|
|
@@ -0,0 +1,2604 @@
|
|
|
+/*
|
|
|
+ * Copyright Takuya OOURA, 1996-2001
|
|
|
+ *
|
|
|
+ * You may use, copy, modify and distribute this code
|
|
|
+ * for any purpose (include commercial use) and without fee.
|
|
|
+ * Please refer to this package when you modify this code.
|
|
|
+ */
|
|
|
+package cn.i2edu.speech_plugin.audioUtils.audiotransfer.vavi.util;
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/**
|
|
|
+ * Fast Fourier/Cosine/Sine Transform.
|
|
|
+ * <pre>
|
|
|
+ * dimension :one
|
|
|
+ * data length :power of 2
|
|
|
+ * decimation :frequency
|
|
|
+ * radix :<b>split-radix</b>
|
|
|
+ * data :inplace
|
|
|
+ * table :use
|
|
|
+ * </pre>
|
|
|
+ * <h4>Appendix:</h4>
|
|
|
+ * <p>
|
|
|
+ * The cos/sin table is recalculated when the larger table required.
|
|
|
+ * w[] and ip[] are compatible with all routines.
|
|
|
+ * </p>
|
|
|
+ * @author <a href="mailto:ooura@mmm.t.u-tokyo.ac.jp">Takuya OOURA</a>
|
|
|
+ * @author <a href="mailto:vavivavi@yahoo.co.jp">Naohide Sano</a> (nsano)
|
|
|
+ * @version 0.00 060127 nsano port to java version <br>
|
|
|
+ */
|
|
|
+@SuppressWarnings({"PointlessArithmeticExpression", "JavaDoc", "SameParameterValue", "FinalPrivateMethod"})
|
|
|
+public class SplitRadixFft {
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private static final int CDFT_RECURSIVE_N = 512;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Complex Discrete Fourier Transform.
|
|
|
+ * <pre>
|
|
|
+ * [definition]
|
|
|
+ * <case1>
|
|
|
+ * X[k] = sum_j=0&circ;n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n
|
|
|
+ * <case2>
|
|
|
+ * X[k] = sum_j=0&circ;n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n
|
|
|
+ * (notes: sum_j=0&circ;n-1 is a summation from j=0 to n-1)
|
|
|
+ * [usage]
|
|
|
+ * <case1>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * cdft(2*n, 1, a, ip, w);
|
|
|
+ * <case2>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * cdft(2*n, -1, a, ip, w);
|
|
|
+ * [remark]
|
|
|
+ * Inverse of
|
|
|
+ * cdft(2*n, -1, a, ip, w);
|
|
|
+ * is
|
|
|
+ * cdft(2*n, 1, a, ip, w);
|
|
|
+ * for (j = 0; j <= 2 * n - 1; j++) {
|
|
|
+ * a[j] *= 1.0 / n;
|
|
|
+ * }
|
|
|
+ * .
|
|
|
+ * </pre>
|
|
|
+ * @param n 2*n data length (int)
|
|
|
+ * n >= 1, n = power of 2
|
|
|
+ * @param isgn
|
|
|
+ * @param a a[0...2*n-1] input/output data (REAL *)
|
|
|
+ * input data
|
|
|
+ * a[2*j] = Re(x[j]),
|
|
|
+ * a[2*j+1] = Im(x[j]), 0<=j<n
|
|
|
+ * output data
|
|
|
+ * a[2*k] = Re(X[k]),
|
|
|
+ * a[2*k+1] = Im(X[k]), 0<=k<n
|
|
|
+ * @param ip ip[0...*] work area for bit reversal (int *)
|
|
|
+ * length of ip >= 2+sqrt(n)
|
|
|
+ * strictly,
|
|
|
+ * length of ip >=
|
|
|
+ * 2+(1<<(int)(log(n+0.5)/log(2))/2).
|
|
|
+ * ip[0],ip[1] are pointers of the cos/sin table.
|
|
|
+ * @param w w[0...n/2-1] cos/sin table (REAL *)
|
|
|
+ * w[],ip[] are initialized if ip[0] == 0.
|
|
|
+ */
|
|
|
+ public void cdft(int n, int isgn, double[] a, int[] ip, double[] w) {
|
|
|
+ int nw;
|
|
|
+
|
|
|
+ nw = ip[0];
|
|
|
+ if (n > (nw << 2)) {
|
|
|
+ nw = n >> 2;
|
|
|
+ makewt(nw, ip, w);
|
|
|
+ }
|
|
|
+ if (isgn >= 0) {
|
|
|
+ cftfsub(n, a, ip, 2, nw, w);
|
|
|
+ } else {
|
|
|
+ cftbsub(n, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Real Discrete Fourier Transform.
|
|
|
+ * <pre>
|
|
|
+ * [definition]
|
|
|
+ * <case1> RDFT
|
|
|
+ * R[k] = sum_j = 0 & ˆ (n - 1) a[j] * cos(2 * pi * j * k / n), 0 <= k <= n / 2
|
|
|
+ * I[k] = sum_j = 0 & ˆ (n - 1) a[j] * sin(2 * pi * j * k / n), 0 < k < n / 2
|
|
|
+ * <case2> IRDFT (excluding scale)
|
|
|
+ * a[k] = (R[0] + R[n / 2] * cos(pi * k)) / 2 +
|
|
|
+ * sum_j = 1 & ˆ (n / 2 - 1) R[j] * cos(2 * pi * j * k / n) +
|
|
|
+ * sum_j = 1 & ˆ (n / 2 - 1) I[j] * sin(2 * pi * j * k / n), 0 <= k < n
|
|
|
+ * [usage]
|
|
|
+ * <case1>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * rdft(n, 1, a, ip, w);
|
|
|
+ * <case2>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * rdft(n, -1, a, ip, w);
|
|
|
+ * [remark]
|
|
|
+ * Inverse of
|
|
|
+ * rdft(n, 1, a, ip, w);
|
|
|
+ * is
|
|
|
+ * rdft(n, -1, a, ip, w);
|
|
|
+ * for (j = 0; j <= n - 1; j++) {
|
|
|
+ * a[j] *= 2.0 / n;
|
|
|
+ * }
|
|
|
+ * .
|
|
|
+ * </pre>
|
|
|
+ * @param n data length <br>
|
|
|
+ * n >= 2, n = power of 2
|
|
|
+ * @param isgn
|
|
|
+ * @param a [0...n-1] input/output data
|
|
|
+ * <pre>
|
|
|
+ * <case1>
|
|
|
+ * output data
|
|
|
+ * a[2 * k] = R[k], 0 <= k < n / 2
|
|
|
+ * a[2 * k + 1] = I[k], 0 < k < n / 2
|
|
|
+ * a[1] = R[n/2]
|
|
|
+ * <case2>
|
|
|
+ * input data
|
|
|
+ * a[2 * j] = R[j], 0 <= j < n / 2
|
|
|
+ * a[2 * j + 1] = I[j], 0 < j < n / 2
|
|
|
+ * a[1] = R[n / 2]
|
|
|
+ * </pre>
|
|
|
+ * @param ip [0...*] work area for bit reversal
|
|
|
+ * <pre>
|
|
|
+ * length of ip >= 2 + sqrt(n / 2)
|
|
|
+ * strictly,
|
|
|
+ * length of ip >=
|
|
|
+ * 2 + (1 << (int) (log(n / 2 + 0.5) / log(2)) / 2).
|
|
|
+ * </pre>
|
|
|
+ * ip[0],ip[1] are pointers of the cos/sin table.
|
|
|
+ * @param w [0...n/2-1] cos/sin table <br>
|
|
|
+ * w[],ip[] are initialized if ip[0] == 0.
|
|
|
+ */
|
|
|
+ public void rdft(int n, int isgn, double[] a, int[] ip, double[] w) {
|
|
|
+ int nw, nc;
|
|
|
+ double xi;
|
|
|
+
|
|
|
+ nw = ip[0];
|
|
|
+ if (n > (nw << 2)) {
|
|
|
+ nw = n >> 2;
|
|
|
+ makewt(nw, ip, w);
|
|
|
+ }
|
|
|
+ nc = ip[1];
|
|
|
+ if (n > (nc << 2)) {
|
|
|
+ nc = n >> 2;
|
|
|
+ makect(nc, ip, w, nw);
|
|
|
+ }
|
|
|
+ if (isgn >= 0) {
|
|
|
+ if (n > 4) {
|
|
|
+ cftfsub(n, a, ip, 2, nw, w);
|
|
|
+ rftfsub(n, a, nc, w, nw);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftfsub(n, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ xi = a[0] - a[1];
|
|
|
+ a[0] += a[1];
|
|
|
+ a[1] = xi;
|
|
|
+ } else {
|
|
|
+ a[1] = 0.5 * (a[0] - a[1]);
|
|
|
+ a[0] -= a[1];
|
|
|
+ if (n > 4) {
|
|
|
+ rftbsub(n, a, nc, w, nw);
|
|
|
+ cftbsub(n, a, ip, 2, nw, w);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftbsub(n, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Discrete Cosine Transform.
|
|
|
+ * <pre>
|
|
|
+ * [definition]
|
|
|
+ * <case1> IDCT (excluding scale)
|
|
|
+ * C[k] = sum_j=0&circ;n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n
|
|
|
+ * <case2> DCT
|
|
|
+ * C[k] = sum_j=0&circ;n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n
|
|
|
+ * [usage]
|
|
|
+ * <case1>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * ddct(n, 1, a, ip, w);
|
|
|
+ * <case2>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * ddct(n, -1, a, ip, w);
|
|
|
+ * [remark]
|
|
|
+ * Inverse of
|
|
|
+ * ddct(n, -1, a, ip, w);
|
|
|
+ * is
|
|
|
+ * a[0] *= 0.5;
|
|
|
+ * ddct(n, 1, a, ip, w);
|
|
|
+ * for (j = 0; j <= n - 1; j++) {
|
|
|
+ * a[j] *= 2.0 / n;
|
|
|
+ * }
|
|
|
+ * .
|
|
|
+ * </pre>
|
|
|
+ * @param n data length (int)
|
|
|
+ * <pre>
|
|
|
+ * n >= 2, n = power of 2
|
|
|
+ * </pre>
|
|
|
+ * @param isgn
|
|
|
+ * @param a [0...n-1] input/output data (REAL *)
|
|
|
+ * <pre>
|
|
|
+ * output data
|
|
|
+ * a[k] = C[k], 0<=k<n
|
|
|
+ * </pre>
|
|
|
+ * @param ip [0...*] work area for bit reversal (int *)
|
|
|
+ * <pre>
|
|
|
+ * length of ip >= 2+sqrt(n/2)
|
|
|
+ * strictly,
|
|
|
+ * length of ip >=
|
|
|
+ * 2+(1<<(int)(log(n/2+0.5)/log(2))/2).
|
|
|
+ * ip[0],ip[1] are pointers of the cos/sin table.
|
|
|
+ * </pre>
|
|
|
+ * @param w [0...n*5/4-1] cos/sin table (REAL *)
|
|
|
+ * <pre>
|
|
|
+ * w[],ip[] are initialized if ip[0] == 0.
|
|
|
+ * </pre>
|
|
|
+ */
|
|
|
+ public void ddct(int n, int isgn, double[] a, int[] ip, double[] w) {
|
|
|
+ int j, nw, nc;
|
|
|
+ double xr;
|
|
|
+
|
|
|
+ nw = ip[0];
|
|
|
+ if (n > (nw << 2)) {
|
|
|
+ nw = n >> 2;
|
|
|
+ makewt(nw, ip, w);
|
|
|
+ }
|
|
|
+ nc = ip[1];
|
|
|
+ if (n > nc) {
|
|
|
+ nc = n;
|
|
|
+ makect(nc, ip, w, nw);
|
|
|
+ }
|
|
|
+ if (isgn < 0) {
|
|
|
+ xr = a[n - 1];
|
|
|
+ for (j = n - 2; j >= 2; j -= 2) {
|
|
|
+ a[j + 1] = a[j] - a[j - 1];
|
|
|
+ a[j] += a[j - 1];
|
|
|
+ }
|
|
|
+ a[1] = a[0] - xr;
|
|
|
+ a[0] += xr;
|
|
|
+ if (n > 4) {
|
|
|
+ rftbsub(n, a, nc, w, nw);
|
|
|
+ cftbsub(n, a, ip, 2, nw, w);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftbsub(n, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ dctsub(n, a, nc, w, nw);
|
|
|
+ if (isgn >= 0) {
|
|
|
+ if (n > 4) {
|
|
|
+ cftfsub(n, a, ip, 2, nw, w);
|
|
|
+ rftfsub(n, a, nc, w, nw);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftfsub(n, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ xr = a[0] - a[1];
|
|
|
+ a[0] += a[1];
|
|
|
+ for (j = 2; j < n; j += 2) {
|
|
|
+ a[j - 1] = a[j] - a[j + 1];
|
|
|
+ a[j] += a[j + 1];
|
|
|
+ }
|
|
|
+ a[n - 1] = xr;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Discrete Sine Transform.
|
|
|
+ * <pre>
|
|
|
+ * [definition]
|
|
|
+ * <case1> IDST (excluding scale)
|
|
|
+ * S[k] = sum_j=1ˆn A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n
|
|
|
+ * <case2> DST
|
|
|
+ * S[k] = sum_j=0ˆn-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n
|
|
|
+ * [usage]
|
|
|
+ * <case1>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * ddst(n, 1, a, ip, w);
|
|
|
+ * <case2>
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * ddst(n, -1, a, ip, w);
|
|
|
+ * [remark]
|
|
|
+ * Inverse of
|
|
|
+ * ddst(n, -1, a, ip, w);
|
|
|
+ * is
|
|
|
+ * a[0] *= 0.5;
|
|
|
+ * ddst(n, 1, a, ip, w);
|
|
|
+ * for (j = 0; j <= n - 1; j++) {
|
|
|
+ * a[j] *= 2.0 / n;
|
|
|
+ * }
|
|
|
+ * .
|
|
|
+ * </pre>
|
|
|
+ * @param n data length (int)
|
|
|
+ * n >= 2, n = power of 2
|
|
|
+ * @param isgn
|
|
|
+ * @param a [0...n-1] input/output data (REAL *)
|
|
|
+ * <case1>
|
|
|
+ * input data
|
|
|
+ * a[j] = A[j], 0<j<n
|
|
|
+ * a[0] = A[n]
|
|
|
+ * output data
|
|
|
+ * a[k] = S[k], 0<=k<n
|
|
|
+ * <case2>
|
|
|
+ * output data
|
|
|
+ * a[k] = S[k], 0<k<n
|
|
|
+ * a[0] = S[n]
|
|
|
+ * @param ip [0...*] work area for bit reversal (int *)
|
|
|
+ * length of ip >= 2+sqrt(n/2)
|
|
|
+ * strictly,
|
|
|
+ * length of ip >=
|
|
|
+ * 2+(1<<(int)(log(n/2+0.5)/log(2))/2).
|
|
|
+ * ip[0],ip[1] are pointers of the cos/sin table.
