| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020 |
- // Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
- // this source code is governed by a BSD-style license that can be found in
- // the LICENSE file.
- //
- // Package excelize providing a set of functions that allow you to write to
- // and read from XLSX / XLSM / XLTM files. Supports reading and writing
- // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
- // complex components by high compatibility, and provided streaming API for
- // generating or reading data from a worksheet with huge amounts of data. This
- // library needs Go version 1.10 or later.
- package excelize
- import (
- "bytes"
- "container/list"
- "errors"
- "fmt"
- "math"
- "math/rand"
- "reflect"
- "regexp"
- "strconv"
- "strings"
- "time"
- "github.com/xuri/efp"
- )
- // Excel formula errors
- const (
- formulaErrorDIV = "#DIV/0!"
- formulaErrorNAME = "#NAME?"
- formulaErrorNA = "#N/A"
- formulaErrorNUM = "#NUM!"
- formulaErrorVALUE = "#VALUE!"
- formulaErrorREF = "#REF!"
- formulaErrorNULL = "#NULL"
- formulaErrorSPILL = "#SPILL!"
- formulaErrorCALC = "#CALC!"
- formulaErrorGETTINGDATA = "#GETTING_DATA"
- )
- // cellRef defines the structure of a cell reference.
- type cellRef struct {
- Col int
- Row int
- Sheet string
- }
- // cellRef defines the structure of a cell range.
- type cellRange struct {
- From cellRef
- To cellRef
- }
- // formula criteria condition enumeration.
- const (
- _ byte = iota
- criteriaEq
- criteriaLe
- criteriaGe
- criteriaL
- criteriaG
- criteriaBeg
- criteriaEnd
- )
- // formulaCriteria defined formula criteria parser result.
- type formulaCriteria struct {
- Type byte
- Condition string
- }
- // ArgType is the type if formula argument type.
- type ArgType byte
- // Formula argument types enumeration.
- const (
- ArgUnknown ArgType = iota
- ArgString
- ArgMatrix
- )
- // formulaArg is the argument of a formula or function.
- type formulaArg struct {
- String string
- Matrix [][]formulaArg
- Type ArgType
- }
- // formulaFuncs is the type of the formula functions.
- type formulaFuncs struct{}
- // CalcCellValue provides a function to get calculated cell value. This
- // feature is currently in working processing. Array formula, table formula
- // and some other formulas are not supported currently.
- func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
- var (
- formula string
- token efp.Token
- )
- if formula, err = f.GetCellFormula(sheet, cell); err != nil {
- return
- }
- ps := efp.ExcelParser()
- tokens := ps.Parse(formula)
- if tokens == nil {
- return
- }
- if token, err = f.evalInfixExp(sheet, tokens); err != nil {
- return
- }
- result = token.TValue
- return
- }
- // getPriority calculate arithmetic operator priority.
- func getPriority(token efp.Token) (pri int) {
- var priority = map[string]int{
- "*": 2,
- "/": 2,
- "+": 1,
- "-": 1,
- }
- pri, _ = priority[token.TValue]
- if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
- pri = 3
- }
- if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
- pri = 0
- }
- return
- }
- // evalInfixExp evaluate syntax analysis by given infix expression after
- // lexical analysis. Evaluate an infix expression containing formulas by
- // stacks:
- //
- // opd - Operand
- // opt - Operator
- // opf - Operation formula
- // opfd - Operand of the operation formula
- // opft - Operator of the operation formula
- //
- // Evaluate arguments of the operation formula by list:
- //
- // args - Arguments of the operation formula
- //
- // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
- //
- func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
- var err error
- opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
- argsList := list.New()
- for i := 0; i < len(tokens); i++ {
- token := tokens[i]
- // out of function stack
- if opfStack.Len() == 0 {
- if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
- return efp.Token{}, err
- }
- }
- // function start
- if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
- opfStack.Push(token)
- continue
- }
- // in function stack, walk 2 token at once
- if opfStack.Len() > 0 {
- var nextToken efp.Token
- if i+1 < len(tokens) {
- nextToken = tokens[i+1]
- }
- // current token is args or range, skip next token, order required: parse reference first
- if token.TSubType == efp.TokenSubTypeRange {
- if !opftStack.Empty() {
- // parse reference: must reference at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if result.Type != ArgString {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- opfdStack.Push(efp.Token{
- TType: efp.TokenTypeOperand,
- TSubType: efp.TokenSubTypeNumber,
- TValue: result.String,
- })
- continue
- }
- if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
- // parse reference: reference or range at here
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return efp.Token{TValue: formulaErrorNAME}, err
- }
- if result.Type == ArgUnknown {
- return efp.Token{}, errors.New(formulaErrorVALUE)
- }
- argsList.PushBack(result)
- continue
- }
- }
- // check current token is opft
- if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
- return efp.Token{}, err
- }
- // current token is arg
- if token.TType == efp.TokenTypeArgument {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- opftStack.Pop()
- }
- if !opfdStack.Empty() {
- argsList.PushBack(formulaArg{
- String: opfdStack.Pop().(efp.Token).TValue,
- Type: ArgString,
- })
- }
- continue
- }
- // current token is logical
- if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
- }
- // current token is text
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
- argsList.PushBack(formulaArg{
- String: token.TValue,
- Type: ArgString,
- })
- }
- // current token is function stop
- if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
- for !opftStack.Empty() {
- // calculate trigger
- topOpt := opftStack.Peek().(efp.Token)
- if err := calculate(opfdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- opftStack.Pop()
- }
- // push opfd to args
- if opfdStack.Len() > 0 {
- argsList.PushBack(formulaArg{
- String: opfdStack.Pop().(efp.Token).TValue,
- Type: ArgString,
- })
- }
- // call formula function to evaluate
- result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
- "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
- []reflect.Value{reflect.ValueOf(argsList)})
- if err != nil {
- return efp.Token{}, err
- }
- argsList.Init()
- opfStack.Pop()
- if opfStack.Len() > 0 { // still in function stack
- opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- } else {
- opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- }
- }
- }
- for optStack.Len() != 0 {
- topOpt := optStack.Peek().(efp.Token)
- if err = calculate(opdStack, topOpt); err != nil {
- return efp.Token{}, err
- }
- optStack.Pop()
- }
- if opdStack.Len() == 0 {
- return efp.Token{}, errors.New("formula not valid")
- }
- return opdStack.Peek().(efp.Token), err
- }
- // calcAdd evaluate addition arithmetic operations.
