calc.go 186 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. "golang.org/x/text/language"
  30. "golang.org/x/text/message"
  31. )
  32. // Excel formula errors
  33. const (
  34. formulaErrorDIV = "#DIV/0!"
  35. formulaErrorNAME = "#NAME?"
  36. formulaErrorNA = "#N/A"
  37. formulaErrorNUM = "#NUM!"
  38. formulaErrorVALUE = "#VALUE!"
  39. formulaErrorREF = "#REF!"
  40. formulaErrorNULL = "#NULL"
  41. formulaErrorSPILL = "#SPILL!"
  42. formulaErrorCALC = "#CALC!"
  43. formulaErrorGETTINGDATA = "#GETTING_DATA"
  44. )
  45. // Numeric precision correct numeric values as legacy Excel application
  46. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  47. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  48. // has a decimal representation that is an infinite string of ones, Excel
  49. // displays only the leading 15 figures. In the second line, the number one
  50. // is added to the fraction, and again Excel displays only 15 figures.
  51. const numericPrecision = 1000000000000000
  52. // cellRef defines the structure of a cell reference.
  53. type cellRef struct {
  54. Col int
  55. Row int
  56. Sheet string
  57. }
  58. // cellRef defines the structure of a cell range.
  59. type cellRange struct {
  60. From cellRef
  61. To cellRef
  62. }
  63. // formula criteria condition enumeration.
  64. const (
  65. _ byte = iota
  66. criteriaEq
  67. criteriaLe
  68. criteriaGe
  69. criteriaL
  70. criteriaG
  71. criteriaBeg
  72. criteriaEnd
  73. criteriaErr
  74. )
  75. // formulaCriteria defined formula criteria parser result.
  76. type formulaCriteria struct {
  77. Type byte
  78. Condition string
  79. }
  80. // ArgType is the type if formula argument type.
  81. type ArgType byte
  82. // Formula argument types enumeration.
  83. const (
  84. ArgUnknown ArgType = iota
  85. ArgNumber
  86. ArgString
  87. ArgList
  88. ArgMatrix
  89. ArgError
  90. ArgEmpty
  91. )
  92. // formulaArg is the argument of a formula or function.
  93. type formulaArg struct {
  94. SheetName string
  95. Number float64
  96. String string
  97. List []formulaArg
  98. Matrix [][]formulaArg
  99. Boolean bool
  100. Error string
  101. Type ArgType
  102. cellRefs, cellRanges *list.List
  103. }
  104. // Value returns a string data type of the formula argument.
  105. func (fa formulaArg) Value() (value string) {
  106. switch fa.Type {
  107. case ArgNumber:
  108. if fa.Boolean {
  109. if fa.Number == 0 {
  110. return "FALSE"
  111. }
  112. return "TRUE"
  113. }
  114. return fmt.Sprintf("%g", fa.Number)
  115. case ArgString:
  116. return fa.String
  117. case ArgError:
  118. return fa.Error
  119. }
  120. return
  121. }
  122. // ToNumber returns a formula argument with number data type.
  123. func (fa formulaArg) ToNumber() formulaArg {
  124. var n float64
  125. var err error
  126. switch fa.Type {
  127. case ArgString:
  128. n, err = strconv.ParseFloat(fa.String, 64)
  129. if err != nil {
  130. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  131. }
  132. case ArgNumber:
  133. n = fa.Number
  134. }
  135. return newNumberFormulaArg(n)
  136. }
  137. // ToBool returns a formula argument with boolean data type.
  138. func (fa formulaArg) ToBool() formulaArg {
  139. var b bool
  140. var err error
  141. switch fa.Type {
  142. case ArgString:
  143. b, err = strconv.ParseBool(fa.String)
  144. if err != nil {
  145. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  146. }
  147. case ArgNumber:
  148. if fa.Boolean && fa.Number == 1 {
  149. b = true
  150. }
  151. }
  152. return newBoolFormulaArg(b)
  153. }
  154. // ToList returns a formula argument with array data type.
  155. func (fa formulaArg) ToList() []formulaArg {
  156. switch fa.Type {
  157. case ArgMatrix:
  158. list := []formulaArg{}
  159. for _, row := range fa.Matrix {
  160. list = append(list, row...)
  161. }
  162. return list
  163. case ArgList:
  164. return fa.List
  165. case ArgNumber, ArgString, ArgError, ArgUnknown:
  166. return []formulaArg{fa}
  167. }
  168. return nil
  169. }
  170. // formulaFuncs is the type of the formula functions.
  171. type formulaFuncs struct {
  172. f *File
  173. sheet, cell string
  174. }
  175. // tokenPriority defined basic arithmetic operator priority.
  176. var tokenPriority = map[string]int{
  177. "^": 5,
  178. "*": 4,
  179. "/": 4,
  180. "+": 3,
  181. "-": 3,
  182. "=": 2,
  183. "<>": 2,
  184. "<": 2,
  185. "<=": 2,
  186. ">": 2,
  187. ">=": 2,
  188. "&": 1,
  189. }
  190. // CalcCellValue provides a function to get calculated cell value. This
  191. // feature is currently in working processing. Array formula, table formula
  192. // and some other formulas are not supported currently.
  193. //
  194. // Supported formula functions:
  195. //
  196. // ABS
  197. // ACOS
  198. // ACOSH
  199. // ACOT
  200. // ACOTH
  201. // AND
  202. // ARABIC
  203. // ASIN
  204. // ASINH
  205. // ATAN
  206. // ATAN2
  207. // ATANH
  208. // AVERAGE
  209. // AVERAGEA
  210. // BASE
  211. // BIN2DEC
  212. // BIN2HEX
  213. // BIN2OCT
  214. // BITAND
  215. // BITLSHIFT
  216. // BITOR
  217. // BITRSHIFT
  218. // BITXOR
  219. // CEILING
  220. // CEILING.MATH
  221. // CEILING.PRECISE
  222. // CHAR
  223. // CHOOSE
  224. // CLEAN
  225. // CODE
  226. // COLUMN
  227. // COLUMNS
  228. // COMBIN
  229. // COMBINA
  230. // CONCAT
  231. // CONCATENATE
  232. // COS
  233. // COSH
  234. // COT
  235. // COTH
  236. // COUNT
  237. // COUNTA
  238. // COUNTBLANK
  239. // CSC
  240. // CSCH
  241. // DATE
  242. // DATEDIF
  243. // DEC2BIN
  244. // DEC2HEX
  245. // DEC2OCT
  246. // DECIMAL
  247. // DEGREES
  248. // ENCODEURL
  249. // EVEN
  250. // EXACT
  251. // EXP
  252. // FACT
  253. // FACTDOUBLE
  254. // FALSE
  255. // FIND
  256. // FINDB
  257. // FISHER
  258. // FISHERINV
  259. // FIXED
  260. // FLOOR
  261. // FLOOR.MATH
  262. // FLOOR.PRECISE
  263. // GAMMA
  264. // GAMMALN
  265. // GCD
  266. // HARMEAN
  267. // HEX2BIN
  268. // HEX2DEC
  269. // HEX2OCT
  270. // HLOOKUP
  271. // IF
  272. // IFERROR
  273. // INT
  274. // ISBLANK
  275. // ISERR
  276. // ISERROR
  277. // ISEVEN
  278. // ISNA
  279. // ISNONTEXT
  280. // ISNUMBER
  281. // ISODD
  282. // ISTEXT
  283. // ISO.CEILING
  284. // KURT
  285. // LARGE
  286. // LCM
  287. // LEFT
  288. // LEFTB
  289. // LEN
  290. // LENB
  291. // LN
  292. // LOG
  293. // LOG10
  294. // LOOKUP
  295. // LOWER
  296. // MAX
  297. // MDETERM
  298. // MEDIAN
  299. // MID
  300. // MIDB
  301. // MIN
  302. // MINA
  303. // MOD
  304. // MROUND
  305. // MULTINOMIAL
  306. // MUNIT
  307. // N
  308. // NA
  309. // NORM.DIST
  310. // NORMDIST
  311. // NORM.INV
  312. // NORMINV
  313. // NORM.S.DIST
  314. // NORMSDIST
  315. // NORM.S.INV
  316. // NORMSINV
  317. // NOT
  318. // NOW
  319. // OCT2BIN
  320. // OCT2DEC
  321. // OCT2HEX
  322. // ODD
  323. // OR
  324. // PERCENTILE.INC
  325. // PERCENTILE
  326. // PERMUT
  327. // PERMUTATIONA
  328. // PI
  329. // POISSON.DIST
  330. // POISSON
  331. // POWER
  332. // PRODUCT
  333. // PROPER
  334. // QUOTIENT
  335. // RADIANS
  336. // RAND
  337. // RANDBETWEEN
  338. // REPLACE
  339. // REPLACEB
  340. // REPT
  341. // RIGHT
  342. // RIGHTB
  343. // ROMAN
  344. // ROUND
  345. // ROUNDDOWN
  346. // ROUNDUP
  347. // ROW
  348. // ROWS
  349. // SEC
  350. // SECH
  351. // SHEET
  352. // SIGN
  353. // SIN
  354. // SINH
  355. // SKEW
  356. // SMALL
  357. // SQRT
  358. // SQRTPI
  359. // STDEV
  360. // STDEV.S
  361. // STDEVA
  362. // SUBSTITUTE
  363. // SUM
  364. // SUMIF
  365. // SUMSQ
  366. // T
  367. // TAN
  368. // TANH
  369. // TODAY
  370. // TRIM
  371. // TRUE
  372. // TRUNC
  373. // UNICHAR
  374. // UNICODE
  375. // UPPER
  376. // VLOOKUP
  377. //
  378. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  379. var (
  380. formula string
  381. token efp.Token
  382. )
  383. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  384. return
  385. }
  386. ps := efp.ExcelParser()
  387. tokens := ps.Parse(formula)
  388. if tokens == nil {
  389. return
  390. }
  391. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  392. return
  393. }
  394. result = token.TValue
  395. isNum, precision := isNumeric(result)
  396. if isNum && precision > 15 {
  397. num, _ := roundPrecision(result)
  398. result = strings.ToUpper(num)
  399. }
  400. return
  401. }
  402. // getPriority calculate arithmetic operator priority.
  403. func getPriority(token efp.Token) (pri int) {
  404. pri = tokenPriority[token.TValue]
  405. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  406. pri = 6
  407. }
  408. if isBeginParenthesesToken(token) { // (
  409. pri = 0
  410. }
  411. return
  412. }
  413. // newNumberFormulaArg constructs a number formula argument.
  414. func newNumberFormulaArg(n float64) formulaArg {
  415. if math.IsNaN(n) {
  416. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  417. }
  418. return formulaArg{Type: ArgNumber, Number: n}
  419. }
  420. // newStringFormulaArg constructs a string formula argument.
  421. func newStringFormulaArg(s string) formulaArg {
  422. return formulaArg{Type: ArgString, String: s}
  423. }
  424. // newMatrixFormulaArg constructs a matrix formula argument.
  425. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  426. return formulaArg{Type: ArgMatrix, Matrix: m}
  427. }
  428. // newListFormulaArg create a list formula argument.
  429. func newListFormulaArg(l []formulaArg) formulaArg {
  430. return formulaArg{Type: ArgList, List: l}
  431. }
  432. // newBoolFormulaArg constructs a boolean formula argument.
  433. func newBoolFormulaArg(b bool) formulaArg {
  434. var n float64
  435. if b {
  436. n = 1
  437. }
  438. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  439. }
  440. // newErrorFormulaArg create an error formula argument of a given type with a
  441. // specified error message.
  442. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  443. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  444. }
  445. // newEmptyFormulaArg create an empty formula argument.
  446. func newEmptyFormulaArg() formulaArg {
  447. return formulaArg{Type: ArgEmpty}
  448. }
  449. // evalInfixExp evaluate syntax analysis by given infix expression after
  450. // lexical analysis. Evaluate an infix expression containing formulas by
  451. // stacks:
  452. //
  453. // opd - Operand
  454. // opt - Operator
  455. // opf - Operation formula
  456. // opfd - Operand of the operation formula
  457. // opft - Operator of the operation formula
  458. // args - Arguments list of the operation formula
  459. //
  460. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  461. //
  462. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  463. var err error
  464. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  465. for i := 0; i < len(tokens); i++ {
  466. token := tokens[i]
  467. // out of function stack
  468. if opfStack.Len() == 0 {
  469. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  470. return efp.Token{}, err
  471. }
  472. }
  473. // function start
  474. if isFunctionStartToken(token) {
  475. opfStack.Push(token)
  476. argsStack.Push(list.New().Init())
  477. continue
  478. }
  479. // in function stack, walk 2 token at once
  480. if opfStack.Len() > 0 {
  481. var nextToken efp.Token
  482. if i+1 < len(tokens) {
  483. nextToken = tokens[i+1]
  484. }
  485. // current token is args or range, skip next token, order required: parse reference first
  486. if token.TSubType == efp.TokenSubTypeRange {
  487. if !opftStack.Empty() {
  488. // parse reference: must reference at here
  489. result, err := f.parseReference(sheet, token.TValue)
  490. if err != nil {
  491. return efp.Token{TValue: formulaErrorNAME}, err
  492. }
  493. if result.Type != ArgString {
  494. return efp.Token{}, errors.New(formulaErrorVALUE)
  495. }
  496. opfdStack.Push(efp.Token{
  497. TType: efp.TokenTypeOperand,
  498. TSubType: efp.TokenSubTypeNumber,
  499. TValue: result.String,
  500. })
  501. continue
  502. }
  503. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  504. // parse reference: reference or range at here
  505. result, err := f.parseReference(sheet, token.TValue)
  506. if err != nil {
  507. return efp.Token{TValue: formulaErrorNAME}, err
  508. }
  509. if result.Type == ArgUnknown {
  510. return efp.Token{}, errors.New(formulaErrorVALUE)
  511. }
  512. argsStack.Peek().(*list.List).PushBack(result)
  513. continue
  514. }
  515. }
  516. // check current token is opft
  517. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  518. return efp.Token{}, err
  519. }
  520. // current token is arg
  521. if token.TType == efp.TokenTypeArgument {
  522. for !opftStack.Empty() {
  523. // calculate trigger
  524. topOpt := opftStack.Peek().(efp.Token)
  525. if err := calculate(opfdStack, topOpt); err != nil {
  526. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  527. }
  528. opftStack.Pop()
  529. }
  530. if !opfdStack.Empty() {
  531. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  532. }
  533. continue
  534. }
  535. // current token is logical
  536. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  537. }
  538. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  539. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  540. }
  541. // current token is text
  542. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  543. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  544. }
  545. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  546. return efp.Token{}, err
  547. }
  548. }
  549. }
  550. for optStack.Len() != 0 {
  551. topOpt := optStack.Peek().(efp.Token)
  552. if err = calculate(opdStack, topOpt); err != nil {
  553. return efp.Token{}, err
  554. }
  555. optStack.Pop()
  556. }
  557. if opdStack.Len() == 0 {
  558. return efp.Token{}, errors.New("formula not valid")
  559. }
  560. return opdStack.Peek().(efp.Token), err
  561. }
  562. // evalInfixExpFunc evaluate formula function in the infix expression.
  563. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  564. if !isFunctionStopToken(token) {
  565. return nil
  566. }
  567. // current token is function stop
  568. for !opftStack.Empty() {
  569. // calculate trigger
  570. topOpt := opftStack.Peek().(efp.Token)
  571. if err := calculate(opfdStack, topOpt); err != nil {
  572. return err
  573. }
  574. opftStack.Pop()
  575. }
  576. // push opfd to args
  577. if opfdStack.Len() > 0 {
  578. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  579. }
  580. // call formula function to evaluate
  581. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  582. "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
  583. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  584. if arg.Type == ArgError && opfStack.Len() == 1 {
  585. return errors.New(arg.Value())
  586. }
  587. argsStack.Pop()
  588. opfStack.Pop()
  589. if opfStack.Len() > 0 { // still in function stack
  590. if nextToken.TType == efp.TokenTypeOperatorInfix {
  591. // mathematics calculate in formula function
  592. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  593. } else {
  594. argsStack.Peek().(*list.List).PushBack(arg)
  595. }
  596. } else {
  597. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  598. }
  599. return nil
  600. }
  601. // calcPow evaluate exponentiation arithmetic operations.
  602. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  603. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  604. if err != nil {
  605. return err
  606. }
  607. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  608. if err != nil {
  609. return err
  610. }
  611. result := math.Pow(lOpdVal, rOpdVal)
  612. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  613. return nil
  614. }
  615. // calcEq evaluate equal arithmetic operations.
  616. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  617. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  618. return nil
  619. }
  620. // calcNEq evaluate not equal arithmetic operations.
  621. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  622. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  623. return nil
  624. }
  625. // calcL evaluate less than arithmetic operations.
  626. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  627. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  628. if err != nil {
  629. return err
  630. }
  631. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  632. if err != nil {
  633. return err
  634. }
  635. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  636. return nil
  637. }
  638. // calcLe evaluate less than or equal arithmetic operations.
  639. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  640. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  641. if err != nil {
  642. return err
  643. }
  644. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  645. if err != nil {
  646. return err
  647. }
  648. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  649. return nil
  650. }
  651. // calcG evaluate greater than or equal arithmetic operations.
  652. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  653. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  654. if err != nil {
  655. return err
  656. }
  657. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  658. if err != nil {
  659. return err
  660. }
  661. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  662. return nil
  663. }
  664. // calcGe evaluate greater than or equal arithmetic operations.
  665. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  666. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  667. if err != nil {
  668. return err
  669. }
  670. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  671. if err != nil {
  672. return err
  673. }
  674. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  675. return nil
  676. }
  677. // calcSplice evaluate splice '&' operations.
  678. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  679. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  680. return nil
  681. }
  682. // calcAdd evaluate addition arithmetic operations.
  683. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  684. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  685. if err != nil {
  686. return err
  687. }
  688. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  689. if err != nil {
  690. return err
  691. }
  692. result := lOpdVal + rOpdVal
  693. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  694. return nil
  695. }
  696. // calcSubtract evaluate subtraction arithmetic operations.
  697. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  698. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  699. if err != nil {
  700. return err
  701. }
  702. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  703. if err != nil {
  704. return err
  705. }
  706. result := lOpdVal - rOpdVal
  707. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  708. return nil
  709. }
  710. // calcMultiply evaluate multiplication arithmetic operations.
  711. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  712. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  713. if err != nil {
  714. return err
  715. }
  716. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  717. if err != nil {
  718. return err
  719. }
  720. result := lOpdVal * rOpdVal
  721. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  722. return nil
  723. }
  724. // calcDiv evaluate division arithmetic operations.
  725. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  726. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  727. if err != nil {
  728. return err
  729. }
  730. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  731. if err != nil {
  732. return err
  733. }
  734. result := lOpdVal / rOpdVal
  735. if rOpdVal == 0 {
  736. return errors.New(formulaErrorDIV)
  737. }
  738. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  739. return nil
  740. }
  741. // calculate evaluate basic arithmetic operations.
  742. func calculate(opdStack *Stack, opt efp.Token) error {
  743. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  744. if opdStack.Len() < 1 {
  745. return errors.New("formula not valid")
  746. }
  747. opd := opdStack.Pop().(efp.Token)
  748. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  749. if err != nil {
  750. return err
  751. }
  752. result := 0 - opdVal
  753. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  754. }
  755. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  756. "^": calcPow,
  757. "*": calcMultiply,
  758. "/": calcDiv,
  759. "+": calcAdd,
  760. "=": calcEq,
  761. "<>": calcNEq,
  762. "<": calcL,
  763. "<=": calcLe,
  764. ">": calcG,
  765. ">=": calcGe,
  766. "&": calcSplice,
  767. }
  768. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  769. if opdStack.Len() < 2 {
  770. return errors.New("formula not valid")
  771. }
  772. rOpd := opdStack.Pop().(efp.Token)
  773. lOpd := opdStack.Pop().(efp.Token)
  774. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  775. return err
  776. }
  777. }
  778. fn, ok := tokenCalcFunc[opt.TValue]
  779. if ok {
  780. if opdStack.Len() < 2 {
  781. return errors.New("formula not valid")
  782. }
  783. rOpd := opdStack.Pop().(efp.Token)
  784. lOpd := opdStack.Pop().(efp.Token)
  785. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  786. return err
  787. }
  788. }
  789. return nil
  790. }
  791. // parseOperatorPrefixToken parse operator prefix token.
  792. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  793. if optStack.Len() == 0 {
  794. optStack.Push(token)
  795. } else {
  796. tokenPriority := getPriority(token)
  797. topOpt := optStack.Peek().(efp.Token)
  798. topOptPriority := getPriority(topOpt)
  799. if tokenPriority > topOptPriority {
  800. optStack.Push(token)
  801. } else {
  802. for tokenPriority <= topOptPriority {
  803. optStack.Pop()
  804. if err = calculate(opdStack, topOpt); err != nil {
  805. return
  806. }
  807. if optStack.Len() > 0 {
  808. topOpt = optStack.Peek().(efp.Token)
  809. topOptPriority = getPriority(topOpt)
  810. continue
  811. }
  812. break
  813. }
  814. optStack.Push(token)
  815. }
  816. }
  817. return
  818. }
  819. // isFunctionStartToken determine if the token is function stop.
  820. func isFunctionStartToken(token efp.Token) bool {
  821. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  822. }
  823. // isFunctionStopToken determine if the token is function stop.
  824. func isFunctionStopToken(token efp.Token) bool {
  825. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  826. }
  827. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  828. func isBeginParenthesesToken(token efp.Token) bool {
  829. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  830. }
  831. // isEndParenthesesToken determine if the token is end parentheses: ).
  832. func isEndParenthesesToken(token efp.Token) bool {
  833. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  834. }
  835. // isOperatorPrefixToken determine if the token is parse operator prefix
  836. // token.
  837. func isOperatorPrefixToken(token efp.Token) bool {
  838. _, ok := tokenPriority[token.TValue]
  839. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  840. return true
  841. }
  842. return false
  843. }
  844. // getDefinedNameRefTo convert defined name to reference range.