|
|
|
+ * @param w [0...n*5/4-1] cos/sin table (REAL *)
|
|
|
+ * w[],ip[] are initialized if ip[0] == 0.
|
|
|
+ */
|
|
|
+ public void ddst(int n, int isgn, double[] a, int[] ip, double[] w) {
|
|
|
+ int j, nw, nc;
|
|
|
+ double xr;
|
|
|
+
|
|
|
+ nw = ip[0];
|
|
|
+ if (n > (nw << 2)) {
|
|
|
+ nw = n >> 2;
|
|
|
+ makewt(nw, ip, w);
|
|
|
+ }
|
|
|
+ nc = ip[1];
|
|
|
+ if (n > nc) {
|
|
|
+ nc = n;
|
|
|
+ makect(nc, ip, w, nw);
|
|
|
+ }
|
|
|
+ if (isgn < 0) {
|
|
|
+ xr = a[n - 1];
|
|
|
+ for (j = n - 2; j >= 2; j -= 2) {
|
|
|
+ a[j + 1] = -a[j] - a[j - 1];
|
|
|
+ a[j] -= a[j - 1];
|
|
|
+ }
|
|
|
+ a[1] = a[0] + xr;
|
|
|
+ a[0] -= xr;
|
|
|
+ if (n > 4) {
|
|
|
+ rftbsub(n, a, nc, w, nw);
|
|
|
+ cftbsub(n, a, ip, 2, nw, w);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftbsub(n, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ dstsub(n, a, nc, w, nw);
|
|
|
+ if (isgn >= 0) {
|
|
|
+ if (n > 4) {
|
|
|
+ cftfsub(n, a, ip, 2, nw, w);
|
|
|
+ rftfsub(n, a, nc, w, nw);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftfsub(n, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ xr = a[0] - a[1];
|
|
|
+ a[0] += a[1];
|
|
|
+ for (j = 2; j < n; j += 2) {
|
|
|
+ a[j - 1] = -a[j] - a[j + 1];
|
|
|
+ a[j] -= a[j + 1];
|
|
|
+ }
|
|
|
+ a[n - 1] = -xr;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Cosine Transform of RDFT (Real Symmetric DFT).
|
|
|
+ * <pre>
|
|
|
+ * [definition]
|
|
|
+ * C[k] = sum_j=0ˆn a[j]*cos(pi*j*k/n), 0<=k<=n
|
|
|
+ * [usage]
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * dfct(n, a, t, ip, w);
|
|
|
+ * [parameters]
|
|
|
+ * [remark]
|
|
|
+ * Inverse of
|
|
|
+ * a[0] *= 0.5;
|
|
|
+ * a[n] *= 0.5;
|
|
|
+ * dfct(n, a, t, ip, w);
|
|
|
+ * is
|
|
|
+ * a[0] *= 0.5;
|
|
|
+ * a[n] *= 0.5;
|
|
|
+ * dfct(n, a, t, ip, w);
|
|
|
+ * for (j = 0; j <= n; j++) {
|
|
|
+ * a[j] *= 2.0 / n;
|
|
|
+ * }
|
|
|
+ * .
|
|
|
+ * </pre>
|
|
|
+ * @param n data length - 1 (int)
|
|
|
+ * <pre>
|
|
|
+ * n >= 2, n = power of 2
|
|
|
+ * </pre>
|
|
|
+ * @param a [0...n] input/output data (REAL *)
|
|
|
+ * <pre>
|
|
|
+ * output data
|
|
|
+ * a[k] = C[k], 0<=k<=n
|
|
|
+ * </pre>
|
|
|
+ * @param t [0...n/2] work area (REAL *)
|
|
|
+ * @param ip [0...*] work area for bit reversal (int *)
|
|
|
+ * <pre>
|
|
|
+ * length of ip >= 2+sqrt(n/4)
|
|
|
+ * strictly,
|
|
|
+ * length of ip >=
|
|
|
+ * 2+(1<<(int)(log(n/4+0.5)/log(2))/2).
|
|
|
+ * ip[0],ip[1] are pointers of the cos/sin table.
|
|
|
+ * </pre>
|
|
|
+ * @param w [0...n*5/8-1] cos/sin table (REAL *)
|
|
|
+ * <pre>
|
|
|
+ * w[],ip[] are initialized if ip[0] == 0.
|
|
|
+ * </pre>
|
|
|
+ */
|
|
|
+ public void dfct(int n, double[] a, double[] t, int[] ip, double[] w) {
|
|
|
+ int j, k, l, m, mh, nw, nc;
|
|
|
+ double xr, xi, yr, yi;
|
|
|
+
|
|
|
+ nw = ip[0];
|
|
|
+ if (n > (nw << 3)) {
|
|
|
+ nw = n >> 3;
|
|
|
+ makewt(nw, ip, w);
|
|
|
+ }
|
|
|
+ nc = ip[1];
|
|
|
+ if (n > (nc << 1)) {
|
|
|
+ nc = n >> 1;
|
|
|
+ makect(nc, ip, w, nw);
|
|
|
+ }
|
|
|
+ m = n >> 1;
|
|
|
+ yi = a[m];
|
|
|
+ xi = a[0] + a[n];
|
|
|
+ a[0] -= a[n];
|
|
|
+ t[0] = xi - yi;
|
|
|
+ t[m] = xi + yi;
|
|
|
+ if (n > 2) {
|
|
|
+ mh = m >> 1;
|
|
|
+ for (j = 1; j < mh; j++) {
|
|
|
+ k = m - j;
|
|
|
+ xr = a[j] - a[n - j];
|
|
|
+ xi = a[j] + a[n - j];
|
|
|
+ yr = a[k] - a[n - k];
|
|
|
+ yi = a[k] + a[n - k];
|
|
|
+ a[j] = xr;
|
|
|
+ a[k] = yr;
|
|
|
+ t[j] = xi - yi;
|
|
|
+ t[k] = xi + yi;
|
|
|
+ }
|
|
|
+ t[mh] = a[mh] + a[n - mh];
|
|
|
+ a[mh] -= a[n - mh];
|
|
|
+ dctsub(m, a, nc, w, nw);
|
|
|
+ if (m > 4) {
|
|
|
+ cftfsub(m, a, ip, 2, nw, w);
|
|
|
+ rftfsub(m, a, nc, w, nw);
|
|
|
+ } else if (m == 4) {
|
|
|
+ cftfsub(m, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ a[n - 1] = a[0] - a[1];
|
|
|
+ a[1] = a[0] + a[1];
|
|
|
+ for (j = m - 2; j >= 2; j -= 2) {
|
|
|
+ a[2 * j + 1] = a[j] + a[j + 1];
|
|
|
+ a[2 * j - 1] = a[j] - a[j + 1];
|
|
|
+ }
|
|
|
+ l = 2;
|
|
|
+ m = mh;
|
|
|
+ while (m >= 2) {
|
|
|
+ dctsub(m, t, nc, w, nw);
|
|
|
+ if (m > 4) {
|
|
|
+ cftfsub(m, t, ip, 2, nw, w);
|
|
|
+ rftfsub(m, t, nc, w, nw);
|
|
|
+ } else if (m == 4) {
|
|
|
+ cftfsub(m, t, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ a[n - l] = t[0] - t[1];
|
|
|
+ a[l] = t[0] + t[1];
|
|
|
+ k = 0;
|
|
|
+ for (j = 2; j < m; j += 2) {
|
|
|
+ k += l << 2;
|
|
|
+ a[k - l] = t[j] - t[j + 1];
|
|
|
+ a[k + l] = t[j] + t[j + 1];
|
|
|
+ }
|
|
|
+ l <<= 1;
|
|
|
+ mh = m >> 1;
|
|
|
+ for (j = 0; j < mh; j++) {
|
|
|
+ k = m - j;
|
|
|
+ t[j] = t[m + k] - t[m + j];
|
|
|
+ t[k] = t[m + k] + t[m + j];
|
|
|
+ }
|
|
|
+ t[mh] = t[m + mh];
|
|
|
+ m = mh;
|
|
|
+ }
|
|
|
+ a[l] = t[0];
|
|
|
+ a[n] = t[2] - t[1];
|
|
|
+ a[0] = t[2] + t[1];
|
|
|
+ } else {
|
|
|
+ a[1] = a[0];
|
|
|
+ a[2] = t[0];
|
|
|
+ a[0] = t[1];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Sine Transform of RDFT (Real Anti-symmetric DFT).
|
|
|
+ * <pre>
|
|
|
+ * [definition]
|
|
|
+ * S[k] = sum_j=1&circ;n-1 a[j]*sin(pi*j*k/n), 0<k<n
|
|
|
+ * [usage]
|
|
|
+ * ip[0] = 0; // first time only
|
|
|
+ * dfst(n, a, t, ip, w);
|
|
|
+ * [remark]
|
|
|
+ * Inverse of
|
|
|
+ * dfst(n, a, t, ip, w);
|
|
|
+ * is
|
|
|
+ * dfst(n, a, t, ip, w);
|
|
|
+ * for (j = 1; j <= n - 1; j++) {
|
|
|
+ * a[j] *= 2.0 / n;
|
|
|
+ * }
|
|
|
+ * .
|
|
|
+ * </pre>
|
|
|
+ * @param n data length + 1 (int)
|
|
|
+ * <pre>
|
|
|
+ * n >= 2, n = power of 2
|
|
|
+ * </pre>
|
|
|
+ * @param a [0...n-1] input/output data (REAL *)
|
|
|
+ * <pre>
|
|
|
+ * output data
|
|
|
+ * a[k] = S[k], 0<k<n
|
|
|
+ * (a[0] is used for work area)
|
|
|
+ * </pre>
|
|
|
+ * @param t [0...n/2-1] work area (REAL *)
|
|
|
+ * @param ip [0...*] work area for bit reversal (int *)
|
|
|
+ * <pre>
|
|
|
+ * length of ip >= 2+sqrt(n/4)
|
|
|
+ * strictly,
|
|
|
+ * length of ip >=
|
|
|
+ * 2+(1<<(int)(log(n/4+0.5)/log(2))/2).
|
|
|
+ * ip[0],ip[1] are pointers of the cos/sin table.
|
|
|
+ * </pre>
|
|
|
+ * @param w [0...n*5/8-1] cos/sin table (REAL *)
|
|
|
+ * <pre>
|
|
|
+ * w[],ip[] are initialized if ip[0] == 0.
|
|
|
+ * </pre>
|
|
|
+ */
|
|
|
+ public void dfst(int n, double[] a, double[] t, int[] ip, double[] w) {
|
|
|
+ int j, k, l, m, mh, nw, nc;
|
|
|
+ double xr, xi, yr, yi;
|
|
|
+
|
|
|
+ nw = ip[0];
|
|
|
+ if (n > (nw << 3)) {
|
|
|
+ nw = n >> 3;
|
|
|
+ makewt(nw, ip, w);
|
|
|
+ }
|
|
|
+ nc = ip[1];
|
|
|
+ if (n > (nc << 1)) {
|
|
|
+ nc = n >> 1;
|
|
|
+ makect(nc, ip, w, nw);
|
|
|
+ }
|
|
|
+ if (n > 2) {
|
|
|
+ m = n >> 1;
|
|
|
+ mh = m >> 1;
|
|
|
+ for (j = 1; j < mh; j++) {
|
|
|
+ k = m - j;
|
|
|
+ xr = a[j] + a[n - j];
|
|
|
+ xi = a[j] - a[n - j];
|
|
|
+ yr = a[k] + a[n - k];
|
|
|
+ yi = a[k] - a[n - k];
|
|
|
+ a[j] = xr;
|
|
|
+ a[k] = yr;
|
|
|
+ t[j] = xi + yi;
|
|
|
+ t[k] = xi - yi;
|
|
|
+ }
|
|
|
+ t[0] = a[mh] - a[n - mh];
|
|
|
+ a[mh] += a[n - mh];
|
|
|
+ a[0] = a[m];
|
|
|
+ dstsub(m, a, nc, w, nw);
|
|
|
+ if (m > 4) {
|
|
|
+ cftfsub(m, a, ip, 2, nw, w);
|
|
|
+ rftfsub(m, a, nc, w, nw);
|
|
|
+ } else if (m == 4) {
|
|
|
+ cftfsub(m, a, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ a[n - 1] = a[1] - a[0];
|
|
|
+ a[1] = a[0] + a[1];
|
|
|
+ for (j = m - 2; j >= 2; j -= 2) {
|
|
|
+ a[2 * j + 1] = a[j] - a[j + 1];
|
|
|
+ a[2 * j - 1] = -a[j] - a[j + 1];
|
|
|
+ }
|
|
|
+ l = 2;
|
|
|
+ m = mh;
|
|
|
+ while (m >= 2) {
|
|
|
+ dstsub(m, t, nc, w, nw);
|
|
|
+ if (m > 4) {
|
|
|
+ cftfsub(m, t, ip, 2, nw, w);
|
|
|
+ rftfsub(m, t, nc, w, nw);
|
|
|
+ } else if (m == 4) {
|
|
|
+ cftfsub(m, t, ip, 2, nw, w);
|
|
|
+ }
|
|
|
+ a[n - l] = t[1] - t[0];
|
|
|
+ a[l] = t[0] + t[1];
|
|
|
+ k = 0;
|
|
|
+ for (j = 2; j < m; j += 2) {
|
|
|
+ k += l << 2;
|
|
|
+ a[k - l] = -t[j] - t[j + 1];
|
|
|
+ a[k + l] = t[j] - t[j + 1];
|
|
|
+ }
|
|
|
+ l <<= 1;
|
|
|
+ mh = m >> 1;
|
|
|
+ for (j = 1; j < mh; j++) {
|
|
|
+ k = m - j;
|
|
|
+ t[j] = t[m + k] + t[m + j];
|
|
|
+ t[k] = t[m + k] - t[m + j];
|
|
|
+ }
|
|
|
+ t[0] = t[m + mh];
|
|
|
+ m = mh;
|
|
|
+ }
|
|
|
+ a[l] = t[0];
|
|
|
+ }
|
|
|
+ a[0] = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // -------- initializing routines --------
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void makewt(int nw, int[] ip, double[] w) {
|
|
|
+ int j, nwh, nw0, nw1;
|
|
|
+ double delta, wn4r, wk1r, wk1i, wk3r, wk3i;
|
|
|
+
|
|
|
+ ip[0] = nw;
|
|
|
+ ip[1] = 1;
|
|
|
+ if (nw > 2) {
|
|
|
+ nwh = nw >> 1;
|
|
|
+// delta = Math.atan(1.0) / nwh;
|
|
|
+ delta = Math.PI / 4 / nwh;
|
|
|
+ wn4r = Math.cos(delta * nwh);
|
|
|
+ w[0] = 1;
|
|
|
+ w[1] = wn4r;
|
|
|
+ if (nwh >= 4) {
|
|
|
+ w[2] = 0.5 / Math.cos(delta * 2);
|
|
|
+ w[3] = 0.5 / Math.cos(delta * 6);
|
|
|
+ }
|
|
|
+ for (j = 4; j < nwh; j += 4) {
|
|
|
+ w[j] = Math.cos(delta * j);
|
|
|
+ w[j + 1] = Math.sin(delta * j);
|
|
|
+ w[j + 2] = Math.cos(3 * delta * j);
|
|
|
+ w[j + 3] = Math.sin(3 * delta * j);
|
|
|
+ }
|
|
|
+ nw0 = 0;
|
|
|
+ while (nwh > 2) {
|
|
|
+ nw1 = nw0 + nwh;
|
|
|
+ nwh >>= 1;
|
|
|
+ w[nw1] = 1;
|
|
|
+ w[nw1 + 1] = wn4r;
|
|
|
+ if (nwh >= 4) {
|
|
|
+ wk1r = w[nw0 + 4];
|
|
|
+ wk3r = w[nw0 + 6];
|
|
|
+ w[nw1 + 2] = 0.5 / wk1r;
|
|
|
+ w[nw1 + 3] = 0.5 / wk3r;
|
|
|
+ }
|
|
|
