calc.go 167 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874
  1. // Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
  2. // this source code is governed by a BSD-style license that can be found in
  3. // the LICENSE file.
  4. //
  5. // Package excelize providing a set of functions that allow you to write to
  6. // and read from XLSX / XLSM / XLTM files. Supports reading and writing
  7. // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
  8. // complex components by high compatibility, and provided streaming API for
  9. // generating or reading data from a worksheet with huge amounts of data. This
  10. // library needs Go version 1.10 or later.
  11. package excelize
  12. import (
  13. "bytes"
  14. "container/list"
  15. "errors"
  16. "fmt"
  17. "math"
  18. "math/rand"
  19. "net/url"
  20. "reflect"
  21. "regexp"
  22. "sort"
  23. "strconv"
  24. "strings"
  25. "time"
  26. "unicode"
  27. "unsafe"
  28. "github.com/xuri/efp"
  29. )
  30. // Excel formula errors
  31. const (
  32. formulaErrorDIV = "#DIV/0!"
  33. formulaErrorNAME = "#NAME?"
  34. formulaErrorNA = "#N/A"
  35. formulaErrorNUM = "#NUM!"
  36. formulaErrorVALUE = "#VALUE!"
  37. formulaErrorREF = "#REF!"
  38. formulaErrorNULL = "#NULL"
  39. formulaErrorSPILL = "#SPILL!"
  40. formulaErrorCALC = "#CALC!"
  41. formulaErrorGETTINGDATA = "#GETTING_DATA"
  42. )
  43. // Numeric precision correct numeric values as legacy Excel application
  44. // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
  45. // top figure the fraction 1/9000 in Excel is displayed. Although this number
  46. // has a decimal representation that is an infinite string of ones, Excel
  47. // displays only the leading 15 figures. In the second line, the number one
  48. // is added to the fraction, and again Excel displays only 15 figures.
  49. const numericPrecision = 1000000000000000
  50. // cellRef defines the structure of a cell reference.
  51. type cellRef struct {
  52. Col int
  53. Row int
  54. Sheet string
  55. }
  56. // cellRef defines the structure of a cell range.
  57. type cellRange struct {
  58. From cellRef
  59. To cellRef
  60. }
  61. // formula criteria condition enumeration.
  62. const (
  63. _ byte = iota
  64. criteriaEq
  65. criteriaLe
  66. criteriaGe
  67. criteriaL
  68. criteriaG
  69. criteriaBeg
  70. criteriaEnd
  71. criteriaErr
  72. )
  73. // formulaCriteria defined formula criteria parser result.
  74. type formulaCriteria struct {
  75. Type byte
  76. Condition string
  77. }
  78. // ArgType is the type if formula argument type.
  79. type ArgType byte
  80. // Formula argument types enumeration.
  81. const (
  82. ArgUnknown ArgType = iota
  83. ArgNumber
  84. ArgString
  85. ArgList
  86. ArgMatrix
  87. ArgError
  88. ArgEmpty
  89. )
  90. // formulaArg is the argument of a formula or function.
  91. type formulaArg struct {
  92. SheetName string
  93. Number float64
  94. String string
  95. List []formulaArg
  96. Matrix [][]formulaArg
  97. Boolean bool
  98. Error string
  99. Type ArgType
  100. cellRefs, cellRanges *list.List
  101. }
  102. // Value returns a string data type of the formula argument.
  103. func (fa formulaArg) Value() (value string) {
  104. switch fa.Type {
  105. case ArgNumber:
  106. if fa.Boolean {
  107. if fa.Number == 0 {
  108. return "FALSE"
  109. }
  110. return "TRUE"
  111. }
  112. return fmt.Sprintf("%g", fa.Number)
  113. case ArgString:
  114. return fa.String
  115. case ArgError:
  116. return fa.Error
  117. }
  118. return
  119. }
  120. // ToNumber returns a formula argument with number data type.
  121. func (fa formulaArg) ToNumber() formulaArg {
  122. var n float64
  123. var err error
  124. switch fa.Type {
  125. case ArgString:
  126. n, err = strconv.ParseFloat(fa.String, 64)
  127. if err != nil {
  128. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  129. }
  130. case ArgNumber:
  131. n = fa.Number
  132. }
  133. return newNumberFormulaArg(n)
  134. }
  135. // ToBool returns a formula argument with boolean data type.
  136. func (fa formulaArg) ToBool() formulaArg {
  137. var b bool
  138. var err error
  139. switch fa.Type {
  140. case ArgString:
  141. b, err = strconv.ParseBool(fa.String)
  142. if err != nil {
  143. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  144. }
  145. case ArgNumber:
  146. if fa.Boolean && fa.Number == 1 {
  147. b = true
  148. }
  149. }
  150. return newBoolFormulaArg(b)
  151. }
  152. // ToList returns a formula argument with array data type.
  153. func (fa formulaArg) ToList() []formulaArg {
  154. switch fa.Type {
  155. case ArgMatrix:
  156. list := []formulaArg{}
  157. for _, row := range fa.Matrix {
  158. list = append(list, row...)
  159. }
  160. return list
  161. case ArgList:
  162. return fa.List
  163. case ArgNumber, ArgString, ArgError, ArgUnknown:
  164. return []formulaArg{fa}
  165. }
  166. return nil
  167. }
  168. // formulaFuncs is the type of the formula functions.
  169. type formulaFuncs struct {
  170. f *File
  171. sheet, cell string
  172. }
  173. // tokenPriority defined basic arithmetic operator priority.
  174. var tokenPriority = map[string]int{
  175. "^": 5,
  176. "*": 4,
  177. "/": 4,
  178. "+": 3,
  179. "-": 3,
  180. "=": 2,
  181. "<>": 2,
  182. "<": 2,
  183. "<=": 2,
  184. ">": 2,
  185. ">=": 2,
  186. "&": 1,
  187. }
  188. // CalcCellValue provides a function to get calculated cell value. This
  189. // feature is currently in working processing. Array formula, table formula
  190. // and some other formulas are not supported currently.
  191. //
  192. // Supported formula functions:
  193. //
  194. // ABS
  195. // ACOS
  196. // ACOSH
  197. // ACOT
  198. // ACOTH
  199. // AND
  200. // ARABIC
  201. // ASIN
  202. // ASINH
  203. // ATAN
  204. // ATAN2
  205. // ATANH
  206. // AVERAGE
  207. // AVERAGEA
  208. // BASE
  209. // BIN2DEC
  210. // BIN2HEX
  211. // BIN2OCT
  212. // BITAND
  213. // BITLSHIFT
  214. // BITOR
  215. // BITRSHIFT
  216. // BITXOR
  217. // CEILING
  218. // CEILING.MATH
  219. // CEILING.PRECISE
  220. // CHAR
  221. // CHOOSE
  222. // CLEAN
  223. // CODE
  224. // COLUMN
  225. // COLUMNS
  226. // COMBIN
  227. // COMBINA
  228. // CONCAT
  229. // CONCATENATE
  230. // COS
  231. // COSH
  232. // COT
  233. // COTH
  234. // COUNT
  235. // COUNTA
  236. // COUNTBLANK
  237. // CSC
  238. // CSCH
  239. // DATE
  240. // DEC2BIN
  241. // DEC2HEX
  242. // DEC2OCT
  243. // DECIMAL
  244. // DEGREES
  245. // ENCODEURL
  246. // EVEN
  247. // EXACT
  248. // EXP
  249. // FACT
  250. // FACTDOUBLE
  251. // FALSE
  252. // FIND
  253. // FINDB
  254. // FISHER
  255. // FISHERINV
  256. // FLOOR
  257. // FLOOR.MATH
  258. // FLOOR.PRECISE
  259. // GAMMA
  260. // GAMMALN
  261. // GCD
  262. // HEX2BIN
  263. // HEX2DEC
  264. // HEX2OCT
  265. // HLOOKUP
  266. // IF
  267. // IFERROR
  268. // INT
  269. // ISBLANK
  270. // ISERR
  271. // ISERROR
  272. // ISEVEN
  273. // ISNA
  274. // ISNONTEXT
  275. // ISNUMBER
  276. // ISODD
  277. // ISTEXT
  278. // ISO.CEILING
  279. // KURT
  280. // LARGE
  281. // LCM
  282. // LEFT
  283. // LEFTB
  284. // LEN
  285. // LENB
  286. // LN
  287. // LOG
  288. // LOG10
  289. // LOOKUP
  290. // LOWER
  291. // MAX
  292. // MDETERM
  293. // MEDIAN
  294. // MID
  295. // MIDB
  296. // MIN
  297. // MINA
  298. // MOD
  299. // MROUND
  300. // MULTINOMIAL
  301. // MUNIT
  302. // NA
  303. // NOT
  304. // NOW
  305. // OCT2BIN
  306. // OCT2DEC
  307. // OCT2HEX
  308. // ODD
  309. // OR
  310. // PERMUT
  311. // PI
  312. // POWER
  313. // PRODUCT
  314. // PROPER
  315. // QUOTIENT
  316. // RADIANS
  317. // RAND
  318. // RANDBETWEEN
  319. // REPLACE
  320. // REPLACEB
  321. // REPT
  322. // RIGHT
  323. // RIGHTB
  324. // ROMAN
  325. // ROUND
  326. // ROUNDDOWN
  327. // ROUNDUP
  328. // ROW
  329. // ROWS
  330. // SEC
  331. // SECH
  332. // SHEET
  333. // SIGN
  334. // SIN
  335. // SINH
  336. // SMALL
  337. // SQRT
  338. // SQRTPI
  339. // STDEV
  340. // STDEVA
  341. // SUBSTITUTE
  342. // SUM
  343. // SUMIF
  344. // SUMSQ
  345. // TAN
  346. // TANH
  347. // TODAY
  348. // TRIM
  349. // TRUE
  350. // TRUNC
  351. // UNICHAR
  352. // UNICODE
  353. // UPPER
  354. // VLOOKUP
  355. //
  356. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
  357. var (
  358. formula string
  359. token efp.Token
  360. )
  361. if formula, err = f.GetCellFormula(sheet, cell); err != nil {
  362. return
  363. }
  364. ps := efp.ExcelParser()
  365. tokens := ps.Parse(formula)
  366. if tokens == nil {
  367. return
  368. }
  369. if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
  370. return
  371. }
  372. result = token.TValue
  373. isNum, precision := isNumeric(result)
  374. if isNum && precision > 15 {
  375. num, _ := roundPrecision(result)
  376. result = strings.ToUpper(num)
  377. }
  378. return
  379. }
  380. // getPriority calculate arithmetic operator priority.
  381. func getPriority(token efp.Token) (pri int) {
  382. pri = tokenPriority[token.TValue]
  383. if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
  384. pri = 6
  385. }
  386. if isBeginParenthesesToken(token) { // (
  387. pri = 0
  388. }
  389. return
  390. }
  391. // newNumberFormulaArg constructs a number formula argument.
  392. func newNumberFormulaArg(n float64) formulaArg {
  393. if math.IsNaN(n) {
  394. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  395. }
  396. return formulaArg{Type: ArgNumber, Number: n}
  397. }
  398. // newStringFormulaArg constructs a string formula argument.
  399. func newStringFormulaArg(s string) formulaArg {
  400. return formulaArg{Type: ArgString, String: s}
  401. }
  402. // newMatrixFormulaArg constructs a matrix formula argument.
  403. func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
  404. return formulaArg{Type: ArgMatrix, Matrix: m}
  405. }
  406. // newListFormulaArg create a list formula argument.
  407. func newListFormulaArg(l []formulaArg) formulaArg {
  408. return formulaArg{Type: ArgList, List: l}
  409. }
  410. // newBoolFormulaArg constructs a boolean formula argument.
  411. func newBoolFormulaArg(b bool) formulaArg {
  412. var n float64
  413. if b {
  414. n = 1
  415. }
  416. return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
  417. }
  418. // newErrorFormulaArg create an error formula argument of a given type with a
  419. // specified error message.
  420. func newErrorFormulaArg(formulaError, msg string) formulaArg {
  421. return formulaArg{Type: ArgError, String: formulaError, Error: msg}
  422. }
  423. // newEmptyFormulaArg create an empty formula argument.
  424. func newEmptyFormulaArg() formulaArg {
  425. return formulaArg{Type: ArgEmpty}
  426. }
  427. // evalInfixExp evaluate syntax analysis by given infix expression after
  428. // lexical analysis. Evaluate an infix expression containing formulas by
  429. // stacks:
  430. //
  431. // opd - Operand
  432. // opt - Operator
  433. // opf - Operation formula
  434. // opfd - Operand of the operation formula
  435. // opft - Operator of the operation formula
  436. // args - Arguments list of the operation formula
  437. //
  438. // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
  439. //
  440. func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
  441. var err error
  442. opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
  443. for i := 0; i < len(tokens); i++ {
  444. token := tokens[i]
  445. // out of function stack
  446. if opfStack.Len() == 0 {
  447. if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
  448. return efp.Token{}, err
  449. }
  450. }
  451. // function start
  452. if isFunctionStartToken(token) {
  453. opfStack.Push(token)
  454. argsStack.Push(list.New().Init())
  455. continue
  456. }
  457. // in function stack, walk 2 token at once
  458. if opfStack.Len() > 0 {
  459. var nextToken efp.Token
  460. if i+1 < len(tokens) {
  461. nextToken = tokens[i+1]
  462. }
  463. // current token is args or range, skip next token, order required: parse reference first
  464. if token.TSubType == efp.TokenSubTypeRange {
  465. if !opftStack.Empty() {
  466. // parse reference: must reference at here
  467. result, err := f.parseReference(sheet, token.TValue)
  468. if err != nil {
  469. return efp.Token{TValue: formulaErrorNAME}, err
  470. }
  471. if result.Type != ArgString {
  472. return efp.Token{}, errors.New(formulaErrorVALUE)
  473. }
  474. opfdStack.Push(efp.Token{
  475. TType: efp.TokenTypeOperand,
  476. TSubType: efp.TokenSubTypeNumber,
  477. TValue: result.String,
  478. })
  479. continue
  480. }
  481. if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
  482. // parse reference: reference or range at here
  483. result, err := f.parseReference(sheet, token.TValue)
  484. if err != nil {
  485. return efp.Token{TValue: formulaErrorNAME}, err
  486. }
  487. if result.Type == ArgUnknown {
  488. return efp.Token{}, errors.New(formulaErrorVALUE)
  489. }
  490. argsStack.Peek().(*list.List).PushBack(result)
  491. continue
  492. }
  493. }
  494. // check current token is opft
  495. if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
  496. return efp.Token{}, err
  497. }
  498. // current token is arg
  499. if token.TType == efp.TokenTypeArgument {
  500. for !opftStack.Empty() {
  501. // calculate trigger
  502. topOpt := opftStack.Peek().(efp.Token)
  503. if err := calculate(opfdStack, topOpt); err != nil {
  504. argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
  505. }
  506. opftStack.Pop()
  507. }
  508. if !opfdStack.Empty() {
  509. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  510. }
  511. continue
  512. }
  513. // current token is logical
  514. if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
  515. }
  516. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
  517. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  518. }
  519. // current token is text
  520. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
  521. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
  522. }
  523. if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
  524. return efp.Token{}, err
  525. }
  526. }
  527. }
  528. for optStack.Len() != 0 {
  529. topOpt := optStack.Peek().(efp.Token)
  530. if err = calculate(opdStack, topOpt); err != nil {
  531. return efp.Token{}, err
  532. }
  533. optStack.Pop()
  534. }
  535. if opdStack.Len() == 0 {
  536. return efp.Token{}, errors.New("formula not valid")
  537. }
  538. return opdStack.Peek().(efp.Token), err
  539. }
  540. // evalInfixExpFunc evaluate formula function in the infix expression.
  541. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
  542. if !isFunctionStopToken(token) {
  543. return nil
  544. }
  545. // current token is function stop
  546. for !opftStack.Empty() {
  547. // calculate trigger
  548. topOpt := opftStack.Peek().(efp.Token)
  549. if err := calculate(opfdStack, topOpt); err != nil {
  550. return err
  551. }
  552. opftStack.Pop()
  553. }
  554. // push opfd to args
  555. if opfdStack.Len() > 0 {
  556. argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
  557. }
  558. // call formula function to evaluate
  559. arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
  560. "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
  561. []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
  562. if arg.Type == ArgError && opfStack.Len() == 1 {
  563. return errors.New(arg.Value())
  564. }
  565. argsStack.Pop()
  566. opfStack.Pop()
  567. if opfStack.Len() > 0 { // still in function stack
  568. if nextToken.TType == efp.TokenTypeOperatorInfix {
  569. // mathematics calculate in formula function
  570. opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  571. } else {
  572. argsStack.Peek().(*list.List).PushBack(arg)
  573. }
  574. } else {
  575. opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  576. }
  577. return nil
  578. }
  579. // calcPow evaluate exponentiation arithmetic operations.
  580. func calcPow(rOpd, lOpd string, opdStack *Stack) error {
  581. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  582. if err != nil {
  583. return err
  584. }
  585. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  586. if err != nil {
  587. return err
  588. }
  589. result := math.Pow(lOpdVal, rOpdVal)
  590. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  591. return nil
  592. }
  593. // calcEq evaluate equal arithmetic operations.
  594. func calcEq(rOpd, lOpd string, opdStack *Stack) error {
  595. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  596. return nil
  597. }
  598. // calcNEq evaluate not equal arithmetic operations.
  599. func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
  600. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  601. return nil
  602. }
  603. // calcL evaluate less than arithmetic operations.
  604. func calcL(rOpd, lOpd string, opdStack *Stack) error {
  605. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  606. if err != nil {
  607. return err
  608. }
  609. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  610. if err != nil {
  611. return err
  612. }
  613. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  614. return nil
  615. }
  616. // calcLe evaluate less than or equal arithmetic operations.
  617. func calcLe(rOpd, lOpd string, opdStack *Stack) error {
  618. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  619. if err != nil {
  620. return err
  621. }
  622. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  623. if err != nil {
  624. return err
  625. }
  626. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  627. return nil
  628. }
  629. // calcG evaluate greater than or equal arithmetic operations.
  630. func calcG(rOpd, lOpd string, opdStack *Stack) error {
  631. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  632. if err != nil {
  633. return err
  634. }
  635. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  636. if err != nil {
  637. return err
  638. }
  639. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  640. return nil
  641. }
  642. // calcGe evaluate greater than or equal arithmetic operations.
  643. func calcGe(rOpd, lOpd string, opdStack *Stack) error {
  644. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  645. if err != nil {
  646. return err
  647. }
  648. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  649. if err != nil {
  650. return err
  651. }
  652. opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  653. return nil
  654. }
  655. // calcSplice evaluate splice '&' operations.
  656. func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
  657. opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  658. return nil
  659. }
  660. // calcAdd evaluate addition arithmetic operations.
  661. func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
  662. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  663. if err != nil {
  664. return err
  665. }
  666. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  667. if err != nil {
  668. return err
  669. }
  670. result := lOpdVal + rOpdVal
  671. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  672. return nil
  673. }
  674. // calcSubtract evaluate subtraction arithmetic operations.
  675. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
  676. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  677. if err != nil {
  678. return err
  679. }
  680. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  681. if err != nil {
  682. return err
  683. }
  684. result := lOpdVal - rOpdVal
  685. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  686. return nil
  687. }
  688. // calcMultiply evaluate multiplication arithmetic operations.
  689. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
  690. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  691. if err != nil {
  692. return err
  693. }
  694. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  695. if err != nil {
  696. return err
  697. }
  698. result := lOpdVal * rOpdVal
  699. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  700. return nil
  701. }
  702. // calcDiv evaluate division arithmetic operations.
  703. func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
  704. lOpdVal, err := strconv.ParseFloat(lOpd, 64)
  705. if err != nil {
  706. return err
  707. }
  708. rOpdVal, err := strconv.ParseFloat(rOpd, 64)
  709. if err != nil {
  710. return err
  711. }
  712. result := lOpdVal / rOpdVal
  713. if rOpdVal == 0 {
  714. return errors.New(formulaErrorDIV)
  715. }
  716. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  717. return nil
  718. }
  719. // calculate evaluate basic arithmetic operations.
  720. func calculate(opdStack *Stack, opt efp.Token) error {
  721. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
  722. if opdStack.Len() < 1 {
  723. return errors.New("formula not valid")
  724. }
  725. opd := opdStack.Pop().(efp.Token)
  726. opdVal, err := strconv.ParseFloat(opd.TValue, 64)
  727. if err != nil {
  728. return err
  729. }
  730. result := 0 - opdVal
  731. opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
  732. }
  733. tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
  734. "^": calcPow,
  735. "*": calcMultiply,
  736. "/": calcDiv,
  737. "+": calcAdd,
  738. "=": calcEq,
  739. "<>": calcNEq,
  740. "<": calcL,
  741. "<=": calcLe,
  742. ">": calcG,
  743. ">=": calcGe,
  744. "&": calcSplice,
  745. }
  746. if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
  747. if opdStack.Len() < 2 {
  748. return errors.New("formula not valid")
  749. }
  750. rOpd := opdStack.Pop().(efp.Token)
  751. lOpd := opdStack.Pop().(efp.Token)
  752. if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  753. return err
  754. }
  755. }
  756. fn, ok := tokenCalcFunc[opt.TValue]
  757. if ok {
  758. if opdStack.Len() < 2 {
  759. return errors.New("formula not valid")
  760. }
  761. rOpd := opdStack.Pop().(efp.Token)
  762. lOpd := opdStack.Pop().(efp.Token)
  763. if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
  764. return err
  765. }
  766. }
  767. return nil
  768. }
  769. // parseOperatorPrefixToken parse operator prefix token.
