// Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of // this source code is governed by a BSD-style license that can be found in // the LICENSE file. // // Package excelize providing a set of functions that allow you to write to // and read from XLSX / XLSM / XLTM files. Supports reading and writing // spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports // complex components by high compatibility, and provided streaming API for // generating or reading data from a worksheet with huge amounts of data. This // library needs Go version 1.15 or later. package excelize import ( "bytes" "container/list" "errors" "fmt" "math" "math/cmplx" "math/rand" "net/url" "reflect" "regexp" "sort" "strconv" "strings" "time" "unicode" "unsafe" "github.com/xuri/efp" "golang.org/x/text/language" "golang.org/x/text/message" ) // Excel formula errors const ( formulaErrorDIV = "#DIV/0!" formulaErrorNAME = "#NAME?" formulaErrorNA = "#N/A" formulaErrorNUM = "#NUM!" formulaErrorVALUE = "#VALUE!" formulaErrorREF = "#REF!" formulaErrorNULL = "#NULL" formulaErrorSPILL = "#SPILL!" formulaErrorCALC = "#CALC!" formulaErrorGETTINGDATA = "#GETTING_DATA" ) // Numeric precision correct numeric values as legacy Excel application // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the // top figure the fraction 1/9000 in Excel is displayed. Although this number // has a decimal representation that is an infinite string of ones, Excel // displays only the leading 15 figures. In the second line, the number one // is added to the fraction, and again Excel displays only 15 figures. const numericPrecision = 1000000000000000 const maxFinancialIterations = 128 const financialPercision = 1.0e-08 // cellRef defines the structure of a cell reference. type cellRef struct { Col int Row int Sheet string } // cellRef defines the structure of a cell range. type cellRange struct { From cellRef To cellRef } // formula criteria condition enumeration. const ( _ byte = iota criteriaEq criteriaLe criteriaGe criteriaL criteriaG criteriaBeg criteriaEnd criteriaErr ) // formulaCriteria defined formula criteria parser result. type formulaCriteria struct { Type byte Condition string } // ArgType is the type if formula argument type. type ArgType byte // Formula argument types enumeration. const ( ArgUnknown ArgType = iota ArgNumber ArgString ArgList ArgMatrix ArgError ArgEmpty ) // formulaArg is the argument of a formula or function. type formulaArg struct { SheetName string Number float64 String string List []formulaArg Matrix [][]formulaArg Boolean bool Error string Type ArgType cellRefs, cellRanges *list.List } // Value returns a string data type of the formula argument. func (fa formulaArg) Value() (value string) { switch fa.Type { case ArgNumber: if fa.Boolean { if fa.Number == 0 { return "FALSE" } return "TRUE" } return fmt.Sprintf("%g", fa.Number) case ArgString: return fa.String case ArgError: return fa.Error } return } // ToNumber returns a formula argument with number data type. func (fa formulaArg) ToNumber() formulaArg { var n float64 var err error switch fa.Type { case ArgString: n, err = strconv.ParseFloat(fa.String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } case ArgNumber: n = fa.Number } return newNumberFormulaArg(n) } // ToBool returns a formula argument with boolean data type. func (fa formulaArg) ToBool() formulaArg { var b bool var err error switch fa.Type { case ArgString: b, err = strconv.ParseBool(fa.String) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } case ArgNumber: if fa.Boolean && fa.Number == 1 { b = true } } return newBoolFormulaArg(b) } // ToList returns a formula argument with array data type. func (fa formulaArg) ToList() []formulaArg { switch fa.Type { case ArgMatrix: list := []formulaArg{} for _, row := range fa.Matrix { list = append(list, row...) } return list case ArgList: return fa.List case ArgNumber, ArgString, ArgError, ArgUnknown: return []formulaArg{fa} } return nil } // formulaFuncs is the type of the formula functions. type formulaFuncs struct { f *File sheet, cell string } // tokenPriority defined basic arithmetic operator priority. var tokenPriority = map[string]int{ "^": 5, "*": 4, "/": 4, "+": 3, "-": 3, "=": 2, "<>": 2, "<": 2, "<=": 2, ">": 2, ">=": 2, "&": 1, } // CalcCellValue provides a function to get calculated cell