|
@@ -102,11 +102,17 @@ func getPriority(token efp.Token) (pri int) {
|
|
|
// opf - Operation formula
|
|
// opf - Operation formula
|
|
|
// opfd - Operand of the operation formula
|
|
// opfd - Operand of the operation formula
|
|
|
// opft - Operator of the operation formula
|
|
// opft - Operator of the operation formula
|
|
|
|
|
+//
|
|
|
|
|
+// Evaluate arguments of the operation formula by list:
|
|
|
|
|
+//
|
|
|
// args - Arguments of the operation formula
|
|
// args - Arguments of the operation formula
|
|
|
//
|
|
//
|
|
|
|
|
+// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
|
|
|
|
|
+//
|
|
|
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
|
|
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
|
|
|
var err error
|
|
var err error
|
|
|
- opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
|
|
|
|
|
|
+ opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
|
|
|
|
+ argsList := list.New()
|
|
|
for i := 0; i < len(tokens); i++ {
|
|
for i := 0; i < len(tokens); i++ {
|
|
|
token := tokens[i]
|
|
token := tokens[i]
|
|
|
|
|
|
|
@@ -155,7 +161,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
|
|
return efp.Token{TValue: formulaErrorNAME}, err
|
|
return efp.Token{TValue: formulaErrorNAME}, err
|
|
|
}
|
|
}
|
|
|
for _, val := range result {
|
|
for _, val := range result {
|
|
|
- argsStack.Push(efp.Token{
|
|
|
|
|
|
|
+ argsList.PushBack(efp.Token{
|
|
|
TType: efp.TokenTypeOperand,
|
|
TType: efp.TokenTypeOperand,
|
|
|
TSubType: efp.TokenSubTypeNumber,
|
|
TSubType: efp.TokenSubTypeNumber,
|
|
|
TValue: val,
|
|
TValue: val,
|
|
@@ -184,11 +190,20 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
|
|
opftStack.Pop()
|
|
opftStack.Pop()
|
|
|
}
|
|
}
|
|
|
if !opfdStack.Empty() {
|
|
if !opfdStack.Empty() {
|
|
|
- argsStack.Push(opfdStack.Pop())
|
|
|
|
|
|
|
+ argsList.PushBack(opfdStack.Pop())
|
|
|
}
|
|
}
|
|
|
continue
|
|
continue
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
+ // current token is logical
|
|
|
|
|
+ if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ // current token is text
|
|
|
|
|
+ if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
|
|
|
|
|
+ argsList.PushBack(token)
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
// current token is function stop
|
|
// current token is function stop
|
|
|
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
|
|
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
|
|
|
for !opftStack.Empty() {
|
|
for !opftStack.Empty() {
|
|
@@ -202,13 +217,14 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
|
|
|
|
|
|
|
// push opfd to args
|
|
// push opfd to args
|
|
|
if opfdStack.Len() > 0 {
|
|
if opfdStack.Len() > 0 {
|
|
|
- argsStack.Push(opfdStack.Pop())
|
|
|
|
|
|
|
+ argsList.PushBack(opfdStack.Pop())
|
|
|
}
|
|
}
|
|
|
// call formula function to evaluate
|
|
// call formula function to evaluate
|
|
|
- result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)})
|
|
|
|
|
|
|
+ result, err := callFuncByName(&formulaFuncs{}, strings.ReplaceAll(opfStack.Peek().(efp.Token).TValue, "_xlfn.", ""), []reflect.Value{reflect.ValueOf(argsList)})
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return efp.Token{}, err
|
|
return efp.Token{}, err
|
|
|
}
|
|
}
|
|
|
|
|
+ argsList.Init()
|
|
|
opfStack.Pop()
|
|
opfStack.Pop()
|
|
|
if opfStack.Len() > 0 { // still in function stack
|
|
if opfStack.Len() > 0 { // still in function stack
|
|
|
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
@@ -480,13 +496,13 @@ func callFuncByName(receiver interface{}, name string, params []reflect.Value) (
|
|
|
//
|
|
//
|
|
|
// ABS(number)
|
|
// ABS(number)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) {
|
|
|
|
|
- if argsStack.Len() != 1 {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
err = errors.New("ABS requires 1 numeric arguments")
|
|
err = errors.New("ABS requires 1 numeric arguments")
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
var val float64
|
|
var val float64
|
|
|
- val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
|
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
@@ -494,6 +510,236 @@ func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
+// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
|
|
|
|
+// number, and returns an angle, in radians, between 0 and π. The syntax of
|
|
|
|
|
+// the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ACOS(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ACOS requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Acos(val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
|
|
|
|
+// of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ACOSH(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ACOSH requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Acosh(val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
|
|
|
|
+// given number, and returns an angle, in radians, between 0 and π. The syntax
|
|
|
|
|
+// of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ACOT(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ACOT requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
|
|
|
|
+// value. The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ACOTH(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ACOTH requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Atanh(1/val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
|
|
|
|
+// of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ARABIC(text)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ARABIC requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ val, last, prefix := 0.0, 0.0, 1.0
|
|
|
|
|
+ for _, char := range argsList.Front().Value.(efp.Token).TValue {
