|
|
@@ -1,8067 +0,0 @@
|
|
|
-// Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
|
|
|
-// this source code is governed by a BSD-style license that can be found in
|
|
|
-// the LICENSE file.
|
|
|
-//
|
|
|
-// Package excelize providing a set of functions that allow you to write to
|
|
|
-// and read from XLSX / XLSM / XLTM files. Supports reading and writing
|
|
|
-// spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
|
|
|
-// complex components by high compatibility, and provided streaming API for
|
|
|
-// generating or reading data from a worksheet with huge amounts of data. This
|
|
|
-// library needs Go version 1.15 or later.
|
|
|
-
|
|
|
-package excelize
|
|
|
-
|
|
|
-import (
|
|
|
- "bytes"
|
|
|
- "container/list"
|
|
|
- "errors"
|
|
|
- "fmt"
|
|
|
- "math"
|
|
|
- "math/cmplx"
|
|
|
- "math/rand"
|
|
|
- "net/url"
|
|
|
- "reflect"
|
|
|
- "regexp"
|
|
|
- "sort"
|
|
|
- "strconv"
|
|
|
- "strings"
|
|
|
- "time"
|
|
|
- "unicode"
|
|
|
- "unsafe"
|
|
|
-
|
|
|
- "github.com/xuri/efp"
|
|
|
- "golang.org/x/text/language"
|
|
|
- "golang.org/x/text/message"
|
|
|
-)
|
|
|
-
|
|
|
-// Excel formula errors
|
|
|
-const (
|
|
|
- formulaErrorDIV = "#DIV/0!"
|
|
|
- formulaErrorNAME = "#NAME?"
|
|
|
- formulaErrorNA = "#N/A"
|
|
|
- formulaErrorNUM = "#NUM!"
|
|
|
- formulaErrorVALUE = "#VALUE!"
|
|
|
- formulaErrorREF = "#REF!"
|
|
|
- formulaErrorNULL = "#NULL"
|
|
|
- formulaErrorSPILL = "#SPILL!"
|
|
|
- formulaErrorCALC = "#CALC!"
|
|
|
- formulaErrorGETTINGDATA = "#GETTING_DATA"
|
|
|
-)
|
|
|
-
|
|
|
-// Numeric precision correct numeric values as legacy Excel application
|
|
|
-// https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
|
|
|
-// top figure the fraction 1/9000 in Excel is displayed. Although this number
|
|
|
-// has a decimal representation that is an infinite string of ones, Excel
|
|
|
-// displays only the leading 15 figures. In the second line, the number one
|
|
|
-// is added to the fraction, and again Excel displays only 15 figures.
|
|
|
-const numericPrecision = 1000000000000000
|
|
|
-const maxFinancialIterations = 128
|
|
|
-const financialPercision = 1.0e-08
|
|
|
-
|
|
|
-// cellRef defines the structure of a cell reference.
|
|
|
-type cellRef struct {
|
|
|
- Col int
|
|
|
- Row int
|
|
|
- Sheet string
|
|
|
-}
|
|
|
-
|
|
|
-// cellRef defines the structure of a cell range.
|
|
|
-type cellRange struct {
|
|
|
- From cellRef
|
|
|
- To cellRef
|
|
|
-}
|
|
|
-
|
|
|
-// formula criteria condition enumeration.
|
|
|
-const (
|
|
|
- _ byte = iota
|
|
|
- criteriaEq
|
|
|
- criteriaLe
|
|
|
- criteriaGe
|
|
|
- criteriaL
|
|
|
- criteriaG
|
|
|
- criteriaBeg
|
|
|
- criteriaEnd
|
|
|
- criteriaErr
|
|
|
-)
|
|
|
-
|
|
|
-// formulaCriteria defined formula criteria parser result.
|
|
|
-type formulaCriteria struct {
|
|
|
- Type byte
|
|
|
- Condition string
|
|
|
-}
|
|
|
-
|
|
|
-// ArgType is the type if formula argument type.
|
|
|
-type ArgType byte
|
|
|
-
|
|
|
-// Formula argument types enumeration.
|
|
|
-const (
|
|
|
- ArgUnknown ArgType = iota
|
|
|
- ArgNumber
|
|
|
- ArgString
|
|
|
- ArgList
|
|
|
- ArgMatrix
|
|
|
- ArgError
|
|
|
- ArgEmpty
|
|
|
-)
|
|
|
-
|
|
|
-// formulaArg is the argument of a formula or function.
|
|
|
-type formulaArg struct {
|
|
|
- SheetName string
|
|
|
- Number float64
|
|
|
- String string
|
|
|
- List []formulaArg
|
|
|
- Matrix [][]formulaArg
|
|
|
- Boolean bool
|
|
|
- Error string
|
|
|
- Type ArgType
|
|
|
- cellRefs, cellRanges *list.List
|
|
|
-}
|
|
|
-
|
|
|
-// Value returns a string data type of the formula argument.
|
|
|
-func (fa formulaArg) Value() (value string) {
|
|
|
- switch fa.Type {
|
|
|
- case ArgNumber:
|
|
|
- if fa.Boolean {
|
|
|
- if fa.Number == 0 {
|
|
|
- return "FALSE"
|
|
|
- }
|
|
|
- return "TRUE"
|
|
|
- }
|
|
|
- return fmt.Sprintf("%g", fa.Number)
|
|
|
- case ArgString:
|
|
|
- return fa.String
|
|
|
- case ArgError:
|
|
|
- return fa.Error
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// ToNumber returns a formula argument with number data type.
|
|
|
-func (fa formulaArg) ToNumber() formulaArg {
|
|
|
- var n float64
|
|
|
- var err error
|
|
|
- switch fa.Type {
|
|
|
- case ArgString:
|
|
|
- n, err = strconv.ParseFloat(fa.String, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- n = fa.Number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(n)
|
|
|
-}
|
|
|
-
|
|
|
-// ToBool returns a formula argument with boolean data type.
|
|
|
-func (fa formulaArg) ToBool() formulaArg {
|
|
|
- var b bool
|
|
|
- var err error
|
|
|
- switch fa.Type {
|
|
|
- case ArgString:
|
|
|
- b, err = strconv.ParseBool(fa.String)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if fa.Boolean && fa.Number == 1 {
|
|
|
- b = true
|
|
|
- }
|
|
|
- }
|
|
|
- return newBoolFormulaArg(b)
|
|
|
-}
|
|
|
-
|
|
|
-// ToList returns a formula argument with array data type.
|
|
|
-func (fa formulaArg) ToList() []formulaArg {
|
|
|
- switch fa.Type {
|
|
|
- case ArgMatrix:
|
|
|
- list := []formulaArg{}
|
|
|
- for _, row := range fa.Matrix {
|
|
|
- list = append(list, row...)
|
|
|
- }
|
|
|
- return list
|
|
|
- case ArgList:
|
|
|
- return fa.List
|
|
|
- case ArgNumber, ArgString, ArgError, ArgUnknown:
|
|
|
- return []formulaArg{fa}
|
|
|
- }
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// formulaFuncs is the type of the formula functions.
|
|
|
-type formulaFuncs struct {
|
|
|
- f *File
|
|
|
- sheet, cell string
|
|
|
-}
|
|
|
-
|
|
|
-// tokenPriority defined basic arithmetic operator priority.
|
|
|
-var tokenPriority = map[string]int{
|
|
|
- "^": 5,
|
|
|
- "*": 4,
|
|
|
- "/": 4,
|
|
|
- "+": 3,
|
|
|
- "-": 3,
|
|
|
- "=": 2,
|
|
|
- "<>": 2,
|
|
|
- "<": 2,
|
|
|
- "<=": 2,
|
|
|
- ">": 2,
|
|
|
- ">=": 2,
|
|
|
- "&": 1,
|
|
|
-}
|
|
|
-
|
|
|
-// CalcCellValue provides a function to get calculated cell value. This
|
|
|
-// feature is currently in working processing. Array formula, table formula
|
|
|
-// and some other formulas are not supported currently.
|
|
|
-//
|
|
|
-// Supported formula functions:
|
|
|
-//
|
|
|
-// ABS
|
|
|
-// ACOS
|
|
|
-// ACOSH
|
|
|
-// ACOT
|
|
|
-// ACOTH
|
|
|
-// AND
|
|
|
-// ARABIC
|
|
|
-// ASIN
|
|
|
-// ASINH
|
|
|
-// ATAN
|
|
|
-// ATAN2
|
|
|
-// ATANH
|
|
|
-// AVERAGE
|
|
|
-// AVERAGEA
|
|
|
-// BASE
|
|
|
-// BESSELI
|
|
|
-// BESSELJ
|
|
|
-// BESSELK
|
|
|
-// BESSELY
|
|
|
-// BIN2DEC
|
|
|
-// BIN2HEX
|
|
|
-// BIN2OCT
|
|
|
-// BITAND
|
|
|
-// BITLSHIFT
|
|
|
-// BITOR
|
|
|
-// BITRSHIFT
|
|
|
-// BITXOR
|
|
|
-// CEILING
|
|
|
-// CEILING.MATH
|
|
|
-// CEILING.PRECISE
|
|
|
-// CHAR
|
|
|
-// CHOOSE
|
|
|
-// CLEAN
|
|
|
-// CODE
|
|
|
-// COLUMN
|
|
|
-// COLUMNS
|
|
|
-// COMBIN
|
|
|
-// COMBINA
|
|
|
-// COMPLEX
|
|
|
-// CONCAT
|
|
|
-// CONCATENATE
|
|
|
-// COS
|
|
|
-// COSH
|
|
|
-// COT
|
|
|
-// COTH
|
|
|
-// COUNT
|
|
|
-// COUNTA
|
|
|
-// COUNTBLANK
|
|
|
-// CSC
|
|
|
-// CSCH
|
|
|
-// CUMIPMT
|
|
|
-// CUMPRINC
|
|
|
-// DATE
|
|
|
-// DATEDIF
|
|
|
-// DB
|
|
|
-// DDB
|
|
|
-// DEC2BIN
|
|
|
-// DEC2HEX
|
|
|
-// DEC2OCT
|
|
|
-// DECIMAL
|
|
|
-// DEGREES
|
|
|
-// DOLLARDE
|
|
|
-// DOLLARFR
|
|
|
-// EFFECT
|
|
|
-// ENCODEURL
|
|
|
-// EVEN
|
|
|
-// EXACT
|
|
|
-// EXP
|
|
|
-// FACT
|
|
|
-// FACTDOUBLE
|
|
|
-// FALSE
|
|
|
-// FIND
|
|
|
-// FINDB
|
|
|
-// FISHER
|
|
|
-// FISHERINV
|
|
|
-// FIXED
|
|
|
-// FLOOR
|
|
|
-// FLOOR.MATH
|
|
|
-// FLOOR.PRECISE
|
|
|
-// FV
|
|
|
-// FVSCHEDULE
|
|
|
-// GAMMA
|
|
|
-// GAMMALN
|
|
|
-// GCD
|
|
|
-// HARMEAN
|
|
|
-// HEX2BIN
|
|
|
-// HEX2DEC
|
|
|
-// HEX2OCT
|
|
|
-// HLOOKUP
|
|
|
-// IF
|
|
|
-// IFERROR
|
|
|
-// IMABS
|
|
|
-// IMAGINARY
|
|
|
-// IMARGUMENT
|
|
|
-// IMCONJUGATE
|
|
|
-// IMCOS
|
|
|
-// IMCOSH
|
|
|
-// IMCOT
|
|
|
-// IMCSC
|
|
|
-// IMCSCH
|
|
|
-// IMDIV
|
|
|
-// IMEXP
|
|
|
-// IMLN
|
|
|
-// IMLOG10
|
|
|
-// IMLOG2
|
|
|
-// IMPOWER
|
|
|
-// IMPRODUCT
|
|
|
-// IMREAL
|
|
|
-// IMSEC
|
|
|
-// IMSECH
|
|
|
-// IMSIN
|
|
|
-// IMSINH
|
|
|
-// IMSQRT
|
|
|
-// IMSUB
|
|
|
-// IMSUM
|
|
|
-// IMTAN
|
|
|
-// INT
|
|
|
-// IPMT
|
|
|
-// IRR
|
|
|
-// ISBLANK
|
|
|
-// ISERR
|
|
|
-// ISERROR
|
|
|
-// ISEVEN
|
|
|
-// ISNA
|
|
|
-// ISNONTEXT
|
|
|
-// ISNUMBER
|
|
|
-// ISODD
|
|
|
-// ISTEXT
|
|
|
-// ISO.CEILING
|
|
|
-// ISPMT
|
|
|
-// KURT
|
|
|
-// LARGE
|
|
|
-// LCM
|
|
|
-// LEFT
|
|
|
-// LEFTB
|
|
|
-// LEN
|
|
|
-// LENB
|
|
|
-// LN
|
|
|
-// LOG
|
|
|
-// LOG10
|
|
|
-// LOOKUP
|
|
|
-// LOWER
|
|
|
-// MAX
|
|
|
-// MDETERM
|
|
|
-// MEDIAN
|
|
|
-// MID
|
|
|
-// MIDB
|
|
|
-// MIN
|
|
|
-// MINA
|
|
|
-// MIRR
|
|
|
-// MOD
|
|
|
-// MROUND
|
|
|
-// MULTINOMIAL
|
|
|
-// MUNIT
|
|
|
-// N
|
|
|
-// NA
|
|
|
-// NOMINAL
|
|
|
-// NORM.DIST
|
|
|
-// NORMDIST
|
|
|
-// NORM.INV
|
|
|
-// NORMINV
|
|
|
-// NORM.S.DIST
|
|
|
-// NORMSDIST
|
|
|
-// NORM.S.INV
|
|
|
-// NORMSINV
|
|
|
-// NOT
|
|
|
-// NOW
|
|
|
-// NPER
|
|
|
-// NPV
|
|
|
-// OCT2BIN
|
|
|
-// OCT2DEC
|
|
|
-// OCT2HEX
|
|
|
-// ODD
|
|
|
-// OR
|
|
|
-// PDURATION
|
|
|
-// PERCENTILE.INC
|
|
|
-// PERCENTILE
|
|
|
-// PERMUT
|
|
|
-// PERMUTATIONA
|
|
|
-// PI
|
|
|
-// PMT
|
|
|
-// POISSON.DIST
|
|
|
-// POISSON
|
|
|
-// POWER
|
|
|
-// PPMT
|
|
|
-// PRODUCT
|
|
|
-// PROPER
|
|
|
-// QUARTILE
|
|
|
-// QUARTILE.INC
|
|
|
-// QUOTIENT
|
|
|
-// RADIANS
|
|
|
-// RAND
|
|
|
-// RANDBETWEEN
|
|
|
-// REPLACE
|
|
|
-// REPLACEB
|
|
|
-// REPT
|
|
|
-// RIGHT
|
|
|
-// RIGHTB
|
|
|
-// ROMAN
|
|
|
-// ROUND
|
|
|
-// ROUNDDOWN
|
|
|
-// ROUNDUP
|
|
|
-// ROW
|
|
|
-// ROWS
|
|
|
-// SEC
|
|
|
-// SECH
|
|
|
-// SHEET
|
|
|
-// SIGN
|
|
|
-// SIN
|
|
|
-// SINH
|
|
|
-// SKEW
|
|
|
-// SMALL
|
|
|
-// SQRT
|
|
|
-// SQRTPI
|
|
|
-// STDEV
|
|
|
-// STDEV.S
|
|
|
-// STDEVA
|
|
|
-// SUBSTITUTE
|
|
|
-// SUM
|
|
|
-// SUMIF
|
|
|
-// SUMSQ
|
|
|
-// T
|
|
|
-// TAN
|
|
|
-// TANH
|
|
|
-// TODAY
|
|
|
-// TRIM
|
|
|
-// TRUE
|
|
|
-// TRUNC
|
|
|
-// UNICHAR
|
|
|
-// UNICODE
|
|
|
-// UPPER
|
|
|
-// VAR.P
|
|
|
-// VARP
|
|
|
-// VLOOKUP
|
|
|
-//
|
|
|
-func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
|
|
|
- var (
|
|
|
- formula string
|
|
|
- token efp.Token
|
|
|
- )
|
|
|
- if formula, err = f.GetCellFormula(sheet, cell); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- ps := efp.ExcelParser()
|
|
|
- tokens := ps.Parse(formula)
|
|
|
- if tokens == nil {
|
|
|
- return
|
|
|
- }
|
|
|
- if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- result = token.TValue
|
|
|
- isNum, precision := isNumeric(result)
|
|
|
- if isNum && precision > 15 {
|
|
|
- num, _ := roundPrecision(result)
|
|
|
- result = strings.ToUpper(num)
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// getPriority calculate arithmetic operator priority.
|
|
|
-func getPriority(token efp.Token) (pri int) {
|
|
|
- pri = tokenPriority[token.TValue]
|
|
|
- if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
|
|
|
- pri = 6
|
|
|
- }
|
|
|
- if isBeginParenthesesToken(token) { // (
|
|
|
- pri = 0
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// newNumberFormulaArg constructs a number formula argument.
|
|
|
-func newNumberFormulaArg(n float64) formulaArg {
|
|
|
- if math.IsNaN(n) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return formulaArg{Type: ArgNumber, Number: n}
|
|
|
-}
|
|
|
-
|
|
|
-// newStringFormulaArg constructs a string formula argument.
|
|
|
-func newStringFormulaArg(s string) formulaArg {
|
|
|
- return formulaArg{Type: ArgString, String: s}
|
|
|
-}
|
|
|
-
|
|
|
-// newMatrixFormulaArg constructs a matrix formula argument.
|
|
|
-func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
|
|
|
- return formulaArg{Type: ArgMatrix, Matrix: m}
|
|
|
-}
|
|
|
-
|
|
|
-// newListFormulaArg create a list formula argument.
|
|
|
-func newListFormulaArg(l []formulaArg) formulaArg {
|
|
|
- return formulaArg{Type: ArgList, List: l}
|
|
|
-}
|
|
|
-
|
|
|
-// newBoolFormulaArg constructs a boolean formula argument.
|
|
|
-func newBoolFormulaArg(b bool) formulaArg {
|
|
|
- var n float64
|
|
|
- if b {
|
|
|
- n = 1
|
|
|
- }
|
|
|
- return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
|
|
|
-}
|
|
|
-
|
|
|
-// newErrorFormulaArg create an error formula argument of a given type with a
|
|
|
-// specified error message.
|
|
|
-func newErrorFormulaArg(formulaError, msg string) formulaArg {
|
|
|
- return formulaArg{Type: ArgError, String: formulaError, Error: msg}
|
|
|
-}
|
|
|
-
|
|
|
-// newEmptyFormulaArg create an empty formula argument.
|
|
|
-func newEmptyFormulaArg() formulaArg {
|
|
|
- return formulaArg{Type: ArgEmpty}
|
|
|
-}
|
|
|
-
|
|
|
-// evalInfixExp evaluate syntax analysis by given infix expression after
|
|
|
-// lexical analysis. Evaluate an infix expression containing formulas by
|
|
|
-// stacks:
|
|
|
-//
|
|
|
-// opd - Operand
|
|
|
-// opt - Operator
|
|
|
-// opf - Operation formula
|
|
|
-// opfd - Operand of the operation formula
|
|
|
-// opft - Operator of the operation formula
|
|
|
-// args - Arguments list of the operation formula
|
|
|
-//
|
|
|
-// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
|
|
|
-//
|
|
|
-func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
|
|
|
- var err error
|
|
|
- opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
|
|
- for i := 0; i < len(tokens); i++ {
|
|
|
- token := tokens[i]
|
|
|
-
|
|
|
- // out of function stack
|
|
|
- if opfStack.Len() == 0 {
|
|
|
- if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
|
|
|
- return efp.Token{}, err
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // function start
|
|
|
- if isFunctionStartToken(token) {
|
|
|
- opfStack.Push(token)
|
|
|
- argsStack.Push(list.New().Init())
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- // in function stack, walk 2 token at once
|
|
|
- if opfStack.Len() > 0 {
|
|
|
- var nextToken efp.Token
|
|
|
- if i+1 < len(tokens) {
|
|
|
- nextToken = tokens[i+1]
|
|
|
- }
|
|
|
-
|
|
|
- // current token is args or range, skip next token, order required: parse reference first
|
|
|
- if token.TSubType == efp.TokenSubTypeRange {
|
|
|
- if !opftStack.Empty() {
|
|
|
- // parse reference: must reference at here
|
|
|
- result, err := f.parseReference(sheet, token.TValue)
|
|
|
- if err != nil {
|
|
|
- return efp.Token{TValue: formulaErrorNAME}, err
|
|
|
- }
|
|
|
- if result.Type != ArgString {
|
|
|
- return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
|
- }
|
|
|
- opfdStack.Push(efp.Token{
|
|
|
- TType: efp.TokenTypeOperand,
|
|
|
- TSubType: efp.TokenSubTypeNumber,
|
|
|
- TValue: result.String,
|
|
|
- })
|
|
|
- continue
|
|
|
- }
|
|
|
- if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
|
|
|
- // parse reference: reference or range at here
|
|
|
- result, err := f.parseReference(sheet, token.TValue)
|
|
|
- if err != nil {
|
|
|
- return efp.Token{TValue: formulaErrorNAME}, err
|
|
|
- }
|
|
|
- if result.Type == ArgUnknown {
|
|
|
- return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
|
- }
|
|
|
- argsStack.Peek().(*list.List).PushBack(result)
|
|
|
- continue
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // check current token is opft
|
|
|
- if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
|
|
|
- return efp.Token{}, err
|
|
|
- }
|
|
|
-
|
|
|
- // current token is arg
|
|
|
- if token.TType == efp.TokenTypeArgument {
|
|
|
- for !opftStack.Empty() {
|
|
|
- // calculate trigger
|
|
|
- topOpt := opftStack.Peek().(efp.Token)
|
|
|
- if err := calculate(opfdStack, topOpt); err != nil {
|
|
|
- argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
|
|
|
- }
|
|
|
- opftStack.Pop()
|
|
|
- }
|
|
|
- if !opfdStack.Empty() {
|
|
|
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
|
|
|
- }
|
|
|
- continue
|
|
|
- }
|
|
|
-
|
|
|
- // current token is logical
|
|
|
- if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
|
|
|
- }
|
|
|
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
|
|
|
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
|
|
|
- }
|
|
|
-
|
|
|
- // current token is text
|
|
|
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
|
|
|
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
|
|
|
- }
|
|
|
- if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
|
|
|
- return efp.Token{}, err
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- for optStack.Len() != 0 {
|
|
|
- topOpt := optStack.Peek().(efp.Token)
|
|
|
- if err = calculate(opdStack, topOpt); err != nil {
|
|
|
- return efp.Token{}, err
|
|
|
- }
|
|
|
- optStack.Pop()
|
|
|
- }
|
|
|
- if opdStack.Len() == 0 {
|
|
|
- return efp.Token{}, ErrInvalidFormula
|
|
|
- }
|
|
|
- return opdStack.Peek().(efp.Token), err
|
|
|
-}
|
|
|
-
|
|
|
-// evalInfixExpFunc evaluate formula function in the infix expression.
|
|
|
-func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
|
|
|
- if !isFunctionStopToken(token) {
|
|
|
- return nil
|
|
|
- }
|
|
|
- // current token is function stop
|
|
|
- for !opftStack.Empty() {
|
|
|
- // calculate trigger
|
|
|
- topOpt := opftStack.Peek().(efp.Token)
|
|
|
- if err := calculate(opfdStack, topOpt); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- opftStack.Pop()
|
|
|
- }
|
|
|
-
|
|
|
- // push opfd to args
|
|
|
- if opfdStack.Len() > 0 {
|
|
|
- argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
|
|
|
- }
|
|
|
- // call formula function to evaluate
|
|
|
- arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
|
|
|
- "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
|
|
|
- []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
|
|
|
- if arg.Type == ArgError && opfStack.Len() == 1 {
|
|
|
- return errors.New(arg.Value())
|
|
|
- }
|
|
|
- argsStack.Pop()
|
|
|
- opfStack.Pop()
|
|
|
- if opfStack.Len() > 0 { // still in function stack
|
|
|
- if nextToken.TType == efp.TokenTypeOperatorInfix {
|
|
|
- // mathematics calculate in formula function
|
|
|
- opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- } else {
|
|
|
- argsStack.Peek().(*list.List).PushBack(arg)
|
|
|
- }
|
|
|
- } else {
|
|
|
- opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- }
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcPow evaluate exponentiation arithmetic operations.
|
|
|
-func calcPow(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- result := math.Pow(lOpdVal, rOpdVal)
|
|
|
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcEq evaluate equal arithmetic operations.
|
|
|
-func calcEq(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcNEq evaluate not equal arithmetic operations.
|
|
|
-func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcL evaluate less than arithmetic operations.
|
|
|
-func calcL(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcLe evaluate less than or equal arithmetic operations.
|
|
|
-func calcLe(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcG evaluate greater than or equal arithmetic operations.
|
|
|
-func calcG(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcGe evaluate greater than or equal arithmetic operations.
|
|
|
-func calcGe(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcSplice evaluate splice '&' operations.
|
|
|
-func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcAdd evaluate addition arithmetic operations.
|
|
|
-func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- result := lOpdVal + rOpdVal
|
|
|
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcSubtract evaluate subtraction arithmetic operations.
|
|
|
-func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- result := lOpdVal - rOpdVal
|
|
|
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcMultiply evaluate multiplication arithmetic operations.
|
|
|
-func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- result := lOpdVal * rOpdVal
|
|
|
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calcDiv evaluate division arithmetic operations.
|
|
|
-func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
|
|
|
- lOpdVal, err := strconv.ParseFloat(lOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- rOpdVal, err := strconv.ParseFloat(rOpd, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- result := lOpdVal / rOpdVal
|
|
|
- if rOpdVal == 0 {
|
|
|
- return errors.New(formulaErrorDIV)
|
|
|
- }
|
|
|
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// calculate evaluate basic arithmetic operations.