  770. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
  771. if optStack.Len() == 0 {
  772. optStack.Push(token)
  773. } else {
  774. tokenPriority := getPriority(token)
  775. topOpt := optStack.Peek().(efp.Token)
  776. topOptPriority := getPriority(topOpt)
  777. if tokenPriority > topOptPriority {
  778. optStack.Push(token)
  779. } else {
  780. for tokenPriority <= topOptPriority {
  781. optStack.Pop()
  782. if err = calculate(opdStack, topOpt); err != nil {
  783. return
  784. }
  785. if optStack.Len() > 0 {
  786. topOpt = optStack.Peek().(efp.Token)
  787. topOptPriority = getPriority(topOpt)
  788. continue
  789. }
  790. break
  791. }
  792. optStack.Push(token)
  793. }
  794. }
  795. return
  796. }
  797. // isFunctionStartToken determine if the token is function stop.
  798. func isFunctionStartToken(token efp.Token) bool {
  799. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
  800. }
  801. // isFunctionStopToken determine if the token is function stop.
  802. func isFunctionStopToken(token efp.Token) bool {
  803. return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
  804. }
  805. // isBeginParenthesesToken determine if the token is begin parentheses: (.
  806. func isBeginParenthesesToken(token efp.Token) bool {
  807. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
  808. }
  809. // isEndParenthesesToken determine if the token is end parentheses: ).
  810. func isEndParenthesesToken(token efp.Token) bool {
  811. return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
  812. }
  813. // isOperatorPrefixToken determine if the token is parse operator prefix
  814. // token.
  815. func isOperatorPrefixToken(token efp.Token) bool {
  816. _, ok := tokenPriority[token.TValue]
  817. if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
  818. return true
  819. }
  820. return false
  821. }
  822. // getDefinedNameRefTo convert defined name to reference range.
  823. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
  824. for _, definedName := range f.GetDefinedName() {
  825. if definedName.Name == definedNameName {
  826. refTo = definedName.RefersTo
  827. // worksheet scope takes precedence over scope workbook when both definedNames exist
  828. if definedName.Scope == currentSheet {
  829. break
  830. }
  831. }
  832. }
  833. return refTo
  834. }
  835. // parseToken parse basic arithmetic operator priority and evaluate based on
  836. // operators and operands.
  837. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
  838. // parse reference: must reference at here
  839. if token.TSubType == efp.TokenSubTypeRange {
  840. refTo := f.getDefinedNameRefTo(token.TValue, sheet)
  841. if refTo != "" {
  842. token.TValue = refTo
  843. }
  844. result, err := f.parseReference(sheet, token.TValue)
  845. if err != nil {
  846. return errors.New(formulaErrorNAME)
  847. }
  848. if result.Type != ArgString {
  849. return errors.New(formulaErrorVALUE)
  850. }
  851. token.TValue = result.String
  852. token.TType = efp.TokenTypeOperand
  853. token.TSubType = efp.TokenSubTypeNumber
  854. }
  855. if isOperatorPrefixToken(token) {
  856. if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
  857. return err
  858. }
  859. }
  860. if isBeginParenthesesToken(token) { // (
  861. optStack.Push(token)
  862. }
  863. if isEndParenthesesToken(token) { // )
  864. for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
  865. topOpt := optStack.Peek().(efp.Token)
  866. if err := calculate(opdStack, topOpt); err != nil {
  867. return err
  868. }
  869. optStack.Pop()
  870. }
  871. optStack.Pop()
  872. }
  873. // opd
  874. if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
  875. opdStack.Push(token)
  876. }
  877. return nil
  878. }
  879. // parseReference parse reference and extract values by given reference
  880. // characters and default sheet name.
  881. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
  882. reference = strings.Replace(reference, "$", "", -1)
  883. refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
  884. for _, ref := range strings.Split(reference, ":") {
  885. tokens := strings.Split(ref, "!")
  886. cr := cellRef{}
  887. if len(tokens) == 2 { // have a worksheet name
  888. cr.Sheet = tokens[0]
  889. // cast to cell coordinates
  890. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
  891. // cast to column
  892. if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
  893. // cast to row
  894. if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
  895. err = newInvalidColumnNameError(tokens[1])
  896. return
  897. }
  898. cr.Col = TotalColumns
  899. }
  900. }
  901. if refs.Len() > 0 {
  902. e := refs.Back()
  903. cellRefs.PushBack(e.Value.(cellRef))
  904. refs.Remove(e)
  905. }
  906. refs.PushBack(cr)
  907. continue
  908. }
  909. // cast to cell coordinates
  910. if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
  911. // cast to column
  912. if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
  913. // cast to row
  914. if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
  915. err = newInvalidColumnNameError(tokens[0])
  916. return
  917. }
  918. cr.Col = TotalColumns
  919. }
  920. cellRanges.PushBack(cellRange{
  921. From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
  922. To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
  923. })
  924. cellRefs.Init()
  925. arg, err = f.rangeResolver(cellRefs, cellRanges)
  926. return
  927. }
  928. e := refs.Back()
  929. if e == nil {
  930. cr.Sheet = sheet
  931. refs.PushBack(cr)
  932. continue
  933. }
  934. cellRanges.PushBack(cellRange{
  935. From: e.Value.(cellRef),
  936. To: cr,
  937. })
  938. refs.Remove(e)
  939. }
  940. if refs.Len() > 0 {
  941. e := refs.Back()
  942. cellRefs.PushBack(e.Value.(cellRef))
  943. refs.Remove(e)
  944. }
  945. arg, err = f.rangeResolver(cellRefs, cellRanges)
  946. return
  947. }
  948. // prepareValueRange prepare value range.
  949. func prepareValueRange(cr cellRange, valueRange []int) {
  950. if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
  951. valueRange[0] = cr.From.Row
  952. }
  953. if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
  954. valueRange[2] = cr.From.Col
  955. }
  956. if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
  957. valueRange[1] = cr.To.Row
  958. }
  959. if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
  960. valueRange[3] = cr.To.Col
  961. }
  962. }
  963. // prepareValueRef prepare value reference.
  964. func prepareValueRef(cr cellRef, valueRange []int) {
  965. if cr.Row < valueRange[0] || valueRange[0] == 0 {
  966. valueRange[0] = cr.Row
  967. }
  968. if cr.Col < valueRange[2] || valueRange[2] == 0 {
  969. valueRange[2] = cr.Col
  970. }
  971. if cr.Row > valueRange[1] || valueRange[1] == 0 {
  972. valueRange[1] = cr.Row
  973. }
  974. if cr.Col > valueRange[3] || valueRange[3] == 0 {
  975. valueRange[3] = cr.Col
  976. }
  977. }
  978. // rangeResolver extract value as string from given reference and range list.
  979. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
  980. // be reference A1:B3.
  981. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
  982. arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
  983. // value range order: from row, to row, from column, to column
  984. valueRange := []int{0, 0, 0, 0}
  985. var sheet string
  986. // prepare value range
  987. for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
  988. cr := temp.Value.(cellRange)
  989. if cr.From.Sheet != cr.To.Sheet {
  990. err = errors.New(formulaErrorVALUE)
  991. }
  992. rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
  993. _ = sortCoordinates(rng)
  994. cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
  995. prepareValueRange(cr, valueRange)
  996. if cr.From.Sheet != "" {
  997. sheet = cr.From.Sheet
  998. }
  999. }
  1000. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1001. cr := temp.Value.(cellRef)
  1002. if cr.Sheet != "" {
  1003. sheet = cr.Sheet
  1004. }
  1005. prepareValueRef(cr, valueRange)
  1006. }
  1007. // extract value from ranges
  1008. if cellRanges.Len() > 0 {
  1009. arg.Type = ArgMatrix
  1010. for row := valueRange[0]; row <= valueRange[1]; row++ {
  1011. var matrixRow = []formulaArg{}
  1012. for col := valueRange[2]; col <= valueRange[3]; col++ {
  1013. var cell, value string
  1014. if cell, err = CoordinatesToCellName(col, row); err != nil {
  1015. return
  1016. }
  1017. if value, err = f.GetCellValue(sheet, cell); err != nil {
  1018. return
  1019. }
  1020. matrixRow = append(matrixRow, formulaArg{
  1021. String: value,
  1022. Type: ArgString,
  1023. })
  1024. }
  1025. arg.Matrix = append(arg.Matrix, matrixRow)
  1026. }
  1027. return
  1028. }
  1029. // extract value from references
  1030. for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
  1031. cr := temp.Value.(cellRef)
  1032. var cell string
  1033. if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
  1034. return
  1035. }
  1036. if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
  1037. return
  1038. }
  1039. arg.Type = ArgString
  1040. }
  1041. return
  1042. }
  1043. // callFuncByName calls the no error or only error return function with
  1044. // reflect by given receiver, name and parameters.
  1045. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
  1046. function := reflect.ValueOf(receiver).MethodByName(name)
  1047. if function.IsValid() {
  1048. rt := function.Call(params)
  1049. if len(rt) == 0 {
  1050. return
  1051. }
  1052. arg = rt[0].Interface().(formulaArg)
  1053. return
  1054. }
  1055. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
  1056. }
  1057. // formulaCriteriaParser parse formula criteria.
  1058. func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
  1059. fc = &formulaCriteria{}
  1060. if exp == "" {
  1061. return
  1062. }
  1063. if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
  1064. fc.Type, fc.Condition = criteriaEq, match[1]
  1065. return
  1066. }
  1067. if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1068. fc.Type, fc.Condition = criteriaEq, match[1]
  1069. return
  1070. }
  1071. if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1072. fc.Type, fc.Condition = criteriaLe, match[1]
  1073. return
  1074. }
  1075. if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1076. fc.Type, fc.Condition = criteriaGe, match[1]
  1077. return
  1078. }
  1079. if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1080. fc.Type, fc.Condition = criteriaL, match[1]
  1081. return
  1082. }
  1083. if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
  1084. fc.Type, fc.Condition = criteriaG, match[1]
  1085. return
  1086. }
  1087. if strings.Contains(exp, "*") {
  1088. if strings.HasPrefix(exp, "*") {
  1089. fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
  1090. }
  1091. if strings.HasSuffix(exp, "*") {
  1092. fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
  1093. }
  1094. return
  1095. }
  1096. fc.Type, fc.Condition = criteriaEq, exp
  1097. return
  1098. }
  1099. // formulaCriteriaEval evaluate formula criteria expression.
  1100. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
  1101. var value, expected float64
  1102. var e error
  1103. var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
  1104. if value, err = strconv.ParseFloat(val, 64); err != nil {
  1105. return
  1106. }
  1107. if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
  1108. return
  1109. }
  1110. return
  1111. }
  1112. switch criteria.Type {
  1113. case criteriaEq:
  1114. return val == criteria.Condition, err
  1115. case criteriaLe:
  1116. value, expected, e = prepareValue(val, criteria.Condition)
  1117. return value <= expected && e == nil, err
  1118. case criteriaGe:
  1119. value, expected, e = prepareValue(val, criteria.Condition)
  1120. return value >= expected && e == nil, err
  1121. case criteriaL:
  1122. value, expected, e = prepareValue(val, criteria.Condition)
  1123. return value < expected && e == nil, err
  1124. case criteriaG:
  1125. value, expected, e = prepareValue(val, criteria.Condition)
  1126. return value > expected && e == nil, err
  1127. case criteriaBeg:
  1128. return strings.HasPrefix(val, criteria.Condition), err
  1129. case criteriaEnd:
  1130. return strings.HasSuffix(val, criteria.Condition), err
  1131. }
  1132. return
  1133. }
  1134. // Engineering Functions
  1135. // BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
  1136. // The syntax of the function is:
  1137. //
  1138. // BIN2DEC(number)
  1139. //
  1140. func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
  1141. if argsList.Len() != 1 {
  1142. return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
  1143. }
  1144. token := argsList.Front().Value.(formulaArg)
  1145. number := token.ToNumber()
  1146. if number.Type != ArgNumber {
  1147. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1148. }
  1149. return fn.bin2dec(token.Value())
  1150. }
  1151. // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
  1152. // (Base 16) number. The syntax of the function is:
  1153. //
  1154. // BIN2HEX(number,[places])
  1155. //
  1156. func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
  1157. if argsList.Len() < 1 {
  1158. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
  1159. }
  1160. if argsList.Len() > 2 {
  1161. return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
  1162. }
  1163. token := argsList.Front().Value.(formulaArg)
  1164. number := token.ToNumber()
  1165. if number.Type != ArgNumber {
  1166. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1167. }
  1168. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1169. if decimal.Type != ArgNumber {
  1170. return decimal
  1171. }
  1172. newList.PushBack(decimal)
  1173. if argsList.Len() == 2 {
  1174. newList.PushBack(argsList.Back().Value.(formulaArg))
  1175. }
  1176. return fn.dec2x("BIN2HEX", newList)
  1177. }
  1178. // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
  1179. // number. The syntax of the function is:
  1180. //
  1181. // BIN2OCT(number,[places])
  1182. //
  1183. func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
  1184. if argsList.Len() < 1 {
  1185. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
  1186. }
  1187. if argsList.Len() > 2 {
  1188. return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
  1189. }
  1190. token := argsList.Front().Value.(formulaArg)
  1191. number := token.ToNumber()
  1192. if number.Type != ArgNumber {
  1193. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1194. }
  1195. decimal, newList := fn.bin2dec(token.Value()), list.New()
  1196. if decimal.Type != ArgNumber {
  1197. return decimal
  1198. }
  1199. newList.PushBack(decimal)
  1200. if argsList.Len() == 2 {
  1201. newList.PushBack(argsList.Back().Value.(formulaArg))
  1202. }
  1203. return fn.dec2x("BIN2OCT", newList)
  1204. }
  1205. // bin2dec is an implementation of the formula function BIN2DEC.
  1206. func (fn *formulaFuncs) bin2dec(number string) formulaArg {
  1207. decimal, length := 0.0, len(number)
  1208. for i := length; i > 0; i-- {
  1209. s := string(number[length-i])
  1210. if 10 == i && s == "1" {
  1211. decimal += math.Pow(-2.0, float64(i-1))
  1212. continue
  1213. }
  1214. if s == "1" {
  1215. decimal += math.Pow(2.0, float64(i-1))
  1216. continue
  1217. }
  1218. if s != "0" {
  1219. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1220. }
  1221. }
  1222. return newNumberFormulaArg(decimal)
  1223. }
  1224. // BITAND function returns the bitwise 'AND' for two supplied integers. The
  1225. // syntax of the function is:
  1226. //
  1227. // BITAND(number1,number2)
  1228. //
  1229. func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
  1230. return fn.bitwise("BITAND", argsList)
  1231. }
  1232. // BITLSHIFT function returns a supplied integer, shifted left by a specified
  1233. // number of bits. The syntax of the function is:
  1234. //
  1235. // BITLSHIFT(number1,shift_amount)
  1236. //
  1237. func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
  1238. return fn.bitwise("BITLSHIFT", argsList)
  1239. }
  1240. // BITOR function returns the bitwise 'OR' for two supplied integers. The
  1241. // syntax of the function is:
  1242. //
  1243. // BITOR(number1,number2)
  1244. //
  1245. func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
  1246. return fn.bitwise("BITOR", argsList)
  1247. }
  1248. // BITRSHIFT function returns a supplied integer, shifted right by a specified
  1249. // number of bits. The syntax of the function is:
  1250. //
  1251. // BITRSHIFT(number1,shift_amount)
  1252. //
  1253. func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
  1254. return fn.bitwise("BITRSHIFT", argsList)
  1255. }
  1256. // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
  1257. // integers. The syntax of the function is:
  1258. //
  1259. // BITXOR(number1,number2)
  1260. //
  1261. func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
  1262. return fn.bitwise("BITXOR", argsList)
  1263. }
  1264. // bitwise is an implementation of the formula function BITAND, BITLSHIFT,
  1265. // BITOR, BITRSHIFT and BITXOR.
  1266. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
  1267. if argsList.Len() != 2 {
  1268. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
  1269. }
  1270. num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
  1271. if num1.Type != ArgNumber || num2.Type != ArgNumber {
  1272. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1273. }
  1274. max := math.Pow(2, 48) - 1
  1275. if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
  1276. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1277. }
  1278. bitwiseFuncMap := map[string]func(a, b int) int{
  1279. "BITAND": func(a, b int) int { return a & b },
  1280. "BITLSHIFT": func(a, b int) int { return a << uint(b) },
  1281. "BITOR": func(a, b int) int { return a | b },
  1282. "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
  1283. "BITXOR": func(a, b int) int { return a ^ b },
  1284. }
  1285. bitwiseFunc := bitwiseFuncMap[name]
  1286. return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
  1287. }
  1288. // DEC2BIN function converts a decimal number into a Binary (Base 2) number.
  1289. // The syntax of the function is:
  1290. //
  1291. // DEC2BIN(number,[places])
  1292. //
  1293. func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
  1294. return fn.dec2x("DEC2BIN", argsList)
  1295. }
  1296. // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
  1297. // number. The syntax of the function is:
  1298. //
  1299. // DEC2HEX(number,[places])
  1300. //
  1301. func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
  1302. return fn.dec2x("DEC2HEX", argsList)
  1303. }
  1304. // DEC2OCT function converts a decimal number into an Octal (Base 8) number.
  1305. // The syntax of the function is:
  1306. //
  1307. // DEC2OCT(number,[places])
  1308. //
  1309. func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
  1310. return fn.dec2x("DEC2OCT", argsList)
  1311. }
  1312. // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
  1313. // DEC2OCT.
  1314. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
  1315. if argsList.Len() < 1 {
  1316. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  1317. }
  1318. if argsList.Len() > 2 {
  1319. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  1320. }
  1321. decimal := argsList.Front().Value.(formulaArg).ToNumber()
  1322. if decimal.Type != ArgNumber {
  1323. return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
  1324. }
  1325. maxLimitMap := map[string]float64{
  1326. "DEC2BIN": 511,
  1327. "HEX2BIN": 511,
  1328. "OCT2BIN": 511,
  1329. "BIN2HEX": 549755813887,
  1330. "DEC2HEX": 549755813887,
  1331. "OCT2HEX": 549755813887,
  1332. "BIN2OCT": 536870911,
  1333. "DEC2OCT": 536870911,
  1334. "HEX2OCT": 536870911,
  1335. }
  1336. minLimitMap := map[string]float64{
  1337. "DEC2BIN": -512,
  1338. "HEX2BIN": -512,
  1339. "OCT2BIN": -512,
  1340. "BIN2HEX": -549755813888,
  1341. "DEC2HEX": -549755813888,
  1342. "OCT2HEX": -549755813888,
  1343. "BIN2OCT": -536870912,
  1344. "DEC2OCT": -536870912,
  1345. "HEX2OCT": -536870912,
  1346. }
  1347. baseMap := map[string]int{
  1348. "DEC2BIN": 2,
  1349. "HEX2BIN": 2,
  1350. "OCT2BIN": 2,
  1351. "BIN2HEX": 16,
  1352. "DEC2HEX": 16,
  1353. "OCT2HEX": 16,
  1354. "BIN2OCT": 8,
  1355. "DEC2OCT": 8,
  1356. "HEX2OCT": 8,
  1357. }
  1358. maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
  1359. base := baseMap[name]
  1360. if decimal.Number < minLimit || decimal.Number > maxLimit {
  1361. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1362. }
  1363. n := int64(decimal.Number)
  1364. binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
  1365. if argsList.Len() == 2 {
  1366. places := argsList.Back().Value.(formulaArg).ToNumber()
  1367. if places.Type != ArgNumber {
  1368. return newErrorFormulaArg(formulaErrorVALUE, places.Error)
  1369. }
  1370. binaryPlaces := len(binary)
  1371. if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
  1372. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  1373. }
  1374. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
  1375. }
  1376. if decimal.Number < 0 && len(binary) > 10 {
  1377. return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
  1378. }
  1379. return newStringFormulaArg(strings.ToUpper(binary))
  1380. }
  1381. // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
  1382. // (Base 2) number. The syntax of the function is:
  1383. //
  1384. // HEX2BIN(number,[places])
  1385. //
  1386. func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
  1387. if argsList.Len() < 1 {
  1388. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
  1389. }
  1390. if argsList.Len() > 2 {
  1391. return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
  1392. }
  1393. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1394. if decimal.Type != ArgNumber {
  1395. return decimal
  1396. }
  1397. newList.PushBack(decimal)
  1398. if argsList.Len() == 2 {
  1399. newList.PushBack(argsList.Back().Value.(formulaArg))
  1400. }
  1401. return fn.dec2x("HEX2BIN", newList)
  1402. }
  1403. // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
  1404. // number. The syntax of the function is:
  1405. //
  1406. // HEX2DEC(number)
  1407. //
  1408. func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
  1409. if argsList.Len() != 1 {
  1410. return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
  1411. }
  1412. return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
  1413. }
  1414. // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
  1415. // (Base 8) number. The syntax of the function is:
  1416. //
  1417. // HEX2OCT(number,[places])
  1418. //
  1419. func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
  1420. if argsList.Len() < 1 {
  1421. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
  1422. }
  1423. if argsList.Len() > 2 {
  1424. return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
  1425. }
  1426. decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
  1427. if decimal.Type != ArgNumber {
  1428. return decimal
  1429. }
  1430. newList.PushBack(decimal)
  1431. if argsList.Len() == 2 {
  1432. newList.PushBack(argsList.Back().Value.(formulaArg))
  1433. }
  1434. return fn.dec2x("HEX2OCT", newList)
  1435. }
  1436. // hex2dec is an implementation of the formula function HEX2DEC.