+ for (j = 4; j < nwh; j += 4) {
|
|
|
+ wk1r = w[nw0 + 2 * j];
|
|
|
+ wk1i = w[nw0 + 2 * j + 1];
|
|
|
+ wk3r = w[nw0 + 2 * j + 2];
|
|
|
+ wk3i = w[nw0 + 2 * j + 3];
|
|
|
+ w[nw1 + j] = wk1r;
|
|
|
+ w[nw1 + j + 1] = wk1i;
|
|
|
+ w[nw1 + j + 2] = wk3r;
|
|
|
+ w[nw1 + j + 3] = wk3i;
|
|
|
+ }
|
|
|
+ nw0 = nw1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void makect(int nc, int[] ip, double[] c, int cP) {
|
|
|
+ int j, nch;
|
|
|
+ double delta;
|
|
|
+
|
|
|
+ ip[1] = nc;
|
|
|
+ if (nc > 1) {
|
|
|
+ nch = nc >> 1;
|
|
|
+// delta = Math.atan(1.0) / nch;
|
|
|
+ delta = Math.PI / 4 / nch;
|
|
|
+ c[cP + 0] = Math.cos(delta * nch);
|
|
|
+ c[cP + nch] = 0.5 * c[cP + 0];
|
|
|
+ for (j = 1; j < nch; j++) {
|
|
|
+ c[cP + j] = 0.5 * Math.cos(delta * j);
|
|
|
+ c[cP + nc - j] = 0.5 * Math.sin(delta * j);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // -------- child routines --------
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 2nd
|
|
|
+ * @see #rdft(int, int, double[], int[], double[])
|
|
|
+ * @see #ddct(int, int, double[], int[], double[])
|
|
|
+ * @see #cdft(int, int, double[], int[], double[])
|
|
|
+ * @see #ddst(int, int, double[], int[], double[])
|
|
|
+ * @see #dfst(int, double[], double[], int[], double[])
|
|
|
+ * @see #dfct(int, double[], double[], int[], double[])
|
|
|
+ */
|
|
|
+ private void cftfsub(int n, double[] a, int[] ip, int ipP, int nw, double[] w) {
|
|
|
+ int m;
|
|
|
+
|
|
|
+ if (n > 32) {
|
|
|
+ m = n >> 2;
|
|
|
+ cftf1st(n, a, w, nw - m);
|
|
|
+ if (n > CDFT_RECURSIVE_N) {
|
|
|
+ cftrec1(m, a, 0, nw, w);
|
|
|
+ cftrec2(m, a, m, nw, w);
|
|
|
+ cftrec1(m, a, 2 * m, nw, w);
|
|
|
+ cftrec1(m, a, 3 * m, nw, w);
|
|
|
+ } else if (m > 32) {
|
|
|
+ cftexp1(n, a, 0, nw, w);
|
|
|
+ } else {
|
|
|
+ cftfx41(n, a, 0, nw, w);
|
|
|
+ }
|
|
|
+ bitrv2(n, ip, ipP, a);
|
|
|
+ } else if (n > 8) {
|
|
|
+ if (n == 32) {
|
|
|
+ cftf161(a, 0, w, nw - 8);
|
|
|
+ bitrv216(a);
|
|
|
+ } else {
|
|
|
+ cftf081(a, 0, w, 0);
|
|
|
+ bitrv208(a);
|
|
|
+ }
|
|
|
+ } else if (n == 8) {
|
|
|
+ cftf040(a);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftx020(a);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 2nd
|
|
|
+ * @see #rdft(int, int, double[], int[], double[])
|
|
|
+ * @see #ddct(int, int, double[], int[], double[])
|
|
|
+ * @see #cdft(int, int, double[], int[], double[])
|
|
|
+ * @see #ddst(int, int, double[], int[], double[])
|
|
|
+ */
|
|
|
+ private void cftbsub(int n, double[] a, int[] ip, int ipP, int nw, double[] w) {
|
|
|
+ int m;
|
|
|
+
|
|
|
+ if (n > 32) {
|
|
|
+ m = n >> 2;
|
|
|
+ cftb1st(n, a, w, nw - m);
|
|
|
+ if (n > CDFT_RECURSIVE_N) {
|
|
|
+ cftrec1(m, a, 0, nw, w);
|
|
|
+ cftrec2(m, a, m, nw, w);
|
|
|
+ cftrec1(m, a, 2 * m, nw, w);
|
|
|
+ cftrec1(m, a, 3 * m, nw, w);
|
|
|
+ } else if (m > 32) {
|
|
|
+ cftexp1(n, a, 0, nw, w);
|
|
|
+ } else {
|
|
|
+ cftfx41(n, a, 0, nw, w);
|
|
|
+ }
|
|
|
+ bitrv2conj(n, ip, ipP, a);
|
|
|
+ } else if (n > 8) {
|
|
|
+ if (n == 32) {
|
|
|
+ cftf161(a, 0, w, nw - 8);
|
|
|
+ bitrv216neg(a);
|
|
|
+ } else {
|
|
|
+ cftf081(a, 0, w, 0);
|
|
|
+ bitrv208neg(a);
|
|
|
+ }
|
|
|
+ } else if (n == 8) {
|
|
|
+ cftb040(a);
|
|
|
+ } else if (n == 4) {
|
|
|
+ cftx020(a);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftfsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private final void bitrv2(int n, int[] ip, int ipP, double[] a) {
|
|
|
+ int j, j1, k, k1, l, m, m2;
|
|
|
+ double xr, xi, yr, yi;
|
|
|
+
|
|
|
+ ip[ipP + 0] = 0;
|
|
|
+ l = n;
|
|
|
+ m = 1;
|
|
|
+ while ((m << 3) < l) {
|
|
|
+ l >>= 1;
|
|
|
+ for (j = 0; j < m; j++) {
|
|
|
+ ip[ipP + m + j] = ip[ipP + j] + l;
|
|
|
+ }
|
|
|
+ m <<= 1;
|
|
|
+ }
|
|
|
+ m2 = 2 * m;
|
|
|
+ if ((m << 3) == l) {
|
|
|
+ for (k = 0; k < m; k++) {
|
|
|
+ for (j = 0; j < k; j++) {
|
|
|
+ j1 = 2 * j + ip[ipP + k];
|
|
|
+ k1 = 2 * k + ip[ipP + j];
|
|
|
+ xr = a[j1];
|
|
|
+ xi = a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 += 2 * m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 -= m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 += 2 * m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ }
|
|
|
+ j1 = 2 * k + m2 + ip[ipP + k];
|
|
|
+ k1 = j1 + m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ for (k = 1; k < m; k++) {
|
|
|
+ for (j = 0; j < k; j++) {
|
|
|
+ j1 = 2 * j + ip[ipP + k];
|
|
|
+ k1 = 2 * k + ip[ipP + j];
|
|
|
+ xr = a[j1];
|
|
|
+ xi = a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 += m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftbsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private final void bitrv2conj(int n, int[] ip, int ipP, double[] a) {
|
|
|
+ int j, j1, k, k1, l, m, m2;
|
|
|
+ double xr, xi, yr, yi;
|
|
|
+
|
|
|
+ ip[ipP + 0] = 0;
|
|
|
+ l = n;
|
|
|
+ m = 1;
|
|
|
+ while ((m << 3) < l) {
|
|
|
+ l >>= 1;
|
|
|
+ for (j = 0; j < m; j++) {
|
|
|
+ ip[ipP + m + j] = ip[ipP + j] + l;
|
|
|
+ }
|
|
|
+ m <<= 1;
|
|
|
+ }
|
|
|
+ m2 = 2 * m;
|
|
|
+ if ((m << 3) == l) {
|
|
|
+ for (k = 0; k < m; k++) {
|
|
|
+ for (j = 0; j < k; j++) {
|
|
|
+ j1 = 2 * j + ip[ipP + k];
|
|
|
+ k1 = 2 * k + ip[ipP + j];
|
|
|
+ xr = a[j1];
|
|
|
+ xi = -a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = -a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 += 2 * m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = -a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = -a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 -= m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = -a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = -a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 += 2 * m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = -a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = -a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ }
|
|
|
+ k1 = 2 * k + ip[ipP + k];
|
|
|
+ a[k1 + 1] = -a[k1 + 1];
|
|
|
+ j1 = k1 + m2;
|
|
|
+ k1 = j1 + m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = -a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = -a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ k1 += m2;
|
|
|
+ a[k1 + 1] = -a[k1 + 1];
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ a[1] = -a[1];
|
|
|
+ a[m2 + 1] = -a[m2 + 1];
|
|
|
+ for (k = 1; k < m; k++) {
|
|
|
+ for (j = 0; j < k; j++) {
|
|
|
+ j1 = 2 * j + ip[ipP + k];
|
|
|
+ k1 = 2 * k + ip[ipP + j];
|
|
|
+ xr = a[j1];
|
|
|
+ xi = -a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = -a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ j1 += m2;
|
|
|
+ k1 += m2;
|
|
|
+ xr = a[j1];
|
|
|
+ xi = -a[j1 + 1];
|
|
|
+ yr = a[k1];
|
|
|
+ yi = -a[k1 + 1];
|
|
|
+ a[j1] = yr;
|
|
|
+ a[j1 + 1] = yi;
|
|
|
+ a[k1] = xr;
|
|
|
+ a[k1 + 1] = xi;
|
|
|
+ }
|
|
|
+ k1 = 2 * k + ip[ipP + k];
|
|
|
+ a[k1 + 1] = -a[k1 + 1];
|
|
|
+ a[k1 + m2 + 1] = -a[k1 + m2 + 1];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftfsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void bitrv216(double[] a) {
|
|
|
+ double x1r, x1i, x2r, x2i, x3r, x3i, x4r, x4i, x5r, x5i, x7r, x7i, x8r, x8i, x10r, x10i, x11r, x11i, x12r, x12i, x13r, x13i, x14r, x14i;
|
|
|
+
|
|
|
+ x1r = a[2];
|
|
|
+ x1i = a[3];
|
|
|
+ x2r = a[4];
|
|
|
+ x2i = a[5];
|
|
|
+ x3r = a[6];
|
|
|
+ x3i = a[7];
|
|
|
+ x4r = a[8];
|
|
|
+ x4i = a[9];
|
|
|
+ x5r = a[10];
|
|
|
+ x5i = a[11];
|
|
|
+ x7r = a[14];
|
|
|
+ x7i = a[15];
|
|
|
+ x8r = a[16];
|
|
|
+ x8i = a[17];
|
|
|
+ x10r = a[20];
|
|
|
+ x10i = a[21];
|
|
|
+ x11r = a[22];
|
|
|
+ x11i = a[23];
|
|
|
+ x12r = a[24];
|
|
|
+ x12i = a[25];
|
|
|
+ x13r = a[26];
|
|
|
+ x13i = a[27];
|
|
|
+ x14r = a[28];
|
|
|
+ x14i = a[29];
|
|
|
+ a[2] = x8r;
|
|
|
+ a[3] = x8i;
|
|
|
+ a[4] = x4r;
|
|
|
+ a[5] = x4i;
|
|
|
+ a[6] = x12r;
|
|
|
+ a[7] = x12i;
|
|
|
+ a[8] = x2r;
|
|
|
+ a[9] = x2i;
|
|
|
+ a[10] = x10r;
|
|
|
+ a[11] = x10i;
|
|
|
+ a[14] = x14r;
|
|
|
+ a[15] = x14i;
|
|
|
+ a[16] = x1r;
|
|
|
+ a[17] = x1i;
|
|
|
+ a[20] = x5r;
|
|
|
+ a[21] = x5i;
|
|
|
+ a[22] = x13r;
|
|
|
+ a[23] = x13i;
|
|
|
+ a[24] = x3r;
|
|
|
+ a[25] = x3i;
|
|
|
+ a[26] = x11r;
|
|
|
+ a[27] = x11i;
|
|
|
+ a[28] = x7r;
|
|
|
+ a[29] = x7i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftbsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void bitrv216neg(double[] a) {
|
|
|
+ double x1r, x1i, x2r, x2i, x3r, x3i, x4r, x4i, x5r, x5i, x6r, x6i, x7r, x7i, x8r, x8i, x9r, x9i, x10r, x10i, x11r, x11i, x12r, x12i, x13r, x13i, x14r, x14i, x15r, x15i;
|
|
|
+
|
|
|
+ x1r = a[2];
|
|
|
+ x1i = a[3];
|
|
|
+ x2r = a[4];
|
|
|
+ x2i = a[5];
|
|
|
+ x3r = a[6];
|
|
|
+ x3i = a[7];
|
|
|
+ x4r = a[8];
|
|
|
+ x4i = a[9];
|
|
|
+ x5r = a[10];
|
|
|
+ x5i = a[11];
|
|
|
+ x6r = a[12];
|
|
|
+ x6i = a[13];
|
|
|
+ x7r = a[14];
|
|
|
+ x7i = a[15];
|
|
|
+ x8r = a[16];
|
|
|
+ x8i = a[17];
|
|
|
+ x9r = a[18];
|
|
|
+ x9i = a[19];
|
|
|
+ x10r = a[20];
|
|
|
+ x10i = a[21];
|
|
|
+ x11r = a[22];
|
|
|
+ x11i = a[23];
|
|
|
+ x12r = a[24];
|
|
|
+ x12i = a[25];
|
|
|
+ x13r = a[26];
|
|
|
+ x13i = a[27];
|
|
|
+ x14r = a[28];
|
|
|
+ x14i = a[29];
|
|
|
+ x15r = a[30];
|
|
|
+ x15i = a[31];
|
|
|
+ a[2] = x15r;
|
|
|
+ a[3] = x15i;
|
|
|
+ a[4] = x7r;
|
|
|