value. This // feature is currently in working processing. Array formula, table formula // and some other formulas are not supported currently. // // Supported formula functions: // // ABS // ACOS // ACOSH // ACOT // ACOTH // AND // ARABIC // ASIN // ASINH // ATAN // ATAN2 // ATANH // AVERAGE // AVERAGEA // BASE // BESSELI // BESSELJ // BESSELK // BESSELY // BIN2DEC // BIN2HEX // BIN2OCT // BITAND // BITLSHIFT // BITOR // BITRSHIFT // BITXOR // CEILING // CEILING.MATH // CEILING.PRECISE // CHAR // CHOOSE // CLEAN // CODE // COLUMN // COLUMNS // COMBIN // COMBINA // COMPLEX // CONCAT // CONCATENATE // COS // COSH // COT // COTH // COUNT // COUNTA // COUNTBLANK // CSC // CSCH // CUMIPMT // CUMPRINC // DATE // DATEDIF // DB // DDB // DEC2BIN // DEC2HEX // DEC2OCT // DECIMAL // DEGREES // DOLLARDE // DOLLARFR // EFFECT // ENCODEURL // EVEN // EXACT // EXP // FACT // FACTDOUBLE // FALSE // FIND // FINDB // FISHER // FISHERINV // FIXED // FLOOR // FLOOR.MATH // FLOOR.PRECISE // FV // FVSCHEDULE // GAMMA // GAMMALN // GCD // HARMEAN // HEX2BIN // HEX2DEC // HEX2OCT // HLOOKUP // IF // IFERROR // IMABS // IMAGINARY // IMARGUMENT // IMCONJUGATE // IMCOS // IMCOSH // IMCOT // IMCSC // IMCSCH // IMDIV // IMEXP // IMLN // IMLOG10 // IMLOG2 // IMPOWER // IMPRODUCT // IMREAL // IMSEC // IMSECH // IMSIN // IMSINH // IMSQRT // IMSUB // IMSUM // IMTAN // INT // IPMT // IRR // ISBLANK // ISERR // ISERROR // ISEVEN // ISNA // ISNONTEXT // ISNUMBER // ISODD // ISTEXT // ISO.CEILING // ISPMT // KURT // LARGE // LCM // LEFT // LEFTB // LEN // LENB // LN // LOG // LOG10 // LOOKUP // LOWER // MAX // MDETERM // MEDIAN // MID // MIDB // MIN // MINA // MIRR // MOD // MROUND // MULTINOMIAL // MUNIT // N // NA // NOMINAL // NORM.DIST // NORMDIST // NORM.INV // NORMINV // NORM.S.DIST // NORMSDIST // NORM.S.INV // NORMSINV // NOT // NOW // NPER // NPV // OCT2BIN // OCT2DEC // OCT2HEX // ODD // OR // PDURATION // PERCENTILE.INC // PERCENTILE // PERMUT // PERMUTATIONA // PI // PMT // POISSON.DIST // POISSON // POWER // PPMT // PRODUCT // PROPER // QUARTILE // QUARTILE.INC // QUOTIENT // RADIANS // RAND // RANDBETWEEN // REPLACE // REPLACEB // REPT // RIGHT // RIGHTB // ROMAN // ROUND // ROUNDDOWN // ROUNDUP // ROW // ROWS // SEC // SECH // SHEET // SIGN // SIN // SINH // SKEW // SMALL // SQRT // SQRTPI // STDEV // STDEV.S // STDEVA // SUBSTITUTE // SUM // SUMIF // SUMSQ // T // TAN // TANH // TODAY // TRIM // TRUE // TRUNC // UNICHAR // UNICODE // UPPER // VAR.P // VARP // VLOOKUP // func (f *File) CalcCellValue(sheet, cell string) (result string, err error) { var ( formula string token efp.Token ) if formula, err = f.GetCellFormula(sheet, cell); err != nil { return } ps := efp.ExcelParser() tokens := ps.Parse(formula) if tokens == nil { return } if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil { return } result = token.TValue isNum, precision := isNumeric(result) if isNum && precision > 15 { num, _ := roundPrecision(result) result = strings.ToUpper(num) } return } // getPriority calculate arithmetic operator priority. func getPriority(token efp.Token) (pri int) { pri = tokenPriority[token.TValue] if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix { pri = 6 } if isBeginParenthesesToken(token) { // ( pri = 0 } return } // newNumberFormulaArg constructs a number formula argument. func newNumberFormulaArg(n float64) formulaArg { if math.IsNaN(n) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return formulaArg{Type: ArgNumber, Number: n} } // newStringFormulaArg constructs a string formula argument. func newStringFormulaArg(s string) formulaArg { return formulaArg{Type: ArgString, String: s} } // newMatrixFormulaArg constructs a matrix formula argument. func newMatrixFormulaArg(m [][]formulaArg) formulaArg { return formulaArg{Type: ArgMatrix, Matrix: m} } // newListFormulaArg create a list formula argument. func newListFormulaArg(l []formulaArg) formulaArg { return formulaArg{Type: ArgList, List: l} } // newBoolFormulaArg constructs a boolean formula argument. func newBoolFormulaArg(b bool) formulaArg { var n float64 if b { n = 1 } return formulaArg{Type: ArgNumber, Number: n, Boolean: true} } // newErrorFormulaArg create an error formula argument of a given type with a // specified error message. func newErrorFormulaArg(formulaError, msg string) formulaArg { return