- func calcAdd(opdStack *Stack) error {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal + rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcAdd evaluate subtraction arithmetic operations.
- func calcSubtract(opdStack *Stack) error {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal - rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcAdd evaluate multiplication arithmetic operations.
- func calcMultiply(opdStack *Stack) error {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal * rOpdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calcAdd evaluate division arithmetic operations.
- func calcDivide(opdStack *Stack) error {
- if opdStack.Len() < 2 {
- return errors.New("formula not valid")
- }
- rOpd := opdStack.Pop().(efp.Token)
- lOpd := opdStack.Pop().(efp.Token)
- lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
- if err != nil {
- return err
- }
- rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
- if err != nil {
- return err
- }
- result := lOpdVal / rOpdVal
- if rOpdVal == 0 {
- return errors.New(formulaErrorDIV)
- }
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- return nil
- }
- // calculate evaluate basic arithmetic operations.
- func calculate(opdStack *Stack, opt efp.Token) error {
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
- if opdStack.Len() < 1 {
- return errors.New("formula not valid")
- }
- opd := opdStack.Pop().(efp.Token)
- opdVal, err := strconv.ParseFloat(opd.TValue, 64)
- if err != nil {
- return err
- }
- result := 0 - opdVal
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
- }
- if opt.TValue == "+" {
- if err := calcAdd(opdStack); err != nil {
- return err
- }
- }
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
- if err := calcSubtract(opdStack); err != nil {
- return err
- }
- }
- if opt.TValue == "*" {
- if err := calcMultiply(opdStack); err != nil {
- return err
- }
- }
- if opt.TValue == "/" {
- if err := calcDivide(opdStack); err != nil {
- return err
- }
- }
- return nil
- }
- // parseOperatorPrefixToken parse operator prefix token.
- func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
- if optStack.Len() == 0 {
- optStack.Push(token)
- } else {
- tokenPriority := getPriority(token)
- topOpt := optStack.Peek().(efp.Token)
- topOptPriority := getPriority(topOpt)
- if tokenPriority > topOptPriority {
- optStack.Push(token)
- } else {
- for tokenPriority <= topOptPriority {
- optStack.Pop()
- if err = calculate(opdStack, topOpt); err != nil {
- return
- }
- if optStack.Len() > 0 {
- topOpt = optStack.Peek().(efp.Token)
- topOptPriority = getPriority(topOpt)
- continue
- }
- break
- }
- optStack.Push(token)
- }
- }
- return
- }
- // isOperatorPrefixToken determine if the token is parse operator prefix
- // token.
- func isOperatorPrefixToken(token efp.Token) bool {
- if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) ||
- token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
- return true
- }
- return false
- }
- // parseToken parse basic arithmetic operator priority and evaluate based on
- // operators and operands.
- func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
- // parse reference: must reference at here
- if token.TSubType == efp.TokenSubTypeRange {
- result, err := f.parseReference(sheet, token.TValue)
- if err != nil {
- return errors.New(formulaErrorNAME)
- }
- if result.Type != ArgString {
- return errors.New(formulaErrorVALUE)
- }
- token.TValue = result.String
- token.TType = efp.TokenTypeOperand
- token.TSubType = efp.TokenSubTypeNumber
- }
- if isOperatorPrefixToken(token) {
- if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
- return err
- }
- }
- if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
- optStack.Push(token)
- }
- if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
- for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
- topOpt := optStack.Peek().(efp.Token)
- if err := calculate(opdStack, topOpt); err != nil {
- return err
- }
- optStack.Pop()
- }
- optStack.Pop()
- }
- // opd
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
- opdStack.Push(token)
- }
- return nil
- }
- // parseReference parse reference and extract values by given reference
- // characters and default sheet name.
- func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
- reference = strings.Replace(reference, "$", "", -1)
- refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
- for _, ref := range strings.Split(reference, ":") {
- tokens := strings.Split(ref, "!")
- cr := cellRef{}
- if len(tokens) == 2 { // have a worksheet name
- cr.Sheet = tokens[0]
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
- return
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- refs.PushBack(cr)
- continue
- }
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
- return
- }
- e := refs.Back()
- if e == nil {
- cr.Sheet = sheet
- refs.PushBack(cr)
- continue
- }
- cellRanges.PushBack(cellRange{
- From: e.Value.(cellRef),
- To: cr,
- })
- refs.Remove(e)
- }
- if refs.Len() > 0 {
- e := refs.Back()
- cellRefs.PushBack(e.Value.(cellRef))
- refs.Remove(e)
- }
- arg, err = f.rangeResolver(cellRefs, cellRanges)
- return
- }
- // prepareValueRange prepare value range.
- func prepareValueRange(cr cellRange, valueRange []int) {
- if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
- valueRange[0] = cr.From.Row
- }
- if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
- valueRange[2] = cr.From.Col
- }
- if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
- valueRange[1] = cr.To.Row
- }
- if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
- valueRange[3] = cr.To.Col
- }
- }
- // prepareValueRef prepare value reference.
- func prepareValueRef(cr cellRef, valueRange []int) {
- if cr.Row < valueRange[0] || valueRange[0] == 0 {
- valueRange[0] = cr.Row
- }
- if cr.Col < valueRange[2] || valueRange[2] == 0 {
- valueRange[2] = cr.Col
- }
- if cr.Row > valueRange[1] || valueRange[1] == 0 {
- valueRange[1] = cr.Row
- }
- if cr.Col > valueRange[3] || valueRange[3] == 0 {
- valueRange[3] = cr.Col
- }
- }
- // rangeResolver extract value as string from given reference and range list.
- // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
- // be reference A1:B3.
- func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
- // value range order: from row, to row, from column, to column
- valueRange := []int{0, 0, 0, 0}
- var sheet string
- // prepare value range
- for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRange)
- if cr.From.Sheet != cr.To.Sheet {
- err = errors.New(formulaErrorVALUE)
- }
- rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
- sortCoordinates(rng)
- cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
- prepareValueRange(cr, valueRange)
- if cr.From.Sheet != "" {
- sheet = cr.From.Sheet
- }
- }
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- if cr.Sheet != "" {
- sheet = cr.Sheet
- }
- prepareValueRef(cr, valueRange)
- }
- // extract value from ranges
- if cellRanges.Len() > 0 {
- arg.Type = ArgMatrix
- for row := valueRange[0]; row <= valueRange[1]; row++ {
- var matrixRow = []formulaArg{}
- for col := valueRange[2]; col <= valueRange[3]; col++ {
- var cell, value string
- if cell, err = CoordinatesToCellName(col, row); err != nil {
- return
- }
- if value, err = f.GetCellValue(sheet, cell); err != nil {
- return
- }
- matrixRow = append(matrixRow, formulaArg{
- String: value,
- Type: ArgString,
- })
- }
- arg.Matrix = append(arg.Matrix, matrixRow)
- }
- return
- }
- // extract value from references
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
- cr := temp.Value.(cellRef)
- var cell string
- if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
- return
- }
- if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
- return
- }
- arg.Type = ArgString
- }
- return
- }
- // callFuncByName calls the no error or only error return function with
- // reflect by given receiver, name and parameters.