|
|
|
-func calculate(opdStack *Stack, opt efp.Token) error {
|
|
|
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
|
|
|
- if opdStack.Len() < 1 {
|
|
|
- return ErrInvalidFormula
|
|
|
- }
|
|
|
- opd := opdStack.Pop().(efp.Token)
|
|
|
- opdVal, err := strconv.ParseFloat(opd.TValue, 64)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- result := 0 - opdVal
|
|
|
- opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
- }
|
|
|
- tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
|
|
|
- "^": calcPow,
|
|
|
- "*": calcMultiply,
|
|
|
- "/": calcDiv,
|
|
|
- "+": calcAdd,
|
|
|
- "=": calcEq,
|
|
|
- "<>": calcNEq,
|
|
|
- "<": calcL,
|
|
|
- "<=": calcLe,
|
|
|
- ">": calcG,
|
|
|
- ">=": calcGe,
|
|
|
- "&": calcSplice,
|
|
|
- }
|
|
|
- if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
|
|
|
- if opdStack.Len() < 2 {
|
|
|
- return ErrInvalidFormula
|
|
|
- }
|
|
|
- rOpd := opdStack.Pop().(efp.Token)
|
|
|
- lOpd := opdStack.Pop().(efp.Token)
|
|
|
- if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- }
|
|
|
- fn, ok := tokenCalcFunc[opt.TValue]
|
|
|
- if ok {
|
|
|
- if opdStack.Len() < 2 {
|
|
|
- return ErrInvalidFormula
|
|
|
- }
|
|
|
- rOpd := opdStack.Pop().(efp.Token)
|
|
|
- lOpd := opdStack.Pop().(efp.Token)
|
|
|
- if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- }
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// parseOperatorPrefixToken parse operator prefix token.
|
|
|
-func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
|
|
|
- if optStack.Len() == 0 {
|
|
|
- optStack.Push(token)
|
|
|
- } else {
|
|
|
- tokenPriority := getPriority(token)
|
|
|
- topOpt := optStack.Peek().(efp.Token)
|
|
|
- topOptPriority := getPriority(topOpt)
|
|
|
- if tokenPriority > topOptPriority {
|
|
|
- optStack.Push(token)
|
|
|
- } else {
|
|
|
- for tokenPriority <= topOptPriority {
|
|
|
- optStack.Pop()
|
|
|
- if err = calculate(opdStack, topOpt); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- if optStack.Len() > 0 {
|
|
|
- topOpt = optStack.Peek().(efp.Token)
|
|
|
- topOptPriority = getPriority(topOpt)
|
|
|
- continue
|
|
|
- }
|
|
|
- break
|
|
|
- }
|
|
|
- optStack.Push(token)
|
|
|
- }
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// isFunctionStartToken determine if the token is function stop.
|
|
|
-func isFunctionStartToken(token efp.Token) bool {
|
|
|
- return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
|
|
|
-}
|
|
|
-
|
|
|
-// isFunctionStopToken determine if the token is function stop.
|
|
|
-func isFunctionStopToken(token efp.Token) bool {
|
|
|
- return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
|
|
|
-}
|
|
|
-
|
|
|
-// isBeginParenthesesToken determine if the token is begin parentheses: (.
|
|
|
-func isBeginParenthesesToken(token efp.Token) bool {
|
|
|
- return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
|
|
|
-}
|
|
|
-
|
|
|
-// isEndParenthesesToken determine if the token is end parentheses: ).
|
|
|
-func isEndParenthesesToken(token efp.Token) bool {
|
|
|
- return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
|
|
|
-}
|
|
|
-
|
|
|
-// isOperatorPrefixToken determine if the token is parse operator prefix
|
|
|
-// token.
|
|
|
-func isOperatorPrefixToken(token efp.Token) bool {
|
|
|
- _, ok := tokenPriority[token.TValue]
|
|
|
- if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) {
|
|
|
- return true
|
|
|
- }
|
|
|
- return false
|
|
|
-}
|
|
|
-
|
|
|
-// getDefinedNameRefTo convert defined name to reference range.
|
|
|
-func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
|
|
|
- for _, definedName := range f.GetDefinedName() {
|
|
|
- if definedName.Name == definedNameName {
|
|
|
- refTo = definedName.RefersTo
|
|
|
- // worksheet scope takes precedence over scope workbook when both definedNames exist
|
|
|
- if definedName.Scope == currentSheet {
|
|
|
- break
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return refTo
|
|
|
-}
|
|
|
-
|
|
|
-// parseToken parse basic arithmetic operator priority and evaluate based on
|
|
|
-// operators and operands.
|
|
|
-func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
|
|
|
- // parse reference: must reference at here
|
|
|
- if token.TSubType == efp.TokenSubTypeRange {
|
|
|
- refTo := f.getDefinedNameRefTo(token.TValue, sheet)
|
|
|
- if refTo != "" {
|
|
|
- token.TValue = refTo
|
|
|
- }
|
|
|
- result, err := f.parseReference(sheet, token.TValue)
|
|
|
- if err != nil {
|
|
|
- return errors.New(formulaErrorNAME)
|
|
|
- }
|
|
|
- if result.Type != ArgString {
|
|
|
- return errors.New(formulaErrorVALUE)
|
|
|
- }
|
|
|
- token.TValue = result.String
|
|
|
- token.TType = efp.TokenTypeOperand
|
|
|
- token.TSubType = efp.TokenSubTypeNumber
|
|
|
- }
|
|
|
- if isOperatorPrefixToken(token) {
|
|
|
- if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- }
|
|
|
- if isBeginParenthesesToken(token) { // (
|
|
|
- optStack.Push(token)
|
|
|
- }
|
|
|
- if isEndParenthesesToken(token) { // )
|
|
|
- for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
|
|
|
- topOpt := optStack.Peek().(efp.Token)
|
|
|
- if err := calculate(opdStack, topOpt); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- optStack.Pop()
|
|
|
- }
|
|
|
- optStack.Pop()
|
|
|
- }
|
|
|
- // opd
|
|
|
- if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
|
|
|
- opdStack.Push(token)
|
|
|
- }
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-// parseReference parse reference and extract values by given reference
|
|
|
-// characters and default sheet name.
|
|
|
-func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
|
|
|
- reference = strings.Replace(reference, "$", "", -1)
|
|
|
- refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
|
|
|
- for _, ref := range strings.Split(reference, ":") {
|
|
|
- tokens := strings.Split(ref, "!")
|
|
|
- cr := cellRef{}
|
|
|
- if len(tokens) == 2 { // have a worksheet name
|
|
|
- cr.Sheet = tokens[0]
|
|
|
- // cast to cell coordinates
|
|
|
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
|
|
|
- // cast to column
|
|
|
- if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
|
|
|
- // cast to row
|
|
|
- if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
|
|
|
- err = newInvalidColumnNameError(tokens[1])
|
|
|
- return
|
|
|
- }
|
|
|
- cr.Col = TotalColumns
|
|
|
- }
|
|
|
- }
|
|
|
- if refs.Len() > 0 {
|
|
|
- e := refs.Back()
|
|
|
- cellRefs.PushBack(e.Value.(cellRef))
|
|
|
- refs.Remove(e)
|
|
|
- }
|
|
|
- refs.PushBack(cr)
|
|
|
- continue
|
|
|
- }
|
|
|
- // cast to cell coordinates
|
|
|
- if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
|
|
|
- // cast to column
|
|
|
- if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
|
|
|
- // cast to row
|
|
|
- if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
|
|
|
- err = newInvalidColumnNameError(tokens[0])
|
|
|
- return
|
|
|
- }
|
|
|
- cr.Col = TotalColumns
|
|
|
- }
|
|
|
- cellRanges.PushBack(cellRange{
|
|
|
- From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
|
|
|
- To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
|
|
|
- })
|
|
|
- cellRefs.Init()
|
|
|
- arg, err = f.rangeResolver(cellRefs, cellRanges)
|
|
|
- return
|
|
|
- }
|
|
|
- e := refs.Back()
|
|
|
- if e == nil {
|
|
|
- cr.Sheet = sheet
|
|
|
- refs.PushBack(cr)
|
|
|
- continue
|
|
|
- }
|
|
|
- cellRanges.PushBack(cellRange{
|
|
|
- From: e.Value.(cellRef),
|
|
|
- To: cr,
|
|
|
- })
|
|
|
- refs.Remove(e)
|
|
|
- }
|
|
|
- if refs.Len() > 0 {
|
|
|
- e := refs.Back()
|
|
|
- cellRefs.PushBack(e.Value.(cellRef))
|
|
|
- refs.Remove(e)
|
|
|
- }
|
|
|
- arg, err = f.rangeResolver(cellRefs, cellRanges)
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// prepareValueRange prepare value range.
|
|
|
-func prepareValueRange(cr cellRange, valueRange []int) {
|
|
|
- if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
|
|
|
- valueRange[0] = cr.From.Row
|
|
|
- }
|
|
|
- if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
|
|
|
- valueRange[2] = cr.From.Col
|
|
|
- }
|
|
|
- if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
|
|
|
- valueRange[1] = cr.To.Row
|
|
|
- }
|
|
|
- if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
|
|
|
- valueRange[3] = cr.To.Col
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// prepareValueRef prepare value reference.
|
|
|
-func prepareValueRef(cr cellRef, valueRange []int) {
|
|
|
- if cr.Row < valueRange[0] || valueRange[0] == 0 {
|
|
|
- valueRange[0] = cr.Row
|
|
|
- }
|
|
|
- if cr.Col < valueRange[2] || valueRange[2] == 0 {
|
|
|
- valueRange[2] = cr.Col
|
|
|
- }
|
|
|
- if cr.Row > valueRange[1] || valueRange[1] == 0 {
|
|
|
- valueRange[1] = cr.Row
|
|
|
- }
|
|
|
- if cr.Col > valueRange[3] || valueRange[3] == 0 {
|
|
|
- valueRange[3] = cr.Col
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// rangeResolver extract value as string from given reference and range list.
|
|
|
-// This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
|
|
|
-// be reference A1:B3.
|
|
|
-func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
|
|
|
- arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
|
|
|
- // value range order: from row, to row, from column, to column
|
|
|
- valueRange := []int{0, 0, 0, 0}
|
|
|
- var sheet string
|
|
|
- // prepare value range
|
|
|
- for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
|
|
|
- cr := temp.Value.(cellRange)
|
|
|
- if cr.From.Sheet != cr.To.Sheet {
|
|
|
- err = errors.New(formulaErrorVALUE)
|
|
|
- }
|
|
|
- rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
|
|
|
- _ = sortCoordinates(rng)
|
|
|
- cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
|
|
|
- prepareValueRange(cr, valueRange)
|
|
|
- if cr.From.Sheet != "" {
|
|
|
- sheet = cr.From.Sheet
|
|
|
- }
|
|
|
- }
|
|
|
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
|
|
|
- cr := temp.Value.(cellRef)
|
|
|
- if cr.Sheet != "" {
|
|
|
- sheet = cr.Sheet
|
|
|
- }
|
|
|
- prepareValueRef(cr, valueRange)
|
|
|
- }
|
|
|
- // extract value from ranges
|
|
|
- if cellRanges.Len() > 0 {
|
|
|
- arg.Type = ArgMatrix
|
|
|
- for row := valueRange[0]; row <= valueRange[1]; row++ {
|
|
|
- var matrixRow = []formulaArg{}
|
|
|
- for col := valueRange[2]; col <= valueRange[3]; col++ {
|
|
|
- var cell, value string
|
|
|
- if cell, err = CoordinatesToCellName(col, row); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- if value, err = f.GetCellValue(sheet, cell); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- matrixRow = append(matrixRow, formulaArg{
|
|
|
- String: value,
|
|
|
- Type: ArgString,
|
|
|
- })
|
|
|
- }
|
|
|
- arg.Matrix = append(arg.Matrix, matrixRow)
|
|
|
- }
|
|
|
- return
|
|
|
- }
|
|
|
- // extract value from references
|
|
|
- for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
|
|
|
- cr := temp.Value.(cellRef)
|
|
|
- var cell string
|
|
|
- if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- arg.Type = ArgString
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// callFuncByName calls the no error or only error return function with
|
|
|
-// reflect by given receiver, name and parameters.
|
|
|
-func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
|
|
|
- function := reflect.ValueOf(receiver).MethodByName(name)
|
|
|
- if function.IsValid() {
|
|
|
- rt := function.Call(params)
|
|
|
- if len(rt) == 0 {
|
|
|
- return
|
|
|
- }
|
|
|
- arg = rt[0].Interface().(formulaArg)
|
|
|
- return
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
|
|
|
-}
|
|
|
-
|
|
|
-// formulaCriteriaParser parse formula criteria.
|
|
|
-func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
|
|
|
- fc = &formulaCriteria{}
|
|
|
- if exp == "" {
|
|
|
- return
|
|
|
- }
|
|
|
- if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
|
|
|
- fc.Type, fc.Condition = criteriaEq, match[1]
|
|
|
- return
|
|
|
- }
|
|
|
- if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
|
|
|
- fc.Type, fc.Condition = criteriaEq, match[1]
|
|
|
- return
|
|
|
- }
|
|
|
- if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
|
|
|
- fc.Type, fc.Condition = criteriaLe, match[1]
|
|
|
- return
|
|
|
- }
|
|
|
- if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
|
|
|
- fc.Type, fc.Condition = criteriaGe, match[1]
|
|
|
- return
|
|
|
- }
|
|
|
- if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
|
|
|
- fc.Type, fc.Condition = criteriaL, match[1]
|
|
|
- return
|
|
|
- }
|
|
|
- if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
|
|
|
- fc.Type, fc.Condition = criteriaG, match[1]
|
|
|
- return
|
|
|
- }
|
|
|
- if strings.Contains(exp, "*") {
|
|
|
- if strings.HasPrefix(exp, "*") {
|
|
|
- fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
|
|
|
- }
|
|
|
- if strings.HasSuffix(exp, "*") {
|
|
|
- fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
|
|
|
- }
|
|
|
- return
|
|
|
- }
|
|
|
- fc.Type, fc.Condition = criteriaEq, exp
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// formulaCriteriaEval evaluate formula criteria expression.
|
|
|
-func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
|
|
|
- var value, expected float64
|
|
|
- var e error
|
|
|
- var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
|
|
|
- if value, err = strconv.ParseFloat(val, 64); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- return
|
|
|
- }
|
|
|
- switch criteria.Type {
|
|
|
- case criteriaEq:
|
|
|
- return val == criteria.Condition, err
|
|
|
- case criteriaLe:
|
|
|
- value, expected, e = prepareValue(val, criteria.Condition)
|
|
|
- return value <= expected && e == nil, err
|
|
|
- case criteriaGe:
|
|
|
- value, expected, e = prepareValue(val, criteria.Condition)
|
|
|
- return value >= expected && e == nil, err
|
|
|
- case criteriaL:
|
|
|
- value, expected, e = prepareValue(val, criteria.Condition)
|
|
|
- return value < expected && e == nil, err
|
|
|
- case criteriaG:
|
|
|
- value, expected, e = prepareValue(val, criteria.Condition)
|
|
|
- return value > expected && e == nil, err
|
|
|
- case criteriaBeg:
|
|
|
- return strings.HasPrefix(val, criteria.Condition), err
|
|
|
- case criteriaEnd:
|
|
|
- return strings.HasSuffix(val, criteria.Condition), err
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// Engineering Functions
|
|
|
-
|
|
|
-// BESSELI function the modified Bessel function, which is equivalent to the
|
|
|
-// Bessel function evaluated for purely imaginary arguments. The syntax of
|
|
|
-// the Besseli function is:
|
|
|
-//
|
|
|
-// BESSELI(x,n)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
|
|
|
- }
|
|
|
- return fn.bassel(argsList, true)
|
|
|
-}
|
|
|
-
|
|
|
-// BESSELJ function returns the Bessel function, Jn(x), for a specified order
|
|
|
-// and value of x. The syntax of the function is:
|
|
|
-//
|
|
|
-// BESSELJ(x,n)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
|
|
|
- }
|
|
|
- return fn.bassel(argsList, false)
|
|
|
-}
|
|
|
-
|
|
|
-// bassel is an implementation of the formula function BESSELI and BESSELJ.
|
|
|
-func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
|
|
|
- x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if x.Type != ArgNumber {
|
|
|
- return x
|
|
|
- }
|
|
|
- if n.Type != ArgNumber {
|
|
|
- return n
|
|
|
- }
|
|
|
- max, x1 := 100, x.Number*0.5
|
|
|
- x2 := x1 * x1
|
|
|
- x1 = math.Pow(x1, n.Number)
|
|
|
- n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
|
|
|
- result := x1 / n1
|
|
|
- t := result * 0.9
|
|
|
- for result != t && max != 0 {
|
|
|
- x1 *= x2
|
|
|
- n3++
|
|
|
- n1 *= n3
|
|
|
- n4++
|
|
|
- n2 *= n4
|
|
|
- t = result
|
|
|
- if modfied || add {
|
|
|
- result += (x1 / n1 / n2)
|
|
|
- } else {
|
|
|
- result -= (x1 / n1 / n2)
|
|
|
- }
|
|
|
- max--
|
|
|
- add = !add
|
|
|
- }
|
|
|
- return newNumberFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// BESSELK function calculates the modified Bessel functions, Kn(x), which are
|
|
|
-// also known as the hyperbolic Bessel Functions. These are the equivalent of
|
|
|
-// the Bessel functions, evaluated for purely imaginary arguments. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// BESSELK(x,n)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BESSELK(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BESSELK requires 2 numeric arguments")
|
|
|
- }
|
|
|
- x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if x.Type != ArgNumber {
|
|
|
- return x
|
|
|
- }
|
|
|
- if n.Type != ArgNumber {
|
|
|
- return n
|
|
|
- }
|
|
|
- if x.Number <= 0 || n.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- var result float64
|
|
|
- switch math.Floor(n.Number) {
|
|
|
- case 0:
|
|
|
- result = fn.besselK0(x)
|
|
|
- case 1:
|
|
|
- result = fn.besselK1(x)
|
|
|
- default:
|
|
|
- result = fn.besselK2(x, n)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// besselK0 is an implementation of the formula function BESSELK.
|
|
|
-func (fn *formulaFuncs) besselK0(x formulaArg) float64 {
|
|
|
- var y float64
|
|
|
- if x.Number <= 2 {
|
|
|
- n2 := x.Number * 0.5
|
|
|
- y = n2 * n2
|
|
|
- args := list.New()
|
|
|
- args.PushBack(x)
|
|
|
- args.PushBack(newNumberFormulaArg(0))
|
|
|
- return -math.Log(n2)*fn.BESSELI(args).Number +
|
|
|
- (-0.57721566 + y*(0.42278420+y*(0.23069756+y*(0.3488590e-1+y*(0.262698e-2+y*
|
|
|
- (0.10750e-3+y*0.74e-5))))))
|
|
|
- }
|
|
|
- y = 2 / x.Number
|
|
|
- return math.Exp(-x.Number) / math.Sqrt(x.Number) *
|
|
|
- (1.25331414 + y*(-0.7832358e-1+y*(0.2189568e-1+y*(-0.1062446e-1+y*
|
|
|
- (0.587872e-2+y*(-0.251540e-2+y*0.53208e-3))))))
|
|
|
-}
|
|
|
-
|
|
|
-// besselK1 is an implementation of the formula function BESSELK.
|
|
|
-func (fn *formulaFuncs) besselK1(x formulaArg) float64 {
|
|
|
- var n2, y float64
|
|
|
- if x.Number <= 2 {
|
|
|
- n2 = x.Number * 0.5
|
|
|
- y = n2 * n2
|
|
|
- args := list.New()
|
|
|
- args.PushBack(x)
|
|
|
- args.PushBack(newNumberFormulaArg(1))
|
|
|
- return math.Log(n2)*fn.BESSELI(args).Number +
|
|
|
- (1+y*(0.15443144+y*(-0.67278579+y*(-0.18156897+y*(-0.1919402e-1+y*(-0.110404e-2+y*(-0.4686e-4)))))))/x.Number
|
|
|
- }
|
|
|
- y = 2 / x.Number
|
|
|
- return math.Exp(-x.Number) / math.Sqrt(x.Number) *
|
|
|
- (1.25331414 + y*(0.23498619+y*(-0.3655620e-1+y*(0.1504268e-1+y*(-0.780353e-2+y*
|
|
|
- (0.325614e-2+y*(-0.68245e-3)))))))
|
|
|
-}
|
|
|
-
|
|
|
-// besselK2 is an implementation of the formula function BESSELK.
|
|
|
-func (fn *formulaFuncs) besselK2(x, n formulaArg) float64 {
|
|
|
- tox, bkm, bk, bkp := 2/x.Number, fn.besselK0(x), fn.besselK1(x), 0.0
|
|
|
- for i := 1.0; i < n.Number; i++ {
|
|
|
- bkp = bkm + i*tox*bk
|
|
|
- bkm = bk
|
|
|
- bk = bkp
|
|
|
- }
|
|
|
- return bk
|
|
|
-}
|
|
|
-
|
|
|
-// BESSELY function returns the Bessel function, Yn(x), (also known as the
|
|
|
-// Weber function or the Neumann function), for a specified order and value
|
|
|
-// of x. The syntax of the function is:
|
|
|
-//
|
|
|
-// BESSELY(x,n)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BESSELY(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BESSELY requires 2 numeric arguments")
|
|
|
- }
|
|
|
- x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if x.Type != ArgNumber {
|
|
|
- return x
|
|
|
- }
|
|
|
- if n.Type != ArgNumber {
|
|
|
- return n
|
|
|
- }
|
|
|
- if x.Number <= 0 || n.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- var result float64
|
|
|
- switch math.Floor(n.Number) {
|
|
|
- case 0:
|
|
|
- result = fn.besselY0(x)
|
|
|
- case 1:
|
|
|
- result = fn.besselY1(x)
|
|
|
- default:
|
|
|
- result = fn.besselY2(x, n)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// besselY0 is an implementation of the formula function BESSELY.
|
|
|
-func (fn *formulaFuncs) besselY0(x formulaArg) float64 {
|
|
|
- var y float64
|
|
|
- if x.Number < 8 {
|
|
|
- y = x.Number * x.Number
|
|
|
- f1 := -2957821389.0 + y*(7062834065.0+y*(-512359803.6+y*(10879881.29+y*
|
|
|
- (-86327.92757+y*228.4622733))))
|
|
|
- f2 := 40076544269.0 + y*(745249964.8+y*(7189466.438+y*
|
|
|
- (47447.26470+y*(226.1030244+y))))
|
|
|
- args := list.New()
|
|
|
- args.PushBack(x)
|
|
|
- args.PushBack(newNumberFormulaArg(0))
|
|
|
- return f1/f2 + 0.636619772*fn.BESSELJ(args).Number*math.Log(x.Number)
|
|
|
- }
|
|
|
- z := 8.0 / x.Number
|
|
|
- y = z * z
|
|
|
- xx := x.Number - 0.785398164
|
|
|
- f1 := 1 + y*(-0.1098628627e-2+y*(0.2734510407e-4+y*(-0.2073370639e-5+y*0.2093887211e-6)))
|
|
|
- f2 := -0.1562499995e-1 + y*(0.1430488765e-3+y*(-0.6911147651e-5+y*(0.7621095161e-6+y*
|
|
|
- (-0.934945152e-7))))
|
|
|
- return math.Sqrt(0.636619772/x.Number) * (math.Sin(xx)*f1 + z*math.Cos(xx)*f2)
|
|
|
-}
|
|
|
-
|
|
|
-// besselY1 is an implementation of the formula function BESSELY.
|
|
|
-func (fn *formulaFuncs) besselY1(x formulaArg) float64 {
|
|
|
- if x.Number < 8 {
|
|
|
- y := x.Number * x.Number
|
|
|
- f1 := x.Number * (-0.4900604943e13 + y*(0.1275274390e13+y*(-0.5153438139e11+y*
|
|
|
- (0.7349264551e9+y*(-0.4237922726e7+y*0.8511937935e4)))))
|
|
|
- f2 := 0.2499580570e14 + y*(0.4244419664e12+y*(0.3733650367e10+y*(0.2245904002e8+y*
|
|
|
- (0.1020426050e6+y*(0.3549632885e3+y)))))
|
|
|
- args := list.New()
|
|
|
- args.PushBack(x)
|
|
|
- args.PushBack(newNumberFormulaArg(1))
|
|
|
- return f1/f2 + 0.636619772*(fn.BESSELJ(args).Number*math.Log(x.Number)-1/x.Number)
|
|
|
- }
|
|
|
- return math.Sqrt(0.636619772/x.Number) * math.Sin(x.Number-2.356194491)
|
|
|
-}
|
|
|
-
|
|
|
-// besselY2 is an implementation of the formula function BESSELY.
|
|
|
-func (fn *formulaFuncs) besselY2(x, n formulaArg) float64 {
|
|
|
- tox, bym, by, byp := 2/x.Number, fn.besselY0(x), fn.besselY1(x), 0.0
|
|
|
- for i := 1.0; i < n.Number; i++ {
|
|
|
- byp = i*tox*by - bym
|
|
|
- bym = by
|
|
|
- by = byp
|
|
|
- }
|
|
|
- return by
|
|
|
-}
|
|
|
-
|
|
|
-// BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// BIN2DEC(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- number := token.ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, number.Error)
|
|
|
- }
|
|
|
- return fn.bin2dec(token.Value())
|
|
|
-}
|
|
|
-
|
|
|
-// BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
|
|
|
-// (Base 16) number. The syntax of the function is:
|
|
|
-//
|
|
|
-// BIN2HEX(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- number := token.ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, number.Error)
|
|
|
- }
|
|
|
- decimal, newList := fn.bin2dec(token.Value()), list.New()
|
|
|
- if decimal.Type != ArgNumber {
|
|
|
- return decimal
|
|
|
- }
|
|
|
- newList.PushBack(decimal)
|
|
|
- if argsList.Len() == 2 {
|
|
|
- newList.PushBack(argsList.Back().Value.(formulaArg))
|
|
|
- }
|
|
|
- return fn.dec2x("BIN2HEX", newList)
|
|
|
-}
|
|
|
-
|
|
|
-// BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// BIN2OCT(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- number := token.ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, number.Error)
|
|
|
- }
|
|
|
- decimal, newList := fn.bin2dec(token.Value()), list.New()
|
|
|
- if decimal.Type != ArgNumber {
|
|
|
- return decimal
|
|
|
- }
|
|
|
- newList.PushBack(decimal)
|
|
|
- if argsList.Len() == 2 {
|
|
|
- newList.PushBack(argsList.Back().Value.(formulaArg))
|
|
|
- }
|
|
|
- return fn.dec2x("BIN2OCT", newList)
|
|
|
-}
|
|
|
-
|
|
|
-// bin2dec is an implementation of the formula function BIN2DEC.