|
|
|
|
|
+ digit := 0.0
|
|
|
|
|
+ switch char {
|
|
|
|
|
+ case '-':
|
|
|
|
|
+ prefix = -1
|
|
|
|
|
+ continue
|
|
|
|
|
+ case 'I':
|
|
|
|
|
+ digit = 1
|
|
|
|
|
+ case 'V':
|
|
|
|
|
+ digit = 5
|
|
|
|
|
+ case 'X':
|
|
|
|
|
+ digit = 10
|
|
|
|
|
+ case 'L':
|
|
|
|
|
+ digit = 50
|
|
|
|
|
+ case 'C':
|
|
|
|
|
+ digit = 100
|
|
|
|
|
+ case 'D':
|
|
|
|
|
+ digit = 500
|
|
|
|
|
+ case 'M':
|
|
|
|
|
+ digit = 1000
|
|
|
|
|
+ }
|
|
|
|
|
+ val += digit
|
|
|
|
|
+ switch {
|
|
|
|
|
+ case last == digit && (last == 5 || last == 50 || last == 500):
|
|
|
|
|
+ result = formulaErrorVALUE
|
|
|
|
|
+ return
|
|
|
|
|
+ case 2*last == digit:
|
|
|
|
|
+ result = formulaErrorVALUE
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ if last < digit {
|
|
|
|
|
+ val -= 2 * last
|
|
|
|
|
+ }
|
|
|
|
|
+ last = digit
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", prefix*val)
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
|
|
|
|
|
+// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
|
|
|
|
|
+// of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ASIN(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ASIN requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Asin(val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
|
|
|
|
+// The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ASINH(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ASINH requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Asinh(val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
|
|
+// given number, and returns an angle, in radians, between -π/2 and +π/2. The
|
|
|
|
|
+// syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ATAN(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ATAN requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Atan(val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
|
|
|
|
+// number. The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ATANH(number)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ err = errors.New("ATANH requires 1 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var val float64
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Atanh(val))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
|
|
+// given set of x and y coordinates, and returns an angle, in radians, between
|
|
|
|
|
+// -π/2 and +π/2. The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// ATAN2(x_num,y_num)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 2 {
|
|
|
|
|
+ err = errors.New("ATAN2 requires 2 numeric arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var x, y float64
|
|
|
|
|
+ x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ result = fmt.Sprintf("%g", math.Atan2(x, y))
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
// gcd returns the greatest common divisor of two supplied integers.
|
|
// gcd returns the greatest common divisor of two supplied integers.
|
|
|
func gcd(x, y float64) float64 {
|
|
func gcd(x, y float64) float64 {
|
|
|
x, y = math.Trunc(x), math.Trunc(y)
|
|
x, y = math.Trunc(x), math.Trunc(y)
|
|
@@ -513,13 +759,55 @@ func gcd(x, y float64) float64 {
|
|
|
return x
|
|
return x
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
+// BASE function converts a number into a supplied base (radix), and returns a
|
|
|
|
|
+// text representation of the calculated value. The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// BASE(number,radix,[min_length])
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() < 2 {
|
|
|
|
|
+ err = errors.New("BASE requires at least 2 arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ if argsList.Len() > 3 {
|
|
|
|
|
+ err = errors.New("BASE allows at most 3 arguments")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ var number float64
|
|
|
|
|
+ var radix, minLength int
|
|
|
|
|
+ number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ if radix < 2 || radix > 36 {
|
|
|
|
|
+ err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ if argsList.Len() > 2 {
|
|
|
|
|
+ minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return
|
|
|
|
|
+ }
|
|
|
|
|
+ }
|
|
|
|
|
+ result = strconv.FormatInt(int64(number), radix)
|
|
|
|
|
+ if len(result) < minLength {
|
|
|
|
|
+ result = strings.Repeat("0", minLength-len(result)) + result
|
|
|
|
|
+ }
|
|
|
|
|
+ result = strings.ToUpper(result)
|
|
|
|
|
+ return
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
// GCD function returns the greatest common divisor of two or more supplied
|
|
// GCD function returns the greatest common divisor of two or more supplied
|
|
|
-// integers.The syntax of the function is:
|
|
|
|
|
|
|
+// integers. The syntax of the function is:
|
|
|
//
|
|
//
|
|
|
// GCD(number1,[number2],...)
|
|
// GCD(number1,[number2],...)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) {
|
|
|
|
|
- if argsStack.Len() == 0 {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() == 0 {
|
|
|
err = errors.New("GCD requires at least 1 argument")
|
|
err = errors.New("GCD requires at least 1 argument")
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
@@ -527,8 +815,8 @@ func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) {
|
|
|
val float64
|
|
val float64
|
|
|
nums = []float64{}
|
|
nums = []float64{}
|
|
|
)
|
|
)
|
|
|
- for !argsStack.Empty() {
|
|
|
|
|
- token := argsStack.Pop().(efp.Token)
|
|
|
|
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
|
+ token := arg.Value.(efp.Token)
|
|
|
if token.TValue == "" {
|
|
if token.TValue == "" {
|
|
|
continue
|
|
continue
|
|
|
}
|
|
}
|
|
@@ -573,8 +861,8 @@ func lcm(a, b float64) float64 {
|
|
|
//
|
|
//
|
|
|
// LCM(number1,[number2],...)