- func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
- function := reflect.ValueOf(receiver).MethodByName(name)
- if function.IsValid() {
- rt := function.Call(params)
- if len(rt) == 0 {
- return
- }
- if !rt[1].IsNil() {
- err = rt[1].Interface().(error)
- return
- }
- result = rt[0].Interface().(string)
- return
- }
- err = fmt.Errorf("not support %s function", name)
- return
- }
- // formulaCriteriaParser parse formula criteria.
- func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
- fc = &formulaCriteria{}
- if exp == "" {
- return
- }
- if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaEq, match[1]
- return
- }
- if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaEq, match[1]
- return
- }
- if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaLe, match[1]
- return
- }
- if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaGe, match[1]
- return
- }
- if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaL, match[1]
- return
- }
- if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
- fc.Type, fc.Condition = criteriaG, match[1]
- return
- }
- if strings.Contains(exp, "*") {
- if strings.HasPrefix(exp, "*") {
- fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
- }
- if strings.HasSuffix(exp, "*") {
- fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
- }
- return
- }
- fc.Type, fc.Condition = criteriaEq, exp
- return
- }
- // formulaCriteriaEval evaluate formula criteria expression.
- func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
- var value, expected float64
- var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
- value, _ = strconv.ParseFloat(val, 64)
- if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
- return
- }
- return
- }
- switch criteria.Type {
- case criteriaEq:
- return val == criteria.Condition, err
- case criteriaLe:
- if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
- return
- }
- return value <= expected, err
- case criteriaGe:
- if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
- return
- }
- return value >= expected, err
- case criteriaL:
- if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
- return
- }
- return value < expected, err
- case criteriaG:
- if value, expected, err = prepareValue(val, criteria.Condition); err != nil {
- return
- }
- return value > expected, err
- case criteriaBeg:
- return strings.HasPrefix(val, criteria.Condition), err
- case criteriaEnd:
- return strings.HasSuffix(val, criteria.Condition), err
- }
- return
- }
- // Math and Trigonometric functions
- // ABS function returns the absolute value of any supplied number. The syntax
- // of the function is:
- //
- // ABS(number)
- //
- func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ABS requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Abs(val))
- return
- }
- // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
- // number, and returns an angle, in radians, between 0 and π. The syntax of
- // the function is:
- //
- // ACOS(number)
- //
- func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOS requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Acos(val))
- return
- }
- // ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
- // of the function is:
- //
- // ACOSH(number)
- //
- func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOSH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Acosh(val))
- return
- }
- // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
- // given number, and returns an angle, in radians, between 0 and π. The syntax
- // of the function is:
- //
- // ACOT(number)
- //
- func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOT requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
- return
- }
- // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
- // value. The syntax of the function is:
- //
- // ACOTH(number)
- //
- func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ACOTH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Atanh(1/val))
- return
- }
- // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
- // of the function is:
- //
- // ARABIC(text)
- //
- func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ARABIC requires 1 numeric argument")
- return
- }
- charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
- val, last, prefix := 0.0, 0.0, 1.0
- for _, char := range argsList.Front().Value.(formulaArg).String {
- digit := 0.0
- if char == '-' {
- prefix = -1
- continue
- }
- digit, _ = charMap[char]
- val += digit
- switch {
- case last == digit && (last == 5 || last == 50 || last == 500):
- result = formulaErrorVALUE
- return
- case 2*last == digit:
- result = formulaErrorVALUE
- return
- }
- if last < digit {
- val -= 2 * last
- }
- last = digit
- }
- result = fmt.Sprintf("%g", prefix*val)
- return
- }
- // ASIN function calculates the arcsine (i.e. the inverse sine) of a given
- // number, and returns an angle, in radians, between -π/2 and π/2. The syntax
- // of the function is:
- //
- // ASIN(number)
- //
- func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ASIN requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Asin(val))
- return
- }
- // ASINH function calculates the inverse hyperbolic sine of a supplied number.
- // The syntax of the function is:
- //
- // ASINH(number)
- //
- func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ASINH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Asinh(val))
- return
- }
- // ATAN function calculates the arctangent (i.e. the inverse tangent) of a
- // given number, and returns an angle, in radians, between -π/2 and +π/2. The
- // syntax of the function is:
- //
- // ATAN(number)
- //
- func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ATAN requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Atan(val))
- return
- }
- // ATANH function calculates the inverse hyperbolic tangent of a supplied
- // number. The syntax of the function is:
- //
- // ATANH(number)
- //
- func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ATANH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Atanh(val))
- return
- }
- // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
- // given set of x and y coordinates, and returns an angle, in radians, between
- // -π/2 and +π/2. The syntax of the function is:
- //
- // ATAN2(x_num,y_num)
- //
- func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("ATAN2 requires 2 numeric arguments")
- return
- }
- var x, y float64
- if x, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if y, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Atan2(x, y))
- return
- }
- // BASE function converts a number into a supplied base (radix), and returns a
- // text representation of the calculated value. The syntax of the function is:
- //
- // BASE(number,radix,[min_length])
- //
- func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
- if argsList.Len() < 2 {
- err = errors.New("BASE requires at least 2 arguments")
- return
- }
- if argsList.Len() > 3 {
- err = errors.New("BASE allows at most 3 arguments")
- return
- }
- var number float64
- var radix, minLength int
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if radix < 2 || radix > 36 {
- err = errors.New("radix must be an integer >= 2 and <= 36")
- return
- }
- if argsList.Len() > 2 {
- if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- }
- result = strconv.FormatInt(int64(number), radix)
- if len(result) < minLength {