  845. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  846. for _, definedName := range f.GetDefinedName() {
  847. if definedName.Name == definedNameName {
  848. refTo = definedName.RefersTo
  849. // worksheet scope takes precedence over scope workbook when both definedNames exist
  850. if definedName.Scope == currentSheet {
  851. break
  852. }
  853. }
  854. }
  855. return refTo
  856. }
  857. // parseToken parse basic arithmetic operator priority and evaluate based on
  858. // operators and operands.
  859. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  860. // parse reference: must reference at here
  861. if token.TSubType == efp.TokenSubTypeRange {
  862. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  863. if refTo != "" {
  864. token.TValue = refTo
  865. }
  866. result, err := f.parseReference(sheet, token.TValue)
  867. if err != nil {
  868. return errors.New(formulaErrorNAME)
  869. }
  870. if result.Type != ArgString {
  871. return errors.New(formulaErrorVALUE)
  872. }
  873. token.TValue = result.String
  874. token.TType = efp.TokenTypeOperand
  875. token.TSubType = efp.TokenSubTypeNumber
  876. }
  877. if isOperatorPrefixToken(token) {
  878. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  879. return err
  880. }
  881. }
  882. if isBeginParenthesesToken(token) { // (
  883. optStack.Push(token)
  884. }
  885. if isEndParenthesesToken(token) { // )
  886. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  887. topOpt := optStack.Peek().(efp.Token)
  888. if err := calculate(opdStack, topOpt); err != nil {
  889. return err
  890. }
  891. optStack.Pop()
  892. }
  893. optStack.Pop()
  894. }
  895. // opd
  896. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  897. opdStack.Push(token)
  898. }
  899. return nil
  900. }
  901. // parseReference parse reference and extract values by given reference
  902. // characters and default sheet name.
  903. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  904. reference = strings.Replace(reference, "$", "", -1)
  905. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  906. for _, ref := range strings.Split(reference, ":") {
  907. tokens := strings.Split(ref, "!")
  908. cr := cellRef{}
  909. if len(tokens) == 2 { // have a worksheet name
  910. cr.Sheet = tokens[0]
  911. // cast to cell coordinates
  912. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  913. // cast to column
  914. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  915. // cast to row
  916. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  917. err = newInvalidColumnNameError(tokens[1])
  918. return
  919. }
  920. cr.Col = TotalColumns
  921. }
  922. }
  923. if refs.Len() > 0 {
  924. e := refs.Back()
  925. cellRefs.PushBack(e.Value.(cellRef))
  926. refs.Remove(e)
  927. }
  928. refs.PushBack(cr)
  929. continue
  930. }
  931. // cast to cell coordinates
  932. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  933. // cast to column
  934. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  935. // cast to row
  936. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  937. err = newInvalidColumnNameError(tokens[0])
  938. return
  939. }
  940. cr.Col = TotalColumns
  941. }
  942. cellRanges.PushBack(cellRange{
  943. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  944. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  945. })
  946. cellRefs.Init()
  947. arg, err = f.rangeResolver(cellRefs, cellRanges)
  948. return
  949. }
  950. e := refs.Back()
  951. if e == nil {
  952. cr.Sheet = sheet
  953. refs.PushBack(cr)
  954. continue
  955. }
  956. cellRanges.PushBack(cellRange{
  957. From: e.Value.(cellRef),
  958. To: cr,
  959. })
  960. refs.Remove(e)
  961. }
  962. if refs.Len() > 0 {
  963. e := refs.Back()
  964. cellRefs.PushBack(e.Value.(cellRef))
  965. refs.Remove(e)
  966. }
  967. arg, err = f.rangeResolver(cellRefs, cellRanges)
  968. return
  969. }
  970. // prepareValueRange prepare value range.
  971. func prepareValueRange(cr cellRange, valueRange []int) {
  972. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  973. valueRange[0] = cr.From.Row
  974. }
  975. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  976. valueRange[2] = cr.From.Col
  977. }
  978. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  979. valueRange[1] = cr.To.Row
  980. }
  981. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  982. valueRange[3] = cr.To.Col
  983. }
  984. }
  985. // prepareValueRef prepare value reference.
  986. func prepareValueRef(cr cellRef, valueRange []int) {
  987. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  988. valueRange[0] = cr.Row
  989. }
  990. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  991. valueRange[2] = cr.Col
  992. }
  993. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  994. valueRange[1] = cr.Row
  995. }
  996. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  997. valueRange[3] = cr.Col
  998. }
  999. }
  1000. // rangeResolver extract value as string from given reference and range list.
  1001. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  1002. // be reference A1:B3.
  1003. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  1004. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  1005. // value range order: from row, to row, from column, to column
  1006. valueRange := []int{0, 0, 0, 0}
  1007. var sheet string
  1008. // prepare value range
  1009. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  1010. cr := temp.Value.(cellRange)
  1011. if cr.From.Sheet != cr.To.Sheet {
  1012. err = errors.New(formulaErrorVALUE)
  1013. }
  1014. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  1015. _ = sortCoordinates(rng)
  1016. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  1017. prepareValueRange(cr, valueRange)
  1018. if cr.From.Sheet != "" {
  1019. sheet = cr.From.Sheet
  1020. }
  1021. }
  1022. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1023. cr := temp.Value.(cellRef)
  1024. if cr.Sheet != "" {
  1025. sheet = cr.Sheet
  1026. }
  1027. prepareValueRef(cr, valueRange)
  1028. }
  1029. // extract value from ranges
  1030. if cellRanges.Len() > 0 {
  1031. arg.Type = ArgMatrix
  1032. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1033. var matrixRow = []formulaArg{}
  1034. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1035. var cell, value string
  1036. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1037. return
  1038. }
  1039. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1040. return
  1041. }
  1042. matrixRow = append(matrixRow, formulaArg{
  1043. String: value,
  1044. Type: ArgString,
  1045. })
  1046. }
  1047. arg.Matrix = append(arg.Matrix, matrixRow)
  1048. }
  1049. return
  1050. }
  1051. // extract value from references
  1052. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1053. cr := temp.Value.(cellRef)
  1054. var cell string
  1055. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1056. return
  1057. }
  1058. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1059. return
  1060. }
  1061. arg.Type = ArgString
  1062. }
  1063. return
  1064. }
  1065. // callFuncByName calls the no error or only error return function with
  1066. // reflect by given receiver, name and parameters.
  1067. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1068. function := reflect.ValueOf(receiver).MethodByName(name)
  1069. if function.IsValid() {
  1070. rt := function.Call(params)
  1071. if len(rt) == 0 {
  1072. return
  1073. }
  1074. arg = rt[0].Interface().(formulaArg)
  1075. return
  1076. }
  1077. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1078. }
  1079. // formulaCriteriaParser parse formula criteria.
  1080. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1081. fc = &formulaCriteria{}
  1082. if exp == "" {
  1083. return
  1084. }
  1085. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1086. fc.Type, fc.Condition = criteriaEq, match[1]
  1087. return
  1088. }
  1089. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1090. fc.Type, fc.Condition = criteriaEq, match[1]
  1091. return
  1092. }
  1093. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1094. fc.Type, fc.Condition = criteriaLe, match[1]
  1095. return
  1096. }
  1097. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1098. fc.Type, fc.Condition = criteriaGe, match[1]
  1099. return
  1100. }
  1101. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1102. fc.Type, fc.Condition = criteriaL, match[1]
  1103. return
  1104. }
  1105. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1106. fc.Type, fc.Condition = criteriaG, match[1]
  1107. return
  1108. }
  1109. if strings.Contains(exp, "*") {
  1110. if strings.HasPrefix(exp, "*") {
  1111. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1112. }
  1113. if strings.HasSuffix(exp, "*") {
  1114. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1115. }
  1116. return
  1117. }
  1118. fc.Type, fc.Condition = criteriaEq, exp
  1119. return
  1120. }
  1121. // formulaCriteriaEval evaluate formula criteria expression.
  1122. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1123. var value, expected float64
  1124. var e error
  1125. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1126. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1127. return
  1128. }
  1129. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1130. return
  1131. }
  1132. return
  1133. }
  1134. switch criteria.Type {
  1135. case criteriaEq:
  1136. return val == criteria.Condition, err
  1137. case criteriaLe:
  1138. value, expected, e = prepareValue(val, criteria.Condition)
  1139. return value <= expected && e == nil, err
  1140. case criteriaGe:
  1141. value, expected, e = prepareValue(val, criteria.Condition)
  1142. return value >= expected && e == nil, err
  1143. case criteriaL:
  1144. value, expected, e = prepareValue(val, criteria.Condition)
  1145. return value < expected && e == nil, err
  1146. case criteriaG:
  1147. value, expected, e = prepareValue(val, criteria.Condition)
  1148. return value > expected && e == nil, err
  1149. case criteriaBeg:
  1150. return strings.HasPrefix(val, criteria.Condition), err
  1151. case criteriaEnd:
  1152. return strings.HasSuffix(val, criteria.Condition), err
  1153. }
  1154. return
  1155. }
  1156. // Engineering Functions
  1157. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1158. // The syntax of the function is:
  1159. //
  1160. // BIN2DEC(number)
  1161. //
  1162. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1163. if argsList.Len() != 1 {
  1164. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1165. }
  1166. token := argsList.Front().Value.(formulaArg)
  1167. number := token.ToNumber()
  1168. if number.Type != ArgNumber {
  1169. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1170. }
  1171. return fn.bin2dec(token.Value())
  1172. }
  1173. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1174. // (Base 16) number. The syntax of the function is:
  1175. //
  1176. // BIN2HEX(number,[places])
  1177. //
  1178. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1179. if argsList.Len() < 1 {
  1180. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1181. }
  1182. if argsList.Len() > 2 {
  1183. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1184. }
  1185. token := argsList.Front().Value.(formulaArg)
  1186. number := token.ToNumber()
  1187. if number.Type != ArgNumber {
  1188. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1189. }
  1190. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1191. if decimal.Type != ArgNumber {
  1192. return decimal
  1193. }
  1194. newList.PushBack(decimal)
  1195. if argsList.Len() == 2 {
  1196. newList.PushBack(argsList.Back().Value.(formulaArg))
  1197. }
  1198. return fn.dec2x("BIN2HEX", newList)
  1199. }
  1200. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1201. // number. The syntax of the function is:
  1202. //
  1203. // BIN2OCT(number,[places])
  1204. //
  1205. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1206. if argsList.Len() < 1 {
  1207. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1208. }
  1209. if argsList.Len() > 2 {
  1210. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1211. }
  1212. token := argsList.Front().Value.(formulaArg)
  1213. number := token.ToNumber()
  1214. if number.Type != ArgNumber {
  1215. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1216. }
  1217. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1218. if decimal.Type != ArgNumber {
  1219. return decimal
  1220. }
  1221. newList.PushBack(decimal)
  1222. if argsList.Len() == 2 {
  1223. newList.PushBack(argsList.Back().Value.(formulaArg))
  1224. }
  1225. return fn.dec2x("BIN2OCT", newList)
  1226. }
  1227. // bin2dec is an implementation of the formula function BIN2DEC.
  1228. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1229. decimal, length := 0.0, len(number)
  1230. for i := length; i > 0; i-- {
  1231. s := string(number[length-i])
  1232. if 10 == i && s == "1" {
  1233. decimal += math.Pow(-2.0, float64(i-1))
  1234. continue
  1235. }
  1236. if s == "1" {
  1237. decimal += math.Pow(2.0, float64(i-1))
  1238. continue
  1239. }
  1240. if s != "0" {
  1241. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1242. }
  1243. }
  1244. return newNumberFormulaArg(decimal)
  1245. }
  1246. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1247. // syntax of the function is:
  1248. //
  1249. // BITAND(number1,number2)
  1250. //
  1251. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1252. return fn.bitwise("BITAND", argsList)
  1253. }
  1254. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1255. // number of bits. The syntax of the function is:
  1256. //
  1257. // BITLSHIFT(number1,shift_amount)
  1258. //
  1259. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1260. return fn.bitwise("BITLSHIFT", argsList)
  1261. }
  1262. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1263. // syntax of the function is:
  1264. //
  1265. // BITOR(number1,number2)
  1266. //
  1267. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1268. return fn.bitwise("BITOR", argsList)
  1269. }
  1270. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1271. // number of bits. The syntax of the function is:
  1272. //
  1273. // BITRSHIFT(number1,shift_amount)
  1274. //
  1275. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1276. return fn.bitwise("BITRSHIFT", argsList)
  1277. }
  1278. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1279. // integers. The syntax of the function is:
  1280. //
  1281. // BITXOR(number1,number2)
  1282. //
  1283. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1284. return fn.bitwise("BITXOR", argsList)
  1285. }
  1286. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1287. // BITOR, BITRSHIFT and BITXOR.
  1288. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1289. if argsList.Len() != 2 {
  1290. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1291. }
  1292. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1293. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1294. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1295. }
  1296. max := math.Pow(2, 48) - 1
  1297. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1298. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1299. }
  1300. bitwiseFuncMap := map[string]func(a, b int) int{
  1301. "BITAND": func(a, b int) int { return a & b },
  1302. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1303. "BITOR": func(a, b int) int { return a | b },
  1304. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1305. "BITXOR": func(a, b int) int { return a ^ b },
  1306. }
  1307. bitwiseFunc := bitwiseFuncMap[name]
  1308. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1309. }
  1310. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1311. // The syntax of the function is:
  1312. //
  1313. // DEC2BIN(number,[places])
  1314. //
  1315. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1316. return fn.dec2x("DEC2BIN", argsList)
  1317. }
  1318. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1319. // number. The syntax of the function is:
  1320. //
  1321. // DEC2HEX(number,[places])
  1322. //
  1323. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1324. return fn.dec2x("DEC2HEX", argsList)
  1325. }
  1326. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1327. // The syntax of the function is:
  1328. //
  1329. // DEC2OCT(number,[places])
  1330. //
  1331. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1332. return fn.dec2x("DEC2OCT", argsList)
  1333. }
  1334. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1335. // DEC2OCT.
  1336. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1337. if argsList.Len() < 1 {
  1338. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1339. }
  1340. if argsList.Len() > 2 {
  1341. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1342. }
  1343. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1344. if decimal.Type != ArgNumber {
  1345. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1346. }
  1347. maxLimitMap := map[string]float64{
  1348. "DEC2BIN": 511,
  1349. "HEX2BIN": 511,
  1350. "OCT2BIN": 511,
  1351. "BIN2HEX": 549755813887,
  1352. "DEC2HEX": 549755813887,
  1353. "OCT2HEX": 549755813887,
  1354. "BIN2OCT": 536870911,
  1355. "DEC2OCT": 536870911,
  1356. "HEX2OCT": 536870911,
  1357. }
  1358. minLimitMap := map[string]float64{
  1359. "DEC2BIN": -512,
  1360. "HEX2BIN": -512,
  1361. "OCT2BIN": -512,
  1362. "BIN2HEX": -549755813888,
  1363. "DEC2HEX": -549755813888,
  1364. "OCT2HEX": -549755813888,
  1365. "BIN2OCT": -536870912,
  1366. "DEC2OCT": -536870912,
  1367. "HEX2OCT": -536870912,
  1368. }
  1369. baseMap := map[string]int{
  1370. "DEC2BIN": 2,
  1371. "HEX2BIN": 2,
  1372. "OCT2BIN": 2,
  1373. "BIN2HEX": 16,
  1374. "DEC2HEX": 16,
  1375. "OCT2HEX": 16,
  1376. "BIN2OCT": 8,
  1377. "DEC2OCT": 8,
  1378. "HEX2OCT": 8,
  1379. }
  1380. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1381. base := baseMap[name]
  1382. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1383. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1384. }
  1385. n := int64(decimal.Number)
  1386. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1387. if argsList.Len() == 2 {
  1388. places := argsList.Back().Value.(formulaArg).ToNumber()
  1389. if places.Type != ArgNumber {
  1390. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1391. }
  1392. binaryPlaces := len(binary)
  1393. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1394. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1395. }
  1396. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1397. }
  1398. if decimal.Number < 0 && len(binary) > 10 {
  1399. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1400. }
  1401. return newStringFormulaArg(strings.ToUpper(binary))
  1402. }
  1403. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1404. // (Base 2) number. The syntax of the function is:
  1405. //
  1406. // HEX2BIN(number,[places])
  1407. //
  1408. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1409. if argsList.Len() < 1 {
  1410. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1411. }
  1412. if argsList.Len() > 2 {
  1413. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1414. }
  1415. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1416. if decimal.Type != ArgNumber {
  1417. return decimal
  1418. }
  1419. newList.PushBack(decimal)
  1420. if argsList.Len() == 2 {
  1421. newList.PushBack(argsList.Back().Value.(formulaArg))
  1422. }
  1423. return fn.dec2x("HEX2BIN", newList)
  1424. }
  1425. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1426. // number. The syntax of the function is:
  1427. //
  1428. // HEX2DEC(number)
  1429. //
  1430. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1431. if argsList.Len() != 1 {
  1432. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1433. }
  1434. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1435. }
  1436. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1437. // (Base 8) number. The syntax of the function is:
  1438. //
  1439. // HEX2OCT(number,[places])
  1440. //
  1441. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1442. if argsList.Len() < 1 {
  1443. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1444. }
  1445. if argsList.Len() > 2 {
  1446. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1447. }
  1448. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1449. if decimal.Type != ArgNumber {
  1450. return decimal
  1451. }
  1452. newList.PushBack(decimal)
  1453. if argsList.Len() == 2 {
  1454. newList.PushBack(argsList.Back().Value.(formulaArg))
  1455. }
  1456. return fn.dec2x("HEX2OCT", newList)
  1457. }
  1458. // hex2dec is an implementation of the formula function HEX2DEC.
  1459. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1460. decimal, length := 0.0, len(number)
  1461. for i := length; i > 0; i-- {
  1462. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1463. if err != nil {
  1464. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1465. }
  1466. if 10 == i && string(number[length-i]) == "F" {
  1467. decimal += math.Pow(-16.0, float64(i-1))
  1468. continue
  1469. }
  1470. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1471. }
  1472. return newNumberFormulaArg(decimal)
  1473. }
  1474. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1475. // number. The syntax of the function is:
  1476. //
  1477. // OCT2BIN(number,[places])
  1478. //
  1479. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1480. if argsList.Len() < 1 {
  1481. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1482. }
  1483. if argsList.Len() > 2 {
  1484. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1485. }
  1486. token := argsList.Front().Value.(formulaArg)
  1487. number := token.ToNumber()
  1488. if number.Type != ArgNumber {
  1489. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1490. }
  1491. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1492. newList.PushBack(decimal)
  1493. if argsList.Len() == 2 {
  1494. newList.PushBack(argsList.Back().Value.(formulaArg))
  1495. }
  1496. return fn.dec2x("OCT2BIN", newList)
  1497. }
  1498. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1499. // The syntax of the function is:
  1500. //
  1501. // OCT2DEC(number)
  1502. //
  1503. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1504. if argsList.Len() != 1 {
  1505. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1506. }
  1507. token := argsList.Front().Value.(formulaArg)
  1508. number := token.ToNumber()
  1509. if number.Type != ArgNumber {
  1510. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1511. }
  1512. return fn.oct2dec(token.Value())
  1513. }
  1514. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1515. // (Base 16) number. The syntax of the function is:
  1516. //
  1517. // OCT2HEX(number,[places])
  1518. //
  1519. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1520. if argsList.Len() < 1 {
  1521. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1522. }
  1523. if argsList.Len() > 2 {
  1524. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1525. }
  1526. token := argsList.Front().Value.(formulaArg)
  1527. number := token.ToNumber()
  1528. if number.Type != ArgNumber {
  1529. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1530. }
  1531. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1532. newList.PushBack(decimal)
  1533. if argsList.Len() == 2 {
  1534. newList.PushBack(argsList.Back().Value.(formulaArg))
  1535. }
  1536. return fn.dec2x("OCT2HEX", newList)
  1537. }
  1538. // oct2dec is an implementation of the formula function OCT2DEC.