+ a[5] = x7i;
|
|
|
+ a[6] = x11r;
|
|
|
+ a[7] = x11i;
|
|
|
+ a[8] = x3r;
|
|
|
+ a[9] = x3i;
|
|
|
+ a[10] = x13r;
|
|
|
+ a[11] = x13i;
|
|
|
+ a[12] = x5r;
|
|
|
+ a[13] = x5i;
|
|
|
+ a[14] = x9r;
|
|
|
+ a[15] = x9i;
|
|
|
+ a[16] = x1r;
|
|
|
+ a[17] = x1i;
|
|
|
+ a[18] = x14r;
|
|
|
+ a[19] = x14i;
|
|
|
+ a[20] = x6r;
|
|
|
+ a[21] = x6i;
|
|
|
+ a[22] = x10r;
|
|
|
+ a[23] = x10i;
|
|
|
+ a[24] = x2r;
|
|
|
+ a[25] = x2i;
|
|
|
+ a[26] = x12r;
|
|
|
+ a[27] = x12i;
|
|
|
+ a[28] = x4r;
|
|
|
+ a[29] = x4i;
|
|
|
+ a[30] = x8r;
|
|
|
+ a[31] = x8i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftfsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void bitrv208(double[] a) {
|
|
|
+ double x1r, x1i, x3r, x3i, x4r, x4i, x6r, x6i;
|
|
|
+
|
|
|
+ x1r = a[2];
|
|
|
+ x1i = a[3];
|
|
|
+ x3r = a[6];
|
|
|
+ x3i = a[7];
|
|
|
+ x4r = a[8];
|
|
|
+ x4i = a[9];
|
|
|
+ x6r = a[12];
|
|
|
+ x6i = a[13];
|
|
|
+ a[2] = x4r;
|
|
|
+ a[3] = x4i;
|
|
|
+ a[6] = x6r;
|
|
|
+ a[7] = x6i;
|
|
|
+ a[8] = x1r;
|
|
|
+ a[9] = x1i;
|
|
|
+ a[12] = x3r;
|
|
|
+ a[13] = x3i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftbsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void bitrv208neg(double[] a) {
|
|
|
+ double x1r, x1i, x2r, x2i, x3r, x3i, x4r, x4i, x5r, x5i, x6r, x6i, x7r, x7i;
|
|
|
+
|
|
|
+ x1r = a[2];
|
|
|
+ x1i = a[3];
|
|
|
+ x2r = a[4];
|
|
|
+ x2i = a[5];
|
|
|
+ x3r = a[6];
|
|
|
+ x3i = a[7];
|
|
|
+ x4r = a[8];
|
|
|
+ x4i = a[9];
|
|
|
+ x5r = a[10];
|
|
|
+ x5i = a[11];
|
|
|
+ x6r = a[12];
|
|
|
+ x6i = a[13];
|
|
|
+ x7r = a[14];
|
|
|
+ x7i = a[15];
|
|
|
+ a[2] = x7r;
|
|
|
+ a[3] = x7i;
|
|
|
+ a[4] = x3r;
|
|
|
+ a[5] = x3i;
|
|
|
+ a[6] = x5r;
|
|
|
+ a[7] = x5i;
|
|
|
+ a[8] = x1r;
|
|
|
+ a[9] = x1i;
|
|
|
+ a[10] = x6r;
|
|
|
+ a[11] = x6i;
|
|
|
+ a[12] = x2r;
|
|
|
+ a[13] = x2i;
|
|
|
+ a[14] = x4r;
|
|
|
+ a[15] = x4i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftfsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void cftf1st(int n, double[] a, double[] w, int wP) {
|
|
|
+ int j, j0, j1, j2, j3, k, m, mh;
|
|
|
+ double wn4r, csc1, csc3, wk1r, wk1i, wk3r, wk3i, wd1r, wd1i, wd3r, wd3i;
|
|
|
+ double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i;
|
|
|
+
|
|
|
+ mh = n >> 3;
|
|
|
+ m = 2 * mh;
|
|
|
+ j1 = m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[0] + a[j2];
|
|
|
+ x0i = a[1] + a[j2 + 1];
|
|
|
+ x1r = a[0] - a[j2];
|
|
|
+ x1i = a[1] - a[j2 + 1];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ a[0] = x0r + x2r;
|
|
|
+ a[1] = x0i + x2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i - x2i;
|
|
|
+ a[j2] = x1r - x3i;
|
|
|
+ a[j2 + 1] = x1i + x3r;
|
|
|
+ a[j3] = x1r + x3i;
|
|
|
+ a[j3 + 1] = x1i - x3r;
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ csc1 = w[wP + 2];
|
|
|
+ csc3 = w[wP + 3];
|
|
|
+ wd1r = 1;
|
|
|
+ wd1i = 0;
|
|
|
+ wd3r = 1;
|
|
|
+ wd3i = 0;
|
|
|
+ k = 0;
|
|
|
+ for (j = 2; j < mh - 2; j += 4) {
|
|
|
+ k += 4;
|
|
|
+ wk1r = csc1 * (wd1r + w[wP + k]);
|
|
|
+ wk1i = csc1 * (wd1i + w[wP + k + 1]);
|
|
|
+ wk3r = csc3 * (wd3r + w[wP + k + 2]);
|
|
|
+ wk3i = csc3 * (wd3i - w[wP + k + 3]);
|
|
|
+ wd1r = w[wP + k];
|
|
|
+ wd1i = w[wP + k + 1];
|
|
|
+ wd3r = w[wP + k + 2];
|
|
|
+ wd3i = -w[wP + k + 3];
|
|
|
+ j1 = j + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[j] + a[j2];
|
|
|
+ x0i = a[j + 1] + a[j2 + 1];
|
|
|
+ x1r = a[j] - a[j2];
|
|
|
+ x1i = a[j + 1] - a[j2 + 1];
|
|
|
+ y0r = a[j + 2] + a[j2 + 2];
|
|
|
+ y0i = a[j + 3] + a[j2 + 3];
|
|
|
+ y1r = a[j + 2] - a[j2 + 2];
|
|
|
+ y1i = a[j + 3] - a[j2 + 3];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ y2r = a[j1 + 2] + a[j3 + 2];
|
|
|
+ y2i = a[j1 + 3] + a[j3 + 3];
|
|
|
+ y3r = a[j1 + 2] - a[j3 + 2];
|
|
|
+ y3i = a[j1 + 3] - a[j3 + 3];
|
|
|
+ a[j] = x0r + x2r;
|
|
|
+ a[j + 1] = x0i + x2i;
|
|
|
+ a[j + 2] = y0r + y2r;
|
|
|
+ a[j + 3] = y0i + y2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i - x2i;
|
|
|
+ a[j1 + 2] = y0r - y2r;
|
|
|
+ a[j1 + 3] = y0i - y2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2] = wk1r * x0r - wk1i * x0i;
|
|
|
+ a[j2 + 1] = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = y1r - y3i;
|
|
|
+ x0i = y1i + y3r;
|
|
|
+ a[j2 + 2] = wd1r * x0r - wd1i * x0i;
|
|
|
+ a[j2 + 3] = wd1r * x0i + wd1i * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3] = wk3r * x0r + wk3i * x0i;
|
|
|
+ a[j3 + 1] = wk3r * x0i - wk3i * x0r;
|
|
|
+ x0r = y1r + y3i;
|
|
|
+ x0i = y1i - y3r;
|
|
|
+ a[j3 + 2] = wd3r * x0r + wd3i * x0i;
|
|
|
+ a[j3 + 3] = wd3r * x0i - wd3i * x0r;
|
|
|
+ j0 = m - j;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[j0] + a[j2];
|
|
|
+ x0i = a[j0 + 1] + a[j2 + 1];
|
|
|
+ x1r = a[j0] - a[j2];
|
|
|
+ x1i = a[j0 + 1] - a[j2 + 1];
|
|
|
+ y0r = a[j0 - 2] + a[j2 - 2];
|
|
|
+ y0i = a[j0 - 1] + a[j2 - 1];
|
|
|
+ y1r = a[j0 - 2] - a[j2 - 2];
|
|
|
+ y1i = a[j0 - 1] - a[j2 - 1];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ y2r = a[j1 - 2] + a[j3 - 2];
|
|
|
+ y2i = a[j1 - 1] + a[j3 - 1];
|
|
|
+ y3r = a[j1 - 2] - a[j3 - 2];
|
|
|
+ y3i = a[j1 - 1] - a[j3 - 1];
|
|
|
+ a[j0] = x0r + x2r;
|
|
|
+ a[j0 + 1] = x0i + x2i;
|
|
|
+ a[j0 - 2] = y0r + y2r;
|
|
|
+ a[j0 - 1] = y0i + y2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i - x2i;
|
|
|
+ a[j1 - 2] = y0r - y2r;
|
|
|
+ a[j1 - 1] = y0i - y2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2] = wk1i * x0r - wk1r * x0i;
|
|
|
+ a[j2 + 1] = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = y1r - y3i;
|
|
|
+ x0i = y1i + y3r;
|
|
|
+ a[j2 - 2] = wd1i * x0r - wd1r * x0i;
|
|
|
+ a[j2 - 1] = wd1i * x0i + wd1r * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3] = wk3i * x0r + wk3r * x0i;
|
|
|
+ a[j3 + 1] = wk3i * x0i - wk3r * x0r;
|
|
|
+ x0r = y1r + y3i;
|
|
|
+ x0i = y1i - y3r;
|
|
|
+ a[j3 - 2] = wd3i * x0r + wd3r * x0i;
|
|
|
+ a[j3 - 1] = wd3i * x0i - wd3r * x0r;
|
|
|
+ }
|
|
|
+ wk1r = csc1 * (wd1r + wn4r);
|
|
|
+ wk1i = csc1 * (wd1i + wn4r);
|
|
|
+ wk3r = csc3 * (wd3r - wn4r);
|
|
|
+ wk3i = csc3 * (wd3i - wn4r);
|
|
|
+ j0 = mh;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[j0 - 2] + a[j2 - 2];
|
|
|
+ x0i = a[j0 - 1] + a[j2 - 1];
|
|
|
+ x1r = a[j0 - 2] - a[j2 - 2];
|
|
|
+ x1i = a[j0 - 1] - a[j2 - 1];
|
|
|
+ x2r = a[j1 - 2] + a[j3 - 2];
|
|
|
+ x2i = a[j1 - 1] + a[j3 - 1];
|
|
|
+ x3r = a[j1 - 2] - a[j3 - 2];
|
|
|
+ x3i = a[j1 - 1] - a[j3 - 1];
|
|
|
+ a[j0 - 2] = x0r + x2r;
|
|
|
+ a[j0 - 1] = x0i + x2i;
|
|
|
+ a[j1 - 2] = x0r - x2r;
|
|
|
+ a[j1 - 1] = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2 - 2] = wk1r * x0r - wk1i * x0i;
|
|
|
+ a[j2 - 1] = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3 - 2] = wk3r * x0r + wk3i * x0i;
|
|
|
+ a[j3 - 1] = wk3r * x0i - wk3i * x0r;
|
|
|
+ x0r = a[j0] + a[j2];
|
|
|
+ x0i = a[j0 + 1] + a[j2 + 1];
|
|
|
+ x1r = a[j0] - a[j2];
|
|
|
+ x1i = a[j0 + 1] - a[j2 + 1];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ a[j0] = x0r + x2r;
|
|
|
+ a[j0 + 1] = x0i + x2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2] = wn4r * (x0r - x0i);
|
|
|
+ a[j2 + 1] = wn4r * (x0i + x0r);
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3] = -wn4r * (x0r + x0i);
|
|
|
+ a[j3 + 1] = -wn4r * (x0i - x0r);
|
|
|
+ x0r = a[j0 + 2] + a[j2 + 2];
|
|
|
+ x0i = a[j0 + 3] + a[j2 + 3];
|
|
|
+ x1r = a[j0 + 2] - a[j2 + 2];
|
|
|
+ x1i = a[j0 + 3] - a[j2 + 3];
|
|
|
+ x2r = a[j1 + 2] + a[j3 + 2];
|
|
|
+ x2i = a[j1 + 3] + a[j3 + 3];
|
|
|
+ x3r = a[j1 + 2] - a[j3 + 2];
|
|
|
+ x3i = a[j1 + 3] - a[j3 + 3];
|
|
|
+ a[j0 + 2] = x0r + x2r;
|
|
|
+ a[j0 + 3] = x0i + x2i;
|
|
|
+ a[j1 + 2] = x0r - x2r;
|
|
|
+ a[j1 + 3] = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2 + 2] = wk1i * x0r - wk1r * x0i;
|
|
|
+ a[j2 + 3] = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3 + 2] = wk3i * x0r + wk3r * x0i;
|
|
|
+ a[j3 + 3] = wk3i * x0i - wk3r * x0r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * @see #cftbsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private final void cftb1st(int n, double[] a, double[] w, int wP) {
|
|
|
+ int j, j0, j1, j2, j3, k, m, mh;
|
|
|
+ double wn4r, csc1, csc3, wk1r, wk1i, wk3r, wk3i, wd1r, wd1i, wd3r, wd3i;
|
|
|
+ double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i;
|
|
|
+
|
|
|
+ mh = n >> 3;
|
|
|
+ m = 2 * mh;
|
|
|
+ j1 = m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[0] + a[j2];
|
|
|
+ x0i = -a[1] - a[j2 + 1];
|
|
|
+ x1r = a[0] - a[j2];
|
|
|
+ x1i = -a[1] + a[j2 + 1];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ a[0] = x0r + x2r;
|
|
|
+ a[1] = x0i - x2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i + x2i;
|
|
|
+ a[j2] = x1r + x3i;
|
|
|
+ a[j2 + 1] = x1i + x3r;
|
|
|
+ a[j3] = x1r - x3i;
|
|
|
+ a[j3 + 1] = x1i - x3r;
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ csc1 = w[wP + 2];
|
|
|
+ csc3 = w[wP + 3];
|
|
|
+ wd1r = 1;
|
|
|
+ wd1i = 0;
|
|
|
+ wd3r = 1;
|
|
|
+ wd3i = 0;
|
|
|
+ k = 0;
|
|
|
+ for (j = 2; j < mh - 2; j += 4) {
|
|
|
+ k += 4;
|
|
|
+ wk1r = csc1 * (wd1r + w[wP + k]);
|
|
|
+ wk1i = csc1 * (wd1i + w[wP + k + 1]);
|
|
|
+ wk3r = csc3 * (wd3r + w[wP + k + 2]);
|
|
|
+ wk3i = csc3 * (wd3i - w[wP + k + 3]);
|
|
|
+ wd1r = w[wP + k];
|
|
|
