)
  3679. continue
  3680. }
  3681. } else {
  3682. num := token.ToNumber()
  3683. if num.Type == ArgNumber {
  3684. result, count = pow(result, count, num, mean)
  3685. }
  3686. }
  3687. case ArgList, ArgMatrix:
  3688. for _, row := range token.ToList() {
  3689. if row.Type == ArgNumber || row.Type == ArgString {
  3690. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3691. continue
  3692. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3693. num := row.ToBool()
  3694. if num.Type == ArgNumber {
  3695. result, count = pow(result, count, num, mean)
  3696. continue
  3697. }
  3698. } else {
  3699. num := row.ToNumber()
  3700. if num.Type == ArgNumber {
  3701. result, count = pow(result, count, num, mean)
  3702. }
  3703. }
  3704. }
  3705. }
  3706. }
  3707. }
  3708. if count > 0 && result >= 0 {
  3709. return newNumberFormulaArg(math.Sqrt(result / count))
  3710. }
  3711. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3712. }
  3713. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3714. // the Cumulative Poisson Probability Function for a supplied set of
  3715. // parameters. The syntax of the function is:
  3716. //
  3717. // POISSON.DIST(x,mean,cumulative)
  3718. //
  3719. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3720. if argsList.Len() != 3 {
  3721. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3722. }
  3723. return fn.POISSON(argsList)
  3724. }
  3725. // POISSON function calculates the Poisson Probability Mass Function or the
  3726. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3727. // The syntax of the function is:
  3728. //
  3729. // POISSON(x,mean,cumulative)
  3730. //
  3731. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3732. if argsList.Len() != 3 {
  3733. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3734. }
  3735. var x, mean, cumulative formulaArg
  3736. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3737. return x
  3738. }
  3739. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3740. return mean
  3741. }
  3742. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3743. return cumulative
  3744. }
  3745. if x.Number < 0 || mean.Number <= 0 {
  3746. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3747. }
  3748. if cumulative.Number == 1 {
  3749. summer := 0.0
  3750. floor := math.Floor(x.Number)
  3751. for i := 0; i <= int(floor); i++ {
  3752. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3753. }
  3754. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3755. }
  3756. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3757. }
  3758. // SUM function adds together a supplied set of numbers and returns the sum of
  3759. // these values. The syntax of the function is:
  3760. //
  3761. // SUM(number1,[number2],...)
  3762. //
  3763. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3764. var sum float64
  3765. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3766. token := arg.Value.(formulaArg)
  3767. switch token.Type {
  3768. case ArgUnknown:
  3769. continue
  3770. case ArgString:
  3771. if num := token.ToNumber(); num.Type == ArgNumber {
  3772. sum += num.Number
  3773. }
  3774. case ArgNumber:
  3775. sum += token.Number
  3776. case ArgMatrix:
  3777. for _, row := range token.Matrix {
  3778. for _, value := range row {
  3779. if num := value.ToNumber(); num.Type == ArgNumber {
  3780. sum += num.Number
  3781. }
  3782. }
  3783. }
  3784. }
  3785. }
  3786. return newNumberFormulaArg(sum)
  3787. }
  3788. // SUMIF function finds the values in a supplied array, that satisfy a given
  3789. // criteria, and returns the sum of the corresponding values in a second
  3790. // supplied array. The syntax of the function is:
  3791. //
  3792. // SUMIF(range,criteria,[sum_range])
  3793. //
  3794. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3795. if argsList.Len() < 2 {
  3796. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3797. }
  3798. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3799. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3800. var sumRange [][]formulaArg
  3801. if argsList.Len() == 3 {
  3802. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3803. }
  3804. var sum, val float64
  3805. var err error
  3806. for rowIdx, row := range rangeMtx {
  3807. for colIdx, col := range row {
  3808. var ok bool
  3809. fromVal := col.String
  3810. if col.String == "" {
  3811. continue
  3812. }
  3813. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3814. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3815. }
  3816. if ok {
  3817. if argsList.Len() == 3 {
  3818. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3819. continue
  3820. }
  3821. fromVal = sumRange[rowIdx][colIdx].String
  3822. }
  3823. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3824. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3825. }
  3826. sum += val
  3827. }
  3828. }
  3829. }
  3830. return newNumberFormulaArg(sum)
  3831. }
  3832. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3833. // syntax of the function is:
  3834. //
  3835. // SUMSQ(number1,[number2],...)
  3836. //
  3837. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3838. var val, sq float64
  3839. var err error
  3840. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3841. token := arg.Value.(formulaArg)
  3842. switch token.Type {
  3843. case ArgString:
  3844. if token.String == "" {
  3845. continue
  3846. }
  3847. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3848. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3849. }
  3850. sq += val * val
  3851. case ArgNumber:
  3852. sq += token.Number
  3853. case ArgMatrix:
  3854. for _, row := range token.Matrix {
  3855. for _, value := range row {
  3856. if value.String == "" {
  3857. continue
  3858. }
  3859. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3860. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3861. }
  3862. sq += val * val
  3863. }
  3864. }
  3865. }
  3866. }
  3867. return newNumberFormulaArg(sq)
  3868. }
  3869. // TAN function calculates the tangent of a given angle. The syntax of the
  3870. // function is:
  3871. //
  3872. // TAN(number)
  3873. //
  3874. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3875. if argsList.Len() != 1 {
  3876. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3877. }
  3878. number := argsList.Front().Value.(formulaArg).ToNumber()
  3879. if number.Type == ArgError {
  3880. return number
  3881. }
  3882. return newNumberFormulaArg(math.Tan(number.Number))
  3883. }
  3884. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3885. // number. The syntax of the function is:
  3886. //
  3887. // TANH(number)
  3888. //
  3889. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3890. if argsList.Len() != 1 {
  3891. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3892. }
  3893. number := argsList.Front().Value.(formulaArg).ToNumber()
  3894. if number.Type == ArgError {
  3895. return number
  3896. }
  3897. return newNumberFormulaArg(math.Tanh(number.Number))
  3898. }
  3899. // TRUNC function truncates a supplied number to a specified number of decimal
  3900. // places. The syntax of the function is:
  3901. //
  3902. // TRUNC(number,[number_digits])
  3903. //
  3904. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3905. if argsList.Len() == 0 {
  3906. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3907. }
  3908. var digits, adjust, rtrim float64
  3909. var err error
  3910. number := argsList.Front().Value.(formulaArg).ToNumber()
  3911. if number.Type == ArgError {
  3912. return number
  3913. }
  3914. if argsList.Len() > 1 {
  3915. d := argsList.Back().Value.(formulaArg).ToNumber()
  3916. if d.Type == ArgError {
  3917. return d
  3918. }
  3919. digits = d.Number
  3920. digits = math.Floor(digits)
  3921. }
  3922. adjust = math.Pow(10, digits)
  3923. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3924. if x != 0 {
  3925. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3926. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3927. }
  3928. }
  3929. if (digits > 0) && (rtrim < adjust/10) {
  3930. return newNumberFormulaArg(number.Number)
  3931. }
  3932. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3933. }
  3934. // Statistical Functions
  3935. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3936. // The syntax of the function is:
  3937. //
  3938. // AVERAGE(number1,[number2],...)
  3939. //
  3940. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3941. args := []formulaArg{}
  3942. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3943. args = append(args, arg.Value.(formulaArg))
  3944. }
  3945. count, sum := fn.countSum(false, args)
  3946. if count == 0 {
  3947. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3948. }
  3949. return newNumberFormulaArg(sum / count)
  3950. }
  3951. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3952. // with text cell and zero values. The syntax of the function is:
  3953. //
  3954. // AVERAGEA(number1,[number2],...)
  3955. //
  3956. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3957. args := []formulaArg{}
  3958. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3959. args = append(args, arg.Value.(formulaArg))
  3960. }
  3961. count, sum := fn.countSum(true, args)
  3962. if count == 0 {
  3963. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3964. }
  3965. return newNumberFormulaArg(sum / count)
  3966. }
  3967. // countSum get count and sum for a formula arguments array.
  3968. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3969. for _, arg := range args {
  3970. switch arg.Type {
  3971. case ArgNumber:
  3972. if countText || !arg.Boolean {
  3973. sum += arg.Number
  3974. count++
  3975. }
  3976. case ArgString:
  3977. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3978. continue
  3979. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3980. num := arg.ToBool()
  3981. if num.Type == ArgNumber {
  3982. count++
  3983. sum += num.Number
  3984. continue
  3985. }
  3986. }
  3987. num := arg.ToNumber()
  3988. if countText && num.Type == ArgError && arg.String != "" {
  3989. count++
  3990. }
  3991. if num.Type == ArgNumber {
  3992. sum += num.Number
  3993. count++
  3994. }
  3995. case ArgList, ArgMatrix:
  3996. cnt, summary := fn.countSum(countText, arg.ToList())
  3997. sum += summary
  3998. count += cnt
  3999. }
  4000. }
  4001. return
  4002. }
  4003. // COUNT function returns the count of numeric values in a supplied set of
  4004. // cells or values. This count includes both numbers and dates. The syntax of
  4005. // the function is:
  4006. //
  4007. // COUNT(value1,[value2],...)
  4008. //
  4009. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  4010. var count int
  4011. for token := argsList.Front(); token != nil; token = token.Next() {
  4012. arg := token.Value.(formulaArg)
  4013. switch arg.Type {
  4014. case ArgString:
  4015. if arg.ToNumber().Type != ArgError {
  4016. count++
  4017. }
  4018. case ArgNumber:
  4019. count++
  4020. case ArgMatrix:
  4021. for _, row := range arg.Matrix {
  4022. for _, value := range row {
  4023. if value.ToNumber().Type != ArgError {
  4024. count++
  4025. }
  4026. }
  4027. }
  4028. }
  4029. }
  4030. return newNumberFormulaArg(float64(count))
  4031. }
  4032. // COUNTA function returns the number of non-blanks within a supplied set of
  4033. // cells or values. The syntax of the function is:
  4034. //
  4035. // COUNTA(value1,[value2],...)
  4036. //
  4037. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  4038. var count int
  4039. for token := argsList.Front(); token != nil; token = token.Next() {
  4040. arg := token.Value.(formulaArg)
  4041. switch arg.Type {
  4042. case ArgString:
  4043. if arg.String != "" {
  4044. count++
  4045. }
  4046. case ArgNumber:
  4047. count++
  4048. case ArgMatrix:
  4049. for _, row := range arg.ToList() {
  4050. switch row.Type {
  4051. case ArgString:
  4052. if row.String != "" {
  4053. count++
  4054. }
  4055. case ArgNumber:
  4056. count++
  4057. }
  4058. }
  4059. }
  4060. }
  4061. return newNumberFormulaArg(float64(count))
  4062. }
  4063. // COUNTBLANK function returns the number of blank cells in a supplied range.