  1437. func (fn *formulaFuncs) hex2dec(number string) formulaArg {
  1438. decimal, length := 0.0, len(number)
  1439. for i := length; i > 0; i-- {
  1440. num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
  1441. if err != nil {
  1442. return newErrorFormulaArg(formulaErrorNUM, err.Error())
  1443. }
  1444. if 10 == i && string(number[length-i]) == "F" {
  1445. decimal += math.Pow(-16.0, float64(i-1))
  1446. continue
  1447. }
  1448. decimal += float64(num) * math.Pow(16.0, float64(i-1))
  1449. }
  1450. return newNumberFormulaArg(decimal)
  1451. }
  1452. // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
  1453. // number. The syntax of the function is:
  1454. //
  1455. // OCT2BIN(number,[places])
  1456. //
  1457. func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
  1458. if argsList.Len() < 1 {
  1459. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
  1460. }
  1461. if argsList.Len() > 2 {
  1462. return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
  1463. }
  1464. token := argsList.Front().Value.(formulaArg)
  1465. number := token.ToNumber()
  1466. if number.Type != ArgNumber {
  1467. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1468. }
  1469. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1470. newList.PushBack(decimal)
  1471. if argsList.Len() == 2 {
  1472. newList.PushBack(argsList.Back().Value.(formulaArg))
  1473. }
  1474. return fn.dec2x("OCT2BIN", newList)
  1475. }
  1476. // OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
  1477. // The syntax of the function is:
  1478. //
  1479. // OCT2DEC(number)
  1480. //
  1481. func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
  1482. if argsList.Len() != 1 {
  1483. return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
  1484. }
  1485. token := argsList.Front().Value.(formulaArg)
  1486. number := token.ToNumber()
  1487. if number.Type != ArgNumber {
  1488. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1489. }
  1490. return fn.oct2dec(token.Value())
  1491. }
  1492. // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
  1493. // (Base 16) number. The syntax of the function is:
  1494. //
  1495. // OCT2HEX(number,[places])
  1496. //
  1497. func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
  1498. if argsList.Len() < 1 {
  1499. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
  1500. }
  1501. if argsList.Len() > 2 {
  1502. return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
  1503. }
  1504. token := argsList.Front().Value.(formulaArg)
  1505. number := token.ToNumber()
  1506. if number.Type != ArgNumber {
  1507. return newErrorFormulaArg(formulaErrorVALUE, number.Error)
  1508. }
  1509. decimal, newList := fn.oct2dec(token.Value()), list.New()
  1510. newList.PushBack(decimal)
  1511. if argsList.Len() == 2 {
  1512. newList.PushBack(argsList.Back().Value.(formulaArg))
  1513. }
  1514. return fn.dec2x("OCT2HEX", newList)
  1515. }
  1516. // oct2dec is an implementation of the formula function OCT2DEC.
  1517. func (fn *formulaFuncs) oct2dec(number string) formulaArg {
  1518. decimal, length := 0.0, len(number)
  1519. for i := length; i > 0; i-- {
  1520. num, _ := strconv.Atoi(string(number[length-i]))
  1521. if 10 == i && string(number[length-i]) == "7" {
  1522. decimal += math.Pow(-8.0, float64(i-1))
  1523. continue
  1524. }
  1525. decimal += float64(num) * math.Pow(8.0, float64(i-1))
  1526. }
  1527. return newNumberFormulaArg(decimal)
  1528. }
  1529. // Math and Trigonometric Functions
  1530. // ABS function returns the absolute value of any supplied number. The syntax
  1531. // of the function is:
  1532. //
  1533. // ABS(number)
  1534. //
  1535. func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
  1536. if argsList.Len() != 1 {
  1537. return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
  1538. }
  1539. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1540. if arg.Type == ArgError {
  1541. return arg
  1542. }
  1543. return newNumberFormulaArg(math.Abs(arg.Number))
  1544. }
  1545. // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
  1546. // number, and returns an angle, in radians, between 0 and π. The syntax of
  1547. // the function is:
  1548. //
  1549. // ACOS(number)
  1550. //
  1551. func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
  1552. if argsList.Len() != 1 {
  1553. return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
  1554. }
  1555. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1556. if arg.Type == ArgError {
  1557. return arg
  1558. }
  1559. return newNumberFormulaArg(math.Acos(arg.Number))
  1560. }
  1561. // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
  1562. // of the function is:
  1563. //
  1564. // ACOSH(number)
  1565. //
  1566. func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
  1567. if argsList.Len() != 1 {
  1568. return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
  1569. }
  1570. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1571. if arg.Type == ArgError {
  1572. return arg
  1573. }
  1574. return newNumberFormulaArg(math.Acosh(arg.Number))
  1575. }
  1576. // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
  1577. // given number, and returns an angle, in radians, between 0 and π. The syntax
  1578. // of the function is:
  1579. //
  1580. // ACOT(number)
  1581. //
  1582. func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
  1583. if argsList.Len() != 1 {
  1584. return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
  1585. }
  1586. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1587. if arg.Type == ArgError {
  1588. return arg
  1589. }
  1590. return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
  1591. }
  1592. // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
  1593. // value. The syntax of the function is:
  1594. //
  1595. // ACOTH(number)
  1596. //
  1597. func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
  1598. if argsList.Len() != 1 {
  1599. return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
  1600. }
  1601. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1602. if arg.Type == ArgError {
  1603. return arg
  1604. }
  1605. return newNumberFormulaArg(math.Atanh(1 / arg.Number))
  1606. }
  1607. // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
  1608. // of the function is:
  1609. //
  1610. // ARABIC(text)
  1611. //
  1612. func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
  1613. if argsList.Len() != 1 {
  1614. return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
  1615. }
  1616. text := argsList.Front().Value.(formulaArg).Value()
  1617. if len(text) > 255 {
  1618. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  1619. }
  1620. text = strings.ToUpper(text)
  1621. number, actualStart, index, isNegative := 0, 0, len(text)-1, false
  1622. startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
  1623. for index >= 0 && text[index] == ' ' {
  1624. index--
  1625. }
  1626. for actualStart <= index && text[actualStart] == ' ' {
  1627. actualStart++
  1628. }
  1629. if actualStart <= index && text[actualStart] == '-' {
  1630. isNegative = true
  1631. actualStart++
  1632. }
  1633. charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
  1634. for index >= actualStart {
  1635. startIndex = index
  1636. startChar := text[startIndex]
  1637. index--
  1638. for index >= actualStart && (text[index]|' ') == startChar {
  1639. index--
  1640. }
  1641. currentCharValue = charMap[rune(startChar)]
  1642. currentPartValue = (startIndex - index) * currentCharValue
  1643. if currentCharValue >= prevCharValue {
  1644. number += currentPartValue - subtractNumber
  1645. prevCharValue = currentCharValue
  1646. subtractNumber = 0
  1647. continue
  1648. }
  1649. subtractNumber += currentPartValue
  1650. }
  1651. if subtractNumber != 0 {
  1652. number -= subtractNumber
  1653. }
  1654. if isNegative {
  1655. number = -number
  1656. }
  1657. return newNumberFormulaArg(float64(number))
  1658. }
  1659. // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
  1660. // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
  1661. // of the function is:
  1662. //
  1663. // ASIN(number)
  1664. //
  1665. func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
  1666. if argsList.Len() != 1 {
  1667. return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
  1668. }
  1669. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1670. if arg.Type == ArgError {
  1671. return arg
  1672. }
  1673. return newNumberFormulaArg(math.Asin(arg.Number))
  1674. }
  1675. // ASINH function calculates the inverse hyperbolic sine of a supplied number.
  1676. // The syntax of the function is:
  1677. //
  1678. // ASINH(number)
  1679. //
  1680. func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
  1681. if argsList.Len() != 1 {
  1682. return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
  1683. }
  1684. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1685. if arg.Type == ArgError {
  1686. return arg
  1687. }
  1688. return newNumberFormulaArg(math.Asinh(arg.Number))
  1689. }
  1690. // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
  1691. // given number, and returns an angle, in radians, between -π/2 and +π/2. The
  1692. // syntax of the function is:
  1693. //
  1694. // ATAN(number)
  1695. //
  1696. func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
  1697. if argsList.Len() != 1 {
  1698. return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
  1699. }
  1700. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1701. if arg.Type == ArgError {
  1702. return arg
  1703. }
  1704. return newNumberFormulaArg(math.Atan(arg.Number))
  1705. }
  1706. // ATANH function calculates the inverse hyperbolic tangent of a supplied
  1707. // number. The syntax of the function is:
  1708. //
  1709. // ATANH(number)
  1710. //
  1711. func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
  1712. if argsList.Len() != 1 {
  1713. return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
  1714. }
  1715. arg := argsList.Front().Value.(formulaArg).ToNumber()
  1716. if arg.Type == ArgError {
  1717. return arg
  1718. }
  1719. return newNumberFormulaArg(math.Atanh(arg.Number))
  1720. }
  1721. // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
  1722. // given set of x and y coordinates, and returns an angle, in radians, between
  1723. // -π/2 and +π/2. The syntax of the function is:
  1724. //
  1725. // ATAN2(x_num,y_num)
  1726. //
  1727. func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
  1728. if argsList.Len() != 2 {
  1729. return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
  1730. }
  1731. x := argsList.Back().Value.(formulaArg).ToNumber()
  1732. if x.Type == ArgError {
  1733. return x
  1734. }
  1735. y := argsList.Front().Value.(formulaArg).ToNumber()
  1736. if y.Type == ArgError {
  1737. return y
  1738. }
  1739. return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
  1740. }
  1741. // BASE function converts a number into a supplied base (radix), and returns a
  1742. // text representation of the calculated value. The syntax of the function is:
  1743. //
  1744. // BASE(number,radix,[min_length])
  1745. //
  1746. func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
  1747. if argsList.Len() < 2 {
  1748. return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
  1749. }
  1750. if argsList.Len() > 3 {
  1751. return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
  1752. }
  1753. var minLength int
  1754. var err error
  1755. number := argsList.Front().Value.(formulaArg).ToNumber()
  1756. if number.Type == ArgError {
  1757. return number
  1758. }
  1759. radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1760. if radix.Type == ArgError {
  1761. return radix
  1762. }
  1763. if int(radix.Number) < 2 || int(radix.Number) > 36 {
  1764. return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
  1765. }
  1766. if argsList.Len() > 2 {
  1767. if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  1768. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  1769. }
  1770. }
  1771. result := strconv.FormatInt(int64(number.Number), int(radix.Number))
  1772. if len(result) < minLength {
  1773. result = strings.Repeat("0", minLength-len(result)) + result
  1774. }
  1775. return newStringFormulaArg(strings.ToUpper(result))
  1776. }
  1777. // CEILING function rounds a supplied number away from zero, to the nearest
  1778. // multiple of a given number. The syntax of the function is:
  1779. //
  1780. // CEILING(number,significance)
  1781. //
  1782. func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
  1783. if argsList.Len() == 0 {
  1784. return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
  1785. }
  1786. if argsList.Len() > 2 {
  1787. return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
  1788. }
  1789. number, significance, res := 0.0, 1.0, 0.0
  1790. n := argsList.Front().Value.(formulaArg).ToNumber()
  1791. if n.Type == ArgError {
  1792. return n
  1793. }
  1794. number = n.Number
  1795. if number < 0 {
  1796. significance = -1
  1797. }
  1798. if argsList.Len() > 1 {
  1799. s := argsList.Back().Value.(formulaArg).ToNumber()
  1800. if s.Type == ArgError {
  1801. return s
  1802. }
  1803. significance = s.Number
  1804. }
  1805. if significance < 0 && number > 0 {
  1806. return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
  1807. }
  1808. if argsList.Len() == 1 {
  1809. return newNumberFormulaArg(math.Ceil(number))
  1810. }
  1811. number, res = math.Modf(number / significance)
  1812. if res > 0 {
  1813. number++
  1814. }
  1815. return newNumberFormulaArg(number * significance)
  1816. }
  1817. // CEILINGMATH function rounds a supplied number up to a supplied multiple of
  1818. // significance. The syntax of the function is:
  1819. //
  1820. // CEILING.MATH(number,[significance],[mode])
  1821. //
  1822. func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg {
  1823. if argsList.Len() == 0 {
  1824. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
  1825. }
  1826. if argsList.Len() > 3 {
  1827. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
  1828. }
  1829. number, significance, mode := 0.0, 1.0, 1.0
  1830. n := argsList.Front().Value.(formulaArg).ToNumber()
  1831. if n.Type == ArgError {
  1832. return n
  1833. }
  1834. number = n.Number
  1835. if number < 0 {
  1836. significance = -1
  1837. }
  1838. if argsList.Len() > 1 {
  1839. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  1840. if s.Type == ArgError {
  1841. return s
  1842. }
  1843. significance = s.Number
  1844. }
  1845. if argsList.Len() == 1 {
  1846. return newNumberFormulaArg(math.Ceil(number))
  1847. }
  1848. if argsList.Len() > 2 {
  1849. m := argsList.Back().Value.(formulaArg).ToNumber()
  1850. if m.Type == ArgError {
  1851. return m
  1852. }
  1853. mode = m.Number
  1854. }
  1855. val, res := math.Modf(number / significance)
  1856. if res != 0 {
  1857. if number > 0 {
  1858. val++
  1859. } else if mode < 0 {
  1860. val--
  1861. }
  1862. }
  1863. return newNumberFormulaArg(val * significance)
  1864. }
  1865. // CEILINGPRECISE function rounds a supplied number up (regardless of the
  1866. // number's sign), to the nearest multiple of a given number. The syntax of
  1867. // the function is:
  1868. //
  1869. // CEILING.PRECISE(number,[significance])
  1870. //
  1871. func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg {
  1872. if argsList.Len() == 0 {
  1873. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
  1874. }
  1875. if argsList.Len() > 2 {
  1876. return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
  1877. }
  1878. number, significance := 0.0, 1.0
  1879. n := argsList.Front().Value.(formulaArg).ToNumber()
  1880. if n.Type == ArgError {
  1881. return n
  1882. }
  1883. number = n.Number
  1884. if number < 0 {
  1885. significance = -1
  1886. }
  1887. if argsList.Len() == 1 {
  1888. return newNumberFormulaArg(math.Ceil(number))
  1889. }
  1890. if argsList.Len() > 1 {
  1891. s := argsList.Back().Value.(formulaArg).ToNumber()
  1892. if s.Type == ArgError {
  1893. return s
  1894. }
  1895. significance = s.Number
  1896. significance = math.Abs(significance)
  1897. if significance == 0 {
  1898. return newNumberFormulaArg(significance)
  1899. }
  1900. }
  1901. val, res := math.Modf(number / significance)
  1902. if res != 0 {
  1903. if number > 0 {
  1904. val++
  1905. }
  1906. }
  1907. return newNumberFormulaArg(val * significance)
  1908. }
  1909. // COMBIN function calculates the number of combinations (in any order) of a
  1910. // given number objects from a set. The syntax of the function is:
  1911. //
  1912. // COMBIN(number,number_chosen)
  1913. //
  1914. func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
  1915. if argsList.Len() != 2 {
  1916. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
  1917. }
  1918. number, chosen, val := 0.0, 0.0, 1.0
  1919. n := argsList.Front().Value.(formulaArg).ToNumber()
  1920. if n.Type == ArgError {
  1921. return n
  1922. }
  1923. number = n.Number
  1924. c := argsList.Back().Value.(formulaArg).ToNumber()
  1925. if c.Type == ArgError {
  1926. return c
  1927. }
  1928. chosen = c.Number
  1929. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1930. if chosen > number {
  1931. return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
  1932. }
  1933. if chosen == number || chosen == 0 {
  1934. return newNumberFormulaArg(1)
  1935. }
  1936. for c := float64(1); c <= chosen; c++ {
  1937. val *= (number + 1 - c) / c
  1938. }
  1939. return newNumberFormulaArg(math.Ceil(val))
  1940. }
  1941. // COMBINA function calculates the number of combinations, with repetitions,
  1942. // of a given number objects from a set. The syntax of the function is:
  1943. //
  1944. // COMBINA(number,number_chosen)
  1945. //
  1946. func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
  1947. if argsList.Len() != 2 {
  1948. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
  1949. }
  1950. var number, chosen float64
  1951. n := argsList.Front().Value.(formulaArg).ToNumber()
  1952. if n.Type == ArgError {
  1953. return n
  1954. }
  1955. number = n.Number
  1956. c := argsList.Back().Value.(formulaArg).ToNumber()
  1957. if c.Type == ArgError {
  1958. return c
  1959. }
  1960. chosen = c.Number
  1961. number, chosen = math.Trunc(number), math.Trunc(chosen)
  1962. if number < chosen {
  1963. return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
  1964. }
  1965. if number == 0 {
  1966. return newNumberFormulaArg(number)
  1967. }
  1968. args := list.New()
  1969. args.PushBack(formulaArg{
  1970. String: fmt.Sprintf("%g", number+chosen-1),
  1971. Type: ArgString,
  1972. })
  1973. args.PushBack(formulaArg{
  1974. String: fmt.Sprintf("%g", number-1),
  1975. Type: ArgString,
  1976. })
  1977. return fn.COMBIN(args)
  1978. }
  1979. // COS function calculates the cosine of a given angle. The syntax of the
  1980. // function is:
  1981. //
  1982. // COS(number)
  1983. //
  1984. func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
  1985. if argsList.Len() != 1 {
  1986. return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
  1987. }
  1988. val := argsList.Front().Value.(formulaArg).ToNumber()
  1989. if val.Type == ArgError {
  1990. return val
  1991. }
  1992. return newNumberFormulaArg(math.Cos(val.Number))
  1993. }
  1994. // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
  1995. // The syntax of the function is:
  1996. //
  1997. // COSH(number)
  1998. //
  1999. func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
  2000. if argsList.Len() != 1 {
  2001. return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
  2002. }
  2003. val := argsList.Front().Value.(formulaArg).ToNumber()
  2004. if val.Type == ArgError {
  2005. return val
  2006. }
  2007. return newNumberFormulaArg(math.Cosh(val.Number))
  2008. }
  2009. // COT function calculates the cotangent of a given angle. The syntax of the
  2010. // function is:
  2011. //
  2012. // COT(number)
  2013. //
  2014. func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
  2015. if argsList.Len() != 1 {
  2016. return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
  2017. }
  2018. val := argsList.Front().Value.(formulaArg).ToNumber()
  2019. if val.Type == ArgError {
  2020. return val
  2021. }
  2022. if val.Number == 0 {
  2023. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2024. }
  2025. return newNumberFormulaArg(1 / math.Tan(val.Number))
  2026. }
  2027. // COTH function calculates the hyperbolic cotangent (coth) of a supplied
  2028. // angle. The syntax of the function is:
  2029. //
  2030. // COTH(number)
  2031. //
  2032. func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
  2033. if argsList.Len() != 1 {
  2034. return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
  2035. }
  2036. val := argsList.Front().Value.(formulaArg).ToNumber()
  2037. if val.Type == ArgError {
  2038. return val
  2039. }
  2040. if val.Number == 0 {
  2041. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2042. }
  2043. return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
  2044. }
  2045. // CSC function calculates the cosecant of a given angle. The syntax of the
  2046. // function is:
  2047. //
  2048. // CSC(number)
  2049. //
  2050. func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
  2051. if argsList.Len() != 1 {
  2052. return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
  2053. }
  2054. val := argsList.Front().Value.(formulaArg).ToNumber()
  2055. if val.Type == ArgError {
  2056. return val
  2057. }
  2058. if val.Number == 0 {
  2059. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2060. }
  2061. return newNumberFormulaArg(1 / math.Sin(val.Number))
  2062. }
  2063. // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
  2064. // angle. The syntax of the function is:
  2065. //
  2066. // CSCH(number)
  2067. //
  2068. func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
  2069. if argsList.Len() != 1 {
  2070. return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
  2071. }
  2072. val := argsList.Front().Value.(formulaArg).ToNumber()
  2073. if val.Type == ArgError {
  2074. return val
  2075. }
  2076. if val.Number == 0 {
  2077. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2078. }
  2079. return newNumberFormulaArg(1 / math.Sinh(val.Number))
  2080. }
  2081. // DECIMAL function converts a text representation of a number in a specified
  2082. // base, into a decimal value. The syntax of the function is:
  2083. //
  2084. // DECIMAL(text,radix)
  2085. //
  2086. func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
  2087. if argsList.Len() != 2 {
  2088. return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
  2089. }
  2090. var text = argsList.Front().Value.(formulaArg).String
  2091. var radix int
  2092. var err error
  2093. radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
  2094. if err != nil {
  2095. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2096. }
  2097. if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
  2098. text = text[2:]
  2099. }
  2100. val, err := strconv.ParseInt(text, radix, 64)
  2101. if err != nil {
  2102. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2103. }
  2104. return newNumberFormulaArg(float64(val))
  2105. }
  2106. // DEGREES function converts radians into degrees. The syntax of the function
  2107. // is:
  2108. //
  2109. // DEGREES(angle)
  2110. //
  2111. func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
  2112. if argsList.Len() != 1 {
  2113. return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
  2114. }
  2115. val := argsList.Front().Value.(formulaArg).ToNumber()
  2116. if val.Type == ArgError {
  2117. return val
  2118. }
  2119. if val.Number == 0 {
  2120. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2121. }
  2122. return newNumberFormulaArg(180.0 / math.Pi * val.Number)
  2123. }
  2124. // EVEN function rounds a supplied number away from zero (i.e. rounds a
  2125. // positive number up and a negative number down), to the next even number.