|
|
|
-func (fn *formulaFuncs) bin2dec(number string) formulaArg {
|
|
|
- decimal, length := 0.0, len(number)
|
|
|
- for i := length; i > 0; i-- {
|
|
|
- s := string(number[length-i])
|
|
|
- if i == 10 && s == "1" {
|
|
|
- decimal += math.Pow(-2.0, float64(i-1))
|
|
|
- continue
|
|
|
- }
|
|
|
- if s == "1" {
|
|
|
- decimal += math.Pow(2.0, float64(i-1))
|
|
|
- continue
|
|
|
- }
|
|
|
- if s != "0" {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(decimal)
|
|
|
-}
|
|
|
-
|
|
|
-// BITAND function returns the bitwise 'AND' for two supplied integers. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// BITAND(number1,number2)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
|
|
|
- return fn.bitwise("BITAND", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// BITLSHIFT function returns a supplied integer, shifted left by a specified
|
|
|
-// number of bits. The syntax of the function is:
|
|
|
-//
|
|
|
-// BITLSHIFT(number1,shift_amount)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
|
|
|
- return fn.bitwise("BITLSHIFT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// BITOR function returns the bitwise 'OR' for two supplied integers. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// BITOR(number1,number2)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
|
|
|
- return fn.bitwise("BITOR", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// BITRSHIFT function returns a supplied integer, shifted right by a specified
|
|
|
-// number of bits. The syntax of the function is:
|
|
|
-//
|
|
|
-// BITRSHIFT(number1,shift_amount)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
|
|
|
- return fn.bitwise("BITRSHIFT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
|
|
|
-// integers. The syntax of the function is:
|
|
|
-//
|
|
|
-// BITXOR(number1,number2)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
|
|
|
- return fn.bitwise("BITXOR", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// bitwise is an implementation of the formula function BITAND, BITLSHIFT,
|
|
|
-// BITOR, BITRSHIFT and BITXOR.
|
|
|
-func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
|
|
|
- }
|
|
|
- num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if num1.Type != ArgNumber || num2.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- max := math.Pow(2, 48) - 1
|
|
|
- if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- bitwiseFuncMap := map[string]func(a, b int) int{
|
|
|
- "BITAND": func(a, b int) int { return a & b },
|
|
|
- "BITLSHIFT": func(a, b int) int { return a << uint(b) },
|
|
|
- "BITOR": func(a, b int) int { return a | b },
|
|
|
- "BITRSHIFT": func(a, b int) int { return a >> uint(b) },
|
|
|
- "BITXOR": func(a, b int) int { return a ^ b },
|
|
|
- }
|
|
|
- bitwiseFunc := bitwiseFuncMap[name]
|
|
|
- return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
|
|
|
-}
|
|
|
-
|
|
|
-// COMPLEX function takes two arguments, representing the real and the
|
|
|
-// imaginary coefficients of a complex number, and from these, creates a
|
|
|
-// complex number. The syntax of the function is:
|
|
|
-//
|
|
|
-// COMPLEX(real_num,i_num,[suffix])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
|
|
|
- }
|
|
|
- real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
|
|
|
- if real.Type != ArgNumber {
|
|
|
- return real
|
|
|
- }
|
|
|
- if i.Type != ArgNumber {
|
|
|
- return i
|
|
|
- }
|
|
|
- if argsList.Len() == 3 {
|
|
|
- if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))
|
|
|
-}
|
|
|
-
|
|
|
-// cmplx2str replace complex number string characters.
|
|
|
-func cmplx2str(c, suffix string) string {
|
|
|
- if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" {
|
|
|
- return "0"
|
|
|
- }
|
|
|
- c = strings.TrimPrefix(c, "(")
|
|
|
- c = strings.TrimPrefix(c, "+0+")
|
|
|
- c = strings.TrimPrefix(c, "-0+")
|
|
|
- c = strings.TrimSuffix(c, ")")
|
|
|
- c = strings.TrimPrefix(c, "0+")
|
|
|
- if strings.HasPrefix(c, "0-") {
|
|
|
- c = "-" + strings.TrimPrefix(c, "0-")
|
|
|
- }
|
|
|
- c = strings.TrimPrefix(c, "0+")
|
|
|
- c = strings.TrimSuffix(c, "+0i")
|
|
|
- c = strings.TrimSuffix(c, "-0i")
|
|
|
- c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c)
|
|
|
- c = strings.Replace(c, "i", suffix, -1)
|
|
|
- return c
|
|
|
-}
|
|
|
-
|
|
|
-// str2cmplx convert complex number string characters.
|
|
|
-func str2cmplx(c string) string {
|
|
|
- c = strings.Replace(c, "j", "i", -1)
|
|
|
- if c == "i" {
|
|
|
- c = "1i"
|
|
|
- }
|
|
|
- c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)
|
|
|
- return c
|
|
|
-}
|
|
|
-
|
|
|
-// DEC2BIN function converts a decimal number into a Binary (Base 2) number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// DEC2BIN(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
|
|
|
- return fn.dec2x("DEC2BIN", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// DEC2HEX(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
|
|
|
- return fn.dec2x("DEC2HEX", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// DEC2OCT function converts a decimal number into an Octal (Base 8) number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// DEC2OCT(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
|
|
|
- return fn.dec2x("DEC2OCT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
|
|
|
-// DEC2OCT.
|
|
|
-func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
|
|
|
- }
|
|
|
- decimal := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if decimal.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
|
|
|
- }
|
|
|
- maxLimitMap := map[string]float64{
|
|
|
- "DEC2BIN": 511,
|
|
|
- "HEX2BIN": 511,
|
|
|
- "OCT2BIN": 511,
|
|
|
- "BIN2HEX": 549755813887,
|
|
|
- "DEC2HEX": 549755813887,
|
|
|
- "OCT2HEX": 549755813887,
|
|
|
- "BIN2OCT": 536870911,
|
|
|
- "DEC2OCT": 536870911,
|
|
|
- "HEX2OCT": 536870911,
|
|
|
- }
|
|
|
- minLimitMap := map[string]float64{
|
|
|
- "DEC2BIN": -512,
|
|
|
- "HEX2BIN": -512,
|
|
|
- "OCT2BIN": -512,
|
|
|
- "BIN2HEX": -549755813888,
|
|
|
- "DEC2HEX": -549755813888,
|
|
|
- "OCT2HEX": -549755813888,
|
|
|
- "BIN2OCT": -536870912,
|
|
|
- "DEC2OCT": -536870912,
|
|
|
- "HEX2OCT": -536870912,
|
|
|
- }
|
|
|
- baseMap := map[string]int{
|
|
|
- "DEC2BIN": 2,
|
|
|
- "HEX2BIN": 2,
|
|
|
- "OCT2BIN": 2,
|
|
|
- "BIN2HEX": 16,
|
|
|
- "DEC2HEX": 16,
|
|
|
- "OCT2HEX": 16,
|
|
|
- "BIN2OCT": 8,
|
|
|
- "DEC2OCT": 8,
|
|
|
- "HEX2OCT": 8,
|
|
|
- }
|
|
|
- maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
|
|
|
- base := baseMap[name]
|
|
|
- if decimal.Number < minLimit || decimal.Number > maxLimit {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- n := int64(decimal.Number)
|
|
|
- binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
|
|
|
- if argsList.Len() == 2 {
|
|
|
- places := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if places.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, places.Error)
|
|
|
- }
|
|
|
- binaryPlaces := len(binary)
|
|
|
- if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
|
|
|
- }
|
|
|
- if decimal.Number < 0 && len(binary) > 10 {
|
|
|
- return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(binary))
|
|
|
-}
|
|
|
-
|
|
|
-// HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
|
|
|
-// (Base 2) number. The syntax of the function is:
|
|
|
-//
|
|
|
-// HEX2BIN(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
|
|
|
- }
|
|
|
- decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
|
|
|
- if decimal.Type != ArgNumber {
|
|
|
- return decimal
|
|
|
- }
|
|
|
- newList.PushBack(decimal)
|
|
|
- if argsList.Len() == 2 {
|
|
|
- newList.PushBack(argsList.Back().Value.(formulaArg))
|
|
|
- }
|
|
|
- return fn.dec2x("HEX2BIN", newList)
|
|
|
-}
|
|
|
-
|
|
|
-// HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// HEX2DEC(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
|
|
|
- }
|
|
|
- return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
|
|
|
-}
|
|
|
-
|
|
|
-// HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
|
|
|
-// (Base 8) number. The syntax of the function is:
|
|
|
-//
|
|
|
-// HEX2OCT(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
|
|
|
- }
|
|
|
- decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
|
|
|
- if decimal.Type != ArgNumber {
|
|
|
- return decimal
|
|
|
- }
|
|
|
- newList.PushBack(decimal)
|
|
|
- if argsList.Len() == 2 {
|
|
|
- newList.PushBack(argsList.Back().Value.(formulaArg))
|
|
|
- }
|
|
|
- return fn.dec2x("HEX2OCT", newList)
|
|
|
-}
|
|
|
-
|
|
|
-// hex2dec is an implementation of the formula function HEX2DEC.
|
|
|
-func (fn *formulaFuncs) hex2dec(number string) formulaArg {
|
|
|
- decimal, length := 0.0, len(number)
|
|
|
- for i := length; i > 0; i-- {
|
|
|
- num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- if i == 10 && string(number[length-i]) == "F" {
|
|
|
- decimal += math.Pow(-16.0, float64(i-1))
|
|
|
- continue
|
|
|
- }
|
|
|
- decimal += float64(num) * math.Pow(16.0, float64(i-1))
|
|
|
- }
|
|
|
- return newNumberFormulaArg(decimal)
|
|
|
-}
|
|
|
-
|
|
|
-// IMABS function returns the absolute value (the modulus) of a complex
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMABS(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newNumberFormulaArg(cmplx.Abs(inumber))
|
|
|
-}
|
|
|
-
|
|
|
-// IMAGINARY function returns the imaginary coefficient of a supplied complex
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMAGINARY(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newNumberFormulaArg(imag(inumber))
|
|
|
-}
|
|
|
-
|
|
|
-// IMARGUMENT function returns the phase (also called the argument) of a
|
|
|
-// supplied complex number. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMARGUMENT(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newNumberFormulaArg(cmplx.Phase(inumber))
|
|
|
-}
|
|
|
-
|
|
|
-// IMCONJUGATE function returns the complex conjugate of a supplied complex
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMCONJUGATE(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMCOS function returns the cosine of a supplied complex number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// IMCOS(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// IMCOSH(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMCOT function returns the cotangent of a supplied complex number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// IMCOT(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMCSC function returns the cosecant of a supplied complex number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// IMCSC(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- num := 1 / cmplx.Sin(inumber)
|
|
|
- if cmplx.IsInf(num) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMCSCH function returns the hyperbolic cosecant of a supplied complex
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMCSCH(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- num := 1 / cmplx.Sinh(inumber)
|
|
|
- if cmplx.IsInf(num) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMDIV function calculates the quotient of two complex numbers (i.e. divides
|
|
|
-// one complex number by another). The syntax of the function is:
|
|
|
-//
|
|
|
-// IMDIV(inumber1,inumber2)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments")
|
|
|
- }
|
|
|
- inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- num := inumber1 / inumber2
|
|
|
- if cmplx.IsInf(num) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMEXP function returns the exponential of a supplied complex number. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// IMEXP(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMLN function returns the natural logarithm of a supplied complex number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// IMLN(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- num := cmplx.Log(inumber)
|
|
|
- if cmplx.IsInf(num) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMLOG10 function returns the common (base 10) logarithm of a supplied
|
|
|
-// complex number. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMLOG10(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- num := cmplx.Log10(inumber)
|
|
|
- if cmplx.IsInf(num) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMLOG2 function calculates the base 2 logarithm of a supplied complex
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMLOG2(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- num := cmplx.Log(inumber)
|
|
|
- if cmplx.IsInf(num) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMPOWER function returns a supplied complex number, raised to a given
|
|
|
-// power. The syntax of the function is:
|
|
|
-//
|
|
|
-// IMPOWER(inumber,number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- number, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- if inumber == 0 && number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- num := cmplx.Pow(inumber, number)
|
|
|
- if cmplx.IsInf(num) {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMPRODUCT function calculates the product of two or more complex numbers.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// IMPRODUCT(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg {
|
|
|
- product := complex128(1)
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- if token.Value() == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- val, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- product = product * val
|
|
|
- case ArgNumber:
|
|
|
- product = product * complex(token.Number, 0)
|
|
|
- case ArgMatrix:
|
|
|
- for _, row := range token.Matrix {
|
|
|
- for _, value := range row {
|
|
|
- if value.Value() == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- val, err := strconv.ParseComplex(str2cmplx(value.Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- product = product * val
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMREAL function returns the real coefficient of a supplied complex number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// IMREAL(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMSEC function returns the secant of a supplied complex number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// IMSEC(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMSECH function returns the hyperbolic secant of a supplied complex number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// IMSECH(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMSIN function returns the Sine of a supplied complex number. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// IMSIN(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMSINH function returns the hyperbolic sine of a supplied complex number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// IMSINH(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMSQRT function returns the square root of a supplied complex number. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// IMSQRT(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMSUB function calculates the difference between two complex numbers
|
|
|
-// (i.e. subtracts one complex number from another). The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// IMSUB(inumber1,inumber2)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments")
|
|
|
- }
|
|
|
- i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMSUM function calculates the sum of two or more complex numbers. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// IMSUM(inumber1,inumber2,...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument")
|
|
|
- }
|
|
|
- var result complex128
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- result += num
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// IMTAN function returns the tangent of a supplied complex number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// IMTAN(inumber)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument")
|
|
|
- }
|
|
|
- inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, err.Error())
|
|
|
- }
|
|
|
- return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i"))
|
|
|
-}
|
|
|
-
|
|
|
-// OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// OCT2BIN(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- number := token.ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, number.Error)
|
|
|
- }
|
|
|
- decimal, newList := fn.oct2dec(token.Value()), list.New()
|
|
|
- newList.PushBack(decimal)
|
|
|
- if argsList.Len() == 2 {
|
|
|
- newList.PushBack(argsList.Back().Value.(formulaArg))
|
|
|
- }
|
|
|
- return fn.dec2x("OCT2BIN", newList)
|
|
|
-}
|
|
|
-
|
|
|
-// OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// OCT2DEC(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- number := token.ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, number.Error)
|
|
|
- }
|
|
|
- return fn.oct2dec(token.Value())
|
|
|
-}
|
|
|
-
|
|
|
-// OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
|
|
|
-// (Base 16) number. The syntax of the function is:
|
|
|
-//
|
|
|
-// OCT2HEX(number,[places])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- number := token.ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, number.Error)
|
|
|
- }
|
|
|
- decimal, newList := fn.oct2dec(token.Value()), list.New()
|
|
|
- newList.PushBack(decimal)
|
|
|
- if argsList.Len() == 2 {
|
|
|
- newList.PushBack(argsList.Back().Value.(formulaArg))
|
|
|
- }
|
|
|
- return fn.dec2x("OCT2HEX", newList)
|
|
|
-}
|
|
|
-
|
|
|
-// oct2dec is an implementation of the formula function OCT2DEC.
|
|
|
-func (fn *formulaFuncs) oct2dec(number string) formulaArg {
|
|
|
- decimal, length := 0.0, len(number)
|
|
|
- for i := length; i > 0; i-- {
|
|
|
- num, _ := strconv.Atoi(string(number[length-i]))
|
|
|
- if i == 10 && string(number[length-i]) == "7" {
|
|
|
- decimal += math.Pow(-8.0, float64(i-1))
|
|
|
- continue
|
|
|
- }
|
|
|
- decimal += float64(num) * math.Pow(8.0, float64(i-1))
|
|
|
- }
|
|
|
- return newNumberFormulaArg(decimal)
|
|
|
-}
|
|
|
-
|
|
|
-// Math and Trigonometric Functions
|
|
|
-
|
|
|
-// ABS function returns the absolute value of any supplied number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// ABS(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Abs(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
|
|
-// number, and returns an angle, in radians, between 0 and π. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// ACOS(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Acos(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// ACOSH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Acosh(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
|
|
-// given number, and returns an angle, in radians, between 0 and π. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// ACOT(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
|
|
-// value. The syntax of the function is:
|
|
|
-//
|
|
|
-// ACOTH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Atanh(1 / arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// ARABIC(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
|
|
|
- }
|
|
|
- text := argsList.Front().Value.(formulaArg).Value()
|
|
|
- if len(text) > 255 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- text = strings.ToUpper(text)
|
|
|
- number, actualStart, index, isNegative := 0, 0, len(text)-1, false
|
|
|
- startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
|
|
|
- for index >= 0 && text[index] == ' ' {
|
|
|
- index--
|
|
|
- }
|
|
|
- for actualStart <= index && text[actualStart] == ' ' {
|
|
|
- actualStart++
|
|
|
- }
|
|
|
- if actualStart <= index && text[actualStart] == '-' {
|
|
|
- isNegative = true
|
|
|
- actualStart++
|
|
|
- }
|
|
|
- charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
|
|
|
- for index >= actualStart {
|
|
|
- startIndex = index
|
|
|
- startChar := text[startIndex]
|
|
|
- index--
|
|
|
- for index >= actualStart && (text[index]|' ') == startChar {
|
|
|
- index--
|
|
|
- }
|
|
|
- currentCharValue = charMap[rune(startChar)]
|
|
|
- currentPartValue = (startIndex - index) * currentCharValue
|
|
|
- if currentCharValue >= prevCharValue {
|
|
|
- number += currentPartValue - subtractNumber
|
|
|
- prevCharValue = currentCharValue
|
|
|
- subtractNumber = 0
|
|
|
- continue
|
|
|
- }
|
|
|
- subtractNumber += currentPartValue
|
|
|
- }
|
|
|
- if subtractNumber != 0 {
|
|
|
- number -= subtractNumber
|
|
|
- }
|
|
|
- if isNegative {
|
|
|
- number = -number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(number))
|
|
|
-}
|
|
|
-
|
|
|
-// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
|
|
|
-// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// ASIN(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Asin(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// ASINH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Asinh(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
-// given number, and returns an angle, in radians, between -π/2 and +π/2. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// ATAN(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Atan(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// ATANH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Atanh(arg.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
-// given set of x and y coordinates, and returns an angle, in radians, between
|
|
|
-// -π/2 and +π/2. The syntax of the function is:
|
|
|
-//
|
|
|
-// ATAN2(x_num,y_num)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
|
|
|
- }
|
|
|
- x := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if x.Type == ArgError {
|
|
|
- return x
|
|
|
- }
|
|
|
- y := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if y.Type == ArgError {
|
|
|
- return y
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// BASE function converts a number into a supplied base (radix), and returns a
|
|
|
-// text representation of the calculated value. The syntax of the function is:
|
|
|
-//
|
|
|
-// BASE(number,radix,[min_length])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
|
|
|
- }
|
|
|
- var minLength int
|
|
|
- var err error
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if radix.Type == ArgError {
|
|
|
- return radix
|
|
|
- }
|
|
|
- if int(radix.Number) < 2 || int(radix.Number) > 36 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- }
|
|
|
- result := strconv.FormatInt(int64(number.Number), int(radix.Number))
|
|
|
- if len(result) < minLength {
|
|
|
- result = strings.Repeat("0", minLength-len(result)) + result
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(result))
|
|
|
-}
|
|
|
-
|
|
|
-// CEILING function rounds a supplied number away from zero, to the nearest
|
|
|
-// multiple of a given number. The syntax of the function is:
|
|
|
-//
|
|
|
-// CEILING(number,significance)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
|
|
|
- }
|
|
|
- number, significance, res := 0.0, 1.0, 0.0
|
|
|
- n := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if n.Type == ArgError {
|
|
|
- return n
|
|
|
- }
|
|
|
- number = n.Number
|
|
|
- if number < 0 {
|
|
|
- significance = -1
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- s := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if s.Type == ArgError {
|
|
|
- return s
|
|
|
- }
|
|
|
- significance = s.Number
|
|
|
- }
|
|
|
- if significance < 0 && number > 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- return newNumberFormulaArg(math.Ceil(number))
|
|
|
- }
|
|
|
- number, res = math.Modf(number / significance)
|
|
|
- if res > 0 {
|
|
|
- number++
|
|
|
- }
|
|
|
- return newNumberFormulaArg(number * significance)
|
|
|
-}
|
|
|
-
|
|
|
-// CEILINGdotMATH function rounds a supplied number up to a supplied multiple
|
|
|
-// of significance. The syntax of the function is:
|
|
|
-//
|
|
|
-// CEILING.MATH(number,[significance],[mode])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
|
|
|
- }
|
|
|
- number, significance, mode := 0.0, 1.0, 1.0
|
|
|
- n := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if n.Type == ArgError {
|
|
|
- return n
|
|
|
- }
|
|
|
- number = n.Number
|
|
|
- if number < 0 {
|
|
|
- significance = -1
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- s := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if s.Type == ArgError {
|
|
|
- return s
|
|
|
- }
|
|
|
- significance = s.Number
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- return newNumberFormulaArg(math.Ceil(number))
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- m := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if m.Type == ArgError {
|
|
|
- return m
|
|
|
- }
|
|
|
- mode = m.Number
|
|
|
- }
|
|
|
- val, res := math.Modf(number / significance)
|
|
|
- if res != 0 {
|
|
|
- if number > 0 {
|
|
|
- val++
|
|
|
- } else if mode < 0 {
|
|
|
- val--
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val * significance)
|
|
|
-}
|
|
|
-
|
|
|
-// CEILINGdotPRECISE function rounds a supplied number up (regardless of the
|
|
|
-// number's sign), to the nearest multiple of a given number. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// CEILING.PRECISE(number,[significance])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
|
|
|
- }
|
|
|
- number, significance := 0.0, 1.0
|
|
|
- n := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if n.Type == ArgError {
|
|
|
- return n
|
|
|
- }
|
|
|
- number = n.Number
|
|
|
- if number < 0 {
|
|
|
- significance = -1
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- return newNumberFormulaArg(math.Ceil(number))
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- s := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if s.Type == ArgError {
|
|
|
- return s
|
|
|
- }
|
|
|
- significance = s.Number
|
|
|
- significance = math.Abs(significance)
|
|
|
- if significance == 0 {
|
|
|
- return newNumberFormulaArg(significance)
|
|
|
- }
|
|
|
- }
|
|
|
- val, res := math.Modf(number / significance)
|
|
|
- if res != 0 {
|
|
|
- if number > 0 {
|
|
|
- val++
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val * significance)
|
|
|
-}
|
|
|
-
|
|
|
-// COMBIN function calculates the number of combinations (in any order) of a
|
|
|
-// given number objects from a set. The syntax of the function is:
|
|
|
-//
|
|
|
-// COMBIN(number,number_chosen)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
|
|
|
- }
|
|
|
- number, chosen, val := 0.0, 0.0, 1.0
|
|
|
- n := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if n.Type == ArgError {
|
|
|
- return n
|
|
|
- }
|
|
|
- number = n.Number
|
|
|
- c := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if c.Type == ArgError {
|
|
|
- return c
|
|
|
- }
|
|
|
- chosen = c.Number
|
|
|
- number, chosen = math.Trunc(number), math.Trunc(chosen)
|
|
|
- if chosen > number {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
|
|
|
- }
|
|
|
- if chosen == number || chosen == 0 {
|
|
|
- return newNumberFormulaArg(1)
|
|
|
- }
|
|
|
- for c := float64(1); c <= chosen; c++ {
|
|
|
- val *= (number + 1 - c) / c
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Ceil(val))
|
|
|
-}
|
|
|
-
|
|
|
-// COMBINA function calculates the number of combinations, with repetitions,
|
|
|
-// of a given number objects from a set. The syntax of the function is:
|
|
|
-//
|
|
|
-// COMBINA(number,number_chosen)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
|
|
|
- }
|
|
|
- var number, chosen float64
|
|
|
- n := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if n.Type == ArgError {
|
|
|
- return n
|
|
|
- }
|
|
|
- number = n.Number
|
|
|
- c := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if c.Type == ArgError {
|
|
|
- return c
|
|
|
- }
|
|
|
- chosen = c.Number
|
|
|
- number, chosen = math.Trunc(number), math.Trunc(chosen)
|
|
|
- if number < chosen {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
|
|
|
- }
|
|
|
- if number == 0 {
|
|
|
- return newNumberFormulaArg(number)
|
|
|
- }
|
|
|
- args := list.New()
|
|
|
- args.PushBack(formulaArg{
|
|
|
- String: fmt.Sprintf("%g", number+chosen-1),
|
|
|
- Type: ArgString,
|
|
|
- })
|
|
|
- args.PushBack(formulaArg{
|
|
|
- String: fmt.Sprintf("%g", number-1),
|
|
|
- Type: ArgString,
|
|
|
- })
|
|
|
- return fn.COMBIN(args)
|
|
|
-}
|
|
|
-
|
|
|
-// COS function calculates the cosine of a given angle. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// COS(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Cos(val.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// COSH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Cosh(val.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// COT function calculates the cotangent of a given angle. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// COT(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- if val.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(1 / math.Tan(val.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// COTH function calculates the hyperbolic cotangent (coth) of a supplied
|
|
|
-// angle. The syntax of the function is:
|
|
|
-//
|
|
|
-// COTH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- if val.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
|
|
|
-}
|
|
|
-
|
|
|
-// CSC function calculates the cosecant of a given angle. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// CSC(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- if val.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(1 / math.Sin(val.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// CSCH function calculates the hyperbolic cosecant (csch) of a supplied
|
|
|
-// angle. The syntax of the function is:
|
|
|
-//
|
|
|
-// CSCH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- if val.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(1 / math.Sinh(val.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// DECIMAL function converts a text representation of a number in a specified
|
|
|
-// base, into a decimal value. The syntax of the function is:
|
|
|
-//
|
|
|
-// DECIMAL(text,radix)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
|
|
|
- }
|
|
|
- var text = argsList.Front().Value.(formulaArg).String
|
|
|
- var radix int
|
|
|
- var err error
|
|
|
- radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
|
|
|
- text = text[2:]
|
|
|
- }
|
|
|
- val, err := strconv.ParseInt(text, radix, 64)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(val))
|
|
|
-}
|
|
|
-
|
|
|
-// DEGREES function converts radians into degrees. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// DEGREES(angle)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- if val.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(180.0 / math.Pi * val.Number)
|
|
|
-}
|
|
|
-
|
|
|
-// EVEN function rounds a supplied number away from zero (i.e. rounds a
|
|
|
-// positive number up and a negative number down), to the next even number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// EVEN(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- sign := math.Signbit(number.Number)
|
|
|
- m, frac := math.Modf(number.Number / 2)
|
|
|
- val := m * 2
|
|
|
- if frac != 0 {
|
|
|
- if !sign {
|
|
|
- val += 2
|
|
|
- } else {
|
|
|
- val -= 2
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val)
|
|
|
-}
|
|
|
-
|
|
|
-// EXP function calculates the value of the mathematical constant e, raised to
|
|
|
-// the power of a given number. The syntax of the function is:
|
|
|
-//
|
|
|
-// EXP(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
|
|
|
-}
|
|
|
-
|
|
|
-// fact returns the factorial of a supplied number.