  4064. // The syntax of the function is:
  4065. //
  4066. // COUNTBLANK(range)
  4067. //
  4068. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  4069. if argsList.Len() != 1 {
  4070. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  4071. }
  4072. var count int
  4073. token := argsList.Front().Value.(formulaArg)
  4074. switch token.Type {
  4075. case ArgString:
  4076. if token.String == "" {
  4077. count++
  4078. }
  4079. case ArgList, ArgMatrix:
  4080. for _, row := range token.ToList() {
  4081. switch row.Type {
  4082. case ArgString:
  4083. if row.String == "" {
  4084. count++
  4085. }
  4086. case ArgEmpty:
  4087. count++
  4088. }
  4089. }
  4090. case ArgEmpty:
  4091. count++
  4092. }
  4093. return newNumberFormulaArg(float64(count))
  4094. }
  4095. // FISHER function calculates the Fisher Transformation for a supplied value.
  4096. // The syntax of the function is:
  4097. //
  4098. // FISHER(x)
  4099. //
  4100. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  4101. if argsList.Len() != 1 {
  4102. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4103. }
  4104. token := argsList.Front().Value.(formulaArg)
  4105. switch token.Type {
  4106. case ArgString:
  4107. arg := token.ToNumber()
  4108. if arg.Type == ArgNumber {
  4109. if arg.Number <= -1 || arg.Number >= 1 {
  4110. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4111. }
  4112. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  4113. }
  4114. case ArgNumber:
  4115. if token.Number <= -1 || token.Number >= 1 {
  4116. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4117. }
  4118. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  4119. }
  4120. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  4121. }
  4122. // FISHERINV function calculates the inverse of the Fisher Transformation and
  4123. // returns a value between -1 and +1. The syntax of the function is:
  4124. //
  4125. // FISHERINV(y)
  4126. //
  4127. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  4128. if argsList.Len() != 1 {
  4129. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4130. }
  4131. token := argsList.Front().Value.(formulaArg)
  4132. switch token.Type {
  4133. case ArgString:
  4134. arg := token.ToNumber()
  4135. if arg.Type == ArgNumber {
  4136. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  4137. }
  4138. case ArgNumber:
  4139. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  4140. }
  4141. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  4142. }
  4143. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  4144. // specified number, n. The syntax of the function is:
  4145. //
  4146. // GAMMA(number)
  4147. //
  4148. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  4149. if argsList.Len() != 1 {
  4150. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4151. }
  4152. token := argsList.Front().Value.(formulaArg)
  4153. switch token.Type {
  4154. case ArgString:
  4155. arg := token.ToNumber()
  4156. if arg.Type == ArgNumber {
  4157. if arg.Number <= 0 {
  4158. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4159. }
  4160. return newNumberFormulaArg(math.Gamma(arg.Number))
  4161. }
  4162. case ArgNumber:
  4163. if token.Number <= 0 {
  4164. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4165. }
  4166. return newNumberFormulaArg(math.Gamma(token.Number))
  4167. }
  4168. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  4169. }
  4170. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  4171. // (n). The syntax of the function is:
  4172. //
  4173. // GAMMALN(x)
  4174. //
  4175. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  4176. if argsList.Len() != 1 {
  4177. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4178. }
  4179. token := argsList.Front().Value.(formulaArg)
  4180. switch token.Type {
  4181. case ArgString:
  4182. arg := token.ToNumber()
  4183. if arg.Type == ArgNumber {
  4184. if arg.Number <= 0 {
  4185. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4186. }
  4187. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  4188. }
  4189. case ArgNumber:
  4190. if token.Number <= 0 {
  4191. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4192. }
  4193. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  4194. }
  4195. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  4196. }
  4197. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  4198. // The syntax of the function is:
  4199. //
  4200. // HARMEAN(number1,[number2],...)
  4201. //
  4202. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  4203. if argsList.Len() < 1 {
  4204. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  4205. }
  4206. if min := fn.MIN(argsList); min.Number < 0 {
  4207. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4208. }
  4209. number, val, cnt := 0.0, 0.0, 0.0
  4210. for token := argsList.Front(); token != nil; token = token.Next() {
  4211. arg := token.Value.(formulaArg)
  4212. switch arg.Type {
  4213. case ArgString:
  4214. num := arg.ToNumber()
  4215. if num.Type != ArgNumber {
  4216. continue
  4217. }
  4218. number = num.Number
  4219. case ArgNumber:
  4220. number = arg.Number
  4221. }
  4222. if number <= 0 {
  4223. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4224. }
  4225. val += (1 / number)
  4226. cnt++
  4227. }
  4228. return newNumberFormulaArg(1 / (val / cnt))
  4229. }
  4230. // KURT function calculates the kurtosis of a supplied set of values. The
  4231. // syntax of the function is:
  4232. //
  4233. // KURT(number1,[number2],...)
  4234. //
  4235. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  4236. if argsList.Len() < 1 {
  4237. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  4238. }
  4239. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  4240. if stdev.Number > 0 {
  4241. count, summer := 0.0, 0.0
  4242. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4243. token := arg.Value.(formulaArg)
  4244. switch token.Type {
  4245. case ArgString, ArgNumber:
  4246. num := token.ToNumber()
  4247. if num.Type == ArgError {
  4248. continue
  4249. }
  4250. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4251. count++
  4252. case ArgList, ArgMatrix:
  4253. for _, row := range token.ToList() {
  4254. if row.Type == ArgNumber || row.Type == ArgString {
  4255. num := row.ToNumber()
  4256. if num.Type == ArgError {
  4257. continue
  4258. }
  4259. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  4260. count++
  4261. }
  4262. }
  4263. }
  4264. }
  4265. if count > 3 {
  4266. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  4267. }
  4268. }
  4269. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4270. }
  4271. // NORMdotDIST function calculates the Normal Probability Density Function or
  4272. // the Cumulative Normal Distribution. Function for a supplied set of
  4273. // parameters. The syntax of the function is:
  4274. //
  4275. // NORM.DIST(x,mean,standard_dev,cumulative)
  4276. //
  4277. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  4278. if argsList.Len() != 4 {
  4279. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  4280. }
  4281. return fn.NORMDIST(argsList)
  4282. }
  4283. // NORMDIST function calculates the Normal Probability Density Function or the
  4284. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  4285. // The syntax of the function is:
  4286. //
  4287. // NORMDIST(x,mean,standard_dev,cumulative)
  4288. //
  4289. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  4290. if argsList.Len() != 4 {
  4291. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  4292. }
  4293. var x, mean, stdDev, cumulative formulaArg
  4294. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  4295. return x
  4296. }
  4297. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4298. return mean
  4299. }
  4300. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4301. return stdDev
  4302. }
  4303. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  4304. return cumulative
  4305. }
  4306. if stdDev.Number < 0 {
  4307. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4308. }
  4309. if cumulative.Number == 1 {
  4310. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  4311. }
  4312. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  4313. }
  4314. // NORMdotINV function calculates the inverse of the Cumulative Normal
  4315. // Distribution Function for a supplied value of x, and a supplied
  4316. // distribution mean & standard deviation. The syntax of the function is:
  4317. //
  4318. // NORM.INV(probability,mean,standard_dev)
  4319. //
  4320. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  4321. if argsList.Len() != 3 {
  4322. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  4323. }
  4324. return fn.NORMINV(argsList)
  4325. }
  4326. // NORMINV function calculates the inverse of the Cumulative Normal
  4327. // Distribution Function for a supplied value of x, and a supplied
  4328. // distribution mean & standard deviation. The syntax of the function is:
  4329. //
  4330. // NORMINV(probability,mean,standard_dev)
  4331. //
  4332. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  4333. if argsList.Len() != 3 {
  4334. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  4335. }
  4336. var prob, mean, stdDev formulaArg
  4337. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  4338. return prob
  4339. }
  4340. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  4341. return mean
  4342. }
  4343. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  4344. return stdDev
  4345. }
  4346. if prob.Number < 0 || prob.Number > 1 {
  4347. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4348. }
  4349. if stdDev.Number < 0 {
  4350. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4351. }
  4352. inv, err := norminv(prob.Number)
  4353. if err != nil {
  4354. return newErrorFormulaArg(err.Error(), err.Error())
  4355. }
  4356. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  4357. }
  4358. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  4359. // Distribution Function for a supplied value. The syntax of the function
  4360. // is:
  4361. //
  4362. // NORM.S.DIST(z)
  4363. //
  4364. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  4365. if argsList.Len() != 2 {
  4366. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  4367. }
  4368. args := list.New().Init()
  4369. args.PushBack(argsList.Front().Value.(formulaArg))
  4370. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4371. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4372. args.PushBack(argsList.Back().Value.(formulaArg))
  4373. return fn.NORMDIST(args)
  4374. }
  4375. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  4376. // Function for a supplied value. The syntax of the function is:
  4377. //
  4378. // NORMSDIST(z)
  4379. //
  4380. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  4381. if argsList.Len() != 1 {
  4382. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  4383. }
  4384. args := list.New().Init()
  4385. args.PushBack(argsList.Front().Value.(formulaArg))
  4386. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4387. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4388. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4389. return fn.NORMDIST(args)
  4390. }
  4391. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4392. // Distribution Function for a supplied probability value. The syntax of the
  4393. // function is:
  4394. //
  4395. // NORMSINV(probability)
  4396. //
  4397. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4398. if argsList.Len() != 1 {
  4399. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4400. }
  4401. args := list.New().Init()
  4402. args.PushBack(argsList.Front().Value.(formulaArg))
  4403. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4404. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4405. return fn.NORMINV(args)
  4406. }
  4407. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4408. // Cumulative Distribution Function for a supplied probability value. The
  4409. // syntax of the function is:
  4410. //
  4411. // NORM.S.INV(probability)
  4412. //
  4413. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4414. if argsList.Len() != 1 {
  4415. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4416. }
  4417. args := list.New().Init()
  4418. args.PushBack(argsList.Front().Value.(formulaArg))
  4419. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4420. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4421. return fn.NORMINV(args)
  4422. }
  4423. // norminv returns the inverse of the normal cumulative distribution for the
  4424. // specified value.
  4425. func norminv(p float64) (float64, error) {
  4426. a := map[int]float64{
  4427. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4428. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4429. }
  4430. b := map[int]float64{
  4431. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4432. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4433. }
  4434. c := map[int]float64{
  4435. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4436. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4437. }
  4438. d := map[int]float64{
  4439. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4440. 4: 3.754408661907416e+00,
  4441. }
  4442. pLow := 0.02425 // Use lower region approx. below this
  4443. pHigh := 1 - pLow // Use upper region approx. above this
  4444. if 0 < p && p < pLow {
  4445. // Rational approximation for lower region.
  4446. q := math.Sqrt(-2 * math.Log(p))
  4447. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4448. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4449. } else if pLow <= p && p <= pHigh {
  4450. // Rational approximation for central region.
