|
|
@@ -111,6 +111,12 @@ type formulaArg struct {
|
|
|
func (fa formulaArg) Value() (value string) {
|
|
|
switch fa.Type {
|
|
|
case ArgNumber:
|
|
|
+ if fa.Boolean {
|
|
|
+ if fa.Number == 0 {
|
|
|
+ return "FALSE"
|
|
|
+ }
|
|
|
+ return "TRUE"
|
|
|
+ }
|
|
|
return fmt.Sprintf("%g", fa.Number)
|
|
|
case ArgString:
|
|
|
return fa.String
|
|
|
@@ -120,6 +126,22 @@ func (fa formulaArg) Value() (value string) {
|
|
|
return
|
|
|
}
|
|
|
|
|
|
+// ToNumber returns a formula argument with number data type.
|
|
|
+func (fa formulaArg) ToNumber() formulaArg {
|
|
|
+ var n float64
|
|
|
+ var err error
|
|
|
+ switch fa.Type {
|
|
|
+ case ArgString:
|
|
|
+ n, err = strconv.ParseFloat(fa.String, 64)
|
|
|
+ if err != nil {
|
|
|
+ return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ }
|
|
|
+ case ArgNumber:
|
|
|
+ n = fa.Number
|
|
|
+ }
|
|
|
+ return newNumberFormulaArg(n)
|
|
|
+}
|
|
|
+
|
|
|
// formulaFuncs is the type of the formula functions.
|
|
|
type formulaFuncs struct{}
|
|
|
|
|
|
@@ -274,6 +296,9 @@ func getPriority(token efp.Token) (pri int) {
|
|
|
|
|
|
// newNumberFormulaArg constructs a number formula argument.
|
|
|
func newNumberFormulaArg(n float64) formulaArg {
|
|
|
+ if math.IsNaN(n) {
|
|
|
+ return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
+ }
|
|
|
return formulaArg{Type: ArgNumber, Number: n}
|
|
|
}
|
|
|
|
|
|
@@ -282,6 +307,20 @@ func newStringFormulaArg(s string) formulaArg {
|
|
|
return formulaArg{Type: ArgString, String: s}
|
|
|
}
|
|
|
|
|
|
+// newMatrixFormulaArg constructs a matrix formula argument.
|
|
|
+func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
|
|
|
+ return formulaArg{Type: ArgMatrix, Matrix: m}
|
|
|
+}
|
|
|
+
|
|
|
+// newBoolFormulaArg constructs a boolean formula argument.
|
|
|
+func newBoolFormulaArg(b bool) formulaArg {
|
|
|
+ var n float64
|
|
|
+ if b {
|
|
|
+ n = 1
|
|
|
+ }
|
|
|
+ return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
|
|
|
+}
|
|
|
+
|
|
|
// newErrorFormulaArg create an error formula argument of a given type with a specified error message.
|
|
|
func newErrorFormulaArg(formulaError, msg string) formulaArg {
|
|
|
return formulaArg{Type: ArgError, String: formulaError, Error: msg}
|
|
|
@@ -426,7 +465,12 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
|
|
argsList.Init()
|
|
|
opfStack.Pop()
|
|
|
if opfStack.Len() > 0 { // still in function stack
|
|
|
- opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ if nextToken.TType == efp.TokenTypeOperatorInfix {
|
|
|
+ // mathematics calculate in formula function
|
|
|
+ opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
+ } else {
|
|
|
+ argsList.PushBack(arg)
|
|
|
+ }
|
|
|
} else {
|
|
|
opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
}
|
|
|
@@ -994,11 +1038,11 @@ func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Abs(val))
|
|
|
+ return newNumberFormulaArg(math.Abs(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
|
|
@@ -1011,11 +1055,11 @@ func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Acos(val))
|
|
|
+ return newNumberFormulaArg(math.Acos(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
|
|
@@ -1027,11 +1071,11 @@ func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Acosh(val))
|
|
|
+ return newNumberFormulaArg(math.Acosh(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
|
|
@@ -1044,11 +1088,11 @@ func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Pi/2 - math.Atan(val))
|
|
|
+ return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
|
|
@@ -1060,11 +1104,11 @@ func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Atanh(1 / val))
|
|
|
+ return newNumberFormulaArg(math.Atanh(1 / arg.Number))