  1539. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1540. decimal, length := 0.0, len(number)
  1541. for i := length; i > 0; i-- {
  1542. num, _ := strconv.Atoi(string(number[length-i]))
  1543. if 10 == i && string(number[length-i]) == "7" {
  1544. decimal += math.Pow(-8.0, float64(i-1))
  1545. continue
  1546. }
  1547. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1548. }
  1549. return newNumberFormulaArg(decimal)
  1550. }
  1551. // Math and Trigonometric Functions
  1552. // ABS function returns the absolute value of any supplied number. The syntax
  1553. // of the function is:
  1554. //
  1555. // ABS(number)
  1556. //
  1557. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1558. if argsList.Len() != 1 {
  1559. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1560. }
  1561. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1562. if arg.Type == ArgError {
  1563. return arg
  1564. }
  1565. return newNumberFormulaArg(math.Abs(arg.Number))
  1566. }
  1567. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1568. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1569. // the function is:
  1570. //
  1571. // ACOS(number)
  1572. //
  1573. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1574. if argsList.Len() != 1 {
  1575. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1576. }
  1577. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1578. if arg.Type == ArgError {
  1579. return arg
  1580. }
  1581. return newNumberFormulaArg(math.Acos(arg.Number))
  1582. }
  1583. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1584. // of the function is:
  1585. //
  1586. // ACOSH(number)
  1587. //
  1588. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1589. if argsList.Len() != 1 {
  1590. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1591. }
  1592. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1593. if arg.Type == ArgError {
  1594. return arg
  1595. }
  1596. return newNumberFormulaArg(math.Acosh(arg.Number))
  1597. }
  1598. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1599. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1600. // of the function is:
  1601. //
  1602. // ACOT(number)
  1603. //
  1604. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1605. if argsList.Len() != 1 {
  1606. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1607. }
  1608. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1609. if arg.Type == ArgError {
  1610. return arg
  1611. }
  1612. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1613. }
  1614. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1615. // value. The syntax of the function is:
  1616. //
  1617. // ACOTH(number)
  1618. //
  1619. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1620. if argsList.Len() != 1 {
  1621. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1622. }
  1623. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1624. if arg.Type == ArgError {
  1625. return arg
  1626. }
  1627. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1628. }
  1629. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1630. // of the function is:
  1631. //
  1632. // ARABIC(text)
  1633. //
  1634. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1635. if argsList.Len() != 1 {
  1636. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1637. }
  1638. text := argsList.Front().Value.(formulaArg).Value()
  1639. if len(text) > 255 {
  1640. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1641. }
  1642. text = strings.ToUpper(text)
  1643. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1644. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1645. for index >= 0 && text[index] == ' ' {
  1646. index--
  1647. }
  1648. for actualStart <= index && text[actualStart] == ' ' {
  1649. actualStart++
  1650. }
  1651. if actualStart <= index && text[actualStart] == '-' {
  1652. isNegative = true
  1653. actualStart++
  1654. }
  1655. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1656. for index >= actualStart {
  1657. startIndex = index
  1658. startChar := text[startIndex]
  1659. index--
  1660. for index >= actualStart && (text[index]|' ') == startChar {
  1661. index--
  1662. }
  1663. currentCharValue = charMap[rune(startChar)]
  1664. currentPartValue = (startIndex - index) * currentCharValue
  1665. if currentCharValue >= prevCharValue {
  1666. number += currentPartValue - subtractNumber
  1667. prevCharValue = currentCharValue
  1668. subtractNumber = 0
  1669. continue
  1670. }
  1671. subtractNumber += currentPartValue
  1672. }
  1673. if subtractNumber != 0 {
  1674. number -= subtractNumber
  1675. }
  1676. if isNegative {
  1677. number = -number
  1678. }
  1679. return newNumberFormulaArg(float64(number))
  1680. }
  1681. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1682. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1683. // of the function is:
  1684. //
  1685. // ASIN(number)
  1686. //
  1687. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1688. if argsList.Len() != 1 {
  1689. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1690. }
  1691. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1692. if arg.Type == ArgError {
  1693. return arg
  1694. }
  1695. return newNumberFormulaArg(math.Asin(arg.Number))
  1696. }
  1697. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1698. // The syntax of the function is:
  1699. //
  1700. // ASINH(number)
  1701. //
  1702. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1703. if argsList.Len() != 1 {
  1704. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1705. }
  1706. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1707. if arg.Type == ArgError {
  1708. return arg
  1709. }
  1710. return newNumberFormulaArg(math.Asinh(arg.Number))
  1711. }
  1712. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1713. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1714. // syntax of the function is:
  1715. //
  1716. // ATAN(number)
  1717. //
  1718. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1719. if argsList.Len() != 1 {
  1720. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1721. }
  1722. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1723. if arg.Type == ArgError {
  1724. return arg
  1725. }
  1726. return newNumberFormulaArg(math.Atan(arg.Number))
  1727. }
  1728. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1729. // number. The syntax of the function is:
  1730. //
  1731. // ATANH(number)
  1732. //
  1733. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1734. if argsList.Len() != 1 {
  1735. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1736. }
  1737. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1738. if arg.Type == ArgError {
  1739. return arg
  1740. }
  1741. return newNumberFormulaArg(math.Atanh(arg.Number))
  1742. }
  1743. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1744. // given set of x and y coordinates, and returns an angle, in radians, between
  1745. // -π/2 and +π/2. The syntax of the function is:
  1746. //
  1747. // ATAN2(x_num,y_num)
  1748. //
  1749. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1750. if argsList.Len() != 2 {
  1751. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1752. }
  1753. x := argsList.Back().Value.(formulaArg).ToNumber()
  1754. if x.Type == ArgError {
  1755. return x
  1756. }
  1757. y := argsList.Front().Value.(formulaArg).ToNumber()
  1758. if y.Type == ArgError {
  1759. return y
  1760. }
  1761. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1762. }
  1763. // BASE function converts a number into a supplied base (radix), and returns a
  1764. // text representation of the calculated value. The syntax of the function is:
  1765. //
  1766. // BASE(number,radix,[min_length])
  1767. //
  1768. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1769. if argsList.Len() < 2 {
  1770. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1771. }
  1772. if argsList.Len() > 3 {
  1773. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1774. }
  1775. var minLength int
  1776. var err error
  1777. number := argsList.Front().Value.(formulaArg).ToNumber()
  1778. if number.Type == ArgError {
  1779. return number
  1780. }
  1781. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1782. if radix.Type == ArgError {
  1783. return radix
  1784. }
  1785. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1786. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1787. }
  1788. if argsList.Len() > 2 {
  1789. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1790. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1791. }
  1792. }
  1793. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1794. if len(result) < minLength {
  1795. result = strings.Repeat("0", minLength-len(result)) + result
  1796. }
  1797. return newStringFormulaArg(strings.ToUpper(result))
  1798. }
  1799. // CEILING function rounds a supplied number away from zero, to the nearest
  1800. // multiple of a given number. The syntax of the function is:
  1801. //
  1802. // CEILING(number,significance)
  1803. //
  1804. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1805. if argsList.Len() == 0 {
  1806. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1807. }
  1808. if argsList.Len() > 2 {
  1809. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1810. }
  1811. number, significance, res := 0.0, 1.0, 0.0
  1812. n := argsList.Front().Value.(formulaArg).ToNumber()
  1813. if n.Type == ArgError {
  1814. return n
  1815. }
  1816. number = n.Number
  1817. if number < 0 {
  1818. significance = -1
  1819. }
  1820. if argsList.Len() > 1 {
  1821. s := argsList.Back().Value.(formulaArg).ToNumber()
  1822. if s.Type == ArgError {
  1823. return s
  1824. }
  1825. significance = s.Number
  1826. }
  1827. if significance < 0 && number > 0 {
  1828. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1829. }
  1830. if argsList.Len() == 1 {
  1831. return newNumberFormulaArg(math.Ceil(number))
  1832. }
  1833. number, res = math.Modf(number / significance)
  1834. if res > 0 {
  1835. number++
  1836. }
  1837. return newNumberFormulaArg(number * significance)
  1838. }
  1839. // CEILINGdotMATH function rounds a supplied number up to a supplied multiple
  1840. // of significance. The syntax of the function is:
  1841. //
  1842. // CEILING.MATH(number,[significance],[mode])
  1843. //
  1844. func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
  1845. if argsList.Len() == 0 {
  1846. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1847. }
  1848. if argsList.Len() > 3 {
  1849. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1850. }
  1851. number, significance, mode := 0.0, 1.0, 1.0
  1852. n := argsList.Front().Value.(formulaArg).ToNumber()
  1853. if n.Type == ArgError {
  1854. return n
  1855. }
  1856. number = n.Number
  1857. if number < 0 {
  1858. significance = -1
  1859. }
  1860. if argsList.Len() > 1 {
  1861. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1862. if s.Type == ArgError {
  1863. return s
  1864. }
  1865. significance = s.Number
  1866. }
  1867. if argsList.Len() == 1 {
  1868. return newNumberFormulaArg(math.Ceil(number))
  1869. }
  1870. if argsList.Len() > 2 {
  1871. m := argsList.Back().Value.(formulaArg).ToNumber()
  1872. if m.Type == ArgError {
  1873. return m
  1874. }
  1875. mode = m.Number
  1876. }
  1877. val, res := math.Modf(number / significance)
  1878. if res != 0 {
  1879. if number > 0 {
  1880. val++
  1881. } else if mode < 0 {
  1882. val--
  1883. }
  1884. }
  1885. return newNumberFormulaArg(val * significance)
  1886. }
  1887. // CEILINGdotPRECISE function rounds a supplied number up (regardless of the
  1888. // number's sign), to the nearest multiple of a given number. The syntax of
  1889. // the function is:
  1890. //
  1891. // CEILING.PRECISE(number,[significance])
  1892. //
  1893. func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
  1894. if argsList.Len() == 0 {
  1895. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1896. }
  1897. if argsList.Len() > 2 {
  1898. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1899. }
  1900. number, significance := 0.0, 1.0
  1901. n := argsList.Front().Value.(formulaArg).ToNumber()
  1902. if n.Type == ArgError {
  1903. return n
  1904. }
  1905. number = n.Number
  1906. if number < 0 {
  1907. significance = -1
  1908. }
  1909. if argsList.Len() == 1 {
  1910. return newNumberFormulaArg(math.Ceil(number))
  1911. }
  1912. if argsList.Len() > 1 {
  1913. s := argsList.Back().Value.(formulaArg).ToNumber()
  1914. if s.Type == ArgError {
  1915. return s
  1916. }
  1917. significance = s.Number
  1918. significance = math.Abs(significance)
  1919. if significance == 0 {
  1920. return newNumberFormulaArg(significance)
  1921. }
  1922. }
  1923. val, res := math.Modf(number / significance)
  1924. if res != 0 {
  1925. if number > 0 {
  1926. val++
  1927. }
  1928. }
  1929. return newNumberFormulaArg(val * significance)
  1930. }
  1931. // COMBIN function calculates the number of combinations (in any order) of a
  1932. // given number objects from a set. The syntax of the function is:
  1933. //
  1934. // COMBIN(number,number_chosen)
  1935. //
  1936. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1937. if argsList.Len() != 2 {
  1938. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1939. }
  1940. number, chosen, val := 0.0, 0.0, 1.0
  1941. n := argsList.Front().Value.(formulaArg).ToNumber()
  1942. if n.Type == ArgError {
  1943. return n
  1944. }
  1945. number = n.Number
  1946. c := argsList.Back().Value.(formulaArg).ToNumber()
  1947. if c.Type == ArgError {
  1948. return c
  1949. }
  1950. chosen = c.Number
  1951. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1952. if chosen > number {
  1953. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1954. }
  1955. if chosen == number || chosen == 0 {
  1956. return newNumberFormulaArg(1)
  1957. }
  1958. for c := float64(1); c <= chosen; c++ {
  1959. val *= (number + 1 - c) / c
  1960. }
  1961. return newNumberFormulaArg(math.Ceil(val))
  1962. }
  1963. // COMBINA function calculates the number of combinations, with repetitions,
  1964. // of a given number objects from a set. The syntax of the function is:
  1965. //
  1966. // COMBINA(number,number_chosen)
  1967. //
  1968. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1969. if argsList.Len() != 2 {
  1970. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1971. }
  1972. var number, chosen float64
  1973. n := argsList.Front().Value.(formulaArg).ToNumber()
  1974. if n.Type == ArgError {
  1975. return n
  1976. }
  1977. number = n.Number
  1978. c := argsList.Back().Value.(formulaArg).ToNumber()
  1979. if c.Type == ArgError {
  1980. return c
  1981. }
  1982. chosen = c.Number
  1983. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1984. if number < chosen {
  1985. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1986. }
  1987. if number == 0 {
  1988. return newNumberFormulaArg(number)
  1989. }
  1990. args := list.New()
  1991. args.PushBack(formulaArg{
  1992. String: fmt.Sprintf("%g", number+chosen-1),
  1993. Type: ArgString,
  1994. })
  1995. args.PushBack(formulaArg{
  1996. String: fmt.Sprintf("%g", number-1),
  1997. Type: ArgString,
  1998. })
  1999. return fn.COMBIN(args)
  2000. }
  2001. // COS function calculates the cosine of a given angle. The syntax of the
  2002. // function is:
  2003. //
  2004. // COS(number)
  2005. //
  2006. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  2007. if argsList.Len() != 1 {
  2008. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  2009. }
  2010. val := argsList.Front().Value.(formulaArg).ToNumber()
  2011. if val.Type == ArgError {
  2012. return val
  2013. }
  2014. return newNumberFormulaArg(math.Cos(val.Number))
  2015. }
  2016. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  2017. // The syntax of the function is:
  2018. //
  2019. // COSH(number)
  2020. //
  2021. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2022. if argsList.Len() != 1 {
  2023. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2024. }
  2025. val := argsList.Front().Value.(formulaArg).ToNumber()
  2026. if val.Type == ArgError {
  2027. return val
  2028. }
  2029. return newNumberFormulaArg(math.Cosh(val.Number))
  2030. }
  2031. // COT function calculates the cotangent of a given angle. The syntax of the
  2032. // function is:
  2033. //
  2034. // COT(number)
  2035. //
  2036. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2037. if argsList.Len() != 1 {
  2038. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2039. }
  2040. val := argsList.Front().Value.(formulaArg).ToNumber()
  2041. if val.Type == ArgError {
  2042. return val
  2043. }
  2044. if val.Number == 0 {
  2045. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2046. }
  2047. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2048. }
  2049. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2050. // angle. The syntax of the function is:
  2051. //
  2052. // COTH(number)
  2053. //
  2054. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2055. if argsList.Len() != 1 {
  2056. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2057. }
  2058. val := argsList.Front().Value.(formulaArg).ToNumber()
  2059. if val.Type == ArgError {
  2060. return val
  2061. }
  2062. if val.Number == 0 {
  2063. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2064. }
  2065. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2066. }
  2067. // CSC function calculates the cosecant of a given angle. The syntax of the
  2068. // function is:
  2069. //
  2070. // CSC(number)
  2071. //
  2072. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2073. if argsList.Len() != 1 {
  2074. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2075. }
  2076. val := argsList.Front().Value.(formulaArg).ToNumber()
  2077. if val.Type == ArgError {
  2078. return val
  2079. }
  2080. if val.Number == 0 {
  2081. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2082. }
  2083. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2084. }
  2085. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2086. // angle. The syntax of the function is:
  2087. //
  2088. // CSCH(number)
  2089. //
  2090. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2091. if argsList.Len() != 1 {
  2092. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2093. }
  2094. val := argsList.Front().Value.(formulaArg).ToNumber()
  2095. if val.Type == ArgError {
  2096. return val
  2097. }
  2098. if val.Number == 0 {
  2099. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2100. }
  2101. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2102. }
  2103. // DECIMAL function converts a text representation of a number in a specified
  2104. // base, into a decimal value. The syntax of the function is:
  2105. //
  2106. // DECIMAL(text,radix)
  2107. //
  2108. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2109. if argsList.Len() != 2 {
  2110. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2111. }
  2112. var text = argsList.Front().Value.(formulaArg).String
  2113. var radix int
  2114. var err error
  2115. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2116. if err != nil {
  2117. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2118. }
  2119. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2120. text = text[2:]
  2121. }
  2122. val, err := strconv.ParseInt(text, radix, 64)
  2123. if err != nil {
  2124. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2125. }
  2126. return newNumberFormulaArg(float64(val))
  2127. }
  2128. // DEGREES function converts radians into degrees. The syntax of the function
  2129. // is:
  2130. //
  2131. // DEGREES(angle)
  2132. //
  2133. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2134. if argsList.Len() != 1 {
  2135. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2136. }
  2137. val := argsList.Front().Value.(formulaArg).ToNumber()
  2138. if val.Type == ArgError {
  2139. return val
  2140. }
  2141. if val.Number == 0 {
  2142. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2143. }
  2144. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2145. }
  2146. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2147. // positive number up and a negative number down), to the next even number.
  2148. // The syntax of the function is:
  2149. //
  2150. // EVEN(number)
  2151. //
  2152. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2153. if argsList.Len() != 1 {
  2154. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2155. }
  2156. number := argsList.Front().Value.(formulaArg).ToNumber()
  2157. if number.Type == ArgError {
  2158. return number
  2159. }
  2160. sign := math.Signbit(number.Number)
  2161. m, frac := math.Modf(number.Number / 2)
  2162. val := m * 2
  2163. if frac != 0 {
  2164. if !sign {
  2165. val += 2
  2166. } else {
  2167. val -= 2
  2168. }
  2169. }
  2170. return newNumberFormulaArg(val)
  2171. }
  2172. // EXP function calculates the value of the mathematical constant e, raised to
  2173. // the power of a given number. The syntax of the function is:
  2174. //
  2175. // EXP(number)
  2176. //
  2177. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2178. if argsList.Len() != 1 {
  2179. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2180. }
  2181. number := argsList.Front().Value.(formulaArg).ToNumber()
  2182. if number.Type == ArgError {
  2183. return number
  2184. }
  2185. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2186. }
  2187. // fact returns the factorial of a supplied number.
  2188. func fact(number float64) float64 {
  2189. val := float64(1)
  2190. for i := float64(2); i <= number; i++ {
  2191. val *= i
  2192. }
  2193. return val
  2194. }
  2195. // FACT function returns the factorial of a supplied number. The syntax of the
  2196. // function is:
  2197. //
  2198. // FACT(number)
  2199. //
  2200. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2201. if argsList.Len() != 1 {
  2202. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2203. }
  2204. number := argsList.Front().Value.(formulaArg).ToNumber()
  2205. if number.Type == ArgError {
  2206. return number
  2207. }
  2208. if number.Number < 0 {
  2209. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2210. }
  2211. return newNumberFormulaArg(fact(number.Number))
  2212. }
  2213. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2214. // syntax of the function is:
  2215. //
  2216. // FACTDOUBLE(number)
  2217. //
  2218. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2219. if argsList.Len() != 1 {
  2220. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2221. }
  2222. val := 1.0
  2223. number := argsList.Front().Value.(formulaArg).ToNumber()
  2224. if number.Type == ArgError {
  2225. return number
  2226. }
  2227. if number.Number < 0 {
  2228. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2229. }
  2230. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2231. val *= i
  2232. }
  2233. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2234. }
  2235. // FLOOR function rounds a supplied number towards zero to the nearest
  2236. // multiple of a specified significance. The syntax of the function is:
  2237. //
  2238. // FLOOR(number,significance)
  2239. //
  2240. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2241. if argsList.Len() != 2 {
  2242. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2243. }
  2244. number := argsList.Front().Value.(formulaArg).ToNumber()
  2245. if number.Type == ArgError {
  2246. return number
  2247. }
  2248. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2249. if significance.Type == ArgError {
  2250. return significance
  2251. }
  2252. if significance.Number < 0 && number.Number >= 0 {
  2253. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2254. }
  2255. val := number.Number
  2256. val, res := math.Modf(val / significance.Number)
  2257. if res != 0 {
  2258. if number.Number < 0 && res < 0 {
  2259. val--
  2260. }
  2261. }
  2262. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2263. }
  2264. // FLOORdotMATH function rounds a supplied number down to a supplied multiple
  2265. // of significance. The syntax of the function is:
  2266. //
  2267. // FLOOR.MATH(number,[significance],[mode])
  2268. //
  2269. func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
  2270. if argsList.Len() == 0 {
  2271. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2272. }
  2273. if argsList.Len() > 3 {
  2274. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2275. }
  2276. significance, mode := 1.0, 1.0
  2277. number := argsList.Front().Value.(formulaArg).ToNumber()
  2278. if number.Type == ArgError {
  2279. return number
  2280. }
  2281. if number.Number < 0 {
  2282. significance = -1
  2283. }
  2284. if argsList.Len() > 1 {
  2285. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2286. if s.Type == ArgError {
  2287. return s
  2288. }
  2289. significance = s.Number
  2290. }
  2291. if argsList.Len() == 1 {
  2292. return newNumberFormulaArg(math.Floor(number.Number))
  2293. }
  2294. if argsList.Len() > 2 {
  2295. m := argsList.Back().Value.(formulaArg).ToNumber()
  2296. if m.Type == ArgError {
  2297. return m
  2298. }
  2299. mode = m.Number
  2300. }
  2301. val, res := math.Modf(number.Number / significance)
  2302. if res != 0 && number.Number < 0 && mode > 0 {
  2303. val--
  2304. }
  2305. return newNumberFormulaArg(val * significance)
  2306. }
  2307. // FLOORdotPRECISE function rounds a supplied number down to a supplied
  2308. // multiple of significance. The syntax of the function is:
  2309. //
  2310. // FLOOR.PRECISE(number,[significance])
  2311. //
  2312. func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
  2313. if argsList.Len() == 0 {
  2314. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2315. }
  2316. if argsList.Len() > 2 {
  2317. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2318. }
  2319. var significance float64
  2320. number := argsList.Front().Value.(formulaArg).ToNumber()
  2321. if number.Type == ArgError {
  2322. return number
  2323. }
  2324. if number.Number < 0 {
  2325. significance = -1
  2326. }
  2327. if argsList.Len() == 1 {
  2328. return newNumberFormulaArg(math.Floor(number.Number))
  2329. }
  2330. if argsList.Len() > 1 {
  2331. s := argsList.Back().Value.(formulaArg).ToNumber()
  2332. if s.Type == ArgError {
  2333. return s
  2334. }
  2335. significance = s.Number
  2336. significance = math.Abs(significance)
  2337. if significance == 0 {
  2338. return newNumberFormulaArg(significance)
  2339. }
  2340. }
  2341. val, res := math.Modf(number.Number / significance)
  2342. if res != 0 {
  2343. if number.Number < 0 {
  2344. val--
  2345. }
  2346. }
  2347. return newNumberFormulaArg(val * significance)
  2348. }
  2349. // gcd returns the greatest common divisor of two supplied integers.
  2350. func gcd(x, y float64) float64 {
  2351. x, y = math.Trunc(x), math.Trunc(y)
  2352. if x == 0 {
  2353. return y
  2354. }
  2355. if y == 0 {
  2356. return x
  2357. }
  2358. for x != y {
  2359. if x > y {
  2360. x = x - y
  2361. } else {
  2362. y = y - x
  2363. }
  2364. }
  2365. return x
  2366. }
  2367. // GCD function returns the greatest common divisor of two or more supplied
  2368. // integers. The syntax of the function is:
  2369. //
  2370. // GCD(number1,[number2],...)