+ wd1i = w[wP + k + 1];
|
|
|
+ wd3r = w[wP + k + 2];
|
|
|
+ wd3i = -w[wP + k + 3];
|
|
|
+ j1 = j + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[j] + a[j2];
|
|
|
+ x0i = -a[j + 1] - a[j2 + 1];
|
|
|
+ x1r = a[j] - a[j2];
|
|
|
+ x1i = -a[j + 1] + a[j2 + 1];
|
|
|
+ y0r = a[j + 2] + a[j2 + 2];
|
|
|
+ y0i = -a[j + 3] - a[j2 + 3];
|
|
|
+ y1r = a[j + 2] - a[j2 + 2];
|
|
|
+ y1i = -a[j + 3] + a[j2 + 3];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ y2r = a[j1 + 2] + a[j3 + 2];
|
|
|
+ y2i = a[j1 + 3] + a[j3 + 3];
|
|
|
+ y3r = a[j1 + 2] - a[j3 + 2];
|
|
|
+ y3i = a[j1 + 3] - a[j3 + 3];
|
|
|
+ a[j] = x0r + x2r;
|
|
|
+ a[j + 1] = x0i - x2i;
|
|
|
+ a[j + 2] = y0r + y2r;
|
|
|
+ a[j + 3] = y0i - y2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i + x2i;
|
|
|
+ a[j1 + 2] = y0r - y2r;
|
|
|
+ a[j1 + 3] = y0i + y2i;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2] = wk1r * x0r - wk1i * x0i;
|
|
|
+ a[j2 + 1] = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = y1r + y3i;
|
|
|
+ x0i = y1i + y3r;
|
|
|
+ a[j2 + 2] = wd1r * x0r - wd1i * x0i;
|
|
|
+ a[j2 + 3] = wd1r * x0i + wd1i * x0r;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3] = wk3r * x0r + wk3i * x0i;
|
|
|
+ a[j3 + 1] = wk3r * x0i - wk3i * x0r;
|
|
|
+ x0r = y1r - y3i;
|
|
|
+ x0i = y1i - y3r;
|
|
|
+ a[j3 + 2] = wd3r * x0r + wd3i * x0i;
|
|
|
+ a[j3 + 3] = wd3r * x0i - wd3i * x0r;
|
|
|
+ j0 = m - j;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[j0] + a[j2];
|
|
|
+ x0i = -a[j0 + 1] - a[j2 + 1];
|
|
|
+ x1r = a[j0] - a[j2];
|
|
|
+ x1i = -a[j0 + 1] + a[j2 + 1];
|
|
|
+ y0r = a[j0 - 2] + a[j2 - 2];
|
|
|
+ y0i = -a[j0 - 1] - a[j2 - 1];
|
|
|
+ y1r = a[j0 - 2] - a[j2 - 2];
|
|
|
+ y1i = -a[j0 - 1] + a[j2 - 1];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ y2r = a[j1 - 2] + a[j3 - 2];
|
|
|
+ y2i = a[j1 - 1] + a[j3 - 1];
|
|
|
+ y3r = a[j1 - 2] - a[j3 - 2];
|
|
|
+ y3i = a[j1 - 1] - a[j3 - 1];
|
|
|
+ a[j0] = x0r + x2r;
|
|
|
+ a[j0 + 1] = x0i - x2i;
|
|
|
+ a[j0 - 2] = y0r + y2r;
|
|
|
+ a[j0 - 1] = y0i - y2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i + x2i;
|
|
|
+ a[j1 - 2] = y0r - y2r;
|
|
|
+ a[j1 - 1] = y0i + y2i;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2] = wk1i * x0r - wk1r * x0i;
|
|
|
+ a[j2 + 1] = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = y1r + y3i;
|
|
|
+ x0i = y1i + y3r;
|
|
|
+ a[j2 - 2] = wd1i * x0r - wd1r * x0i;
|
|
|
+ a[j2 - 1] = wd1i * x0i + wd1r * x0r;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3] = wk3i * x0r + wk3r * x0i;
|
|
|
+ a[j3 + 1] = wk3i * x0i - wk3r * x0r;
|
|
|
+ x0r = y1r - y3i;
|
|
|
+ x0i = y1i - y3r;
|
|
|
+ a[j3 - 2] = wd3i * x0r + wd3r * x0i;
|
|
|
+ a[j3 - 1] = wd3i * x0i - wd3r * x0r;
|
|
|
+ }
|
|
|
+ wk1r = csc1 * (wd1r + wn4r);
|
|
|
+ wk1i = csc1 * (wd1i + wn4r);
|
|
|
+ wk3r = csc3 * (wd3r - wn4r);
|
|
|
+ wk3i = csc3 * (wd3i - wn4r);
|
|
|
+ j0 = mh;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[j0 - 2] + a[j2 - 2];
|
|
|
+ x0i = -a[j0 - 1] - a[j2 - 1];
|
|
|
+ x1r = a[j0 - 2] - a[j2 - 2];
|
|
|
+ x1i = -a[j0 - 1] + a[j2 - 1];
|
|
|
+ x2r = a[j1 - 2] + a[j3 - 2];
|
|
|
+ x2i = a[j1 - 1] + a[j3 - 1];
|
|
|
+ x3r = a[j1 - 2] - a[j3 - 2];
|
|
|
+ x3i = a[j1 - 1] - a[j3 - 1];
|
|
|
+ a[j0 - 2] = x0r + x2r;
|
|
|
+ a[j0 - 1] = x0i - x2i;
|
|
|
+ a[j1 - 2] = x0r - x2r;
|
|
|
+ a[j1 - 1] = x0i + x2i;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2 - 2] = wk1r * x0r - wk1i * x0i;
|
|
|
+ a[j2 - 1] = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3 - 2] = wk3r * x0r + wk3i * x0i;
|
|
|
+ a[j3 - 1] = wk3r * x0i - wk3i * x0r;
|
|
|
+ x0r = a[j0] + a[j2];
|
|
|
+ x0i = -a[j0 + 1] - a[j2 + 1];
|
|
|
+ x1r = a[j0] - a[j2];
|
|
|
+ x1i = -a[j0 + 1] + a[j2 + 1];
|
|
|
+ x2r = a[j1] + a[j3];
|
|
|
+ x2i = a[j1 + 1] + a[j3 + 1];
|
|
|
+ x3r = a[j1] - a[j3];
|
|
|
+ x3i = a[j1 + 1] - a[j3 + 1];
|
|
|
+ a[j0] = x0r + x2r;
|
|
|
+ a[j0 + 1] = x0i - x2i;
|
|
|
+ a[j1] = x0r - x2r;
|
|
|
+ a[j1 + 1] = x0i + x2i;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2] = wn4r * (x0r - x0i);
|
|
|
+ a[j2 + 1] = wn4r * (x0i + x0r);
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3] = -wn4r * (x0r + x0i);
|
|
|
+ a[j3 + 1] = -wn4r * (x0i - x0r);
|
|
|
+ x0r = a[j0 + 2] + a[j2 + 2];
|
|
|
+ x0i = -a[j0 + 3] - a[j2 + 3];
|
|
|
+ x1r = a[j0 + 2] - a[j2 + 2];
|
|
|
+ x1i = -a[j0 + 3] + a[j2 + 3];
|
|
|
+ x2r = a[j1 + 2] + a[j3 + 2];
|
|
|
+ x2i = a[j1 + 3] + a[j3 + 3];
|
|
|
+ x3r = a[j1 + 2] - a[j3 + 2];
|
|
|
+ x3i = a[j1 + 3] - a[j3 + 3];
|
|
|
+ a[j0 + 2] = x0r + x2r;
|
|
|
+ a[j0 + 3] = x0i - x2i;
|
|
|
+ a[j1 + 2] = x0r - x2r;
|
|
|
+ a[j1 + 3] = x0i + x2i;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[j2 + 2] = wk1i * x0r - wk1r * x0i;
|
|
|
+ a[j2 + 3] = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[j3 + 2] = wk3i * x0r + wk3r * x0i;
|
|
|
+ a[j3 + 3] = wk3i * x0i - wk3r * x0r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftrec1(int n, double[] a, int aP, int nw, double[] w) {
|
|
|
+ int m;
|
|
|
+
|
|
|
+ m = n >> 2;
|
|
|
+ cftmdl1(n, a, aP, w, nw - 2 * m);
|
|
|
+ if (n > CDFT_RECURSIVE_N) {
|
|
|
+ cftrec1(m, a, aP, nw, w);
|
|
|
+ cftrec2(m, a, aP + m, nw, w);
|
|
|
+ cftrec1(m, a, aP + 2 * m, nw, w);
|
|
|
+ cftrec1(m, a, aP + 3 * m, nw, w);
|
|
|
+ } else {
|
|
|
+ cftexp1(n, a, aP, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftrec2(int n, double[] a, int aP, int nw, double[] w) {
|
|
|
+ int m;
|
|
|
+
|
|
|
+ m = n >> 2;
|
|
|
+ cftmdl2(n, a, aP, w, nw - n);
|
|
|
+ if (n > CDFT_RECURSIVE_N) {
|
|
|
+ cftrec1(m, a, aP, nw, w);
|
|
|
+ cftrec2(m, a, aP + m, nw, w);
|
|
|
+ cftrec1(m, a, aP + 2 * m, nw, w);
|
|
|
+ cftrec2(m, a, aP + 3 * m, nw, w);
|
|
|
+ } else {
|
|
|
+ cftexp2(n, a, aP, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftexp1(int n, double[] a, int aP, int nw, double[] w) {
|
|
|
+ int j, k, l;
|
|
|
+
|
|
|
+ l = n >> 2;
|
|
|
+ while (l > 128) {
|
|
|
+ for (k = l; k < n; k <<= 2) {
|
|
|
+ for (j = k - l; j < n; j += 4 * k) {
|
|
|
+ cftmdl1(l, a, aP + j, w, nw - (l >> 1));
|
|
|
+ cftmdl2(l, a, aP + k + j, w, nw - l);
|
|
|
+ cftmdl1(l, a, aP + 2 * k + j, w, nw - (l >> 1));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cftmdl1(l, a, aP + n - l, w, nw - (l >> 1));
|
|
|
+ l >>= 2;
|
|
|
+ }
|
|
|
+ for (k = l; k < n; k <<= 2) {
|
|
|
+ for (j = k - l; j < n; j += 4 * k) {
|
|
|
+ cftmdl1(l, a, aP + j, w, nw - (l >> 1));
|
|
|
+ cftfx41(l, a, aP + j, nw, w);
|
|
|
+ cftmdl2(l, a, aP + k + j, w, nw - l);
|
|
|
+ cftfx42(l, a, aP + k + j, nw, w);
|
|
|
+ cftmdl1(l, a, aP + 2 * k + j, w, nw - (l >> 1));
|
|
|
+ cftfx41(l, a, aP + 2 * k + j, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cftmdl1(l, a, aP + n - l, w, nw - (l >> 1));
|
|
|
+ cftfx41(l, a, aP + n - l, nw, w);
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftexp2(int n, double[] a, int aP, int nw, double[] w) {
|
|
|
+ int j, k, l, m;
|
|
|
+
|
|
|
+ m = n >> 1;
|
|
|
+ l = n >> 2;
|
|
|
+ while (l > 128) {
|
|
|
+ for (k = l; k < m; k <<= 2) {
|
|
|
+ for (j = k - l; j < m; j += 2 * k) {
|
|
|
+ cftmdl1(l, a, aP + j, w, nw - (l >> 1));
|
|
|
+ cftmdl1(l, a, aP + m + j, w, nw - (l >> 1));
|
|
|
+ }
|
|
|
+ for (j = 2 * k - l; j < m; j += 4 * k) {
|
|
|
+ cftmdl2(l, a, aP + j, w, nw - l);
|
|
|
+ cftmdl2(l, a, aP + m + j, w, nw - l);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ l >>= 2;
|
|
|
+ }
|
|
|
+ for (k = l; k < m; k <<= 2) {
|
|
|
+ for (j = k - l; j < m; j += 2 * k) {
|
|
|
+ cftmdl1(l, a, aP + j, w, nw - (l >> 1));
|
|
|
+ cftfx41(l, a, aP + j, nw, w);
|
|
|
+ cftmdl1(l, a, aP + m + j, w, nw - (l >> 1));
|
|
|
+ cftfx41(l, a, aP + m + j, nw, w);
|
|
|
+ }
|
|
|
+ for (j = 2 * k - l; j < m; j += 4 * k) {
|
|
|
+ cftmdl2(l, a, aP + j, w, nw - l);
|
|
|
+ cftfx42(l, a, aP + j, nw, w);
|
|
|
+ cftmdl2(l, a, aP + m + j, w, nw - l);
|
|
|
+ cftfx42(l, a, aP + m + j, nw, w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private final void cftmdl1(int n, double[] a, int aP, double[] w, int wP) {
|
|
|
+ int j, j0, j1, j2, j3, k, m, mh;
|
|
|
+ double wn4r, wk1r, wk1i, wk3r, wk3i;
|
|
|
+ double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
|
|
|
+
|
|
|
+ mh = n >> 3;
|
|
|
+ m = 2 * mh;
|
|
|
+ j1 = m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + 0] + a[aP + j2];
|
|
|
+ x0i = a[aP + 1] + a[aP + j2 + 1];
|
|
|
+ x1r = a[aP + 0] - a[aP + j2];
|
|
|
+ x1i = a[aP + 1] - a[aP + j2 + 1];
|
|
|
+ x2r = a[aP + j1] + a[aP + j3];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3 + 1];
|
|
|
+ x3r = a[aP + j1] - a[aP + j3];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3 + 1];
|
|
|
+ a[aP + 0] = x0r + x2r;
|
|
|
+ a[aP + 1] = x0i + x2i;
|
|
|
+ a[aP + j1] = x0r - x2r;
|
|
|
+ a[aP + j1 + 1] = x0i - x2i;
|
|
|
+ a[aP + j2] = x1r - x3i;
|
|
|
+ a[aP + j2 + 1] = x1i + x3r;
|
|
|
+ a[aP + j3] = x1r + x3i;
|
|
|
+ a[aP + j3 + 1] = x1i - x3r;
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ k = 0;
|
|
|
+ for (j = 2; j < mh; j += 2) {
|
|
|
+ k += 4;
|
|
|
+ wk1r = w[wP + k];
|
|
|
+ wk1i = w[wP + k + 1];
|
|
|
+ wk3r = w[wP + k + 2];
|
|
|
+ wk3i = -w[wP + k + 3];
|
|
|
+ j1 = j + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + j] + a[aP + j2];
|
|
|
+ x0i = a[aP + j + 1] + a[aP + j2 + 1];