|
|
|
-func fact(number float64) float64 {
|
|
|
- val := float64(1)
|
|
|
- for i := float64(2); i <= number; i++ {
|
|
|
- val *= i
|
|
|
- }
|
|
|
- return val
|
|
|
-}
|
|
|
-
|
|
|
-// FACT function returns the factorial of a supplied number. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// FACT(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if number.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(fact(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// FACTDOUBLE function returns the double factorial of a supplied number. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// FACTDOUBLE(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := 1.0
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if number.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- for i := math.Trunc(number.Number); i > 1; i -= 2 {
|
|
|
- val *= i
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
|
|
|
-}
|
|
|
-
|
|
|
-// FLOOR function rounds a supplied number towards zero to the nearest
|
|
|
-// multiple of a specified significance. The syntax of the function is:
|
|
|
-//
|
|
|
-// FLOOR(number,significance)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- significance := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if significance.Type == ArgError {
|
|
|
- return significance
|
|
|
- }
|
|
|
- if significance.Number < 0 && number.Number >= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
|
|
|
- }
|
|
|
- val := number.Number
|
|
|
- val, res := math.Modf(val / significance.Number)
|
|
|
- if res != 0 {
|
|
|
- if number.Number < 0 && res < 0 {
|
|
|
- val--
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
|
|
|
-}
|
|
|
-
|
|
|
-// FLOORdotMATH function rounds a supplied number down to a supplied multiple
|
|
|
-// of significance. The syntax of the function is:
|
|
|
-//
|
|
|
-// FLOOR.MATH(number,[significance],[mode])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
|
|
|
- }
|
|
|
- significance, mode := 1.0, 1.0
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if number.Number < 0 {
|
|
|
- significance = -1
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- s := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if s.Type == ArgError {
|
|
|
- return s
|
|
|
- }
|
|
|
- significance = s.Number
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- return newNumberFormulaArg(math.Floor(number.Number))
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- m := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if m.Type == ArgError {
|
|
|
- return m
|
|
|
- }
|
|
|
- mode = m.Number
|
|
|
- }
|
|
|
- val, res := math.Modf(number.Number / significance)
|
|
|
- if res != 0 && number.Number < 0 && mode > 0 {
|
|
|
- val--
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val * significance)
|
|
|
-}
|
|
|
-
|
|
|
-// FLOORdotPRECISE function rounds a supplied number down to a supplied
|
|
|
-// multiple of significance. The syntax of the function is:
|
|
|
-//
|
|
|
-// FLOOR.PRECISE(number,[significance])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
|
|
|
- }
|
|
|
- var significance float64
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if number.Number < 0 {
|
|
|
- significance = -1
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- return newNumberFormulaArg(math.Floor(number.Number))
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- s := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if s.Type == ArgError {
|
|
|
- return s
|
|
|
- }
|
|
|
- significance = s.Number
|
|
|
- significance = math.Abs(significance)
|
|
|
- if significance == 0 {
|
|
|
- return newNumberFormulaArg(significance)
|
|
|
- }
|
|
|
- }
|
|
|
- val, res := math.Modf(number.Number / significance)
|
|
|
- if res != 0 {
|
|
|
- if number.Number < 0 {
|
|
|
- val--
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val * significance)
|
|
|
-}
|
|
|
-
|
|
|
-// gcd returns the greatest common divisor of two supplied integers.
|
|
|
-func gcd(x, y float64) float64 {
|
|
|
- x, y = math.Trunc(x), math.Trunc(y)
|
|
|
- if x == 0 {
|
|
|
- return y
|
|
|
- }
|
|
|
- if y == 0 {
|
|
|
- return x
|
|
|
- }
|
|
|
- for x != y {
|
|
|
- if x > y {
|
|
|
- x = x - y
|
|
|
- } else {
|
|
|
- y = y - x
|
|
|
- }
|
|
|
- }
|
|
|
- return x
|
|
|
-}
|
|
|
-
|
|
|
-// GCD function returns the greatest common divisor of two or more supplied
|
|
|
-// integers. The syntax of the function is:
|
|
|
-//
|
|
|
-// GCD(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
|
|
|
- }
|
|
|
- var (
|
|
|
- val float64
|
|
|
- nums = []float64{}
|
|
|
- )
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- num := token.ToNumber()
|
|
|
- if num.Type == ArgError {
|
|
|
- return num
|
|
|
- }
|
|
|
- val = num.Number
|
|
|
- case ArgNumber:
|
|
|
- val = token.Number
|
|
|
- }
|
|
|
- nums = append(nums, val)
|
|
|
- }
|
|
|
- if nums[0] < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
|
|
|
- }
|
|
|
- if len(nums) == 1 {
|
|
|
- return newNumberFormulaArg(nums[0])
|
|
|
- }
|
|
|
- cd := nums[0]
|
|
|
- for i := 1; i < len(nums); i++ {
|
|
|
- if nums[i] < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
|
|
|
- }
|
|
|
- cd = gcd(cd, nums[i])
|
|
|
- }
|
|
|
- return newNumberFormulaArg(cd)
|
|
|
-}
|
|
|
-
|
|
|
-// INT function truncates a supplied number down to the closest integer. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// INT(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- val, frac := math.Modf(number.Number)
|
|
|
- if frac < 0 {
|
|
|
- val--
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val)
|
|
|
-}
|
|
|
-
|
|
|
-// ISOdotCEILING function rounds a supplied number up (regardless of the
|
|
|
-// number's sign), to the nearest multiple of a supplied significance. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// ISO.CEILING(number,[significance])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
|
|
|
- }
|
|
|
- var significance float64
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if number.Number < 0 {
|
|
|
- significance = -1
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- return newNumberFormulaArg(math.Ceil(number.Number))
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- s := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if s.Type == ArgError {
|
|
|
- return s
|
|
|
- }
|
|
|
- significance = s.Number
|
|
|
- significance = math.Abs(significance)
|
|
|
- if significance == 0 {
|
|
|
- return newNumberFormulaArg(significance)
|
|
|
- }
|
|
|
- }
|
|
|
- val, res := math.Modf(number.Number / significance)
|
|
|
- if res != 0 {
|
|
|
- if number.Number > 0 {
|
|
|
- val++
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val * significance)
|
|
|
-}
|
|
|
-
|
|
|
-// lcm returns the least common multiple of two supplied integers.
|
|
|
-func lcm(a, b float64) float64 {
|
|
|
- a = math.Trunc(a)
|
|
|
- b = math.Trunc(b)
|
|
|
- if a == 0 && b == 0 {
|
|
|
- return 0
|
|
|
- }
|
|
|
- return a * b / gcd(a, b)
|
|
|
-}
|
|
|
-
|
|
|
-// LCM function returns the least common multiple of two or more supplied
|
|
|
-// integers. The syntax of the function is:
|
|
|
-//
|
|
|
-// LCM(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
|
|
|
- }
|
|
|
- var (
|
|
|
- val float64
|
|
|
- nums = []float64{}
|
|
|
- err error
|
|
|
- )
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- if token.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- val = token.Number
|
|
|
- }
|
|
|
- nums = append(nums, val)
|
|
|
- }
|
|
|
- if nums[0] < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
|
|
|
- }
|
|
|
- if len(nums) == 1 {
|
|
|
- return newNumberFormulaArg(nums[0])
|
|
|
- }
|
|
|
- cm := nums[0]
|
|
|
- for i := 1; i < len(nums); i++ {
|
|
|
- if nums[i] < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
|
|
|
- }
|
|
|
- cm = lcm(cm, nums[i])
|
|
|
- }
|
|
|
- return newNumberFormulaArg(cm)
|
|
|
-}
|
|
|
-
|
|
|
-// LN function calculates the natural logarithm of a given number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// LN(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Log(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// LOG function calculates the logarithm of a given number, to a supplied
|
|
|
-// base. The syntax of the function is:
|
|
|
-//
|
|
|
-// LOG(number,[base])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
|
|
|
- }
|
|
|
- base := 10.0
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- b := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if b.Type == ArgError {
|
|
|
- return b
|
|
|
- }
|
|
|
- base = b.Number
|
|
|
- }
|
|
|
- if number.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
|
|
|
- }
|
|
|
- if base == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
|
|
|
- }
|
|
|
- if base == 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
|
|
|
-}
|
|
|
-
|
|
|
-// LOG10 function calculates the base 10 logarithm of a given number. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// LOG10(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Log10(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// minor function implement a minor of a matrix A is the determinant of some
|
|
|
-// smaller square matrix.
|
|
|
-func minor(sqMtx [][]float64, idx int) [][]float64 {
|
|
|
- ret := [][]float64{}
|
|
|
- for i := range sqMtx {
|
|
|
- if i == 0 {
|
|
|
- continue
|
|
|
- }
|
|
|
- row := []float64{}
|
|
|
- for j := range sqMtx {
|
|
|
- if j == idx {
|
|
|
- continue
|
|
|
- }
|
|
|
- row = append(row, sqMtx[i][j])
|
|
|
- }
|
|
|
- ret = append(ret, row)
|
|
|
- }
|
|
|
- return ret
|
|
|
-}
|
|
|
-
|
|
|
-// det determinant of the 2x2 matrix.
|
|
|
-func det(sqMtx [][]float64) float64 {
|
|
|
- if len(sqMtx) == 2 {
|
|
|
- m00 := sqMtx[0][0]
|
|
|
- m01 := sqMtx[0][1]
|
|
|
- m10 := sqMtx[1][0]
|
|
|
- m11 := sqMtx[1][1]
|
|
|
- return m00*m11 - m10*m01
|
|
|
- }
|
|
|
- var res, sgn float64 = 0, 1
|
|
|
- for j := range sqMtx {
|
|
|
- res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
|
|
|
- sgn *= -1
|
|
|
- }
|
|
|
- return res
|
|
|
-}
|
|
|
-
|
|
|
-// MDETERM calculates the determinant of a square matrix. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// MDETERM(array)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
|
|
|
- var (
|
|
|
- num float64
|
|
|
- numMtx = [][]float64{}
|
|
|
- err error
|
|
|
- strMtx [][]formulaArg
|
|
|
- )
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
|
|
|
- }
|
|
|
- strMtx = argsList.Front().Value.(formulaArg).Matrix
|
|
|
- var rows = len(strMtx)
|
|
|
- for _, row := range argsList.Front().Value.(formulaArg).Matrix {
|
|
|
- if len(row) != rows {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- numRow := []float64{}
|
|
|
- for _, ele := range row {
|
|
|
- if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- numRow = append(numRow, num)
|
|
|
- }
|
|
|
- numMtx = append(numMtx, numRow)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(det(numMtx))
|
|
|
-}
|
|
|
-
|
|
|
-// MOD function returns the remainder of a division between two supplied
|
|
|
-// numbers. The syntax of the function is:
|
|
|
-//
|
|
|
-// MOD(number,divisor)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- divisor := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if divisor.Type == ArgError {
|
|
|
- return divisor
|
|
|
- }
|
|
|
- if divisor.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
|
|
|
- }
|
|
|
- trunc, rem := math.Modf(number.Number / divisor.Number)
|
|
|
- if rem < 0 {
|
|
|
- trunc--
|
|
|
- }
|
|
|
- return newNumberFormulaArg(number.Number - divisor.Number*trunc)
|
|
|
-}
|
|
|
-
|
|
|
-// MROUND function rounds a supplied number up or down to the nearest multiple
|
|
|
-// of a given number. The syntax of the function is:
|
|
|
-//
|
|
|
-// MROUND(number,multiple)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
|
|
|
- }
|
|
|
- n := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if n.Type == ArgError {
|
|
|
- return n
|
|
|
- }
|
|
|
- multiple := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if multiple.Type == ArgError {
|
|
|
- return multiple
|
|
|
- }
|
|
|
- if multiple.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- if multiple.Number < 0 && n.Number > 0 ||
|
|
|
- multiple.Number > 0 && n.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- number, res := math.Modf(n.Number / multiple.Number)
|
|
|
- if math.Trunc(res+0.5) > 0 {
|
|
|
- number++
|
|
|
- }
|
|
|
- return newNumberFormulaArg(number * multiple.Number)
|
|
|
-}
|
|
|
-
|
|
|
-// MULTINOMIAL function calculates the ratio of the factorial of a sum of
|
|
|
-// supplied values to the product of factorials of those values. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// MULTINOMIAL(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
|
|
|
- val, num, denom := 0.0, 0.0, 1.0
|
|
|
- var err error
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- if token.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- val = token.Number
|
|
|
- }
|
|
|
- num += val
|
|
|
- denom *= fact(val)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(fact(num) / denom)
|
|
|
-}
|
|
|
-
|
|
|
-// MUNIT function returns the unit matrix for a specified dimension. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// MUNIT(dimension)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
|
|
|
- }
|
|
|
- dimension := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if dimension.Type == ArgError || dimension.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
|
|
|
- }
|
|
|
- matrix := make([][]formulaArg, 0, int(dimension.Number))
|
|
|
- for i := 0; i < int(dimension.Number); i++ {
|
|
|
- row := make([]formulaArg, int(dimension.Number))
|
|
|
- for j := 0; j < int(dimension.Number); j++ {
|
|
|
- if i == j {
|
|
|
- row[j] = newNumberFormulaArg(1.0)
|
|
|
- } else {
|
|
|
- row[j] = newNumberFormulaArg(0.0)
|
|
|
- }
|
|
|
- }
|
|
|
- matrix = append(matrix, row)
|
|
|
- }
|
|
|
- return newMatrixFormulaArg(matrix)
|
|
|
-}
|
|
|
-
|
|
|
-// ODD function ounds a supplied number away from zero (i.e. rounds a positive
|
|
|
-// number up and a negative number down), to the next odd number. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// ODD(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if number.Number == 0 {
|
|
|
- return newNumberFormulaArg(1)
|
|
|
- }
|
|
|
- sign := math.Signbit(number.Number)
|
|
|
- m, frac := math.Modf((number.Number - 1) / 2)
|
|
|
- val := m*2 + 1
|
|
|
- if frac != 0 {
|
|
|
- if !sign {
|
|
|
- val += 2
|
|
|
- } else {
|
|
|
- val -= 2
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val)
|
|
|
-}
|
|
|
-
|
|
|
-// PI function returns the value of the mathematical constant π (pi), accurate
|
|
|
-// to 15 digits (14 decimal places). The syntax of the function is:
|
|
|
-//
|
|
|
-// PI()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Pi)
|
|
|
-}
|
|
|
-
|
|
|
-// POWER function calculates a given number, raised to a supplied power.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// POWER(number,power)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
|
|
|
- }
|
|
|
- x := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if x.Type == ArgError {
|
|
|
- return x
|
|
|
- }
|
|
|
- y := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if y.Type == ArgError {
|
|
|
- return y
|
|
|
- }
|
|
|
- if x.Number == 0 && y.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- if x.Number == 0 && y.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Pow(x.Number, y.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// PRODUCT function returns the product (multiplication) of a supplied set of
|
|
|
-// numerical values. The syntax of the function is:
|
|
|
-//
|
|
|
-// PRODUCT(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
|
|
|
- val, product := 0.0, 1.0
|
|
|
- var err error
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgUnknown:
|
|
|
- continue
|
|
|
- case ArgString:
|
|
|
- if token.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- product = product * val
|
|
|
- case ArgNumber:
|
|
|
- product = product * token.Number
|
|
|
- case ArgMatrix:
|
|
|
- for _, row := range token.Matrix {
|
|
|
- for _, value := range row {
|
|
|
- if value.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- product = product * val
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(product)
|
|
|
-}
|
|
|
-
|
|
|
-// QUOTIENT function returns the integer portion of a division between two
|
|
|
-// supplied numbers. The syntax of the function is:
|
|
|
-//
|
|
|
-// QUOTIENT(numerator,denominator)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
|
|
|
- }
|
|
|
- x := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if x.Type == ArgError {
|
|
|
- return x
|
|
|
- }
|
|
|
- y := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if y.Type == ArgError {
|
|
|
- return y
|
|
|
- }
|
|
|
- if y.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// RADIANS function converts radians into degrees. The syntax of the function is:
|
|
|
-//
|
|
|
-// RADIANS(angle)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
|
|
|
- }
|
|
|
- angle := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if angle.Type == ArgError {
|
|
|
- return angle
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
|
|
|
-}
|
|
|
-
|
|
|
-// RAND function generates a random real number between 0 and 1. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// RAND()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
|
|
|
-}
|
|
|
-
|
|
|
-// RANDBETWEEN function generates a random integer between two supplied
|
|
|
-// integers. The syntax of the function is:
|
|
|
-//
|
|
|
-// RANDBETWEEN(bottom,top)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
|
|
|
- }
|
|
|
- bottom := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if bottom.Type == ArgError {
|
|
|
- return bottom
|
|
|
- }
|
|
|
- top := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if top.Type == ArgError {
|
|
|
- return top
|
|
|
- }
|
|
|
- if top.Number < bottom.Number {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
|
|
|
- return newNumberFormulaArg(float64(num + int64(bottom.Number)))
|
|
|
-}
|
|
|
-
|
|
|
-// romanNumerals defined a numeral system that originated in ancient Rome and
|
|
|
-// remained the usual way of writing numbers throughout Europe well into the
|
|
|
-// Late Middle Ages.
|
|
|
-type romanNumerals struct {
|
|
|
- n float64
|
|
|
- s string
|
|
|
-}
|
|
|
-
|
|
|
-var romanTable = [][]romanNumerals{
|
|
|
- {
|
|
|
- {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
|
|
|
- {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
|
|
|
- },
|
|
|
- {
|
|
|
- {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
|
|
|
- {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
|
|
|
- {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
|
|
|
- },
|
|
|
- {
|
|
|
- {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
|
|
|
- {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
|
|
|
- {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
|
|
|
- },
|
|
|
- {
|
|
|
- {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
|
|
|
- {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
|
|
|
- {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
|
|
|
- {5, "V"}, {4, "IV"}, {1, "I"},
|
|
|
- },
|
|
|
- {
|
|
|
- {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
|
|
|
- {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
|
|
|
- {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
|
|
|
- {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
|
|
|
- },
|
|
|
-}
|
|
|
-
|
|
|
-// ROMAN function converts an arabic number to Roman. I.e. for a supplied
|
|
|
-// integer, the function returns a text string depicting the roman numeral
|
|
|
-// form of the number. The syntax of the function is:
|
|
|
-//
|
|
|
-// ROMAN(number,[form])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
|
|
|
- }
|
|
|
- var form int
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- f := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if f.Type == ArgError {
|
|
|
- return f
|
|
|
- }
|
|
|
- form = int(f.Number)
|
|
|
- if form < 0 {
|
|
|
- form = 0
|
|
|
- } else if form > 4 {
|
|
|
- form = 4
|
|
|
- }
|
|
|
- }
|
|
|
- decimalTable := romanTable[0]
|
|
|
- switch form {
|
|
|
- case 1:
|
|
|
- decimalTable = romanTable[1]
|
|
|
- case 2:
|
|
|
- decimalTable = romanTable[2]
|
|
|
- case 3:
|
|
|
- decimalTable = romanTable[3]
|
|
|
- case 4:
|
|
|
- decimalTable = romanTable[4]
|
|
|
- }
|
|
|
- val := math.Trunc(number.Number)
|
|
|
- buf := bytes.Buffer{}
|
|
|
- for _, r := range decimalTable {
|
|
|
- for val >= r.n {
|
|
|
- buf.WriteString(r.s)
|
|
|
- val -= r.n
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(buf.String())
|
|
|
-}
|
|
|
-
|
|
|
-type roundMode byte
|
|
|
-
|
|
|
-const (
|
|
|
- closest roundMode = iota
|
|
|
- down
|
|
|
- up
|
|
|
-)
|
|
|
-
|
|
|
-// round rounds a supplied number up or down.
|
|
|
-func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
|
|
|
- var significance float64
|
|
|
- if digits > 0 {
|
|
|
- significance = math.Pow(1/10.0, digits)
|
|
|
- } else {
|
|
|
- significance = math.Pow(10.0, -digits)
|
|
|
- }
|
|
|
- val, res := math.Modf(number / significance)
|
|
|
- switch mode {
|
|
|
- case closest:
|
|
|
- const eps = 0.499999999
|
|
|
- if res >= eps {
|
|
|
- val++
|
|
|
- } else if res <= -eps {
|
|
|
- val--
|
|
|
- }
|
|
|
- case down:
|
|
|
- case up:
|
|
|
- if res > 0 {
|
|
|
- val++
|
|
|
- } else if res < 0 {
|
|
|
- val--
|
|
|
- }
|
|
|
- }
|
|
|
- return val * significance
|
|
|
-}
|
|
|
-
|
|
|
-// ROUND function rounds a supplied number up or down, to a specified number
|
|
|
-// of decimal places. The syntax of the function is:
|
|
|
-//
|
|
|
-// ROUND(number,num_digits)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- digits := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if digits.Type == ArgError {
|
|
|
- return digits
|
|
|
- }
|
|
|
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
|
|
|
-}
|
|
|
-
|
|
|
-// ROUNDDOWN function rounds a supplied number down towards zero, to a
|
|
|
-// specified number of decimal places. The syntax of the function is:
|
|
|
-//
|
|
|
-// ROUNDDOWN(number,num_digits)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- digits := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if digits.Type == ArgError {
|
|
|
- return digits
|
|
|
- }
|
|
|
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
|
|
|
-}
|
|
|
-
|
|
|
-// ROUNDUP function rounds a supplied number up, away from zero, to a
|
|
|
-// specified number of decimal places. The syntax of the function is:
|
|
|
-//
|
|
|
-// ROUNDUP(number,num_digits)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- digits := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if digits.Type == ArgError {
|
|
|
- return digits
|
|
|
- }
|
|
|
- return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
|
|
|
-}
|
|
|
-
|
|
|
-// SEC function calculates the secant of a given angle. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// SEC(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Cos(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// SECH function calculates the hyperbolic secant (sech) of a supplied angle.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// SECH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(1 / math.Cosh(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
|
|
|
-// number. I.e. if the number is positive, the Sign function returns +1, if
|
|
|
-// the number is negative, the function returns -1 and if the number is 0
|
|
|
-// (zero), the function returns 0. The syntax of the function is:
|
|
|
-//
|
|
|
-// SIGN(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
|
|
|
- }
|
|
|
- val := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if val.Type == ArgError {
|
|
|
- return val
|
|
|
- }
|
|
|
- if val.Number < 0 {
|
|
|
- return newNumberFormulaArg(-1)
|
|
|
- }
|
|
|
- if val.Number > 0 {
|
|
|
- return newNumberFormulaArg(1)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(0)
|
|
|
-}
|
|
|
-
|
|
|
-// SIN function calculates the sine of a given angle. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// SIN(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Sin(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// SINH function calculates the hyperbolic sine (sinh) of a supplied number.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// SINH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Sinh(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// SQRT function calculates the positive square root of a supplied number. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// SQRT(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
|
|
|
- }
|
|
|
- value := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if value.Type == ArgError {
|
|
|
- return value
|
|
|
- }
|
|
|
- if value.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Sqrt(value.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// SQRTPI function returns the square root of a supplied number multiplied by
|
|
|
-// the mathematical constant, π. The syntax of the function is:
|
|
|
-//
|
|
|
-// SQRTPI(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
|
|
|
-}
|
|
|
-
|
|
|
-// STDEV function calculates the sample standard deviation of a supplied set
|
|
|
-// of values. The syntax of the function is:
|
|
|
-//
|
|
|
-// STDEV(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.stdev(false, argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// STDEVdotS function calculates the sample standard deviation of a supplied
|
|
|
-// set of values. The syntax of the function is:
|
|
|
-//
|
|
|
-// STDEV.S(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.stdev(false, argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// STDEVA function estimates standard deviation based on a sample. The
|
|
|
-// standard deviation is a measure of how widely values are dispersed from
|
|
|
-// the average value (the mean). The syntax of the function is:
|
|
|
-//
|
|
|
-// STDEVA(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.stdev(true, argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// stdev is an implementation of the formula function STDEV and STDEVA.