  2126. // The syntax of the function is:
  2127. //
  2128. // EVEN(number)
  2129. //
  2130. func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
  2131. if argsList.Len() != 1 {
  2132. return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
  2133. }
  2134. number := argsList.Front().Value.(formulaArg).ToNumber()
  2135. if number.Type == ArgError {
  2136. return number
  2137. }
  2138. sign := math.Signbit(number.Number)
  2139. m, frac := math.Modf(number.Number / 2)
  2140. val := m * 2
  2141. if frac != 0 {
  2142. if !sign {
  2143. val += 2
  2144. } else {
  2145. val -= 2
  2146. }
  2147. }
  2148. return newNumberFormulaArg(val)
  2149. }
  2150. // EXP function calculates the value of the mathematical constant e, raised to
  2151. // the power of a given number. The syntax of the function is:
  2152. //
  2153. // EXP(number)
  2154. //
  2155. func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
  2156. if argsList.Len() != 1 {
  2157. return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
  2158. }
  2159. number := argsList.Front().Value.(formulaArg).ToNumber()
  2160. if number.Type == ArgError {
  2161. return number
  2162. }
  2163. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
  2164. }
  2165. // fact returns the factorial of a supplied number.
  2166. func fact(number float64) float64 {
  2167. val := float64(1)
  2168. for i := float64(2); i <= number; i++ {
  2169. val *= i
  2170. }
  2171. return val
  2172. }
  2173. // FACT function returns the factorial of a supplied number. The syntax of the
  2174. // function is:
  2175. //
  2176. // FACT(number)
  2177. //
  2178. func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
  2179. if argsList.Len() != 1 {
  2180. return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
  2181. }
  2182. number := argsList.Front().Value.(formulaArg).ToNumber()
  2183. if number.Type == ArgError {
  2184. return number
  2185. }
  2186. if number.Number < 0 {
  2187. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2188. }
  2189. return newNumberFormulaArg(fact(number.Number))
  2190. }
  2191. // FACTDOUBLE function returns the double factorial of a supplied number. The
  2192. // syntax of the function is:
  2193. //
  2194. // FACTDOUBLE(number)
  2195. //
  2196. func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
  2197. if argsList.Len() != 1 {
  2198. return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
  2199. }
  2200. val := 1.0
  2201. number := argsList.Front().Value.(formulaArg).ToNumber()
  2202. if number.Type == ArgError {
  2203. return number
  2204. }
  2205. if number.Number < 0 {
  2206. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2207. }
  2208. for i := math.Trunc(number.Number); i > 1; i -= 2 {
  2209. val *= i
  2210. }
  2211. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
  2212. }
  2213. // FLOOR function rounds a supplied number towards zero to the nearest
  2214. // multiple of a specified significance. The syntax of the function is:
  2215. //
  2216. // FLOOR(number,significance)
  2217. //
  2218. func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
  2219. if argsList.Len() != 2 {
  2220. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
  2221. }
  2222. number := argsList.Front().Value.(formulaArg).ToNumber()
  2223. if number.Type == ArgError {
  2224. return number
  2225. }
  2226. significance := argsList.Back().Value.(formulaArg).ToNumber()
  2227. if significance.Type == ArgError {
  2228. return significance
  2229. }
  2230. if significance.Number < 0 && number.Number >= 0 {
  2231. return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
  2232. }
  2233. val := number.Number
  2234. val, res := math.Modf(val / significance.Number)
  2235. if res != 0 {
  2236. if number.Number < 0 && res < 0 {
  2237. val--
  2238. }
  2239. }
  2240. return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
  2241. }
  2242. // FLOORMATH function rounds a supplied number down to a supplied multiple of
  2243. // significance. The syntax of the function is:
  2244. //
  2245. // FLOOR.MATH(number,[significance],[mode])
  2246. //
  2247. func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg {
  2248. if argsList.Len() == 0 {
  2249. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
  2250. }
  2251. if argsList.Len() > 3 {
  2252. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
  2253. }
  2254. significance, mode := 1.0, 1.0
  2255. number := argsList.Front().Value.(formulaArg).ToNumber()
  2256. if number.Type == ArgError {
  2257. return number
  2258. }
  2259. if number.Number < 0 {
  2260. significance = -1
  2261. }
  2262. if argsList.Len() > 1 {
  2263. s := argsList.Front().Next().Value.(formulaArg).ToNumber()
  2264. if s.Type == ArgError {
  2265. return s
  2266. }
  2267. significance = s.Number
  2268. }
  2269. if argsList.Len() == 1 {
  2270. return newNumberFormulaArg(math.Floor(number.Number))
  2271. }
  2272. if argsList.Len() > 2 {
  2273. m := argsList.Back().Value.(formulaArg).ToNumber()
  2274. if m.Type == ArgError {
  2275. return m
  2276. }
  2277. mode = m.Number
  2278. }
  2279. val, res := math.Modf(number.Number / significance)
  2280. if res != 0 && number.Number < 0 && mode > 0 {
  2281. val--
  2282. }
  2283. return newNumberFormulaArg(val * significance)
  2284. }
  2285. // FLOORPRECISE function rounds a supplied number down to a supplied multiple
  2286. // of significance. The syntax of the function is:
  2287. //
  2288. // FLOOR.PRECISE(number,[significance])
  2289. //
  2290. func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg {
  2291. if argsList.Len() == 0 {
  2292. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
  2293. }
  2294. if argsList.Len() > 2 {
  2295. return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
  2296. }
  2297. var significance float64
  2298. number := argsList.Front().Value.(formulaArg).ToNumber()
  2299. if number.Type == ArgError {
  2300. return number
  2301. }
  2302. if number.Number < 0 {
  2303. significance = -1
  2304. }
  2305. if argsList.Len() == 1 {
  2306. return newNumberFormulaArg(math.Floor(number.Number))
  2307. }
  2308. if argsList.Len() > 1 {
  2309. s := argsList.Back().Value.(formulaArg).ToNumber()
  2310. if s.Type == ArgError {
  2311. return s
  2312. }
  2313. significance = s.Number
  2314. significance = math.Abs(significance)
  2315. if significance == 0 {
  2316. return newNumberFormulaArg(significance)
  2317. }
  2318. }
  2319. val, res := math.Modf(number.Number / significance)
  2320. if res != 0 {
  2321. if number.Number < 0 {
  2322. val--
  2323. }
  2324. }
  2325. return newNumberFormulaArg(val * significance)
  2326. }
  2327. // gcd returns the greatest common divisor of two supplied integers.
  2328. func gcd(x, y float64) float64 {
  2329. x, y = math.Trunc(x), math.Trunc(y)
  2330. if x == 0 {
  2331. return y
  2332. }
  2333. if y == 0 {
  2334. return x
  2335. }
  2336. for x != y {
  2337. if x > y {
  2338. x = x - y
  2339. } else {
  2340. y = y - x
  2341. }
  2342. }
  2343. return x
  2344. }
  2345. // GCD function returns the greatest common divisor of two or more supplied
  2346. // integers. The syntax of the function is:
  2347. //
  2348. // GCD(number1,[number2],...)
  2349. //
  2350. func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
  2351. if argsList.Len() == 0 {
  2352. return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
  2353. }
  2354. var (
  2355. val float64
  2356. nums = []float64{}
  2357. )
  2358. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2359. token := arg.Value.(formulaArg)
  2360. switch token.Type {
  2361. case ArgString:
  2362. num := token.ToNumber()
  2363. if num.Type == ArgError {
  2364. return num
  2365. }
  2366. val = num.Number
  2367. case ArgNumber:
  2368. val = token.Number
  2369. }
  2370. nums = append(nums, val)
  2371. }
  2372. if nums[0] < 0 {
  2373. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2374. }
  2375. if len(nums) == 1 {
  2376. return newNumberFormulaArg(nums[0])
  2377. }
  2378. cd := nums[0]
  2379. for i := 1; i < len(nums); i++ {
  2380. if nums[i] < 0 {
  2381. return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
  2382. }
  2383. cd = gcd(cd, nums[i])
  2384. }
  2385. return newNumberFormulaArg(cd)
  2386. }
  2387. // INT function truncates a supplied number down to the closest integer. The
  2388. // syntax of the function is:
  2389. //
  2390. // INT(number)
  2391. //
  2392. func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
  2393. if argsList.Len() != 1 {
  2394. return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
  2395. }
  2396. number := argsList.Front().Value.(formulaArg).ToNumber()
  2397. if number.Type == ArgError {
  2398. return number
  2399. }
  2400. val, frac := math.Modf(number.Number)
  2401. if frac < 0 {
  2402. val--
  2403. }
  2404. return newNumberFormulaArg(val)
  2405. }
  2406. // ISOCEILING function rounds a supplied number up (regardless of the number's
  2407. // sign), to the nearest multiple of a supplied significance. The syntax of
  2408. // the function is:
  2409. //
  2410. // ISO.CEILING(number,[significance])
  2411. //
  2412. func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg {
  2413. if argsList.Len() == 0 {
  2414. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
  2415. }
  2416. if argsList.Len() > 2 {
  2417. return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
  2418. }
  2419. var significance float64
  2420. number := argsList.Front().Value.(formulaArg).ToNumber()
  2421. if number.Type == ArgError {
  2422. return number
  2423. }
  2424. if number.Number < 0 {
  2425. significance = -1
  2426. }
  2427. if argsList.Len() == 1 {
  2428. return newNumberFormulaArg(math.Ceil(number.Number))
  2429. }
  2430. if argsList.Len() > 1 {
  2431. s := argsList.Back().Value.(formulaArg).ToNumber()
  2432. if s.Type == ArgError {
  2433. return s
  2434. }
  2435. significance = s.Number
  2436. significance = math.Abs(significance)
  2437. if significance == 0 {
  2438. return newNumberFormulaArg(significance)
  2439. }
  2440. }
  2441. val, res := math.Modf(number.Number / significance)
  2442. if res != 0 {
  2443. if number.Number > 0 {
  2444. val++
  2445. }
  2446. }
  2447. return newNumberFormulaArg(val * significance)
  2448. }
  2449. // lcm returns the least common multiple of two supplied integers.
  2450. func lcm(a, b float64) float64 {
  2451. a = math.Trunc(a)
  2452. b = math.Trunc(b)
  2453. if a == 0 && b == 0 {
  2454. return 0
  2455. }
  2456. return a * b / gcd(a, b)
  2457. }
  2458. // LCM function returns the least common multiple of two or more supplied
  2459. // integers. The syntax of the function is:
  2460. //
  2461. // LCM(number1,[number2],...)
  2462. //
  2463. func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
  2464. if argsList.Len() == 0 {
  2465. return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
  2466. }
  2467. var (
  2468. val float64
  2469. nums = []float64{}
  2470. err error
  2471. )
  2472. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2473. token := arg.Value.(formulaArg)
  2474. switch token.Type {
  2475. case ArgString:
  2476. if token.String == "" {
  2477. continue
  2478. }
  2479. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2480. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2481. }
  2482. case ArgNumber:
  2483. val = token.Number
  2484. }
  2485. nums = append(nums, val)
  2486. }
  2487. if nums[0] < 0 {
  2488. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2489. }
  2490. if len(nums) == 1 {
  2491. return newNumberFormulaArg(nums[0])
  2492. }
  2493. cm := nums[0]
  2494. for i := 1; i < len(nums); i++ {
  2495. if nums[i] < 0 {
  2496. return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
  2497. }
  2498. cm = lcm(cm, nums[i])
  2499. }
  2500. return newNumberFormulaArg(cm)
  2501. }
  2502. // LN function calculates the natural logarithm of a given number. The syntax
  2503. // of the function is:
  2504. //
  2505. // LN(number)
  2506. //
  2507. func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
  2508. if argsList.Len() != 1 {
  2509. return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
  2510. }
  2511. number := argsList.Front().Value.(formulaArg).ToNumber()
  2512. if number.Type == ArgError {
  2513. return number
  2514. }
  2515. return newNumberFormulaArg(math.Log(number.Number))
  2516. }
  2517. // LOG function calculates the logarithm of a given number, to a supplied
  2518. // base. The syntax of the function is:
  2519. //
  2520. // LOG(number,[base])
  2521. //
  2522. func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
  2523. if argsList.Len() == 0 {
  2524. return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
  2525. }
  2526. if argsList.Len() > 2 {
  2527. return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
  2528. }
  2529. base := 10.0
  2530. number := argsList.Front().Value.(formulaArg).ToNumber()
  2531. if number.Type == ArgError {
  2532. return number
  2533. }
  2534. if argsList.Len() > 1 {
  2535. b := argsList.Back().Value.(formulaArg).ToNumber()
  2536. if b.Type == ArgError {
  2537. return b
  2538. }
  2539. base = b.Number
  2540. }
  2541. if number.Number == 0 {
  2542. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2543. }
  2544. if base == 0 {
  2545. return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
  2546. }
  2547. if base == 1 {
  2548. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2549. }
  2550. return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
  2551. }
  2552. // LOG10 function calculates the base 10 logarithm of a given number. The
  2553. // syntax of the function is:
  2554. //
  2555. // LOG10(number)
  2556. //
  2557. func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
  2558. if argsList.Len() != 1 {
  2559. return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
  2560. }
  2561. number := argsList.Front().Value.(formulaArg).ToNumber()
  2562. if number.Type == ArgError {
  2563. return number
  2564. }
  2565. return newNumberFormulaArg(math.Log10(number.Number))
  2566. }
  2567. // minor function implement a minor of a matrix A is the determinant of some
  2568. // smaller square matrix.
  2569. func minor(sqMtx [][]float64, idx int) [][]float64 {
  2570. ret := [][]float64{}
  2571. for i := range sqMtx {
  2572. if i == 0 {
  2573. continue
  2574. }
  2575. row := []float64{}
  2576. for j := range sqMtx {
  2577. if j == idx {
  2578. continue
  2579. }
  2580. row = append(row, sqMtx[i][j])
  2581. }
  2582. ret = append(ret, row)
  2583. }
  2584. return ret
  2585. }
  2586. // det determinant of the 2x2 matrix.
  2587. func det(sqMtx [][]float64) float64 {
  2588. if len(sqMtx) == 2 {
  2589. m00 := sqMtx[0][0]
  2590. m01 := sqMtx[0][1]
  2591. m10 := sqMtx[1][0]
  2592. m11 := sqMtx[1][1]
  2593. return m00*m11 - m10*m01
  2594. }
  2595. var res, sgn float64 = 0, 1
  2596. for j := range sqMtx {
  2597. res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
  2598. sgn *= -1
  2599. }
  2600. return res
  2601. }
  2602. // MDETERM calculates the determinant of a square matrix. The
  2603. // syntax of the function is:
  2604. //
  2605. // MDETERM(array)
  2606. //
  2607. func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
  2608. var (
  2609. num float64
  2610. numMtx = [][]float64{}
  2611. err error
  2612. strMtx [][]formulaArg
  2613. )
  2614. if argsList.Len() < 1 {
  2615. return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
  2616. }
  2617. strMtx = argsList.Front().Value.(formulaArg).Matrix
  2618. var rows = len(strMtx)
  2619. for _, row := range argsList.Front().Value.(formulaArg).Matrix {
  2620. if len(row) != rows {
  2621. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  2622. }
  2623. numRow := []float64{}
  2624. for _, ele := range row {
  2625. if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
  2626. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2627. }
  2628. numRow = append(numRow, num)
  2629. }
  2630. numMtx = append(numMtx, numRow)
  2631. }
  2632. return newNumberFormulaArg(det(numMtx))
  2633. }
  2634. // MOD function returns the remainder of a division between two supplied
  2635. // numbers. The syntax of the function is:
  2636. //
  2637. // MOD(number,divisor)
  2638. //
  2639. func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
  2640. if argsList.Len() != 2 {
  2641. return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
  2642. }
  2643. number := argsList.Front().Value.(formulaArg).ToNumber()
  2644. if number.Type == ArgError {
  2645. return number
  2646. }
  2647. divisor := argsList.Back().Value.(formulaArg).ToNumber()
  2648. if divisor.Type == ArgError {
  2649. return divisor
  2650. }
  2651. if divisor.Number == 0 {
  2652. return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
  2653. }
  2654. trunc, rem := math.Modf(number.Number / divisor.Number)
  2655. if rem < 0 {
  2656. trunc--
  2657. }
  2658. return newNumberFormulaArg(number.Number - divisor.Number*trunc)
  2659. }
  2660. // MROUND function rounds a supplied number up or down to the nearest multiple
  2661. // of a given number. The syntax of the function is:
  2662. //
  2663. // MROUND(number,multiple)
  2664. //
  2665. func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
  2666. if argsList.Len() != 2 {
  2667. return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
  2668. }
  2669. n := argsList.Front().Value.(formulaArg).ToNumber()
  2670. if n.Type == ArgError {
  2671. return n
  2672. }
  2673. multiple := argsList.Back().Value.(formulaArg).ToNumber()
  2674. if multiple.Type == ArgError {
  2675. return multiple
  2676. }
  2677. if multiple.Number == 0 {
  2678. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2679. }
  2680. if multiple.Number < 0 && n.Number > 0 ||
  2681. multiple.Number > 0 && n.Number < 0 {
  2682. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2683. }
  2684. number, res := math.Modf(n.Number / multiple.Number)
  2685. if math.Trunc(res+0.5) > 0 {
  2686. number++
  2687. }
  2688. return newNumberFormulaArg(number * multiple.Number)
  2689. }
  2690. // MULTINOMIAL function calculates the ratio of the factorial of a sum of
  2691. // supplied values to the product of factorials of those values. The syntax of
  2692. // the function is:
  2693. //
  2694. // MULTINOMIAL(number1,[number2],...)
  2695. //
  2696. func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
  2697. val, num, denom := 0.0, 0.0, 1.0
  2698. var err error
  2699. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2700. token := arg.Value.(formulaArg)
  2701. switch token.Type {
  2702. case ArgString:
  2703. if token.String == "" {
  2704. continue
  2705. }
  2706. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2707. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2708. }
  2709. case ArgNumber:
  2710. val = token.Number
  2711. }
  2712. num += val
  2713. denom *= fact(val)
  2714. }
  2715. return newNumberFormulaArg(fact(num) / denom)
  2716. }
  2717. // MUNIT function returns the unit matrix for a specified dimension. The
  2718. // syntax of the function is:
  2719. //
  2720. // MUNIT(dimension)
  2721. //
  2722. func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
  2723. if argsList.Len() != 1 {
  2724. return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
  2725. }
  2726. dimension := argsList.Back().Value.(formulaArg).ToNumber()
  2727. if dimension.Type == ArgError || dimension.Number < 0 {
  2728. return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
  2729. }
  2730. matrix := make([][]formulaArg, 0, int(dimension.Number))
  2731. for i := 0; i < int(dimension.Number); i++ {
  2732. row := make([]formulaArg, int(dimension.Number))
  2733. for j := 0; j < int(dimension.Number); j++ {
  2734. if i == j {
  2735. row[j] = newNumberFormulaArg(1.0)
  2736. } else {
  2737. row[j] = newNumberFormulaArg(0.0)
  2738. }
  2739. }
  2740. matrix = append(matrix, row)
  2741. }
  2742. return newMatrixFormulaArg(matrix)
  2743. }
  2744. // ODD function ounds a supplied number away from zero (i.e. rounds a positive
  2745. // number up and a negative number down), to the next odd number. The syntax
  2746. // of the function is:
  2747. //
  2748. // ODD(number)
  2749. //
  2750. func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
  2751. if argsList.Len() != 1 {
  2752. return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
  2753. }
  2754. number := argsList.Back().Value.(formulaArg).ToNumber()
  2755. if number.Type == ArgError {
  2756. return number
  2757. }
  2758. if number.Number == 0 {
  2759. return newNumberFormulaArg(1)
  2760. }
  2761. sign := math.Signbit(number.Number)
  2762. m, frac := math.Modf((number.Number - 1) / 2)
  2763. val := m*2 + 1
  2764. if frac != 0 {
  2765. if !sign {
  2766. val += 2
  2767. } else {
  2768. val -= 2
  2769. }
  2770. }
  2771. return newNumberFormulaArg(val)
  2772. }
  2773. // PI function returns the value of the mathematical constant π (pi), accurate
  2774. // to 15 digits (14 decimal places). The syntax of the function is:
  2775. //
  2776. // PI()
  2777. //
  2778. func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
  2779. if argsList.Len() != 0 {
  2780. return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
  2781. }
  2782. return newNumberFormulaArg(math.Pi)
  2783. }
  2784. // POWER function calculates a given number, raised to a supplied power.
  2785. // The syntax of the function is:
  2786. //
  2787. // POWER(number,power)
  2788. //
  2789. func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
  2790. if argsList.Len() != 2 {
  2791. return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
  2792. }
  2793. x := argsList.Front().Value.(formulaArg).ToNumber()
  2794. if x.Type == ArgError {
  2795. return x
  2796. }
  2797. y := argsList.Back().Value.(formulaArg).ToNumber()
  2798. if y.Type == ArgError {
  2799. return y
  2800. }
  2801. if x.Number == 0 && y.Number == 0 {
  2802. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2803. }
  2804. if x.Number == 0 && y.Number < 0 {
  2805. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2806. }
  2807. return newNumberFormulaArg(math.Pow(x.Number, y.Number))
  2808. }
  2809. // PRODUCT function returns the product (multiplication) of a supplied set of
  2810. // numerical values. The syntax of the function is:
  2811. //
  2812. // PRODUCT(number1,[number2],...)