|
|
|
+ x1r = a[aP + j] - a[aP + j2];
|
|
|
+ x1i = a[aP + j + 1] - a[aP + j2 + 1];
|
|
|
+ x2r = a[aP + j1] + a[aP + j3];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3 + 1];
|
|
|
+ x3r = a[aP + j1] - a[aP + j3];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3 + 1];
|
|
|
+ a[aP + j] = x0r + x2r;
|
|
|
+ a[aP + j + 1] = x0i + x2i;
|
|
|
+ a[aP + j1] = x0r - x2r;
|
|
|
+ a[aP + j1 + 1] = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[aP + j2] = wk1r * x0r - wk1i * x0i;
|
|
|
+ a[aP + j2 + 1] = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[aP + j3] = wk3r * x0r + wk3i * x0i;
|
|
|
+ a[aP + j3 + 1] = wk3r * x0i - wk3i * x0r;
|
|
|
+ j0 = m - j;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + j0] + a[aP + j2];
|
|
|
+ x0i = a[aP + j0 + 1] + a[aP + j2 + 1];
|
|
|
+ x1r = a[aP + j0] - a[aP + j2];
|
|
|
+ x1i = a[aP + j0 + 1] - a[aP + j2 + 1];
|
|
|
+ x2r = a[aP + j1] + a[aP + j3];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3 + 1];
|
|
|
+ x3r = a[aP + j1] - a[aP + j3];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3 + 1];
|
|
|
+ a[aP + j0] = x0r + x2r;
|
|
|
+ a[aP + j0 + 1] = x0i + x2i;
|
|
|
+ a[aP + j1] = x0r - x2r;
|
|
|
+ a[aP + j1 + 1] = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[aP + j2] = wk1i * x0r - wk1r * x0i;
|
|
|
+ a[aP + j2 + 1] = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[aP + j3] = wk3i * x0r + wk3r * x0i;
|
|
|
+ a[aP + j3 + 1] = wk3i * x0i - wk3r * x0r;
|
|
|
+ }
|
|
|
+ j0 = mh;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + j0] + a[aP + j2];
|
|
|
+ x0i = a[aP + j0 + 1] + a[aP + j2 + 1];
|
|
|
+ x1r = a[aP + j0] - a[aP + j2];
|
|
|
+ x1i = a[aP + j0 + 1] - a[aP + j2 + 1];
|
|
|
+ x2r = a[aP + j1] + a[aP + j3];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3 + 1];
|
|
|
+ x3r = a[aP + j1] - a[aP + j3];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3 + 1];
|
|
|
+ a[aP + j0] = x0r + x2r;
|
|
|
+ a[aP + j0 + 1] = x0i + x2i;
|
|
|
+ a[aP + j1] = x0r - x2r;
|
|
|
+ a[aP + j1 + 1] = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ a[aP + j2] = wn4r * (x0r - x0i);
|
|
|
+ a[aP + j2 + 1] = wn4r * (x0i + x0r);
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ a[aP + j3] = -wn4r * (x0r + x0i);
|
|
|
+ a[aP + j3 + 1] = -wn4r * (x0i - x0r);
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private final void cftmdl2(int n, double[] a, int aP, double[] w, int wP) {
|
|
|
+ int j, j0, j1, j2, j3, k, kr, m, mh;
|
|
|
+ double wn4r, wk1r, wk1i, wk3r, wk3i, wd1r, wd1i, wd3r, wd3i;
|
|
|
+ double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y2r, y2i;
|
|
|
+
|
|
|
+ mh = n >> 3;
|
|
|
+ m = 2 * mh;
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ j1 = m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + 0] - a[aP + j2 + 1];
|
|
|
+ x0i = a[aP + 1] + a[aP + j2];
|
|
|
+ x1r = a[aP + 0] + a[aP + j2 + 1];
|
|
|
+ x1i = a[aP + 1] - a[aP + j2];
|
|
|
+ x2r = a[aP + j1] - a[aP + j3 + 1];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3];
|
|
|
+ x3r = a[aP + j1] + a[aP + j3 + 1];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3];
|
|
|
+ y0r = wn4r * (x2r - x2i);
|
|
|
+ y0i = wn4r * (x2i + x2r);
|
|
|
+ a[aP + 0] = x0r + y0r;
|
|
|
+ a[aP + 1] = x0i + y0i;
|
|
|
+ a[aP + j1] = x0r - y0r;
|
|
|
+ a[aP + j1 + 1] = x0i - y0i;
|
|
|
+ y0r = wn4r * (x3r - x3i);
|
|
|
+ y0i = wn4r * (x3i + x3r);
|
|
|
+ a[aP + j2] = x1r - y0i;
|
|
|
+ a[aP + j2 + 1] = x1i + y0r;
|
|
|
+ a[aP + j3] = x1r + y0i;
|
|
|
+ a[aP + j3 + 1] = x1i - y0r;
|
|
|
+ k = 0;
|
|
|
+ kr = 2 * m;
|
|
|
+ for (j = 2; j < mh; j += 2) {
|
|
|
+ k += 4;
|
|
|
+ wk1r = w[wP + k];
|
|
|
+ wk1i = w[wP + k + 1];
|
|
|
+ wk3r = w[wP + k + 2];
|
|
|
+ wk3i = -w[wP + k + 3];
|
|
|
+ kr -= 4;
|
|
|
+ wd1i = w[wP + kr];
|
|
|
+ wd1r = w[wP + kr + 1];
|
|
|
+ wd3i = w[wP + kr + 2];
|
|
|
+ wd3r = -w[wP + kr + 3];
|
|
|
+ j1 = j + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + j] - a[aP + j2 + 1];
|
|
|
+ x0i = a[aP + j + 1] + a[aP + j2];
|
|
|
+ x1r = a[aP + j] + a[aP + j2 + 1];
|
|
|
+ x1i = a[aP + j + 1] - a[aP + j2];
|
|
|
+ x2r = a[aP + j1] - a[aP + j3 + 1];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3];
|
|
|
+ x3r = a[aP + j1] + a[aP + j3 + 1];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3];
|
|
|
+ y0r = wk1r * x0r - wk1i * x0i;
|
|
|
+ y0i = wk1r * x0i + wk1i * x0r;
|
|
|
+ y2r = wd1r * x2r - wd1i * x2i;
|
|
|
+ y2i = wd1r * x2i + wd1i * x2r;
|
|
|
+ a[aP + j] = y0r + y2r;
|
|
|
+ a[aP + j + 1] = y0i + y2i;
|
|
|
+ a[aP + j1] = y0r - y2r;
|
|
|
+ a[aP + j1 + 1] = y0i - y2i;
|
|
|
+ y0r = wk3r * x1r + wk3i * x1i;
|
|
|
+ y0i = wk3r * x1i - wk3i * x1r;
|
|
|
+ y2r = wd3r * x3r + wd3i * x3i;
|
|
|
+ y2i = wd3r * x3i - wd3i * x3r;
|
|
|
+ a[aP + j2] = y0r + y2r;
|
|
|
+ a[aP + j2 + 1] = y0i + y2i;
|
|
|
+ a[aP + j3] = y0r - y2r;
|
|
|
+ a[aP + j3 + 1] = y0i - y2i;
|
|
|
+ j0 = m - j;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + j0] - a[aP + j2 + 1];
|
|
|
+ x0i = a[aP + j0 + 1] + a[aP + j2];
|
|
|
+ x1r = a[aP + j0] + a[aP + j2 + 1];
|
|
|
+ x1i = a[aP + j0 + 1] - a[aP + j2];
|
|
|
+ x2r = a[aP + j1] - a[aP + j3 + 1];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3];
|
|
|
+ x3r = a[aP + j1] + a[aP + j3 + 1];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3];
|
|
|
+ y0r = wd1i * x0r - wd1r * x0i;
|
|
|
+ y0i = wd1i * x0i + wd1r * x0r;
|
|
|
+ y2r = wk1i * x2r - wk1r * x2i;
|
|
|
+ y2i = wk1i * x2i + wk1r * x2r;
|
|
|
+ a[aP + j0] = y0r + y2r;
|
|
|
+ a[aP + j0 + 1] = y0i + y2i;
|
|
|
+ a[aP + j1] = y0r - y2r;
|
|
|
+ a[aP + j1 + 1] = y0i - y2i;
|
|
|
+ y0r = wd3i * x1r + wd3r * x1i;
|
|
|
+ y0i = wd3i * x1i - wd3r * x1r;
|
|
|
+ y2r = wk3i * x3r + wk3r * x3i;
|
|
|
+ y2i = wk3i * x3i - wk3r * x3r;
|
|
|
+ a[aP + j2] = y0r + y2r;
|
|
|
+ a[aP + j2 + 1] = y0i + y2i;
|
|
|
+ a[aP + j3] = y0r - y2r;
|
|
|
+ a[aP + j3 + 1] = y0i - y2i;
|
|
|
+ }
|
|
|
+ wk1r = w[wP + m];
|
|
|
+ wk1i = w[wP + m + 1];
|
|
|
+ j0 = mh;
|
|
|
+ j1 = j0 + m;
|
|
|
+ j2 = j1 + m;
|
|
|
+ j3 = j2 + m;
|
|
|
+ x0r = a[aP + j0] - a[aP + j2 + 1];
|
|
|
+ x0i = a[aP + j0 + 1] + a[aP + j2];
|
|
|
+ x1r = a[aP + j0] + a[aP + j2 + 1];
|
|
|
+ x1i = a[aP + j0 + 1] - a[aP + j2];
|
|
|
+ x2r = a[aP + j1] - a[aP + j3 + 1];
|
|
|
+ x2i = a[aP + j1 + 1] + a[aP + j3];
|
|
|
+ x3r = a[aP + j1] + a[aP + j3 + 1];
|
|
|
+ x3i = a[aP + j1 + 1] - a[aP + j3];
|
|
|
+ y0r = wk1r * x0r - wk1i * x0i;
|
|
|
+ y0i = wk1r * x0i + wk1i * x0r;
|
|
|
+ y2r = wk1i * x2r - wk1r * x2i;
|
|
|
+ y2i = wk1i * x2i + wk1r * x2r;
|
|
|
+ a[aP + j0] = y0r + y2r;
|
|
|
+ a[aP + j0 + 1] = y0i + y2i;
|
|
|
+ a[aP + j1] = y0r - y2r;
|
|
|
+ a[aP + j1 + 1] = y0i - y2i;
|
|
|
+ y0r = wk1i * x1r - wk1r * x1i;
|
|
|
+ y0i = wk1i * x1i + wk1r * x1r;
|
|
|
+ y2r = wk1r * x3r - wk1i * x3i;
|
|
|
+ y2i = wk1r * x3i + wk1i * x3r;
|
|
|
+ a[aP + j2] = y0r - y2r;
|
|
|
+ a[aP + j2 + 1] = y0i - y2i;
|
|
|
+ a[aP + j3] = y0r + y2r;
|
|
|
+ a[aP + j3 + 1] = y0i + y2i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftfx41(int n, double[] a, int aP, int nw, double[] w) {
|
|
|
+ if (n == 128) {
|
|
|
+ cftf161(a, aP, w, nw - 8);
|
|
|
+ cftf162(a, aP + 32, w, nw - 32);
|
|
|
+ cftf161(a, aP + 64, w, nw - 8);
|
|
|
+ cftf161(a, aP + 96, w, nw - 8);
|
|
|
+ } else {
|
|
|
+ cftf081(a, aP, w, nw - 16);
|
|
|
+ cftf082(a, aP + 16, w, nw - 16);
|
|
|
+ cftf081(a, aP + 32, w, nw - 16);
|
|
|
+ cftf081(a, aP + 48, w, nw - 16);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftfx42(int n, double[] a, int aP, int nw, double[] w) {
|
|
|
+ if (n == 128) {
|
|
|
+ cftf161(a, aP, w, nw - 8);
|
|
|
+ cftf162(a, aP + 32, w, nw - 32);
|
|
|
+ cftf161(a, aP + 64, w, nw - 8);
|
|
|
+ cftf162(a, aP + 96, w, nw - 32);
|
|
|
+ } else {
|
|
|
+ cftf081(a, aP, w, nw - 16);
|
|
|
+ cftf082(a, aP + 16, w, nw - 16);
|
|
|
+ cftf081(a, aP + 32, w, nw - 16);
|
|
|
+ cftf082(a, aP + 48, w, nw - 16);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftf161(double[] a, int aP, double[] w, int wP) {
|
|
|
+ double wn4r, wk1r, wk1i, x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i, y8r, y8i, y9r, y9i, y10r, y10i, y11r, y11i, y12r, y12i, y13r, y13i, y14r, y14i, y15r, y15i;
|
|
|
+
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ wk1i = wn4r * w[wP + 2];
|
|
|
+ wk1r = wk1i + w[wP + 2];
|
|
|
+ x0r = a[aP + 0] + a[aP + 16];
|
|
|
+ x0i = a[aP + 1] + a[aP + 17];
|
|
|
+ x1r = a[aP + 0] - a[aP + 16];
|
|
|
+ x1i = a[aP + 1] - a[aP + 17];
|
|
|
+ x2r = a[aP + 8] + a[aP + 24];
|
|
|
+ x2i = a[aP + 9] + a[aP + 25];
|
|
|
+ x3r = a[aP + 8] - a[aP + 24];
|
|
|
+ x3i = a[aP + 9] - a[aP + 25];
|
|
|
+ y0r = x0r + x2r;
|
|
|
+ y0i = x0i + x2i;
|
|
|
+ y4r = x0r - x2r;
|
|
|
+ y4i = x0i - x2i;
|
|
|
+ y8r = x1r - x3i;
|
|
|
+ y8i = x1i + x3r;
|
|
|
+ y12r = x1r + x3i;
|
|
|
+ y12i = x1i - x3r;
|
|
|
+ x0r = a[aP + 2] + a[aP + 18];
|
|
|
+ x0i = a[aP + 3] + a[aP + 19];
|
|
|
+ x1r = a[aP + 2] - a[aP + 18];
|
|
|
+ x1i = a[aP + 3] - a[aP + 19];
|
|
|
+ x2r = a[aP + 10] + a[aP + 26];
|
|
|
+ x2i = a[aP + 11] + a[aP + 27];
|
|
|
+ x3r = a[aP + 10] - a[aP + 26];
|
|
|
+ x3i = a[aP + 11] - a[aP + 27];
|
|
|
+ y1r = x0r + x2r;
|
|
|
+ y1i = x0i + x2i;
|
|
|
+ y5r = x0r - x2r;
|
|
|