  2371. //
  2372. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2373. if argsList.Len() == 0 {
  2374. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2375. }
  2376. var (
  2377. val float64
  2378. nums = []float64{}
  2379. )
  2380. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2381. token := arg.Value.(formulaArg)
  2382. switch token.Type {
  2383. case ArgString:
  2384. num := token.ToNumber()
  2385. if num.Type == ArgError {
  2386. return num
  2387. }
  2388. val = num.Number
  2389. case ArgNumber:
  2390. val = token.Number
  2391. }
  2392. nums = append(nums, val)
  2393. }
  2394. if nums[0] < 0 {
  2395. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2396. }
  2397. if len(nums) == 1 {
  2398. return newNumberFormulaArg(nums[0])
  2399. }
  2400. cd := nums[0]
  2401. for i := 1; i < len(nums); i++ {
  2402. if nums[i] < 0 {
  2403. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2404. }
  2405. cd = gcd(cd, nums[i])
  2406. }
  2407. return newNumberFormulaArg(cd)
  2408. }
  2409. // INT function truncates a supplied number down to the closest integer. The
  2410. // syntax of the function is:
  2411. //
  2412. // INT(number)
  2413. //
  2414. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2415. if argsList.Len() != 1 {
  2416. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2417. }
  2418. number := argsList.Front().Value.(formulaArg).ToNumber()
  2419. if number.Type == ArgError {
  2420. return number
  2421. }
  2422. val, frac := math.Modf(number.Number)
  2423. if frac < 0 {
  2424. val--
  2425. }
  2426. return newNumberFormulaArg(val)
  2427. }
  2428. // ISOdotCEILING function rounds a supplied number up (regardless of the
  2429. // number's sign), to the nearest multiple of a supplied significance. The
  2430. // syntax of the function is:
  2431. //
  2432. // ISO.CEILING(number,[significance])
  2433. //
  2434. func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
  2435. if argsList.Len() == 0 {
  2436. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2437. }
  2438. if argsList.Len() > 2 {
  2439. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2440. }
  2441. var significance float64
  2442. number := argsList.Front().Value.(formulaArg).ToNumber()
  2443. if number.Type == ArgError {
  2444. return number
  2445. }
  2446. if number.Number < 0 {
  2447. significance = -1
  2448. }
  2449. if argsList.Len() == 1 {
  2450. return newNumberFormulaArg(math.Ceil(number.Number))
  2451. }
  2452. if argsList.Len() > 1 {
  2453. s := argsList.Back().Value.(formulaArg).ToNumber()
  2454. if s.Type == ArgError {
  2455. return s
  2456. }
  2457. significance = s.Number
  2458. significance = math.Abs(significance)
  2459. if significance == 0 {
  2460. return newNumberFormulaArg(significance)
  2461. }
  2462. }
  2463. val, res := math.Modf(number.Number / significance)
  2464. if res != 0 {
  2465. if number.Number > 0 {
  2466. val++
  2467. }
  2468. }
  2469. return newNumberFormulaArg(val * significance)
  2470. }
  2471. // lcm returns the least common multiple of two supplied integers.
  2472. func lcm(a, b float64) float64 {
  2473. a = math.Trunc(a)
  2474. b = math.Trunc(b)
  2475. if a == 0 && b == 0 {
  2476. return 0
  2477. }
  2478. return a * b / gcd(a, b)
  2479. }
  2480. // LCM function returns the least common multiple of two or more supplied
  2481. // integers. The syntax of the function is:
  2482. //
  2483. // LCM(number1,[number2],...)
  2484. //
  2485. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2486. if argsList.Len() == 0 {
  2487. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2488. }
  2489. var (
  2490. val float64
  2491. nums = []float64{}
  2492. err error
  2493. )
  2494. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2495. token := arg.Value.(formulaArg)
  2496. switch token.Type {
  2497. case ArgString:
  2498. if token.String == "" {
  2499. continue
  2500. }
  2501. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2502. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2503. }
  2504. case ArgNumber:
  2505. val = token.Number
  2506. }
  2507. nums = append(nums, val)
  2508. }
  2509. if nums[0] < 0 {
  2510. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2511. }
  2512. if len(nums) == 1 {
  2513. return newNumberFormulaArg(nums[0])
  2514. }
  2515. cm := nums[0]
  2516. for i := 1; i < len(nums); i++ {
  2517. if nums[i] < 0 {
  2518. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2519. }
  2520. cm = lcm(cm, nums[i])
  2521. }
  2522. return newNumberFormulaArg(cm)
  2523. }
  2524. // LN function calculates the natural logarithm of a given number. The syntax
  2525. // of the function is:
  2526. //
  2527. // LN(number)
  2528. //
  2529. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2530. if argsList.Len() != 1 {
  2531. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2532. }
  2533. number := argsList.Front().Value.(formulaArg).ToNumber()
  2534. if number.Type == ArgError {
  2535. return number
  2536. }
  2537. return newNumberFormulaArg(math.Log(number.Number))
  2538. }
  2539. // LOG function calculates the logarithm of a given number, to a supplied
  2540. // base. The syntax of the function is:
  2541. //
  2542. // LOG(number,[base])
  2543. //
  2544. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2545. if argsList.Len() == 0 {
  2546. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2547. }
  2548. if argsList.Len() > 2 {
  2549. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2550. }
  2551. base := 10.0
  2552. number := argsList.Front().Value.(formulaArg).ToNumber()
  2553. if number.Type == ArgError {
  2554. return number
  2555. }
  2556. if argsList.Len() > 1 {
  2557. b := argsList.Back().Value.(formulaArg).ToNumber()
  2558. if b.Type == ArgError {
  2559. return b
  2560. }
  2561. base = b.Number
  2562. }
  2563. if number.Number == 0 {
  2564. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2565. }
  2566. if base == 0 {
  2567. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2568. }
  2569. if base == 1 {
  2570. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2571. }
  2572. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2573. }
  2574. // LOG10 function calculates the base 10 logarithm of a given number. The
  2575. // syntax of the function is:
  2576. //
  2577. // LOG10(number)
  2578. //
  2579. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2580. if argsList.Len() != 1 {
  2581. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2582. }
  2583. number := argsList.Front().Value.(formulaArg).ToNumber()
  2584. if number.Type == ArgError {
  2585. return number
  2586. }
  2587. return newNumberFormulaArg(math.Log10(number.Number))
  2588. }
  2589. // minor function implement a minor of a matrix A is the determinant of some
  2590. // smaller square matrix.
  2591. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2592. ret := [][]float64{}
  2593. for i := range sqMtx {
  2594. if i == 0 {
  2595. continue
  2596. }
  2597. row := []float64{}
  2598. for j := range sqMtx {
  2599. if j == idx {
  2600. continue
  2601. }
  2602. row = append(row, sqMtx[i][j])
  2603. }
  2604. ret = append(ret, row)
  2605. }
  2606. return ret
  2607. }
  2608. // det determinant of the 2x2 matrix.
  2609. func det(sqMtx [][]float64) float64 {
  2610. if len(sqMtx) == 2 {
  2611. m00 := sqMtx[0][0]
  2612. m01 := sqMtx[0][1]
  2613. m10 := sqMtx[1][0]
  2614. m11 := sqMtx[1][1]
  2615. return m00*m11 - m10*m01
  2616. }
  2617. var res, sgn float64 = 0, 1
  2618. for j := range sqMtx {
  2619. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2620. sgn *= -1
  2621. }
  2622. return res
  2623. }
  2624. // MDETERM calculates the determinant of a square matrix. The
  2625. // syntax of the function is:
  2626. //
  2627. // MDETERM(array)
  2628. //
  2629. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2630. var (
  2631. num float64
  2632. numMtx = [][]float64{}
  2633. err error
  2634. strMtx [][]formulaArg
  2635. )
  2636. if argsList.Len() < 1 {
  2637. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2638. }
  2639. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2640. var rows = len(strMtx)
  2641. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2642. if len(row) != rows {
  2643. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2644. }
  2645. numRow := []float64{}
  2646. for _, ele := range row {
  2647. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2648. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2649. }
  2650. numRow = append(numRow, num)
  2651. }
  2652. numMtx = append(numMtx, numRow)
  2653. }
  2654. return newNumberFormulaArg(det(numMtx))
  2655. }
  2656. // MOD function returns the remainder of a division between two supplied
  2657. // numbers. The syntax of the function is:
  2658. //
  2659. // MOD(number,divisor)
  2660. //
  2661. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2662. if argsList.Len() != 2 {
  2663. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2664. }
  2665. number := argsList.Front().Value.(formulaArg).ToNumber()
  2666. if number.Type == ArgError {
  2667. return number
  2668. }
  2669. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2670. if divisor.Type == ArgError {
  2671. return divisor
  2672. }
  2673. if divisor.Number == 0 {
  2674. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2675. }
  2676. trunc, rem := math.Modf(number.Number / divisor.Number)
  2677. if rem < 0 {
  2678. trunc--
  2679. }
  2680. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2681. }
  2682. // MROUND function rounds a supplied number up or down to the nearest multiple
  2683. // of a given number. The syntax of the function is:
  2684. //
  2685. // MROUND(number,multiple)
  2686. //
  2687. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2688. if argsList.Len() != 2 {
  2689. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2690. }
  2691. n := argsList.Front().Value.(formulaArg).ToNumber()
  2692. if n.Type == ArgError {
  2693. return n
  2694. }
  2695. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2696. if multiple.Type == ArgError {
  2697. return multiple
  2698. }
  2699. if multiple.Number == 0 {
  2700. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2701. }
  2702. if multiple.Number < 0 && n.Number > 0 ||
  2703. multiple.Number > 0 && n.Number < 0 {
  2704. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2705. }
  2706. number, res := math.Modf(n.Number / multiple.Number)
  2707. if math.Trunc(res+0.5) > 0 {
  2708. number++
  2709. }
  2710. return newNumberFormulaArg(number * multiple.Number)
  2711. }
  2712. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2713. // supplied values to the product of factorials of those values. The syntax of
  2714. // the function is:
  2715. //
  2716. // MULTINOMIAL(number1,[number2],...)
  2717. //
  2718. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2719. val, num, denom := 0.0, 0.0, 1.0
  2720. var err error
  2721. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2722. token := arg.Value.(formulaArg)
  2723. switch token.Type {
  2724. case ArgString:
  2725. if token.String == "" {
  2726. continue
  2727. }
  2728. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2729. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2730. }
  2731. case ArgNumber:
  2732. val = token.Number
  2733. }
  2734. num += val
  2735. denom *= fact(val)
  2736. }
  2737. return newNumberFormulaArg(fact(num) / denom)
  2738. }
  2739. // MUNIT function returns the unit matrix for a specified dimension. The
  2740. // syntax of the function is:
  2741. //
  2742. // MUNIT(dimension)
  2743. //
  2744. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2745. if argsList.Len() != 1 {
  2746. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2747. }
  2748. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2749. if dimension.Type == ArgError || dimension.Number < 0 {
  2750. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2751. }
  2752. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2753. for i := 0; i < int(dimension.Number); i++ {
  2754. row := make([]formulaArg, int(dimension.Number))
  2755. for j := 0; j < int(dimension.Number); j++ {
  2756. if i == j {
  2757. row[j] = newNumberFormulaArg(1.0)
  2758. } else {
  2759. row[j] = newNumberFormulaArg(0.0)
  2760. }
  2761. }
  2762. matrix = append(matrix, row)
  2763. }
  2764. return newMatrixFormulaArg(matrix)
  2765. }
  2766. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2767. // number up and a negative number down), to the next odd number. The syntax
  2768. // of the function is:
  2769. //
  2770. // ODD(number)
  2771. //
  2772. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2773. if argsList.Len() != 1 {
  2774. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2775. }
  2776. number := argsList.Back().Value.(formulaArg).ToNumber()
  2777. if number.Type == ArgError {
  2778. return number
  2779. }
  2780. if number.Number == 0 {
  2781. return newNumberFormulaArg(1)
  2782. }
  2783. sign := math.Signbit(number.Number)
  2784. m, frac := math.Modf((number.Number - 1) / 2)
  2785. val := m*2 + 1
  2786. if frac != 0 {
  2787. if !sign {
  2788. val += 2
  2789. } else {
  2790. val -= 2
  2791. }
  2792. }
  2793. return newNumberFormulaArg(val)
  2794. }
  2795. // PI function returns the value of the mathematical constant π (pi), accurate
  2796. // to 15 digits (14 decimal places). The syntax of the function is:
  2797. //
  2798. // PI()
  2799. //
  2800. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2801. if argsList.Len() != 0 {
  2802. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2803. }
  2804. return newNumberFormulaArg(math.Pi)
  2805. }
  2806. // POWER function calculates a given number, raised to a supplied power.
  2807. // The syntax of the function is:
  2808. //
  2809. // POWER(number,power)
  2810. //
  2811. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2812. if argsList.Len() != 2 {
  2813. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2814. }
  2815. x := argsList.Front().Value.(formulaArg).ToNumber()
  2816. if x.Type == ArgError {
  2817. return x
  2818. }
  2819. y := argsList.Back().Value.(formulaArg).ToNumber()
  2820. if y.Type == ArgError {
  2821. return y
  2822. }
  2823. if x.Number == 0 && y.Number == 0 {
  2824. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2825. }
  2826. if x.Number == 0 && y.Number < 0 {
  2827. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2828. }
  2829. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2830. }
  2831. // PRODUCT function returns the product (multiplication) of a supplied set of
  2832. // numerical values. The syntax of the function is:
  2833. //
  2834. // PRODUCT(number1,[number2],...)
  2835. //
  2836. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2837. val, product := 0.0, 1.0
  2838. var err error
  2839. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2840. token := arg.Value.(formulaArg)
  2841. switch token.Type {
  2842. case ArgUnknown:
  2843. continue
  2844. case ArgString:
  2845. if token.String == "" {
  2846. continue
  2847. }
  2848. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2849. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2850. }
  2851. product = product * val
  2852. case ArgNumber:
  2853. product = product * token.Number
  2854. case ArgMatrix:
  2855. for _, row := range token.Matrix {
  2856. for _, value := range row {
  2857. if value.String == "" {
  2858. continue
  2859. }
  2860. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2861. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2862. }
  2863. product = product * val
  2864. }
  2865. }
  2866. }
  2867. }
  2868. return newNumberFormulaArg(product)
  2869. }
  2870. // QUOTIENT function returns the integer portion of a division between two
  2871. // supplied numbers. The syntax of the function is:
  2872. //
  2873. // QUOTIENT(numerator,denominator)
  2874. //
  2875. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2876. if argsList.Len() != 2 {
  2877. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2878. }
  2879. x := argsList.Front().Value.(formulaArg).ToNumber()
  2880. if x.Type == ArgError {
  2881. return x
  2882. }
  2883. y := argsList.Back().Value.(formulaArg).ToNumber()
  2884. if y.Type == ArgError {
  2885. return y
  2886. }
  2887. if y.Number == 0 {
  2888. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2889. }
  2890. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2891. }
  2892. // RADIANS function converts radians into degrees. The syntax of the function is:
  2893. //
  2894. // RADIANS(angle)
  2895. //
  2896. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2897. if argsList.Len() != 1 {
  2898. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2899. }
  2900. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2901. if angle.Type == ArgError {
  2902. return angle
  2903. }
  2904. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2905. }
  2906. // RAND function generates a random real number between 0 and 1. The syntax of
  2907. // the function is:
  2908. //
  2909. // RAND()
  2910. //
  2911. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2912. if argsList.Len() != 0 {
  2913. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2914. }
  2915. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2916. }
  2917. // RANDBETWEEN function generates a random integer between two supplied
  2918. // integers. The syntax of the function is:
  2919. //
  2920. // RANDBETWEEN(bottom,top)
  2921. //
  2922. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2923. if argsList.Len() != 2 {
  2924. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2925. }
  2926. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2927. if bottom.Type == ArgError {
  2928. return bottom
  2929. }
  2930. top := argsList.Back().Value.(formulaArg).ToNumber()
  2931. if top.Type == ArgError {
  2932. return top
  2933. }
  2934. if top.Number < bottom.Number {
  2935. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2936. }
  2937. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2938. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2939. }
  2940. // romanNumerals defined a numeral system that originated in ancient Rome and
  2941. // remained the usual way of writing numbers throughout Europe well into the
  2942. // Late Middle Ages.
  2943. type romanNumerals struct {
  2944. n float64
  2945. s string
  2946. }
  2947. var romanTable = [][]romanNumerals{
  2948. {
  2949. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2950. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2951. },
  2952. {
  2953. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2954. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2955. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2956. },
  2957. {
  2958. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2959. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2960. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2961. },
  2962. {
  2963. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2964. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2965. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2966. {5, "V"}, {4, "IV"}, {1, "I"},
  2967. },
  2968. {
  2969. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2970. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2971. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2972. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2973. },
  2974. }
  2975. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2976. // integer, the function returns a text string depicting the roman numeral
  2977. // form of the number. The syntax of the function is:
  2978. //
  2979. // ROMAN(number,[form])
  2980. //
  2981. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2982. if argsList.Len() == 0 {
  2983. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2984. }
  2985. if argsList.Len() > 2 {
  2986. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2987. }
  2988. var form int
  2989. number := argsList.Front().Value.(formulaArg).ToNumber()
  2990. if number.Type == ArgError {
  2991. return number
  2992. }
  2993. if argsList.Len() > 1 {
  2994. f := argsList.Back().Value.(formulaArg).ToNumber()
  2995. if f.Type == ArgError {
  2996. return f
  2997. }
  2998. form = int(f.Number)
  2999. if form < 0 {
  3000. form = 0
  3001. } else if form > 4 {
  3002. form = 4
  3003. }
  3004. }
  3005. decimalTable := romanTable[0]
  3006. switch form {
  3007. case 1:
  3008. decimalTable = romanTable[1]
  3009. case 2:
  3010. decimalTable = romanTable[2]
  3011. case 3:
  3012. decimalTable = romanTable[3]
  3013. case 4:
  3014. decimalTable = romanTable[4]
  3015. }
  3016. val := math.Trunc(number.Number)
  3017. buf := bytes.Buffer{}
  3018. for _, r := range decimalTable {
  3019. for val >= r.n {
  3020. buf.WriteString(r.s)
  3021. val -= r.n
  3022. }
  3023. }
  3024. return newStringFormulaArg(buf.String())
  3025. }
  3026. type roundMode byte
  3027. const (
  3028. closest roundMode = iota
  3029. down
  3030. up
  3031. )
  3032. // round rounds a supplied number up or down.
  3033. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3034. var significance float64
  3035. if digits > 0 {
  3036. significance = math.Pow(1/10.0, digits)
  3037. } else {
  3038. significance = math.Pow(10.0, -digits)
  3039. }
  3040. val, res := math.Modf(number / significance)
  3041. switch mode {
  3042. case closest:
  3043. const eps = 0.499999999
  3044. if res >= eps {
  3045. val++
  3046. } else if res <= -eps {
  3047. val--
  3048. }
  3049. case down:
  3050. case up:
  3051. if res > 0 {
  3052. val++
  3053. } else if res < 0 {
  3054. val--
  3055. }
  3056. }
  3057. return val * significance
  3058. }
  3059. // ROUND function rounds a supplied number up or down, to a specified number
  3060. // of decimal places. The syntax of the function is:
  3061. //
  3062. // ROUND(number,num_digits)
  3063. //
  3064. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3065. if argsList.Len() != 2 {
  3066. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3067. }
  3068. number := argsList.Front().Value.(formulaArg).ToNumber()
  3069. if number.Type == ArgError {
  3070. return number
  3071. }
  3072. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3073. if digits.Type == ArgError {
  3074. return digits
  3075. }
  3076. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3077. }
  3078. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3079. // specified number of decimal places. The syntax of the function is:
  3080. //
  3081. // ROUNDDOWN(number,num_digits)
  3082. //
  3083. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3084. if argsList.Len() != 2 {
  3085. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3086. }
  3087. number := argsList.Front().Value.(formulaArg).ToNumber()
  3088. if number.Type == ArgError {
  3089. return number
  3090. }
  3091. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3092. if digits.Type == ArgError {
  3093. return digits
  3094. }
  3095. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3096. }
  3097. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3098. // specified number of decimal places. The syntax of the function is:
  3099. //
  3100. // ROUNDUP(number,num_digits)
  3101. //
  3102. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3103. if argsList.Len() != 2 {
  3104. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3105. }
  3106. number := argsList.Front().Value.(formulaArg).ToNumber()
  3107. if number.Type == ArgError {
  3108. return number
  3109. }
  3110. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3111. if digits.Type == ArgError {
  3112. return digits
  3113. }
  3114. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3115. }
  3116. // SEC function calculates the secant of a given angle. The syntax of the
  3117. // function is:
  3118. //
  3119. // SEC(number)
  3120. //
  3121. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3122. if argsList.Len() != 1 {
  3123. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3124. }
  3125. number := argsList.Front().Value.(formulaArg).ToNumber()
  3126. if number.Type == ArgError {
  3127. return number
  3128. }
  3129. return newNumberFormulaArg(math.Cos(number.Number))
  3130. }
  3131. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3132. // The syntax of the function is:
  3133. //
  3134. // SECH(number)
  3135. //
  3136. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3137. if argsList.Len() != 1 {
  3138. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3139. }
  3140. number := argsList.Front().Value.(formulaArg).ToNumber()
  3141. if number.Type == ArgError {
  3142. return number
  3143. }
  3144. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3145. }
  3146. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3147. // number. I.e. if the number is positive, the Sign function returns +1, if
  3148. // the number is negative, the function returns -1 and if the number is 0
  3149. // (zero), the function returns 0. The syntax of the function is:
  3150. //
  3151. // SIGN(number)
  3152. //
  3153. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3154. if argsList.Len() != 1 {
  3155. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3156. }
  3157. val := argsList.Front().Value.(formulaArg).ToNumber()
  3158. if val.Type == ArgError {
  3159. return val
  3160. }
  3161. if val.Number < 0 {
  3162. return newNumberFormulaArg(-1)
  3163. }
  3164. if val.Number > 0 {
  3165. return newNumberFormulaArg(1)
  3166. }
  3167. return newNumberFormulaArg(0)
  3168. }
  3169. // SIN function calculates the sine of a given angle. The syntax of the
  3170. // function is:
  3171. //
  3172. // SIN(number)
  3173. //
  3174. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3175. if argsList.Len() != 1 {
  3176. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3177. }
  3178. number := argsList.Front().Value.(formulaArg).ToNumber()
  3179. if number.Type == ArgError {
  3180. return number
  3181. }
  3182. return newNumberFormulaArg(math.Sin(number.Number))
  3183. }
  3184. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3185. // The syntax of the function is:
  3186. //
  3187. // SINH(number)
  3188. //
  3189. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3190. if argsList.Len() != 1 {
  3191. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3192. }
  3193. number := argsList.Front().Value.(formulaArg).ToNumber()
  3194. if number.Type == ArgError {
  3195. return number
  3196. }
  3197. return newNumberFormulaArg(math.Sinh(number.Number))
  3198. }
  3199. // SQRT function calculates the positive square root of a supplied number. The
  3200. // syntax of the function is:
  3201. //
  3202. // SQRT(number)
  3203. //
  3204. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3205. if argsList.Len() != 1 {
  3206. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3207. }
  3208. value := argsList.Front().Value.(formulaArg).ToNumber()
  3209. if value.Type == ArgError {
  3210. return value
  3211. }
  3212. if value.Number < 0 {
  3213. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3214. }
  3215. return newNumberFormulaArg(math.Sqrt(value.Number))
  3216. }
  3217. // SQRTPI function returns the square root of a supplied number multiplied by
  3218. // the mathematical constant, π. The syntax of the function is:
  3219. //
  3220. // SQRTPI(number)
  3221. //
  3222. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3223. if argsList.Len() != 1 {
  3224. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3225. }
  3226. number := argsList.Front().Value.(formulaArg).ToNumber()
  3227. if number.Type == ArgError {
  3228. return number
  3229. }
  3230. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3231. }
  3232. // STDEV function calculates the sample standard deviation of a supplied set
  3233. // of values. The syntax of the function is:
  3234. //
  3235. // STDEV(number1,[number2],...)