  2813. //
  2814. func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
  2815. val, product := 0.0, 1.0
  2816. var err error
  2817. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  2818. token := arg.Value.(formulaArg)
  2819. switch token.Type {
  2820. case ArgUnknown:
  2821. continue
  2822. case ArgString:
  2823. if token.String == "" {
  2824. continue
  2825. }
  2826. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  2827. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2828. }
  2829. product = product * val
  2830. case ArgNumber:
  2831. product = product * token.Number
  2832. case ArgMatrix:
  2833. for _, row := range token.Matrix {
  2834. for _, value := range row {
  2835. if value.String == "" {
  2836. continue
  2837. }
  2838. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  2839. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  2840. }
  2841. product = product * val
  2842. }
  2843. }
  2844. }
  2845. }
  2846. return newNumberFormulaArg(product)
  2847. }
  2848. // QUOTIENT function returns the integer portion of a division between two
  2849. // supplied numbers. The syntax of the function is:
  2850. //
  2851. // QUOTIENT(numerator,denominator)
  2852. //
  2853. func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
  2854. if argsList.Len() != 2 {
  2855. return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
  2856. }
  2857. x := argsList.Front().Value.(formulaArg).ToNumber()
  2858. if x.Type == ArgError {
  2859. return x
  2860. }
  2861. y := argsList.Back().Value.(formulaArg).ToNumber()
  2862. if y.Type == ArgError {
  2863. return y
  2864. }
  2865. if y.Number == 0 {
  2866. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  2867. }
  2868. return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
  2869. }
  2870. // RADIANS function converts radians into degrees. The syntax of the function is:
  2871. //
  2872. // RADIANS(angle)
  2873. //
  2874. func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
  2875. if argsList.Len() != 1 {
  2876. return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
  2877. }
  2878. angle := argsList.Front().Value.(formulaArg).ToNumber()
  2879. if angle.Type == ArgError {
  2880. return angle
  2881. }
  2882. return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
  2883. }
  2884. // RAND function generates a random real number between 0 and 1. The syntax of
  2885. // the function is:
  2886. //
  2887. // RAND()
  2888. //
  2889. func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
  2890. if argsList.Len() != 0 {
  2891. return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
  2892. }
  2893. return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
  2894. }
  2895. // RANDBETWEEN function generates a random integer between two supplied
  2896. // integers. The syntax of the function is:
  2897. //
  2898. // RANDBETWEEN(bottom,top)
  2899. //
  2900. func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
  2901. if argsList.Len() != 2 {
  2902. return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
  2903. }
  2904. bottom := argsList.Front().Value.(formulaArg).ToNumber()
  2905. if bottom.Type == ArgError {
  2906. return bottom
  2907. }
  2908. top := argsList.Back().Value.(formulaArg).ToNumber()
  2909. if top.Type == ArgError {
  2910. return top
  2911. }
  2912. if top.Number < bottom.Number {
  2913. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  2914. }
  2915. num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
  2916. return newNumberFormulaArg(float64(num + int64(bottom.Number)))
  2917. }
  2918. // romanNumerals defined a numeral system that originated in ancient Rome and
  2919. // remained the usual way of writing numbers throughout Europe well into the
  2920. // Late Middle Ages.
  2921. type romanNumerals struct {
  2922. n float64
  2923. s string
  2924. }
  2925. var romanTable = [][]romanNumerals{
  2926. {
  2927. {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
  2928. {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2929. },
  2930. {
  2931. {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
  2932. {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2933. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2934. },
  2935. {
  2936. {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
  2937. {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
  2938. {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2939. },
  2940. {
  2941. {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
  2942. {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
  2943. {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
  2944. {5, "V"}, {4, "IV"}, {1, "I"},
  2945. },
  2946. {
  2947. {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
  2948. {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
  2949. {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
  2950. {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
  2951. },
  2952. }
  2953. // ROMAN function converts an arabic number to Roman. I.e. for a supplied
  2954. // integer, the function returns a text string depicting the roman numeral
  2955. // form of the number. The syntax of the function is:
  2956. //
  2957. // ROMAN(number,[form])
  2958. //
  2959. func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
  2960. if argsList.Len() == 0 {
  2961. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
  2962. }
  2963. if argsList.Len() > 2 {
  2964. return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
  2965. }
  2966. var form int
  2967. number := argsList.Front().Value.(formulaArg).ToNumber()
  2968. if number.Type == ArgError {
  2969. return number
  2970. }
  2971. if argsList.Len() > 1 {
  2972. f := argsList.Back().Value.(formulaArg).ToNumber()
  2973. if f.Type == ArgError {
  2974. return f
  2975. }
  2976. form = int(f.Number)
  2977. if form < 0 {
  2978. form = 0
  2979. } else if form > 4 {
  2980. form = 4
  2981. }
  2982. }
  2983. decimalTable := romanTable[0]
  2984. switch form {
  2985. case 1:
  2986. decimalTable = romanTable[1]
  2987. case 2:
  2988. decimalTable = romanTable[2]
  2989. case 3:
  2990. decimalTable = romanTable[3]
  2991. case 4:
  2992. decimalTable = romanTable[4]
  2993. }
  2994. val := math.Trunc(number.Number)
  2995. buf := bytes.Buffer{}
  2996. for _, r := range decimalTable {
  2997. for val >= r.n {
  2998. buf.WriteString(r.s)
  2999. val -= r.n
  3000. }
  3001. }
  3002. return newStringFormulaArg(buf.String())
  3003. }
  3004. type roundMode byte
  3005. const (
  3006. closest roundMode = iota
  3007. down
  3008. up
  3009. )
  3010. // round rounds a supplied number up or down.
  3011. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
  3012. var significance float64
  3013. if digits > 0 {
  3014. significance = math.Pow(1/10.0, digits)
  3015. } else {
  3016. significance = math.Pow(10.0, -digits)
  3017. }
  3018. val, res := math.Modf(number / significance)
  3019. switch mode {
  3020. case closest:
  3021. const eps = 0.499999999
  3022. if res >= eps {
  3023. val++
  3024. } else if res <= -eps {
  3025. val--
  3026. }
  3027. case down:
  3028. case up:
  3029. if res > 0 {
  3030. val++
  3031. } else if res < 0 {
  3032. val--
  3033. }
  3034. }
  3035. return val * significance
  3036. }
  3037. // ROUND function rounds a supplied number up or down, to a specified number
  3038. // of decimal places. The syntax of the function is:
  3039. //
  3040. // ROUND(number,num_digits)
  3041. //
  3042. func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
  3043. if argsList.Len() != 2 {
  3044. return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
  3045. }
  3046. number := argsList.Front().Value.(formulaArg).ToNumber()
  3047. if number.Type == ArgError {
  3048. return number
  3049. }
  3050. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3051. if digits.Type == ArgError {
  3052. return digits
  3053. }
  3054. return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
  3055. }
  3056. // ROUNDDOWN function rounds a supplied number down towards zero, to a
  3057. // specified number of decimal places. The syntax of the function is:
  3058. //
  3059. // ROUNDDOWN(number,num_digits)
  3060. //
  3061. func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
  3062. if argsList.Len() != 2 {
  3063. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
  3064. }
  3065. number := argsList.Front().Value.(formulaArg).ToNumber()
  3066. if number.Type == ArgError {
  3067. return number
  3068. }
  3069. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3070. if digits.Type == ArgError {
  3071. return digits
  3072. }
  3073. return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
  3074. }
  3075. // ROUNDUP function rounds a supplied number up, away from zero, to a
  3076. // specified number of decimal places. The syntax of the function is:
  3077. //
  3078. // ROUNDUP(number,num_digits)
  3079. //
  3080. func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
  3081. if argsList.Len() != 2 {
  3082. return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
  3083. }
  3084. number := argsList.Front().Value.(formulaArg).ToNumber()
  3085. if number.Type == ArgError {
  3086. return number
  3087. }
  3088. digits := argsList.Back().Value.(formulaArg).ToNumber()
  3089. if digits.Type == ArgError {
  3090. return digits
  3091. }
  3092. return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
  3093. }
  3094. // SEC function calculates the secant of a given angle. The syntax of the
  3095. // function is:
  3096. //
  3097. // SEC(number)
  3098. //
  3099. func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
  3100. if argsList.Len() != 1 {
  3101. return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
  3102. }
  3103. number := argsList.Front().Value.(formulaArg).ToNumber()
  3104. if number.Type == ArgError {
  3105. return number
  3106. }
  3107. return newNumberFormulaArg(math.Cos(number.Number))
  3108. }
  3109. // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
  3110. // The syntax of the function is:
  3111. //
  3112. // SECH(number)
  3113. //
  3114. func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
  3115. if argsList.Len() != 1 {
  3116. return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
  3117. }
  3118. number := argsList.Front().Value.(formulaArg).ToNumber()
  3119. if number.Type == ArgError {
  3120. return number
  3121. }
  3122. return newNumberFormulaArg(1 / math.Cosh(number.Number))
  3123. }
  3124. // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
  3125. // number. I.e. if the number is positive, the Sign function returns +1, if
  3126. // the number is negative, the function returns -1 and if the number is 0
  3127. // (zero), the function returns 0. The syntax of the function is:
  3128. //
  3129. // SIGN(number)
  3130. //
  3131. func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
  3132. if argsList.Len() != 1 {
  3133. return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
  3134. }
  3135. val := argsList.Front().Value.(formulaArg).ToNumber()
  3136. if val.Type == ArgError {
  3137. return val
  3138. }
  3139. if val.Number < 0 {
  3140. return newNumberFormulaArg(-1)
  3141. }
  3142. if val.Number > 0 {
  3143. return newNumberFormulaArg(1)
  3144. }
  3145. return newNumberFormulaArg(0)
  3146. }
  3147. // SIN function calculates the sine of a given angle. The syntax of the
  3148. // function is:
  3149. //
  3150. // SIN(number)
  3151. //
  3152. func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
  3153. if argsList.Len() != 1 {
  3154. return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
  3155. }
  3156. number := argsList.Front().Value.(formulaArg).ToNumber()
  3157. if number.Type == ArgError {
  3158. return number
  3159. }
  3160. return newNumberFormulaArg(math.Sin(number.Number))
  3161. }
  3162. // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
  3163. // The syntax of the function is:
  3164. //
  3165. // SINH(number)
  3166. //
  3167. func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
  3168. if argsList.Len() != 1 {
  3169. return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
  3170. }
  3171. number := argsList.Front().Value.(formulaArg).ToNumber()
  3172. if number.Type == ArgError {
  3173. return number
  3174. }
  3175. return newNumberFormulaArg(math.Sinh(number.Number))
  3176. }
  3177. // SQRT function calculates the positive square root of a supplied number. The
  3178. // syntax of the function is:
  3179. //
  3180. // SQRT(number)
  3181. //
  3182. func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
  3183. if argsList.Len() != 1 {
  3184. return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
  3185. }
  3186. value := argsList.Front().Value.(formulaArg).ToNumber()
  3187. if value.Type == ArgError {
  3188. return value
  3189. }
  3190. if value.Number < 0 {
  3191. return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
  3192. }
  3193. return newNumberFormulaArg(math.Sqrt(value.Number))
  3194. }
  3195. // SQRTPI function returns the square root of a supplied number multiplied by
  3196. // the mathematical constant, π. The syntax of the function is:
  3197. //
  3198. // SQRTPI(number)
  3199. //
  3200. func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
  3201. if argsList.Len() != 1 {
  3202. return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
  3203. }
  3204. number := argsList.Front().Value.(formulaArg).ToNumber()
  3205. if number.Type == ArgError {
  3206. return number
  3207. }
  3208. return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
  3209. }
  3210. // STDEV function calculates the sample standard deviation of a supplied set
  3211. // of values. The syntax of the function is:
  3212. //
  3213. // STDEV(number1,[number2],...)
  3214. //
  3215. func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
  3216. if argsList.Len() < 1 {
  3217. return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
  3218. }
  3219. return fn.stdev(false, argsList)
  3220. }
  3221. // STDEVA function estimates standard deviation based on a sample. The
  3222. // standard deviation is a measure of how widely values are dispersed from
  3223. // the average value (the mean). The syntax of the function is:
  3224. //
  3225. // STDEVA(number1,[number2],...)
  3226. //
  3227. func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
  3228. if argsList.Len() < 1 {
  3229. return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
  3230. }
  3231. return fn.stdev(true, argsList)
  3232. }
  3233. // stdev is an implementation of the formula function STDEV and STDEVA.
  3234. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
  3235. pow := func(result, count float64, n, m formulaArg) (float64, float64) {
  3236. if result == -1 {
  3237. result = math.Pow((n.Number - m.Number), 2)
  3238. } else {
  3239. result += math.Pow((n.Number - m.Number), 2)
  3240. }
  3241. count++
  3242. return result, count
  3243. }
  3244. count, result := -1.0, -1.0
  3245. var mean formulaArg
  3246. if stdeva {
  3247. mean = fn.AVERAGEA(argsList)
  3248. } else {
  3249. mean = fn.AVERAGE(argsList)
  3250. }
  3251. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3252. token := arg.Value.(formulaArg)
  3253. switch token.Type {
  3254. case ArgString, ArgNumber:
  3255. if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3256. continue
  3257. } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
  3258. num := token.ToBool()
  3259. if num.Type == ArgNumber {
  3260. result, count = pow(result, count, num, mean)
  3261. continue
  3262. }
  3263. } else {
  3264. num := token.ToNumber()
  3265. if num.Type == ArgNumber {
  3266. result, count = pow(result, count, num, mean)
  3267. }
  3268. }
  3269. case ArgList, ArgMatrix:
  3270. for _, row := range token.ToList() {
  3271. if row.Type == ArgNumber || row.Type == ArgString {
  3272. if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3273. continue
  3274. } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3275. num := row.ToBool()
  3276. if num.Type == ArgNumber {
  3277. result, count = pow(result, count, num, mean)
  3278. continue
  3279. }
  3280. } else {
  3281. num := row.ToNumber()
  3282. if num.Type == ArgNumber {
  3283. result, count = pow(result, count, num, mean)
  3284. }
  3285. }
  3286. }
  3287. }
  3288. }
  3289. }
  3290. if count > 0 && result >= 0 {
  3291. return newNumberFormulaArg(math.Sqrt(result / count))
  3292. }
  3293. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3294. }
  3295. // SUM function adds together a supplied set of numbers and returns the sum of
  3296. // these values. The syntax of the function is:
  3297. //
  3298. // SUM(number1,[number2],...)
  3299. //
  3300. func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
  3301. var sum float64
  3302. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3303. token := arg.Value.(formulaArg)
  3304. switch token.Type {
  3305. case ArgUnknown:
  3306. continue
  3307. case ArgString:
  3308. if num := token.ToNumber(); num.Type == ArgNumber {
  3309. sum += num.Number
  3310. }
  3311. case ArgNumber:
  3312. sum += token.Number
  3313. case ArgMatrix:
  3314. for _, row := range token.Matrix {
  3315. for _, value := range row {
  3316. if num := value.ToNumber(); num.Type == ArgNumber {
  3317. sum += num.Number
  3318. }
  3319. }
  3320. }
  3321. }
  3322. }
  3323. return newNumberFormulaArg(sum)
  3324. }
  3325. // SUMIF function finds the values in a supplied array, that satisfy a given
  3326. // criteria, and returns the sum of the corresponding values in a second
  3327. // supplied array. The syntax of the function is:
  3328. //
  3329. // SUMIF(range,criteria,[sum_range])
  3330. //
  3331. func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
  3332. if argsList.Len() < 2 {
  3333. return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
  3334. }
  3335. var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
  3336. var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
  3337. var sumRange [][]formulaArg
  3338. if argsList.Len() == 3 {
  3339. sumRange = argsList.Back().Value.(formulaArg).Matrix
  3340. }
  3341. var sum, val float64
  3342. var err error
  3343. for rowIdx, row := range rangeMtx {
  3344. for colIdx, col := range row {
  3345. var ok bool
  3346. fromVal := col.String
  3347. if col.String == "" {
  3348. continue
  3349. }
  3350. if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
  3351. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3352. }
  3353. if ok {
  3354. if argsList.Len() == 3 {
  3355. if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
  3356. continue
  3357. }
  3358. fromVal = sumRange[rowIdx][colIdx].String
  3359. }
  3360. if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
  3361. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3362. }
  3363. sum += val
  3364. }
  3365. }
  3366. }
  3367. return newNumberFormulaArg(sum)
  3368. }
  3369. // SUMSQ function returns the sum of squares of a supplied set of values. The
  3370. // syntax of the function is:
  3371. //
  3372. // SUMSQ(number1,[number2],...)
  3373. //
  3374. func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
  3375. var val, sq float64
  3376. var err error
  3377. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3378. token := arg.Value.(formulaArg)
  3379. switch token.Type {
  3380. case ArgString:
  3381. if token.String == "" {
  3382. continue
  3383. }
  3384. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  3385. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3386. }
  3387. sq += val * val
  3388. case ArgNumber:
  3389. sq += token.Number
  3390. case ArgMatrix:
  3391. for _, row := range token.Matrix {
  3392. for _, value := range row {
  3393. if value.String == "" {
  3394. continue
  3395. }
  3396. if val, err = strconv.ParseFloat(value.String, 64); err != nil {
  3397. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3398. }
  3399. sq += val * val
  3400. }
  3401. }
  3402. }
  3403. }
  3404. return newNumberFormulaArg(sq)
  3405. }
  3406. // TAN function calculates the tangent of a given angle. The syntax of the
  3407. // function is:
  3408. //
  3409. // TAN(number)
  3410. //
  3411. func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
  3412. if argsList.Len() != 1 {
  3413. return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
  3414. }
  3415. number := argsList.Front().Value.(formulaArg).ToNumber()
  3416. if number.Type == ArgError {
  3417. return number
  3418. }
  3419. return newNumberFormulaArg(math.Tan(number.Number))
  3420. }
  3421. // TANH function calculates the hyperbolic tangent (tanh) of a supplied
  3422. // number. The syntax of the function is:
  3423. //
  3424. // TANH(number)
  3425. //
  3426. func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
  3427. if argsList.Len() != 1 {
  3428. return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
  3429. }
  3430. number := argsList.Front().Value.(formulaArg).ToNumber()
  3431. if number.Type == ArgError {
  3432. return number
  3433. }
  3434. return newNumberFormulaArg(math.Tanh(number.Number))
  3435. }
  3436. // TRUNC function truncates a supplied number to a specified number of decimal
  3437. // places. The syntax of the function is:
  3438. //
  3439. // TRUNC(number,[number_digits])
  3440. //
  3441. func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
  3442. if argsList.Len() == 0 {
  3443. return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
  3444. }
  3445. var digits, adjust, rtrim float64
  3446. var err error
  3447. number := argsList.Front().Value.(formulaArg).ToNumber()
  3448. if number.Type == ArgError {
  3449. return number
  3450. }
  3451. if argsList.Len() > 1 {
  3452. d := argsList.Back().Value.(formulaArg).ToNumber()
  3453. if d.Type == ArgError {
  3454. return d
  3455. }
  3456. digits = d.Number
  3457. digits = math.Floor(digits)
  3458. }
  3459. adjust = math.Pow(10, digits)
  3460. x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
  3461. if x != 0 {
  3462. if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
  3463. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3464. }
  3465. }
  3466. if (digits > 0) && (rtrim < adjust/10) {
  3467. return newNumberFormulaArg(number.Number)
  3468. }
  3469. return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
  3470. }
  3471. // Statistical Functions
  3472. // AVERAGE function returns the arithmetic mean of a list of supplied numbers.
  3473. // The syntax of the function is:
  3474. //
  3475. // AVERAGE(number1,[number2],...)
  3476. //
  3477. func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
  3478. args := []formulaArg{}
  3479. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3480. args = append(args, arg.Value.(formulaArg))
  3481. }
  3482. count, sum := fn.countSum(false, args)
  3483. if count == 0 {
  3484. return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
  3485. }
  3486. return newNumberFormulaArg(sum / count)
  3487. }
  3488. // AVERAGEA function returns the arithmetic mean of a list of supplied numbers
  3489. // with text cell and zero values. The syntax of the function is:
  3490. //
  3491. // AVERAGEA(number1,[number2],...)
  3492. //
  3493. func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
  3494. args := []formulaArg{}
  3495. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3496. args = append(args, arg.Value.(formulaArg))
  3497. }
  3498. count, sum := fn.countSum(true, args)
  3499. if count == 0 {
  3500. return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
  3501. }
  3502. return newNumberFormulaArg(sum / count)
  3503. }
  3504. // countSum get count and sum for a formula arguments array.
  3505. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
  3506. for _, arg := range args {
  3507. switch arg.Type {
  3508. case ArgNumber:
  3509. if countText || !arg.Boolean {
  3510. sum += arg.Number
  3511. count++
  3512. }
  3513. case ArgString:
  3514. if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3515. continue
  3516. } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3517. num := arg.ToBool()
  3518. if num.Type == ArgNumber {
  3519. count++
  3520. sum += num.Number
  3521. continue
  3522. }
  3523. }
  3524. num := arg.ToNumber()
  3525. if countText && num.Type == ArgError && arg.String != "" {
  3526. count++
  3527. }
  3528. if num.Type == ArgNumber {
  3529. sum += num.Number
  3530. count++
  3531. }
  3532. case ArgList, ArgMatrix:
  3533. cnt, summary := fn.countSum(countText, arg.ToList())
  3534. sum += summary
  3535. count += cnt
  3536. }
  3537. }
  3538. return
  3539. }
  3540. // COUNT function returns the count of numeric values in a supplied set of
  3541. // cells or values. This count includes both numbers and dates. The syntax of
  3542. // the function is:
  3543. //
  3544. // COUNT(value1,[value2],...)