|
|
|
}
|
|
|
|
|
|
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
|
|
@@ -1110,11 +1154,11 @@ func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Asin(val))
|
|
|
+ return newNumberFormulaArg(math.Asin(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
|
|
@@ -1126,11 +1170,11 @@ func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Asinh(val))
|
|
|
+ return newNumberFormulaArg(math.Asinh(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
@@ -1143,11 +1187,11 @@ func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Atan(val))
|
|
|
+ return newNumberFormulaArg(math.Atan(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
|
|
@@ -1159,11 +1203,11 @@ func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
|
|
|
}
|
|
|
- val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
+ arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
+ if arg.Type == ArgError {
|
|
|
+ return arg
|
|
|
}
|
|
|
- return newNumberFormulaArg(math.Atanh(val))
|
|
|
+ return newNumberFormulaArg(math.Atanh(arg.Number))
|
|
|
}
|
|
|
|
|
|
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
@@ -2185,19 +2229,19 @@ func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
|
|
|
if err != nil {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
}
|
|
|
- matrix := make([][]float64, 0, dimension)
|
|
|
+ matrix := make([][]formulaArg, 0, dimension)
|
|
|
for i := 0; i < dimension; i++ {
|
|
|
- row := make([]float64, dimension)
|
|
|
+ row := make([]formulaArg, dimension)
|
|
|
for j := 0; j < dimension; j++ {
|
|
|
if i == j {
|
|
|
- row[j] = float64(1.0)
|
|
|
+ row[j] = newNumberFormulaArg(float64(1.0))
|
|
|
} else {
|
|
|
- row[j] = float64(0.0)
|
|
|
+ row[j] = newNumberFormulaArg(float64(0.0))
|
|
|
}
|
|
|
}
|
|
|
matrix = append(matrix, row)
|
|
|
}
|
|
|
- return
|
|
|
+ return newMatrixFormulaArg(matrix)
|
|
|
}
|
|
|
|
|
|
// ODD function ounds a supplied number away from zero (i.e. rounds a positive
|
|
|
@@ -2704,6 +2748,8 @@ func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
}
|
|
|
sum += val
|
|
|
+ case ArgNumber:
|
|
|
+ sum += token.Number
|
|
|
case ArgMatrix:
|
|
|
for _, row := range token.Matrix {
|
|
|
for _, value := range row {
|
|
|
@@ -3173,7 +3219,7 @@ func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
}
|
|
|
}
|
|
|
- return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(and)))
|
|
|
+ return newBoolFormulaArg(and)
|
|
|
}
|
|
|
|
|
|
// OR function tests a number of supplied conditions and returns either TRUE
|
|
|
@@ -3380,7 +3426,7 @@ func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
}
|
|
|
if argsList.Len() == 1 {
|
|
|
- return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(cond)))
|
|
|
+ return newBoolFormulaArg(cond)
|
|
|
}
|
|
|
if cond {
|
|
|
return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
|
|
|
@@ -3399,7 +3445,6 @@ func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
|
|
|
//
|
|
|
// CHOOSE(index_num,value1,[value2],...)
|
|
|
//
|
|
|
-// TODO: resolve range choose.
|
|
|
func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() < 2 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
|
|
|
@@ -3415,5 +3460,12 @@ func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
|
|
|
for i := 0; i < idx; i++ {
|
|
|
arg = arg.Next()
|
|
|
}
|
|
|
- return newStringFormulaArg(arg.Value.(formulaArg).String)
|
|
|
+ var result formulaArg
|
|
|
+ switch arg.Value.(formulaArg).Type {
|
|
|
+ case ArgString:
|
|
|
+ result = newStringFormulaArg(arg.Value.(formulaArg).String)
|
|
|
+ case ArgMatrix:
|
|
|
+ result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
|
|
|
+ }
|
|
|
+ return result
|
|
|
}
|