+ y5i = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ y9r = wk1r * x0r - wk1i * x0i;
|
|
|
+ y9i = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ y13r = wk1i * x0r - wk1r * x0i;
|
|
|
+ y13i = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = a[aP + 4] + a[aP + 20];
|
|
|
+ x0i = a[aP + 5] + a[aP + 21];
|
|
|
+ x1r = a[aP + 4] - a[aP + 20];
|
|
|
+ x1i = a[aP + 5] - a[aP + 21];
|
|
|
+ x2r = a[aP + 12] + a[aP + 28];
|
|
|
+ x2i = a[aP + 13] + a[aP + 29];
|
|
|
+ x3r = a[aP + 12] - a[aP + 28];
|
|
|
+ x3i = a[aP + 13] - a[aP + 29];
|
|
|
+ y2r = x0r + x2r;
|
|
|
+ y2i = x0i + x2i;
|
|
|
+ y6r = x0r - x2r;
|
|
|
+ y6i = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ y10r = wn4r * (x0r - x0i);
|
|
|
+ y10i = wn4r * (x0i + x0r);
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ y14r = wn4r * (x0r + x0i);
|
|
|
+ y14i = wn4r * (x0i - x0r);
|
|
|
+ x0r = a[aP + 6] + a[aP + 22];
|
|
|
+ x0i = a[aP + 7] + a[aP + 23];
|
|
|
+ x1r = a[aP + 6] - a[aP + 22];
|
|
|
+ x1i = a[aP + 7] - a[aP + 23];
|
|
|
+ x2r = a[aP + 14] + a[aP + 30];
|
|
|
+ x2i = a[aP + 15] + a[aP + 31];
|
|
|
+ x3r = a[aP + 14] - a[aP + 30];
|
|
|
+ x3i = a[aP + 15] - a[aP + 31];
|
|
|
+ y3r = x0r + x2r;
|
|
|
+ y3i = x0i + x2i;
|
|
|
+ y7r = x0r - x2r;
|
|
|
+ y7i = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ y11r = wk1i * x0r - wk1r * x0i;
|
|
|
+ y11i = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = x1r + x3i;
|
|
|
+ x0i = x1i - x3r;
|
|
|
+ y15r = wk1r * x0r - wk1i * x0i;
|
|
|
+ y15i = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = y12r - y14r;
|
|
|
+ x0i = y12i - y14i;
|
|
|
+ x1r = y12r + y14r;
|
|
|
+ x1i = y12i + y14i;
|
|
|
+ x2r = y13r - y15r;
|
|
|
+ x2i = y13i - y15i;
|
|
|
+ x3r = y13r + y15r;
|
|
|
+ x3i = y13i + y15i;
|
|
|
+ a[aP + 24] = x0r + x2r;
|
|
|
+ a[aP + 25] = x0i + x2i;
|
|
|
+ a[aP + 26] = x0r - x2r;
|
|
|
+ a[aP + 27] = x0i - x2i;
|
|
|
+ a[aP + 28] = x1r - x3i;
|
|
|
+ a[aP + 29] = x1i + x3r;
|
|
|
+ a[aP + 30] = x1r + x3i;
|
|
|
+ a[aP + 31] = x1i - x3r;
|
|
|
+ x0r = y8r + y10r;
|
|
|
+ x0i = y8i + y10i;
|
|
|
+ x1r = y8r - y10r;
|
|
|
+ x1i = y8i - y10i;
|
|
|
+ x2r = y9r + y11r;
|
|
|
+ x2i = y9i + y11i;
|
|
|
+ x3r = y9r - y11r;
|
|
|
+ x3i = y9i - y11i;
|
|
|
+ a[aP + 16] = x0r + x2r;
|
|
|
+ a[aP + 17] = x0i + x2i;
|
|
|
+ a[aP + 18] = x0r - x2r;
|
|
|
+ a[aP + 19] = x0i - x2i;
|
|
|
+ a[aP + 20] = x1r - x3i;
|
|
|
+ a[aP + 21] = x1i + x3r;
|
|
|
+ a[aP + 22] = x1r + x3i;
|
|
|
+ a[aP + 23] = x1i - x3r;
|
|
|
+ x0r = y5r - y7i;
|
|
|
+ x0i = y5i + y7r;
|
|
|
+ x2r = wn4r * (x0r - x0i);
|
|
|
+ x2i = wn4r * (x0i + x0r);
|
|
|
+ x0r = y5r + y7i;
|
|
|
+ x0i = y5i - y7r;
|
|
|
+ x3r = wn4r * (x0r - x0i);
|
|
|
+ x3i = wn4r * (x0i + x0r);
|
|
|
+ x0r = y4r - y6i;
|
|
|
+ x0i = y4i + y6r;
|
|
|
+ x1r = y4r + y6i;
|
|
|
+ x1i = y4i - y6r;
|
|
|
+ a[aP + 8] = x0r + x2r;
|
|
|
+ a[aP + 9] = x0i + x2i;
|
|
|
+ a[aP + 10] = x0r - x2r;
|
|
|
+ a[aP + 11] = x0i - x2i;
|
|
|
+ a[aP + 12] = x1r - x3i;
|
|
|
+ a[aP + 13] = x1i + x3r;
|
|
|
+ a[aP + 14] = x1r + x3i;
|
|
|
+ a[aP + 15] = x1i - x3r;
|
|
|
+ x0r = y0r + y2r;
|
|
|
+ x0i = y0i + y2i;
|
|
|
+ x1r = y0r - y2r;
|
|
|
+ x1i = y0i - y2i;
|
|
|
+ x2r = y1r + y3r;
|
|
|
+ x2i = y1i + y3i;
|
|
|
+ x3r = y1r - y3r;
|
|
|
+ x3i = y1i - y3i;
|
|
|
+ a[aP + 0] = x0r + x2r;
|
|
|
+ a[aP + 1] = x0i + x2i;
|
|
|
+ a[aP + 2] = x0r - x2r;
|
|
|
+ a[aP + 3] = x0i - x2i;
|
|
|
+ a[aP + 4] = x1r - x3i;
|
|
|
+ a[aP + 5] = x1i + x3r;
|
|
|
+ a[aP + 6] = x1r + x3i;
|
|
|
+ a[aP + 7] = x1i - x3r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftf162(double[] a, int aP, double[] w, int wP) {
|
|
|
+ double wn4r, wk1r, wk1i, wk2r, wk2i, wk3r, wk3i, x0r, x0i, x1r, x1i, x2r, x2i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i, y8r, y8i, y9r, y9i, y10r, y10i, y11r, y11i, y12r, y12i, y13r, y13i, y14r, y14i, y15r, y15i;
|
|
|
+
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ wk1r = w[wP + 4];
|
|
|
+ wk1i = w[wP + 5];
|
|
|
+ wk3r = w[wP + 6];
|
|
|
+ wk3i = w[wP + 7];
|
|
|
+ wk2r = w[wP + 8];
|
|
|
+ wk2i = w[wP + 9];
|
|
|
+ x1r = a[aP + 0] - a[aP + 17];
|
|
|
+ x1i = a[aP + 1] + a[aP + 16];
|
|
|
+ x0r = a[aP + 8] - a[aP + 25];
|
|
|
+ x0i = a[aP + 9] + a[aP + 24];
|
|
|
+ x2r = wn4r * (x0r - x0i);
|
|
|
+ x2i = wn4r * (x0i + x0r);
|
|
|
+ y0r = x1r + x2r;
|
|
|
+ y0i = x1i + x2i;
|
|
|
+ y4r = x1r - x2r;
|
|
|
+ y4i = x1i - x2i;
|
|
|
+ x1r = a[aP + 0] + a[aP + 17];
|
|
|
+ x1i = a[aP + 1] - a[aP + 16];
|
|
|
+ x0r = a[aP + 8] + a[aP + 25];
|
|
|
+ x0i = a[aP + 9] - a[aP + 24];
|
|
|
+ x2r = wn4r * (x0r - x0i);
|
|
|
+ x2i = wn4r * (x0i + x0r);
|
|
|
+ y8r = x1r - x2i;
|
|
|
+ y8i = x1i + x2r;
|
|
|
+ y12r = x1r + x2i;
|
|
|
+ y12i = x1i - x2r;
|
|
|
+ x0r = a[aP + 2] - a[aP + 19];
|
|
|
+ x0i = a[aP + 3] + a[aP + 18];
|
|
|
+ x1r = wk1r * x0r - wk1i * x0i;
|
|
|
+ x1i = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = a[aP + 10] - a[aP + 27];
|
|
|
+ x0i = a[aP + 11] + a[aP + 26];
|
|
|
+ x2r = wk3i * x0r - wk3r * x0i;
|
|
|
+ x2i = wk3i * x0i + wk3r * x0r;
|
|
|
+ y1r = x1r + x2r;
|
|
|
+ y1i = x1i + x2i;
|
|
|
+ y5r = x1r - x2r;
|
|
|
+ y5i = x1i - x2i;
|
|
|
+ x0r = a[aP + 2] + a[aP + 19];
|
|
|
+ x0i = a[aP + 3] - a[aP + 18];
|
|
|
+ x1r = wk3r * x0r - wk3i * x0i;
|
|
|
+ x1i = wk3r * x0i + wk3i * x0r;
|
|
|
+ x0r = a[aP + 10] + a[aP + 27];
|
|
|
+ x0i = a[aP + 11] - a[aP + 26];
|
|
|
+ x2r = wk1r * x0r + wk1i * x0i;
|
|
|
+ x2i = wk1r * x0i - wk1i * x0r;
|
|
|
+ y9r = x1r - x2r;
|
|
|
+ y9i = x1i - x2i;
|
|
|
+ y13r = x1r + x2r;
|
|
|
+ y13i = x1i + x2i;
|
|
|
+ x0r = a[aP + 4] - a[aP + 21];
|
|
|
+ x0i = a[aP + 5] + a[aP + 20];
|
|
|
+ x1r = wk2r * x0r - wk2i * x0i;
|
|
|
+ x1i = wk2r * x0i + wk2i * x0r;
|
|
|
+ x0r = a[aP + 12] - a[aP + 29];
|
|
|
+ x0i = a[aP + 13] + a[aP + 28];
|
|
|
+ x2r = wk2i * x0r - wk2r * x0i;
|
|
|
+ x2i = wk2i * x0i + wk2r * x0r;
|
|
|
+ y2r = x1r + x2r;
|
|
|
+ y2i = x1i + x2i;
|
|
|
+ y6r = x1r - x2r;
|
|
|
+ y6i = x1i - x2i;
|
|
|
+ x0r = a[aP + 4] + a[aP + 21];
|
|
|
+ x0i = a[aP + 5] - a[aP + 20];
|
|
|
+ x1r = wk2i * x0r - wk2r * x0i;
|
|
|
+ x1i = wk2i * x0i + wk2r * x0r;
|
|
|
+ x0r = a[aP + 12] + a[aP + 29];
|
|
|
+ x0i = a[aP + 13] - a[aP + 28];
|
|
|
+ x2r = wk2r * x0r - wk2i * x0i;
|
|
|
+ x2i = wk2r * x0i + wk2i * x0r;
|
|
|
+ y10r = x1r - x2r;
|
|
|
+ y10i = x1i - x2i;
|
|
|
+ y14r = x1r + x2r;
|
|
|
+ y14i = x1i + x2i;
|
|
|
+ x0r = a[aP + 6] - a[aP + 23];
|
|
|
+ x0i = a[aP + 7] + a[aP + 22];
|
|
|
+ x1r = wk3r * x0r - wk3i * x0i;
|
|
|
+ x1i = wk3r * x0i + wk3i * x0r;
|
|
|
+ x0r = a[aP + 14] - a[aP + 31];
|
|
|
+ x0i = a[aP + 15] + a[aP + 30];
|
|
|
+ x2r = wk1i * x0r - wk1r * x0i;
|
|
|
+ x2i = wk1i * x0i + wk1r * x0r;
|
|
|
+ y3r = x1r + x2r;
|
|
|
+ y3i = x1i + x2i;
|
|
|
+ y7r = x1r - x2r;
|
|
|
+ y7i = x1i - x2i;
|
|
|
+ x0r = a[aP + 6] + a[aP + 23];
|
|
|
+ x0i = a[aP + 7] - a[aP + 22];
|
|
|
+ x1r = wk1i * x0r + wk1r * x0i;
|
|
|
+ x1i = wk1i * x0i - wk1r * x0r;
|
|
|
+ x0r = a[aP + 14] + a[aP + 31];
|
|
|
+ x0i = a[aP + 15] - a[aP + 30];
|
|
|
+ x2r = wk3i * x0r - wk3r * x0i;
|
|
|
+ x2i = wk3i * x0i + wk3r * x0r;
|
|
|
+ y11r = x1r + x2r;
|
|
|
+ y11i = x1i + x2i;
|
|
|
+ y15r = x1r - x2r;
|
|
|
+ y15i = x1i - x2i;
|
|
|
+ x1r = y0r + y2r;
|
|
|
+ x1i = y0i + y2i;
|
|
|
+ x2r = y1r + y3r;
|
|
|
+ x2i = y1i + y3i;
|
|
|
+ a[aP + 0] = x1r + x2r;
|
|
|
+ a[aP + 1] = x1i + x2i;
|
|
|
+ a[aP + 2] = x1r - x2r;
|
|
|
+ a[aP + 3] = x1i - x2i;
|
|
|
+ x1r = y0r - y2r;
|
|
|
+ x1i = y0i - y2i;
|
|
|
+ x2r = y1r - y3r;
|
|
|
+ x2i = y1i - y3i;
|
|
|
+ a[aP + 4] = x1r - x2i;
|
|
|
+ a[aP + 5] = x1i + x2r;
|
|
|
+ a[aP + 6] = x1r + x2i;
|
|
|
+ a[aP + 7] = x1i - x2r;
|
|
|
+ x1r = y4r - y6i;
|
|
|
+ x1i = y4i + y6r;
|
|
|
+ x0r = y5r - y7i;
|
|
|
+ x0i = y5i + y7r;
|
|
|
+ x2r = wn4r * (x0r - x0i);
|
|
|
+ x2i = wn4r * (x0i + x0r);
|
|
|
+ a[aP + 8] = x1r + x2r;
|
|
|
+ a[aP + 9] = x1i + x2i;
|
|
|
+ a[aP + 10] = x1r - x2r;
|
|
|
+ a[aP + 11] = x1i - x2i;
|
|
|
+ x1r = y4r + y6i;
|
|
|
+ x1i = y4i - y6r;
|
|
|
+ x0r = y5r + y7i;
|
|
|
+ x0i = y5i - y7r;
|
|
|
+ x2r = wn4r * (x0r - x0i);
|
|
|
+ x2i = wn4r * (x0i + x0r);
|
|
|
+ a[aP + 12] = x1r - x2i;
|
|
|
+ a[aP + 13] = x1i + x2r;
|
|
|
+ a[aP + 14] = x1r + x2i;
|
|
|
+ a[aP + 15] = x1i - x2r;
|
|
|
+ x1r = y8r + y10r;
|
|
|
+ x1i = y8i + y10i;
|
|
|
+ x2r = y9r - y11r;
|
|
|
+ x2i = y9i - y11i;
|
|
|
+ a[aP + 16] = x1r + x2r;
|
|
|
+ a[aP + 17] = x1i + x2i;
|
|
|
+ a[aP + 18] = x1r - x2r;
|
|
|
+ a[aP + 19] = x1i - x2i;
|
|
|
+ x1r = y8r - y10r;
|
|
|
+ x1i = y8i - y10i;
|
|
|
+ x2r = y9r + y11r;
|
|
|
+ x2i = y9i + y11i;
|
|
|
+ a[aP + 20] = x1r - x2i;
|
|
|
+ a[aP + 21] = x1i + x2r;
|
|
|
+ a[aP + 22] = x1r + x2i;
|
|
|
+ a[aP + 23] = x1i - x2r;
|
|
|
+ x1r = y12r - y14i;
|
|
|
+ x1i = y12i + y14r;
|
|
|
+ x0r = y13r + y15i;
|
|
|
+ x0i = y13i - y15r;
|
|
|
+ x2r = wn4r * (x0r - x0i);
|
|
|
+ x2i = wn4r * (x0i + x0r);
|
|
|
+ a[aP + 24] = x1r + x2r;
|
|
|
+ a[aP + 25] = x1i + x2i;
|
|
|
+ a[aP + 26] = x1r - x2r;
|
|
|
+ a[aP + 27] = x1i - x2i;
|
|
|
+ x1r = y12r + y14i;
|
|
|
+ x1i = y12i - y14r;
|
|
|
+ x0r = y13r - y15i;
|
|
|
+ x0i = y13i + y15r;
|
|
|
+ x2r = wn4r * (x0r - x0i);
|
|
|
+ x2i = wn4r * (x0i + x0r);
|
|
|
+ a[aP + 28] = x1r - x2i;
|
|
|