formulaArg{Type: ArgError, String: formulaError, Error: msg} } // newEmptyFormulaArg create an empty formula argument. func newEmptyFormulaArg() formulaArg { return formulaArg{Type: ArgEmpty} } // evalInfixExp evaluate syntax analysis by given infix expression after // lexical analysis. Evaluate an infix expression containing formulas by // stacks: // // opd - Operand // opt - Operator // opf - Operation formula // opfd - Operand of the operation formula // opft - Operator of the operation formula // args - Arguments list of the operation formula // // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union // func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) { var err error opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack() for i := 0; i < len(tokens); i++ { token := tokens[i] // out of function stack if opfStack.Len() == 0 { if err = f.parseToken(sheet, token, opdStack, optStack); err != nil { return efp.Token{}, err } } // function start if isFunctionStartToken(token) { opfStack.Push(token) argsStack.Push(list.New().Init()) continue } // in function stack, walk 2 token at once if opfStack.Len() > 0 { var nextToken efp.Token if i+1 < len(tokens) { nextToken = tokens[i+1] } // current token is args or range, skip next token, order required: parse reference first if token.TSubType == efp.TokenSubTypeRange { if !opftStack.Empty() { // parse reference: must reference at here result, err := f.parseReference(sheet, token.TValue) if err != nil { return efp.Token{TValue: formulaErrorNAME}, err } if result.Type != ArgString { return efp.Token{}, errors.New(formulaErrorVALUE) } opfdStack.Push(efp.Token{ TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber, TValue: result.String, }) continue } if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction { // parse reference: reference or range at here refTo := f.getDefinedNameRefTo(token.TValue, sheet) if refTo != "" { token.TValue = refTo } result, err := f.parseReference(sheet, token.TValue) if err != nil { return efp.Token{TValue: formulaErrorNAME}, err } if result.Type == ArgUnknown { return efp.Token{}, errors.New(formulaErrorVALUE) } argsStack.Peek().(*list.List).PushBack(result) continue } } // check current token is opft if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil { return efp.Token{}, err } // current token is arg if token.TType == efp.TokenTypeArgument { for !opftStack.Empty() { // calculate trigger topOpt := opftStack.Peek().(efp.Token) if err := calculate(opfdStack, topOpt); err != nil { argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error())) } opftStack.Pop() } if !opfdStack.Empty() { argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue)) } continue } // current token is logical if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical { argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue)) } if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil { return efp.Token{}, err } } } for optStack.Len() != 0 { topOpt := optStack.Peek().(efp.Token) if err = calculate(opdStack, topOpt); err != nil { return efp.Token{}, err } optStack.Pop() } if opdStack.Len() == 0 { return efp.Token{}, ErrInvalidFormula } return opdStack.Peek().(efp.Token), err } // evalInfixExpFunc evaluate formula function in the infix expression. func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error { if !isFunctionStopToken(token) { return nil } // current token is function stop for !opftStack.Empty() { // calculate trigger topOpt := opftStack.Peek().(efp.Token) if err := calculate(opfdStack, topOpt); err != nil { return err } opftStack.Pop() } // push opfd to args if opfdStack.Len() > 0 { argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue)) } // call formula function to evaluate arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer( "_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue), []reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))}) if arg.Type == ArgError && opfStack.Len() == 1 { return errors.New(arg.Value()) } argsStack.Pop() opfStack.Pop() if opfStack.Len() > 0 { // still in function stack if nextToken.TType == efp.TokenTypeOperatorInfix { // mathematics calculate in formula function opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } else { argsStack.Peek().