  4451. q := p - 0.5
  4452. r := q * q
  4453. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4454. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4455. } else if pHigh < p && p < 1 {
  4456. // Rational approximation for upper region.
  4457. q := math.Sqrt(-2 * math.Log(1-p))
  4458. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4459. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4460. }
  4461. return 0, errors.New(formulaErrorNUM)
  4462. }
  4463. // kth is an implementation of the formula function LARGE and SMALL.
  4464. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4465. if argsList.Len() != 2 {
  4466. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4467. }
  4468. array := argsList.Front().Value.(formulaArg).ToList()
  4469. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4470. if kArg.Type != ArgNumber {
  4471. return kArg
  4472. }
  4473. k := int(kArg.Number)
  4474. if k < 1 {
  4475. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4476. }
  4477. data := []float64{}
  4478. for _, arg := range array {
  4479. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4480. data = append(data, numArg.Number)
  4481. }
  4482. }
  4483. if len(data) < k {
  4484. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4485. }
  4486. sort.Float64s(data)
  4487. if name == "LARGE" {
  4488. return newNumberFormulaArg(data[len(data)-k])
  4489. }
  4490. return newNumberFormulaArg(data[k-1])
  4491. }
  4492. // LARGE function returns the k'th largest value from an array of numeric
  4493. // values. The syntax of the function is:
  4494. //
  4495. // LARGE(array,k)
  4496. //
  4497. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4498. return fn.kth("LARGE", argsList)
  4499. }
  4500. // MAX function returns the largest value from a supplied set of numeric
  4501. // values. The syntax of the function is:
  4502. //
  4503. // MAX(number1,[number2],...)
  4504. //
  4505. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4506. if argsList.Len() == 0 {
  4507. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4508. }
  4509. return fn.max(false, argsList)
  4510. }
  4511. // MAXA function returns the largest value from a supplied set of numeric
  4512. // values, while counting text and the logical value FALSE as the value 0 and
  4513. // counting the logical value TRUE as the value 1. The syntax of the function
  4514. // is:
  4515. //
  4516. // MAXA(number1,[number2],...)
  4517. //
  4518. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4519. if argsList.Len() == 0 {
  4520. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4521. }
  4522. return fn.max(true, argsList)
  4523. }
  4524. // max is an implementation of the formula function MAX and MAXA.
  4525. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4526. max := -math.MaxFloat64
  4527. for token := argsList.Front(); token != nil; token = token.Next() {
  4528. arg := token.Value.(formulaArg)
  4529. switch arg.Type {
  4530. case ArgString:
  4531. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4532. continue
  4533. } else {
  4534. num := arg.ToBool()
  4535. if num.Type == ArgNumber && num.Number > max {
  4536. max = num.Number
  4537. continue
  4538. }
  4539. }
  4540. num := arg.ToNumber()
  4541. if num.Type != ArgError && num.Number > max {
  4542. max = num.Number
  4543. }
  4544. case ArgNumber:
  4545. if arg.Number > max {
  4546. max = arg.Number
  4547. }
  4548. case ArgList, ArgMatrix:
  4549. for _, row := range arg.ToList() {
  4550. switch row.Type {
  4551. case ArgString:
  4552. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4553. continue
  4554. } else {
  4555. num := row.ToBool()
  4556. if num.Type == ArgNumber && num.Number > max {
  4557. max = num.Number
  4558. continue
  4559. }
  4560. }
  4561. num := row.ToNumber()
  4562. if num.Type != ArgError && num.Number > max {
  4563. max = num.Number
  4564. }
  4565. case ArgNumber:
  4566. if row.Number > max {
  4567. max = row.Number
  4568. }
  4569. }
  4570. }
  4571. case ArgError:
  4572. return arg
  4573. }
  4574. }
  4575. if max == -math.MaxFloat64 {
  4576. max = 0
  4577. }
  4578. return newNumberFormulaArg(max)
  4579. }
  4580. // MEDIAN function returns the statistical median (the middle value) of a list
  4581. // of supplied numbers. The syntax of the function is:
  4582. //
  4583. // MEDIAN(number1,[number2],...)
  4584. //
  4585. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4586. if argsList.Len() == 0 {
  4587. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4588. }
  4589. var values = []float64{}
  4590. var median, digits float64
  4591. var err error
  4592. for token := argsList.Front(); token != nil; token = token.Next() {
  4593. arg := token.Value.(formulaArg)
  4594. switch arg.Type {
  4595. case ArgString:
  4596. num := arg.ToNumber()
  4597. if num.Type == ArgError {
  4598. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4599. }
  4600. values = append(values, num.Number)
  4601. case ArgNumber:
  4602. values = append(values, arg.Number)
  4603. case ArgMatrix:
  4604. for _, row := range arg.Matrix {
  4605. for _, value := range row {
  4606. if value.String == "" {
  4607. continue
  4608. }
  4609. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4610. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4611. }
  4612. values = append(values, digits)
  4613. }
  4614. }
  4615. }
  4616. }
  4617. sort.Float64s(values)
  4618. if len(values)%2 == 0 {
  4619. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4620. } else {
  4621. median = values[len(values)/2]
  4622. }
  4623. return newNumberFormulaArg(median)
  4624. }
  4625. // MIN function returns the smallest value from a supplied set of numeric
  4626. // values. The syntax of the function is:
  4627. //
  4628. // MIN(number1,[number2],...)
  4629. //
  4630. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4631. if argsList.Len() == 0 {
  4632. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4633. }
  4634. return fn.min(false, argsList)
  4635. }
  4636. // MINA function returns the smallest value from a supplied set of numeric
  4637. // values, while counting text and the logical value FALSE as the value 0 and
  4638. // counting the logical value TRUE as the value 1. The syntax of the function
  4639. // is:
  4640. //
  4641. // MINA(number1,[number2],...)
  4642. //
  4643. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4644. if argsList.Len() == 0 {
  4645. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4646. }
  4647. return fn.min(true, argsList)
  4648. }
  4649. // min is an implementation of the formula function MIN and MINA.
  4650. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4651. min := math.MaxFloat64
  4652. for token := argsList.Front(); token != nil; token = token.Next() {
  4653. arg := token.Value.(formulaArg)
  4654. switch arg.Type {
  4655. case ArgString:
  4656. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4657. continue
  4658. } else {
  4659. num := arg.ToBool()
  4660. if num.Type == ArgNumber && num.Number < min {
  4661. min = num.Number
  4662. continue
  4663. }
  4664. }
  4665. num := arg.ToNumber()
  4666. if num.Type != ArgError && num.Number < min {
  4667. min = num.Number
  4668. }
  4669. case ArgNumber:
  4670. if arg.Number < min {
  4671. min = arg.Number
  4672. }
  4673. case ArgList, ArgMatrix:
  4674. for _, row := range arg.ToList() {
  4675. switch row.Type {
  4676. case ArgString:
  4677. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4678. continue
  4679. } else {
  4680. num := row.ToBool()
  4681. if num.Type == ArgNumber && num.Number < min {
  4682. min = num.Number
  4683. continue
  4684. }
  4685. }
  4686. num := row.ToNumber()
  4687. if num.Type != ArgError && num.Number < min {
  4688. min = num.Number
  4689. }
  4690. case ArgNumber:
  4691. if row.Number < min {
  4692. min = row.Number
  4693. }
  4694. }
  4695. }
  4696. case ArgError:
  4697. return arg
  4698. }
  4699. }
  4700. if min == math.MaxFloat64 {
  4701. min = 0
  4702. }
  4703. return newNumberFormulaArg(min)
  4704. }
  4705. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4706. // which k% of the data values fall) for a supplied range of values and a
  4707. // supplied k. The syntax of the function is:
  4708. //
  4709. // PERCENTILE.INC(array,k)
  4710. //
  4711. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4712. if argsList.Len() != 2 {
  4713. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4714. }
  4715. return fn.PERCENTILE(argsList)
  4716. }
  4717. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4718. // k% of the data values fall) for a supplied range of values and a supplied
  4719. // k. The syntax of the function is:
  4720. //
  4721. // PERCENTILE(array,k)
  4722. //
  4723. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4724. if argsList.Len() != 2 {
  4725. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4726. }
  4727. array := argsList.Front().Value.(formulaArg).ToList()
  4728. k := argsList.Back().Value.(formulaArg).ToNumber()
  4729. if k.Type != ArgNumber {
  4730. return k
  4731. }
  4732. if k.Number < 0 || k.Number > 1 {
  4733. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4734. }
  4735. numbers := []float64{}
  4736. for _, arg := range array {
  4737. if arg.Type == ArgError {
  4738. return arg
  4739. }
  4740. num := arg.ToNumber()
  4741. if num.Type == ArgNumber {
  4742. numbers = append(numbers, num.Number)
  4743. }
  4744. }
  4745. cnt := len(numbers)
  4746. sort.Float64s(numbers)
  4747. idx := k.Number * (float64(cnt) - 1)
  4748. base := math.Floor(idx)
  4749. if idx == base {
  4750. return newNumberFormulaArg(numbers[int(idx)])
  4751. }
  4752. next := base + 1
  4753. proportion := idx - base
  4754. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4755. }
  4756. // PERMUT function calculates the number of permutations of a specified number
  4757. // of objects from a set of objects. The syntax of the function is:
  4758. //
  4759. // PERMUT(number,number_chosen)
  4760. //
  4761. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4762. if argsList.Len() != 2 {
  4763. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4764. }
  4765. number := argsList.Front().Value.(formulaArg).ToNumber()
  4766. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4767. if number.Type != ArgNumber {
  4768. return number
  4769. }
  4770. if chosen.Type != ArgNumber {
  4771. return chosen
  4772. }
  4773. if number.Number < chosen.Number {
  4774. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4775. }
  4776. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4777. }
  4778. // PERMUTATIONA function calculates the number of permutations, with
  4779. // repetitions, of a specified number of objects from a set. The syntax of
  4780. // the function is:
  4781. //
  4782. // PERMUTATIONA(number,number_chosen)
  4783. //
  4784. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4785. if argsList.Len() < 1 {
  4786. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4787. }
  4788. number := argsList.Front().Value.(formulaArg).ToNumber()
  4789. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4790. if number.Type != ArgNumber {
  4791. return number
  4792. }
  4793. if chosen.Type != ArgNumber {
  4794. return chosen
  4795. }
  4796. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4797. if num < 0 || numChosen < 0 {
  4798. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4799. }
  4800. return newNumberFormulaArg(math.Pow(num, numChosen))
  4801. }
  4802. // QUARTILE function returns a requested quartile of a supplied range of
  4803. // values. The syntax of the function is:
  4804. //
  4805. // QUARTILE(array,quart)
  4806. //
  4807. func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
  4808. if argsList.Len() != 2 {
  4809. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
  4810. }
  4811. quart := argsList.Back().Value.(formulaArg).ToNumber()
  4812. if quart.Type != ArgNumber {
  4813. return quart
  4814. }
  4815. if quart.Number < 0 || quart.Number > 4 {
  4816. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  4817. }
  4818. args := list.New().Init()
  4819. args.PushBack(argsList.Front().Value.(formulaArg))
  4820. args.PushBack(newNumberFormulaArg(quart.Number / 4))
  4821. return fn.PERCENTILE(args)
  4822. }
  4823. // QUARTILEdotINC function returns a requested quartile of a supplied range of
  4824. // values. The syntax of the function is:
  4825. //
  4826. // QUARTILE.INC(array,quart)
  4827. //
  4828. func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
  4829. if argsList.Len() != 2 {
  4830. return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
  4831. }
  4832. return fn.QUARTILE(argsList)
  4833. }
  4834. // SKEW function calculates the skewness of the distribution of a supplied set
  4835. // of values. The syntax of the function is:
  4836. //
  4837. // SKEW(number1,[number2],...)