+ a[aP + 29] = x1i + x2r;
|
|
|
+ a[aP + 30] = x1r + x2i;
|
|
|
+ a[aP + 31] = x1i - x2r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftf081(double[] a, int aP, double[] w, int wP) {
|
|
|
+ double wn4r, x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i;
|
|
|
+
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ x0r = a[aP + 0] + a[aP + 8];
|
|
|
+ x0i = a[aP + 1] + a[aP + 9];
|
|
|
+ x1r = a[aP + 0] - a[aP + 8];
|
|
|
+ x1i = a[aP + 1] - a[aP + 9];
|
|
|
+ x2r = a[aP + 4] + a[aP + 12];
|
|
|
+ x2i = a[aP + 5] + a[aP + 13];
|
|
|
+ x3r = a[aP + 4] - a[aP + 12];
|
|
|
+ x3i = a[aP + 5] - a[aP + 13];
|
|
|
+ y0r = x0r + x2r;
|
|
|
+ y0i = x0i + x2i;
|
|
|
+ y2r = x0r - x2r;
|
|
|
+ y2i = x0i - x2i;
|
|
|
+ y1r = x1r - x3i;
|
|
|
+ y1i = x1i + x3r;
|
|
|
+ y3r = x1r + x3i;
|
|
|
+ y3i = x1i - x3r;
|
|
|
+ x0r = a[aP + 2] + a[aP + 10];
|
|
|
+ x0i = a[aP + 3] + a[aP + 11];
|
|
|
+ x1r = a[aP + 2] - a[aP + 10];
|
|
|
+ x1i = a[aP + 3] - a[aP + 11];
|
|
|
+ x2r = a[aP + 6] + a[aP + 14];
|
|
|
+ x2i = a[aP + 7] + a[aP + 15];
|
|
|
+ x3r = a[aP + 6] - a[aP + 14];
|
|
|
+ x3i = a[aP + 7] - a[aP + 15];
|
|
|
+ y4r = x0r + x2r;
|
|
|
+ y4i = x0i + x2i;
|
|
|
+ y6r = x0r - x2r;
|
|
|
+ y6i = x0i - x2i;
|
|
|
+ x0r = x1r - x3i;
|
|
|
+ x0i = x1i + x3r;
|
|
|
+ x2r = x1r + x3i;
|
|
|
+ x2i = x1i - x3r;
|
|
|
+ y5r = wn4r * (x0r - x0i);
|
|
|
+ y5i = wn4r * (x0r + x0i);
|
|
|
+ y7r = wn4r * (x2r - x2i);
|
|
|
+ y7i = wn4r * (x2r + x2i);
|
|
|
+ a[aP + 8] = y1r + y5r;
|
|
|
+ a[aP + 9] = y1i + y5i;
|
|
|
+ a[aP + 10] = y1r - y5r;
|
|
|
+ a[aP + 11] = y1i - y5i;
|
|
|
+ a[aP + 12] = y3r - y7i;
|
|
|
+ a[aP + 13] = y3i + y7r;
|
|
|
+ a[aP + 14] = y3r + y7i;
|
|
|
+ a[aP + 15] = y3i - y7r;
|
|
|
+ a[aP + 0] = y0r + y4r;
|
|
|
+ a[aP + 1] = y0i + y4i;
|
|
|
+ a[aP + 2] = y0r - y4r;
|
|
|
+ a[aP + 3] = y0i - y4i;
|
|
|
+ a[aP + 4] = y2r - y6i;
|
|
|
+ a[aP + 5] = y2i + y6r;
|
|
|
+ a[aP + 6] = y2r + y6i;
|
|
|
+ a[aP + 7] = y2i - y6r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /** */
|
|
|
+ private void cftf082(double[] a, int aP, double[] w, int wP) {
|
|
|
+ double wn4r, wk1r, wk1i, x0r, x0i, x1r, x1i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i;
|
|
|
+
|
|
|
+ wn4r = w[wP + 1];
|
|
|
+ wk1r = w[wP + 4];
|
|
|
+ wk1i = w[wP + 5];
|
|
|
+ y0r = a[aP + 0] - a[aP + 9];
|
|
|
+ y0i = a[aP + 1] + a[aP + 8];
|
|
|
+ y1r = a[aP + 0] + a[aP + 9];
|
|
|
+ y1i = a[aP + 1] - a[aP + 8];
|
|
|
+ x0r = a[aP + 4] - a[aP + 13];
|
|
|
+ x0i = a[aP + 5] + a[aP + 12];
|
|
|
+ y2r = wn4r * (x0r - x0i);
|
|
|
+ y2i = wn4r * (x0i + x0r);
|
|
|
+ x0r = a[aP + 4] + a[aP + 13];
|
|
|
+ x0i = a[aP + 5] - a[aP + 12];
|
|
|
+ y3r = wn4r * (x0r - x0i);
|
|
|
+ y3i = wn4r * (x0i + x0r);
|
|
|
+ x0r = a[aP + 2] - a[aP + 11];
|
|
|
+ x0i = a[aP + 3] + a[aP + 10];
|
|
|
+ y4r = wk1r * x0r - wk1i * x0i;
|
|
|
+ y4i = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = a[aP + 2] + a[aP + 11];
|
|
|
+ x0i = a[aP + 3] - a[aP + 10];
|
|
|
+ y5r = wk1i * x0r - wk1r * x0i;
|
|
|
+ y5i = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = a[aP + 6] - a[aP + 15];
|
|
|
+ x0i = a[aP + 7] + a[aP + 14];
|
|
|
+ y6r = wk1i * x0r - wk1r * x0i;
|
|
|
+ y6i = wk1i * x0i + wk1r * x0r;
|
|
|
+ x0r = a[aP + 6] + a[aP + 15];
|
|
|
+ x0i = a[aP + 7] - a[aP + 14];
|
|
|
+ y7r = wk1r * x0r - wk1i * x0i;
|
|
|
+ y7i = wk1r * x0i + wk1i * x0r;
|
|
|
+ x0r = y0r + y2r;
|
|
|
+ x0i = y0i + y2i;
|
|
|
+ x1r = y4r + y6r;
|
|
|
+ x1i = y4i + y6i;
|
|
|
+ a[aP + 0] = x0r + x1r;
|
|
|
+ a[aP + 1] = x0i + x1i;
|
|
|
+ a[aP + 2] = x0r - x1r;
|
|
|
+ a[aP + 3] = x0i - x1i;
|
|
|
+ x0r = y0r - y2r;
|
|
|
+ x0i = y0i - y2i;
|
|
|
+ x1r = y4r - y6r;
|
|
|
+ x1i = y4i - y6i;
|
|
|
+ a[aP + 4] = x0r - x1i;
|
|
|
+ a[aP + 5] = x0i + x1r;
|
|
|
+ a[aP + 6] = x0r + x1i;
|
|
|
+ a[aP + 7] = x0i - x1r;
|
|
|
+ x0r = y1r - y3i;
|
|
|
+ x0i = y1i + y3r;
|
|
|
+ x1r = y5r - y7r;
|
|
|
+ x1i = y5i - y7i;
|
|
|
+ a[aP + 8] = x0r + x1r;
|
|
|
+ a[aP + 9] = x0i + x1i;
|
|
|
+ a[aP + 10] = x0r - x1r;
|
|
|
+ a[aP + 11] = x0i - x1i;
|
|
|
+ x0r = y1r + y3i;
|
|
|
+ x0i = y1i - y3r;
|
|
|
+ x1r = y5r + y7r;
|
|
|
+ x1i = y5i + y7i;
|
|
|
+ a[aP + 12] = x0r - x1i;
|
|
|
+ a[aP + 13] = x0i + x1r;
|
|
|
+ a[aP + 14] = x0r + x1i;
|
|
|
+ a[aP + 15] = x0i - x1r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * when n = 8.
|
|
|
+ * @see #cftfsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void cftf040(double[] a) {
|
|
|
+ double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
|
|
|
+
|
|
|
+ x0r = a[0] + a[4];
|
|
|
+ x0i = a[1] + a[5];
|
|
|
+ x1r = a[0] - a[4];
|
|
|
+ x1i = a[1] - a[5];
|
|
|
+ x2r = a[2] + a[6];
|
|
|
+ x2i = a[3] + a[7];
|
|
|
+ x3r = a[2] - a[6];
|
|
|
+ x3i = a[3] - a[7];
|
|
|
+ a[0] = x0r + x2r;
|
|
|
+ a[1] = x0i + x2i;
|
|
|
+ a[4] = x0r - x2r;
|
|
|
+ a[5] = x0i - x2i;
|
|
|
+ a[2] = x1r - x3i;
|
|
|
+ a[3] = x1i + x3r;
|
|
|
+ a[6] = x1r + x3i;
|
|
|
+ a[7] = x1i - x3r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * when n = 8.
|
|
|
+ * @see #cftbsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void cftb040(double[] a) {
|
|
|
+ double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
|
|
|
+
|
|
|
+ x0r = a[0] + a[4];
|
|
|
+ x0i = a[1] + a[5];
|
|
|
+ x1r = a[0] - a[4];
|
|
|
+ x1i = a[1] - a[5];
|
|
|
+ x2r = a[2] + a[6];
|
|
|
+ x2i = a[3] + a[7];
|
|
|
+ x3r = a[2] - a[6];
|
|
|
+ x3i = a[3] - a[7];
|
|
|
+ a[0] = x0r + x2r;
|
|
|
+ a[1] = x0i + x2i;
|
|
|
+ a[4] = x0r - x2r;
|
|
|
+ a[5] = x0i - x2i;
|
|
|
+ a[2] = x1r + x3i;
|
|
|
+ a[3] = x1i - x3r;
|
|
|
+ a[6] = x1r - x3i;
|
|
|
+ a[7] = x1i + x3r;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 3rd
|
|
|
+ * when n = 4.
|
|
|
+ * @see #cftbsub(int, double[], int[], int, int, double[])
|
|
|
+ * @see #cftfsub(int, double[], int[], int, int, double[])
|
|
|
+ */
|
|
|
+ private void cftx020(double[] a) {
|
|
|
+ double x0r, x0i;
|
|
|
+
|
|
|
+ x0r = a[0] - a[2];
|
|
|
+ x0i = a[1] - a[3];
|
|
|
+ a[0] += a[2];
|
|
|
+ a[1] += a[3];
|
|
|
+ a[2] = x0r;
|
|
|
+ a[3] = x0i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 2nd
|
|
|
+ * @see #rdft(int, int, double[], int[], double[])
|
|
|
+ * @see #ddct(int, int, double[], int[], double[])
|
|
|
+ * @see #ddst(int, int, double[], int[], double[])
|
|
|
+ * @see #dfst(int, double[], double[], int[], double[])
|
|
|
+ * @see #dfct(int, double[], double[], int[], double[])
|
|
|
+ */
|
|
|
+ private void rftfsub(int n, double[] a, int nc, double[] c, int cP) {
|
|
|
+ int j, k, kk, ks, m;
|
|
|
+ double wkr, wki, xr, xi, yr, yi;
|
|
|
+
|
|
|
+ m = n >> 1;
|
|
|
+ ks = 2 * nc / m;
|
|
|
+ kk = 0;
|
|
|
+ for (j = 2; j < m; j += 2) {
|
|
|
+ k = n - j;
|
|
|
+ kk += ks;
|
|
|
+ wkr = 0.5 - c[cP + nc - kk];
|
|
|
+ wki = c[cP + kk];
|
|
|
+ xr = a[j] - a[k];
|
|
|
+ xi = a[j + 1] + a[k + 1];
|
|
|
+ yr = wkr * xr - wki * xi;
|
|
|
+ yi = wkr * xi + wki * xr;
|
|
|
+ a[j] -= yr;
|
|
|
+ a[j + 1] -= yi;
|
|
|
+ a[k] += yr;
|
|
|
+ a[k + 1] -= yi;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 2nd
|
|
|
+ * @see #rdft(int, int, double[], int[], double[])
|
|
|
+ * @see #ddct(int, int, double[], int[], double[])
|
|
|
+ * @see #ddst(int, int, double[], int[], double[])
|
|
|
+ */
|
|
|
+ private void rftbsub(int n, double[] a, int nc, double[] c, int cP) {
|
|
|
+ int j, k, kk, ks, m;
|
|
|
+ double wkr, wki, xr, xi, yr, yi;
|
|
|
+
|
|
|
+ m = n >> 1;
|
|
|
+ ks = 2 * nc / m;
|
|
|
+ kk = 0;
|
|
|
+ for (j = 2; j < m; j += 2) {
|
|
|
+ k = n - j;
|
|
|
+ kk += ks;
|
|
|
+ wkr = 0.5 - c[cP + nc - kk];
|
|
|
+ wki = c[cP + kk];
|
|
|
+ xr = a[j] - a[k];
|
|
|
+ xi = a[j + 1] + a[k + 1];
|
|
|
+ yr = wkr * xr + wki * xi;
|
|
|
+ yi = wkr * xi - wki * xr;
|
|
|
+ a[j] -= yr;
|
|
|
+ a[j + 1] -= yi;
|
|
|
+ a[k] += yr;
|
|
|
+ a[k + 1] -= yi;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 2nd
|
|
|
+ * @see #ddct(int, int, double[], int[], double[])
|
|
|
+ * @see #dfct(int, double[], double[], int[], double[])
|
|
|
+ */
|
|
|
+ private void dctsub(int n, double[] a, int nc, double[] c, int cP) {
|
|
|
+ int j, k, kk, ks, m;
|
|
|
+ double wkr, wki, xr;
|
|
|
+
|
|
|
+ m = n >> 1;
|
|
|
+ ks = nc / n;
|
|
|
+ kk = 0;
|
|
|
+ for (j = 1; j < m; j++) {
|
|
|
+ k = n - j;
|
|
|
+ kk += ks;
|
|
|
+ wkr = c[cP + kk] - c[cP + nc - kk];
|
|
|
+ wki = c[cP + kk] + c[cP + nc - kk];
|
|
|
+ xr = wki * a[j] - wkr * a[k];
|
|
|
+ a[j] = wkr * a[j] + wki * a[k];
|
|
|
+ a[k] = xr;
|
|
|
+ }
|
|
|
+ a[m] *= c[cP + 0];
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 2nd
|
|
|
+ * @see #ddst(int, int, double[], int[], double[])
|
|
|
+ * @see #dfst(int, double[], double[], int[], double[])
|
|
|
+ */
|
|
|
+ private void dstsub(int n, double[] a, int nc, double[] c, int cP) {
|
|
|
+ int j, k, kk, ks, m;
|
|
|
+ double wkr, wki, xr;
|
|
|
+
|
|
|
+ m = n >> 1;
|
|
|
+ ks = nc / n;
|
|
|
+ kk = 0;
|
|
|
+ for (j = 1; j < m; j++) {
|
|
|
+ k = n - j;
|
|
|
+ kk += ks;
|
|
|
+ wkr = c[cP + kk] - c[cP + nc - kk];
|
|
|
+ wki = c[cP + kk] + c[cP + nc - kk];
|
|
|
+ xr = wki * a[k] - wkr * a[j];
|
|
|
+ a[k] = wkr * a[k] + wki * a[j];
|
|
|
+ a[j] = xr;
|
|
|
+ }
|
|
|
+ a[m] *= c[cP + 0];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* */
|