- result = strings.Repeat("0", minLength-len(result)) + result
- }
- result = strings.ToUpper(result)
- return
- }
- // CEILING function rounds a supplied number away from zero, to the nearest
- // multiple of a given number. The syntax of the function is:
- //
- // CEILING(number,significance)
- //
- func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("CEILING requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("CEILING allows at most 2 arguments")
- return
- }
- number, significance, res := 0.0, 1.0, 0.0
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- }
- if significance < 0 && number > 0 {
- err = errors.New("negative sig to CEILING invalid")
- return
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- number, res = math.Modf(number / significance)
- if res > 0 {
- number++
- }
- result = fmt.Sprintf("%g", number*significance)
- return
- }
- // CEILINGMATH function rounds a supplied number up to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // CEILING.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("CEILING.MATH requires at least 1 argument")
- return
- }
- if argsList.Len() > 3 {
- err = errors.New("CEILING.MATH allows at most 3 arguments")
- return
- }
- number, significance, mode := 0.0, 1.0, 1.0
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- if argsList.Len() > 2 {
- if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- } else if mode < 0 {
- val--
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // CEILINGPRECISE function rounds a supplied number up (regardless of the
- // number's sign), to the nearest multiple of a given number. The syntax of
- // the function is:
- //
- // CEILING.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("CEILING.PRECISE requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("CEILING.PRECISE allows at most 2 arguments")
- return
- }
- number, significance := 0.0, 1.0
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- significance = math.Abs(significance)
- if significance == 0 {
- result = "0"
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // COMBIN function calculates the number of combinations (in any order) of a
- // given number objects from a set. The syntax of the function is:
- //
- // COMBIN(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBIN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("COMBIN requires 2 argument")
- return
- }
- number, chosen, val := 0.0, 0.0, 1.0
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if chosen > number {
- err = errors.New("COMBIN requires number >= number_chosen")
- return
- }
- if chosen == number || chosen == 0 {
- result = "1"
- return
- }
- for c := float64(1); c <= chosen; c++ {
- val *= (number + 1 - c) / c
- }
- result = fmt.Sprintf("%g", math.Ceil(val))
- return
- }
- // COMBINA function calculates the number of combinations, with repetitions,
- // of a given number objects from a set. The syntax of the function is:
- //
- // COMBINA(number,number_chosen)
- //
- func (fn *formulaFuncs) COMBINA(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("COMBINA requires 2 argument")
- return
- }
- var number, chosen float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- number, chosen = math.Trunc(number), math.Trunc(chosen)
- if number < chosen {
- err = errors.New("COMBINA requires number > number_chosen")
- return
- }
- if number == 0 {
- result = "0"
- return
- }
- args := list.New()
- args.PushBack(formulaArg{
- String: fmt.Sprintf("%g", number+chosen-1),
- Type: ArgString,
- })
- args.PushBack(formulaArg{
- String: fmt.Sprintf("%g", number-1),
- Type: ArgString,
- })
- return fn.COMBIN(args)
- }
- // COS function calculates the cosine of a given angle. The syntax of the
- // function is:
- //
- // COS(number)
- //
- func (fn *formulaFuncs) COS(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COS requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Cos(val))
- return
- }
- // COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
- // The syntax of the function is:
- //
- // COSH(number)
- //
- func (fn *formulaFuncs) COSH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COSH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Cosh(val))
- return
- }
- // COT function calculates the cotangent of a given angle. The syntax of the
- // function is:
- //
- // COT(number)
- //
- func (fn *formulaFuncs) COT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COT requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Tan(val))
- return
- }
- // COTH function calculates the hyperbolic cotangent (coth) of a supplied
- // angle. The syntax of the function is:
- //
- // COTH(number)
- //
- func (fn *formulaFuncs) COTH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("COTH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Tanh(val))
- return
- }
- // CSC function calculates the cosecant of a given angle. The syntax of the
- // function is:
- //
- // CSC(number)
- //
- func (fn *formulaFuncs) CSC(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("CSC requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", 1/math.Sin(val))
- return
- }
- // CSCH function calculates the hyperbolic cosecant (csch) of a supplied
- // angle. The syntax of the function is:
- //
- // CSCH(number)
- //
- func (fn *formulaFuncs) CSCH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("CSCH requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", 1/math.Sinh(val))
- return
- }
- // DECIMAL function converts a text representation of a number in a specified
- // base, into a decimal value. The syntax of the function is:
- //
- // DECIMAL(text,radix)
- //
- func (fn *formulaFuncs) DECIMAL(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("DECIMAL requires 2 numeric arguments")
- return
- }
- var text = argsList.Front().Value.(formulaArg).String
- var radix int
- if radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
- text = text[2:]
- }
- val, err := strconv.ParseInt(text, radix, 64)
- if err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", float64(val))
- return
- }
- // DEGREES function converts radians into degrees. The syntax of the function
- // is:
- //
- // DEGREES(angle)
- //
- func (fn *formulaFuncs) DEGREES(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("DEGREES requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if val == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", 180.0/math.Pi*val)
- return
- }
- // EVEN function rounds a supplied number away from zero (i.e. rounds a
- // positive number up and a negative number down), to the next even number.
- // The syntax of the function is:
- //
- // EVEN(number)
- //
- func (fn *formulaFuncs) EVEN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("EVEN requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- sign := math.Signbit(number)
- m, frac := math.Modf(number / 2)
- val := m * 2
- if frac != 0 {
- if !sign {
- val += 2
- } else {
- val -= 2
- }
- }
- result = fmt.Sprintf("%g", val)
- return
- }
- // EXP function calculates the value of the mathematical constant e, raised to
- // the power of a given number. The syntax of the function is:
- //
- // EXP(number)
- //
- func (fn *formulaFuncs) EXP(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("EXP requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))
- return
- }
- // fact returns the factorial of a supplied number.