|
|
|
-func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
|
|
|
- pow := func(result, count float64, n, m formulaArg) (float64, float64) {
|
|
|
- if result == -1 {
|
|
|
- result = math.Pow((n.Number - m.Number), 2)
|
|
|
- } else {
|
|
|
- result += math.Pow((n.Number - m.Number), 2)
|
|
|
- }
|
|
|
- count++
|
|
|
- return result, count
|
|
|
- }
|
|
|
- count, result := -1.0, -1.0
|
|
|
- var mean formulaArg
|
|
|
- if stdeva {
|
|
|
- mean = fn.AVERAGEA(argsList)
|
|
|
- } else {
|
|
|
- mean = fn.AVERAGE(argsList)
|
|
|
- }
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString, ArgNumber:
|
|
|
- if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
|
|
|
- continue
|
|
|
- } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
|
|
|
- num := token.ToBool()
|
|
|
- if num.Type == ArgNumber {
|
|
|
- result, count = pow(result, count, num, mean)
|
|
|
- continue
|
|
|
- }
|
|
|
- } else {
|
|
|
- num := token.ToNumber()
|
|
|
- if num.Type == ArgNumber {
|
|
|
- result, count = pow(result, count, num, mean)
|
|
|
- }
|
|
|
- }
|
|
|
- case ArgList, ArgMatrix:
|
|
|
- for _, row := range token.ToList() {
|
|
|
- if row.Type == ArgNumber || row.Type == ArgString {
|
|
|
- if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
|
|
|
- continue
|
|
|
- } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
|
|
|
- num := row.ToBool()
|
|
|
- if num.Type == ArgNumber {
|
|
|
- result, count = pow(result, count, num, mean)
|
|
|
- continue
|
|
|
- }
|
|
|
- } else {
|
|
|
- num := row.ToNumber()
|
|
|
- if num.Type == ArgNumber {
|
|
|
- result, count = pow(result, count, num, mean)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if count > 0 && result >= 0 {
|
|
|
- return newNumberFormulaArg(math.Sqrt(result / count))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
-}
|
|
|
-
|
|
|
-// POISSONdotDIST function calculates the Poisson Probability Mass Function or
|
|
|
-// the Cumulative Poisson Probability Function for a supplied set of
|
|
|
-// parameters. The syntax of the function is:
|
|
|
-//
|
|
|
-// POISSON.DIST(x,mean,cumulative)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
|
|
|
- }
|
|
|
- return fn.POISSON(argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// POISSON function calculates the Poisson Probability Mass Function or the
|
|
|
-// Cumulative Poisson Probability Function for a supplied set of parameters.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// POISSON(x,mean,cumulative)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
|
|
|
- }
|
|
|
- var x, mean, cumulative formulaArg
|
|
|
- if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
|
|
|
- return x
|
|
|
- }
|
|
|
- if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
|
|
|
- return mean
|
|
|
- }
|
|
|
- if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
|
|
|
- return cumulative
|
|
|
- }
|
|
|
- if x.Number < 0 || mean.Number <= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if cumulative.Number == 1 {
|
|
|
- summer := 0.0
|
|
|
- floor := math.Floor(x.Number)
|
|
|
- for i := 0; i <= int(floor); i++ {
|
|
|
- summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// SUM function adds together a supplied set of numbers and returns the sum of
|
|
|
-// these values. The syntax of the function is:
|
|
|
-//
|
|
|
-// SUM(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
|
|
|
- var sum float64
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgUnknown:
|
|
|
- continue
|
|
|
- case ArgString:
|
|
|
- if num := token.ToNumber(); num.Type == ArgNumber {
|
|
|
- sum += num.Number
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- sum += token.Number
|
|
|
- case ArgMatrix:
|
|
|
- for _, row := range token.Matrix {
|
|
|
- for _, value := range row {
|
|
|
- if num := value.ToNumber(); num.Type == ArgNumber {
|
|
|
- sum += num.Number
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(sum)
|
|
|
-}
|
|
|
-
|
|
|
-// SUMIF function finds the values in a supplied array, that satisfy a given
|
|
|
-// criteria, and returns the sum of the corresponding values in a second
|
|
|
-// supplied array. The syntax of the function is:
|
|
|
-//
|
|
|
-// SUMIF(range,criteria,[sum_range])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
|
|
|
- }
|
|
|
- var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
|
|
|
- var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
|
|
|
- var sumRange [][]formulaArg
|
|
|
- if argsList.Len() == 3 {
|
|
|
- sumRange = argsList.Back().Value.(formulaArg).Matrix
|
|
|
- }
|
|
|
- var sum, val float64
|
|
|
- var err error
|
|
|
- for rowIdx, row := range rangeMtx {
|
|
|
- for colIdx, col := range row {
|
|
|
- var ok bool
|
|
|
- fromVal := col.String
|
|
|
- if col.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- if ok {
|
|
|
- if argsList.Len() == 3 {
|
|
|
- if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
|
|
|
- continue
|
|
|
- }
|
|
|
- fromVal = sumRange[rowIdx][colIdx].String
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- sum += val
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(sum)
|
|
|
-}
|
|
|
-
|
|
|
-// SUMSQ function returns the sum of squares of a supplied set of values. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// SUMSQ(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
|
|
|
- var val, sq float64
|
|
|
- var err error
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- if token.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- sq += val * val
|
|
|
- case ArgNumber:
|
|
|
- sq += token.Number
|
|
|
- case ArgMatrix:
|
|
|
- for _, row := range token.Matrix {
|
|
|
- for _, value := range row {
|
|
|
- if value.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(value.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- sq += val * val
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(sq)
|
|
|
-}
|
|
|
-
|
|
|
-// TAN function calculates the tangent of a given angle. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// TAN(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Tan(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// TANH function calculates the hyperbolic tangent (tanh) of a supplied
|
|
|
-// number. The syntax of the function is:
|
|
|
-//
|
|
|
-// TANH(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Tanh(number.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// TRUNC function truncates a supplied number to a specified number of decimal
|
|
|
-// places. The syntax of the function is:
|
|
|
-//
|
|
|
-// TRUNC(number,[number_digits])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
|
|
|
- }
|
|
|
- var digits, adjust, rtrim float64
|
|
|
- var err error
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type == ArgError {
|
|
|
- return number
|
|
|
- }
|
|
|
- if argsList.Len() > 1 {
|
|
|
- d := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if d.Type == ArgError {
|
|
|
- return d
|
|
|
- }
|
|
|
- digits = d.Number
|
|
|
- digits = math.Floor(digits)
|
|
|
- }
|
|
|
- adjust = math.Pow(10, digits)
|
|
|
- x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
|
|
|
- if x != 0 {
|
|
|
- if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- }
|
|
|
- if (digits > 0) && (rtrim < adjust/10) {
|
|
|
- return newNumberFormulaArg(number.Number)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
|
|
|
-}
|
|
|
-
|
|
|
-// Statistical Functions
|
|
|
-
|
|
|
-// AVERAGE function returns the arithmetic mean of a list of supplied numbers.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// AVERAGE(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
|
|
|
- args := []formulaArg{}
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- args = append(args, arg.Value.(formulaArg))
|
|
|
- }
|
|
|
- count, sum := fn.countSum(false, args)
|
|
|
- if count == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(sum / count)
|
|
|
-}
|
|
|
-
|
|
|
-// AVERAGEA function returns the arithmetic mean of a list of supplied numbers
|
|
|
-// with text cell and zero values. The syntax of the function is:
|
|
|
-//
|
|
|
-// AVERAGEA(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
|
|
|
- args := []formulaArg{}
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- args = append(args, arg.Value.(formulaArg))
|
|
|
- }
|
|
|
- count, sum := fn.countSum(true, args)
|
|
|
- if count == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(sum / count)
|
|
|
-}
|
|
|
-
|
|
|
-// countSum get count and sum for a formula arguments array.
|
|
|
-func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
|
|
|
- for _, arg := range args {
|
|
|
- switch arg.Type {
|
|
|
- case ArgNumber:
|
|
|
- if countText || !arg.Boolean {
|
|
|
- sum += arg.Number
|
|
|
- count++
|
|
|
- }
|
|
|
- case ArgString:
|
|
|
- if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
|
|
|
- continue
|
|
|
- } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
|
|
|
- num := arg.ToBool()
|
|
|
- if num.Type == ArgNumber {
|
|
|
- count++
|
|
|
- sum += num.Number
|
|
|
- continue
|
|
|
- }
|
|
|
- }
|
|
|
- num := arg.ToNumber()
|
|
|
- if countText && num.Type == ArgError && arg.String != "" {
|
|
|
- count++
|
|
|
- }
|
|
|
- if num.Type == ArgNumber {
|
|
|
- sum += num.Number
|
|
|
- count++
|
|
|
- }
|
|
|
- case ArgList, ArgMatrix:
|
|
|
- cnt, summary := fn.countSum(countText, arg.ToList())
|
|
|
- sum += summary
|
|
|
- count += cnt
|
|
|
- }
|
|
|
- }
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// COUNT function returns the count of numeric values in a supplied set of
|
|
|
-// cells or values. This count includes both numbers and dates. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// COUNT(value1,[value2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
|
|
|
- var count int
|
|
|
- for token := argsList.Front(); token != nil; token = token.Next() {
|
|
|
- arg := token.Value.(formulaArg)
|
|
|
- switch arg.Type {
|
|
|
- case ArgString:
|
|
|
- if arg.ToNumber().Type != ArgError {
|
|
|
- count++
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- count++
|
|
|
- case ArgMatrix:
|
|
|
- for _, row := range arg.Matrix {
|
|
|
- for _, value := range row {
|
|
|
- if value.ToNumber().Type != ArgError {
|
|
|
- count++
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(count))
|
|
|
-}
|
|
|
-
|
|
|
-// COUNTA function returns the number of non-blanks within a supplied set of
|
|
|
-// cells or values. The syntax of the function is:
|
|
|
-//
|
|
|
-// COUNTA(value1,[value2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
|
|
|
- var count int
|
|
|
- for token := argsList.Front(); token != nil; token = token.Next() {
|
|
|
- arg := token.Value.(formulaArg)
|
|
|
- switch arg.Type {
|
|
|
- case ArgString:
|
|
|
- if arg.String != "" {
|
|
|
- count++
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- count++
|
|
|
- case ArgMatrix:
|
|
|
- for _, row := range arg.ToList() {
|
|
|
- switch row.Type {
|
|
|
- case ArgString:
|
|
|
- if row.String != "" {
|
|
|
- count++
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- count++
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(count))
|
|
|
-}
|
|
|
-
|
|
|
-// COUNTBLANK function returns the number of blank cells in a supplied range.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// COUNTBLANK(range)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
|
|
|
- }
|
|
|
- var count int
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- if token.String == "" {
|
|
|
- count++
|
|
|
- }
|
|
|
- case ArgList, ArgMatrix:
|
|
|
- for _, row := range token.ToList() {
|
|
|
- switch row.Type {
|
|
|
- case ArgString:
|
|
|
- if row.String == "" {
|
|
|
- count++
|
|
|
- }
|
|
|
- case ArgEmpty:
|
|
|
- count++
|
|
|
- }
|
|
|
- }
|
|
|
- case ArgEmpty:
|
|
|
- count++
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(count))
|
|
|
-}
|
|
|
-
|
|
|
-// FISHER function calculates the Fisher Transformation for a supplied value.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// FISHER(x)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- arg := token.ToNumber()
|
|
|
- if arg.Type == ArgNumber {
|
|
|
- if arg.Number <= -1 || arg.Number >= 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if token.Number <= -1 || token.Number >= 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
|
|
|
-}
|
|
|
-
|
|
|
-// FISHERINV function calculates the inverse of the Fisher Transformation and
|
|
|
-// returns a value between -1 and +1. The syntax of the function is:
|
|
|
-//
|
|
|
-// FISHERINV(y)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- arg := token.ToNumber()
|
|
|
- if arg.Type == ArgNumber {
|
|
|
- return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
|
|
|
-}
|
|
|
-
|
|
|
-// GAMMA function returns the value of the Gamma Function, Γ(n), for a
|
|
|
-// specified number, n. The syntax of the function is:
|
|
|
-//
|
|
|
-// GAMMA(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- arg := token.ToNumber()
|
|
|
- if arg.Type == ArgNumber {
|
|
|
- if arg.Number <= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Gamma(arg.Number))
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if token.Number <= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Gamma(token.Number))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
|
|
|
-}
|
|
|
-
|
|
|
-// GAMMALN function returns the natural logarithm of the Gamma Function, Γ
|
|
|
-// (n). The syntax of the function is:
|
|
|
-//
|
|
|
-// GAMMALN(x)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- arg := token.ToNumber()
|
|
|
- if arg.Type == ArgNumber {
|
|
|
- if arg.Number <= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if token.Number <= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
|
|
|
-}
|
|
|
-
|
|
|
-// HARMEAN function calculates the harmonic mean of a supplied set of values.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// HARMEAN(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
|
|
|
- }
|
|
|
- if min := fn.MIN(argsList); min.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- number, val, cnt := 0.0, 0.0, 0.0
|
|
|
- for token := argsList.Front(); token != nil; token = token.Next() {
|
|
|
- arg := token.Value.(formulaArg)
|
|
|
- switch arg.Type {
|
|
|
- case ArgString:
|
|
|
- num := arg.ToNumber()
|
|
|
- if num.Type != ArgNumber {
|
|
|
- continue
|
|
|
- }
|
|
|
- number = num.Number
|
|
|
- case ArgNumber:
|
|
|
- number = arg.Number
|
|
|
- }
|
|
|
- if number <= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- val += (1 / number)
|
|
|
- cnt++
|
|
|
- }
|
|
|
- return newNumberFormulaArg(1 / (val / cnt))
|
|
|
-}
|
|
|
-
|
|
|
-// KURT function calculates the kurtosis of a supplied set of values. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// KURT(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
|
|
|
- }
|
|
|
- mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
|
|
|
- if stdev.Number > 0 {
|
|
|
- count, summer := 0.0, 0.0
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString, ArgNumber:
|
|
|
- num := token.ToNumber()
|
|
|
- if num.Type == ArgError {
|
|
|
- continue
|
|
|
- }
|
|
|
- summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
|
|
|
- count++
|
|
|
- case ArgList, ArgMatrix:
|
|
|
- for _, row := range token.ToList() {
|
|
|
- if row.Type == ArgNumber || row.Type == ArgString {
|
|
|
- num := row.ToNumber()
|
|
|
- if num.Type == ArgError {
|
|
|
- continue
|
|
|
- }
|
|
|
- summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
|
|
|
- count++
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if count > 3 {
|
|
|
- return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
|
|
|
- }
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
-}
|
|
|
-
|
|
|
-// NORMdotDIST function calculates the Normal Probability Density Function or
|
|
|
-// the Cumulative Normal Distribution. Function for a supplied set of
|
|
|
-// parameters. The syntax of the function is:
|
|
|
-//
|
|
|
-// NORM.DIST(x,mean,standard_dev,cumulative)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
|
|
|
- }
|
|
|
- return fn.NORMDIST(argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// NORMDIST function calculates the Normal Probability Density Function or the
|
|
|
-// Cumulative Normal Distribution. Function for a supplied set of parameters.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// NORMDIST(x,mean,standard_dev,cumulative)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
|
|
|
- }
|
|
|
- var x, mean, stdDev, cumulative formulaArg
|
|
|
- if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
|
|
|
- return x
|
|
|
- }
|
|
|
- if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
|
|
|
- return mean
|
|
|
- }
|
|
|
- if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
|
|
|
- return stdDev
|
|
|
- }
|
|
|
- if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
|
|
|
- return cumulative
|
|
|
- }
|
|
|
- if stdDev.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if cumulative.Number == 1 {
|
|
|
- return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
|
|
|
- }
|
|
|
- return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
|
|
|
-}
|
|
|
-
|
|
|
-// NORMdotINV function calculates the inverse of the Cumulative Normal
|
|
|
-// Distribution Function for a supplied value of x, and a supplied
|
|
|
-// distribution mean & standard deviation. The syntax of the function is:
|
|
|
-//
|
|
|
-// NORM.INV(probability,mean,standard_dev)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
|
|
|
- }
|
|
|
- return fn.NORMINV(argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// NORMINV function calculates the inverse of the Cumulative Normal
|
|
|
-// Distribution Function for a supplied value of x, and a supplied
|
|
|
-// distribution mean & standard deviation. The syntax of the function is:
|
|
|
-//
|
|
|
-// NORMINV(probability,mean,standard_dev)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
|
|
|
- }
|
|
|
- var prob, mean, stdDev formulaArg
|
|
|
- if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
|
|
|
- return prob
|
|
|
- }
|
|
|
- if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
|
|
|
- return mean
|
|
|
- }
|
|
|
- if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
|
|
|
- return stdDev
|
|
|
- }
|
|
|
- if prob.Number < 0 || prob.Number > 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if stdDev.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- inv, err := norminv(prob.Number)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(err.Error(), err.Error())
|
|
|
- }
|
|
|
- return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
|
|
|
-}
|
|
|
-
|
|
|
-// NORMdotSdotDIST function calculates the Standard Normal Cumulative
|
|
|
-// Distribution Function for a supplied value. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// NORM.S.DIST(z)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
|
|
|
- }
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(argsList.Front().Value.(formulaArg))
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
|
|
|
- args.PushBack(argsList.Back().Value.(formulaArg))
|
|
|
- return fn.NORMDIST(args)
|
|
|
-}
|
|
|
-
|
|
|
-// NORMSDIST function calculates the Standard Normal Cumulative Distribution
|
|
|
-// Function for a supplied value. The syntax of the function is:
|
|
|
-//
|
|
|
-// NORMSDIST(z)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
|
|
|
- }
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(argsList.Front().Value.(formulaArg))
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
|
|
|
- return fn.NORMDIST(args)
|
|
|
-}
|
|
|
-
|
|
|
-// NORMSINV function calculates the inverse of the Standard Normal Cumulative
|
|
|
-// Distribution Function for a supplied probability value. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// NORMSINV(probability)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
|
|
|
- }
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(argsList.Front().Value.(formulaArg))
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
|
|
|
- return fn.NORMINV(args)
|
|
|
-}
|
|
|
-
|
|
|
-// NORMdotSdotINV function calculates the inverse of the Standard Normal
|
|
|
-// Cumulative Distribution Function for a supplied probability value. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// NORM.S.INV(probability)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
|
|
|
- }
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(argsList.Front().Value.(formulaArg))
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
|
|
|
- args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
|
|
|
- return fn.NORMINV(args)
|
|
|
-}
|
|
|
-
|
|
|
-// norminv returns the inverse of the normal cumulative distribution for the
|
|
|
-// specified value.
|
|
|
-func norminv(p float64) (float64, error) {
|
|
|
- a := map[int]float64{
|
|
|
- 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
|
|
|
- 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
|
|
|
- }
|
|
|
- b := map[int]float64{
|
|
|
- 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
|
|
|
- 4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
|
|
|
- }
|
|
|
- c := map[int]float64{
|
|
|
- 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
|
|
|
- 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
|
|
|
- }
|
|
|
- d := map[int]float64{
|
|
|
- 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
|
|
|
- 4: 3.754408661907416e+00,
|
|
|
- }
|
|
|
- pLow := 0.02425 // Use lower region approx. below this
|
|
|
- pHigh := 1 - pLow // Use upper region approx. above this
|
|
|
- if 0 < p && p < pLow {
|
|
|
- // Rational approximation for lower region.
|
|
|
- q := math.Sqrt(-2 * math.Log(p))
|
|
|
- return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
|
|
|
- ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
|
|
|
- } else if pLow <= p && p <= pHigh {
|
|
|
- // Rational approximation for central region.
|
|
|
- q := p - 0.5
|
|
|
- r := q * q
|
|
|
- return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
|
|
|
- (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
|
|
|
- } else if pHigh < p && p < 1 {
|
|
|
- // Rational approximation for upper region.
|
|
|
- q := math.Sqrt(-2 * math.Log(1-p))
|
|
|
- return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
|
|
|
- ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
|
|
|
- }
|
|
|
- return 0, errors.New(formulaErrorNUM)
|
|
|
-}
|
|
|
-
|
|
|
-// kth is an implementation of the formula function LARGE and SMALL.
|
|
|
-func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
|
|
|
- }
|
|
|
- array := argsList.Front().Value.(formulaArg).ToList()
|
|
|
- kArg := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if kArg.Type != ArgNumber {
|
|
|
- return kArg
|
|
|
- }
|
|
|
- k := int(kArg.Number)
|
|
|
- if k < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
|
|
|
- }
|
|
|
- data := []float64{}
|
|
|
- for _, arg := range array {
|
|
|
- if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
|
|
|
- data = append(data, numArg.Number)
|
|
|
- }
|
|
|
- }
|
|
|
- if len(data) < k {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
|
|
|
- }
|
|
|
- sort.Float64s(data)
|
|
|
- if name == "LARGE" {
|
|
|
- return newNumberFormulaArg(data[len(data)-k])
|
|
|
- }
|
|
|
- return newNumberFormulaArg(data[k-1])
|
|
|
-}
|
|
|
-
|
|
|
-// LARGE function returns the k'th largest value from an array of numeric
|
|
|
-// values. The syntax of the function is:
|
|
|
-//
|
|
|
-// LARGE(array,k)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
|
|
|
- return fn.kth("LARGE", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// MAX function returns the largest value from a supplied set of numeric
|
|
|
-// values. The syntax of the function is:
|
|
|
-//
|
|
|
-// MAX(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.max(false, argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// MAXA function returns the largest value from a supplied set of numeric
|
|
|
-// values, while counting text and the logical value FALSE as the value 0 and
|
|
|
-// counting the logical value TRUE as the value 1. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// MAXA(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.max(true, argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// max is an implementation of the formula function MAX and MAXA.
|
|
|
-func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
|
|
|
- max := -math.MaxFloat64
|
|
|
- for token := argsList.Front(); token != nil; token = token.Next() {
|
|
|
- arg := token.Value.(formulaArg)
|
|
|
- switch arg.Type {
|
|
|
- case ArgString:
|
|
|
- if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
|
|
|
- continue
|
|
|
- } else {
|
|
|
- num := arg.ToBool()
|
|
|
- if num.Type == ArgNumber && num.Number > max {
|
|
|
- max = num.Number
|
|
|
- continue
|
|
|
- }
|
|
|
- }
|
|
|
- num := arg.ToNumber()
|
|
|
- if num.Type != ArgError && num.Number > max {
|
|
|
- max = num.Number
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if arg.Number > max {
|
|
|
- max = arg.Number
|
|
|
- }
|
|
|
- case ArgList, ArgMatrix:
|
|
|
- for _, row := range arg.ToList() {
|
|
|
- switch row.Type {
|
|
|
- case ArgString:
|
|
|
- if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
|
|
|
- continue
|
|
|
- } else {
|
|
|
- num := row.ToBool()
|
|
|
- if num.Type == ArgNumber && num.Number > max {
|
|
|
- max = num.Number
|
|
|
- continue
|
|
|
- }
|
|
|
- }
|
|
|
- num := row.ToNumber()
|
|
|
- if num.Type != ArgError && num.Number > max {
|
|
|
- max = num.Number
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if row.Number > max {
|
|
|
- max = row.Number
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- case ArgError:
|
|
|
- return arg
|
|
|
- }
|
|
|
- }
|
|
|
- if max == -math.MaxFloat64 {
|
|
|
- max = 0
|
|
|
- }
|
|
|
- return newNumberFormulaArg(max)
|
|
|
-}
|
|
|
-
|
|
|
-// MEDIAN function returns the statistical median (the middle value) of a list
|
|
|
-// of supplied numbers. The syntax of the function is:
|
|
|
-//
|
|
|
-// MEDIAN(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
|
|
|
- }
|
|
|
- var values = []float64{}
|
|
|
- var median, digits float64
|
|
|
- var err error
|
|
|
- for token := argsList.Front(); token != nil; token = token.Next() {
|
|
|
- arg := token.Value.(formulaArg)
|
|
|
- switch arg.Type {
|
|
|
- case ArgString:
|
|
|
- num := arg.ToNumber()
|
|
|
- if num.Type == ArgError {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, num.Error)
|
|
|
- }
|
|
|
- values = append(values, num.Number)
|
|
|
- case ArgNumber:
|
|
|
- values = append(values, arg.Number)
|
|
|
- case ArgMatrix:
|
|
|
- for _, row := range arg.Matrix {
|
|
|
- for _, value := range row {
|
|
|
- if value.String == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- values = append(values, digits)
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- sort.Float64s(values)
|
|
|
- if len(values)%2 == 0 {
|
|
|
- median = (values[len(values)/2-1] + values[len(values)/2]) / 2
|
|
|
- } else {
|
|
|
- median = values[len(values)/2]
|
|
|
- }
|
|
|
- return newNumberFormulaArg(median)
|
|
|
-}
|
|
|
-
|
|
|
-// MIN function returns the smallest value from a supplied set of numeric
|
|
|
-// values. The syntax of the function is:
|
|
|
-//
|
|
|
-// MIN(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.min(false, argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// MINA function returns the smallest value from a supplied set of numeric
|
|
|
-// values, while counting text and the logical value FALSE as the value 0 and
|
|
|
-// counting the logical value TRUE as the value 1. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// MINA(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.min(true, argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// min is an implementation of the formula function MIN and MINA.