|
|
// LCM(number1,[number2],...)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
|
|
|
|
|
- if argsStack.Len() == 0 {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() == 0 {
|
|
|
err = errors.New("LCM requires at least 1 argument")
|
|
err = errors.New("LCM requires at least 1 argument")
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
@@ -582,8 +870,8 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
|
|
|
val float64
|
|
val float64
|
|
|
nums = []float64{}
|
|
nums = []float64{}
|
|
|
)
|
|
)
|
|
|
- for !argsStack.Empty() {
|
|
|
|
|
- token := argsStack.Pop().(efp.Token)
|
|
|
|
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
|
+ token := arg.Value.(efp.Token)
|
|
|
if token.TValue == "" {
|
|
if token.TValue == "" {
|
|
|
continue
|
|
continue
|
|
|
}
|
|
}
|
|
@@ -618,17 +906,17 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
|
|
|
//
|
|
//
|
|
|
// POWER(number,power)
|
|
// POWER(number,power)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
|
|
|
|
|
- if argsStack.Len() != 2 {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 2 {
|
|
|
err = errors.New("POWER requires 2 numeric arguments")
|
|
err = errors.New("POWER requires 2 numeric arguments")
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
var x, y float64
|
|
var x, y float64
|
|
|
- y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
|
|
|
|
|
|
+ x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
- x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
|
|
|
|
|
|
+ y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
@@ -649,13 +937,13 @@ func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
|
|
|
//
|
|
//
|
|
|
// PRODUCT(number1,[number2],...)
|
|
// PRODUCT(number1,[number2],...)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
|
|
|
var (
|
|
var (
|
|
|
val float64
|
|
val float64
|
|
|
product float64 = 1
|
|
product float64 = 1
|
|
|
)
|
|
)
|
|
|
- for !argsStack.Empty() {
|
|
|
|
|
- token := argsStack.Pop().(efp.Token)
|
|
|
|
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
|
+ token := arg.Value.(efp.Token)
|
|
|
if token.TValue == "" {
|
|
if token.TValue == "" {
|
|
|
continue
|
|
continue
|
|
|
}
|
|
}
|
|
@@ -676,13 +964,13 @@ func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
|
|
|
//
|
|
//
|
|
|
// SIGN(number)
|
|
// SIGN(number)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) {
|
|
|
|
|
- if argsStack.Len() != 1 {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
err = errors.New("SIGN requires 1 numeric arguments")
|
|
err = errors.New("SIGN requires 1 numeric arguments")
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
var val float64
|
|
var val float64
|
|
|
- val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
|
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
@@ -703,13 +991,13 @@ func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) {
|
|
|
//
|
|
//
|
|
|
// SQRT(number)
|
|
// SQRT(number)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
|
|
|
|
|
- if argsStack.Len() != 1 {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
err = errors.New("SQRT requires 1 numeric arguments")
|
|
err = errors.New("SQRT requires 1 numeric arguments")
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
var val float64
|
|
var val float64
|
|
|
- val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
|
|
|
|
|
|
+ val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
@@ -726,11 +1014,11 @@ func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
|
|
|
//
|
|
//
|
|
|
// SUM(number1,[number2],...)
|
|
// SUM(number1,[number2],...)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
|
|
|
var val float64
|
|
var val float64
|
|
|
var sum float64
|
|
var sum float64
|
|
|
- for !argsStack.Empty() {
|
|
|
|
|
- token := argsStack.Pop().(efp.Token)
|
|
|
|
|
|
|
+ for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
|
+ token := arg.Value.(efp.Token)
|
|
|
if token.TValue == "" {
|
|
if token.TValue == "" {
|
|
|
continue
|
|
continue
|
|
|
}
|
|
}
|
|
@@ -749,17 +1037,17 @@ func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
|
|
|
//
|
|
//
|
|
|
// QUOTIENT(numerator,denominator)
|
|
// QUOTIENT(numerator,denominator)
|
|
|
//
|
|
//
|
|
|
-func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) {
|
|
|
|
|
- if argsStack.Len() != 2 {
|
|
|
|
|
|
|
+func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
|
|
|
|
|
+ if argsList.Len() != 2 {
|
|
|
err = errors.New("QUOTIENT requires 2 numeric arguments")
|
|
err = errors.New("QUOTIENT requires 2 numeric arguments")
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
var x, y float64
|
|
var x, y float64
|
|
|
- y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
|
|
|
|
|
|
+ x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|
|
|
- x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
|
|
|
|
|
|
+ y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return
|
|
return
|
|
|
}
|
|
}
|