|
@@ -294,11 +294,15 @@ var tokenPriority = map[string]int{
|
|
|
// IF
|
|
// IF
|
|
|
// IFERROR
|
|
// IFERROR
|
|
|
// IMABS
|
|
// IMABS
|
|
|
|
|
+// IMAGINARY
|
|
|
|
|
+// IMARGUMENT
|
|
|
|
|
+// IMCONJUGATE
|
|
|
// IMCOS
|
|
// IMCOS
|
|
|
// IMCOSH
|
|
// IMCOSH
|
|
|
// IMCOT
|
|
// IMCOT
|
|
|
// IMCSC
|
|
// IMCSC
|
|
|
// IMCSCH
|
|
// IMCSCH
|
|
|
|
|
+// IMDIV
|
|
|
// IMEXP
|
|
// IMEXP
|
|
|
// IMLN
|
|
// IMLN
|
|
|
// IMLOG10
|
|
// IMLOG10
|
|
@@ -1712,13 +1716,61 @@ func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
|
|
return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
|
|
|
}
|
|
}
|
|
|
- inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
|
|
|
|
|
|
|
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
}
|
|
}
|
|
|
return newNumberFormulaArg(cmplx.Abs(inumber))
|
|
return newNumberFormulaArg(cmplx.Abs(inumber))
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
+// IMAGINARY function returns the imaginary coefficient of a supplied complex
|
|
|
|
|
+// number. The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// IMAGINARY(inumber)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument")
|
|
|
|
|
+ }
|
|
|
|
|
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
|
|
+ }
|
|
|
|
|
+ return newNumberFormulaArg(imag(inumber))
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// IMARGUMENT function returns the phase (also called the argument) of a
|
|
|
|
|
+// supplied complex number. The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// IMARGUMENT(inumber)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument")
|
|
|
|
|
+ }
|
|
|
|
|
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
|
|
+ }
|
|
|
|
|
+ return newNumberFormulaArg(cmplx.Phase(inumber))
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
|
|
+// IMCONJUGATE function returns the complex conjugate of a supplied complex
|
|
|
|
|
+// number. The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// IMCONJUGATE(inumber)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg {
|
|
|
|
|
+ if argsList.Len() != 1 {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument")
|
|
|
|
|
+ }
|
|
|
|
|
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
|
|
+ }
|
|
|
|
|
+ return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i"))
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
// IMCOS function returns the cosine of a supplied complex number. The syntax
|
|
// IMCOS function returns the cosine of a supplied complex number. The syntax
|
|
|
// of the function is:
|
|
// of the function is:
|
|
|
//
|
|
//
|
|
@@ -1728,7 +1780,7 @@ func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
|
|
|
if argsList.Len() != 1 {
|
|
if argsList.Len() != 1 {
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
|
|
return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
|
|
|
}
|
|
}
|
|
|
- inumber, err := strconv.ParseComplex(strings.Replace(argsList.Front().Value.(formulaArg).Value(), "j", "i", -1), 128)
|
|
|
|
|
|
|
+ inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
if err != nil {
|
|
if err != nil {
|
|
|
return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
}
|
|
}
|
|
@@ -1807,6 +1859,30 @@ func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
|
|
|
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
+// IMDIV function calculates the quotient of two complex numbers (i.e. divides
|
|
|
|
|
+// one complex number by another). The syntax of the function is:
|
|
|
|
|
+//
|
|
|
|
|
+// IMDIV(inumber1,inumber2)
|
|
|
|
|
+//
|
|
|
|
|
+func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg {
|
|
|
|
|
+ if argsList.Len() != 2 {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments")
|
|
|
|
|
+ }
|
|
|
|
|
+ inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
|
|
+ }
|
|
|
|
|
+ inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
|
|
|
|
|
+ if err != nil {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
|
|
+ }
|
|
|
|
|
+ num := inumber1 / inumber2
|
|
|
|
|
+ if cmplx.IsInf(num) {
|
|
|
|
|
+ return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
+ }
|
|
|
|
|
+ return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
|
|
+}
|
|
|
|
|
+
|
|
|
// IMEXP function returns the exponential of a supplied complex number. The
|
|
// IMEXP function returns the exponential of a supplied complex number. The
|
|
|
// syntax of the function is:
|
|
// syntax of the function is:
|
|
|
//
|
|
//
|