|
|
|
-func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
|
|
|
- min := math.MaxFloat64
|
|
|
- for token := argsList.Front(); token != nil; token = token.Next() {
|
|
|
- arg := token.Value.(formulaArg)
|
|
|
- switch arg.Type {
|
|
|
- case ArgString:
|
|
|
- if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
|
|
|
- continue
|
|
|
- } else {
|
|
|
- num := arg.ToBool()
|
|
|
- if num.Type == ArgNumber && num.Number < min {
|
|
|
- min = num.Number
|
|
|
- continue
|
|
|
- }
|
|
|
- }
|
|
|
- num := arg.ToNumber()
|
|
|
- if num.Type != ArgError && num.Number < min {
|
|
|
- min = num.Number
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if arg.Number < min {
|
|
|
- min = arg.Number
|
|
|
- }
|
|
|
- case ArgList, ArgMatrix:
|
|
|
- for _, row := range arg.ToList() {
|
|
|
- switch row.Type {
|
|
|
- case ArgString:
|
|
|
- if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
|
|
|
- continue
|
|
|
- } else {
|
|
|
- num := row.ToBool()
|
|
|
- if num.Type == ArgNumber && num.Number < min {
|
|
|
- min = num.Number
|
|
|
- continue
|
|
|
- }
|
|
|
- }
|
|
|
- num := row.ToNumber()
|
|
|
- if num.Type != ArgError && num.Number < min {
|
|
|
- min = num.Number
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- if row.Number < min {
|
|
|
- min = row.Number
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- case ArgError:
|
|
|
- return arg
|
|
|
- }
|
|
|
- }
|
|
|
- if min == math.MaxFloat64 {
|
|
|
- min = 0
|
|
|
- }
|
|
|
- return newNumberFormulaArg(min)
|
|
|
-}
|
|
|
-
|
|
|
-// PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
|
|
|
-// which k% of the data values fall) for a supplied range of values and a
|
|
|
-// supplied k. The syntax of the function is:
|
|
|
-//
|
|
|
-// PERCENTILE.INC(array,k)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
|
|
|
- }
|
|
|
- return fn.PERCENTILE(argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// PERCENTILE function returns the k'th percentile (i.e. the value below which
|
|
|
-// k% of the data values fall) for a supplied range of values and a supplied
|
|
|
-// k. The syntax of the function is:
|
|
|
-//
|
|
|
-// PERCENTILE(array,k)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
|
|
|
- }
|
|
|
- array := argsList.Front().Value.(formulaArg).ToList()
|
|
|
- k := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if k.Type != ArgNumber {
|
|
|
- return k
|
|
|
- }
|
|
|
- if k.Number < 0 || k.Number > 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- numbers := []float64{}
|
|
|
- for _, arg := range array {
|
|
|
- if arg.Type == ArgError {
|
|
|
- return arg
|
|
|
- }
|
|
|
- num := arg.ToNumber()
|
|
|
- if num.Type == ArgNumber {
|
|
|
- numbers = append(numbers, num.Number)
|
|
|
- }
|
|
|
- }
|
|
|
- cnt := len(numbers)
|
|
|
- sort.Float64s(numbers)
|
|
|
- idx := k.Number * (float64(cnt) - 1)
|
|
|
- base := math.Floor(idx)
|
|
|
- if idx == base {
|
|
|
- return newNumberFormulaArg(numbers[int(idx)])
|
|
|
- }
|
|
|
- next := base + 1
|
|
|
- proportion := idx - base
|
|
|
- return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
|
|
|
-}
|
|
|
-
|
|
|
-// PERMUT function calculates the number of permutations of a specified number
|
|
|
-// of objects from a set of objects. The syntax of the function is:
|
|
|
-//
|
|
|
-// PERMUT(number,number_chosen)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- chosen := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return number
|
|
|
- }
|
|
|
- if chosen.Type != ArgNumber {
|
|
|
- return chosen
|
|
|
- }
|
|
|
- if number.Number < chosen.Number {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
|
|
|
-}
|
|
|
-
|
|
|
-// PERMUTATIONA function calculates the number of permutations, with
|
|
|
-// repetitions, of a specified number of objects from a set. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// PERMUTATIONA(number,number_chosen)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
|
|
|
- }
|
|
|
- number := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- chosen := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if number.Type != ArgNumber {
|
|
|
- return number
|
|
|
- }
|
|
|
- if chosen.Type != ArgNumber {
|
|
|
- return chosen
|
|
|
- }
|
|
|
- num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
|
|
|
- if num < 0 || numChosen < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Pow(num, numChosen))
|
|
|
-}
|
|
|
-
|
|
|
-// QUARTILE function returns a requested quartile of a supplied range of
|
|
|
-// values. The syntax of the function is:
|
|
|
-//
|
|
|
-// QUARTILE(array,quart)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
|
|
|
- }
|
|
|
- quart := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if quart.Type != ArgNumber {
|
|
|
- return quart
|
|
|
- }
|
|
|
- if quart.Number < 0 || quart.Number > 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(argsList.Front().Value.(formulaArg))
|
|
|
- args.PushBack(newNumberFormulaArg(quart.Number / 4))
|
|
|
- return fn.PERCENTILE(args)
|
|
|
-}
|
|
|
-
|
|
|
-// QUARTILEdotINC function returns a requested quartile of a supplied range of
|
|
|
-// values. The syntax of the function is:
|
|
|
-//
|
|
|
-// QUARTILE.INC(array,quart)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
|
|
|
- }
|
|
|
- return fn.QUARTILE(argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// SKEW function calculates the skewness of the distribution of a supplied set
|
|
|
-// of values. The syntax of the function is:
|
|
|
-//
|
|
|
-// SKEW(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
|
|
|
- }
|
|
|
- mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgNumber, ArgString:
|
|
|
- num := token.ToNumber()
|
|
|
- if num.Type == ArgError {
|
|
|
- return num
|
|
|
- }
|
|
|
- summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
|
|
|
- count++
|
|
|
- case ArgList, ArgMatrix:
|
|
|
- for _, row := range token.ToList() {
|
|
|
- numArg := row.ToNumber()
|
|
|
- if numArg.Type != ArgNumber {
|
|
|
- continue
|
|
|
- }
|
|
|
- summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
|
|
|
- count++
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if count > 2 {
|
|
|
- return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
-}
|
|
|
-
|
|
|
-// SMALL function returns the k'th smallest value from an array of numeric
|
|
|
-// values. The syntax of the function is:
|
|
|
-//
|
|
|
-// SMALL(array,k)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
|
|
|
- return fn.kth("SMALL", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// VARP function returns the Variance of a given set of values. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// VARP(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
|
|
|
- }
|
|
|
- summerA, summerB, count := 0.0, 0.0, 0.0
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- for _, token := range arg.Value.(formulaArg).ToList() {
|
|
|
- if num := token.ToNumber(); num.Type == ArgNumber {
|
|
|
- summerA += (num.Number * num.Number)
|
|
|
- summerB += num.Number
|
|
|
- count++
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if count > 0 {
|
|
|
- summerA *= count
|
|
|
- summerB *= summerB
|
|
|
- return newNumberFormulaArg((summerA - summerB) / (count * count))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
-}
|
|
|
-
|
|
|
-// VARdotP function returns the Variance of a given set of values. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// VAR.P(number1,[number2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
|
|
|
- }
|
|
|
- return fn.VARP(argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// Information Functions
|
|
|
-
|
|
|
-// ISBLANK function tests if a specified cell is blank (empty) and if so,
|
|
|
-// returns TRUE; Otherwise the function returns FALSE. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// ISBLANK(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- result := "FALSE"
|
|
|
- switch token.Type {
|
|
|
- case ArgUnknown:
|
|
|
- result = "TRUE"
|
|
|
- case ArgString:
|
|
|
- if token.String == "" {
|
|
|
- result = "TRUE"
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISERR function tests if an initial supplied expression (or value) returns
|
|
|
-// any Excel Error, except the #N/A error. If so, the function returns the
|
|
|
-// logical value TRUE; If the supplied value is not an error or is the #N/A
|
|
|
-// error, the ISERR function returns FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISERR(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- result := "FALSE"
|
|
|
- if token.Type == ArgError {
|
|
|
- for _, errType := range []string{
|
|
|
- formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
|
|
|
- formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
|
|
|
- formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
|
|
|
- } {
|
|
|
- if errType == token.String {
|
|
|
- result = "TRUE"
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISERROR function tests if an initial supplied expression (or value) returns
|
|
|
-// an Excel Error, and if so, returns the logical value TRUE; Otherwise the
|
|
|
-// function returns FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISERROR(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- result := "FALSE"
|
|
|
- if token.Type == ArgError {
|
|
|
- for _, errType := range []string{
|
|
|
- formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
|
|
|
- formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
|
|
|
- formulaErrorCALC, formulaErrorGETTINGDATA,
|
|
|
- } {
|
|
|
- if errType == token.String {
|
|
|
- result = "TRUE"
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISEVEN function tests if a supplied number (or numeric expression)
|
|
|
-// evaluates to an even number, and if so, returns TRUE; Otherwise, the
|
|
|
-// function returns FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISEVEN(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
|
|
|
- }
|
|
|
- var (
|
|
|
- token = argsList.Front().Value.(formulaArg)
|
|
|
- result = "FALSE"
|
|
|
- numeric int
|
|
|
- err error
|
|
|
- )
|
|
|
- if token.Type == ArgString {
|
|
|
- if numeric, err = strconv.Atoi(token.String); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- if numeric == numeric/2*2 {
|
|
|
- return newStringFormulaArg("TRUE")
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISNA function tests if an initial supplied expression (or value) returns
|
|
|
-// the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
|
|
|
-// returns FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISNA(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- result := "FALSE"
|
|
|
- if token.Type == ArgError && token.String == formulaErrorNA {
|
|
|
- result = "TRUE"
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISNONTEXT function function tests if a supplied value is text. If not, the
|
|
|
-// function returns TRUE; If the supplied value is text, the function returns
|
|
|
-// FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISNONTEXT(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- result := "TRUE"
|
|
|
- if token.Type == ArgString && token.String != "" {
|
|
|
- result = "FALSE"
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISNUMBER function function tests if a supplied value is a number. If so,
|
|
|
-// the function returns TRUE; Otherwise it returns FALSE. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// ISNUMBER(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
|
|
|
- }
|
|
|
- token, result := argsList.Front().Value.(formulaArg), false
|
|
|
- if token.Type == ArgString && token.String != "" {
|
|
|
- if _, err := strconv.Atoi(token.String); err == nil {
|
|
|
- result = true
|
|
|
- }
|
|
|
- }
|
|
|
- return newBoolFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISODD function tests if a supplied number (or numeric expression) evaluates
|
|
|
-// to an odd number, and if so, returns TRUE; Otherwise, the function returns
|
|
|
-// FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISODD(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
|
|
|
- }
|
|
|
- var (
|
|
|
- token = argsList.Front().Value.(formulaArg)
|
|
|
- result = "FALSE"
|
|
|
- numeric int
|
|
|
- err error
|
|
|
- )
|
|
|
- if token.Type == ArgString {
|
|
|
- if numeric, err = strconv.Atoi(token.String); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- if numeric != numeric/2*2 {
|
|
|
- return newStringFormulaArg("TRUE")
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
|
|
|
-// Otherwise, the function returns FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISTEXT(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- if token.ToNumber().Type != ArgError {
|
|
|
- return newBoolFormulaArg(false)
|
|
|
- }
|
|
|
- return newBoolFormulaArg(token.Type == ArgString)
|
|
|
-}
|
|
|
-
|
|
|
-// N function converts data into a numeric value. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// N(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
|
|
|
- }
|
|
|
- token, num := argsList.Front().Value.(formulaArg), 0.0
|
|
|
- if token.Type == ArgError {
|
|
|
- return token
|
|
|
- }
|
|
|
- if arg := token.ToNumber(); arg.Type == ArgNumber {
|
|
|
- num = arg.Number
|
|
|
- }
|
|
|
- if token.Value() == "TRUE" {
|
|
|
- num = 1
|
|
|
- }
|
|
|
- return newNumberFormulaArg(num)
|
|
|
-}
|
|
|
-
|
|
|
-// NA function returns the Excel #N/A error. This error message has the
|
|
|
-// meaning 'value not available' and is produced when an Excel Formula is
|
|
|
-// unable to find a value that it needs. The syntax of the function is:
|
|
|
-//
|
|
|
-// NA()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
-}
|
|
|
-
|
|
|
-// SHEET function returns the Sheet number for a specified reference. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// SHEET()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
|
|
|
-}
|
|
|
-
|
|
|
-// T function tests if a supplied value is text and if so, returns the
|
|
|
-// supplied text; Otherwise, the function returns an empty text string. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// T(value)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- if token.Type == ArgError {
|
|
|
- return token
|
|
|
- }
|
|
|
- if token.Type == ArgNumber {
|
|
|
- return newStringFormulaArg("")
|
|
|
- }
|
|
|
- return newStringFormulaArg(token.Value())
|
|
|
-}
|
|
|
-
|
|
|
-// Logical Functions
|
|
|
-
|
|
|
-// AND function tests a number of supplied conditions and returns TRUE or
|
|
|
-// FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// AND(logical_test1,[logical_test2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 30 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
|
|
|
- }
|
|
|
- var (
|
|
|
- and = true
|
|
|
- val float64
|
|
|
- err error
|
|
|
- )
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgUnknown:
|
|
|
- continue
|
|
|
- case ArgString:
|
|
|
- if token.String == "TRUE" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if token.String == "FALSE" {
|
|
|
- return newStringFormulaArg(token.String)
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- and = and && (val != 0)
|
|
|
- case ArgMatrix:
|
|
|
- // TODO
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- }
|
|
|
- return newBoolFormulaArg(and)
|
|
|
-}
|
|
|
-
|
|
|
-// FALSE function function returns the logical value FALSE. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// FALSE()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
|
|
|
- }
|
|
|
- return newBoolFormulaArg(false)
|
|
|
-}
|
|
|
-
|
|
|
-// IFERROR function receives two values (or expressions) and tests if the
|
|
|
-// first of these evaluates to an error. The syntax of the function is:
|
|
|
-//
|
|
|
-// IFERROR(value,value_if_error)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
|
|
|
- }
|
|
|
- value := argsList.Front().Value.(formulaArg)
|
|
|
- if value.Type != ArgError {
|
|
|
- if value.Type == ArgEmpty {
|
|
|
- return newNumberFormulaArg(0)
|
|
|
- }
|
|
|
- return value
|
|
|
- }
|
|
|
- return argsList.Back().Value.(formulaArg)
|
|
|
-}
|
|
|
-
|
|
|
-// NOT function returns the opposite to a supplied logical value. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// NOT(logical)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString, ArgList:
|
|
|
- if strings.ToUpper(token.String) == "TRUE" {
|
|
|
- return newBoolFormulaArg(false)
|
|
|
- }
|
|
|
- if strings.ToUpper(token.String) == "FALSE" {
|
|
|
- return newBoolFormulaArg(true)
|
|
|
- }
|
|
|
- case ArgNumber:
|
|
|
- return newBoolFormulaArg(!(token.Number != 0))
|
|
|
- case ArgError:
|
|
|
-
|
|
|
- return token
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
|
|
|
-}
|
|
|
-
|
|
|
-// OR function tests a number of supplied conditions and returns either TRUE
|
|
|
-// or FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// OR(logical_test1,[logical_test2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 30 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
|
|
|
- }
|
|
|
- var (
|
|
|
- or bool
|
|
|
- val float64
|
|
|
- err error
|
|
|
- )
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgUnknown:
|
|
|
- continue
|
|
|
- case ArgString:
|
|
|
- if token.String == "FALSE" {
|
|
|
- continue
|
|
|
- }
|
|
|
- if token.String == "TRUE" {
|
|
|
- or = true
|
|
|
- continue
|
|
|
- }
|
|
|
- if val, err = strconv.ParseFloat(token.String, 64); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- or = val != 0
|
|
|
- case ArgMatrix:
|
|
|
- // TODO
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
|
|
|
-}
|
|
|
-
|
|
|
-// TRUE function returns the logical value TRUE. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// TRUE()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
|
|
|
- }
|
|
|
- return newBoolFormulaArg(true)
|
|
|
-}
|
|
|
-
|
|
|
-// Date and Time Functions
|
|
|
-
|
|
|
-// DATE returns a date, from a user-supplied year, month and day. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// DATE(year,month,day)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
|
|
|
- }
|
|
|
- year := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- month := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- day := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
|
|
|
- }
|
|
|
- d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
|
|
|
- return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
|
|
|
-}
|
|
|
-
|
|
|
-// DATEDIF function calculates the number of days, months, or years between
|
|
|
-// two dates. The syntax of the function is:
|
|
|
-//
|
|
|
-// DATEDIF(start_date,end_date,unit)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
|
|
|
- }
|
|
|
- startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
|
|
|
- return startArg
|
|
|
- }
|
|
|
- if startArg.Number > endArg.Number {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
|
|
|
- }
|
|
|
- if startArg.Number == endArg.Number {
|
|
|
- return newNumberFormulaArg(0)
|
|
|
- }
|
|
|
- unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
|
|
|
- startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
|
|
|
- sy, smm, sd := startDate.Date()
|
|
|
- ey, emm, ed := endDate.Date()
|
|
|
- sm, em, diff := int(smm), int(emm), 0.0
|
|
|
- switch unit {
|
|
|
- case "d":
|
|
|
- return newNumberFormulaArg(endArg.Number - startArg.Number)
|
|
|
- case "y":
|
|
|
- diff = float64(ey - sy)
|
|
|
- if em < sm || (em == sm && ed < sd) {
|
|
|
- diff--
|
|
|
- }
|
|
|
- case "m":
|
|
|
- ydiff := ey - sy
|
|
|
- mdiff := em - sm
|
|
|
- if ed < sd {
|
|
|
- mdiff--
|
|
|
- }
|
|
|
- if mdiff < 0 {
|
|
|
- ydiff--
|
|
|
- mdiff += 12
|
|
|
- }
|
|
|
- diff = float64(ydiff*12 + mdiff)
|
|
|
- case "md":
|
|
|
- smMD := em
|
|
|
- if ed < sd {
|
|
|
- smMD--
|
|
|
- }
|
|
|
- diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
|
|
|
- case "ym":
|
|
|
- diff = float64(em - sm)
|
|
|
- if ed < sd {
|
|
|
- diff--
|
|
|
- }
|
|
|
- if diff < 0 {
|
|
|
- diff += 12
|
|
|
- }
|
|
|
- case "yd":
|
|
|
- syYD := sy
|
|
|
- if em < sm || (em == sm && ed < sd) {
|
|
|
- syYD++
|
|
|
- }
|
|
|
- s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
|
|
|
- e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
|
|
|
- diff = s - e
|
|
|
- default:
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(diff)
|
|
|
-}
|
|
|
-
|
|
|
-// NOW function returns the current date and time. The function receives no
|
|
|
-// arguments and therefore. The syntax of the function is:
|
|
|
-//
|
|
|
-// NOW()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
|
|
|
- }
|
|
|
- now := time.Now()
|
|
|
- _, offset := now.Zone()
|
|
|
- return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
|
|
|
-}
|
|
|
-
|
|
|
-// TODAY function returns the current date. The function has no arguments and
|
|
|
-// therefore. The syntax of the function is:
|
|
|
-//
|
|
|
-// TODAY()
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
|
|
|
- }
|
|
|
- now := time.Now()
|
|
|
- _, offset := now.Zone()
|
|
|
- return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
|
|
|
-}
|
|
|
-
|
|
|
-// makeDate return date as a Unix time, the number of seconds elapsed since
|
|
|
-// January 1, 1970 UTC.
|
|
|
-func makeDate(y int, m time.Month, d int) int64 {
|
|
|
- if y == 1900 && int(m) <= 2 {
|
|
|
- d--
|
|
|
- }
|
|
|
- date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
|
|
|
- return date.Unix()
|
|
|
-}
|
|
|
-
|
|
|
-// daysBetween return time interval of the given start timestamp and end
|
|
|
-// timestamp.
|
|
|
-func daysBetween(startDate, endDate int64) float64 {
|
|
|
- return float64(int(0.5 + float64((endDate-startDate)/86400)))
|
|
|
-}
|
|
|
-
|
|
|
-// Text Functions
|
|
|
-
|
|
|
-// CHAR function returns the character relating to a supplied character set
|
|
|
-// number (from 1 to 255). syntax of the function is:
|
|
|
-//
|
|
|
-// CHAR(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
|
|
|
- }
|
|
|
- arg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if arg.Type != ArgNumber {
|
|
|
- return arg
|
|
|
- }
|
|
|
- num := int(arg.Number)
|
|
|
- if num < 0 || num > 255 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- return newStringFormulaArg(fmt.Sprintf("%c", num))
|
|
|
-}
|
|
|
-
|
|
|
-// CLEAN removes all non-printable characters from a supplied text string. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// CLEAN(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
|
|
|
- }
|
|
|
- b := bytes.Buffer{}
|
|
|
- for _, c := range argsList.Front().Value.(formulaArg).String {
|
|
|
- if c > 31 {
|
|
|
- b.WriteRune(c)
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(b.String())
|
|
|
-}
|
|
|
-
|
|
|
-// CODE function converts the first character of a supplied text string into
|
|
|
-// the associated numeric character set code used by your computer. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// CODE(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
|
|
|
- return fn.code("CODE", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// code is an implementation of the formula function CODE and UNICODE.
|
|
|
-func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
|
|
|
- }
|
|
|
- text := argsList.Front().Value.(formulaArg).Value()
|
|
|
- if len(text) == 0 {
|
|
|
- if name == "CODE" {
|
|
|
- return newNumberFormulaArg(0)
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(text[0]))
|
|
|
-}
|
|
|
-
|
|
|
-// CONCAT function joins together a series of supplied text strings into one
|
|
|
-// combined text string.
|
|
|
-//
|
|
|
-// CONCAT(text1,[text2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
|
|
|
- return fn.concat("CONCAT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// CONCATENATE function joins together a series of supplied text strings into
|
|
|
-// one combined text string.
|
|
|
-//
|
|
|
-// CONCATENATE(text1,[text2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
|
|
|
- return fn.concat("CONCATENATE", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// concat is an implementation of the formula function CONCAT and CONCATENATE.
|
|
|
-func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
|
|
|
- buf := bytes.Buffer{}
|
|
|
- for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
- token := arg.Value.(formulaArg)
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- buf.WriteString(token.String)
|
|
|
- case ArgNumber:
|
|
|
- if token.Boolean {
|
|
|
- if token.Number == 0 {
|
|
|
- buf.WriteString("FALSE")
|
|
|
- } else {
|
|
|
- buf.WriteString("TRUE")
|
|
|
- }
|
|
|
- } else {
|
|
|
- buf.WriteString(token.Value())
|
|
|
- }
|
|
|
- default:
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(buf.String())
|
|
|
-}
|
|
|
-
|
|
|
-// EXACT function tests if two supplied text strings or values are exactly
|
|
|
-// equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
|
|
|
-// function is case-sensitive. The syntax of the function is:
|
|
|
-//
|
|
|
-// EXACT(text1,text2)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
|
|
|
- }
|
|
|
- text1 := argsList.Front().Value.(formulaArg).Value()
|
|
|
- text2 := argsList.Back().Value.(formulaArg).Value()
|
|
|
- return newBoolFormulaArg(text1 == text2)
|
|
|
-}
|
|
|
-
|
|
|
-// FIXED function rounds a supplied number to a specified number of decimal
|
|
|
-// places and then converts this into text. The syntax of the function is:
|
|
|
-//
|
|
|
-// FIXED(number,[decimals],[no_commas])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
|
|
|
- }
|
|
|
- numArg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if numArg.Type != ArgNumber {
|
|
|
- return numArg
|
|
|
- }
|
|
|
- precision, decimals, noCommas := 0, 0, false
|
|
|
- s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
|
|
|
- if argsList.Len() == 1 && len(s) == 2 {
|
|
|
- precision = len(s[1])
|
|
|
- decimals = len(s[1])
|
|
|
- }
|
|
|
- if argsList.Len() >= 2 {
|
|
|
- decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if decimalsArg.Type != ArgNumber {
|
|
|
- return decimalsArg
|
|
|
- }
|
|
|
- decimals = int(decimalsArg.Number)
|
|
|
- }
|
|
|
- if argsList.Len() == 3 {
|
|
|
- noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
|
|
|
- if noCommasArg.Type == ArgError {
|
|
|
- return noCommasArg
|
|
|
- }
|
|
|
- noCommas = noCommasArg.Boolean
|
|
|
- }
|
|
|
- n := math.Pow(10, float64(decimals))
|
|
|
- r := numArg.Number * n
|
|
|
- fixed := float64(int(r+math.Copysign(0.5, r))) / n
|
|
|
- if decimals > 0 {
|
|
|
- precision = decimals
|
|
|
- }
|
|
|
- if noCommas {
|
|
|
- return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
|
|
|
- }
|
|
|
- p := message.NewPrinter(language.English)
|
|
|
- return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
|
|
|
-}
|
|
|
-
|
|
|
-// FIND function returns the position of a specified character or sub-string
|
|
|
-// within a supplied text string. The function is case-sensitive. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// FIND(find_text,within_text,[start_num])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
|
|
|
- return fn.find("FIND", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// FINDB counts each double-byte character as 2 when you have enabled the
|
|
|
-// editing of a language that supports DBCS and then set it as the default
|
|
|
-// language. Otherwise, FINDB counts each character as 1. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// FINDB(find_text,within_text,[start_num])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
|
|
|
- return fn.find("FINDB", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// find is an implementation of the formula function FIND and FINDB.
|
|
|
-func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
|
|
|
- }
|
|
|
- findText := argsList.Front().Value.(formulaArg).Value()
|
|
|
- withinText := argsList.Front().Next().Value.(formulaArg).Value()
|
|
|
- startNum, result := 1, 1
|
|
|
- if argsList.Len() == 3 {
|
|
|
- numArg := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if numArg.Type != ArgNumber {
|
|
|
- return numArg
|
|
|
- }
|
|
|
- if numArg.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- startNum = int(numArg.Number)
|
|
|
- }
|
|
|
- if findText == "" {
|
|
|
- return newNumberFormulaArg(float64(startNum))
|
|
|
- }
|
|
|
- for idx := range withinText {
|
|
|
- if result < startNum {
|
|
|
- result++
|
|
|
- }
|
|
|
- if strings.Index(withinText[idx:], findText) == 0 {
|
|
|
- return newNumberFormulaArg(float64(result))
|
|
|
- }
|
|
|
- result++
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
-}
|
|
|
-
|
|
|
-// LEFT function returns a specified number of characters from the start of a
|
|
|
-// supplied text string. The syntax of the function is:
|
|
|
-//
|
|
|
-// LEFT(text,[num_chars])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
|
|
|
- return fn.leftRight("LEFT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// LEFTB returns the first character or characters in a text string, based on
|
|
|
-// the number of bytes you specify. The syntax of the function is:
|
|
|
-//
|
|
|
-// LEFTB(text,[num_bytes])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
|
|
|
- return fn.leftRight("LEFTB", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
|
|
|
-// RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
|
|
|
-// (Traditional), and Korean.
|
|
|
-func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
|
|
|
- }
|
|
|
- text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
|
|
|
- if argsList.Len() == 2 {
|
|
|
- numArg := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if numArg.Type != ArgNumber {
|
|
|
- return numArg
|
|
|
- }
|
|
|
- if numArg.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- numChars = int(numArg.Number)
|
|
|
- }
|
|
|
- if len(text) > numChars {
|
|
|
- if name == "LEFT" || name == "LEFTB" {
|
|
|
- return newStringFormulaArg(text[:numChars])
|
|
|
- }
|
|
|
- return newStringFormulaArg(text[len(text)-numChars:])
|
|
|
- }
|
|
|
- return newStringFormulaArg(text)
|
|
|
-}
|
|
|
-
|
|
|
-// LEN returns the length of a supplied text string. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// LEN(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
|
|
|
- }
|
|
|
- return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
|
|
|
-}
|
|
|
-
|
|
|
-// LENB returns the number of bytes used to represent the characters in a text
|
|
|
-// string. LENB counts 2 bytes per character only when a DBCS language is set
|
|
|
-// as the default language. Otherwise LENB behaves the same as LEN, counting
|
|
|
-// 1 byte per character. The syntax of the function is:
|
|
|
-//
|
|
|
-// LENB(text)
|
|
|
-//
|
|
|
-// TODO: the languages that support DBCS include Japanese, Chinese
|
|
|
-// (Simplified), Chinese (Traditional), and Korean.
|
|
|
-func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
|
|
|
- }
|
|
|
- return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
|
|
|
-}
|
|
|
-
|
|
|
-// LOWER converts all characters in a supplied text string to lower case. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// LOWER(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
|
|
|
-}
|
|
|
-
|
|
|
-// MID function returns a specified number of characters from the middle of a
|
|
|
-// supplied text string. The syntax of the function is:
|
|
|
-//
|
|
|
-// MID(text,start_num,num_chars)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
|
|
|
- return fn.mid("MID", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// MIDB returns a specific number of characters from a text string, starting
|
|
|
-// at the position you specify, based on the number of bytes you specify. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// MID(text,start_num,num_chars)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
|
|
|
- return fn.mid("MIDB", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// mid is an implementation of the formula function MID and MIDB. TODO:
|
|
|
-// support DBCS include Japanese, Chinese (Simplified), Chinese
|
|
|
-// (Traditional), and Korean.