  3236. //
  3237. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3238. if argsList.Len() < 1 {
  3239. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3240. }
  3241. return fn.stdev(false, argsList)
  3242. }
  3243. // STDEVdotS function calculates the sample standard deviation of a supplied
  3244. // set of values. The syntax of the function is:
  3245. //
  3246. // STDEV.S(number1,[number2],...)
  3247. //
  3248. func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
  3249. if argsList.Len() < 1 {
  3250. return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
  3251. }
  3252. return fn.stdev(false, argsList)
  3253. }
  3254. // STDEVA function estimates standard deviation based on a sample. The
  3255. // standard deviation is a measure of how widely values are dispersed from
  3256. // the average value (the mean). The syntax of the function is:
  3257. //
  3258. // STDEVA(number1,[number2],...)
  3259. //
  3260. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3261. if argsList.Len() < 1 {
  3262. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3263. }
  3264. return fn.stdev(true, argsList)
  3265. }
  3266. // stdev is an implementation of the formula function STDEV and STDEVA.
  3267. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3268. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3269. if result == -1 {
  3270. result = math.Pow((n.Number - m.Number), 2)
  3271. } else {
  3272. result += math.Pow((n.Number - m.Number), 2)
  3273. }
  3274. count++
  3275. return result, count
  3276. }
  3277. count, result := -1.0, -1.0
  3278. var mean formulaArg
  3279. if stdeva {
  3280. mean = fn.AVERAGEA(argsList)
  3281. } else {
  3282. mean = fn.AVERAGE(argsList)
  3283. }
  3284. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3285. token := arg.Value.(formulaArg)
  3286. switch token.Type {
  3287. case ArgString, ArgNumber:
  3288. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3289. continue
  3290. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3291. num := token.ToBool()
  3292. if num.Type == ArgNumber {
  3293. result, count = pow(result, count, num, mean)
  3294. continue
  3295. }
  3296. } else {
  3297. num := token.ToNumber()
  3298. if num.Type == ArgNumber {
  3299. result, count = pow(result, count, num, mean)
  3300. }
  3301. }
  3302. case ArgList, ArgMatrix:
  3303. for _, row := range token.ToList() {
  3304. if row.Type == ArgNumber || row.Type == ArgString {
  3305. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3306. continue
  3307. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3308. num := row.ToBool()
  3309. if num.Type == ArgNumber {
  3310. result, count = pow(result, count, num, mean)
  3311. continue
  3312. }
  3313. } else {
  3314. num := row.ToNumber()
  3315. if num.Type == ArgNumber {
  3316. result, count = pow(result, count, num, mean)
  3317. }
  3318. }
  3319. }
  3320. }
  3321. }
  3322. }
  3323. if count > 0 && result >= 0 {
  3324. return newNumberFormulaArg(math.Sqrt(result / count))
  3325. }
  3326. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3327. }
  3328. // POISSONdotDIST function calculates the Poisson Probability Mass Function or
  3329. // the Cumulative Poisson Probability Function for a supplied set of
  3330. // parameters. The syntax of the function is:
  3331. //
  3332. // POISSON.DIST(x,mean,cumulative)
  3333. //
  3334. func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
  3335. if argsList.Len() != 3 {
  3336. return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
  3337. }
  3338. return fn.POISSON(argsList)
  3339. }
  3340. // POISSON function calculates the Poisson Probability Mass Function or the
  3341. // Cumulative Poisson Probability Function for a supplied set of parameters.
  3342. // The syntax of the function is:
  3343. //
  3344. // POISSON(x,mean,cumulative)
  3345. //
  3346. func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
  3347. if argsList.Len() != 3 {
  3348. return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
  3349. }
  3350. var x, mean, cumulative formulaArg
  3351. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3352. return x
  3353. }
  3354. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3355. return mean
  3356. }
  3357. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3358. return cumulative
  3359. }
  3360. if x.Number < 0 || mean.Number <= 0 {
  3361. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3362. }
  3363. if cumulative.Number == 1 {
  3364. summer := 0.0
  3365. floor := math.Floor(x.Number)
  3366. for i := 0; i <= int(floor); i++ {
  3367. summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
  3368. }
  3369. return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
  3370. }
  3371. return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
  3372. }
  3373. // SUM function adds together a supplied set of numbers and returns the sum of
  3374. // these values. The syntax of the function is:
  3375. //
  3376. // SUM(number1,[number2],...)
  3377. //
  3378. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3379. var sum float64
  3380. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3381. token := arg.Value.(formulaArg)
  3382. switch token.Type {
  3383. case ArgUnknown:
  3384. continue
  3385. case ArgString:
  3386. if num := token.ToNumber(); num.Type == ArgNumber {
  3387. sum += num.Number
  3388. }
  3389. case ArgNumber:
  3390. sum += token.Number
  3391. case ArgMatrix:
  3392. for _, row := range token.Matrix {
  3393. for _, value := range row {
  3394. if num := value.ToNumber(); num.Type == ArgNumber {
  3395. sum += num.Number
  3396. }
  3397. }
  3398. }
  3399. }
  3400. }
  3401. return newNumberFormulaArg(sum)
  3402. }
  3403. // SUMIF function finds the values in a supplied array, that satisfy a given
  3404. // criteria, and returns the sum of the corresponding values in a second
  3405. // supplied array. The syntax of the function is:
  3406. //
  3407. // SUMIF(range,criteria,[sum_range])
  3408. //
  3409. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3410. if argsList.Len() < 2 {
  3411. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3412. }
  3413. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3414. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3415. var sumRange [][]formulaArg
  3416. if argsList.Len() == 3 {
  3417. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3418. }
  3419. var sum, val float64
  3420. var err error
  3421. for rowIdx, row := range rangeMtx {
  3422. for colIdx, col := range row {
  3423. var ok bool
  3424. fromVal := col.String
  3425. if col.String == "" {
  3426. continue
  3427. }
  3428. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3429. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3430. }
  3431. if ok {
  3432. if argsList.Len() == 3 {
  3433. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3434. continue
  3435. }
  3436. fromVal = sumRange[rowIdx][colIdx].String
  3437. }
  3438. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3439. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3440. }
  3441. sum += val
  3442. }
  3443. }
  3444. }
  3445. return newNumberFormulaArg(sum)
  3446. }
  3447. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3448. // syntax of the function is:
  3449. //
  3450. // SUMSQ(number1,[number2],...)
  3451. //
  3452. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3453. var val, sq float64
  3454. var err error
  3455. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3456. token := arg.Value.(formulaArg)
  3457. switch token.Type {
  3458. case ArgString:
  3459. if token.String == "" {
  3460. continue
  3461. }
  3462. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3463. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3464. }
  3465. sq += val * val
  3466. case ArgNumber:
  3467. sq += token.Number
  3468. case ArgMatrix:
  3469. for _, row := range token.Matrix {
  3470. for _, value := range row {
  3471. if value.String == "" {
  3472. continue
  3473. }
  3474. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3475. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3476. }
  3477. sq += val * val
  3478. }
  3479. }
  3480. }
  3481. }
  3482. return newNumberFormulaArg(sq)
  3483. }
  3484. // TAN function calculates the tangent of a given angle. The syntax of the
  3485. // function is:
  3486. //
  3487. // TAN(number)
  3488. //
  3489. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3490. if argsList.Len() != 1 {
  3491. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3492. }
  3493. number := argsList.Front().Value.(formulaArg).ToNumber()
  3494. if number.Type == ArgError {
  3495. return number
  3496. }
  3497. return newNumberFormulaArg(math.Tan(number.Number))
  3498. }
  3499. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3500. // number. The syntax of the function is:
  3501. //
  3502. // TANH(number)
  3503. //
  3504. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3505. if argsList.Len() != 1 {
  3506. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3507. }
  3508. number := argsList.Front().Value.(formulaArg).ToNumber()
  3509. if number.Type == ArgError {
  3510. return number
  3511. }
  3512. return newNumberFormulaArg(math.Tanh(number.Number))
  3513. }
  3514. // TRUNC function truncates a supplied number to a specified number of decimal
  3515. // places. The syntax of the function is:
  3516. //
  3517. // TRUNC(number,[number_digits])
  3518. //
  3519. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3520. if argsList.Len() == 0 {
  3521. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3522. }
  3523. var digits, adjust, rtrim float64
  3524. var err error
  3525. number := argsList.Front().Value.(formulaArg).ToNumber()
  3526. if number.Type == ArgError {
  3527. return number
  3528. }
  3529. if argsList.Len() > 1 {
  3530. d := argsList.Back().Value.(formulaArg).ToNumber()
  3531. if d.Type == ArgError {
  3532. return d
  3533. }
  3534. digits = d.Number
  3535. digits = math.Floor(digits)
  3536. }
  3537. adjust = math.Pow(10, digits)
  3538. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3539. if x != 0 {
  3540. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3541. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3542. }
  3543. }
  3544. if (digits > 0) && (rtrim < adjust/10) {
  3545. return newNumberFormulaArg(number.Number)
  3546. }
  3547. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3548. }
  3549. // Statistical Functions
  3550. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3551. // The syntax of the function is:
  3552. //
  3553. // AVERAGE(number1,[number2],...)
  3554. //
  3555. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3556. args := []formulaArg{}
  3557. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3558. args = append(args, arg.Value.(formulaArg))
  3559. }
  3560. count, sum := fn.countSum(false, args)
  3561. if count == 0 {
  3562. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3563. }
  3564. return newNumberFormulaArg(sum / count)
  3565. }
  3566. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3567. // with text cell and zero values. The syntax of the function is:
  3568. //
  3569. // AVERAGEA(number1,[number2],...)
  3570. //
  3571. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3572. args := []formulaArg{}
  3573. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3574. args = append(args, arg.Value.(formulaArg))
  3575. }
  3576. count, sum := fn.countSum(true, args)
  3577. if count == 0 {
  3578. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3579. }
  3580. return newNumberFormulaArg(sum / count)
  3581. }
  3582. // countSum get count and sum for a formula arguments array.
  3583. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3584. for _, arg := range args {
  3585. switch arg.Type {
  3586. case ArgNumber:
  3587. if countText || !arg.Boolean {
  3588. sum += arg.Number
  3589. count++
  3590. }
  3591. case ArgString:
  3592. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3593. continue
  3594. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3595. num := arg.ToBool()
  3596. if num.Type == ArgNumber {
  3597. count++
  3598. sum += num.Number
  3599. continue
  3600. }
  3601. }
  3602. num := arg.ToNumber()
  3603. if countText && num.Type == ArgError && arg.String != "" {
  3604. count++
  3605. }
  3606. if num.Type == ArgNumber {
  3607. sum += num.Number
  3608. count++
  3609. }
  3610. case ArgList, ArgMatrix:
  3611. cnt, summary := fn.countSum(countText, arg.ToList())
  3612. sum += summary
  3613. count += cnt
  3614. }
  3615. }
  3616. return
  3617. }
  3618. // COUNT function returns the count of numeric values in a supplied set of
  3619. // cells or values. This count includes both numbers and dates. The syntax of
  3620. // the function is:
  3621. //
  3622. // COUNT(value1,[value2],...)
  3623. //
  3624. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3625. var count int
  3626. for token := argsList.Front(); token != nil; token = token.Next() {
  3627. arg := token.Value.(formulaArg)
  3628. switch arg.Type {
  3629. case ArgString:
  3630. if arg.ToNumber().Type != ArgError {
  3631. count++
  3632. }
  3633. case ArgNumber:
  3634. count++
  3635. case ArgMatrix:
  3636. for _, row := range arg.Matrix {
  3637. for _, value := range row {
  3638. if value.ToNumber().Type != ArgError {
  3639. count++
  3640. }
  3641. }
  3642. }
  3643. }
  3644. }
  3645. return newNumberFormulaArg(float64(count))
  3646. }
  3647. // COUNTA function returns the number of non-blanks within a supplied set of
  3648. // cells or values. The syntax of the function is:
  3649. //
  3650. // COUNTA(value1,[value2],...)
  3651. //
  3652. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3653. var count int
  3654. for token := argsList.Front(); token != nil; token = token.Next() {
  3655. arg := token.Value.(formulaArg)
  3656. switch arg.Type {
  3657. case ArgString:
  3658. if arg.String != "" {
  3659. count++
  3660. }
  3661. case ArgNumber:
  3662. count++
  3663. case ArgMatrix:
  3664. for _, row := range arg.ToList() {
  3665. switch row.Type {
  3666. case ArgString:
  3667. if row.String != "" {
  3668. count++
  3669. }
  3670. case ArgNumber:
  3671. count++
  3672. }
  3673. }
  3674. }
  3675. }
  3676. return newNumberFormulaArg(float64(count))
  3677. }
  3678. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3679. // The syntax of the function is:
  3680. //
  3681. // COUNTBLANK(range)
  3682. //
  3683. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3684. if argsList.Len() != 1 {
  3685. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3686. }
  3687. var count int
  3688. token := argsList.Front().Value.(formulaArg)
  3689. switch token.Type {
  3690. case ArgString:
  3691. if token.String == "" {
  3692. count++
  3693. }
  3694. case ArgList, ArgMatrix:
  3695. for _, row := range token.ToList() {
  3696. switch row.Type {
  3697. case ArgString:
  3698. if row.String == "" {
  3699. count++
  3700. }
  3701. case ArgEmpty:
  3702. count++
  3703. }
  3704. }
  3705. case ArgEmpty:
  3706. count++
  3707. }
  3708. return newNumberFormulaArg(float64(count))
  3709. }
  3710. // FISHER function calculates the Fisher Transformation for a supplied value.
  3711. // The syntax of the function is:
  3712. //
  3713. // FISHER(x)
  3714. //
  3715. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3716. if argsList.Len() != 1 {
  3717. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3718. }
  3719. token := argsList.Front().Value.(formulaArg)
  3720. switch token.Type {
  3721. case ArgString:
  3722. arg := token.ToNumber()
  3723. if arg.Type == ArgNumber {
  3724. if arg.Number <= -1 || arg.Number >= 1 {
  3725. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3726. }
  3727. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3728. }
  3729. case ArgNumber:
  3730. if token.Number <= -1 || token.Number >= 1 {
  3731. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3732. }
  3733. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3734. }
  3735. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3736. }
  3737. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3738. // returns a value between -1 and +1. The syntax of the function is:
  3739. //
  3740. // FISHERINV(y)
  3741. //
  3742. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3743. if argsList.Len() != 1 {
  3744. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3745. }
  3746. token := argsList.Front().Value.(formulaArg)
  3747. switch token.Type {
  3748. case ArgString:
  3749. arg := token.ToNumber()
  3750. if arg.Type == ArgNumber {
  3751. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3752. }
  3753. case ArgNumber:
  3754. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3755. }
  3756. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3757. }
  3758. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3759. // specified number, n. The syntax of the function is:
  3760. //
  3761. // GAMMA(number)
  3762. //
  3763. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3764. if argsList.Len() != 1 {
  3765. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3766. }
  3767. token := argsList.Front().Value.(formulaArg)
  3768. switch token.Type {
  3769. case ArgString:
  3770. arg := token.ToNumber()
  3771. if arg.Type == ArgNumber {
  3772. if arg.Number <= 0 {
  3773. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3774. }
  3775. return newNumberFormulaArg(math.Gamma(arg.Number))
  3776. }
  3777. case ArgNumber:
  3778. if token.Number <= 0 {
  3779. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3780. }
  3781. return newNumberFormulaArg(math.Gamma(token.Number))
  3782. }
  3783. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3784. }
  3785. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3786. // (n). The syntax of the function is:
  3787. //
  3788. // GAMMALN(x)
  3789. //
  3790. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3791. if argsList.Len() != 1 {
  3792. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3793. }
  3794. token := argsList.Front().Value.(formulaArg)
  3795. switch token.Type {
  3796. case ArgString:
  3797. arg := token.ToNumber()
  3798. if arg.Type == ArgNumber {
  3799. if arg.Number <= 0 {
  3800. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3801. }
  3802. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3803. }
  3804. case ArgNumber:
  3805. if token.Number <= 0 {
  3806. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3807. }
  3808. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3809. }
  3810. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3811. }
  3812. // HARMEAN function calculates the harmonic mean of a supplied set of values.
  3813. // The syntax of the function is:
  3814. //
  3815. // HARMEAN(number1,[number2],...)
  3816. //
  3817. func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
  3818. if argsList.Len() < 1 {
  3819. return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
  3820. }
  3821. if min := fn.MIN(argsList); min.Number < 0 {
  3822. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3823. }
  3824. number, val, cnt := 0.0, 0.0, 0.0
  3825. for token := argsList.Front(); token != nil; token = token.Next() {
  3826. arg := token.Value.(formulaArg)
  3827. switch arg.Type {
  3828. case ArgString:
  3829. num := arg.ToNumber()
  3830. if num.Type != ArgNumber {
  3831. continue
  3832. }
  3833. number = num.Number
  3834. case ArgNumber:
  3835. number = arg.Number
  3836. }
  3837. if number <= 0 {
  3838. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3839. }
  3840. val += (1 / number)
  3841. cnt++
  3842. }
  3843. return newNumberFormulaArg(1 / (val / cnt))
  3844. }
  3845. // KURT function calculates the kurtosis of a supplied set of values. The
  3846. // syntax of the function is:
  3847. //
  3848. // KURT(number1,[number2],...)
  3849. //
  3850. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3851. if argsList.Len() < 1 {
  3852. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3853. }
  3854. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3855. if stdev.Number > 0 {
  3856. count, summer := 0.0, 0.0
  3857. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3858. token := arg.Value.(formulaArg)
  3859. switch token.Type {
  3860. case ArgString, ArgNumber:
  3861. num := token.ToNumber()
  3862. if num.Type == ArgError {
  3863. continue
  3864. }
  3865. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3866. count++
  3867. case ArgList, ArgMatrix:
  3868. for _, row := range token.ToList() {
  3869. if row.Type == ArgNumber || row.Type == ArgString {
  3870. num := row.ToNumber()
  3871. if num.Type == ArgError {
  3872. continue
  3873. }
  3874. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3875. count++
  3876. }
  3877. }
  3878. }
  3879. }
  3880. if count > 3 {
  3881. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3882. }
  3883. }
  3884. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3885. }
  3886. // NORMdotDIST function calculates the Normal Probability Density Function or
  3887. // the Cumulative Normal Distribution. Function for a supplied set of
  3888. // parameters. The syntax of the function is:
  3889. //
  3890. // NORM.DIST(x,mean,standard_dev,cumulative)
  3891. //
  3892. func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
  3893. if argsList.Len() != 4 {
  3894. return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
  3895. }
  3896. return fn.NORMDIST(argsList)
  3897. }
  3898. // NORMDIST function calculates the Normal Probability Density Function or the
  3899. // Cumulative Normal Distribution. Function for a supplied set of parameters.