  4838. //
  4839. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4840. if argsList.Len() < 1 {
  4841. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4842. }
  4843. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4844. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4845. token := arg.Value.(formulaArg)
  4846. switch token.Type {
  4847. case ArgNumber, ArgString:
  4848. num := token.ToNumber()
  4849. if num.Type == ArgError {
  4850. return num
  4851. }
  4852. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4853. count++
  4854. case ArgList, ArgMatrix:
  4855. for _, row := range token.ToList() {
  4856. numArg := row.ToNumber()
  4857. if numArg.Type != ArgNumber {
  4858. continue
  4859. }
  4860. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4861. count++
  4862. }
  4863. }
  4864. }
  4865. if count > 2 {
  4866. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  4867. }
  4868. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4869. }
  4870. // SMALL function returns the k'th smallest value from an array of numeric
  4871. // values. The syntax of the function is:
  4872. //
  4873. // SMALL(array,k)
  4874. //
  4875. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4876. return fn.kth("SMALL", argsList)
  4877. }
  4878. // VARP function returns the Variance of a given set of values. The syntax of
  4879. // the function is:
  4880. //
  4881. // VARP(number1,[number2],...)
  4882. //
  4883. func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
  4884. if argsList.Len() < 1 {
  4885. return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
  4886. }
  4887. summerA, summerB, count := 0.0, 0.0, 0.0
  4888. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4889. for _, token := range arg.Value.(formulaArg).ToList() {
  4890. if num := token.ToNumber(); num.Type == ArgNumber {
  4891. summerA += (num.Number * num.Number)
  4892. summerB += num.Number
  4893. count++
  4894. }
  4895. }
  4896. }
  4897. if count > 0 {
  4898. summerA *= count
  4899. summerB *= summerB
  4900. return newNumberFormulaArg((summerA - summerB) / (count * count))
  4901. }
  4902. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4903. }
  4904. // VARdotP function returns the Variance of a given set of values. The syntax
  4905. // of the function is:
  4906. //
  4907. // VAR.P(number1,[number2],...)
  4908. //
  4909. func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
  4910. if argsList.Len() < 1 {
  4911. return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
  4912. }
  4913. return fn.VARP(argsList)
  4914. }
  4915. // Information Functions
  4916. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4917. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4918. // function is:
  4919. //
  4920. // ISBLANK(value)
  4921. //
  4922. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4923. if argsList.Len() != 1 {
  4924. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4925. }
  4926. token := argsList.Front().Value.(formulaArg)
  4927. result := "FALSE"
  4928. switch token.Type {
  4929. case ArgUnknown:
  4930. result = "TRUE"
  4931. case ArgString:
  4932. if token.String == "" {
  4933. result = "TRUE"
  4934. }
  4935. }
  4936. return newStringFormulaArg(result)
  4937. }
  4938. // ISERR function tests if an initial supplied expression (or value) returns
  4939. // any Excel Error, except the #N/A error. If so, the function returns the
  4940. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4941. // error, the ISERR function returns FALSE. The syntax of the function is:
  4942. //
  4943. // ISERR(value)
  4944. //
  4945. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4946. if argsList.Len() != 1 {
  4947. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4948. }
  4949. token := argsList.Front().Value.(formulaArg)
  4950. result := "FALSE"
  4951. if token.Type == ArgError {
  4952. for _, errType := range []string{
  4953. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4954. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4955. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4956. } {
  4957. if errType == token.String {
  4958. result = "TRUE"
  4959. }
  4960. }
  4961. }
  4962. return newStringFormulaArg(result)
  4963. }
  4964. // ISERROR function tests if an initial supplied expression (or value) returns
  4965. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4966. // function returns FALSE. The syntax of the function is:
  4967. //
  4968. // ISERROR(value)
  4969. //
  4970. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4971. if argsList.Len() != 1 {
  4972. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4973. }
  4974. token := argsList.Front().Value.(formulaArg)
  4975. result := "FALSE"
  4976. if token.Type == ArgError {
  4977. for _, errType := range []string{
  4978. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4979. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4980. formulaErrorCALC, formulaErrorGETTINGDATA,
  4981. } {
  4982. if errType == token.String {
  4983. result = "TRUE"
  4984. }
  4985. }
  4986. }
  4987. return newStringFormulaArg(result)
  4988. }
  4989. // ISEVEN function tests if a supplied number (or numeric expression)
  4990. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4991. // function returns FALSE. The syntax of the function is:
  4992. //
  4993. // ISEVEN(value)
  4994. //
  4995. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4996. if argsList.Len() != 1 {
  4997. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4998. }
  4999. var (
  5000. token = argsList.Front().Value.(formulaArg)
  5001. result = "FALSE"
  5002. numeric int
  5003. err error
  5004. )
  5005. if token.Type == ArgString {
  5006. if numeric, err = strconv.Atoi(token.String); err != nil {
  5007. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5008. }
  5009. if numeric == numeric/2*2 {
  5010. return newStringFormulaArg("TRUE")
  5011. }
  5012. }
  5013. return newStringFormulaArg(result)
  5014. }
  5015. // ISNA function tests if an initial supplied expression (or value) returns
  5016. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  5017. // returns FALSE. The syntax of the function is:
  5018. //
  5019. // ISNA(value)
  5020. //
  5021. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  5022. if argsList.Len() != 1 {
  5023. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  5024. }
  5025. token := argsList.Front().Value.(formulaArg)
  5026. result := "FALSE"
  5027. if token.Type == ArgError && token.String == formulaErrorNA {
  5028. result = "TRUE"
  5029. }
  5030. return newStringFormulaArg(result)
  5031. }
  5032. // ISNONTEXT function function tests if a supplied value is text. If not, the
  5033. // function returns TRUE; If the supplied value is text, the function returns
  5034. // FALSE. The syntax of the function is:
  5035. //
  5036. // ISNONTEXT(value)
  5037. //
  5038. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  5039. if argsList.Len() != 1 {
  5040. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  5041. }
  5042. token := argsList.Front().Value.(formulaArg)
  5043. result := "TRUE"
  5044. if token.Type == ArgString && token.String != "" {
  5045. result = "FALSE"
  5046. }
  5047. return newStringFormulaArg(result)
  5048. }
  5049. // ISNUMBER function function tests if a supplied value is a number. If so,
  5050. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  5051. // function is:
  5052. //
  5053. // ISNUMBER(value)
  5054. //
  5055. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  5056. if argsList.Len() != 1 {
  5057. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  5058. }
  5059. token, result := argsList.Front().Value.(formulaArg), false
  5060. if token.Type == ArgString && token.String != "" {
  5061. if _, err := strconv.Atoi(token.String); err == nil {
  5062. result = true
  5063. }
  5064. }
  5065. return newBoolFormulaArg(result)
  5066. }
  5067. // ISODD function tests if a supplied number (or numeric expression) evaluates
  5068. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  5069. // FALSE. The syntax of the function is:
  5070. //
  5071. // ISODD(value)
  5072. //
  5073. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  5074. if argsList.Len() != 1 {
  5075. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  5076. }
  5077. var (
  5078. token = argsList.Front().Value.(formulaArg)
  5079. result = "FALSE"
  5080. numeric int
  5081. err error
  5082. )
  5083. if token.Type == ArgString {
  5084. if numeric, err = strconv.Atoi(token.String); err != nil {
  5085. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5086. }
  5087. if numeric != numeric/2*2 {
  5088. return newStringFormulaArg("TRUE")
  5089. }
  5090. }
  5091. return newStringFormulaArg(result)
  5092. }
  5093. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  5094. // Otherwise, the function returns FALSE. The syntax of the function is:
  5095. //
  5096. // ISTEXT(value)
  5097. //
  5098. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  5099. if argsList.Len() != 1 {
  5100. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  5101. }
  5102. token := argsList.Front().Value.(formulaArg)
  5103. if token.ToNumber().Type != ArgError {
  5104. return newBoolFormulaArg(false)
  5105. }
  5106. return newBoolFormulaArg(token.Type == ArgString)
  5107. }
  5108. // N function converts data into a numeric value. The syntax of the function
  5109. // is:
  5110. //
  5111. // N(value)
  5112. //
  5113. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  5114. if argsList.Len() != 1 {
  5115. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  5116. }
  5117. token, num := argsList.Front().Value.(formulaArg), 0.0
  5118. if token.Type == ArgError {
  5119. return token
  5120. }
  5121. if arg := token.ToNumber(); arg.Type == ArgNumber {
  5122. num = arg.Number
  5123. }
  5124. if token.Value() == "TRUE" {
  5125. num = 1
  5126. }
  5127. return newNumberFormulaArg(num)
  5128. }
  5129. // NA function returns the Excel #N/A error. This error message has the
  5130. // meaning 'value not available' and is produced when an Excel Formula is
  5131. // unable to find a value that it needs. The syntax of the function is:
  5132. //
  5133. // NA()
  5134. //
  5135. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  5136. if argsList.Len() != 0 {
  5137. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  5138. }
  5139. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  5140. }
  5141. // SHEET function returns the Sheet number for a specified reference. The
  5142. // syntax of the function is:
  5143. //
  5144. // SHEET()
  5145. //
  5146. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  5147. if argsList.Len() != 0 {
  5148. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  5149. }
  5150. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  5151. }
  5152. // T function tests if a supplied value is text and if so, returns the
  5153. // supplied text; Otherwise, the function returns an empty text string. The
  5154. // syntax of the function is:
  5155. //
  5156. // T(value)
  5157. //
  5158. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  5159. if argsList.Len() != 1 {
  5160. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  5161. }
  5162. token := argsList.Front().Value.(formulaArg)
  5163. if token.Type == ArgError {
  5164. return token
  5165. }
  5166. if token.Type == ArgNumber {
  5167. return newStringFormulaArg("")
  5168. }
  5169. return newStringFormulaArg(token.Value())
  5170. }
  5171. // Logical Functions
  5172. // AND function tests a number of supplied conditions and returns TRUE or
  5173. // FALSE. The syntax of the function is:
  5174. //
  5175. // AND(logical_test1,[logical_test2],...)