|
|
|
-func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
|
|
|
- }
|
|
|
- text := argsList.Front().Value.(formulaArg).Value()
|
|
|
- startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if startNumArg.Type != ArgNumber {
|
|
|
- return startNumArg
|
|
|
- }
|
|
|
- if numCharsArg.Type != ArgNumber {
|
|
|
- return numCharsArg
|
|
|
- }
|
|
|
- startNum := int(startNumArg.Number)
|
|
|
- if startNum < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- textLen := len(text)
|
|
|
- if startNum > textLen {
|
|
|
- return newStringFormulaArg("")
|
|
|
- }
|
|
|
- startNum--
|
|
|
- endNum := startNum + int(numCharsArg.Number)
|
|
|
- if endNum > textLen+1 {
|
|
|
- return newStringFormulaArg(text[startNum:])
|
|
|
- }
|
|
|
- return newStringFormulaArg(text[startNum:endNum])
|
|
|
-}
|
|
|
-
|
|
|
-// PROPER converts all characters in a supplied text string to proper case
|
|
|
-// (i.e. all letters that do not immediately follow another letter are set to
|
|
|
-// upper case and all other characters are lower case). The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// PROPER(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
|
|
|
- }
|
|
|
- buf := bytes.Buffer{}
|
|
|
- isLetter := false
|
|
|
- for _, char := range argsList.Front().Value.(formulaArg).String {
|
|
|
- if !isLetter && unicode.IsLetter(char) {
|
|
|
- buf.WriteRune(unicode.ToUpper(char))
|
|
|
- } else {
|
|
|
- buf.WriteRune(unicode.ToLower(char))
|
|
|
- }
|
|
|
- isLetter = unicode.IsLetter(char)
|
|
|
- }
|
|
|
- return newStringFormulaArg(buf.String())
|
|
|
-}
|
|
|
-
|
|
|
-// REPLACE function replaces all or part of a text string with another string.
|
|
|
-// The syntax of the function is:
|
|
|
-//
|
|
|
-// REPLACE(old_text,start_num,num_chars,new_text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
|
|
|
- return fn.replace("REPLACE", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// REPLACEB replaces part of a text string, based on the number of bytes you
|
|
|
-// specify, with a different text string.
|
|
|
-//
|
|
|
-// REPLACEB(old_text,start_num,num_chars,new_text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
|
|
|
- return fn.replace("REPLACEB", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// replace is an implementation of the formula function REPLACE and REPLACEB.
|
|
|
-// TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
|
|
|
-// (Traditional), and Korean.
|
|
|
-func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
|
|
|
- }
|
|
|
- oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
|
|
|
- startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if startNumArg.Type != ArgNumber {
|
|
|
- return startNumArg
|
|
|
- }
|
|
|
- if numCharsArg.Type != ArgNumber {
|
|
|
- return numCharsArg
|
|
|
- }
|
|
|
- oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
|
|
|
- if startIdx > oldTextLen {
|
|
|
- startIdx = oldTextLen + 1
|
|
|
- }
|
|
|
- endIdx := startIdx + int(numCharsArg.Number)
|
|
|
- if endIdx > oldTextLen {
|
|
|
- endIdx = oldTextLen + 1
|
|
|
- }
|
|
|
- if startIdx < 1 || endIdx < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// REPT function returns a supplied text string, repeated a specified number
|
|
|
-// of times. The syntax of the function is:
|
|
|
-//
|
|
|
-// REPT(text,number_times)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
|
|
|
- }
|
|
|
- text := argsList.Front().Value.(formulaArg)
|
|
|
- if text.Type != ArgString {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
|
|
|
- }
|
|
|
- times := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if times.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
|
|
|
- }
|
|
|
- if times.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
|
|
|
- }
|
|
|
- if times.Number == 0 {
|
|
|
- return newStringFormulaArg("")
|
|
|
- }
|
|
|
- buf := bytes.Buffer{}
|
|
|
- for i := 0; i < int(times.Number); i++ {
|
|
|
- buf.WriteString(text.String)
|
|
|
- }
|
|
|
- return newStringFormulaArg(buf.String())
|
|
|
-}
|
|
|
-
|
|
|
-// RIGHT function returns a specified number of characters from the end of a
|
|
|
-// supplied text string. The syntax of the function is:
|
|
|
-//
|
|
|
-// RIGHT(text,[num_chars])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
|
|
|
- return fn.leftRight("RIGHT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// RIGHTB returns the last character or characters in a text string, based on
|
|
|
-// the number of bytes you specify. The syntax of the function is:
|
|
|
-//
|
|
|
-// RIGHTB(text,[num_bytes])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
|
|
|
- return fn.leftRight("RIGHTB", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// SUBSTITUTE function replaces one or more instances of a given text string,
|
|
|
-// within an original text string. The syntax of the function is:
|
|
|
-//
|
|
|
-// SUBSTITUTE(text,old_text,new_text,[instance_num])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 && argsList.Len() != 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
|
|
|
- }
|
|
|
- text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
|
|
|
- newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
|
|
|
- if argsList.Len() == 3 {
|
|
|
- return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
|
|
|
- }
|
|
|
- instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if instanceNumArg.Type != ArgNumber {
|
|
|
- return instanceNumArg
|
|
|
- }
|
|
|
- instanceNum = int(instanceNumArg.Number)
|
|
|
- if instanceNum < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
|
|
|
- }
|
|
|
- str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
|
|
|
- for {
|
|
|
- count--
|
|
|
- index := strings.Index(str, oldText.Value())
|
|
|
- if index == -1 {
|
|
|
- pos = -1
|
|
|
- break
|
|
|
- } else {
|
|
|
- pos = index + chars
|
|
|
- if count == 0 {
|
|
|
- break
|
|
|
- }
|
|
|
- idx := oldTextLen + index
|
|
|
- chars += idx
|
|
|
- str = str[idx:]
|
|
|
- }
|
|
|
- }
|
|
|
- if pos == -1 {
|
|
|
- return newStringFormulaArg(text.Value())
|
|
|
- }
|
|
|
- pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
|
|
|
- return newStringFormulaArg(pre + newText.Value() + post)
|
|
|
-}
|
|
|
-
|
|
|
-// TRIM removes extra spaces (i.e. all spaces except for single spaces between
|
|
|
-// words or characters) from a supplied text string. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// TRIM(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
|
|
|
-}
|
|
|
-
|
|
|
-// UNICHAR returns the Unicode character that is referenced by the given
|
|
|
-// numeric value. The syntax of the function is:
|
|
|
-//
|
|
|
-// UNICHAR(number)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
|
|
|
- }
|
|
|
- numArg := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if numArg.Type != ArgNumber {
|
|
|
- return numArg
|
|
|
- }
|
|
|
- if numArg.Number <= 0 || numArg.Number > 55295 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
|
|
- }
|
|
|
- return newStringFormulaArg(string(rune(numArg.Number)))
|
|
|
-}
|
|
|
-
|
|
|
-// UNICODE function returns the code point for the first character of a
|
|
|
-// supplied text string. The syntax of the function is:
|
|
|
-//
|
|
|
-// UNICODE(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
|
|
|
- return fn.code("UNICODE", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// UPPER converts all characters in a supplied text string to upper case. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// UPPER(text)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
|
|
|
- }
|
|
|
- return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
|
|
|
-}
|
|
|
-
|
|
|
-// Conditional Functions
|
|
|
-
|
|
|
-// IF function tests a supplied condition and returns one result if the
|
|
|
-// condition evaluates to TRUE, and another result if the condition evaluates
|
|
|
-// to FALSE. The syntax of the function is:
|
|
|
-//
|
|
|
-// IF(logical_test,value_if_true,value_if_false)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg)
|
|
|
- var (
|
|
|
- cond bool
|
|
|
- err error
|
|
|
- result string
|
|
|
- )
|
|
|
- switch token.Type {
|
|
|
- case ArgString:
|
|
|
- if cond, err = strconv.ParseBool(token.String); err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- return newBoolFormulaArg(cond)
|
|
|
- }
|
|
|
- if cond {
|
|
|
- return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
|
|
|
- }
|
|
|
- if argsList.Len() == 3 {
|
|
|
- result = argsList.Back().Value.(formulaArg).String
|
|
|
- }
|
|
|
- }
|
|
|
- return newStringFormulaArg(result)
|
|
|
-}
|
|
|
-
|
|
|
-// Lookup and Reference Functions
|
|
|
-
|
|
|
-// CHOOSE function returns a value from an array, that corresponds to a
|
|
|
-// supplied index number (position). The syntax of the function is:
|
|
|
-//
|
|
|
-// CHOOSE(index_num,value1,[value2],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
|
|
|
- }
|
|
|
- idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
|
|
|
- if err != nil {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
|
|
|
- }
|
|
|
- if argsList.Len() <= idx {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
|
|
|
- }
|
|
|
- arg := argsList.Front()
|
|
|
- for i := 0; i < idx; i++ {
|
|
|
- arg = arg.Next()
|
|
|
- }
|
|
|
- var result formulaArg
|
|
|
- switch arg.Value.(formulaArg).Type {
|
|
|
- case ArgString:
|
|
|
- result = newStringFormulaArg(arg.Value.(formulaArg).String)
|
|
|
- case ArgMatrix:
|
|
|
- result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
|
|
|
- }
|
|
|
- return result
|
|
|
-}
|
|
|
-
|
|
|
-// deepMatchRune finds whether the text deep matches/satisfies the pattern
|
|
|
-// string.
|
|
|
-func deepMatchRune(str, pattern []rune, simple bool) bool {
|
|
|
- for len(pattern) > 0 {
|
|
|
- switch pattern[0] {
|
|
|
- default:
|
|
|
- if len(str) == 0 || str[0] != pattern[0] {
|
|
|
- return false
|
|
|
- }
|
|
|
- case '?':
|
|
|
- if len(str) == 0 && !simple {
|
|
|
- return false
|
|
|
- }
|
|
|
- case '*':
|
|
|
- return deepMatchRune(str, pattern[1:], simple) ||
|
|
|
- (len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
|
|
|
- }
|
|
|
- str = str[1:]
|
|
|
- pattern = pattern[1:]
|
|
|
- }
|
|
|
- return len(str) == 0 && len(pattern) == 0
|
|
|
-}
|
|
|
-
|
|
|
-// matchPattern finds whether the text matches or satisfies the pattern
|
|
|
-// string. The pattern supports '*' and '?' wildcards in the pattern string.
|
|
|
-func matchPattern(pattern, name string) (matched bool) {
|
|
|
- if pattern == "" {
|
|
|
- return name == pattern
|
|
|
- }
|
|
|
- if pattern == "*" {
|
|
|
- return true
|
|
|
- }
|
|
|
- rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
|
|
|
- for _, r := range name {
|
|
|
- rname = append(rname, r)
|
|
|
- }
|
|
|
- for _, r := range pattern {
|
|
|
- rpattern = append(rpattern, r)
|
|
|
- }
|
|
|
- simple := false // Does extended wildcard '*' and '?' match.
|
|
|
- return deepMatchRune(rname, rpattern, simple)
|
|
|
-}
|
|
|
-
|
|
|
-// compareFormulaArg compares the left-hand sides and the right-hand sides
|
|
|
-// formula arguments by given conditions such as case sensitive, if exact
|
|
|
-// match, and make compare result as formula criteria condition type.
|
|
|
-func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
|
|
|
- if lhs.Type != rhs.Type {
|
|
|
- return criteriaErr
|
|
|
- }
|
|
|
- switch lhs.Type {
|
|
|
- case ArgNumber:
|
|
|
- if lhs.Number == rhs.Number {
|
|
|
- return criteriaEq
|
|
|
- }
|
|
|
- if lhs.Number < rhs.Number {
|
|
|
- return criteriaL
|
|
|
- }
|
|
|
- return criteriaG
|
|
|
- case ArgString:
|
|
|
- ls, rs := lhs.String, rhs.String
|
|
|
- if !caseSensitive {
|
|
|
- ls, rs = strings.ToLower(ls), strings.ToLower(rs)
|
|
|
- }
|
|
|
- if exactMatch {
|
|
|
- match := matchPattern(rs, ls)
|
|
|
- if match {
|
|
|
- return criteriaEq
|
|
|
- }
|
|
|
- return criteriaG
|
|
|
- }
|
|
|
- switch strings.Compare(ls, rs) {
|
|
|
- case 1:
|
|
|
- return criteriaG
|
|
|
- case -1:
|
|
|
- return criteriaL
|
|
|
- case 0:
|
|
|
- return criteriaEq
|
|
|
- }
|
|
|
- return criteriaErr
|
|
|
- case ArgEmpty:
|
|
|
- return criteriaEq
|
|
|
- case ArgList:
|
|
|
- return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
|
|
|
- case ArgMatrix:
|
|
|
- return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
|
|
|
- }
|
|
|
- return criteriaErr
|
|
|
-}
|
|
|
-
|
|
|
-// compareFormulaArgList compares the left-hand sides and the right-hand sides
|
|
|
-// list type formula arguments.
|
|
|
-func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
|
|
|
- if len(lhs.List) < len(rhs.List) {
|
|
|
- return criteriaL
|
|
|
- }
|
|
|
- if len(lhs.List) > len(rhs.List) {
|
|
|
- return criteriaG
|
|
|
- }
|
|
|
- for arg := range lhs.List {
|
|
|
- criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
|
|
|
- if criteria != criteriaEq {
|
|
|
- return criteria
|
|
|
- }
|
|
|
- }
|
|
|
- return criteriaEq
|
|
|
-}
|
|
|
-
|
|
|
-// compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
|
|
|
-// matrix type formula arguments.
|
|
|
-func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
|
|
|
- if len(lhs.Matrix) < len(rhs.Matrix) {
|
|
|
- return criteriaL
|
|
|
- }
|
|
|
- if len(lhs.Matrix) > len(rhs.Matrix) {
|
|
|
- return criteriaG
|
|
|
- }
|
|
|
- for i := range lhs.Matrix {
|
|
|
- left := lhs.Matrix[i]
|
|
|
- right := lhs.Matrix[i]
|
|
|
- if len(left) < len(right) {
|
|
|
- return criteriaL
|
|
|
- }
|
|
|
- if len(left) > len(right) {
|
|
|
- return criteriaG
|
|
|
- }
|
|
|
- for arg := range left {
|
|
|
- criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
|
|
|
- if criteria != criteriaEq {
|
|
|
- return criteria
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return criteriaEq
|
|
|
-}
|
|
|
-
|
|
|
-// COLUMN function returns the first column number within a supplied reference
|
|
|
-// or the number of the current column. The syntax of the function is:
|
|
|
-//
|
|
|
-// COLUMN([reference])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() > 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
|
|
|
- return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
|
|
|
- }
|
|
|
- if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
|
|
|
- return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
|
|
|
- }
|
|
|
- col, _, _ := CellNameToCoordinates(fn.cell)
|
|
|
- return newNumberFormulaArg(float64(col))
|
|
|
-}
|
|
|
-
|
|
|
-// COLUMNS function receives an Excel range and returns the number of columns
|
|
|
-// that are contained within the range. The syntax of the function is:
|
|
|
-//
|
|
|
-// COLUMNS(array)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
|
|
|
- }
|
|
|
- var min, max int
|
|
|
- if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
|
|
|
- crs := argsList.Front().Value.(formulaArg).cellRanges
|
|
|
- for cr := crs.Front(); cr != nil; cr = cr.Next() {
|
|
|
- if min == 0 {
|
|
|
- min = cr.Value.(cellRange).From.Col
|
|
|
- }
|
|
|
- if min > cr.Value.(cellRange).From.Col {
|
|
|
- min = cr.Value.(cellRange).From.Col
|
|
|
- }
|
|
|
- if min > cr.Value.(cellRange).To.Col {
|
|
|
- min = cr.Value.(cellRange).To.Col
|
|
|
- }
|
|
|
- if max < cr.Value.(cellRange).To.Col {
|
|
|
- max = cr.Value.(cellRange).To.Col
|
|
|
- }
|
|
|
- if max < cr.Value.(cellRange).From.Col {
|
|
|
- max = cr.Value.(cellRange).From.Col
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
|
|
|
- cr := argsList.Front().Value.(formulaArg).cellRefs
|
|
|
- for refs := cr.Front(); refs != nil; refs = refs.Next() {
|
|
|
- if min == 0 {
|
|
|
- min = refs.Value.(cellRef).Col
|
|
|
- }
|
|
|
- if min > refs.Value.(cellRef).Col {
|
|
|
- min = refs.Value.(cellRef).Col
|
|
|
- }
|
|
|
- if max < refs.Value.(cellRef).Col {
|
|
|
- max = refs.Value.(cellRef).Col
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if max == TotalColumns {
|
|
|
- return newNumberFormulaArg(float64(TotalColumns))
|
|
|
- }
|
|
|
- result := max - min + 1
|
|
|
- if max == min {
|
|
|
- if min == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(1))
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(result))
|
|
|
-}
|
|
|
-
|
|
|
-// HLOOKUP function 'looks up' a given value in the top row of a data array
|
|
|
-// (or table), and returns the corresponding value from another row of the
|
|
|
-// array. The syntax of the function is:
|
|
|
-//
|
|
|
-// HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
|
|
|
- }
|
|
|
- lookupValue := argsList.Front().Value.(formulaArg)
|
|
|
- tableArray := argsList.Front().Next().Value.(formulaArg)
|
|
|
- if tableArray.Type != ArgMatrix {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
|
|
|
- }
|
|
|
- rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if rowArg.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
|
|
|
- }
|
|
|
- rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
|
|
|
- if argsList.Len() == 4 {
|
|
|
- rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
|
|
|
- if rangeLookup.Type == ArgError {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
|
|
|
- }
|
|
|
- if rangeLookup.Number == 0 {
|
|
|
- exactMatch = true
|
|
|
- }
|
|
|
- }
|
|
|
- row := tableArray.Matrix[0]
|
|
|
- if exactMatch || len(tableArray.Matrix) == TotalRows {
|
|
|
- start:
|
|
|
- for idx, mtx := range row {
|
|
|
- lhs := mtx
|
|
|
- switch lookupValue.Type {
|
|
|
- case ArgNumber:
|
|
|
- if !lookupValue.Boolean {
|
|
|
- lhs = mtx.ToNumber()
|
|
|
- if lhs.Type == ArgError {
|
|
|
- lhs = mtx
|
|
|
- }
|
|
|
- }
|
|
|
- case ArgMatrix:
|
|
|
- lhs = tableArray
|
|
|
- }
|
|
|
- if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
|
|
|
- matchIdx = idx
|
|
|
- wasExact = true
|
|
|
- break start
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
|
|
|
- }
|
|
|
- if matchIdx == -1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
|
|
|
- }
|
|
|
- if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
|
|
|
- }
|
|
|
- row = tableArray.Matrix[rowIdx]
|
|
|
- if wasExact || !exactMatch {
|
|
|
- return row[matchIdx]
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
|
|
|
-}
|
|
|
-
|
|
|
-// VLOOKUP function 'looks up' a given value in the left-hand column of a
|
|
|
-// data array (or table), and returns the corresponding value from another
|
|
|
-// column of the array. The syntax of the function is:
|
|
|
-//
|
|
|
-// VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
|
|
|
- }
|
|
|
- lookupValue := argsList.Front().Value.(formulaArg)
|
|
|
- tableArray := argsList.Front().Next().Value.(formulaArg)
|
|
|
- if tableArray.Type != ArgMatrix {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
|
|
|
- }
|
|
|
- colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if colIdx.Type != ArgNumber {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
|
|
|
- }
|
|
|
- col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
|
|
|
- if argsList.Len() == 4 {
|
|
|
- rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
|
|
|
- if rangeLookup.Type == ArgError {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
|
|
|
- }
|
|
|
- if rangeLookup.Number == 0 {
|
|
|
- exactMatch = true
|
|
|
- }
|
|
|
- }
|
|
|
- if exactMatch || len(tableArray.Matrix) == TotalRows {
|
|
|
- start:
|
|
|
- for idx, mtx := range tableArray.Matrix {
|
|
|
- lhs := mtx[0]
|
|
|
- switch lookupValue.Type {
|
|
|
- case ArgNumber:
|
|
|
- if !lookupValue.Boolean {
|
|
|
- lhs = mtx[0].ToNumber()
|
|
|
- if lhs.Type == ArgError {
|
|
|
- lhs = mtx[0]
|
|
|
- }
|
|
|
- }
|
|
|
- case ArgMatrix:
|
|
|
- lhs = tableArray
|
|
|
- }
|
|
|
- if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
|
|
|
- matchIdx = idx
|
|
|
- wasExact = true
|
|
|
- break start
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
|
|
|
- }
|
|
|
- if matchIdx == -1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
|
|
|
- }
|
|
|
- mtx := tableArray.Matrix[matchIdx]
|
|
|
- if col < 0 || col >= len(mtx) {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
|
|
|
- }
|
|
|
- if wasExact || !exactMatch {
|
|
|
- return mtx[col]
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
|
|
|
-}
|
|
|
-
|
|
|
-// vlookupBinarySearch finds the position of a target value when range lookup
|
|
|
-// is TRUE, if the data of table array can't guarantee be sorted, it will
|
|
|
-// return wrong result.
|
|
|
-func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
|
|
|
- var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
|
|
|
- for low <= high {
|
|
|
- var mid int = low + (high-low)/2
|
|
|
- mtx := tableArray.Matrix[mid]
|
|
|
- lhs := mtx[0]
|
|
|
- switch lookupValue.Type {
|
|
|
- case ArgNumber:
|
|
|
- if !lookupValue.Boolean {
|
|
|
- lhs = mtx[0].ToNumber()
|
|
|
- if lhs.Type == ArgError {
|
|
|
- lhs = mtx[0]
|
|
|
- }
|
|
|
- }
|
|
|
- case ArgMatrix:
|
|
|
- lhs = tableArray
|
|
|
- }
|
|
|
- result := compareFormulaArg(lhs, lookupValue, false, false)
|
|
|
- if result == criteriaEq {
|
|
|
- matchIdx, wasExact = mid, true
|
|
|
- return
|
|
|
- } else if result == criteriaG {
|
|
|
- high = mid - 1
|
|
|
- } else if result == criteriaL {
|
|
|
- matchIdx, low = mid, mid+1
|
|
|
- if lhs.Value() != "" {
|
|
|
- lastMatchIdx = matchIdx
|
|
|
- }
|
|
|
- } else {
|
|
|
- return -1, false
|
|
|
- }
|
|
|
- }
|
|
|
- matchIdx, wasExact = lastMatchIdx, true
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// vlookupBinarySearch finds the position of a target value when range lookup
|
|
|
-// is TRUE, if the data of table array can't guarantee be sorted, it will
|
|
|
-// return wrong result.
|
|
|
-func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
|
|
|
- var low, high, lastMatchIdx int = 0, len(row) - 1, -1
|
|
|
- for low <= high {
|
|
|
- var mid int = low + (high-low)/2
|
|
|
- mtx := row[mid]
|
|
|
- result := compareFormulaArg(mtx, lookupValue, false, false)
|
|
|
- if result == criteriaEq {
|
|
|
- matchIdx, wasExact = mid, true
|
|
|
- return
|
|
|
- } else if result == criteriaG {
|
|
|
- high = mid - 1
|
|
|
- } else if result == criteriaL {
|
|
|
- low, lastMatchIdx = mid+1, mid
|
|
|
- } else {
|
|
|
- return -1, false
|
|
|
- }
|
|
|
- }
|
|
|
- matchIdx, wasExact = lastMatchIdx, true
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
-// LOOKUP function performs an approximate match lookup in a one-column or
|
|
|
-// one-row range, and returns the corresponding value from another one-column
|
|
|
-// or one-row range. The syntax of the function is:
|
|
|
-//
|
|
|
-// LOOKUP(lookup_value,lookup_vector,[result_vector])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
|
|
|
- }
|
|
|
- lookupValue := argsList.Front().Value.(formulaArg)
|
|
|
- lookupVector := argsList.Front().Next().Value.(formulaArg)
|
|
|
- if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
|
|
|
- }
|
|
|
- cols, matchIdx := lookupCol(lookupVector), -1
|
|
|
- for idx, col := range cols {
|
|
|
- lhs := lookupValue
|
|
|
- switch col.Type {
|
|
|
- case ArgNumber:
|
|
|
- lhs = lhs.ToNumber()
|
|
|
- if !col.Boolean {
|
|
|
- if lhs.Type == ArgError {
|
|
|
- lhs = lookupValue
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if compareFormulaArg(lhs, col, false, false) == criteriaEq {
|
|
|
- matchIdx = idx
|
|
|
- break
|
|
|
- }
|
|
|
- }
|
|
|
- column := cols
|
|
|
- if argsList.Len() == 3 {
|
|
|
- column = lookupCol(argsList.Back().Value.(formulaArg))
|
|
|
- }
|
|
|
- if matchIdx < 0 || matchIdx >= len(column) {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
|
|
|
- }
|
|
|
- return column[matchIdx]
|
|
|
-}
|
|
|
-
|
|
|
-// lookupCol extract columns for LOOKUP.