  3900. // The syntax of the function is:
  3901. //
  3902. // NORMDIST(x,mean,standard_dev,cumulative)
  3903. //
  3904. func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
  3905. if argsList.Len() != 4 {
  3906. return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
  3907. }
  3908. var x, mean, stdDev, cumulative formulaArg
  3909. if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
  3910. return x
  3911. }
  3912. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3913. return mean
  3914. }
  3915. if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3916. return stdDev
  3917. }
  3918. if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
  3919. return cumulative
  3920. }
  3921. if stdDev.Number < 0 {
  3922. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3923. }
  3924. if cumulative.Number == 1 {
  3925. return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
  3926. }
  3927. return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
  3928. }
  3929. // NORMdotINV function calculates the inverse of the Cumulative Normal
  3930. // Distribution Function for a supplied value of x, and a supplied
  3931. // distribution mean & standard deviation. The syntax of the function is:
  3932. //
  3933. // NORM.INV(probability,mean,standard_dev)
  3934. //
  3935. func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
  3936. if argsList.Len() != 3 {
  3937. return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
  3938. }
  3939. return fn.NORMINV(argsList)
  3940. }
  3941. // NORMINV function calculates the inverse of the Cumulative Normal
  3942. // Distribution Function for a supplied value of x, and a supplied
  3943. // distribution mean & standard deviation. The syntax of the function is:
  3944. //
  3945. // NORMINV(probability,mean,standard_dev)
  3946. //
  3947. func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
  3948. if argsList.Len() != 3 {
  3949. return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
  3950. }
  3951. var prob, mean, stdDev formulaArg
  3952. if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
  3953. return prob
  3954. }
  3955. if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
  3956. return mean
  3957. }
  3958. if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
  3959. return stdDev
  3960. }
  3961. if prob.Number < 0 || prob.Number > 1 {
  3962. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3963. }
  3964. if stdDev.Number < 0 {
  3965. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3966. }
  3967. inv, err := norminv(prob.Number)
  3968. if err != nil {
  3969. return newErrorFormulaArg(err.Error(), err.Error())
  3970. }
  3971. return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
  3972. }
  3973. // NORMdotSdotDIST function calculates the Standard Normal Cumulative
  3974. // Distribution Function for a supplied value. The syntax of the function
  3975. // is:
  3976. //
  3977. // NORM.S.DIST(z)
  3978. //
  3979. func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
  3980. if argsList.Len() != 2 {
  3981. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
  3982. }
  3983. args := list.New().Init()
  3984. args.PushBack(argsList.Front().Value.(formulaArg))
  3985. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  3986. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  3987. args.PushBack(argsList.Back().Value.(formulaArg))
  3988. return fn.NORMDIST(args)
  3989. }
  3990. // NORMSDIST function calculates the Standard Normal Cumulative Distribution
  3991. // Function for a supplied value. The syntax of the function is:
  3992. //
  3993. // NORMSDIST(z)
  3994. //
  3995. func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
  3996. if argsList.Len() != 1 {
  3997. return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
  3998. }
  3999. args := list.New().Init()
  4000. args.PushBack(argsList.Front().Value.(formulaArg))
  4001. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4002. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4003. args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
  4004. return fn.NORMDIST(args)
  4005. }
  4006. // NORMSINV function calculates the inverse of the Standard Normal Cumulative
  4007. // Distribution Function for a supplied probability value. The syntax of the
  4008. // function is:
  4009. //
  4010. // NORMSINV(probability)
  4011. //
  4012. func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
  4013. if argsList.Len() != 1 {
  4014. return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
  4015. }
  4016. args := list.New().Init()
  4017. args.PushBack(argsList.Front().Value.(formulaArg))
  4018. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4019. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4020. return fn.NORMINV(args)
  4021. }
  4022. // NORMdotSdotINV function calculates the inverse of the Standard Normal
  4023. // Cumulative Distribution Function for a supplied probability value. The
  4024. // syntax of the function is:
  4025. //
  4026. // NORM.S.INV(probability)
  4027. //
  4028. func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
  4029. if argsList.Len() != 1 {
  4030. return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
  4031. }
  4032. args := list.New().Init()
  4033. args.PushBack(argsList.Front().Value.(formulaArg))
  4034. args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
  4035. args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
  4036. return fn.NORMINV(args)
  4037. }
  4038. // norminv returns the inverse of the normal cumulative distribution for the
  4039. // specified value.
  4040. func norminv(p float64) (float64, error) {
  4041. a := map[int]float64{
  4042. 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
  4043. 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
  4044. }
  4045. b := map[int]float64{
  4046. 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
  4047. 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
  4048. }
  4049. c := map[int]float64{
  4050. 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
  4051. 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
  4052. }
  4053. d := map[int]float64{
  4054. 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
  4055. 4: 3.754408661907416e+00,
  4056. }
  4057. pLow := 0.02425 // Use lower region approx. below this
  4058. pHigh := 1 - pLow // Use upper region approx. above this
  4059. if 0 < p && p < pLow {
  4060. // Rational approximation for lower region.
  4061. q := math.Sqrt(-2 * math.Log(p))
  4062. return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4063. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4064. } else if pLow <= p && p <= pHigh {
  4065. // Rational approximation for central region.
  4066. q := p - 0.5
  4067. r := q * q
  4068. return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
  4069. (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
  4070. } else if pHigh < p && p < 1 {
  4071. // Rational approximation for upper region.
  4072. q := math.Sqrt(-2 * math.Log(1-p))
  4073. return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
  4074. ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
  4075. }
  4076. return 0, errors.New(formulaErrorNUM)
  4077. }
  4078. // kth is an implementation of the formula function LARGE and SMALL.
  4079. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  4080. if argsList.Len() != 2 {
  4081. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  4082. }
  4083. array := argsList.Front().Value.(formulaArg).ToList()
  4084. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  4085. if kArg.Type != ArgNumber {
  4086. return kArg
  4087. }
  4088. k := int(kArg.Number)
  4089. if k < 1 {
  4090. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  4091. }
  4092. data := []float64{}
  4093. for _, arg := range array {
  4094. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  4095. data = append(data, numArg.Number)
  4096. }
  4097. }
  4098. if len(data) < k {
  4099. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  4100. }
  4101. sort.Float64s(data)
  4102. if name == "LARGE" {
  4103. return newNumberFormulaArg(data[len(data)-k])
  4104. }
  4105. return newNumberFormulaArg(data[k-1])
  4106. }
  4107. // LARGE function returns the k'th largest value from an array of numeric
  4108. // values. The syntax of the function is:
  4109. //
  4110. // LARGE(array,k)
  4111. //
  4112. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  4113. return fn.kth("LARGE", argsList)
  4114. }
  4115. // MAX function returns the largest value from a supplied set of numeric
  4116. // values. The syntax of the function is:
  4117. //
  4118. // MAX(number1,[number2],...)
  4119. //
  4120. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  4121. if argsList.Len() == 0 {
  4122. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  4123. }
  4124. return fn.max(false, argsList)
  4125. }
  4126. // MAXA function returns the largest value from a supplied set of numeric
  4127. // values, while counting text and the logical value FALSE as the value 0 and
  4128. // counting the logical value TRUE as the value 1. The syntax of the function
  4129. // is:
  4130. //
  4131. // MAXA(number1,[number2],...)
  4132. //
  4133. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  4134. if argsList.Len() == 0 {
  4135. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  4136. }
  4137. return fn.max(true, argsList)
  4138. }
  4139. // max is an implementation of the formula function MAX and MAXA.
  4140. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  4141. max := -math.MaxFloat64
  4142. for token := argsList.Front(); token != nil; token = token.Next() {
  4143. arg := token.Value.(formulaArg)
  4144. switch arg.Type {
  4145. case ArgString:
  4146. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4147. continue
  4148. } else {
  4149. num := arg.ToBool()
  4150. if num.Type == ArgNumber && num.Number > max {
  4151. max = num.Number
  4152. continue
  4153. }
  4154. }
  4155. num := arg.ToNumber()
  4156. if num.Type != ArgError && num.Number > max {
  4157. max = num.Number
  4158. }
  4159. case ArgNumber:
  4160. if arg.Number > max {
  4161. max = arg.Number
  4162. }
  4163. case ArgList, ArgMatrix:
  4164. for _, row := range arg.ToList() {
  4165. switch row.Type {
  4166. case ArgString:
  4167. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4168. continue
  4169. } else {
  4170. num := row.ToBool()
  4171. if num.Type == ArgNumber && num.Number > max {
  4172. max = num.Number
  4173. continue
  4174. }
  4175. }
  4176. num := row.ToNumber()
  4177. if num.Type != ArgError && num.Number > max {
  4178. max = num.Number
  4179. }
  4180. case ArgNumber:
  4181. if row.Number > max {
  4182. max = row.Number
  4183. }
  4184. }
  4185. }
  4186. case ArgError:
  4187. return arg
  4188. }
  4189. }
  4190. if max == -math.MaxFloat64 {
  4191. max = 0
  4192. }
  4193. return newNumberFormulaArg(max)
  4194. }
  4195. // MEDIAN function returns the statistical median (the middle value) of a list
  4196. // of supplied numbers. The syntax of the function is:
  4197. //
  4198. // MEDIAN(number1,[number2],...)
  4199. //
  4200. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  4201. if argsList.Len() == 0 {
  4202. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  4203. }
  4204. var values = []float64{}
  4205. var median, digits float64
  4206. var err error
  4207. for token := argsList.Front(); token != nil; token = token.Next() {
  4208. arg := token.Value.(formulaArg)
  4209. switch arg.Type {
  4210. case ArgString:
  4211. num := arg.ToNumber()
  4212. if num.Type == ArgError {
  4213. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  4214. }
  4215. values = append(values, num.Number)
  4216. case ArgNumber:
  4217. values = append(values, arg.Number)
  4218. case ArgMatrix:
  4219. for _, row := range arg.Matrix {
  4220. for _, value := range row {
  4221. if value.String == "" {
  4222. continue
  4223. }
  4224. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  4225. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4226. }
  4227. values = append(values, digits)
  4228. }
  4229. }
  4230. }
  4231. }
  4232. sort.Float64s(values)
  4233. if len(values)%2 == 0 {
  4234. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  4235. } else {
  4236. median = values[len(values)/2]
  4237. }
  4238. return newNumberFormulaArg(median)
  4239. }
  4240. // MIN function returns the smallest value from a supplied set of numeric
  4241. // values. The syntax of the function is:
  4242. //
  4243. // MIN(number1,[number2],...)
  4244. //
  4245. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  4246. if argsList.Len() == 0 {
  4247. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  4248. }
  4249. return fn.min(false, argsList)
  4250. }
  4251. // MINA function returns the smallest value from a supplied set of numeric
  4252. // values, while counting text and the logical value FALSE as the value 0 and
  4253. // counting the logical value TRUE as the value 1. The syntax of the function
  4254. // is:
  4255. //
  4256. // MINA(number1,[number2],...)
  4257. //
  4258. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  4259. if argsList.Len() == 0 {
  4260. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  4261. }
  4262. return fn.min(true, argsList)
  4263. }
  4264. // min is an implementation of the formula function MIN and MINA.
  4265. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  4266. min := math.MaxFloat64
  4267. for token := argsList.Front(); token != nil; token = token.Next() {
  4268. arg := token.Value.(formulaArg)
  4269. switch arg.Type {
  4270. case ArgString:
  4271. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  4272. continue
  4273. } else {
  4274. num := arg.ToBool()
  4275. if num.Type == ArgNumber && num.Number < min {
  4276. min = num.Number
  4277. continue
  4278. }
  4279. }
  4280. num := arg.ToNumber()
  4281. if num.Type != ArgError && num.Number < min {
  4282. min = num.Number
  4283. }
  4284. case ArgNumber:
  4285. if arg.Number < min {
  4286. min = arg.Number
  4287. }
  4288. case ArgList, ArgMatrix:
  4289. for _, row := range arg.ToList() {
  4290. switch row.Type {
  4291. case ArgString:
  4292. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  4293. continue
  4294. } else {
  4295. num := row.ToBool()
  4296. if num.Type == ArgNumber && num.Number < min {
  4297. min = num.Number
  4298. continue
  4299. }
  4300. }
  4301. num := row.ToNumber()
  4302. if num.Type != ArgError && num.Number < min {
  4303. min = num.Number
  4304. }
  4305. case ArgNumber:
  4306. if row.Number < min {
  4307. min = row.Number
  4308. }
  4309. }
  4310. }
  4311. case ArgError:
  4312. return arg
  4313. }
  4314. }
  4315. if min == math.MaxFloat64 {
  4316. min = 0
  4317. }
  4318. return newNumberFormulaArg(min)
  4319. }
  4320. // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
  4321. // which k% of the data values fall) for a supplied range of values and a
  4322. // supplied k. The syntax of the function is:
  4323. //
  4324. // PERCENTILE.INC(array,k)
  4325. //
  4326. func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
  4327. if argsList.Len() != 2 {
  4328. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
  4329. }
  4330. return fn.PERCENTILE(argsList)
  4331. }
  4332. // PERCENTILE function returns the k'th percentile (i.e. the value below which
  4333. // k% of the data values fall) for a supplied range of values and a supplied
  4334. // k. The syntax of the function is:
  4335. //
  4336. // PERCENTILE(array,k)
  4337. //
  4338. func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
  4339. if argsList.Len() != 2 {
  4340. return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
  4341. }
  4342. array := argsList.Front().Value.(formulaArg).ToList()
  4343. k := argsList.Back().Value.(formulaArg).ToNumber()
  4344. if k.Type != ArgNumber {
  4345. return k
  4346. }
  4347. if k.Number < 0 || k.Number > 1 {
  4348. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4349. }
  4350. numbers := []float64{}
  4351. for _, arg := range array {
  4352. if arg.Type == ArgError {
  4353. return arg
  4354. }
  4355. num := arg.ToNumber()
  4356. if num.Type == ArgNumber {
  4357. numbers = append(numbers, num.Number)
  4358. }
  4359. }
  4360. cnt := len(numbers)
  4361. sort.Float64s(numbers)
  4362. idx := k.Number * (float64(cnt) - 1)
  4363. base := math.Floor(idx)
  4364. if idx == base {
  4365. return newNumberFormulaArg(numbers[int(idx)])
  4366. }
  4367. next := base + 1
  4368. proportion := idx - base
  4369. return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
  4370. }
  4371. // PERMUT function calculates the number of permutations of a specified number
  4372. // of objects from a set of objects. The syntax of the function is:
  4373. //
  4374. // PERMUT(number,number_chosen)
  4375. //
  4376. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4377. if argsList.Len() != 2 {
  4378. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4379. }
  4380. number := argsList.Front().Value.(formulaArg).ToNumber()
  4381. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4382. if number.Type != ArgNumber {
  4383. return number
  4384. }
  4385. if chosen.Type != ArgNumber {
  4386. return chosen
  4387. }
  4388. if number.Number < chosen.Number {
  4389. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4390. }
  4391. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4392. }
  4393. // PERMUTATIONA function calculates the number of permutations, with
  4394. // repetitions, of a specified number of objects from a set. The syntax of
  4395. // the function is:
  4396. //
  4397. // PERMUTATIONA(number,number_chosen)
  4398. //
  4399. func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
  4400. if argsList.Len() < 1 {
  4401. return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
  4402. }
  4403. number := argsList.Front().Value.(formulaArg).ToNumber()
  4404. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4405. if number.Type != ArgNumber {
  4406. return number
  4407. }
  4408. if chosen.Type != ArgNumber {
  4409. return chosen
  4410. }
  4411. num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
  4412. if num < 0 || numChosen < 0 {
  4413. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4414. }
  4415. return newNumberFormulaArg(math.Pow(num, numChosen))
  4416. }
  4417. // SKEW function calculates the skewness of the distribution of a supplied set
  4418. // of values. The syntax of the function is:
  4419. //
  4420. // SKEW(number1,[number2],...)
  4421. //
  4422. func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
  4423. if argsList.Len() < 1 {
  4424. return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
  4425. }
  4426. mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
  4427. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4428. token := arg.Value.(formulaArg)
  4429. switch token.Type {
  4430. case ArgNumber, ArgString:
  4431. num := token.ToNumber()
  4432. if num.Type == ArgError {
  4433. return num
  4434. }
  4435. summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
  4436. count++
  4437. case ArgList, ArgMatrix:
  4438. for _, row := range token.ToList() {
  4439. numArg := row.ToNumber()
  4440. if numArg.Type != ArgNumber {
  4441. continue
  4442. }
  4443. summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
  4444. count++
  4445. }
  4446. }
  4447. }
  4448. if count > 2 {
  4449. return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
  4450. }
  4451. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  4452. }
  4453. // SMALL function returns the k'th smallest value from an array of numeric
  4454. // values. The syntax of the function is:
  4455. //
  4456. // SMALL(array,k)
  4457. //
  4458. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4459. return fn.kth("SMALL", argsList)
  4460. }
  4461. // Information Functions
  4462. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4463. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4464. // function is:
  4465. //
  4466. // ISBLANK(value)
  4467. //
  4468. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4469. if argsList.Len() != 1 {
  4470. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4471. }
  4472. token := argsList.Front().Value.(formulaArg)
  4473. result := "FALSE"
  4474. switch token.Type {
  4475. case ArgUnknown:
  4476. result = "TRUE"
  4477. case ArgString:
  4478. if token.String == "" {
  4479. result = "TRUE"
  4480. }
  4481. }
  4482. return newStringFormulaArg(result)
  4483. }
  4484. // ISERR function tests if an initial supplied expression (or value) returns
  4485. // any Excel Error, except the #N/A error. If so, the function returns the
  4486. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4487. // error, the ISERR function returns FALSE. The syntax of the function is:
  4488. //
  4489. // ISERR(value)
  4490. //
  4491. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4492. if argsList.Len() != 1 {
  4493. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4494. }
  4495. token := argsList.Front().Value.(formulaArg)
  4496. result := "FALSE"
  4497. if token.Type == ArgError {
  4498. for _, errType := range []string{
  4499. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4500. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4501. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4502. } {
  4503. if errType == token.String {
  4504. result = "TRUE"
  4505. }
  4506. }
  4507. }
  4508. return newStringFormulaArg(result)
  4509. }
  4510. // ISERROR function tests if an initial supplied expression (or value) returns
  4511. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4512. // function returns FALSE. The syntax of the function is:
  4513. //
  4514. // ISERROR(value)
  4515. //
  4516. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4517. if argsList.Len() != 1 {
  4518. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4519. }
  4520. token := argsList.Front().Value.(formulaArg)
  4521. result := "FALSE"
  4522. if token.Type == ArgError {
  4523. for _, errType := range []string{
  4524. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4525. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4526. formulaErrorCALC, formulaErrorGETTINGDATA,
  4527. } {
  4528. if errType == token.String {
  4529. result = "TRUE"
  4530. }
  4531. }
  4532. }
  4533. return newStringFormulaArg(result)
  4534. }
  4535. // ISEVEN function tests if a supplied number (or numeric expression)
  4536. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4537. // function returns FALSE. The syntax of the function is:
  4538. //
  4539. // ISEVEN(value)
  4540. //
  4541. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4542. if argsList.Len() != 1 {
  4543. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4544. }
  4545. var (
  4546. token = argsList.Front().Value.(formulaArg)
  4547. result = "FALSE"
  4548. numeric int
  4549. err error
  4550. )
  4551. if token.Type == ArgString {
  4552. if numeric, err = strconv.Atoi(token.String); err != nil {
  4553. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4554. }
  4555. if numeric == numeric/2*2 {
  4556. return newStringFormulaArg("TRUE")
  4557. }
  4558. }
  4559. return newStringFormulaArg(result)
  4560. }
  4561. // ISNA function tests if an initial supplied expression (or value) returns
  4562. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4563. // returns FALSE. The syntax of the function is:
  4564. //
  4565. // ISNA(value)
  4566. //
  4567. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4568. if argsList.Len() != 1 {
  4569. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4570. }
  4571. token := argsList.Front().Value.(formulaArg)
  4572. result := "FALSE"
  4573. if token.Type == ArgError && token.String == formulaErrorNA {
  4574. result = "TRUE"
  4575. }
  4576. return newStringFormulaArg(result)
  4577. }
  4578. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4579. // function returns TRUE; If the supplied value is text, the function returns
  4580. // FALSE. The syntax of the function is:
  4581. //
  4582. // ISNONTEXT(value)
  4583. //
  4584. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4585. if argsList.Len() != 1 {
  4586. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4587. }
  4588. token := argsList.Front().Value.(formulaArg)
  4589. result := "TRUE"
  4590. if token.Type == ArgString && token.String != "" {
  4591. result = "FALSE"
  4592. }
  4593. return newStringFormulaArg(result)
  4594. }
  4595. // ISNUMBER function function tests if a supplied value is a number. If so,
  4596. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4597. // function is:
  4598. //
  4599. // ISNUMBER(value)
  4600. //
  4601. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4602. if argsList.Len() != 1 {
  4603. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4604. }
  4605. token, result := argsList.Front().Value.(formulaArg), false
  4606. if token.Type == ArgString && token.String != "" {
  4607. if _, err := strconv.Atoi(token.String); err == nil {
  4608. result = true
  4609. }
  4610. }
  4611. return newBoolFormulaArg(result)
  4612. }
  4613. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4614. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4615. // FALSE. The syntax of the function is:
  4616. //
  4617. // ISODD(value)
  4618. //
  4619. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4620. if argsList.Len() != 1 {
  4621. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4622. }
  4623. var (
  4624. token = argsList.Front().Value.(formulaArg)
  4625. result = "FALSE"
  4626. numeric int
  4627. err error
  4628. )
  4629. if token.Type == ArgString {
  4630. if numeric, err = strconv.Atoi(token.String); err != nil {
  4631. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4632. }
  4633. if numeric != numeric/2*2 {
  4634. return newStringFormulaArg("TRUE")
  4635. }
  4636. }
  4637. return newStringFormulaArg(result)
  4638. }
  4639. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4640. // Otherwise, the function returns FALSE. The syntax of the function is:
  4641. //
  4642. // ISTEXT(value)
  4643. //
  4644. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4645. if argsList.Len() != 1 {
  4646. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4647. }
  4648. token := argsList.Front().Value.(formulaArg)
  4649. if token.ToNumber().Type != ArgError {
  4650. return newBoolFormulaArg(false)
  4651. }
  4652. return newBoolFormulaArg(token.Type == ArgString)
  4653. }
  4654. // N function converts data into a numeric value. The syntax of the function
  4655. // is:
  4656. //
  4657. // N(value)
  4658. //
  4659. func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
  4660. if argsList.Len() != 1 {
  4661. return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
  4662. }
  4663. token, num := argsList.Front().Value.(formulaArg), 0.0
  4664. if token.Type == ArgError {
  4665. return token
  4666. }
  4667. if arg := token.ToNumber(); arg.Type == ArgNumber {
  4668. num = arg.Number
  4669. }
  4670. if token.Value() == "TRUE" {
  4671. num = 1
  4672. }
  4673. return newNumberFormulaArg(num)
  4674. }
  4675. // NA function returns the Excel #N/A error. This error message has the
  4676. // meaning 'value not available' and is produced when an Excel Formula is
  4677. // unable to find a value that it needs. The syntax of the function is:
  4678. //
  4679. // NA()
  4680. //
  4681. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4682. if argsList.Len() != 0 {
  4683. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4684. }
  4685. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4686. }
  4687. // SHEET function returns the Sheet number for a specified reference. The
  4688. // syntax of the function is:
  4689. //
  4690. // SHEET()
  4691. //
  4692. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4693. if argsList.Len() != 0 {
  4694. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4695. }
  4696. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4697. }
  4698. // T function tests if a supplied value is text and if so, returns the
  4699. // supplied text; Otherwise, the function returns an empty text string. The
  4700. // syntax of the function is:
  4701. //
  4702. // T(value)
  4703. //
  4704. func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
  4705. if argsList.Len() != 1 {
  4706. return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
  4707. }
  4708. token := argsList.Front().Value.(formulaArg)
  4709. if token.Type == ArgError {
  4710. return token
  4711. }
  4712. if token.Type == ArgNumber {
  4713. return newStringFormulaArg("")
  4714. }
  4715. return newStringFormulaArg(token.Value())
  4716. }
  4717. // Logical Functions
  4718. // AND function tests a number of supplied conditions and returns TRUE or
  4719. // FALSE. The syntax of the function is:
  4720. //
  4721. // AND(logical_test1,[logical_test2],...)