- func fact(number float64) float64 {
- val := float64(1)
- for i := float64(2); i <= number; i++ {
- val *= i
- }
- return val
- }
- // FACT function returns the factorial of a supplied number. The syntax of the
- // function is:
- //
- // FACT(number)
- //
- func (fn *formulaFuncs) FACT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("FACT requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- err = errors.New(formulaErrorNUM)
- }
- result = strings.ToUpper(fmt.Sprintf("%g", fact(number)))
- return
- }
- // FACTDOUBLE function returns the double factorial of a supplied number. The
- // syntax of the function is:
- //
- // FACTDOUBLE(number)
- //
- func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("FACTDOUBLE requires 1 numeric argument")
- return
- }
- number, val := 0.0, 1.0
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- for i := math.Trunc(number); i > 1; i -= 2 {
- val *= i
- }
- result = strings.ToUpper(fmt.Sprintf("%g", val))
- return
- }
- // FLOOR function rounds a supplied number towards zero to the nearest
- // multiple of a specified significance. The syntax of the function is:
- //
- // FLOOR(number,significance)
- //
- func (fn *formulaFuncs) FLOOR(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("FLOOR requires 2 numeric arguments")
- return
- }
- var number, significance float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if significance < 0 && number >= 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- val := number
- val, res := math.Modf(val / significance)
- if res != 0 {
- if number < 0 && res < 0 {
- val--
- }
- }
- result = strings.ToUpper(fmt.Sprintf("%g", val*significance))
- return
- }
- // FLOORMATH function rounds a supplied number down to a supplied multiple of
- // significance. The syntax of the function is:
- //
- // FLOOR.MATH(number,[significance],[mode])
- //
- func (fn *formulaFuncs) FLOORMATH(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("FLOOR.MATH requires at least 1 argument")
- return
- }
- if argsList.Len() > 3 {
- err = errors.New("FLOOR.MATH allows at most 3 arguments")
- return
- }
- number, significance, mode := 0.0, 1.0, 1.0
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Floor(number))
- return
- }
- if argsList.Len() > 2 {
- if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 && number < 0 && mode > 0 {
- val--
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // FLOORPRECISE function rounds a supplied number down to a supplied multiple
- // of significance. The syntax of the function is:
- //
- // FLOOR.PRECISE(number,[significance])
- //
- func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("FLOOR.PRECISE requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("FLOOR.PRECISE allows at most 2 arguments")
- return
- }
- var number, significance float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Floor(number))
- return
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- significance = math.Abs(significance)
- if significance == 0 {
- result = "0"
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number < 0 {
- val--
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // gcd returns the greatest common divisor of two supplied integers.
- func gcd(x, y float64) float64 {
- x, y = math.Trunc(x), math.Trunc(y)
- if x == 0 {
- return y
- }
- if y == 0 {
- return x
- }
- for x != y {
- if x > y {
- x = x - y
- } else {
- y = y - x
- }
- }
- return x
- }
- // GCD function returns the greatest common divisor of two or more supplied
- // integers. The syntax of the function is:
- //
- // GCD(number1,[number2],...)
- //
- func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("GCD requires at least 1 argument")
- return
- }
- var (
- val float64
- nums = []float64{}
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg).String
- if token == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- err = errors.New("GCD only accepts positive arguments")
- return
- }
- if len(nums) == 1 {
- result = fmt.Sprintf("%g", nums[0])
- return
- }
- cd := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- err = errors.New("GCD only accepts positive arguments")
- return
- }
- cd = gcd(cd, nums[i])
- }
- result = fmt.Sprintf("%g", cd)
- return
- }
- // INT function truncates a supplied number down to the closest integer. The
- // syntax of the function is:
- //
- // INT(number)
- //
- func (fn *formulaFuncs) INT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("INT requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- val, frac := math.Modf(number)
- if frac < 0 {
- val--
- }
- result = fmt.Sprintf("%g", val)
- return
- }
- // ISOCEILING function rounds a supplied number up (regardless of the number's
- // sign), to the nearest multiple of a supplied significance. The syntax of
- // the function is:
- //
- // ISO.CEILING(number,[significance])
- //
- func (fn *formulaFuncs) ISOCEILING(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("ISO.CEILING requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("ISO.CEILING allows at most 2 arguments")
- return
- }
- var number, significance float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number < 0 {
- significance = -1
- }
- if argsList.Len() == 1 {
- result = fmt.Sprintf("%g", math.Ceil(number))
- return
- }
- if argsList.Len() > 1 {
- if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- significance = math.Abs(significance)
- if significance == 0 {
- result = "0"
- return
- }
- }
- val, res := math.Modf(number / significance)
- if res != 0 {
- if number > 0 {
- val++
- }
- }
- result = fmt.Sprintf("%g", val*significance)
- return
- }
- // lcm returns the least common multiple of two supplied integers.
- func lcm(a, b float64) float64 {
- a = math.Trunc(a)
- b = math.Trunc(b)
- if a == 0 && b == 0 {
- return 0
- }
- return a * b / gcd(a, b)
- }
- // LCM function returns the least common multiple of two or more supplied
- // integers. The syntax of the function is:
- //
- // LCM(number1,[number2],...)
- //
- func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("LCM requires at least 1 argument")
- return
- }
- var (
- val float64
- nums = []float64{}
- )
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg).String
- if token == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- nums = append(nums, val)
- }
- if nums[0] < 0 {
- err = errors.New("LCM only accepts positive arguments")
- return
- }
- if len(nums) == 1 {
- result = fmt.Sprintf("%g", nums[0])
- return
- }
- cm := nums[0]
- for i := 1; i < len(nums); i++ {
- if nums[i] < 0 {
- err = errors.New("LCM only accepts positive arguments")
- return
- }
- cm = lcm(cm, nums[i])
- }
- result = fmt.Sprintf("%g", cm)
- return
- }
- // LN function calculates the natural logarithm of a given number. The syntax
- // of the function is:
- //
- // LN(number)
- //
- func (fn *formulaFuncs) LN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("LN requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Log(number))
- return
- }
- // LOG function calculates the logarithm of a given number, to a supplied
- // base. The syntax of the function is:
- //
- // LOG(number,[base])
- //
- func (fn *formulaFuncs) LOG(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("LOG requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("LOG allows at most 2 arguments")
- return
- }
- number, base := 0.0, 10.0
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if argsList.Len() > 1 {
- if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- }
- if number == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if base == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if base == 1 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Log(number)/math.Log(base))
- return
- }
- // LOG10 function calculates the base 10 logarithm of a given number. The
- // syntax of the function is:
- //
- // LOG10(number)
- //
- func (fn *formulaFuncs) LOG10(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("LOG10 requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Log10(number))
- return
- }
- func minor(sqMtx [][]float64, idx int) [][]float64 {
- ret := [][]float64{}
- for i := range sqMtx {
- if i == 0 {
- continue
- }
- row := []float64{}
- for j := range sqMtx {
- if j == idx {
- continue
- }
- row = append(row, sqMtx[i][j])
- }
- ret = append(ret, row)
- }
- return ret
- }
- // det determinant of the 2x2 matrix.