  5176. //
  5177. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  5178. if argsList.Len() == 0 {
  5179. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  5180. }
  5181. if argsList.Len() > 30 {
  5182. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  5183. }
  5184. var (
  5185. and = true
  5186. val float64
  5187. err error
  5188. )
  5189. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5190. token := arg.Value.(formulaArg)
  5191. switch token.Type {
  5192. case ArgUnknown:
  5193. continue
  5194. case ArgString:
  5195. if token.String == "TRUE" {
  5196. continue
  5197. }
  5198. if token.String == "FALSE" {
  5199. return newStringFormulaArg(token.String)
  5200. }
  5201. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5202. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5203. }
  5204. and = and && (val != 0)
  5205. case ArgMatrix:
  5206. // TODO
  5207. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5208. }
  5209. }
  5210. return newBoolFormulaArg(and)
  5211. }
  5212. // FALSE function function returns the logical value FALSE. The syntax of the
  5213. // function is:
  5214. //
  5215. // FALSE()
  5216. //
  5217. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  5218. if argsList.Len() != 0 {
  5219. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  5220. }
  5221. return newBoolFormulaArg(false)
  5222. }
  5223. // IFERROR function receives two values (or expressions) and tests if the
  5224. // first of these evaluates to an error. The syntax of the function is:
  5225. //
  5226. // IFERROR(value,value_if_error)
  5227. //
  5228. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  5229. if argsList.Len() != 2 {
  5230. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  5231. }
  5232. value := argsList.Front().Value.(formulaArg)
  5233. if value.Type != ArgError {
  5234. if value.Type == ArgEmpty {
  5235. return newNumberFormulaArg(0)
  5236. }
  5237. return value
  5238. }
  5239. return argsList.Back().Value.(formulaArg)
  5240. }
  5241. // NOT function returns the opposite to a supplied logical value. The syntax
  5242. // of the function is:
  5243. //
  5244. // NOT(logical)
  5245. //
  5246. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  5247. if argsList.Len() != 1 {
  5248. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  5249. }
  5250. token := argsList.Front().Value.(formulaArg)
  5251. switch token.Type {
  5252. case ArgString, ArgList:
  5253. if strings.ToUpper(token.String) == "TRUE" {
  5254. return newBoolFormulaArg(false)
  5255. }
  5256. if strings.ToUpper(token.String) == "FALSE" {
  5257. return newBoolFormulaArg(true)
  5258. }
  5259. case ArgNumber:
  5260. return newBoolFormulaArg(!(token.Number != 0))
  5261. case ArgError:
  5262. return token
  5263. }
  5264. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  5265. }
  5266. // OR function tests a number of supplied conditions and returns either TRUE
  5267. // or FALSE. The syntax of the function is:
  5268. //
  5269. // OR(logical_test1,[logical_test2],...)
  5270. //
  5271. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  5272. if argsList.Len() == 0 {
  5273. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  5274. }
  5275. if argsList.Len() > 30 {
  5276. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  5277. }
  5278. var (
  5279. or bool
  5280. val float64
  5281. err error
  5282. )
  5283. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5284. token := arg.Value.(formulaArg)
  5285. switch token.Type {
  5286. case ArgUnknown:
  5287. continue
  5288. case ArgString:
  5289. if token.String == "FALSE" {
  5290. continue
  5291. }
  5292. if token.String == "TRUE" {
  5293. or = true
  5294. continue
  5295. }
  5296. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  5297. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5298. }
  5299. or = val != 0
  5300. case ArgMatrix:
  5301. // TODO
  5302. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5303. }
  5304. }
  5305. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  5306. }
  5307. // TRUE function returns the logical value TRUE. The syntax of the function
  5308. // is:
  5309. //
  5310. // TRUE()
  5311. //
  5312. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  5313. if argsList.Len() != 0 {
  5314. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  5315. }
  5316. return newBoolFormulaArg(true)
  5317. }
  5318. // Date and Time Functions
  5319. // DATE returns a date, from a user-supplied year, month and day. The syntax
  5320. // of the function is:
  5321. //
  5322. // DATE(year,month,day)
  5323. //
  5324. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  5325. if argsList.Len() != 3 {
  5326. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5327. }
  5328. year := argsList.Front().Value.(formulaArg).ToNumber()
  5329. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5330. day := argsList.Back().Value.(formulaArg).ToNumber()
  5331. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  5332. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  5333. }
  5334. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  5335. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  5336. }
  5337. // DATEDIF function calculates the number of days, months, or years between
  5338. // two dates. The syntax of the function is:
  5339. //
  5340. // DATEDIF(start_date,end_date,unit)
  5341. //
  5342. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  5343. if argsList.Len() != 3 {
  5344. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  5345. }
  5346. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  5347. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  5348. return startArg
  5349. }
  5350. if startArg.Number > endArg.Number {
  5351. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  5352. }
  5353. if startArg.Number == endArg.Number {
  5354. return newNumberFormulaArg(0)
  5355. }
  5356. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  5357. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  5358. sy, smm, sd := startDate.Date()
  5359. ey, emm, ed := endDate.Date()
  5360. sm, em, diff := int(smm), int(emm), 0.0
  5361. switch unit {
  5362. case "d":
  5363. return newNumberFormulaArg(endArg.Number - startArg.Number)
  5364. case "y":
  5365. diff = float64(ey - sy)
  5366. if em < sm || (em == sm && ed < sd) {
  5367. diff--
  5368. }
  5369. case "m":
  5370. ydiff := ey - sy
  5371. mdiff := em - sm
  5372. if ed < sd {
  5373. mdiff--
  5374. }
  5375. if mdiff < 0 {
  5376. ydiff--
  5377. mdiff += 12
  5378. }
  5379. diff = float64(ydiff*12 + mdiff)
  5380. case "md":
  5381. smMD := em
  5382. if ed < sd {
  5383. smMD--
  5384. }
  5385. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  5386. case "ym":
  5387. diff = float64(em - sm)
  5388. if ed < sd {
  5389. diff--
  5390. }
  5391. if diff < 0 {
  5392. diff += 12
  5393. }
  5394. case "yd":
  5395. syYD := sy
  5396. if em < sm || (em == sm && ed < sd) {
  5397. syYD++
  5398. }
  5399. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  5400. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  5401. diff = s - e
  5402. default:
  5403. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  5404. }
  5405. return newNumberFormulaArg(diff)
  5406. }
  5407. // NOW function returns the current date and time. The function receives no
  5408. // arguments and therefore. The syntax of the function is:
  5409. //
  5410. // NOW()
  5411. //
  5412. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  5413. if argsList.Len() != 0 {
  5414. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  5415. }
  5416. now := time.Now()
  5417. _, offset := now.Zone()
  5418. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  5419. }
  5420. // TODAY function returns the current date. The function has no arguments and
  5421. // therefore. The syntax of the function is:
  5422. //
  5423. // TODAY()
  5424. //
  5425. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  5426. if argsList.Len() != 0 {
  5427. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  5428. }
  5429. now := time.Now()
  5430. _, offset := now.Zone()
  5431. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  5432. }
  5433. // makeDate return date as a Unix time, the number of seconds elapsed since
  5434. // January 1, 1970 UTC.
  5435. func makeDate(y int, m time.Month, d int) int64 {
  5436. if y == 1900 && int(m) <= 2 {
  5437. d--
  5438. }
  5439. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  5440. return date.Unix()
  5441. }
  5442. // daysBetween return time interval of the given start timestamp and end
  5443. // timestamp.
  5444. func daysBetween(startDate, endDate int64) float64 {
  5445. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  5446. }
  5447. // Text Functions
  5448. // CHAR function returns the character relating to a supplied character set
  5449. // number (from 1 to 255). syntax of the function is:
  5450. //
  5451. // CHAR(number)
  5452. //
  5453. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5454. if argsList.Len() != 1 {
  5455. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5456. }
  5457. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5458. if arg.Type != ArgNumber {
  5459. return arg
  5460. }
  5461. num := int(arg.Number)
  5462. if num < 0 || num > 255 {
  5463. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5464. }
  5465. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5466. }
  5467. // CLEAN removes all non-printable characters from a supplied text string. The
  5468. // syntax of the function is:
  5469. //
  5470. // CLEAN(text)
  5471. //
  5472. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5473. if argsList.Len() != 1 {
  5474. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5475. }
  5476. b := bytes.Buffer{}
  5477. for _, c := range argsList.Front().Value.(formulaArg).String {
  5478. if c > 31 {
  5479. b.WriteRune(c)
  5480. }
  5481. }
  5482. return newStringFormulaArg(b.String())
  5483. }
  5484. // CODE function converts the first character of a supplied text string into
  5485. // the associated numeric character set code used by your computer. The
  5486. // syntax of the function is:
  5487. //
  5488. // CODE(text)
  5489. //
  5490. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5491. return fn.code("CODE", argsList)
  5492. }
  5493. // code is an implementation of the formula function CODE and UNICODE.
  5494. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5495. if argsList.Len() != 1 {
  5496. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5497. }
  5498. text := argsList.Front().Value.(formulaArg).Value()
  5499. if len(text) == 0 {
  5500. if name == "CODE" {
  5501. return newNumberFormulaArg(0)
  5502. }
  5503. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5504. }
  5505. return newNumberFormulaArg(float64(text[0]))
  5506. }
  5507. // CONCAT function joins together a series of supplied text strings into one
  5508. // combined text string.
  5509. //
  5510. // CONCAT(text1,[text2],...)
  5511. //
  5512. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5513. return fn.concat("CONCAT", argsList)
  5514. }
  5515. // CONCATENATE function joins together a series of supplied text strings into
  5516. // one combined text string.
  5517. //
  5518. // CONCATENATE(text1,[text2],...)