  4722. //
  4723. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4724. if argsList.Len() == 0 {
  4725. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4726. }
  4727. if argsList.Len() > 30 {
  4728. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4729. }
  4730. var (
  4731. and = true
  4732. val float64
  4733. err error
  4734. )
  4735. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4736. token := arg.Value.(formulaArg)
  4737. switch token.Type {
  4738. case ArgUnknown:
  4739. continue
  4740. case ArgString:
  4741. if token.String == "TRUE" {
  4742. continue
  4743. }
  4744. if token.String == "FALSE" {
  4745. return newStringFormulaArg(token.String)
  4746. }
  4747. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4748. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4749. }
  4750. and = and && (val != 0)
  4751. case ArgMatrix:
  4752. // TODO
  4753. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4754. }
  4755. }
  4756. return newBoolFormulaArg(and)
  4757. }
  4758. // FALSE function function returns the logical value FALSE. The syntax of the
  4759. // function is:
  4760. //
  4761. // FALSE()
  4762. //
  4763. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4764. if argsList.Len() != 0 {
  4765. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4766. }
  4767. return newBoolFormulaArg(false)
  4768. }
  4769. // IFERROR function receives two values (or expressions) and tests if the
  4770. // first of these evaluates to an error. The syntax of the function is:
  4771. //
  4772. // IFERROR(value,value_if_error)
  4773. //
  4774. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4775. if argsList.Len() != 2 {
  4776. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4777. }
  4778. value := argsList.Front().Value.(formulaArg)
  4779. if value.Type != ArgError {
  4780. if value.Type == ArgEmpty {
  4781. return newNumberFormulaArg(0)
  4782. }
  4783. return value
  4784. }
  4785. return argsList.Back().Value.(formulaArg)
  4786. }
  4787. // NOT function returns the opposite to a supplied logical value. The syntax
  4788. // of the function is:
  4789. //
  4790. // NOT(logical)
  4791. //
  4792. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4793. if argsList.Len() != 1 {
  4794. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4795. }
  4796. token := argsList.Front().Value.(formulaArg)
  4797. switch token.Type {
  4798. case ArgString, ArgList:
  4799. if strings.ToUpper(token.String) == "TRUE" {
  4800. return newBoolFormulaArg(false)
  4801. }
  4802. if strings.ToUpper(token.String) == "FALSE" {
  4803. return newBoolFormulaArg(true)
  4804. }
  4805. case ArgNumber:
  4806. return newBoolFormulaArg(!(token.Number != 0))
  4807. case ArgError:
  4808. return token
  4809. }
  4810. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4811. }
  4812. // OR function tests a number of supplied conditions and returns either TRUE
  4813. // or FALSE. The syntax of the function is:
  4814. //
  4815. // OR(logical_test1,[logical_test2],...)
  4816. //
  4817. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4818. if argsList.Len() == 0 {
  4819. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4820. }
  4821. if argsList.Len() > 30 {
  4822. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4823. }
  4824. var (
  4825. or bool
  4826. val float64
  4827. err error
  4828. )
  4829. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4830. token := arg.Value.(formulaArg)
  4831. switch token.Type {
  4832. case ArgUnknown:
  4833. continue
  4834. case ArgString:
  4835. if token.String == "FALSE" {
  4836. continue
  4837. }
  4838. if token.String == "TRUE" {
  4839. or = true
  4840. continue
  4841. }
  4842. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4843. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4844. }
  4845. or = val != 0
  4846. case ArgMatrix:
  4847. // TODO
  4848. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4849. }
  4850. }
  4851. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4852. }
  4853. // TRUE function returns the logical value TRUE. The syntax of the function
  4854. // is:
  4855. //
  4856. // TRUE()
  4857. //
  4858. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4859. if argsList.Len() != 0 {
  4860. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4861. }
  4862. return newBoolFormulaArg(true)
  4863. }
  4864. // Date and Time Functions
  4865. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4866. // of the function is:
  4867. //
  4868. // DATE(year,month,day)
  4869. //
  4870. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4871. if argsList.Len() != 3 {
  4872. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4873. }
  4874. year := argsList.Front().Value.(formulaArg).ToNumber()
  4875. month := argsList.Front().Next().Value.(formulaArg).ToNumber()
  4876. day := argsList.Back().Value.(formulaArg).ToNumber()
  4877. if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
  4878. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4879. }
  4880. d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
  4881. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4882. }
  4883. // DATEDIF function calculates the number of days, months, or years between
  4884. // two dates. The syntax of the function is:
  4885. //
  4886. // DATEDIF(start_date,end_date,unit)
  4887. //
  4888. func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
  4889. if argsList.Len() != 3 {
  4890. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
  4891. }
  4892. startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
  4893. if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
  4894. return startArg
  4895. }
  4896. if startArg.Number > endArg.Number {
  4897. return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
  4898. }
  4899. if startArg.Number == endArg.Number {
  4900. return newNumberFormulaArg(0)
  4901. }
  4902. unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
  4903. startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
  4904. sy, smm, sd := startDate.Date()
  4905. ey, emm, ed := endDate.Date()
  4906. sm, em, diff := int(smm), int(emm), 0.0
  4907. switch unit {
  4908. case "d":
  4909. return newNumberFormulaArg(endArg.Number - startArg.Number)
  4910. case "y":
  4911. diff = float64(ey - sy)
  4912. if em < sm || (em == sm && ed < sd) {
  4913. diff--
  4914. }
  4915. case "m":
  4916. ydiff := ey - sy
  4917. mdiff := em - sm
  4918. if ed < sd {
  4919. mdiff--
  4920. }
  4921. if mdiff < 0 {
  4922. ydiff--
  4923. mdiff += 12
  4924. }
  4925. diff = float64(ydiff*12 + mdiff)
  4926. case "md":
  4927. smMD := em
  4928. if ed < sd {
  4929. smMD--
  4930. }
  4931. diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
  4932. case "ym":
  4933. diff = float64(em - sm)
  4934. if ed < sd {
  4935. diff--
  4936. }
  4937. if diff < 0 {
  4938. diff += 12
  4939. }
  4940. case "yd":
  4941. syYD := sy
  4942. if em < sm || (em == sm && ed < sd) {
  4943. syYD++
  4944. }
  4945. s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
  4946. e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
  4947. diff = s - e
  4948. default:
  4949. return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
  4950. }
  4951. return newNumberFormulaArg(diff)
  4952. }
  4953. // NOW function returns the current date and time. The function receives no
  4954. // arguments and therefore. The syntax of the function is:
  4955. //
  4956. // NOW()
  4957. //
  4958. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  4959. if argsList.Len() != 0 {
  4960. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  4961. }
  4962. now := time.Now()
  4963. _, offset := now.Zone()
  4964. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  4965. }
  4966. // TODAY function returns the current date. The function has no arguments and
  4967. // therefore. The syntax of the function is:
  4968. //
  4969. // TODAY()
  4970. //
  4971. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  4972. if argsList.Len() != 0 {
  4973. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  4974. }
  4975. now := time.Now()
  4976. _, offset := now.Zone()
  4977. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  4978. }
  4979. // makeDate return date as a Unix time, the number of seconds elapsed since
  4980. // January 1, 1970 UTC.
  4981. func makeDate(y int, m time.Month, d int) int64 {
  4982. if y == 1900 && int(m) <= 2 {
  4983. d--
  4984. }
  4985. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4986. return date.Unix()
  4987. }
  4988. // daysBetween return time interval of the given start timestamp and end
  4989. // timestamp.
  4990. func daysBetween(startDate, endDate int64) float64 {
  4991. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4992. }
  4993. // Text Functions
  4994. // CHAR function returns the character relating to a supplied character set
  4995. // number (from 1 to 255). syntax of the function is:
  4996. //
  4997. // CHAR(number)
  4998. //
  4999. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  5000. if argsList.Len() != 1 {
  5001. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  5002. }
  5003. arg := argsList.Front().Value.(formulaArg).ToNumber()
  5004. if arg.Type != ArgNumber {
  5005. return arg
  5006. }
  5007. num := int(arg.Number)
  5008. if num < 0 || num > 255 {
  5009. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5010. }
  5011. return newStringFormulaArg(fmt.Sprintf("%c", num))
  5012. }
  5013. // CLEAN removes all non-printable characters from a supplied text string. The
  5014. // syntax of the function is:
  5015. //
  5016. // CLEAN(text)
  5017. //
  5018. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  5019. if argsList.Len() != 1 {
  5020. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  5021. }
  5022. b := bytes.Buffer{}
  5023. for _, c := range argsList.Front().Value.(formulaArg).String {
  5024. if c > 31 {
  5025. b.WriteRune(c)
  5026. }
  5027. }
  5028. return newStringFormulaArg(b.String())
  5029. }
  5030. // CODE function converts the first character of a supplied text string into
  5031. // the associated numeric character set code used by your computer. The
  5032. // syntax of the function is:
  5033. //
  5034. // CODE(text)
  5035. //
  5036. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  5037. return fn.code("CODE", argsList)
  5038. }
  5039. // code is an implementation of the formula function CODE and UNICODE.
  5040. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  5041. if argsList.Len() != 1 {
  5042. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  5043. }
  5044. text := argsList.Front().Value.(formulaArg).Value()
  5045. if len(text) == 0 {
  5046. if name == "CODE" {
  5047. return newNumberFormulaArg(0)
  5048. }
  5049. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5050. }
  5051. return newNumberFormulaArg(float64(text[0]))
  5052. }
  5053. // CONCAT function joins together a series of supplied text strings into one
  5054. // combined text string.
  5055. //
  5056. // CONCAT(text1,[text2],...)
  5057. //
  5058. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  5059. return fn.concat("CONCAT", argsList)
  5060. }
  5061. // CONCATENATE function joins together a series of supplied text strings into
  5062. // one combined text string.
  5063. //
  5064. // CONCATENATE(text1,[text2],...)
  5065. //
  5066. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  5067. return fn.concat("CONCATENATE", argsList)
  5068. }
  5069. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  5070. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  5071. buf := bytes.Buffer{}
  5072. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  5073. token := arg.Value.(formulaArg)
  5074. switch token.Type {
  5075. case ArgString:
  5076. buf.WriteString(token.String)
  5077. case ArgNumber:
  5078. if token.Boolean {
  5079. if token.Number == 0 {
  5080. buf.WriteString("FALSE")
  5081. } else {
  5082. buf.WriteString("TRUE")
  5083. }
  5084. } else {
  5085. buf.WriteString(token.Value())
  5086. }
  5087. default:
  5088. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  5089. }
  5090. }
  5091. return newStringFormulaArg(buf.String())
  5092. }
  5093. // EXACT function tests if two supplied text strings or values are exactly
  5094. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  5095. // function is case-sensitive. The syntax of the function is:
  5096. //
  5097. // EXACT(text1,text2)
  5098. //
  5099. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  5100. if argsList.Len() != 2 {
  5101. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  5102. }
  5103. text1 := argsList.Front().Value.(formulaArg).Value()
  5104. text2 := argsList.Back().Value.(formulaArg).Value()
  5105. return newBoolFormulaArg(text1 == text2)
  5106. }
  5107. // FIXED function rounds a supplied number to a specified number of decimal
  5108. // places and then converts this into text. The syntax of the function is:
  5109. //
  5110. // FIXED(number,[decimals],[no_commas])
  5111. //
  5112. func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
  5113. if argsList.Len() < 1 {
  5114. return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
  5115. }
  5116. if argsList.Len() > 3 {
  5117. return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
  5118. }
  5119. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5120. if numArg.Type != ArgNumber {
  5121. return numArg
  5122. }
  5123. precision, decimals, noCommas := 0, 0, false
  5124. s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
  5125. if argsList.Len() == 1 && len(s) == 2 {
  5126. precision = len(s[1])
  5127. decimals = len(s[1])
  5128. }
  5129. if argsList.Len() >= 2 {
  5130. decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
  5131. if decimalsArg.Type != ArgNumber {
  5132. return decimalsArg
  5133. }
  5134. decimals = int(decimalsArg.Number)
  5135. }
  5136. if argsList.Len() == 3 {
  5137. noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
  5138. if noCommasArg.Type == ArgError {
  5139. return noCommasArg
  5140. }
  5141. noCommas = noCommasArg.Boolean
  5142. }
  5143. n := math.Pow(10, float64(decimals))
  5144. r := numArg.Number * n
  5145. fixed := float64(int(r+math.Copysign(0.5, r))) / n
  5146. if decimals > 0 {
  5147. precision = decimals
  5148. }
  5149. if noCommas {
  5150. return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5151. }
  5152. p := message.NewPrinter(language.English)
  5153. return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
  5154. }
  5155. // FIND function returns the position of a specified character or sub-string
  5156. // within a supplied text string. The function is case-sensitive. The syntax
  5157. // of the function is:
  5158. //
  5159. // FIND(find_text,within_text,[start_num])
  5160. //
  5161. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  5162. return fn.find("FIND", argsList)
  5163. }
  5164. // FINDB counts each double-byte character as 2 when you have enabled the
  5165. // editing of a language that supports DBCS and then set it as the default
  5166. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  5167. // function is:
  5168. //
  5169. // FINDB(find_text,within_text,[start_num])
  5170. //
  5171. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  5172. return fn.find("FINDB", argsList)
  5173. }
  5174. // find is an implementation of the formula function FIND and FINDB.
  5175. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  5176. if argsList.Len() < 2 {
  5177. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  5178. }
  5179. if argsList.Len() > 3 {
  5180. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  5181. }
  5182. findText := argsList.Front().Value.(formulaArg).Value()
  5183. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  5184. startNum, result := 1, 1
  5185. if argsList.Len() == 3 {
  5186. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5187. if numArg.Type != ArgNumber {
  5188. return numArg
  5189. }
  5190. if numArg.Number < 0 {
  5191. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5192. }
  5193. startNum = int(numArg.Number)
  5194. }
  5195. if findText == "" {
  5196. return newNumberFormulaArg(float64(startNum))
  5197. }
  5198. for idx := range withinText {
  5199. if result < startNum {
  5200. result++
  5201. }
  5202. if strings.Index(withinText[idx:], findText) == 0 {
  5203. return newNumberFormulaArg(float64(result))
  5204. }
  5205. result++
  5206. }
  5207. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5208. }
  5209. // LEFT function returns a specified number of characters from the start of a
  5210. // supplied text string. The syntax of the function is:
  5211. //
  5212. // LEFT(text,[num_chars])
  5213. //
  5214. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  5215. return fn.leftRight("LEFT", argsList)
  5216. }
  5217. // LEFTB returns the first character or characters in a text string, based on
  5218. // the number of bytes you specify. The syntax of the function is:
  5219. //
  5220. // LEFTB(text,[num_bytes])
  5221. //
  5222. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  5223. return fn.leftRight("LEFTB", argsList)
  5224. }
  5225. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  5226. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5227. // (Traditional), and Korean.
  5228. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  5229. if argsList.Len() < 1 {
  5230. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  5231. }
  5232. if argsList.Len() > 2 {
  5233. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  5234. }
  5235. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  5236. if argsList.Len() == 2 {
  5237. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  5238. if numArg.Type != ArgNumber {
  5239. return numArg
  5240. }
  5241. if numArg.Number < 0 {
  5242. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5243. }
  5244. numChars = int(numArg.Number)
  5245. }
  5246. if len(text) > numChars {
  5247. if name == "LEFT" || name == "LEFTB" {
  5248. return newStringFormulaArg(text[:numChars])
  5249. }
  5250. return newStringFormulaArg(text[len(text)-numChars:])
  5251. }
  5252. return newStringFormulaArg(text)
  5253. }
  5254. // LEN returns the length of a supplied text string. The syntax of the
  5255. // function is:
  5256. //
  5257. // LEN(text)
  5258. //
  5259. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  5260. if argsList.Len() != 1 {
  5261. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  5262. }
  5263. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5264. }
  5265. // LENB returns the number of bytes used to represent the characters in a text
  5266. // string. LENB counts 2 bytes per character only when a DBCS language is set
  5267. // as the default language. Otherwise LENB behaves the same as LEN, counting
  5268. // 1 byte per character. The syntax of the function is:
  5269. //
  5270. // LENB(text)
  5271. //
  5272. // TODO: the languages that support DBCS include Japanese, Chinese
  5273. // (Simplified), Chinese (Traditional), and Korean.
  5274. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  5275. if argsList.Len() != 1 {
  5276. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  5277. }
  5278. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  5279. }
  5280. // LOWER converts all characters in a supplied text string to lower case. The
  5281. // syntax of the function is:
  5282. //
  5283. // LOWER(text)
  5284. //
  5285. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  5286. if argsList.Len() != 1 {
  5287. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  5288. }
  5289. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  5290. }
  5291. // MID function returns a specified number of characters from the middle of a
  5292. // supplied text string. The syntax of the function is:
  5293. //
  5294. // MID(text,start_num,num_chars)
  5295. //
  5296. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  5297. return fn.mid("MID", argsList)
  5298. }
  5299. // MIDB returns a specific number of characters from a text string, starting
  5300. // at the position you specify, based on the number of bytes you specify. The
  5301. // syntax of the function is:
  5302. //
  5303. // MID(text,start_num,num_chars)
  5304. //
  5305. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  5306. return fn.mid("MIDB", argsList)
  5307. }
  5308. // mid is an implementation of the formula function MID and MIDB. TODO:
  5309. // support DBCS include Japanese, Chinese (Simplified), Chinese
  5310. // (Traditional), and Korean.
  5311. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  5312. if argsList.Len() != 3 {
  5313. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  5314. }
  5315. text := argsList.Front().Value.(formulaArg).Value()
  5316. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5317. if startNumArg.Type != ArgNumber {
  5318. return startNumArg
  5319. }
  5320. if numCharsArg.Type != ArgNumber {
  5321. return numCharsArg
  5322. }
  5323. startNum := int(startNumArg.Number)
  5324. if startNum < 0 {
  5325. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5326. }
  5327. textLen := len(text)
  5328. if startNum > textLen {
  5329. return newStringFormulaArg("")
  5330. }
  5331. startNum--
  5332. endNum := startNum + int(numCharsArg.Number)
  5333. if endNum > textLen+1 {
  5334. return newStringFormulaArg(text[startNum:])
  5335. }
  5336. return newStringFormulaArg(text[startNum:endNum])
  5337. }
  5338. // PROPER converts all characters in a supplied text string to proper case
  5339. // (i.e. all letters that do not immediately follow another letter are set to
  5340. // upper case and all other characters are lower case). The syntax of the
  5341. // function is:
  5342. //
  5343. // PROPER(text)
  5344. //
  5345. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  5346. if argsList.Len() != 1 {
  5347. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  5348. }
  5349. buf := bytes.Buffer{}
  5350. isLetter := false
  5351. for _, char := range argsList.Front().Value.(formulaArg).String {
  5352. if !isLetter && unicode.IsLetter(char) {
  5353. buf.WriteRune(unicode.ToUpper(char))
  5354. } else {
  5355. buf.WriteRune(unicode.ToLower(char))
  5356. }
  5357. isLetter = unicode.IsLetter(char)
  5358. }
  5359. return newStringFormulaArg(buf.String())
  5360. }
  5361. // REPLACE function replaces all or part of a text string with another string.
  5362. // The syntax of the function is:
  5363. //
  5364. // REPLACE(old_text,start_num,num_chars,new_text)
  5365. //
  5366. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  5367. return fn.replace("REPLACE", argsList)
  5368. }
  5369. // REPLACEB replaces part of a text string, based on the number of bytes you
  5370. // specify, with a different text string.
  5371. //
  5372. // REPLACEB(old_text,start_num,num_chars,new_text)
  5373. //
  5374. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  5375. return fn.replace("REPLACEB", argsList)
  5376. }
  5377. // replace is an implementation of the formula function REPLACE and REPLACEB.
  5378. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  5379. // (Traditional), and Korean.