- func det(sqMtx [][]float64) float64 {
- if len(sqMtx) == 2 {
- m00 := sqMtx[0][0]
- m01 := sqMtx[0][1]
- m10 := sqMtx[1][0]
- m11 := sqMtx[1][1]
- return m00*m11 - m10*m01
- }
- var res, sgn float64 = 0, 1
- for j := range sqMtx {
- res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
- sgn *= -1
- }
- return res
- }
- // MDETERM calculates the determinant of a square matrix. The
- // syntax of the function is:
- //
- // MDETERM(array)
- //
- func (fn *formulaFuncs) MDETERM(argsList *list.List) (result string, err error) {
- var num float64
- var numMtx = [][]float64{}
- var strMtx = argsList.Front().Value.(formulaArg).Matrix
- if argsList.Len() < 1 {
- return
- }
- var rows = len(strMtx)
- for _, row := range argsList.Front().Value.(formulaArg).Matrix {
- if len(row) != rows {
- err = errors.New(formulaErrorVALUE)
- return
- }
- numRow := []float64{}
- for _, ele := range row {
- if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
- return
- }
- numRow = append(numRow, num)
- }
- numMtx = append(numMtx, numRow)
- }
- result = fmt.Sprintf("%g", det(numMtx))
- return
- }
- // MOD function returns the remainder of a division between two supplied
- // numbers. The syntax of the function is:
- //
- // MOD(number,divisor)
- //
- func (fn *formulaFuncs) MOD(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("MOD requires 2 numeric arguments")
- return
- }
- var number, divisor float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if divisor == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- trunc, rem := math.Modf(number / divisor)
- if rem < 0 {
- trunc--
- }
- result = fmt.Sprintf("%g", number-divisor*trunc)
- return
- }
- // MROUND function rounds a supplied number up or down to the nearest multiple
- // of a given number. The syntax of the function is:
- //
- // MOD(number,multiple)
- //
- func (fn *formulaFuncs) MROUND(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("MROUND requires 2 numeric arguments")
- return
- }
- var number, multiple float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if multiple == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if multiple < 0 && number > 0 ||
- multiple > 0 && number < 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- number, res := math.Modf(number / multiple)
- if math.Trunc(res+0.5) > 0 {
- number++
- }
- result = fmt.Sprintf("%g", number*multiple)
- return
- }
- // MULTINOMIAL function calculates the ratio of the factorial of a sum of
- // supplied values to the product of factorials of those values. The syntax of
- // the function is:
- //
- // MULTINOMIAL(number1,[number2],...)
- //
- func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) (result string, err error) {
- val, num, denom := 0.0, 0.0, 1.0
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- num += val
- denom *= fact(val)
- }
- result = fmt.Sprintf("%g", fact(num)/denom)
- return
- }
- // MUNIT function returns the unit matrix for a specified dimension. The
- // syntax of the function is:
- //
- // MUNIT(dimension)
- //
- func (fn *formulaFuncs) MUNIT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("MUNIT requires 1 numeric argument")
- return
- }
- var dimension int
- if dimension, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- matrix := make([][]float64, 0, dimension)
- for i := 0; i < dimension; i++ {
- row := make([]float64, dimension)
- for j := 0; j < dimension; j++ {
- if i == j {
- row[j] = float64(1.0)
- } else {
- row[j] = float64(0.0)
- }
- }
- matrix = append(matrix, row)
- }
- return
- }
- // ODD function ounds a supplied number away from zero (i.e. rounds a positive
- // number up and a negative number down), to the next odd number. The syntax
- // of the function is:
- //
- // ODD(number)
- //
- func (fn *formulaFuncs) ODD(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ODD requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if number == 0 {
- result = "1"
- return
- }
- sign := math.Signbit(number)
- m, frac := math.Modf((number - 1) / 2)
- val := m*2 + 1
- if frac != 0 {
- if !sign {
- val += 2
- } else {
- val -= 2
- }
- }
- result = fmt.Sprintf("%g", val)
- return
- }
- // PI function returns the value of the mathematical constant π (pi), accurate
- // to 15 digits (14 decimal places). The syntax of the function is:
- //
- // PI()
- //
- func (fn *formulaFuncs) PI(argsList *list.List) (result string, err error) {
- if argsList.Len() != 0 {
- err = errors.New("PI accepts no arguments")
- return
- }
- result = fmt.Sprintf("%g", math.Pi)
- return
- }
- // POWER function calculates a given number, raised to a supplied power.
- // The syntax of the function is:
- //
- // POWER(number,power)
- //
- func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("POWER requires 2 numeric arguments")
- return
- }
- var x, y float64
- if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if x == 0 && y == 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- if x == 0 && y < 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Pow(x, y))
- return
- }
- // PRODUCT function returns the product (multiplication) of a supplied set of
- // numerical values. The syntax of the function is:
- //
- // PRODUCT(number1,[number2],...)
- //
- func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
- val, product := 0.0, 1.0
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- product = product * val
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- product = product * val
- }
- }
- }
- }
- result = fmt.Sprintf("%g", product)
- return
- }
- // QUOTIENT function returns the integer portion of a division between two
- // supplied numbers. The syntax of the function is:
- //
- // QUOTIENT(numerator,denominator)
- //
- func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("QUOTIENT requires 2 numeric arguments")
- return
- }
- var x, y float64
- if x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if y == 0 {
- err = errors.New(formulaErrorDIV)
- return
- }
- result = fmt.Sprintf("%g", math.Trunc(x/y))
- return
- }
- // RADIANS function converts radians into degrees. The syntax of the function is:
- //
- // RADIANS(angle)
- //
- func (fn *formulaFuncs) RADIANS(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("RADIANS requires 1 numeric argument")
- return
- }
- var angle float64
- if angle, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Pi/180.0*angle)
- return
- }
- // RAND function generates a random real number between 0 and 1. The syntax of
- // the function is:
- //
- // RAND()
- //
- func (fn *formulaFuncs) RAND(argsList *list.List) (result string, err error) {
- if argsList.Len() != 0 {
- err = errors.New("RAND accepts no arguments")
- return
- }
- result = fmt.Sprintf("%g", rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
- return
- }
- // RANDBETWEEN function generates a random integer between two supplied
- // integers. The syntax of the function is:
- //
- // RANDBETWEEN(bottom,top)
- //
- func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("RANDBETWEEN requires 2 numeric arguments")
- return
- }
- var bottom, top int64
- if bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if top < bottom {
- err = errors.New(formulaErrorNUM)
- return
- }
- result = fmt.Sprintf("%g", float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1)+bottom))
- return
- }
- // romanNumerals defined a numeral system that originated in ancient Rome and
- // remained the usual way of writing numbers throughout Europe well into the
- // Late Middle Ages.