  3545. //
  3546. func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
  3547. var count int
  3548. for token := argsList.Front(); token != nil; token = token.Next() {
  3549. arg := token.Value.(formulaArg)
  3550. switch arg.Type {
  3551. case ArgString:
  3552. if arg.ToNumber().Type != ArgError {
  3553. count++
  3554. }
  3555. case ArgNumber:
  3556. count++
  3557. case ArgMatrix:
  3558. for _, row := range arg.Matrix {
  3559. for _, value := range row {
  3560. if value.ToNumber().Type != ArgError {
  3561. count++
  3562. }
  3563. }
  3564. }
  3565. }
  3566. }
  3567. return newNumberFormulaArg(float64(count))
  3568. }
  3569. // COUNTA function returns the number of non-blanks within a supplied set of
  3570. // cells or values. The syntax of the function is:
  3571. //
  3572. // COUNTA(value1,[value2],...)
  3573. //
  3574. func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
  3575. var count int
  3576. for token := argsList.Front(); token != nil; token = token.Next() {
  3577. arg := token.Value.(formulaArg)
  3578. switch arg.Type {
  3579. case ArgString:
  3580. if arg.String != "" {
  3581. count++
  3582. }
  3583. case ArgNumber:
  3584. count++
  3585. case ArgMatrix:
  3586. for _, row := range arg.ToList() {
  3587. switch row.Type {
  3588. case ArgString:
  3589. if row.String != "" {
  3590. count++
  3591. }
  3592. case ArgNumber:
  3593. count++
  3594. }
  3595. }
  3596. }
  3597. }
  3598. return newNumberFormulaArg(float64(count))
  3599. }
  3600. // COUNTBLANK function returns the number of blank cells in a supplied range.
  3601. // The syntax of the function is:
  3602. //
  3603. // COUNTBLANK(range)
  3604. //
  3605. func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
  3606. if argsList.Len() != 1 {
  3607. return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
  3608. }
  3609. var count int
  3610. token := argsList.Front().Value.(formulaArg)
  3611. switch token.Type {
  3612. case ArgString:
  3613. if token.String == "" {
  3614. count++
  3615. }
  3616. case ArgList, ArgMatrix:
  3617. for _, row := range token.ToList() {
  3618. switch row.Type {
  3619. case ArgString:
  3620. if row.String == "" {
  3621. count++
  3622. }
  3623. case ArgEmpty:
  3624. count++
  3625. }
  3626. }
  3627. case ArgEmpty:
  3628. count++
  3629. }
  3630. return newNumberFormulaArg(float64(count))
  3631. }
  3632. // FISHER function calculates the Fisher Transformation for a supplied value.
  3633. // The syntax of the function is:
  3634. //
  3635. // FISHER(x)
  3636. //
  3637. func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
  3638. if argsList.Len() != 1 {
  3639. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3640. }
  3641. token := argsList.Front().Value.(formulaArg)
  3642. switch token.Type {
  3643. case ArgString:
  3644. arg := token.ToNumber()
  3645. if arg.Type == ArgNumber {
  3646. if arg.Number <= -1 || arg.Number >= 1 {
  3647. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3648. }
  3649. return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
  3650. }
  3651. case ArgNumber:
  3652. if token.Number <= -1 || token.Number >= 1 {
  3653. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3654. }
  3655. return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
  3656. }
  3657. return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
  3658. }
  3659. // FISHERINV function calculates the inverse of the Fisher Transformation and
  3660. // returns a value between -1 and +1. The syntax of the function is:
  3661. //
  3662. // FISHERINV(y)
  3663. //
  3664. func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
  3665. if argsList.Len() != 1 {
  3666. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3667. }
  3668. token := argsList.Front().Value.(formulaArg)
  3669. switch token.Type {
  3670. case ArgString:
  3671. arg := token.ToNumber()
  3672. if arg.Type == ArgNumber {
  3673. return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
  3674. }
  3675. case ArgNumber:
  3676. return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
  3677. }
  3678. return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
  3679. }
  3680. // GAMMA function returns the value of the Gamma Function, Γ(n), for a
  3681. // specified number, n. The syntax of the function is:
  3682. //
  3683. // GAMMA(number)
  3684. //
  3685. func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
  3686. if argsList.Len() != 1 {
  3687. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3688. }
  3689. token := argsList.Front().Value.(formulaArg)
  3690. switch token.Type {
  3691. case ArgString:
  3692. arg := token.ToNumber()
  3693. if arg.Type == ArgNumber {
  3694. if arg.Number <= 0 {
  3695. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3696. }
  3697. return newNumberFormulaArg(math.Gamma(arg.Number))
  3698. }
  3699. case ArgNumber:
  3700. if token.Number <= 0 {
  3701. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3702. }
  3703. return newNumberFormulaArg(math.Gamma(token.Number))
  3704. }
  3705. return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
  3706. }
  3707. // GAMMALN function returns the natural logarithm of the Gamma Function, Γ
  3708. // (n). The syntax of the function is:
  3709. //
  3710. // GAMMALN(x)
  3711. //
  3712. func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
  3713. if argsList.Len() != 1 {
  3714. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3715. }
  3716. token := argsList.Front().Value.(formulaArg)
  3717. switch token.Type {
  3718. case ArgString:
  3719. arg := token.ToNumber()
  3720. if arg.Type == ArgNumber {
  3721. if arg.Number <= 0 {
  3722. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3723. }
  3724. return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
  3725. }
  3726. case ArgNumber:
  3727. if token.Number <= 0 {
  3728. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  3729. }
  3730. return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
  3731. }
  3732. return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
  3733. }
  3734. // KURT function calculates the kurtosis of a supplied set of values. The
  3735. // syntax of the function is:
  3736. //
  3737. // KURT(number1,[number2],...)
  3738. //
  3739. func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
  3740. if argsList.Len() < 1 {
  3741. return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
  3742. }
  3743. mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
  3744. if stdev.Number > 0 {
  3745. count, summer := 0.0, 0.0
  3746. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  3747. token := arg.Value.(formulaArg)
  3748. switch token.Type {
  3749. case ArgString, ArgNumber:
  3750. num := token.ToNumber()
  3751. if num.Type == ArgError {
  3752. continue
  3753. }
  3754. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3755. count++
  3756. case ArgList, ArgMatrix:
  3757. for _, row := range token.ToList() {
  3758. if row.Type == ArgNumber || row.Type == ArgString {
  3759. num := row.ToNumber()
  3760. if num.Type == ArgError {
  3761. continue
  3762. }
  3763. summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
  3764. count++
  3765. }
  3766. }
  3767. }
  3768. }
  3769. if count > 3 {
  3770. return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
  3771. }
  3772. }
  3773. return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
  3774. }
  3775. // kth is an implementation of the formula function LARGE and SMALL.
  3776. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
  3777. if argsList.Len() != 2 {
  3778. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
  3779. }
  3780. array := argsList.Front().Value.(formulaArg).ToList()
  3781. kArg := argsList.Back().Value.(formulaArg).ToNumber()
  3782. if kArg.Type != ArgNumber {
  3783. return kArg
  3784. }
  3785. k := int(kArg.Number)
  3786. if k < 1 {
  3787. return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
  3788. }
  3789. data := []float64{}
  3790. for _, arg := range array {
  3791. if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
  3792. data = append(data, numArg.Number)
  3793. }
  3794. }
  3795. if len(data) < k {
  3796. return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
  3797. }
  3798. sort.Float64s(data)
  3799. if name == "LARGE" {
  3800. return newNumberFormulaArg(data[len(data)-k])
  3801. }
  3802. return newNumberFormulaArg(data[k-1])
  3803. }
  3804. // LARGE function returns the k'th largest value from an array of numeric
  3805. // values. The syntax of the function is:
  3806. //
  3807. // LARGE(array,k)
  3808. //
  3809. func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
  3810. return fn.kth("LARGE", argsList)
  3811. }
  3812. // MAX function returns the largest value from a supplied set of numeric
  3813. // values. The syntax of the function is:
  3814. //
  3815. // MAX(number1,[number2],...)
  3816. //
  3817. func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
  3818. if argsList.Len() == 0 {
  3819. return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
  3820. }
  3821. return fn.max(false, argsList)
  3822. }
  3823. // MAXA function returns the largest value from a supplied set of numeric
  3824. // values, while counting text and the logical value FALSE as the value 0 and
  3825. // counting the logical value TRUE as the value 1. The syntax of the function
  3826. // is:
  3827. //
  3828. // MAXA(number1,[number2],...)
  3829. //
  3830. func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
  3831. if argsList.Len() == 0 {
  3832. return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
  3833. }
  3834. return fn.max(true, argsList)
  3835. }
  3836. // max is an implementation of the formula function MAX and MAXA.
  3837. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
  3838. max := -math.MaxFloat64
  3839. for token := argsList.Front(); token != nil; token = token.Next() {
  3840. arg := token.Value.(formulaArg)
  3841. switch arg.Type {
  3842. case ArgString:
  3843. if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3844. continue
  3845. } else {
  3846. num := arg.ToBool()
  3847. if num.Type == ArgNumber && num.Number > max {
  3848. max = num.Number
  3849. continue
  3850. }
  3851. }
  3852. num := arg.ToNumber()
  3853. if num.Type != ArgError && num.Number > max {
  3854. max = num.Number
  3855. }
  3856. case ArgNumber:
  3857. if arg.Number > max {
  3858. max = arg.Number
  3859. }
  3860. case ArgList, ArgMatrix:
  3861. for _, row := range arg.ToList() {
  3862. switch row.Type {
  3863. case ArgString:
  3864. if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3865. continue
  3866. } else {
  3867. num := row.ToBool()
  3868. if num.Type == ArgNumber && num.Number > max {
  3869. max = num.Number
  3870. continue
  3871. }
  3872. }
  3873. num := row.ToNumber()
  3874. if num.Type != ArgError && num.Number > max {
  3875. max = num.Number
  3876. }
  3877. case ArgNumber:
  3878. if row.Number > max {
  3879. max = row.Number
  3880. }
  3881. }
  3882. }
  3883. case ArgError:
  3884. return arg
  3885. }
  3886. }
  3887. if max == -math.MaxFloat64 {
  3888. max = 0
  3889. }
  3890. return newNumberFormulaArg(max)
  3891. }
  3892. // MEDIAN function returns the statistical median (the middle value) of a list
  3893. // of supplied numbers. The syntax of the function is:
  3894. //
  3895. // MEDIAN(number1,[number2],...)
  3896. //
  3897. func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
  3898. if argsList.Len() == 0 {
  3899. return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
  3900. }
  3901. var values = []float64{}
  3902. var median, digits float64
  3903. var err error
  3904. for token := argsList.Front(); token != nil; token = token.Next() {
  3905. arg := token.Value.(formulaArg)
  3906. switch arg.Type {
  3907. case ArgString:
  3908. num := arg.ToNumber()
  3909. if num.Type == ArgError {
  3910. return newErrorFormulaArg(formulaErrorVALUE, num.Error)
  3911. }
  3912. values = append(values, num.Number)
  3913. case ArgNumber:
  3914. values = append(values, arg.Number)
  3915. case ArgMatrix:
  3916. for _, row := range arg.Matrix {
  3917. for _, value := range row {
  3918. if value.String == "" {
  3919. continue
  3920. }
  3921. if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
  3922. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  3923. }
  3924. values = append(values, digits)
  3925. }
  3926. }
  3927. }
  3928. }
  3929. sort.Float64s(values)
  3930. if len(values)%2 == 0 {
  3931. median = (values[len(values)/2-1] + values[len(values)/2]) / 2
  3932. } else {
  3933. median = values[len(values)/2]
  3934. }
  3935. return newNumberFormulaArg(median)
  3936. }
  3937. // MIN function returns the smallest value from a supplied set of numeric
  3938. // values. The syntax of the function is:
  3939. //
  3940. // MIN(number1,[number2],...)
  3941. //
  3942. func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
  3943. if argsList.Len() == 0 {
  3944. return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
  3945. }
  3946. return fn.min(false, argsList)
  3947. }
  3948. // MINA function returns the smallest value from a supplied set of numeric
  3949. // values, while counting text and the logical value FALSE as the value 0 and
  3950. // counting the logical value TRUE as the value 1. The syntax of the function
  3951. // is:
  3952. //
  3953. // MINA(number1,[number2],...)
  3954. //
  3955. func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
  3956. if argsList.Len() == 0 {
  3957. return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
  3958. }
  3959. return fn.min(true, argsList)
  3960. }
  3961. // min is an implementation of the formula function MIN and MINA.
  3962. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
  3963. min := math.MaxFloat64
  3964. for token := argsList.Front(); token != nil; token = token.Next() {
  3965. arg := token.Value.(formulaArg)
  3966. switch arg.Type {
  3967. case ArgString:
  3968. if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
  3969. continue
  3970. } else {
  3971. num := arg.ToBool()
  3972. if num.Type == ArgNumber && num.Number < min {
  3973. min = num.Number
  3974. continue
  3975. }
  3976. }
  3977. num := arg.ToNumber()
  3978. if num.Type != ArgError && num.Number < min {
  3979. min = num.Number
  3980. }
  3981. case ArgNumber:
  3982. if arg.Number < min {
  3983. min = arg.Number
  3984. }
  3985. case ArgList, ArgMatrix:
  3986. for _, row := range arg.ToList() {
  3987. switch row.Type {
  3988. case ArgString:
  3989. if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
  3990. continue
  3991. } else {
  3992. num := row.ToBool()
  3993. if num.Type == ArgNumber && num.Number < min {
  3994. min = num.Number
  3995. continue
  3996. }
  3997. }
  3998. num := row.ToNumber()
  3999. if num.Type != ArgError && num.Number < min {
  4000. min = num.Number
  4001. }
  4002. case ArgNumber:
  4003. if row.Number < min {
  4004. min = row.Number
  4005. }
  4006. }
  4007. }
  4008. case ArgError:
  4009. return arg
  4010. }
  4011. }
  4012. if min == math.MaxFloat64 {
  4013. min = 0
  4014. }
  4015. return newNumberFormulaArg(min)
  4016. }
  4017. // PERMUT function calculates the number of permutations of a specified number
  4018. // of objects from a set of objects. The syntax of the function is:
  4019. //
  4020. // PERMUT(number,number_chosen)
  4021. //
  4022. func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
  4023. if argsList.Len() != 2 {
  4024. return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
  4025. }
  4026. number := argsList.Front().Value.(formulaArg).ToNumber()
  4027. chosen := argsList.Back().Value.(formulaArg).ToNumber()
  4028. if number.Type != ArgNumber {
  4029. return number
  4030. }
  4031. if chosen.Type != ArgNumber {
  4032. return chosen
  4033. }
  4034. if number.Number < chosen.Number {
  4035. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4036. }
  4037. return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
  4038. }
  4039. // SMALL function returns the k'th smallest value from an array of numeric
  4040. // values. The syntax of the function is:
  4041. //
  4042. // SMALL(array,k)
  4043. //
  4044. func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
  4045. return fn.kth("SMALL", argsList)
  4046. }
  4047. // Information Functions
  4048. // ISBLANK function tests if a specified cell is blank (empty) and if so,
  4049. // returns TRUE; Otherwise the function returns FALSE. The syntax of the
  4050. // function is:
  4051. //
  4052. // ISBLANK(value)
  4053. //
  4054. func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
  4055. if argsList.Len() != 1 {
  4056. return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
  4057. }
  4058. token := argsList.Front().Value.(formulaArg)
  4059. result := "FALSE"
  4060. switch token.Type {
  4061. case ArgUnknown:
  4062. result = "TRUE"
  4063. case ArgString:
  4064. if token.String == "" {
  4065. result = "TRUE"
  4066. }
  4067. }
  4068. return newStringFormulaArg(result)
  4069. }
  4070. // ISERR function tests if an initial supplied expression (or value) returns
  4071. // any Excel Error, except the #N/A error. If so, the function returns the
  4072. // logical value TRUE; If the supplied value is not an error or is the #N/A
  4073. // error, the ISERR function returns FALSE. The syntax of the function is:
  4074. //
  4075. // ISERR(value)
  4076. //
  4077. func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
  4078. if argsList.Len() != 1 {
  4079. return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
  4080. }
  4081. token := argsList.Front().Value.(formulaArg)
  4082. result := "FALSE"
  4083. if token.Type == ArgError {
  4084. for _, errType := range []string{
  4085. formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
  4086. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
  4087. formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
  4088. } {
  4089. if errType == token.String {
  4090. result = "TRUE"
  4091. }
  4092. }
  4093. }
  4094. return newStringFormulaArg(result)
  4095. }
  4096. // ISERROR function tests if an initial supplied expression (or value) returns
  4097. // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
  4098. // function returns FALSE. The syntax of the function is:
  4099. //
  4100. // ISERROR(value)
  4101. //
  4102. func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
  4103. if argsList.Len() != 1 {
  4104. return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
  4105. }
  4106. token := argsList.Front().Value.(formulaArg)
  4107. result := "FALSE"
  4108. if token.Type == ArgError {
  4109. for _, errType := range []string{
  4110. formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
  4111. formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
  4112. formulaErrorCALC, formulaErrorGETTINGDATA,
  4113. } {
  4114. if errType == token.String {
  4115. result = "TRUE"
  4116. }
  4117. }
  4118. }
  4119. return newStringFormulaArg(result)
  4120. }
  4121. // ISEVEN function tests if a supplied number (or numeric expression)
  4122. // evaluates to an even number, and if so, returns TRUE; Otherwise, the
  4123. // function returns FALSE. The syntax of the function is:
  4124. //
  4125. // ISEVEN(value)
  4126. //
  4127. func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
  4128. if argsList.Len() != 1 {
  4129. return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
  4130. }
  4131. var (
  4132. token = argsList.Front().Value.(formulaArg)
  4133. result = "FALSE"
  4134. numeric int
  4135. err error
  4136. )
  4137. if token.Type == ArgString {
  4138. if numeric, err = strconv.Atoi(token.String); err != nil {
  4139. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4140. }
  4141. if numeric == numeric/2*2 {
  4142. return newStringFormulaArg("TRUE")
  4143. }
  4144. }
  4145. return newStringFormulaArg(result)
  4146. }
  4147. // ISNA function tests if an initial supplied expression (or value) returns
  4148. // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
  4149. // returns FALSE. The syntax of the function is:
  4150. //
  4151. // ISNA(value)
  4152. //
  4153. func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
  4154. if argsList.Len() != 1 {
  4155. return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
  4156. }
  4157. token := argsList.Front().Value.(formulaArg)
  4158. result := "FALSE"
  4159. if token.Type == ArgError && token.String == formulaErrorNA {
  4160. result = "TRUE"
  4161. }
  4162. return newStringFormulaArg(result)
  4163. }
  4164. // ISNONTEXT function function tests if a supplied value is text. If not, the
  4165. // function returns TRUE; If the supplied value is text, the function returns
  4166. // FALSE. The syntax of the function is:
  4167. //
  4168. // ISNONTEXT(value)
  4169. //
  4170. func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
  4171. if argsList.Len() != 1 {
  4172. return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
  4173. }
  4174. token := argsList.Front().Value.(formulaArg)
  4175. result := "TRUE"
  4176. if token.Type == ArgString && token.String != "" {
  4177. result = "FALSE"
  4178. }
  4179. return newStringFormulaArg(result)
  4180. }
  4181. // ISNUMBER function function tests if a supplied value is a number. If so,
  4182. // the function returns TRUE; Otherwise it returns FALSE. The syntax of the
  4183. // function is:
  4184. //
  4185. // ISNUMBER(value)
  4186. //
  4187. func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
  4188. if argsList.Len() != 1 {
  4189. return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
  4190. }
  4191. token, result := argsList.Front().Value.(formulaArg), false
  4192. if token.Type == ArgString && token.String != "" {
  4193. if _, err := strconv.Atoi(token.String); err == nil {
  4194. result = true
  4195. }
  4196. }
  4197. return newBoolFormulaArg(result)
  4198. }
  4199. // ISODD function tests if a supplied number (or numeric expression) evaluates
  4200. // to an odd number, and if so, returns TRUE; Otherwise, the function returns
  4201. // FALSE. The syntax of the function is:
  4202. //
  4203. // ISODD(value)
  4204. //
  4205. func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
  4206. if argsList.Len() != 1 {
  4207. return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
  4208. }
  4209. var (
  4210. token = argsList.Front().Value.(formulaArg)
  4211. result = "FALSE"
  4212. numeric int
  4213. err error
  4214. )
  4215. if token.Type == ArgString {
  4216. if numeric, err = strconv.Atoi(token.String); err != nil {
  4217. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4218. }
  4219. if numeric != numeric/2*2 {
  4220. return newStringFormulaArg("TRUE")
  4221. }
  4222. }
  4223. return newStringFormulaArg(result)
  4224. }
  4225. // ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
  4226. // Otherwise, the function returns FALSE. The syntax of the function is:
  4227. //
  4228. // ISTEXT(value)
  4229. //
  4230. func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
  4231. if argsList.Len() != 1 {
  4232. return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
  4233. }
  4234. token := argsList.Front().Value.(formulaArg)
  4235. if token.ToNumber().Type != ArgError {
  4236. return newBoolFormulaArg(false)
  4237. }
  4238. return newBoolFormulaArg(token.Type == ArgString)
  4239. }
  4240. // NA function returns the Excel #N/A error. This error message has the
  4241. // meaning 'value not available' and is produced when an Excel Formula is
  4242. // unable to find a value that it needs. The syntax of the function is:
  4243. //
  4244. // NA()
  4245. //
  4246. func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
  4247. if argsList.Len() != 0 {
  4248. return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
  4249. }
  4250. return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
  4251. }
  4252. // SHEET function returns the Sheet number for a specified reference. The
  4253. // syntax of the function is:
  4254. //
  4255. // SHEET()
  4256. //
  4257. func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
  4258. if argsList.Len() != 0 {
  4259. return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
  4260. }
  4261. return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
  4262. }
  4263. // Logical Functions
  4264. // AND function tests a number of supplied conditions and returns TRUE or
  4265. // FALSE. The syntax of the function is:
  4266. //
  4267. // AND(logical_test1,[logical_test2],...)