  5519. //
  5520. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5521. return fn.concat("CONCATENATE", argsList)
  5522. }
  5523. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5524. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5525. buf := bytes.Buffer{}
  5526. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5527. token := arg.Value.(formulaArg)
  5528. switch token.Type {
  5529. case ArgString:
  5530. buf.WriteString(token.String)
  5531. case ArgNumber:
  5532. if token.Boolean {
  5533. if token.Number == 0 {
  5534. buf.WriteString("FALSE")
  5535. } else {
  5536. buf.WriteString("TRUE")
  5537. }
  5538. } else {
  5539. buf.WriteString(token.Value())
  5540. }
  5541. default:
  5542. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5543. }
  5544. }
  5545. return newStringFormulaArg(buf.String())
  5546. }
  5547. // EXACT function tests if two supplied text strings or values are exactly
  5548. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5549. // function is case-sensitive. The syntax of the function is:
  5550. //
  5551. // EXACT(text1,text2)
  5552. //
  5553. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5554. if argsList.Len() != 2 {
  5555. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5556. }
  5557. text1 := argsList.Front().Value.(formulaArg).Value()
  5558. text2 := argsList.Back().Value.(formulaArg).Value()
  5559. return newBoolFormulaArg(text1 == text2)
  5560. }
  5561. // FIXED function rounds a supplied number to a specified number of decimal
  5562. // places and then converts this into text. The syntax of the function is:
  5563. //
  5564. // FIXED(number,[decimals],[no_commas])
  5565. //
  5566. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5567. if argsList.Len() < 1 {
  5568. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5569. }
  5570. if argsList.Len() > 3 {
  5571. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5572. }
  5573. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5574. if numArg.Type != ArgNumber {
  5575. return numArg
  5576. }
  5577. precision, decimals, noCommas := 0, 0, false
  5578. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5579. if argsList.Len() == 1 && len(s) == 2 {
  5580. precision = len(s[1])
  5581. decimals = len(s[1])
  5582. }
  5583. if argsList.Len() >= 2 {
  5584. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5585. if decimalsArg.Type != ArgNumber {
  5586. return decimalsArg
  5587. }
  5588. decimals = int(decimalsArg.Number)
  5589. }
  5590. if argsList.Len() == 3 {
  5591. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5592. if noCommasArg.Type == ArgError {
  5593. return noCommasArg
  5594. }
  5595. noCommas = noCommasArg.Boolean
  5596. }
  5597. n := math.Pow(10, float64(decimals))
  5598. r := numArg.Number * n
  5599. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5600. if decimals > 0 {
  5601. precision = decimals
  5602. }
  5603. if noCommas {
  5604. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5605. }
  5606. p := message.NewPrinter(language.English)
  5607. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5608. }
  5609. // FIND function returns the position of a specified character or sub-string
  5610. // within a supplied text string. The function is case-sensitive. The syntax
  5611. // of the function is:
  5612. //
  5613. // FIND(find_text,within_text,[start_num])
  5614. //
  5615. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5616. return fn.find("FIND", argsList)
  5617. }
  5618. // FINDB counts each double-byte character as 2 when you have enabled the
  5619. // editing of a language that supports DBCS and then set it as the default
  5620. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5621. // function is:
  5622. //
  5623. // FINDB(find_text,within_text,[start_num])
  5624. //
  5625. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5626. return fn.find("FINDB", argsList)
  5627. }
  5628. // find is an implementation of the formula function FIND and FINDB.
  5629. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5630. if argsList.Len() < 2 {
  5631. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5632. }
  5633. if argsList.Len() > 3 {
  5634. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5635. }
  5636. findText := argsList.Front().Value.(formulaArg).Value()
  5637. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5638. startNum, result := 1, 1
  5639. if argsList.Len() == 3 {
  5640. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5641. if numArg.Type != ArgNumber {
  5642. return numArg
  5643. }
  5644. if numArg.Number < 0 {
  5645. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5646. }
  5647. startNum = int(numArg.Number)
  5648. }
  5649. if findText == "" {
  5650. return newNumberFormulaArg(float64(startNum))
  5651. }
  5652. for idx := range withinText {
  5653. if result < startNum {
  5654. result++
  5655. }
  5656. if strings.Index(withinText[idx:], findText) == 0 {
  5657. return newNumberFormulaArg(float64(result))
  5658. }
  5659. result++
  5660. }
  5661. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5662. }
  5663. // LEFT function returns a specified number of characters from the start of a
  5664. // supplied text string. The syntax of the function is:
  5665. //
  5666. // LEFT(text,[num_chars])
  5667. //
  5668. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5669. return fn.leftRight("LEFT", argsList)
  5670. }
  5671. // LEFTB returns the first character or characters in a text string, based on
  5672. // the number of bytes you specify. The syntax of the function is:
  5673. //
  5674. // LEFTB(text,[num_bytes])
  5675. //
  5676. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5677. return fn.leftRight("LEFTB", argsList)
  5678. }
  5679. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5680. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5681. // (Traditional), and Korean.
  5682. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5683. if argsList.Len() < 1 {
  5684. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5685. }
  5686. if argsList.Len() > 2 {
  5687. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5688. }
  5689. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5690. if argsList.Len() == 2 {
  5691. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5692. if numArg.Type != ArgNumber {
  5693. return numArg
  5694. }
  5695. if numArg.Number < 0 {
  5696. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5697. }
  5698. numChars = int(numArg.Number)
  5699. }
  5700. if len(text) > numChars {
  5701. if name == "LEFT" || name == "LEFTB" {
  5702. return newStringFormulaArg(text[:numChars])
  5703. }
  5704. return newStringFormulaArg(text[len(text)-numChars:])
  5705. }
  5706. return newStringFormulaArg(text)
  5707. }
  5708. // LEN returns the length of a supplied text string. The syntax of the
  5709. // function is:
  5710. //
  5711. // LEN(text)
  5712. //
  5713. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5714. if argsList.Len() != 1 {
  5715. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5716. }
  5717. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5718. }
  5719. // LENB returns the number of bytes used to represent the characters in a text
  5720. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5721. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5722. // 1 byte per character. The syntax of the function is:
  5723. //
  5724. // LENB(text)
  5725. //
  5726. // TODO: the languages that support DBCS include Japanese, Chinese
  5727. // (Simplified), Chinese (Traditional), and Korean.
  5728. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5729. if argsList.Len() != 1 {
  5730. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5731. }
  5732. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5733. }
  5734. // LOWER converts all characters in a supplied text string to lower case. The
  5735. // syntax of the function is:
  5736. //
  5737. // LOWER(text)
  5738. //
  5739. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5740. if argsList.Len() != 1 {
  5741. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5742. }
  5743. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5744. }
  5745. // MID function returns a specified number of characters from the middle of a
  5746. // supplied text string. The syntax of the function is:
  5747. //
  5748. // MID(text,start_num,num_chars)
  5749. //
  5750. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5751. return fn.mid("MID", argsList)
  5752. }
  5753. // MIDB returns a specific number of characters from a text string, starting
  5754. // at the position you specify, based on the number of bytes you specify. The
  5755. // syntax of the function is:
  5756. //
  5757. // MID(text,start_num,num_chars)
  5758. //
  5759. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5760. return fn.mid("MIDB", argsList)
  5761. }
  5762. // mid is an implementation of the formula function MID and MIDB. TODO:
  5763. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5764. // (Traditional), and Korean.
  5765. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5766. if argsList.Len() != 3 {
  5767. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5768. }
  5769. text := argsList.Front().Value.(formulaArg).Value()
  5770. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5771. if startNumArg.Type != ArgNumber {
  5772. return startNumArg
  5773. }
  5774. if numCharsArg.Type != ArgNumber {
  5775. return numCharsArg
  5776. }
  5777. startNum := int(startNumArg.Number)
  5778. if startNum < 0 {
  5779. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5780. }
  5781. textLen := len(text)
  5782. if startNum > textLen {
  5783. return newStringFormulaArg("")
  5784. }
  5785. startNum--
  5786. endNum := startNum + int(numCharsArg.Number)
  5787. if endNum > textLen+1 {
  5788. return newStringFormulaArg(text[startNum:])
  5789. }
  5790. return newStringFormulaArg(text[startNum:endNum])
  5791. }
  5792. // PROPER converts all characters in a supplied text string to proper case
  5793. // (i.e. all letters that do not immediately follow another letter are set to
  5794. // upper case and all other characters are lower case). The syntax of the
  5795. // function is:
  5796. //
  5797. // PROPER(text)
  5798. //
  5799. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5800. if argsList.Len() != 1 {
  5801. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5802. }
  5803. buf := bytes.Buffer{}
  5804. isLetter := false
  5805. for _, char := range argsList.Front().Value.(formulaArg).String {
  5806. if !isLetter && unicode.IsLetter(char) {
  5807. buf.WriteRune(unicode.ToUpper(char))
  5808. } else {
  5809. buf.WriteRune(unicode.ToLower(char))
  5810. }
  5811. isLetter = unicode.IsLetter(char)
  5812. }
  5813. return newStringFormulaArg(buf.String())
  5814. }
  5815. // REPLACE function replaces all or part of a text string with another string.
  5816. // The syntax of the function is:
  5817. //
  5818. // REPLACE(old_text,start_num,num_chars,new_text)
  5819. //
  5820. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5821. return fn.replace("REPLACE", argsList)
  5822. }
  5823. // REPLACEB replaces part of a text string, based on the number of bytes you
  5824. // specify, with a different text string.
  5825. //
  5826. // REPLACEB(old_text,start_num,num_chars,new_text)
  5827. //
  5828. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5829. return fn.replace("REPLACEB", argsList)
  5830. }
  5831. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5832. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5833. // (Traditional), and Korean.