- type romanNumerals struct {
- n float64
- s string
- }
- var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
- {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
- // ROMAN function converts an arabic number to Roman. I.e. for a supplied
- // integer, the function returns a text string depicting the roman numeral
- // form of the number. The syntax of the function is:
- //
- // ROMAN(number,[form])
- //
- func (fn *formulaFuncs) ROMAN(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("ROMAN requires at least 1 argument")
- return
- }
- if argsList.Len() > 2 {
- err = errors.New("ROMAN allows at most 2 arguments")
- return
- }
- var number float64
- var form int
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if argsList.Len() > 1 {
- if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if form < 0 {
- form = 0
- } else if form > 4 {
- form = 4
- }
- }
- decimalTable := romanTable[0]
- switch form {
- case 1:
- decimalTable = romanTable[1]
- case 2:
- decimalTable = romanTable[2]
- case 3:
- decimalTable = romanTable[3]
- case 4:
- decimalTable = romanTable[4]
- }
- val := math.Trunc(number)
- buf := bytes.Buffer{}
- for _, r := range decimalTable {
- for val >= r.n {
- buf.WriteString(r.s)
- val -= r.n
- }
- }
- result = buf.String()
- return
- }
- type roundMode byte
- const (
- closest roundMode = iota
- down
- up
- )
- // round rounds a supplied number up or down.
- func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
- var significance float64
- if digits > 0 {
- significance = math.Pow(1/10.0, digits)
- } else {
- significance = math.Pow(10.0, -digits)
- }
- val, res := math.Modf(number / significance)
- switch mode {
- case closest:
- const eps = 0.499999999
- if res >= eps {
- val++
- } else if res <= -eps {
- val--
- }
- case down:
- case up:
- if res > 0 {
- val++
- } else if res < 0 {
- val--
- }
- }
- return val * significance
- }
- // ROUND function rounds a supplied number up or down, to a specified number
- // of decimal places. The syntax of the function is:
- //
- // ROUND(number,num_digits)
- //
- func (fn *formulaFuncs) ROUND(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("ROUND requires 2 numeric arguments")
- return
- }
- var number, digits float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", fn.round(number, digits, closest))
- return
- }
- // ROUNDDOWN function rounds a supplied number down towards zero, to a
- // specified number of decimal places. The syntax of the function is:
- //
- // ROUNDDOWN(number,num_digits)
- //
- func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("ROUNDDOWN requires 2 numeric arguments")
- return
- }
- var number, digits float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", fn.round(number, digits, down))
- return
- }
- // ROUNDUP function rounds a supplied number up, away from zero, to a
- // specified number of decimal places. The syntax of the function is:
- //
- // ROUNDUP(number,num_digits)
- //
- func (fn *formulaFuncs) ROUNDUP(argsList *list.List) (result string, err error) {
- if argsList.Len() != 2 {
- err = errors.New("ROUNDUP requires 2 numeric arguments")
- return
- }
- var number, digits float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", fn.round(number, digits, up))
- return
- }
- // SEC function calculates the secant of a given angle. The syntax of the
- // function is:
- //
- // SEC(number)
- //
- func (fn *formulaFuncs) SEC(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SEC requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Cos(number))
- return
- }
- // SECH function calculates the hyperbolic secant (sech) of a supplied angle.
- // The syntax of the function is:
- //
- // SECH(number)
- //
- func (fn *formulaFuncs) SECH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SECH requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", 1/math.Cosh(number))
- return
- }
- // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
- // number. I.e. if the number is positive, the Sign function returns +1, if
- // the number is negative, the function returns -1 and if the number is 0
- // (zero), the function returns 0. The syntax of the function is:
- //
- // SIGN(number)
- //
- func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SIGN requires 1 numeric argument")
- return
- }
- var val float64
- if val, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if val < 0 {
- result = "-1"
- return
- }
- if val > 0 {
- result = "1"
- return
- }
- result = "0"
- return
- }
- // SIN function calculates the sine of a given angle. The syntax of the
- // function is:
- //
- // SIN(number)
- //
- func (fn *formulaFuncs) SIN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SIN requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Sin(number))
- return
- }
- // SINH function calculates the hyperbolic sine (sinh) of a supplied number.
- // The syntax of the function is:
- //
- // SINH(number)
- //
- func (fn *formulaFuncs) SINH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SINH requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Sinh(number))
- return
- }
- // SQRT function calculates the positive square root of a supplied number. The
- // syntax of the function is:
- //
- // SQRT(number)
- //
- func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SQRT requires 1 numeric argument")
- return
- }
- var res float64
- var value = argsList.Front().Value.(formulaArg).String
- if value == "" {
- result = "0"
- return
- }
- if res, err = strconv.ParseFloat(value, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if res < 0 {
- err = errors.New(formulaErrorNUM)
- return
- }
- result = fmt.Sprintf("%g", math.Sqrt(res))
- return
- }
- // SQRTPI function returns the square root of a supplied number multiplied by
- // the mathematical constant, π. The syntax of the function is:
- //
- // SQRTPI(number)
- //
- func (fn *formulaFuncs) SQRTPI(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("SQRTPI requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Sqrt(number*math.Pi))
- return
- }
- // SUM function adds together a supplied set of numbers and returns the sum of
- // these values. The syntax of the function is:
- //
- // SUM(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
- var val, sum float64
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgUnknown:
- continue
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- sum += val
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- sum += val
- }
- }
- }
- }
- result = fmt.Sprintf("%g", sum)
- return
- }
- // SUMIF function finds the values in a supplied array, that satisfy a given
- // criteria, and returns the sum of the corresponding values in a second
- // supplied array. The syntax of the function is:
- //
- // SUMIF(range,criteria,[sum_range])
- //
- func (fn *formulaFuncs) SUMIF(argsList *list.List) (result string, err error) {
- if argsList.Len() < 2 {
- err = errors.New("SUMIF requires at least 2 argument")
- return
- }
- var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
- var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
- var sumRange [][]formulaArg
- if argsList.Len() == 3 {
- sumRange = argsList.Back().Value.(formulaArg).Matrix
- }
- var sum, val float64
- for rowIdx, row := range rangeMtx {
- for colIdx, col := range row {
- var ok bool
- fromVal := col.String
- if col.String == "" {
- continue
- }
- if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
- return
- }
- if ok {
- if argsList.Len() == 3 {
- if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
- continue
- }
- fromVal = sumRange[rowIdx][colIdx].String
- }
- if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- sum += val
- }
- }
- }
- result = fmt.Sprintf("%g", sum)
- return
- }
- // SUMSQ function returns the sum of squares of a supplied set of values. The
- // syntax of the function is:
- //
- // SUMSQ(number1,[number2],...)