|
|
|
-func lookupCol(arr formulaArg) []formulaArg {
|
|
|
- col := arr.List
|
|
|
- if arr.Type == ArgMatrix {
|
|
|
- col = nil
|
|
|
- for _, r := range arr.Matrix {
|
|
|
- if len(r) > 0 {
|
|
|
- col = append(col, r[0])
|
|
|
- continue
|
|
|
- }
|
|
|
- col = append(col, newEmptyFormulaArg())
|
|
|
- }
|
|
|
- }
|
|
|
- return col
|
|
|
-}
|
|
|
-
|
|
|
-// ROW function returns the first row number within a supplied reference or
|
|
|
-// the number of the current row. The syntax of the function is:
|
|
|
-//
|
|
|
-// ROW([reference])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() > 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() == 1 {
|
|
|
- if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
|
|
|
- return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
|
|
|
- }
|
|
|
- if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
|
|
|
- return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
|
|
|
- }
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
|
|
|
- }
|
|
|
- _, row, _ := CellNameToCoordinates(fn.cell)
|
|
|
- return newNumberFormulaArg(float64(row))
|
|
|
-}
|
|
|
-
|
|
|
-// ROWS function takes an Excel range and returns the number of rows that are
|
|
|
-// contained within the range. The syntax of the function is:
|
|
|
-//
|
|
|
-// ROWS(array)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
|
|
|
- }
|
|
|
- var min, max int
|
|
|
- if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
|
|
|
- crs := argsList.Front().Value.(formulaArg).cellRanges
|
|
|
- for cr := crs.Front(); cr != nil; cr = cr.Next() {
|
|
|
- if min == 0 {
|
|
|
- min = cr.Value.(cellRange).From.Row
|
|
|
- }
|
|
|
- if min > cr.Value.(cellRange).From.Row {
|
|
|
- min = cr.Value.(cellRange).From.Row
|
|
|
- }
|
|
|
- if min > cr.Value.(cellRange).To.Row {
|
|
|
- min = cr.Value.(cellRange).To.Row
|
|
|
- }
|
|
|
- if max < cr.Value.(cellRange).To.Row {
|
|
|
- max = cr.Value.(cellRange).To.Row
|
|
|
- }
|
|
|
- if max < cr.Value.(cellRange).From.Row {
|
|
|
- max = cr.Value.(cellRange).From.Row
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
|
|
|
- cr := argsList.Front().Value.(formulaArg).cellRefs
|
|
|
- for refs := cr.Front(); refs != nil; refs = refs.Next() {
|
|
|
- if min == 0 {
|
|
|
- min = refs.Value.(cellRef).Row
|
|
|
- }
|
|
|
- if min > refs.Value.(cellRef).Row {
|
|
|
- min = refs.Value.(cellRef).Row
|
|
|
- }
|
|
|
- if max < refs.Value.(cellRef).Row {
|
|
|
- max = refs.Value.(cellRef).Row
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if max == TotalRows {
|
|
|
- return newStringFormulaArg(strconv.Itoa(TotalRows))
|
|
|
- }
|
|
|
- result := max - min + 1
|
|
|
- if max == min {
|
|
|
- if min == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
|
|
|
- }
|
|
|
- return newNumberFormulaArg(float64(1))
|
|
|
- }
|
|
|
- return newStringFormulaArg(strconv.Itoa(result))
|
|
|
-}
|
|
|
-
|
|
|
-// Web Functions
|
|
|
-
|
|
|
-// ENCODEURL function returns a URL-encoded string, replacing certain
|
|
|
-// non-alphanumeric characters with the percentage symbol (%) and a
|
|
|
-// hexadecimal number. The syntax of the function is:
|
|
|
-//
|
|
|
-// ENCODEURL(url)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
|
|
|
- }
|
|
|
- token := argsList.Front().Value.(formulaArg).Value()
|
|
|
- return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
|
|
|
-}
|
|
|
-
|
|
|
-// Financial Functions
|
|
|
-
|
|
|
-// CUMIPMT function calculates the cumulative interest paid on a loan or
|
|
|
-// investment, between two specified periods. The syntax of the function is:
|
|
|
-//
|
|
|
-// CUMIPMT(rate,nper,pv,start_period,end_period,type)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CUMIPMT(argsList *list.List) formulaArg {
|
|
|
- return fn.cumip("CUMIPMT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// CUMPRINC function calculates the cumulative payment on the principal of a
|
|
|
-// loan or investment, between two specified periods. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// CUMPRINC(rate,nper,pv,start_period,end_period,type)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) CUMPRINC(argsList *list.List) formulaArg {
|
|
|
- return fn.cumip("CUMPRINC", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// cumip is an implementation of the formula function CUMIPMT and CUMPRINC.
|
|
|
-func (fn *formulaFuncs) cumip(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 6 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 6 arguments", name))
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if nper.Type != ArgNumber {
|
|
|
- return nper
|
|
|
- }
|
|
|
- pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if pv.Type != ArgNumber {
|
|
|
- return pv
|
|
|
- }
|
|
|
- start := argsList.Back().Prev().Prev().Value.(formulaArg).ToNumber()
|
|
|
- if start.Type != ArgNumber {
|
|
|
- return start
|
|
|
- }
|
|
|
- end := argsList.Back().Prev().Value.(formulaArg).ToNumber()
|
|
|
- if end.Type != ArgNumber {
|
|
|
- return end
|
|
|
- }
|
|
|
- typ := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if typ.Type != ArgNumber {
|
|
|
- return typ
|
|
|
- }
|
|
|
- if typ.Number != 0 && typ.Number != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if start.Number < 1 || start.Number > end.Number {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- num, ipmt := 0.0, newNumberFormulaArg(0)
|
|
|
- for per := start.Number; per <= end.Number; per++ {
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(rate)
|
|
|
- args.PushBack(newNumberFormulaArg(per))
|
|
|
- args.PushBack(nper)
|
|
|
- args.PushBack(pv)
|
|
|
- args.PushBack(newNumberFormulaArg(0))
|
|
|
- args.PushBack(typ)
|
|
|
- if name == "CUMIPMT" {
|
|
|
- ipmt = fn.IPMT(args)
|
|
|
- } else {
|
|
|
- ipmt = fn.PPMT(args)
|
|
|
- }
|
|
|
- num += ipmt.Number
|
|
|
- }
|
|
|
- return newNumberFormulaArg(num)
|
|
|
-}
|
|
|
-
|
|
|
-// DB function calculates the depreciation of an asset, using the Fixed
|
|
|
-// Declining Balance Method, for each period of the asset's lifetime. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// DB(cost,salvage,life,period,[month])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DB(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DB requires at least 4 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 5 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DB allows at most 5 arguments")
|
|
|
- }
|
|
|
- cost := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if cost.Type != ArgNumber {
|
|
|
- return cost
|
|
|
- }
|
|
|
- salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if salvage.Type != ArgNumber {
|
|
|
- return salvage
|
|
|
- }
|
|
|
- life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if life.Type != ArgNumber {
|
|
|
- return life
|
|
|
- }
|
|
|
- period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if period.Type != ArgNumber {
|
|
|
- return period
|
|
|
- }
|
|
|
- month := newNumberFormulaArg(12)
|
|
|
- if argsList.Len() == 5 {
|
|
|
- if month = argsList.Back().Value.(formulaArg).ToNumber(); month.Type != ArgNumber {
|
|
|
- return month
|
|
|
- }
|
|
|
- }
|
|
|
- if cost.Number == 0 {
|
|
|
- return newNumberFormulaArg(0)
|
|
|
- }
|
|
|
- if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (month.Number < 1) {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- dr := 1 - math.Pow(salvage.Number/cost.Number, 1/life.Number)
|
|
|
- dr = math.Round(dr*1000) / 1000
|
|
|
- pd, depreciation := 0.0, 0.0
|
|
|
- for per := 1; per <= int(period.Number); per++ {
|
|
|
- if per == 1 {
|
|
|
- depreciation = cost.Number * dr * month.Number / 12
|
|
|
- } else if per == int(life.Number+1) {
|
|
|
- depreciation = (cost.Number - pd) * dr * (12 - month.Number) / 12
|
|
|
- } else {
|
|
|
- depreciation = (cost.Number - pd) * dr
|
|
|
- }
|
|
|
- pd += depreciation
|
|
|
- }
|
|
|
- return newNumberFormulaArg(depreciation)
|
|
|
-}
|
|
|
-
|
|
|
-// DDB function calculates the depreciation of an asset, using the Double
|
|
|
-// Declining Balance Method, or another specified depreciation rate. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// DDB(cost,salvage,life,period,[factor])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DDB(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DDB requires at least 4 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 5 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "DDB allows at most 5 arguments")
|
|
|
- }
|
|
|
- cost := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if cost.Type != ArgNumber {
|
|
|
- return cost
|
|
|
- }
|
|
|
- salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if salvage.Type != ArgNumber {
|
|
|
- return salvage
|
|
|
- }
|
|
|
- life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if life.Type != ArgNumber {
|
|
|
- return life
|
|
|
- }
|
|
|
- period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if period.Type != ArgNumber {
|
|
|
- return period
|
|
|
- }
|
|
|
- factor := newNumberFormulaArg(2)
|
|
|
- if argsList.Len() == 5 {
|
|
|
- if factor = argsList.Back().Value.(formulaArg).ToNumber(); factor.Type != ArgNumber {
|
|
|
- return factor
|
|
|
- }
|
|
|
- }
|
|
|
- if cost.Number == 0 {
|
|
|
- return newNumberFormulaArg(0)
|
|
|
- }
|
|
|
- if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (factor.Number <= 0.0) || (period.Number > life.Number) {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- pd, depreciation := 0.0, 0.0
|
|
|
- for per := 1; per <= int(period.Number); per++ {
|
|
|
- depreciation = math.Min((cost.Number-pd)*(factor.Number/life.Number), (cost.Number - salvage.Number - pd))
|
|
|
- pd += depreciation
|
|
|
- }
|
|
|
- return newNumberFormulaArg(depreciation)
|
|
|
-}
|
|
|
-
|
|
|
-// DOLLARDE function converts a dollar value in fractional notation, into a
|
|
|
-// dollar value expressed as a decimal. The syntax of the function is:
|
|
|
-//
|
|
|
-// DOLLARDE(fractional_dollar,fraction)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DOLLARDE(argsList *list.List) formulaArg {
|
|
|
- return fn.dollar("DOLLARDE", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// DOLLARFR function converts a dollar value in decimal notation, into a
|
|
|
-// dollar value that is expressed in fractional notation. The syntax of the
|
|
|
-// function is:
|
|
|
-//
|
|
|
-// DOLLARFR(decimal_dollar,fraction)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) DOLLARFR(argsList *list.List) formulaArg {
|
|
|
- return fn.dollar("DOLLARFR", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// dollar is an implementation of the formula function DOLLARDE and DOLLARFR.
|
|
|
-func (fn *formulaFuncs) dollar(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
|
|
|
- }
|
|
|
- dollar := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if dollar.Type != ArgNumber {
|
|
|
- return dollar
|
|
|
- }
|
|
|
- frac := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if frac.Type != ArgNumber {
|
|
|
- return frac
|
|
|
- }
|
|
|
- if frac.Number < 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- if frac.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- cents := math.Mod(dollar.Number, 1)
|
|
|
- if name == "DOLLARDE" {
|
|
|
- cents /= frac.Number
|
|
|
- cents *= math.Pow(10, math.Ceil(math.Log10(frac.Number)))
|
|
|
- } else {
|
|
|
- cents *= frac.Number
|
|
|
- cents *= math.Pow(10, -math.Ceil(math.Log10(frac.Number)))
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Floor(dollar.Number) + cents)
|
|
|
-}
|
|
|
-
|
|
|
-// EFFECT function returns the effective annual interest rate for a given
|
|
|
-// nominal interest rate and number of compounding periods per year. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// EFFECT(nominal_rate,npery)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) EFFECT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "EFFECT requires 2 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- npery := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if npery.Type != ArgNumber {
|
|
|
- return npery
|
|
|
- }
|
|
|
- if rate.Number <= 0 || npery.Number < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Pow((1+rate.Number/npery.Number), npery.Number) - 1)
|
|
|
-}
|
|
|
-
|
|
|
-// FV function calculates the Future Value of an investment with periodic
|
|
|
-// constant payments and a constant interest rate. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// FV(rate,nper,[pmt],[pv],[type])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FV requires at least 3 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 5 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FV allows at most 5 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if nper.Type != ArgNumber {
|
|
|
- return nper
|
|
|
- }
|
|
|
- pmt := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if pmt.Type != ArgNumber {
|
|
|
- return pmt
|
|
|
- }
|
|
|
- pv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
|
|
|
- if argsList.Len() >= 4 {
|
|
|
- if pv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); pv.Type != ArgNumber {
|
|
|
- return pv
|
|
|
- }
|
|
|
- }
|
|
|
- if argsList.Len() == 5 {
|
|
|
- if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
|
|
|
- return typ
|
|
|
- }
|
|
|
- }
|
|
|
- if typ.Number != 0 && typ.Number != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if rate.Number != 0 {
|
|
|
- return newNumberFormulaArg(-pv.Number*math.Pow(1+rate.Number, nper.Number) - pmt.Number*(1+rate.Number*typ.Number)*(math.Pow(1+rate.Number, nper.Number)-1)/rate.Number)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(-pv.Number - pmt.Number*nper.Number)
|
|
|
-}
|
|
|
-
|
|
|
-// FVSCHEDULE function calculates the Future Value of an investment with a
|
|
|
-// variable interest rate. The syntax of the function is:
|
|
|
-//
|
|
|
-// FVSCHEDULE(principal,schedule)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) FVSCHEDULE(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "FVSCHEDULE requires 2 arguments")
|
|
|
- }
|
|
|
- pri := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if pri.Type != ArgNumber {
|
|
|
- return pri
|
|
|
- }
|
|
|
- principal := pri.Number
|
|
|
- for _, arg := range argsList.Back().Value.(formulaArg).ToList() {
|
|
|
- if arg.Value() == "" {
|
|
|
- continue
|
|
|
- }
|
|
|
- rate := arg.ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- principal *= (1 + rate.Number)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(principal)
|
|
|
-}
|
|
|
-
|
|
|
-// IPMT function calculates the interest payment, during a specific period of a
|
|
|
-// loan or investment that is paid in constant periodic payments, with a
|
|
|
-// constant interest rate. The syntax of the function is:
|
|
|
-//
|
|
|
-// IPMT(rate,per,nper,pv,[fv],[type])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IPMT(argsList *list.List) formulaArg {
|
|
|
- return fn.ipmt("IPMT", argsList)
|
|
|
-}
|
|
|
-
|
|
|
-// ipmt is an implementation of the formula function IPMT and PPMT.
|
|
|
-func (fn *formulaFuncs) ipmt(name string, argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 4 arguments", name))
|
|
|
- }
|
|
|
- if argsList.Len() > 6 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 6 arguments", name))
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- per := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if per.Type != ArgNumber {
|
|
|
- return per
|
|
|
- }
|
|
|
- nper := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if nper.Type != ArgNumber {
|
|
|
- return nper
|
|
|
- }
|
|
|
- pv := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if pv.Type != ArgNumber {
|
|
|
- return pv
|
|
|
- }
|
|
|
- fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
|
|
|
- if argsList.Len() >= 5 {
|
|
|
- if fv = argsList.Front().Next().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
|
|
|
- return fv
|
|
|
- }
|
|
|
- }
|
|
|
- if argsList.Len() == 6 {
|
|
|
- if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
|
|
|
- return typ
|
|
|
- }
|
|
|
- }
|
|
|
- if typ.Number != 0 && typ.Number != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if per.Number <= 0 || per.Number > nper.Number {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(rate)
|
|
|
- args.PushBack(nper)
|
|
|
- args.PushBack(pv)
|
|
|
- args.PushBack(fv)
|
|
|
- args.PushBack(typ)
|
|
|
- pmt, capital, interest, principal := fn.PMT(args), pv.Number, 0.0, 0.0
|
|
|
- for i := 1; i <= int(per.Number); i++ {
|
|
|
- if typ.Number != 0 && i == 1 {
|
|
|
- interest = 0
|
|
|
- } else {
|
|
|
- interest = -capital * rate.Number
|
|
|
- }
|
|
|
- principal = pmt.Number - interest
|
|
|
- capital += principal
|
|
|
- }
|
|
|
- if name == "IPMT" {
|
|
|
- return newNumberFormulaArg(interest)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(principal)
|
|
|
-}
|
|
|
-
|
|
|
-// IRR function returns the Internal Rate of Return for a supplied series of
|
|
|
-// periodic cash flows (i.e. an initial investment value and a series of net
|
|
|
-// income values). The syntax of the function is:
|
|
|
-//
|
|
|
-// IRR(values,[guess])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) IRR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IRR requires at least 1 argument")
|
|
|
- }
|
|
|
- if argsList.Len() > 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "IRR allows at most 2 arguments")
|
|
|
- }
|
|
|
- values, guess := argsList.Front().Value.(formulaArg).ToList(), newNumberFormulaArg(0.1)
|
|
|
- if argsList.Len() > 1 {
|
|
|
- if guess = argsList.Back().Value.(formulaArg).ToNumber(); guess.Type != ArgNumber {
|
|
|
- return guess
|
|
|
- }
|
|
|
- }
|
|
|
- x1, x2 := newNumberFormulaArg(0), guess
|
|
|
- args := list.New().Init()
|
|
|
- args.PushBack(x1)
|
|
|
- for _, v := range values {
|
|
|
- args.PushBack(v)
|
|
|
- }
|
|
|
- f1 := fn.NPV(args)
|
|
|
- args.Front().Value = x2
|
|
|
- f2 := fn.NPV(args)
|
|
|
- for i := 0; i < maxFinancialIterations; i++ {
|
|
|
- if f1.Number*f2.Number < 0 {
|
|
|
- break
|
|
|
- }
|
|
|
- if math.Abs(f1.Number) < math.Abs((f2.Number)) {
|
|
|
- x1.Number += 1.6 * (x1.Number - x2.Number)
|
|
|
- args.Front().Value = x1
|
|
|
- f1 = fn.NPV(args)
|
|
|
- continue
|
|
|
- }
|
|
|
- x2.Number += 1.6 * (x2.Number - x1.Number)
|
|
|
- args.Front().Value = x2
|
|
|
- f2 = fn.NPV(args)
|
|
|
- }
|
|
|
- if f1.Number*f2.Number > 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- args.Front().Value = x1
|
|
|
- f := fn.NPV(args)
|
|
|
- var rtb, dx, xMid, fMid float64
|
|
|
- if f.Number < 0 {
|
|
|
- rtb = x1.Number
|
|
|
- dx = x2.Number - x1.Number
|
|
|
- } else {
|
|
|
- rtb = x2.Number
|
|
|
- dx = x1.Number - x2.Number
|
|
|
- }
|
|
|
- for i := 0; i < maxFinancialIterations; i++ {
|
|
|
- dx *= 0.5
|
|
|
- xMid = rtb + dx
|
|
|
- args.Front().Value = newNumberFormulaArg(xMid)
|
|
|
- fMid = fn.NPV(args).Number
|
|
|
- if fMid <= 0 {
|
|
|
- rtb = xMid
|
|
|
- }
|
|
|
- if math.Abs(fMid) < financialPercision || math.Abs(dx) < financialPercision {
|
|
|
- break
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(xMid)
|
|
|
-}
|
|
|
-
|
|
|
-// ISPMT function calculates the interest paid during a specific period of a
|
|
|
-// loan or investment. The syntax of the function is:
|
|
|
-//
|
|
|
-// ISPMT(rate,per,nper,pv)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) ISPMT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 4 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "ISPMT requires 4 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- per := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if per.Type != ArgNumber {
|
|
|
- return per
|
|
|
- }
|
|
|
- nper := argsList.Back().Prev().Value.(formulaArg).ToNumber()
|
|
|
- if nper.Type != ArgNumber {
|
|
|
- return nper
|
|
|
- }
|
|
|
- pv := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if pv.Type != ArgNumber {
|
|
|
- return pv
|
|
|
- }
|
|
|
- pr, payment, num := pv.Number, pv.Number/nper.Number, 0.0
|
|
|
- for i := 0; i <= int(per.Number); i++ {
|
|
|
- num = rate.Number * pr * -1
|
|
|
- pr -= payment
|
|
|
- if i == int(nper.Number) {
|
|
|
- num = 0
|
|
|
- }
|
|
|
- }
|
|
|
- return newNumberFormulaArg(num)
|
|
|
-}
|
|
|
-
|
|
|
-// MIRR function returns the Modified Internal Rate of Return for a supplied
|
|
|
-// series of periodic cash flows (i.e. a set of values, which includes an
|
|
|
-// initial investment value and a series of net income values). The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// MIRR(values,finance_rate,reinvest_rate)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) MIRR(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "MIRR requires 3 arguments")
|
|
|
- }
|
|
|
- values := argsList.Front().Value.(formulaArg).ToList()
|
|
|
- financeRate := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if financeRate.Type != ArgNumber {
|
|
|
- return financeRate
|
|
|
- }
|
|
|
- reinvestRate := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if reinvestRate.Type != ArgNumber {
|
|
|
- return reinvestRate
|
|
|
- }
|
|
|
- n, fr, rr, npvPos, npvNeg := len(values), 1+financeRate.Number, 1+reinvestRate.Number, 0.0, 0.0
|
|
|
- for i, v := range values {
|
|
|
- val := v.ToNumber()
|
|
|
- if val.Number >= 0 {
|
|
|
- npvPos += val.Number / math.Pow(float64(rr), float64(i))
|
|
|
- continue
|
|
|
- }
|
|
|
- npvNeg += val.Number / math.Pow(float64(fr), float64(i))
|
|
|
- }
|
|
|
- if npvNeg == 0 || npvPos == 0 || reinvestRate.Number <= -1 {
|
|
|
- return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(math.Pow(-npvPos*math.Pow(rr, float64(n))/(npvNeg*rr), 1/(float64(n)-1)) - 1)
|
|
|
-}
|
|
|
-
|
|
|
-// NOMINAL function returns the nominal interest rate for a given effective
|
|
|
-// interest rate and number of compounding periods per year. The syntax of
|
|
|
-// the function is:
|
|
|
-//
|
|
|
-// NOMINAL(effect_rate,npery)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NOMINAL(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NOMINAL requires 2 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- npery := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if npery.Type != ArgNumber {
|
|
|
- return npery
|
|
|
- }
|
|
|
- if rate.Number <= 0 || npery.Number < 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newNumberFormulaArg(npery.Number * (math.Pow(rate.Number+1, 1/npery.Number) - 1))
|
|
|
-}
|
|
|
-
|
|
|
-// NPER function calculates the number of periods required to pay off a loan,
|
|
|
-// for a constant periodic payment and a constant interest rate. The syntax
|
|
|
-// of the function is:
|
|
|
-//
|
|
|
-// NPER(rate,pmt,pv,[fv],[type])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NPER(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NPER requires at least 3 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 5 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NPER allows at most 5 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- pmt := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if pmt.Type != ArgNumber {
|
|
|
- return pmt
|
|
|
- }
|
|
|
- pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if pv.Type != ArgNumber {
|
|
|
- return pv
|
|
|
- }
|
|
|
- fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
|
|
|
- if argsList.Len() >= 4 {
|
|
|
- if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
|
|
|
- return fv
|
|
|
- }
|
|
|
- }
|
|
|
- if argsList.Len() == 5 {
|
|
|
- if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
|
|
|
- return typ
|
|
|
- }
|
|
|
- }
|
|
|
- if typ.Number != 0 && typ.Number != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if pmt.Number == 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- if rate.Number != 0 {
|
|
|
- p := math.Log((pmt.Number*(1+rate.Number*typ.Number)/rate.Number-fv.Number)/(pv.Number+pmt.Number*(1+rate.Number*typ.Number)/rate.Number)) / math.Log(1+rate.Number)
|
|
|
- return newNumberFormulaArg(p)
|
|
|
- }
|
|
|
- return newNumberFormulaArg((-pv.Number - fv.Number) / pmt.Number)
|
|
|
-}
|
|
|
-
|
|
|
-// NPV function calculates the Net Present Value of an investment, based on a
|
|
|
-// supplied discount rate, and a series of future payments and income. The
|
|
|
-// syntax of the function is:
|
|
|
-//
|
|
|
-// NPV(rate,value1,[value2],[value3],...)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) NPV(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 2 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "NPV requires at least 2 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- val, i := 0.0, 1
|
|
|
- for arg := argsList.Front().Next(); arg != nil; arg = arg.Next() {
|
|
|
- num := arg.Value.(formulaArg).ToNumber()
|
|
|
- if num.Type != ArgNumber {
|
|
|
- continue
|
|
|
- }
|
|
|
- val += num.Number / math.Pow(1+rate.Number, float64(i))
|
|
|
- i++
|
|
|
- }
|
|
|
- return newNumberFormulaArg(val)
|
|
|
-}
|
|
|
-
|
|
|
-// PDURATION function calculates the number of periods required for an
|
|
|
-// investment to reach a specified future value. The syntax of the function
|
|
|
-// is:
|
|
|
-//
|
|
|
-// PDURATION(rate,pv,fv)
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PDURATION(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() != 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PDURATION requires 3 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- pv := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if pv.Type != ArgNumber {
|
|
|
- return pv
|
|
|
- }
|
|
|
- fv := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
- if fv.Type != ArgNumber {
|
|
|
- return fv
|
|
|
- }
|
|
|
- if rate.Number <= 0 || pv.Number <= 0 || fv.Number <= 0 {
|
|
|
- return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
- }
|
|
|
- return newNumberFormulaArg((math.Log(fv.Number) - math.Log(pv.Number)) / math.Log(1+rate.Number))
|
|
|
-}
|
|
|
-
|
|
|
-// PMT function calculates the constant periodic payment required to pay off
|
|
|
-// (or partially pay off) a loan or investment, with a constant interest
|
|
|
-// rate, over a specified period. The syntax of the function is:
|
|
|
-//
|
|
|
-// PMT(rate,nper,pv,[fv],[type])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PMT(argsList *list.List) formulaArg {
|
|
|
- if argsList.Len() < 3 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PMT requires at least 3 arguments")
|
|
|
- }
|
|
|
- if argsList.Len() > 5 {
|
|
|
- return newErrorFormulaArg(formulaErrorVALUE, "PMT allows at most 5 arguments")
|
|
|
- }
|
|
|
- rate := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
- if rate.Type != ArgNumber {
|
|
|
- return rate
|
|
|
- }
|
|
|
- nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
- if nper.Type != ArgNumber {
|
|
|
- return nper
|
|
|
- }
|
|
|
- pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
- if pv.Type != ArgNumber {
|
|
|
- return pv
|
|
|
- }
|
|
|
- fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
|
|
|
- if argsList.Len() >= 4 {
|
|
|
- if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
|
|
|
- return fv
|
|
|
- }
|
|
|
- }
|
|
|
- if argsList.Len() == 5 {
|
|
|
- if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
|
|
|
- return typ
|
|
|
- }
|
|
|
- }
|
|
|
- if typ.Number != 0 && typ.Number != 1 {
|
|
|
- return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
|
|
|
- }
|
|
|
- if rate.Number != 0 {
|
|
|
- p := (-fv.Number - pv.Number*math.Pow((1+rate.Number), nper.Number)) / (1 + rate.Number*typ.Number) / ((math.Pow((1+rate.Number), nper.Number) - 1) / rate.Number)
|
|
|
- return newNumberFormulaArg(p)
|
|
|
- }
|
|
|
- return newNumberFormulaArg((-pv.Number - fv.Number) / nper.Number)
|
|
|
-}
|
|
|
-
|
|
|
-// PPMT function calculates the payment on the principal, during a specific
|
|
|
-// period of a loan or investment that is paid in constant periodic payments,
|
|
|
-// with a constant interest rate. The syntax of the function is:
|
|
|
-//
|
|
|
-// PPMT(rate,per,nper,pv,[fv],[type])
|
|
|
-//
|
|
|
-func (fn *formulaFuncs) PPMT(argsList *list.List) formulaArg {
|
|
|
- return fn.ipmt("PPMT", argsList)
|
|
|
-}
|