  5834. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5835. if argsList.Len() != 4 {
  5836. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5837. }
  5838. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5839. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5840. if startNumArg.Type != ArgNumber {
  5841. return startNumArg
  5842. }
  5843. if numCharsArg.Type != ArgNumber {
  5844. return numCharsArg
  5845. }
  5846. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5847. if startIdx > oldTextLen {
  5848. startIdx = oldTextLen + 1
  5849. }
  5850. endIdx := startIdx + int(numCharsArg.Number)
  5851. if endIdx > oldTextLen {
  5852. endIdx = oldTextLen + 1
  5853. }
  5854. if startIdx < 1 || endIdx < 1 {
  5855. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5856. }
  5857. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5858. return newStringFormulaArg(result)
  5859. }
  5860. // REPT function returns a supplied text string, repeated a specified number
  5861. // of times. The syntax of the function is:
  5862. //
  5863. // REPT(text,number_times)
  5864. //
  5865. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5866. if argsList.Len() != 2 {
  5867. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5868. }
  5869. text := argsList.Front().Value.(formulaArg)
  5870. if text.Type != ArgString {
  5871. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5872. }
  5873. times := argsList.Back().Value.(formulaArg).ToNumber()
  5874. if times.Type != ArgNumber {
  5875. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5876. }
  5877. if times.Number < 0 {
  5878. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5879. }
  5880. if times.Number == 0 {
  5881. return newStringFormulaArg("")
  5882. }
  5883. buf := bytes.Buffer{}
  5884. for i := 0; i < int(times.Number); i++ {
  5885. buf.WriteString(text.String)
  5886. }
  5887. return newStringFormulaArg(buf.String())
  5888. }
  5889. // RIGHT function returns a specified number of characters from the end of a
  5890. // supplied text string. The syntax of the function is:
  5891. //
  5892. // RIGHT(text,[num_chars])
  5893. //
  5894. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5895. return fn.leftRight("RIGHT", argsList)
  5896. }
  5897. // RIGHTB returns the last character or characters in a text string, based on
  5898. // the number of bytes you specify. The syntax of the function is:
  5899. //
  5900. // RIGHTB(text,[num_bytes])
  5901. //
  5902. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5903. return fn.leftRight("RIGHTB", argsList)
  5904. }
  5905. // SUBSTITUTE function replaces one or more instances of a given text string,
  5906. // within an original text string. The syntax of the function is:
  5907. //
  5908. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5909. //
  5910. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5911. if argsList.Len() != 3 && argsList.Len() != 4 {
  5912. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5913. }
  5914. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5915. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5916. if argsList.Len() == 3 {
  5917. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5918. }
  5919. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5920. if instanceNumArg.Type != ArgNumber {
  5921. return instanceNumArg
  5922. }
  5923. instanceNum = int(instanceNumArg.Number)
  5924. if instanceNum < 1 {
  5925. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5926. }
  5927. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5928. for {
  5929. count--
  5930. index := strings.Index(str, oldText.Value())
  5931. if index == -1 {
  5932. pos = -1
  5933. break
  5934. } else {
  5935. pos = index + chars
  5936. if count == 0 {
  5937. break
  5938. }
  5939. idx := oldTextLen + index
  5940. chars += idx
  5941. str = str[idx:]
  5942. }
  5943. }
  5944. if pos == -1 {
  5945. return newStringFormulaArg(text.Value())
  5946. }
  5947. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5948. return newStringFormulaArg(pre + newText.Value() + post)
  5949. }
  5950. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5951. // words or characters) from a supplied text string. The syntax of the
  5952. // function is:
  5953. //
  5954. // TRIM(text)
  5955. //
  5956. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5957. if argsList.Len() != 1 {
  5958. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5959. }
  5960. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5961. }
  5962. // UNICHAR returns the Unicode character that is referenced by the given
  5963. // numeric value. The syntax of the function is:
  5964. //
  5965. // UNICHAR(number)
  5966. //
  5967. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5968. if argsList.Len() != 1 {
  5969. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5970. }
  5971. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5972. if numArg.Type != ArgNumber {
  5973. return numArg
  5974. }
  5975. if numArg.Number <= 0 || numArg.Number > 55295 {
  5976. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5977. }
  5978. return newStringFormulaArg(string(rune(numArg.Number)))
  5979. }
  5980. // UNICODE function returns the code point for the first character of a
  5981. // supplied text string. The syntax of the function is:
  5982. //
  5983. // UNICODE(text)
  5984. //
  5985. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5986. return fn.code("UNICODE", argsList)
  5987. }
  5988. // UPPER converts all characters in a supplied text string to upper case. The
  5989. // syntax of the function is:
  5990. //
  5991. // UPPER(text)
  5992. //
  5993. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5994. if argsList.Len() != 1 {
  5995. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5996. }
  5997. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5998. }
  5999. // Conditional Functions
  6000. // IF function tests a supplied condition and returns one result if the
  6001. // condition evaluates to TRUE, and another result if the condition evaluates
  6002. // to FALSE. The syntax of the function is:
  6003. //
  6004. // IF(logical_test,value_if_true,value_if_false)
  6005. //
  6006. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  6007. if argsList.Len() == 0 {
  6008. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  6009. }
  6010. if argsList.Len() > 3 {
  6011. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  6012. }
  6013. token := argsList.Front().Value.(formulaArg)
  6014. var (
  6015. cond bool
  6016. err error
  6017. result string
  6018. )
  6019. switch token.Type {
  6020. case ArgString:
  6021. if cond, err = strconv.ParseBool(token.String); err != nil {
  6022. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  6023. }
  6024. if argsList.Len() == 1 {
  6025. return newBoolFormulaArg(cond)
  6026. }
  6027. if cond {
  6028. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  6029. }
  6030. if argsList.Len() == 3 {
  6031. result = argsList.Back().Value.(formulaArg).String
  6032. }
  6033. }
  6034. return newStringFormulaArg(result)
  6035. }
  6036. // Lookup and Reference Functions
  6037. // CHOOSE function returns a value from an array, that corresponds to a
  6038. // supplied index number (position). The syntax of the function is:
  6039. //
  6040. // CHOOSE(index_num,value1,[value2],...)
  6041. //
  6042. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  6043. if argsList.Len() < 2 {
  6044. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  6045. }
  6046. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  6047. if err != nil {
  6048. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  6049. }
  6050. if argsList.Len() <= idx {
  6051. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  6052. }
  6053. arg := argsList.Front()
  6054. for i := 0; i < idx; i++ {
  6055. arg = arg.Next()
  6056. }
  6057. var result formulaArg
  6058. switch arg.Value.(formulaArg).Type {
  6059. case ArgString:
  6060. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  6061. case ArgMatrix:
  6062. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  6063. }
  6064. return result
  6065. }
  6066. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  6067. // string.
  6068. func deepMatchRune(str, pattern []rune, simple bool) bool {
  6069. for len(pattern) > 0 {
  6070. switch pattern[0] {
  6071. default:
  6072. if len(str) == 0 || str[0] != pattern[0] {
  6073. return false
  6074. }
  6075. case '?':
  6076. if len(str) == 0 && !simple {
  6077. return false
  6078. }
  6079. case '*':
  6080. return deepMatchRune(str, pattern[1:], simple) ||
  6081. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  6082. }
  6083. str = str[1:]
  6084. pattern = pattern[1:]
  6085. }
  6086. return len(str) == 0 && len(pattern) == 0
  6087. }
  6088. // matchPattern finds whether the text matches or satisfies the pattern
  6089. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  6090. func matchPattern(pattern, name string) (matched bool) {
  6091. if pattern == "" {
  6092. return name == pattern
  6093. }
  6094. if pattern == "*" {
  6095. return true
  6096. }
  6097. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  6098. for _, r := range name {
  6099. rname = append(rname, r)
  6100. }
  6101. for _, r := range pattern {
  6102. rpattern = append(rpattern, r)
  6103. }
  6104. simple := false // Does extended wildcard '*' and '?' match.
  6105. return deepMatchRune(rname, rpattern, simple)
  6106. }
  6107. // compareFormulaArg compares the left-hand sides and the right-hand sides
  6108. // formula arguments by given conditions such as case sensitive, if exact
  6109. // match, and make compare result as formula criteria condition type.
  6110. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6111. if lhs.Type != rhs.Type {
  6112. return criteriaErr
  6113. }
  6114. switch lhs.Type {
  6115. case ArgNumber:
  6116. if lhs.Number == rhs.Number {
  6117. return criteriaEq
  6118. }
  6119. if lhs.Number < rhs.Number {
  6120. return criteriaL
  6121. }
  6122. return criteriaG
  6123. case ArgString:
  6124. ls, rs := lhs.String, rhs.String
  6125. if !caseSensitive {
  6126. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  6127. }
  6128. if exactMatch {
  6129. match := matchPattern(rs, ls)
  6130. if match {
  6131. return criteriaEq
  6132. }
  6133. return criteriaG
  6134. }
  6135. switch strings.Compare(ls, rs) {
  6136. case 1:
  6137. return criteriaG
  6138. case -1:
  6139. return criteriaL
  6140. case 0:
  6141. return criteriaEq
  6142. }
  6143. return criteriaErr
  6144. case ArgEmpty:
  6145. return criteriaEq
  6146. case ArgList:
  6147. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  6148. case ArgMatrix:
  6149. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  6150. }
  6151. return criteriaErr
  6152. }
  6153. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  6154. // list type formula arguments.
  6155. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6156. if len(lhs.List) < len(rhs.List) {
  6157. return criteriaL
  6158. }
  6159. if len(lhs.List) > len(rhs.List) {
  6160. return criteriaG
  6161. }
  6162. for arg := range lhs.List {
  6163. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  6164. if criteria != criteriaEq {
  6165. return criteria
  6166. }
  6167. }
  6168. return criteriaEq
  6169. }
  6170. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  6171. // matrix type formula arguments.