- //
- func (fn *formulaFuncs) SUMSQ(argsList *list.List) (result string, err error) {
- var val, sq float64
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
- token := arg.Value.(formulaArg)
- switch token.Type {
- case ArgString:
- if token.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- sq += val * val
- case ArgMatrix:
- for _, row := range token.Matrix {
- for _, value := range row {
- if value.String == "" {
- continue
- }
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- sq += val * val
- }
- }
- }
- }
- result = fmt.Sprintf("%g", sq)
- return
- }
- // TAN function calculates the tangent of a given angle. The syntax of the
- // function is:
- //
- // TAN(number)
- //
- func (fn *formulaFuncs) TAN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("TAN requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Tan(number))
- return
- }
- // TANH function calculates the hyperbolic tangent (tanh) of a supplied
- // number. The syntax of the function is:
- //
- // TANH(number)
- //
- func (fn *formulaFuncs) TANH(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("TANH requires 1 numeric argument")
- return
- }
- var number float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- result = fmt.Sprintf("%g", math.Tanh(number))
- return
- }
- // TRUNC function truncates a supplied number to a specified number of decimal
- // places. The syntax of the function is:
- //
- // TRUNC(number,[number_digits])
- //
- func (fn *formulaFuncs) TRUNC(argsList *list.List) (result string, err error) {
- if argsList.Len() == 0 {
- err = errors.New("TRUNC requires at least 1 argument")
- return
- }
- var number, digits, adjust, rtrim float64
- if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if argsList.Len() > 1 {
- if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- digits = math.Floor(digits)
- }
- adjust = math.Pow(10, digits)
- x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust)
- if x != 0 {
- if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
- return
- }
- }
- if (digits > 0) && (rtrim < adjust/10) {
- result = fmt.Sprintf("%g", number)
- return
- }
- result = fmt.Sprintf("%g", float64(int(number*adjust))/adjust)
- return
- }
- // Statistical functions
- // Information functions
- // ISBLANK function tests if a specified cell is blank (empty) and if so,
- // returns TRUE; Otherwise the function returns FALSE. The syntax of the
- // function is:
- //
- // ISBLANK(value)
- //
- func (fn *formulaFuncs) ISBLANK(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ISBLANK requires 1 argument")
- return
- }
- token := argsList.Front().Value.(formulaArg)
- result = "FALSE"
- switch token.Type {
- case ArgUnknown:
- result = "TRUE"
- case ArgString:
- if token.String == "" {
- result = "TRUE"
- }
- }
- return
- }
- // ISERR function tests if an initial supplied expression (or value) returns
- // any Excel Error, except the #N/A error. If so, the function returns the
- // logical value TRUE; If the supplied value is not an error or is the #N/A
- // error, the ISERR function returns FALSE. The syntax of the function is:
- //
- // ISERR(value)
- //
- func (fn *formulaFuncs) ISERR(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ISERR requires 1 argument")
- return
- }
- token := argsList.Front().Value.(formulaArg)
- result = "FALSE"
- if token.Type == ArgString {
- for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
- if errType == token.String {
- result = "TRUE"
- }
- }
- }
- return
- }
- // ISERROR function tests if an initial supplied expression (or value) returns
- // an Excel Error, and if so, returns the logical value TRUE; Otherwise the
- // function returns FALSE. The syntax of the function is:
- //
- // ISERROR(value)
- //
- func (fn *formulaFuncs) ISERROR(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ISERROR requires 1 argument")
- return
- }
- token := argsList.Front().Value.(formulaArg)
- result = "FALSE"
- if token.Type == ArgString {
- for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
- if errType == token.String {
- result = "TRUE"
- }
- }
- }
- return
- }
- // ISEVEN function tests if a supplied number (or numeric expression)
- // evaluates to an even number, and if so, returns TRUE; Otherwise, the
- // function returns FALSE. The syntax of the function is:
- //
- // ISEVEN(value)
- //
- func (fn *formulaFuncs) ISEVEN(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ISEVEN requires 1 argument")
- return
- }
- token := argsList.Front().Value.(formulaArg)
- result = "FALSE"
- var numeric int
- if token.Type == ArgString {
- if numeric, err = strconv.Atoi(token.String); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if numeric == numeric/2*2 {
- result = "TRUE"
- return
- }
- }
- return
- }
- // ISNA function tests if an initial supplied expression (or value) returns
- // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
- // returns FALSE. The syntax of the function is:
- //
- // ISNA(value)
- //
- func (fn *formulaFuncs) ISNA(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ISNA requires 1 argument")
- return
- }
- token := argsList.Front().Value.(formulaArg)
- result = "FALSE"
- if token.Type == ArgString && token.String == formulaErrorNA {
- result = "TRUE"
- }
- return
- }
- // ISNONTEXT function function tests if a supplied value is text. If not, the
- // function returns TRUE; If the supplied value is text, the function returns
- // FALSE. The syntax of the function is:
- //
- // ISNONTEXT(value)
- //
- func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ISNONTEXT requires 1 argument")
- return
- }
- token := argsList.Front().Value.(formulaArg)
- result = "TRUE"
- if token.Type == ArgString && token.String != "" {
- result = "FALSE"
- }
- return
- }
- // ISODD function tests if a supplied number (or numeric expression) evaluates
- // to an odd number, and if so, returns TRUE; Otherwise, the function returns
- // FALSE. The syntax of the function is:
- //
- // ISODD(value)
- //
- func (fn *formulaFuncs) ISODD(argsList *list.List) (result string, err error) {
- if argsList.Len() != 1 {
- err = errors.New("ISODD requires 1 argument")
- return
- }
- token := argsList.Front().Value.(formulaArg)
- result = "FALSE"
- var numeric int
- if token.Type == ArgString {
- if numeric, err = strconv.Atoi(token.String); err != nil {
- err = errors.New(formulaErrorVALUE)
- return
- }
- if numeric != numeric/2*2 {
- result = "TRUE"
- return
- }
- }
- return
- }
- // NA function returns the Excel #N/A error. This error message has the
- // meaning 'value not available' and is produced when an Excel Formula is
- // unable to find a value that it needs. The syntax of the function is:
- //
- // NA()
- //
- func (fn *formulaFuncs) NA(argsList *list.List) (result string, err error) {
- if argsList.Len() != 0 {
- err = errors.New("NA accepts no arguments")
- return
- }
- result = formulaErrorNA
- return
- }
|