  5380. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  5381. if argsList.Len() != 4 {
  5382. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  5383. }
  5384. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  5385. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5386. if startNumArg.Type != ArgNumber {
  5387. return startNumArg
  5388. }
  5389. if numCharsArg.Type != ArgNumber {
  5390. return numCharsArg
  5391. }
  5392. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  5393. if startIdx > oldTextLen {
  5394. startIdx = oldTextLen + 1
  5395. }
  5396. endIdx := startIdx + int(numCharsArg.Number)
  5397. if endIdx > oldTextLen {
  5398. endIdx = oldTextLen + 1
  5399. }
  5400. if startIdx < 1 || endIdx < 1 {
  5401. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5402. }
  5403. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  5404. return newStringFormulaArg(result)
  5405. }
  5406. // REPT function returns a supplied text string, repeated a specified number
  5407. // of times. The syntax of the function is:
  5408. //
  5409. // REPT(text,number_times)
  5410. //
  5411. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  5412. if argsList.Len() != 2 {
  5413. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  5414. }
  5415. text := argsList.Front().Value.(formulaArg)
  5416. if text.Type != ArgString {
  5417. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  5418. }
  5419. times := argsList.Back().Value.(formulaArg).ToNumber()
  5420. if times.Type != ArgNumber {
  5421. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  5422. }
  5423. if times.Number < 0 {
  5424. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  5425. }
  5426. if times.Number == 0 {
  5427. return newStringFormulaArg("")
  5428. }
  5429. buf := bytes.Buffer{}
  5430. for i := 0; i < int(times.Number); i++ {
  5431. buf.WriteString(text.String)
  5432. }
  5433. return newStringFormulaArg(buf.String())
  5434. }
  5435. // RIGHT function returns a specified number of characters from the end of a
  5436. // supplied text string. The syntax of the function is:
  5437. //
  5438. // RIGHT(text,[num_chars])
  5439. //
  5440. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  5441. return fn.leftRight("RIGHT", argsList)
  5442. }
  5443. // RIGHTB returns the last character or characters in a text string, based on
  5444. // the number of bytes you specify. The syntax of the function is:
  5445. //
  5446. // RIGHTB(text,[num_bytes])
  5447. //
  5448. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  5449. return fn.leftRight("RIGHTB", argsList)
  5450. }
  5451. // SUBSTITUTE function replaces one or more instances of a given text string,
  5452. // within an original text string. The syntax of the function is:
  5453. //
  5454. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  5455. //
  5456. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  5457. if argsList.Len() != 3 && argsList.Len() != 4 {
  5458. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  5459. }
  5460. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  5461. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  5462. if argsList.Len() == 3 {
  5463. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  5464. }
  5465. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  5466. if instanceNumArg.Type != ArgNumber {
  5467. return instanceNumArg
  5468. }
  5469. instanceNum = int(instanceNumArg.Number)
  5470. if instanceNum < 1 {
  5471. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  5472. }
  5473. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  5474. for {
  5475. count--
  5476. index := strings.Index(str, oldText.Value())
  5477. if index == -1 {
  5478. pos = -1
  5479. break
  5480. } else {
  5481. pos = index + chars
  5482. if count == 0 {
  5483. break
  5484. }
  5485. idx := oldTextLen + index
  5486. chars += idx
  5487. str = str[idx:]
  5488. }
  5489. }
  5490. if pos == -1 {
  5491. return newStringFormulaArg(text.Value())
  5492. }
  5493. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  5494. return newStringFormulaArg(pre + newText.Value() + post)
  5495. }
  5496. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  5497. // words or characters) from a supplied text string. The syntax of the
  5498. // function is:
  5499. //
  5500. // TRIM(text)
  5501. //
  5502. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  5503. if argsList.Len() != 1 {
  5504. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  5505. }
  5506. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  5507. }
  5508. // UNICHAR returns the Unicode character that is referenced by the given
  5509. // numeric value. The syntax of the function is:
  5510. //
  5511. // UNICHAR(number)
  5512. //
  5513. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  5514. if argsList.Len() != 1 {
  5515. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  5516. }
  5517. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  5518. if numArg.Type != ArgNumber {
  5519. return numArg
  5520. }
  5521. if numArg.Number <= 0 || numArg.Number > 55295 {
  5522. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  5523. }
  5524. return newStringFormulaArg(string(rune(numArg.Number)))
  5525. }
  5526. // UNICODE function returns the code point for the first character of a
  5527. // supplied text string. The syntax of the function is:
  5528. //
  5529. // UNICODE(text)
  5530. //
  5531. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  5532. return fn.code("UNICODE", argsList)
  5533. }
  5534. // UPPER converts all characters in a supplied text string to upper case. The
  5535. // syntax of the function is:
  5536. //
  5537. // UPPER(text)
  5538. //
  5539. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  5540. if argsList.Len() != 1 {
  5541. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  5542. }
  5543. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  5544. }
  5545. // Conditional Functions
  5546. // IF function tests a supplied condition and returns one result if the
  5547. // condition evaluates to TRUE, and another result if the condition evaluates
  5548. // to FALSE. The syntax of the function is:
  5549. //
  5550. // IF(logical_test,value_if_true,value_if_false)
  5551. //
  5552. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  5553. if argsList.Len() == 0 {
  5554. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  5555. }
  5556. if argsList.Len() > 3 {
  5557. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  5558. }
  5559. token := argsList.Front().Value.(formulaArg)
  5560. var (
  5561. cond bool
  5562. err error
  5563. result string
  5564. )
  5565. switch token.Type {
  5566. case ArgString:
  5567. if cond, err = strconv.ParseBool(token.String); err != nil {
  5568. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5569. }
  5570. if argsList.Len() == 1 {
  5571. return newBoolFormulaArg(cond)
  5572. }
  5573. if cond {
  5574. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5575. }
  5576. if argsList.Len() == 3 {
  5577. result = argsList.Back().Value.(formulaArg).String
  5578. }
  5579. }
  5580. return newStringFormulaArg(result)
  5581. }
  5582. // Lookup and Reference Functions
  5583. // CHOOSE function returns a value from an array, that corresponds to a
  5584. // supplied index number (position). The syntax of the function is:
  5585. //
  5586. // CHOOSE(index_num,value1,[value2],...)
  5587. //
  5588. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5589. if argsList.Len() < 2 {
  5590. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5591. }
  5592. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5593. if err != nil {
  5594. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5595. }
  5596. if argsList.Len() <= idx {
  5597. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5598. }
  5599. arg := argsList.Front()
  5600. for i := 0; i < idx; i++ {
  5601. arg = arg.Next()
  5602. }
  5603. var result formulaArg
  5604. switch arg.Value.(formulaArg).Type {
  5605. case ArgString:
  5606. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5607. case ArgMatrix:
  5608. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5609. }
  5610. return result
  5611. }
  5612. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5613. // string.
  5614. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5615. for len(pattern) > 0 {
  5616. switch pattern[0] {
  5617. default:
  5618. if len(str) == 0 || str[0] != pattern[0] {
  5619. return false
  5620. }
  5621. case '?':
  5622. if len(str) == 0 && !simple {
  5623. return false
  5624. }
  5625. case '*':
  5626. return deepMatchRune(str, pattern[1:], simple) ||
  5627. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5628. }
  5629. str = str[1:]
  5630. pattern = pattern[1:]
  5631. }
  5632. return len(str) == 0 && len(pattern) == 0
  5633. }
  5634. // matchPattern finds whether the text matches or satisfies the pattern
  5635. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5636. func matchPattern(pattern, name string) (matched bool) {
  5637. if pattern == "" {
  5638. return name == pattern
  5639. }
  5640. if pattern == "*" {
  5641. return true
  5642. }
  5643. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5644. for _, r := range name {
  5645. rname = append(rname, r)
  5646. }
  5647. for _, r := range pattern {
  5648. rpattern = append(rpattern, r)
  5649. }
  5650. simple := false // Does extended wildcard '*' and '?' match.
  5651. return deepMatchRune(rname, rpattern, simple)
  5652. }
  5653. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5654. // formula arguments by given conditions such as case sensitive, if exact
  5655. // match, and make compare result as formula criteria condition type.
  5656. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5657. if lhs.Type != rhs.Type {
  5658. return criteriaErr
  5659. }
  5660. switch lhs.Type {
  5661. case ArgNumber:
  5662. if lhs.Number == rhs.Number {
  5663. return criteriaEq
  5664. }
  5665. if lhs.Number < rhs.Number {
  5666. return criteriaL
  5667. }
  5668. return criteriaG
  5669. case ArgString:
  5670. ls, rs := lhs.String, rhs.String
  5671. if !caseSensitive {
  5672. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5673. }
  5674. if exactMatch {
  5675. match := matchPattern(rs, ls)
  5676. if match {
  5677. return criteriaEq
  5678. }
  5679. return criteriaG
  5680. }
  5681. switch strings.Compare(ls, rs) {
  5682. case 1:
  5683. return criteriaG
  5684. case -1:
  5685. return criteriaL
  5686. case 0:
  5687. return criteriaEq
  5688. }
  5689. return criteriaErr
  5690. case ArgEmpty:
  5691. return criteriaEq
  5692. case ArgList:
  5693. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5694. case ArgMatrix:
  5695. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5696. }
  5697. return criteriaErr
  5698. }
  5699. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5700. // list type formula arguments.
  5701. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5702. if len(lhs.List) < len(rhs.List) {
  5703. return criteriaL
  5704. }
  5705. if len(lhs.List) > len(rhs.List) {
  5706. return criteriaG
  5707. }
  5708. for arg := range lhs.List {
  5709. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5710. if criteria != criteriaEq {
  5711. return criteria
  5712. }
  5713. }
  5714. return criteriaEq
  5715. }
  5716. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5717. // matrix type formula arguments.
  5718. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5719. if len(lhs.Matrix) < len(rhs.Matrix) {
  5720. return criteriaL
  5721. }
  5722. if len(lhs.Matrix) > len(rhs.Matrix) {
  5723. return criteriaG
  5724. }
  5725. for i := range lhs.Matrix {
  5726. left := lhs.Matrix[i]
  5727. right := lhs.Matrix[i]
  5728. if len(left) < len(right) {
  5729. return criteriaL
  5730. }
  5731. if len(left) > len(right) {
  5732. return criteriaG
  5733. }
  5734. for arg := range left {
  5735. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5736. if criteria != criteriaEq {
  5737. return criteria
  5738. }
  5739. }
  5740. }
  5741. return criteriaEq
  5742. }
  5743. // COLUMN function returns the first column number within a supplied reference
  5744. // or the number of the current column. The syntax of the function is:
  5745. //
  5746. // COLUMN([reference])
  5747. //
  5748. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5749. if argsList.Len() > 1 {
  5750. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5751. }
  5752. if argsList.Len() == 1 {
  5753. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5754. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5755. }
  5756. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5757. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5758. }
  5759. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5760. }
  5761. col, _, _ := CellNameToCoordinates(fn.cell)
  5762. return newNumberFormulaArg(float64(col))
  5763. }
  5764. // COLUMNS function receives an Excel range and returns the number of columns
  5765. // that are contained within the range. The syntax of the function is:
  5766. //
  5767. // COLUMNS(array)
  5768. //
  5769. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5770. if argsList.Len() != 1 {
  5771. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5772. }
  5773. var min, max int
  5774. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5775. crs := argsList.Front().Value.(formulaArg).cellRanges
  5776. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5777. if min == 0 {
  5778. min = cr.Value.(cellRange).From.Col
  5779. }
  5780. if min > cr.Value.(cellRange).From.Col {
  5781. min = cr.Value.(cellRange).From.Col
  5782. }
  5783. if min > cr.Value.(cellRange).To.Col {
  5784. min = cr.Value.(cellRange).To.Col
  5785. }
  5786. if max < cr.Value.(cellRange).To.Col {
  5787. max = cr.Value.(cellRange).To.Col
  5788. }
  5789. if max < cr.Value.(cellRange).From.Col {
  5790. max = cr.Value.(cellRange).From.Col
  5791. }
  5792. }
  5793. }
  5794. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5795. cr := argsList.Front().Value.(formulaArg).cellRefs
  5796. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5797. if min == 0 {
  5798. min = refs.Value.(cellRef).Col
  5799. }
  5800. if min > refs.Value.(cellRef).Col {
  5801. min = refs.Value.(cellRef).Col
  5802. }
  5803. if max < refs.Value.(cellRef).Col {
  5804. max = refs.Value.(cellRef).Col
  5805. }
  5806. }
  5807. }
  5808. if max == TotalColumns {
  5809. return newNumberFormulaArg(float64(TotalColumns))
  5810. }
  5811. result := max - min + 1
  5812. if max == min {
  5813. if min == 0 {
  5814. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5815. }
  5816. return newNumberFormulaArg(float64(1))
  5817. }
  5818. return newNumberFormulaArg(float64(result))
  5819. }
  5820. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5821. // (or table), and returns the corresponding value from another row of the
  5822. // array. The syntax of the function is:
  5823. //
  5824. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5825. //
  5826. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5827. if argsList.Len() < 3 {
  5828. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5829. }
  5830. if argsList.Len() > 4 {
  5831. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5832. }
  5833. lookupValue := argsList.Front().Value.(formulaArg)
  5834. tableArray := argsList.Front().Next().Value.(formulaArg)
  5835. if tableArray.Type != ArgMatrix {
  5836. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5837. }
  5838. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5839. if rowArg.Type != ArgNumber {
  5840. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5841. }
  5842. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5843. if argsList.Len() == 4 {
  5844. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5845. if rangeLookup.Type == ArgError {
  5846. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5847. }
  5848. if rangeLookup.Number == 0 {
  5849. exactMatch = true
  5850. }
  5851. }
  5852. row := tableArray.Matrix[0]
  5853. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5854. start:
  5855. for idx, mtx := range row {
  5856. lhs := mtx
  5857. switch lookupValue.Type {
  5858. case ArgNumber:
  5859. if !lookupValue.Boolean {
  5860. lhs = mtx.ToNumber()
  5861. if lhs.Type == ArgError {
  5862. lhs = mtx
  5863. }
  5864. }
  5865. case ArgMatrix:
  5866. lhs = tableArray
  5867. }
  5868. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5869. matchIdx = idx
  5870. wasExact = true
  5871. break start
  5872. }
  5873. }
  5874. } else {
  5875. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  5876. }
  5877. if matchIdx == -1 {
  5878. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5879. }
  5880. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  5881. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  5882. }
  5883. row = tableArray.Matrix[rowIdx]
  5884. if wasExact || !exactMatch {
  5885. return row[matchIdx]
  5886. }
  5887. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5888. }
  5889. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  5890. // data array (or table), and returns the corresponding value from another
  5891. // column of the array. The syntax of the function is:
  5892. //
  5893. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  5894. //
  5895. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  5896. if argsList.Len() < 3 {
  5897. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  5898. }
  5899. if argsList.Len() > 4 {
  5900. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  5901. }
  5902. lookupValue := argsList.Front().Value.(formulaArg)
  5903. tableArray := argsList.Front().Next().Value.(formulaArg)
  5904. if tableArray.Type != ArgMatrix {
  5905. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  5906. }
  5907. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5908. if colIdx.Type != ArgNumber {
  5909. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  5910. }
  5911. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  5912. if argsList.Len() == 4 {
  5913. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5914. if rangeLookup.Type == ArgError {
  5915. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5916. }
  5917. if rangeLookup.Number == 0 {
  5918. exactMatch = true
  5919. }
  5920. }
  5921. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5922. start:
  5923. for idx, mtx := range tableArray.Matrix {
  5924. lhs := mtx[0]
  5925. switch lookupValue.Type {
  5926. case ArgNumber:
  5927. if !lookupValue.Boolean {
  5928. lhs = mtx[0].ToNumber()
  5929. if lhs.Type == ArgError {
  5930. lhs = mtx[0]
  5931. }
  5932. }
  5933. case ArgMatrix:
  5934. lhs = tableArray
  5935. }
  5936. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5937. matchIdx = idx
  5938. wasExact = true
  5939. break start
  5940. }
  5941. }
  5942. } else {
  5943. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  5944. }
  5945. if matchIdx == -1 {
  5946. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5947. }
  5948. mtx := tableArray.Matrix[matchIdx]
  5949. if col < 0 || col >= len(mtx) {
  5950. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  5951. }
  5952. if wasExact || !exactMatch {
  5953. return mtx[col]
  5954. }
  5955. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5956. }
  5957. // vlookupBinarySearch finds the position of a target value when range lookup
  5958. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5959. // return wrong result.
  5960. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5961. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  5962. for low <= high {
  5963. var mid int = low + (high-low)/2
  5964. mtx := tableArray.Matrix[mid]
  5965. lhs := mtx[0]
  5966. switch lookupValue.Type {
  5967. case ArgNumber:
  5968. if !lookupValue.Boolean {
  5969. lhs = mtx[0].ToNumber()
  5970. if lhs.Type == ArgError {
  5971. lhs = mtx[0]
  5972. }
  5973. }
  5974. case ArgMatrix:
  5975. lhs = tableArray
  5976. }
  5977. result := compareFormulaArg(lhs, lookupValue, false, false)
  5978. if result == criteriaEq {
  5979. matchIdx, wasExact = mid, true
  5980. return
  5981. } else if result == criteriaG {
  5982. high = mid - 1
  5983. } else if result == criteriaL {
  5984. matchIdx, low = mid, mid+1
  5985. if lhs.Value() != "" {
  5986. lastMatchIdx = matchIdx
  5987. }
  5988. } else {
  5989. return -1, false
  5990. }
  5991. }
  5992. matchIdx, wasExact = lastMatchIdx, true
  5993. return
  5994. }
  5995. // vlookupBinarySearch finds the position of a target value when range lookup
  5996. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5997. // return wrong result.
  5998. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5999. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  6000. for low <= high {
  6001. var mid int = low + (high-low)/2
  6002. mtx := row[mid]
  6003. result := compareFormulaArg(mtx, lookupValue, false, false)
  6004. if result == criteriaEq {
  6005. matchIdx, wasExact = mid, true
  6006. return
  6007. } else if result == criteriaG {
  6008. high = mid - 1
  6009. } else if result == criteriaL {
  6010. low, lastMatchIdx = mid+1, mid
  6011. } else {
  6012. return -1, false
  6013. }
  6014. }
  6015. matchIdx, wasExact = lastMatchIdx, true
  6016. return
  6017. }
  6018. // LOOKUP function performs an approximate match lookup in a one-column or
  6019. // one-row range, and returns the corresponding value from another one-column
  6020. // or one-row range. The syntax of the function is:
  6021. //
  6022. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  6023. //
  6024. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  6025. if argsList.Len() < 2 {
  6026. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  6027. }
  6028. if argsList.Len() > 3 {
  6029. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  6030. }
  6031. lookupValue := argsList.Front().Value.(formulaArg)
  6032. lookupVector := argsList.Front().Next().Value.(formulaArg)
  6033. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  6034. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  6035. }
  6036. cols, matchIdx := lookupCol(lookupVector), -1
  6037. for idx, col := range cols {
  6038. lhs := lookupValue
  6039. switch col.Type {
  6040. case ArgNumber:
  6041. lhs = lhs.ToNumber()
  6042. if !col.Boolean {
  6043. if lhs.Type == ArgError {
  6044. lhs = lookupValue
  6045. }
  6046. }
  6047. }
  6048. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  6049. matchIdx = idx
  6050. break
  6051. }
  6052. }
  6053. column := cols
  6054. if argsList.Len() == 3 {
  6055. column = lookupCol(argsList.Back().Value.(formulaArg))
  6056. }
  6057. if matchIdx < 0 || matchIdx >= len(column) {
  6058. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  6059. }
  6060. return column[matchIdx]
  6061. }
  6062. // lookupCol extract columns for LOOKUP.
  6063. func lookupCol(arr formulaArg) []formulaArg {
  6064. col := arr.List
  6065. if arr.Type == ArgMatrix {
  6066. col = nil
  6067. for _, r := range arr.Matrix {
  6068. if len(r) > 0 {
  6069. col = append(col, r[0])
  6070. continue
  6071. }
  6072. col = append(col, newEmptyFormulaArg())
  6073. }
  6074. }
  6075. return col
  6076. }
  6077. // ROW function returns the first row number within a supplied reference or
  6078. // the number of the current row. The syntax of the function is:
  6079. //
  6080. // ROW([reference])
  6081. //
  6082. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  6083. if argsList.Len() > 1 {
  6084. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  6085. }
  6086. if argsList.Len() == 1 {
  6087. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6088. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  6089. }
  6090. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6091. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  6092. }
  6093. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6094. }
  6095. _, row, _ := CellNameToCoordinates(fn.cell)
  6096. return newNumberFormulaArg(float64(row))
  6097. }
  6098. // ROWS function takes an Excel range and returns the number of rows that are
  6099. // contained within the range. The syntax of the function is:
  6100. //
  6101. // ROWS(array)
  6102. //
  6103. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  6104. if argsList.Len() != 1 {
  6105. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  6106. }
  6107. var min, max int
  6108. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  6109. crs := argsList.Front().Value.(formulaArg).cellRanges
  6110. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  6111. if min == 0 {
  6112. min = cr.Value.(cellRange).From.Row
  6113. }
  6114. if min > cr.Value.(cellRange).From.Row {
  6115. min = cr.Value.(cellRange).From.Row
  6116. }
  6117. if min > cr.Value.(cellRange).To.Row {
  6118. min = cr.Value.(cellRange).To.Row
  6119. }
  6120. if max < cr.Value.(cellRange).To.Row {
  6121. max = cr.Value.(cellRange).To.Row
  6122. }
  6123. if max < cr.Value.(cellRange).From.Row {
  6124. max = cr.Value.(cellRange).From.Row
  6125. }
  6126. }
  6127. }
  6128. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  6129. cr := argsList.Front().Value.(formulaArg).cellRefs
  6130. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  6131. if min == 0 {
  6132. min = refs.Value.(cellRef).Row
  6133. }
  6134. if min > refs.Value.(cellRef).Row {
  6135. min = refs.Value.(cellRef).Row
  6136. }
  6137. if max < refs.Value.(cellRef).Row {
  6138. max = refs.Value.(cellRef).Row
  6139. }
  6140. }
  6141. }
  6142. if max == TotalRows {
  6143. return newStringFormulaArg(strconv.Itoa(TotalRows))
  6144. }
  6145. result := max - min + 1
  6146. if max == min {
  6147. if min == 0 {
  6148. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  6149. }
  6150. return newNumberFormulaArg(float64(1))
  6151. }
  6152. return newStringFormulaArg(strconv.Itoa(result))
  6153. }
  6154. // Web Functions
  6155. // ENCODEURL function returns a URL-encoded string, replacing certain
  6156. // non-alphanumeric characters with the percentage symbol (%) and a
  6157. // hexadecimal number. The syntax of the function is:
  6158. //
  6159. // ENCODEURL(url)
  6160. //
  6161. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  6162. if argsList.Len() != 1 {
  6163. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  6164. }
  6165. token := argsList.Front().Value.(formulaArg).Value()
  6166. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  6167. }