  4268. //
  4269. func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
  4270. if argsList.Len() == 0 {
  4271. return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
  4272. }
  4273. if argsList.Len() > 30 {
  4274. return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
  4275. }
  4276. var (
  4277. and = true
  4278. val float64
  4279. err error
  4280. )
  4281. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4282. token := arg.Value.(formulaArg)
  4283. switch token.Type {
  4284. case ArgUnknown:
  4285. continue
  4286. case ArgString:
  4287. if token.String == "TRUE" {
  4288. continue
  4289. }
  4290. if token.String == "FALSE" {
  4291. return newStringFormulaArg(token.String)
  4292. }
  4293. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4294. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4295. }
  4296. and = and && (val != 0)
  4297. case ArgMatrix:
  4298. // TODO
  4299. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4300. }
  4301. }
  4302. return newBoolFormulaArg(and)
  4303. }
  4304. // FALSE function function returns the logical value FALSE. The syntax of the
  4305. // function is:
  4306. //
  4307. // FALSE()
  4308. //
  4309. func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
  4310. if argsList.Len() != 0 {
  4311. return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
  4312. }
  4313. return newBoolFormulaArg(false)
  4314. }
  4315. // IFERROR function receives two values (or expressions) and tests if the
  4316. // first of these evaluates to an error. The syntax of the function is:
  4317. //
  4318. // IFERROR(value,value_if_error)
  4319. //
  4320. func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
  4321. if argsList.Len() != 2 {
  4322. return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
  4323. }
  4324. value := argsList.Front().Value.(formulaArg)
  4325. if value.Type != ArgError {
  4326. if value.Type == ArgEmpty {
  4327. return newNumberFormulaArg(0)
  4328. }
  4329. return value
  4330. }
  4331. return argsList.Back().Value.(formulaArg)
  4332. }
  4333. // NOT function returns the opposite to a supplied logical value. The syntax
  4334. // of the function is:
  4335. //
  4336. // NOT(logical)
  4337. //
  4338. func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
  4339. if argsList.Len() != 1 {
  4340. return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
  4341. }
  4342. token := argsList.Front().Value.(formulaArg)
  4343. switch token.Type {
  4344. case ArgString, ArgList:
  4345. if strings.ToUpper(token.String) == "TRUE" {
  4346. return newBoolFormulaArg(false)
  4347. }
  4348. if strings.ToUpper(token.String) == "FALSE" {
  4349. return newBoolFormulaArg(true)
  4350. }
  4351. case ArgNumber:
  4352. return newBoolFormulaArg(!(token.Number != 0))
  4353. case ArgError:
  4354. return token
  4355. }
  4356. return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
  4357. }
  4358. // OR function tests a number of supplied conditions and returns either TRUE
  4359. // or FALSE. The syntax of the function is:
  4360. //
  4361. // OR(logical_test1,[logical_test2],...)
  4362. //
  4363. func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
  4364. if argsList.Len() == 0 {
  4365. return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
  4366. }
  4367. if argsList.Len() > 30 {
  4368. return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
  4369. }
  4370. var (
  4371. or bool
  4372. val float64
  4373. err error
  4374. )
  4375. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4376. token := arg.Value.(formulaArg)
  4377. switch token.Type {
  4378. case ArgUnknown:
  4379. continue
  4380. case ArgString:
  4381. if token.String == "FALSE" {
  4382. continue
  4383. }
  4384. if token.String == "TRUE" {
  4385. or = true
  4386. continue
  4387. }
  4388. if val, err = strconv.ParseFloat(token.String, 64); err != nil {
  4389. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  4390. }
  4391. or = val != 0
  4392. case ArgMatrix:
  4393. // TODO
  4394. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4395. }
  4396. }
  4397. return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
  4398. }
  4399. // TRUE function returns the logical value TRUE. The syntax of the function
  4400. // is:
  4401. //
  4402. // TRUE()
  4403. //
  4404. func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
  4405. if argsList.Len() != 0 {
  4406. return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
  4407. }
  4408. return newBoolFormulaArg(true)
  4409. }
  4410. // Date and Time Functions
  4411. // DATE returns a date, from a user-supplied year, month and day. The syntax
  4412. // of the function is:
  4413. //
  4414. // DATE(year,month,day)
  4415. //
  4416. func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
  4417. if argsList.Len() != 3 {
  4418. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4419. }
  4420. var year, month, day int
  4421. var err error
  4422. if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
  4423. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4424. }
  4425. if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
  4426. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4427. }
  4428. if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
  4429. return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
  4430. }
  4431. d := makeDate(year, time.Month(month), day)
  4432. return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
  4433. }
  4434. // NOW function returns the current date and time. The function receives no arguments and therefore. The syntax of the function is:
  4435. //
  4436. // NOW()
  4437. //
  4438. func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
  4439. if argsList.Len() != 0 {
  4440. return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
  4441. }
  4442. now := time.Now()
  4443. _, offset := now.Zone()
  4444. return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
  4445. }
  4446. // TODAY function returns the current date. The function has no arguments and
  4447. // therefore. The syntax of the function is:
  4448. //
  4449. // TODAY()
  4450. //
  4451. func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
  4452. if argsList.Len() != 0 {
  4453. return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
  4454. }
  4455. now := time.Now()
  4456. _, offset := now.Zone()
  4457. return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
  4458. }
  4459. // makeDate return date as a Unix time, the number of seconds elapsed since
  4460. // January 1, 1970 UTC.
  4461. func makeDate(y int, m time.Month, d int) int64 {
  4462. if y == 1900 && int(m) <= 2 {
  4463. d--
  4464. }
  4465. date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
  4466. return date.Unix()
  4467. }
  4468. // daysBetween return time interval of the given start timestamp and end
  4469. // timestamp.
  4470. func daysBetween(startDate, endDate int64) float64 {
  4471. return float64(int(0.5 + float64((endDate-startDate)/86400)))
  4472. }
  4473. // Text Functions
  4474. // CHAR function returns the character relating to a supplied character set
  4475. // number (from 1 to 255). syntax of the function is:
  4476. //
  4477. // CHAR(number)
  4478. //
  4479. func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
  4480. if argsList.Len() != 1 {
  4481. return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
  4482. }
  4483. arg := argsList.Front().Value.(formulaArg).ToNumber()
  4484. if arg.Type != ArgNumber {
  4485. return arg
  4486. }
  4487. num := int(arg.Number)
  4488. if num < 0 || num > 255 {
  4489. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4490. }
  4491. return newStringFormulaArg(fmt.Sprintf("%c", num))
  4492. }
  4493. // CLEAN removes all non-printable characters from a supplied text string. The
  4494. // syntax of the function is:
  4495. //
  4496. // CLEAN(text)
  4497. //
  4498. func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
  4499. if argsList.Len() != 1 {
  4500. return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
  4501. }
  4502. b := bytes.Buffer{}
  4503. for _, c := range argsList.Front().Value.(formulaArg).String {
  4504. if c > 31 {
  4505. b.WriteRune(c)
  4506. }
  4507. }
  4508. return newStringFormulaArg(b.String())
  4509. }
  4510. // CODE function converts the first character of a supplied text string into
  4511. // the associated numeric character set code used by your computer. The
  4512. // syntax of the function is:
  4513. //
  4514. // CODE(text)
  4515. //
  4516. func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
  4517. return fn.code("CODE", argsList)
  4518. }
  4519. // code is an implementation of the formula function CODE and UNICODE.
  4520. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
  4521. if argsList.Len() != 1 {
  4522. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
  4523. }
  4524. text := argsList.Front().Value.(formulaArg).Value()
  4525. if len(text) == 0 {
  4526. if name == "CODE" {
  4527. return newNumberFormulaArg(0)
  4528. }
  4529. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4530. }
  4531. return newNumberFormulaArg(float64(text[0]))
  4532. }
  4533. // CONCAT function joins together a series of supplied text strings into one
  4534. // combined text string.
  4535. //
  4536. // CONCAT(text1,[text2],...)
  4537. //
  4538. func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
  4539. return fn.concat("CONCAT", argsList)
  4540. }
  4541. // CONCATENATE function joins together a series of supplied text strings into
  4542. // one combined text string.
  4543. //
  4544. // CONCATENATE(text1,[text2],...)
  4545. //
  4546. func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
  4547. return fn.concat("CONCATENATE", argsList)
  4548. }
  4549. // concat is an implementation of the formula function CONCAT and CONCATENATE.
  4550. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
  4551. buf := bytes.Buffer{}
  4552. for arg := argsList.Front(); arg != nil; arg = arg.Next() {
  4553. token := arg.Value.(formulaArg)
  4554. switch token.Type {
  4555. case ArgString:
  4556. buf.WriteString(token.String)
  4557. case ArgNumber:
  4558. if token.Boolean {
  4559. if token.Number == 0 {
  4560. buf.WriteString("FALSE")
  4561. } else {
  4562. buf.WriteString("TRUE")
  4563. }
  4564. } else {
  4565. buf.WriteString(token.Value())
  4566. }
  4567. default:
  4568. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
  4569. }
  4570. }
  4571. return newStringFormulaArg(buf.String())
  4572. }
  4573. // EXACT function tests if two supplied text strings or values are exactly
  4574. // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
  4575. // function is case-sensitive. The syntax of the function is:
  4576. //
  4577. // EXACT(text1,text2)
  4578. //
  4579. func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
  4580. if argsList.Len() != 2 {
  4581. return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
  4582. }
  4583. text1 := argsList.Front().Value.(formulaArg).Value()
  4584. text2 := argsList.Back().Value.(formulaArg).Value()
  4585. return newBoolFormulaArg(text1 == text2)
  4586. }
  4587. // FIND function returns the position of a specified character or sub-string
  4588. // within a supplied text string. The function is case-sensitive. The syntax
  4589. // of the function is:
  4590. //
  4591. // FIND(find_text,within_text,[start_num])
  4592. //
  4593. func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
  4594. return fn.find("FIND", argsList)
  4595. }
  4596. // FINDB counts each double-byte character as 2 when you have enabled the
  4597. // editing of a language that supports DBCS and then set it as the default
  4598. // language. Otherwise, FINDB counts each character as 1. The syntax of the
  4599. // function is:
  4600. //
  4601. // FINDB(find_text,within_text,[start_num])
  4602. //
  4603. func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
  4604. return fn.find("FINDB", argsList)
  4605. }
  4606. // find is an implementation of the formula function FIND and FINDB.
  4607. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
  4608. if argsList.Len() < 2 {
  4609. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
  4610. }
  4611. if argsList.Len() > 3 {
  4612. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
  4613. }
  4614. findText := argsList.Front().Value.(formulaArg).Value()
  4615. withinText := argsList.Front().Next().Value.(formulaArg).Value()
  4616. startNum, result := 1, 1
  4617. if argsList.Len() == 3 {
  4618. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4619. if numArg.Type != ArgNumber {
  4620. return numArg
  4621. }
  4622. if numArg.Number < 0 {
  4623. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4624. }
  4625. startNum = int(numArg.Number)
  4626. }
  4627. if findText == "" {
  4628. return newNumberFormulaArg(float64(startNum))
  4629. }
  4630. for idx := range withinText {
  4631. if result < startNum {
  4632. result++
  4633. }
  4634. if strings.Index(withinText[idx:], findText) == 0 {
  4635. return newNumberFormulaArg(float64(result))
  4636. }
  4637. result++
  4638. }
  4639. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4640. }
  4641. // LEFT function returns a specified number of characters from the start of a
  4642. // supplied text string. The syntax of the function is:
  4643. //
  4644. // LEFT(text,[num_chars])
  4645. //
  4646. func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
  4647. return fn.leftRight("LEFT", argsList)
  4648. }
  4649. // LEFTB returns the first character or characters in a text string, based on
  4650. // the number of bytes you specify. The syntax of the function is:
  4651. //
  4652. // LEFTB(text,[num_bytes])
  4653. //
  4654. func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
  4655. return fn.leftRight("LEFTB", argsList)
  4656. }
  4657. // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
  4658. // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  4659. // (Traditional), and Korean.
  4660. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
  4661. if argsList.Len() < 1 {
  4662. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
  4663. }
  4664. if argsList.Len() > 2 {
  4665. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
  4666. }
  4667. text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
  4668. if argsList.Len() == 2 {
  4669. numArg := argsList.Back().Value.(formulaArg).ToNumber()
  4670. if numArg.Type != ArgNumber {
  4671. return numArg
  4672. }
  4673. if numArg.Number < 0 {
  4674. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4675. }
  4676. numChars = int(numArg.Number)
  4677. }
  4678. if len(text) > numChars {
  4679. if name == "LEFT" || name == "LEFTB" {
  4680. return newStringFormulaArg(text[:numChars])
  4681. }
  4682. return newStringFormulaArg(text[len(text)-numChars:])
  4683. }
  4684. return newStringFormulaArg(text)
  4685. }
  4686. // LEN returns the length of a supplied text string. The syntax of the
  4687. // function is:
  4688. //
  4689. // LEN(text)
  4690. //
  4691. func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
  4692. if argsList.Len() != 1 {
  4693. return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
  4694. }
  4695. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4696. }
  4697. // LENB returns the number of bytes used to represent the characters in a text
  4698. // string. LENB counts 2 bytes per character only when a DBCS language is set
  4699. // as the default language. Otherwise LENB behaves the same as LEN, counting
  4700. // 1 byte per character. The syntax of the function is:
  4701. //
  4702. // LENB(text)
  4703. //
  4704. // TODO: the languages that support DBCS include Japanese, Chinese
  4705. // (Simplified), Chinese (Traditional), and Korean.
  4706. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
  4707. if argsList.Len() != 1 {
  4708. return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
  4709. }
  4710. return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
  4711. }
  4712. // LOWER converts all characters in a supplied text string to lower case. The
  4713. // syntax of the function is:
  4714. //
  4715. // LOWER(text)
  4716. //
  4717. func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
  4718. if argsList.Len() != 1 {
  4719. return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
  4720. }
  4721. return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
  4722. }
  4723. // MID function returns a specified number of characters from the middle of a
  4724. // supplied text string. The syntax of the function is:
  4725. //
  4726. // MID(text,start_num,num_chars)
  4727. //
  4728. func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
  4729. return fn.mid("MID", argsList)
  4730. }
  4731. // MIDB returns a specific number of characters from a text string, starting
  4732. // at the position you specify, based on the number of bytes you specify. The
  4733. // syntax of the function is:
  4734. //
  4735. // MID(text,start_num,num_chars)
  4736. //
  4737. func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
  4738. return fn.mid("MIDB", argsList)
  4739. }
  4740. // mid is an implementation of the formula function MID and MIDB. TODO:
  4741. // support DBCS include Japanese, Chinese (Simplified), Chinese
  4742. // (Traditional), and Korean.
  4743. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
  4744. if argsList.Len() != 3 {
  4745. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
  4746. }
  4747. text := argsList.Front().Value.(formulaArg).Value()
  4748. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4749. if startNumArg.Type != ArgNumber {
  4750. return startNumArg
  4751. }
  4752. if numCharsArg.Type != ArgNumber {
  4753. return numCharsArg
  4754. }
  4755. startNum := int(startNumArg.Number)
  4756. if startNum < 0 {
  4757. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4758. }
  4759. textLen := len(text)
  4760. if startNum > textLen {
  4761. return newStringFormulaArg("")
  4762. }
  4763. startNum--
  4764. endNum := startNum + int(numCharsArg.Number)
  4765. if endNum > textLen+1 {
  4766. return newStringFormulaArg(text[startNum:])
  4767. }
  4768. return newStringFormulaArg(text[startNum:endNum])
  4769. }
  4770. // PROPER converts all characters in a supplied text string to proper case
  4771. // (i.e. all letters that do not immediately follow another letter are set to
  4772. // upper case and all other characters are lower case). The syntax of the
  4773. // function is:
  4774. //
  4775. // PROPER(text)
  4776. //
  4777. func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
  4778. if argsList.Len() != 1 {
  4779. return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
  4780. }
  4781. buf := bytes.Buffer{}
  4782. isLetter := false
  4783. for _, char := range argsList.Front().Value.(formulaArg).String {
  4784. if !isLetter && unicode.IsLetter(char) {
  4785. buf.WriteRune(unicode.ToUpper(char))
  4786. } else {
  4787. buf.WriteRune(unicode.ToLower(char))
  4788. }
  4789. isLetter = unicode.IsLetter(char)
  4790. }
  4791. return newStringFormulaArg(buf.String())
  4792. }
  4793. // REPLACE function replaces all or part of a text string with another string.
  4794. // The syntax of the function is:
  4795. //
  4796. // REPLACE(old_text,start_num,num_chars,new_text)
  4797. //
  4798. func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
  4799. return fn.replace("REPLACE", argsList)
  4800. }
  4801. // REPLACEB replaces part of a text string, based on the number of bytes you
  4802. // specify, with a different text string.
  4803. //
  4804. // REPLACEB(old_text,start_num,num_chars,new_text)
  4805. //
  4806. func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
  4807. return fn.replace("REPLACEB", argsList)
  4808. }
  4809. // replace is an implementation of the formula function REPLACE and REPLACEB.
  4810. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
  4811. // (Traditional), and Korean.
  4812. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
  4813. if argsList.Len() != 4 {
  4814. return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
  4815. }
  4816. oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
  4817. startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  4818. if startNumArg.Type != ArgNumber {
  4819. return startNumArg
  4820. }
  4821. if numCharsArg.Type != ArgNumber {
  4822. return numCharsArg
  4823. }
  4824. oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
  4825. if startIdx > oldTextLen {
  4826. startIdx = oldTextLen + 1
  4827. }
  4828. endIdx := startIdx + int(numCharsArg.Number)
  4829. if endIdx > oldTextLen {
  4830. endIdx = oldTextLen + 1
  4831. }
  4832. if startIdx < 1 || endIdx < 1 {
  4833. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4834. }
  4835. result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
  4836. return newStringFormulaArg(result)
  4837. }
  4838. // REPT function returns a supplied text string, repeated a specified number
  4839. // of times. The syntax of the function is:
  4840. //
  4841. // REPT(text,number_times)
  4842. //
  4843. func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
  4844. if argsList.Len() != 2 {
  4845. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
  4846. }
  4847. text := argsList.Front().Value.(formulaArg)
  4848. if text.Type != ArgString {
  4849. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
  4850. }
  4851. times := argsList.Back().Value.(formulaArg).ToNumber()
  4852. if times.Type != ArgNumber {
  4853. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
  4854. }
  4855. if times.Number < 0 {
  4856. return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
  4857. }
  4858. if times.Number == 0 {
  4859. return newStringFormulaArg("")
  4860. }
  4861. buf := bytes.Buffer{}
  4862. for i := 0; i < int(times.Number); i++ {
  4863. buf.WriteString(text.String)
  4864. }
  4865. return newStringFormulaArg(buf.String())
  4866. }
  4867. // RIGHT function returns a specified number of characters from the end of a
  4868. // supplied text string. The syntax of the function is:
  4869. //
  4870. // RIGHT(text,[num_chars])
  4871. //
  4872. func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
  4873. return fn.leftRight("RIGHT", argsList)
  4874. }
  4875. // RIGHTB returns the last character or characters in a text string, based on
  4876. // the number of bytes you specify. The syntax of the function is:
  4877. //
  4878. // RIGHTB(text,[num_bytes])
  4879. //
  4880. func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
  4881. return fn.leftRight("RIGHTB", argsList)
  4882. }
  4883. // SUBSTITUTE function replaces one or more instances of a given text string,
  4884. // within an original text string. The syntax of the function is:
  4885. //
  4886. // SUBSTITUTE(text,old_text,new_text,[instance_num])
  4887. //
  4888. func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
  4889. if argsList.Len() != 3 && argsList.Len() != 4 {
  4890. return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
  4891. }
  4892. text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
  4893. newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
  4894. if argsList.Len() == 3 {
  4895. return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
  4896. }
  4897. instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
  4898. if instanceNumArg.Type != ArgNumber {
  4899. return instanceNumArg
  4900. }
  4901. instanceNum = int(instanceNumArg.Number)
  4902. if instanceNum < 1 {
  4903. return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
  4904. }
  4905. str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
  4906. for {
  4907. count--
  4908. index := strings.Index(str, oldText.Value())
  4909. if index == -1 {
  4910. pos = -1
  4911. break
  4912. } else {
  4913. pos = index + chars
  4914. if count == 0 {
  4915. break
  4916. }
  4917. idx := oldTextLen + index
  4918. chars += idx
  4919. str = str[idx:]
  4920. }
  4921. }
  4922. if pos == -1 {
  4923. return newStringFormulaArg(text.Value())
  4924. }
  4925. pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
  4926. return newStringFormulaArg(pre + newText.Value() + post)
  4927. }
  4928. // TRIM removes extra spaces (i.e. all spaces except for single spaces between
  4929. // words or characters) from a supplied text string. The syntax of the
  4930. // function is:
  4931. //
  4932. // TRIM(text)
  4933. //
  4934. func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
  4935. if argsList.Len() != 1 {
  4936. return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
  4937. }
  4938. return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
  4939. }
  4940. // UNICHAR returns the Unicode character that is referenced by the given
  4941. // numeric value. The syntax of the function is:
  4942. //
  4943. // UNICHAR(number)
  4944. //
  4945. func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
  4946. if argsList.Len() != 1 {
  4947. return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
  4948. }
  4949. numArg := argsList.Front().Value.(formulaArg).ToNumber()
  4950. if numArg.Type != ArgNumber {
  4951. return numArg
  4952. }
  4953. if numArg.Number <= 0 || numArg.Number > 55295 {
  4954. return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
  4955. }
  4956. return newStringFormulaArg(string(rune(numArg.Number)))
  4957. }
  4958. // UNICODE function returns the code point for the first character of a
  4959. // supplied text string. The syntax of the function is:
  4960. //
  4961. // UNICODE(text)
  4962. //
  4963. func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
  4964. return fn.code("UNICODE", argsList)
  4965. }
  4966. // UPPER converts all characters in a supplied text string to upper case. The
  4967. // syntax of the function is:
  4968. //
  4969. // UPPER(text)
  4970. //
  4971. func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
  4972. if argsList.Len() != 1 {
  4973. return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
  4974. }
  4975. return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
  4976. }
  4977. // Conditional Functions
  4978. // IF function tests a supplied condition and returns one result if the
  4979. // condition evaluates to TRUE, and another result if the condition evaluates
  4980. // to FALSE. The syntax of the function is:
  4981. //
  4982. // IF(logical_test,value_if_true,value_if_false)
  4983. //
  4984. func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
  4985. if argsList.Len() == 0 {
  4986. return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
  4987. }
  4988. if argsList.Len() > 3 {
  4989. return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
  4990. }
  4991. token := argsList.Front().Value.(formulaArg)
  4992. var (
  4993. cond bool
  4994. err error
  4995. result string
  4996. )
  4997. switch token.Type {
  4998. case ArgString:
  4999. if cond, err = strconv.ParseBool(token.String); err != nil {
  5000. return newErrorFormulaArg(formulaErrorVALUE, err.Error())
  5001. }
  5002. if argsList.Len() == 1 {
  5003. return newBoolFormulaArg(cond)
  5004. }
  5005. if cond {
  5006. return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
  5007. }
  5008. if argsList.Len() == 3 {
  5009. result = argsList.Back().Value.(formulaArg).String
  5010. }
  5011. }
  5012. return newStringFormulaArg(result)
  5013. }
  5014. // Lookup and Reference Functions
  5015. // CHOOSE function returns a value from an array, that corresponds to a
  5016. // supplied index number (position). The syntax of the function is:
  5017. //
  5018. // CHOOSE(index_num,value1,[value2],...)