  6172. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  6173. if len(lhs.Matrix) < len(rhs.Matrix) {
  6174. return criteriaL
  6175. }
  6176. if len(lhs.Matrix) > len(rhs.Matrix) {
  6177. return criteriaG
  6178. }
  6179. for i := range lhs.Matrix {
  6180. left := lhs.Matrix[i]
  6181. right := lhs.Matrix[i]
  6182. if len(left) < len(right) {
  6183. return criteriaL
  6184. }
  6185. if len(left) > len(right) {
  6186. return criteriaG
  6187. }
  6188. for arg := range left {
  6189. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  6190. if criteria != criteriaEq {
  6191. return criteria
  6192. }
  6193. }
  6194. }
  6195. return criteriaEq
  6196. }
  6197. // COLUMN function returns the first column number within a supplied reference
  6198. // or the number of the current column. The syntax of the function is:
  6199. //
  6200. // COLUMN([reference])
  6201. //
  6202. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  6203. if argsList.Len() > 1 {
  6204. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  6205. }
  6206. if argsList.Len() == 1 {
  6207. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6208. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  6209. }
  6210. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6211. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  6212. }
  6213. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6214. }
  6215. col, _, _ := CellNameToCoordinates(fn.cell)
  6216. return newNumberFormulaArg(float64(col))
  6217. }
  6218. // COLUMNS function receives an Excel range and returns the number of columns
  6219. // that are contained within the range. The syntax of the function is:
  6220. //
  6221. // COLUMNS(array)
  6222. //
  6223. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  6224. if argsList.Len() != 1 {
  6225. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  6226. }
  6227. var min, max int
  6228. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6229. crs := argsList.Front().Value.(formulaArg).cellRanges
  6230. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6231. if min == 0 {
  6232. min = cr.Value.(cellRange).From.Col
  6233. }
  6234. if min > cr.Value.(cellRange).From.Col {
  6235. min = cr.Value.(cellRange).From.Col
  6236. }
  6237. if min > cr.Value.(cellRange).To.Col {
  6238. min = cr.Value.(cellRange).To.Col
  6239. }
  6240. if max < cr.Value.(cellRange).To.Col {
  6241. max = cr.Value.(cellRange).To.Col
  6242. }
  6243. if max < cr.Value.(cellRange).From.Col {
  6244. max = cr.Value.(cellRange).From.Col
  6245. }
  6246. }
  6247. }
  6248. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6249. cr := argsList.Front().Value.(formulaArg).cellRefs
  6250. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6251. if min == 0 {
  6252. min = refs.Value.(cellRef).Col
  6253. }
  6254. if min > refs.Value.(cellRef).Col {
  6255. min = refs.Value.(cellRef).Col
  6256. }
  6257. if max < refs.Value.(cellRef).Col {
  6258. max = refs.Value.(cellRef).Col
  6259. }
  6260. }
  6261. }
  6262. if max == TotalColumns {
  6263. return newNumberFormulaArg(float64(TotalColumns))
  6264. }
  6265. result := max - min + 1
  6266. if max == min {
  6267. if min == 0 {
  6268. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6269. }
  6270. return newNumberFormulaArg(float64(1))
  6271. }
  6272. return newNumberFormulaArg(float64(result))
  6273. }
  6274. // HLOOKUP function 'looks up' a given value in the top row of a data array
  6275. // (or table), and returns the corresponding value from another row of the
  6276. // array. The syntax of the function is:
  6277. //
  6278. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  6279. //
  6280. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  6281. if argsList.Len() < 3 {
  6282. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  6283. }
  6284. if argsList.Len() > 4 {
  6285. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  6286. }
  6287. lookupValue := argsList.Front().Value.(formulaArg)
  6288. tableArray := argsList.Front().Next().Value.(formulaArg)
  6289. if tableArray.Type != ArgMatrix {
  6290. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  6291. }
  6292. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6293. if rowArg.Type != ArgNumber {
  6294. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  6295. }
  6296. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  6297. if argsList.Len() == 4 {
  6298. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6299. if rangeLookup.Type == ArgError {
  6300. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6301. }
  6302. if rangeLookup.Number == 0 {
  6303. exactMatch = true
  6304. }
  6305. }
  6306. row := tableArray.Matrix[0]
  6307. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6308. start:
  6309. for idx, mtx := range row {
  6310. lhs := mtx
  6311. switch lookupValue.Type {
  6312. case ArgNumber:
  6313. if !lookupValue.Boolean {
  6314. lhs = mtx.ToNumber()
  6315. if lhs.Type == ArgError {
  6316. lhs = mtx
  6317. }
  6318. }
  6319. case ArgMatrix:
  6320. lhs = tableArray
  6321. }
  6322. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6323. matchIdx = idx
  6324. wasExact = true
  6325. break start
  6326. }
  6327. }
  6328. } else {
  6329. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  6330. }
  6331. if matchIdx == -1 {
  6332. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6333. }
  6334. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  6335. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  6336. }
  6337. row = tableArray.Matrix[rowIdx]
  6338. if wasExact || !exactMatch {
  6339. return row[matchIdx]
  6340. }
  6341. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  6342. }
  6343. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  6344. // data array (or table), and returns the corresponding value from another
  6345. // column of the array. The syntax of the function is:
  6346. //
  6347. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  6348. //
  6349. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  6350. if argsList.Len() < 3 {
  6351. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  6352. }
  6353. if argsList.Len() > 4 {
  6354. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  6355. }
  6356. lookupValue := argsList.Front().Value.(formulaArg)
  6357. tableArray := argsList.Front().Next().Value.(formulaArg)
  6358. if tableArray.Type != ArgMatrix {
  6359. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  6360. }
  6361. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  6362. if colIdx.Type != ArgNumber {
  6363. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  6364. }
  6365. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  6366. if argsList.Len() == 4 {
  6367. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  6368. if rangeLookup.Type == ArgError {
  6369. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  6370. }
  6371. if rangeLookup.Number == 0 {
  6372. exactMatch = true
  6373. }
  6374. }
  6375. if exactMatch || len(tableArray.Matrix) == TotalRows {
  6376. start:
  6377. for idx, mtx := range tableArray.Matrix {
  6378. lhs := mtx[0]
  6379. switch lookupValue.Type {
  6380. case ArgNumber:
  6381. if !lookupValue.Boolean {
  6382. lhs = mtx[0].ToNumber()
  6383. if lhs.Type == ArgError {
  6384. lhs = mtx[0]
  6385. }
  6386. }
  6387. case ArgMatrix:
  6388. lhs = tableArray
  6389. }
  6390. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  6391. matchIdx = idx
  6392. wasExact = true
  6393. break start
  6394. }
  6395. }
  6396. } else {
  6397. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  6398. }
  6399. if matchIdx == -1 {
  6400. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6401. }
  6402. mtx := tableArray.Matrix[matchIdx]
  6403. if col < 0 || col >= len(mtx) {
  6404. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  6405. }
  6406. if wasExact || !exactMatch {
  6407. return mtx[col]
  6408. }
  6409. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  6410. }
  6411. // vlookupBinarySearch finds the position of a target value when range lookup
  6412. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6413. // return wrong result.
  6414. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6415. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  6416. for low <= high {
  6417. var mid int = low + (high-low)/2
  6418. mtx := tableArray.Matrix[mid]
  6419. lhs := mtx[0]
  6420. switch lookupValue.Type {
  6421. case ArgNumber:
  6422. if !lookupValue.Boolean {
  6423. lhs = mtx[0].ToNumber()
  6424. if lhs.Type == ArgError {
  6425. lhs = mtx[0]
  6426. }
  6427. }
  6428. case ArgMatrix:
  6429. lhs = tableArray
  6430. }
  6431. result := compareFormulaArg(lhs, lookupValue, false, false)
  6432. if result == criteriaEq {
  6433. matchIdx, wasExact = mid, true
  6434. return
  6435. } else if result == criteriaG {
  6436. high = mid - 1
  6437. } else if result == criteriaL {
  6438. matchIdx, low = mid, mid+1
  6439. if lhs.Value() != "" {
  6440. lastMatchIdx = matchIdx
  6441. }
  6442. } else {
  6443. return -1, false
  6444. }
  6445. }
  6446. matchIdx, wasExact = lastMatchIdx, true
  6447. return
  6448. }
  6449. // vlookupBinarySearch finds the position of a target value when range lookup
  6450. // is TRUE, if the data of table array can't guarantee be sorted, it will
  6451. // return wrong result.
  6452. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  6453. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6454. for low <= high {
  6455. var mid int = low + (high-low)/2
  6456. mtx := row[mid]
  6457. result := compareFormulaArg(mtx, lookupValue, false, false)
  6458. if result == criteriaEq {
  6459. matchIdx, wasExact = mid, true
  6460. return
  6461. } else if result == criteriaG {
  6462. high = mid - 1
  6463. } else if result == criteriaL {
  6464. low, lastMatchIdx = mid+1, mid
  6465. } else {
  6466. return -1, false
  6467. }
  6468. }
  6469. matchIdx, wasExact = lastMatchIdx, true
  6470. return
  6471. }
  6472. // LOOKUP function performs an approximate match lookup in a one-column or
  6473. // one-row range, and returns the corresponding value from another one-column
  6474. // or one-row range. The syntax of the function is:
  6475. //
  6476. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6477. //
  6478. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6479. if argsList.Len() < 2 {
  6480. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6481. }
  6482. if argsList.Len() > 3 {
  6483. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6484. }
  6485. lookupValue := argsList.Front().Value.(formulaArg)
  6486. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6487. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6488. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6489. }
  6490. cols, matchIdx := lookupCol(lookupVector), -1
  6491. for idx, col := range cols {
  6492. lhs := lookupValue
  6493. switch col.Type {
  6494. case ArgNumber:
  6495. lhs = lhs.ToNumber()
  6496. if !col.Boolean {
  6497. if lhs.Type == ArgError {
  6498. lhs = lookupValue
  6499. }
  6500. }
  6501. }
  6502. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6503. matchIdx = idx
  6504. break
  6505. }
  6506. }
  6507. column := cols
  6508. if argsList.Len() == 3 {
  6509. column = lookupCol(argsList.Back().Value.(formulaArg))
  6510. }
  6511. if matchIdx < 0 || matchIdx >= len(column) {
  6512. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6513. }
  6514. return column[matchIdx]
  6515. }
  6516. // lookupCol extract columns for LOOKUP.
  6517. func lookupCol(arr formulaArg) []formulaArg {
  6518. col := arr.List
  6519. if arr.Type == ArgMatrix {
  6520. col = nil
  6521. for _, r := range arr.Matrix {
  6522. if len(r) > 0 {
  6523. col = append(col, r[0])
  6524. continue
  6525. }
  6526. col = append(col, newEmptyFormulaArg())
  6527. }
  6528. }
  6529. return col
  6530. }
  6531. // ROW function returns the first row number within a supplied reference or
  6532. // the number of the current row. The syntax of the function is:
  6533. //
  6534. // ROW([reference])
  6535. //
  6536. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6537. if argsList.Len() > 1 {
  6538. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6539. }
  6540. if argsList.Len() == 1 {
  6541. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6542. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6543. }
  6544. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6545. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6546. }
  6547. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6548. }
  6549. _, row, _ := CellNameToCoordinates(fn.cell)
  6550. return newNumberFormulaArg(float64(row))
  6551. }
  6552. // ROWS function takes an Excel range and returns the number of rows that are
  6553. // contained within the range. The syntax of the function is:
  6554. //
  6555. // ROWS(array)
  6556. //
  6557. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6558. if argsList.Len() != 1 {
  6559. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6560. }
  6561. var min, max int
  6562. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6563. crs := argsList.Front().Value.(formulaArg).cellRanges
  6564. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6565. if min == 0 {
  6566. min = cr.Value.(cellRange).From.Row
  6567. }
  6568. if min > cr.Value.(cellRange).From.Row {
  6569. min = cr.Value.(cellRange).From.Row
  6570. }
  6571. if min > cr.Value.(cellRange).To.Row {
  6572. min = cr.Value.(cellRange).To.Row
  6573. }
  6574. if max < cr.Value.(cellRange).To.Row {
  6575. max = cr.Value.(cellRange).To.Row
  6576. }
  6577. if max < cr.Value.(cellRange).From.Row {
  6578. max = cr.Value.(cellRange).From.Row
  6579. }
  6580. }
  6581. }
  6582. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6583. cr := argsList.Front().Value.(formulaArg).cellRefs
  6584. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6585. if min == 0 {
  6586. min = refs.Value.(cellRef).Row
  6587. }
  6588. if min > refs.Value.(cellRef).Row {
  6589. min = refs.Value.(cellRef).Row
  6590. }
  6591. if max < refs.Value.(cellRef).Row {
  6592. max = refs.Value.(cellRef).Row
  6593. }
  6594. }
  6595. }
  6596. if max == TotalRows {
  6597. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6598. }
  6599. result := max - min + 1
  6600. if max == min {
  6601. if min == 0 {
  6602. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6603. }
  6604. return newNumberFormulaArg(float64(1))
  6605. }
  6606. return newStringFormulaArg(strconv.Itoa(result))
  6607. }
  6608. // Web Functions
  6609. // ENCODEURL function returns a URL-encoded string, replacing certain
  6610. // non-alphanumeric characters with the percentage symbol (%) and a
  6611. // hexadecimal number. The syntax of the function is:
  6612. //
  6613. // ENCODEURL(url)
  6614. //
  6615. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6616. if argsList.Len() != 1 {
  6617. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6618. }
  6619. token := argsList.Front().Value.(formulaArg).Value()
  6620. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6621. }