  5019. //
  5020. func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
  5021. if argsList.Len() < 2 {
  5022. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
  5023. }
  5024. idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
  5025. if err != nil {
  5026. return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
  5027. }
  5028. if argsList.Len() <= idx {
  5029. return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
  5030. }
  5031. arg := argsList.Front()
  5032. for i := 0; i < idx; i++ {
  5033. arg = arg.Next()
  5034. }
  5035. var result formulaArg
  5036. switch arg.Value.(formulaArg).Type {
  5037. case ArgString:
  5038. result = newStringFormulaArg(arg.Value.(formulaArg).String)
  5039. case ArgMatrix:
  5040. result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
  5041. }
  5042. return result
  5043. }
  5044. // deepMatchRune finds whether the text deep matches/satisfies the pattern
  5045. // string.
  5046. func deepMatchRune(str, pattern []rune, simple bool) bool {
  5047. for len(pattern) > 0 {
  5048. switch pattern[0] {
  5049. default:
  5050. if len(str) == 0 || str[0] != pattern[0] {
  5051. return false
  5052. }
  5053. case '?':
  5054. if len(str) == 0 && !simple {
  5055. return false
  5056. }
  5057. case '*':
  5058. return deepMatchRune(str, pattern[1:], simple) ||
  5059. (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
  5060. }
  5061. str = str[1:]
  5062. pattern = pattern[1:]
  5063. }
  5064. return len(str) == 0 && len(pattern) == 0
  5065. }
  5066. // matchPattern finds whether the text matches or satisfies the pattern
  5067. // string. The pattern supports '*' and '?' wildcards in the pattern string.
  5068. func matchPattern(pattern, name string) (matched bool) {
  5069. if pattern == "" {
  5070. return name == pattern
  5071. }
  5072. if pattern == "*" {
  5073. return true
  5074. }
  5075. rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
  5076. for _, r := range name {
  5077. rname = append(rname, r)
  5078. }
  5079. for _, r := range pattern {
  5080. rpattern = append(rpattern, r)
  5081. }
  5082. simple := false // Does extended wildcard '*' and '?' match.
  5083. return deepMatchRune(rname, rpattern, simple)
  5084. }
  5085. // compareFormulaArg compares the left-hand sides and the right-hand sides
  5086. // formula arguments by given conditions such as case sensitive, if exact
  5087. // match, and make compare result as formula criteria condition type.
  5088. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5089. if lhs.Type != rhs.Type {
  5090. return criteriaErr
  5091. }
  5092. switch lhs.Type {
  5093. case ArgNumber:
  5094. if lhs.Number == rhs.Number {
  5095. return criteriaEq
  5096. }
  5097. if lhs.Number < rhs.Number {
  5098. return criteriaL
  5099. }
  5100. return criteriaG
  5101. case ArgString:
  5102. ls, rs := lhs.String, rhs.String
  5103. if !caseSensitive {
  5104. ls, rs = strings.ToLower(ls), strings.ToLower(rs)
  5105. }
  5106. if exactMatch {
  5107. match := matchPattern(rs, ls)
  5108. if match {
  5109. return criteriaEq
  5110. }
  5111. return criteriaG
  5112. }
  5113. switch strings.Compare(ls, rs) {
  5114. case 1:
  5115. return criteriaG
  5116. case -1:
  5117. return criteriaL
  5118. case 0:
  5119. return criteriaEq
  5120. }
  5121. return criteriaErr
  5122. case ArgEmpty:
  5123. return criteriaEq
  5124. case ArgList:
  5125. return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
  5126. case ArgMatrix:
  5127. return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
  5128. }
  5129. return criteriaErr
  5130. }
  5131. // compareFormulaArgList compares the left-hand sides and the right-hand sides
  5132. // list type formula arguments.
  5133. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5134. if len(lhs.List) < len(rhs.List) {
  5135. return criteriaL
  5136. }
  5137. if len(lhs.List) > len(rhs.List) {
  5138. return criteriaG
  5139. }
  5140. for arg := range lhs.List {
  5141. criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
  5142. if criteria != criteriaEq {
  5143. return criteria
  5144. }
  5145. }
  5146. return criteriaEq
  5147. }
  5148. // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
  5149. // matrix type formula arguments.
  5150. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
  5151. if len(lhs.Matrix) < len(rhs.Matrix) {
  5152. return criteriaL
  5153. }
  5154. if len(lhs.Matrix) > len(rhs.Matrix) {
  5155. return criteriaG
  5156. }
  5157. for i := range lhs.Matrix {
  5158. left := lhs.Matrix[i]
  5159. right := lhs.Matrix[i]
  5160. if len(left) < len(right) {
  5161. return criteriaL
  5162. }
  5163. if len(left) > len(right) {
  5164. return criteriaG
  5165. }
  5166. for arg := range left {
  5167. criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
  5168. if criteria != criteriaEq {
  5169. return criteria
  5170. }
  5171. }
  5172. }
  5173. return criteriaEq
  5174. }
  5175. // COLUMN function returns the first column number within a supplied reference
  5176. // or the number of the current column. The syntax of the function is:
  5177. //
  5178. // COLUMN([reference])
  5179. //
  5180. func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
  5181. if argsList.Len() > 1 {
  5182. return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
  5183. }
  5184. if argsList.Len() == 1 {
  5185. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5186. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
  5187. }
  5188. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5189. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
  5190. }
  5191. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5192. }
  5193. col, _, _ := CellNameToCoordinates(fn.cell)
  5194. return newNumberFormulaArg(float64(col))
  5195. }
  5196. // COLUMNS function receives an Excel range and returns the number of columns
  5197. // that are contained within the range. The syntax of the function is:
  5198. //
  5199. // COLUMNS(array)
  5200. //
  5201. func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
  5202. if argsList.Len() != 1 {
  5203. return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
  5204. }
  5205. var min, max int
  5206. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5207. crs := argsList.Front().Value.(formulaArg).cellRanges
  5208. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5209. if min == 0 {
  5210. min = cr.Value.(cellRange).From.Col
  5211. }
  5212. if min > cr.Value.(cellRange).From.Col {
  5213. min = cr.Value.(cellRange).From.Col
  5214. }
  5215. if min > cr.Value.(cellRange).To.Col {
  5216. min = cr.Value.(cellRange).To.Col
  5217. }
  5218. if max < cr.Value.(cellRange).To.Col {
  5219. max = cr.Value.(cellRange).To.Col
  5220. }
  5221. if max < cr.Value.(cellRange).From.Col {
  5222. max = cr.Value.(cellRange).From.Col
  5223. }
  5224. }
  5225. }
  5226. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5227. cr := argsList.Front().Value.(formulaArg).cellRefs
  5228. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5229. if min == 0 {
  5230. min = refs.Value.(cellRef).Col
  5231. }
  5232. if min > refs.Value.(cellRef).Col {
  5233. min = refs.Value.(cellRef).Col
  5234. }
  5235. if max < refs.Value.(cellRef).Col {
  5236. max = refs.Value.(cellRef).Col
  5237. }
  5238. }
  5239. }
  5240. if max == TotalColumns {
  5241. return newNumberFormulaArg(float64(TotalColumns))
  5242. }
  5243. result := max - min + 1
  5244. if max == min {
  5245. if min == 0 {
  5246. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5247. }
  5248. return newNumberFormulaArg(float64(1))
  5249. }
  5250. return newNumberFormulaArg(float64(result))
  5251. }
  5252. // HLOOKUP function 'looks up' a given value in the top row of a data array
  5253. // (or table), and returns the corresponding value from another row of the
  5254. // array. The syntax of the function is:
  5255. //
  5256. // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
  5257. //
  5258. func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
  5259. if argsList.Len() < 3 {
  5260. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
  5261. }
  5262. if argsList.Len() > 4 {
  5263. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
  5264. }
  5265. lookupValue := argsList.Front().Value.(formulaArg)
  5266. tableArray := argsList.Front().Next().Value.(formulaArg)
  5267. if tableArray.Type != ArgMatrix {
  5268. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
  5269. }
  5270. rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5271. if rowArg.Type != ArgNumber {
  5272. return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
  5273. }
  5274. rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
  5275. if argsList.Len() == 4 {
  5276. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5277. if rangeLookup.Type == ArgError {
  5278. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5279. }
  5280. if rangeLookup.Number == 0 {
  5281. exactMatch = true
  5282. }
  5283. }
  5284. row := tableArray.Matrix[0]
  5285. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5286. start:
  5287. for idx, mtx := range row {
  5288. lhs := mtx
  5289. switch lookupValue.Type {
  5290. case ArgNumber:
  5291. if !lookupValue.Boolean {
  5292. lhs = mtx.ToNumber()
  5293. if lhs.Type == ArgError {
  5294. lhs = mtx
  5295. }
  5296. }
  5297. case ArgMatrix:
  5298. lhs = tableArray
  5299. }
  5300. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5301. matchIdx = idx
  5302. wasExact = true
  5303. break start
  5304. }
  5305. }
  5306. } else {
  5307. matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
  5308. }
  5309. if matchIdx == -1 {
  5310. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5311. }
  5312. if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
  5313. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
  5314. }
  5315. row = tableArray.Matrix[rowIdx]
  5316. if wasExact || !exactMatch {
  5317. return row[matchIdx]
  5318. }
  5319. return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
  5320. }
  5321. // VLOOKUP function 'looks up' a given value in the left-hand column of a
  5322. // data array (or table), and returns the corresponding value from another
  5323. // column of the array. The syntax of the function is:
  5324. //
  5325. // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
  5326. //
  5327. func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
  5328. if argsList.Len() < 3 {
  5329. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
  5330. }
  5331. if argsList.Len() > 4 {
  5332. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
  5333. }
  5334. lookupValue := argsList.Front().Value.(formulaArg)
  5335. tableArray := argsList.Front().Next().Value.(formulaArg)
  5336. if tableArray.Type != ArgMatrix {
  5337. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
  5338. }
  5339. colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
  5340. if colIdx.Type != ArgNumber {
  5341. return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
  5342. }
  5343. col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
  5344. if argsList.Len() == 4 {
  5345. rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
  5346. if rangeLookup.Type == ArgError {
  5347. return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
  5348. }
  5349. if rangeLookup.Number == 0 {
  5350. exactMatch = true
  5351. }
  5352. }
  5353. if exactMatch || len(tableArray.Matrix) == TotalRows {
  5354. start:
  5355. for idx, mtx := range tableArray.Matrix {
  5356. lhs := mtx[0]
  5357. switch lookupValue.Type {
  5358. case ArgNumber:
  5359. if !lookupValue.Boolean {
  5360. lhs = mtx[0].ToNumber()
  5361. if lhs.Type == ArgError {
  5362. lhs = mtx[0]
  5363. }
  5364. }
  5365. case ArgMatrix:
  5366. lhs = tableArray
  5367. }
  5368. if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
  5369. matchIdx = idx
  5370. wasExact = true
  5371. break start
  5372. }
  5373. }
  5374. } else {
  5375. matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
  5376. }
  5377. if matchIdx == -1 {
  5378. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5379. }
  5380. mtx := tableArray.Matrix[matchIdx]
  5381. if col < 0 || col >= len(mtx) {
  5382. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
  5383. }
  5384. if wasExact || !exactMatch {
  5385. return mtx[col]
  5386. }
  5387. return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
  5388. }
  5389. // vlookupBinarySearch finds the position of a target value when range lookup
  5390. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5391. // return wrong result.
  5392. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5393. var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
  5394. for low <= high {
  5395. var mid int = low + (high-low)/2
  5396. mtx := tableArray.Matrix[mid]
  5397. lhs := mtx[0]
  5398. switch lookupValue.Type {
  5399. case ArgNumber:
  5400. if !lookupValue.Boolean {
  5401. lhs = mtx[0].ToNumber()
  5402. if lhs.Type == ArgError {
  5403. lhs = mtx[0]
  5404. }
  5405. }
  5406. case ArgMatrix:
  5407. lhs = tableArray
  5408. }
  5409. result := compareFormulaArg(lhs, lookupValue, false, false)
  5410. if result == criteriaEq {
  5411. matchIdx, wasExact = mid, true
  5412. return
  5413. } else if result == criteriaG {
  5414. high = mid - 1
  5415. } else if result == criteriaL {
  5416. matchIdx, low = mid, mid+1
  5417. if lhs.Value() != "" {
  5418. lastMatchIdx = matchIdx
  5419. }
  5420. } else {
  5421. return -1, false
  5422. }
  5423. }
  5424. matchIdx, wasExact = lastMatchIdx, true
  5425. return
  5426. }
  5427. // vlookupBinarySearch finds the position of a target value when range lookup
  5428. // is TRUE, if the data of table array can't guarantee be sorted, it will
  5429. // return wrong result.
  5430. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
  5431. var low, high, lastMatchIdx int = 0, len(row) - 1, -1
  5432. for low <= high {
  5433. var mid int = low + (high-low)/2
  5434. mtx := row[mid]
  5435. result := compareFormulaArg(mtx, lookupValue, false, false)
  5436. if result == criteriaEq {
  5437. matchIdx, wasExact = mid, true
  5438. return
  5439. } else if result == criteriaG {
  5440. high = mid - 1
  5441. } else if result == criteriaL {
  5442. low, lastMatchIdx = mid+1, mid
  5443. } else {
  5444. return -1, false
  5445. }
  5446. }
  5447. matchIdx, wasExact = lastMatchIdx, true
  5448. return
  5449. }
  5450. // LOOKUP function performs an approximate match lookup in a one-column or
  5451. // one-row range, and returns the corresponding value from another one-column
  5452. // or one-row range. The syntax of the function is:
  5453. //
  5454. // LOOKUP(lookup_value,lookup_vector,[result_vector])
  5455. //
  5456. func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
  5457. if argsList.Len() < 2 {
  5458. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
  5459. }
  5460. if argsList.Len() > 3 {
  5461. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
  5462. }
  5463. lookupValue := argsList.Front().Value.(formulaArg)
  5464. lookupVector := argsList.Front().Next().Value.(formulaArg)
  5465. if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
  5466. return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
  5467. }
  5468. cols, matchIdx := lookupCol(lookupVector), -1
  5469. for idx, col := range cols {
  5470. lhs := lookupValue
  5471. switch col.Type {
  5472. case ArgNumber:
  5473. lhs = lhs.ToNumber()
  5474. if !col.Boolean {
  5475. if lhs.Type == ArgError {
  5476. lhs = lookupValue
  5477. }
  5478. }
  5479. }
  5480. if compareFormulaArg(lhs, col, false, false) == criteriaEq {
  5481. matchIdx = idx
  5482. break
  5483. }
  5484. }
  5485. column := cols
  5486. if argsList.Len() == 3 {
  5487. column = lookupCol(argsList.Back().Value.(formulaArg))
  5488. }
  5489. if matchIdx < 0 || matchIdx >= len(column) {
  5490. return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
  5491. }
  5492. return column[matchIdx]
  5493. }
  5494. // lookupCol extract columns for LOOKUP.
  5495. func lookupCol(arr formulaArg) []formulaArg {
  5496. col := arr.List
  5497. if arr.Type == ArgMatrix {
  5498. col = nil
  5499. for _, r := range arr.Matrix {
  5500. if len(r) > 0 {
  5501. col = append(col, r[0])
  5502. continue
  5503. }
  5504. col = append(col, newEmptyFormulaArg())
  5505. }
  5506. }
  5507. return col
  5508. }
  5509. // ROW function returns the first row number within a supplied reference or
  5510. // the number of the current row. The syntax of the function is:
  5511. //
  5512. // ROW([reference])
  5513. //
  5514. func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
  5515. if argsList.Len() > 1 {
  5516. return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
  5517. }
  5518. if argsList.Len() == 1 {
  5519. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5520. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
  5521. }
  5522. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5523. return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
  5524. }
  5525. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5526. }
  5527. _, row, _ := CellNameToCoordinates(fn.cell)
  5528. return newNumberFormulaArg(float64(row))
  5529. }
  5530. // ROWS function takes an Excel range and returns the number of rows that are
  5531. // contained within the range. The syntax of the function is:
  5532. //
  5533. // ROWS(array)
  5534. //
  5535. func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
  5536. if argsList.Len() != 1 {
  5537. return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
  5538. }
  5539. var min, max int
  5540. if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
  5541. crs := argsList.Front().Value.(formulaArg).cellRanges
  5542. for cr := crs.Front(); cr != nil; cr = cr.Next() {
  5543. if min == 0 {
  5544. min = cr.Value.(cellRange).From.Row
  5545. }
  5546. if min > cr.Value.(cellRange).From.Row {
  5547. min = cr.Value.(cellRange).From.Row
  5548. }
  5549. if min > cr.Value.(cellRange).To.Row {
  5550. min = cr.Value.(cellRange).To.Row
  5551. }
  5552. if max < cr.Value.(cellRange).To.Row {
  5553. max = cr.Value.(cellRange).To.Row
  5554. }
  5555. if max < cr.Value.(cellRange).From.Row {
  5556. max = cr.Value.(cellRange).From.Row
  5557. }
  5558. }
  5559. }
  5560. if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
  5561. cr := argsList.Front().Value.(formulaArg).cellRefs
  5562. for refs := cr.Front(); refs != nil; refs = refs.Next() {
  5563. if min == 0 {
  5564. min = refs.Value.(cellRef).Row
  5565. }
  5566. if min > refs.Value.(cellRef).Row {
  5567. min = refs.Value.(cellRef).Row
  5568. }
  5569. if max < refs.Value.(cellRef).Row {
  5570. max = refs.Value.(cellRef).Row
  5571. }
  5572. }
  5573. }
  5574. if max == TotalRows {
  5575. return newStringFormulaArg(strconv.Itoa(TotalRows))
  5576. }
  5577. result := max - min + 1
  5578. if max == min {
  5579. if min == 0 {
  5580. return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
  5581. }
  5582. return newNumberFormulaArg(float64(1))
  5583. }
  5584. return newStringFormulaArg(strconv.Itoa(result))
  5585. }
  5586. // Web Functions
  5587. // ENCODEURL function returns a URL-encoded string, replacing certain
  5588. // non-alphanumeric characters with the percentage symbol (%) and a
  5589. // hexadecimal number. The syntax of the function is:
  5590. //
  5591. // ENCODEURL(url)
  5592. //
  5593. func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
  5594. if argsList.Len() != 1 {
  5595. return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
  5596. }
  5597. token := argsList.Front().Value.(formulaArg).Value()
  5598. return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
  5599. }