(*list.List).PushBack(arg) } } else { opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } return nil } // calcPow evaluate exponentiation arithmetic operations. func calcPow(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := math.Pow(lOpdVal, rOpdVal) opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcEq evaluate equal arithmetic operations. func calcEq(rOpd, lOpd string, opdStack *Stack) error { opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcNEq evaluate not equal arithmetic operations. func calcNEq(rOpd, lOpd string, opdStack *Stack) error { opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcL evaluate less than arithmetic operations. func calcL(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcLe evaluate less than or equal arithmetic operations. func calcLe(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcG evaluate greater than or equal arithmetic operations. func calcG(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcGe evaluate greater than or equal arithmetic operations. func calcGe(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcSplice evaluate splice '&' operations. func calcSplice(rOpd, lOpd string, opdStack *Stack) error { opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcAdd evaluate addition arithmetic operations. func calcAdd(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal + rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcSubtract evaluate subtraction arithmetic operations. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal - rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcMultiply evaluate multiplication arithmetic operations. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal * rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcDiv evaluate division arithmetic operations. func calcDiv(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal / rOpdVal if rOpdVal == 0 { return errors.New(formulaErrorDIV) } opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calculate evaluate basic arithmetic operations. func calculate(opdStack *Stack, opt efp.Token) error { if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix { if opdStack.Len() < 1 { return ErrInvalidFormula } opd := opdStack.Pop().(efp.Token) opdVal, err := strconv.ParseFloat(opd.TValue, 64) if err != nil { return err } result := 0 - opdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{ "^": calcPow, "*": calcMultiply, "/": calcDiv, "+": calcAdd, "=": calcEq, "<>": calcNEq, "<": calcL, "<=": calcLe, ">": calcG, ">=": calcGe, "&": calcSplice, } if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix { if opdStack.Len() < 2 { return ErrInvalidFormula } rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil { return err } } fn, ok := tokenCalcFunc[opt.TValue] if ok { if opdStack.Len() < 2 { return ErrInvalidFormula } rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil { return err } } return nil } // parseOperatorPrefixToken parse operator prefix token. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) { if optStack.Len() == 0 { optStack.Push(token) } else { tokenPriority := getPriority(token) topOpt := optStack.Peek().(efp.Token) topOptPriority := getPriority(topOpt) if tokenPriority > topOptPriority { optStack.Push(token) } else { for tokenPriority <= topOptPriority { optStack.Pop() if err = calculate(opdStack, topOpt); err != nil { return } if optStack.Len() > 0 { topOpt = optStack.Peek().(efp.Token) topOptPriority = getPriority(topOpt) continue } break } optStack.Push(token) } } return } // isFunctionStartToken determine if the token is function stop. func isFunctionStartToken(token efp.Token) bool { return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart } // isFunctionStopToken determine if the token is function stop. func isFunctionStopToken(token efp.Token) bool { return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop } // isBeginParenthesesToken determine if the token is begin parentheses: (. func isBeginParenthesesToken(token efp.Token) bool { return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart } // isEndParenthesesToken determine if the token is end parentheses: ). func isEndParenthesesToken(token efp.Token) bool { return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop } // isOperatorPrefixToken determine if the token is parse operator prefix // token. func isOperatorPrefixToken(token efp.Token) bool { _, ok := tokenPriority[token.TValue] return (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix) } // getDefinedNameRefTo convert defined name to reference range. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) { var workbookRefTo, worksheetRefTo string for _, definedName := range f.GetDefinedName() { if definedName.Name == definedNameName { // worksheet scope takes precedence over scope workbook when both definedNames exist if definedName.Scope == "Workbook" { workbookRefTo = definedName.RefersTo } if definedName.Scope == currentSheet { worksheetRefTo = definedName.RefersTo } } } refTo = workbookRefTo if worksheetRefTo != "" { refTo = worksheetRefTo } return } // parseToken parse basic arithmetic operator priority and evaluate based on // operators and operands. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error { // parse reference: must reference at here if token.TSubType == efp.TokenSubTypeRange { refTo := f.getDefinedNameRefTo(token.TValue, sheet) if refTo != "" { token.TValue = refTo } result, err := f.parseReference(sheet, token.TValue) if err != nil { return errors.New(formulaErrorNAME) } if result.Type != ArgString { return errors.New(formulaErrorVALUE) } token.TValue = result.String token.TType = efp.TokenTypeOperand token.TSubType = efp.TokenSubTypeNumber } if isOperatorPrefixToken(token) { if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil { return err } } if isBeginParenthesesToken(token) { // ( optStack.Push(token) } if isEndParenthesesToken(token) { // ) for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != ( topOpt := optStack.Peek().(efp.Token) if err := calculate(opdStack, topOpt); err != nil { return err } optStack.Pop() } optStack.Pop() } // opd if token.TType == efp.TokenTypeOperand && (token.TSubType == efp.TokenSubTypeNumber || token.TSubType == efp.TokenSubTypeText) { opdStack.Push(token) } return nil } // parseReference parse reference and extract values by given reference // characters and default sheet name. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) { reference = strings.Replace(reference, "$", "", -1) refs, cellRanges, cellRefs := list.New(), list.New(), list.New() for _, ref := range strings.Split(reference, ":") { tokens := strings.Split(ref, "!") cr := cellRef{} if len(tokens) == 2 { // have a worksheet name cr.Sheet = tokens[0] // cast to cell coordinates if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil { // cast to column if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil { // cast to row if cr.Row, err = strconv.Atoi(tokens[1]); err != nil { err = newInvalidColumnNameError(tokens[1]) return } cr.Col = TotalColumns } } if refs.Len() > 0 { e := refs.Back() cellRefs.PushBack(e.Value.(cellRef)) refs.Remove(e) } refs.PushBack(cr) continue } // cast to cell coordinates if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil { // cast to column if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil { // cast to row if cr.Row, err = strconv.Atoi(tokens[0]); err != nil { err = newInvalidColumnNameError(tokens[0]) return } cr.Col = TotalColumns } cellRanges.PushBack(cellRange{ From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1}, To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows}, }) cellRefs.Init() arg, err = f.rangeResolver(cellRefs, cellRanges) return } e := refs.Back() if e == nil { cr.Sheet = sheet refs.PushBack(cr) continue } cellRanges.PushBack(cellRange{ From: e.Value.(cellRef), To: cr, }) refs.Remove(e) } if refs.Len() > 0 { e := refs.Back() cellRefs.PushBack(e.Value.(cellRef)) refs.Remove(e) } arg, err = f.rangeResolver(cellRefs, cellRanges) return } // prepareValueRange prepare value range. func prepareValueRange(cr cellRange, valueRange []int) { if cr.From.Row < valueRange[0] || valueRange[0] == 0 { valueRange[0] = cr.From.Row } if cr.From.Col < valueRange[2] || valueRange[2] == 0 { valueRange[2] = cr.From.Col } if cr.To.Row > valueRange[1] || valueRange[1] == 0 { valueRange[1] = cr.To.Row } if cr.To.Col > valueRange[3] || valueRange[3] == 0 { valueRange[3] = cr.To.Col } } // prepareValueRef prepare value reference. func prepareValueRef(cr cellRef, valueRange []int) { if cr.Row < valueRange[0] || valueRange[0] == 0 { valueRange[0] = cr.Row } if cr.Col < valueRange[2] || valueRange[2] == 0 { valueRange[2] = cr.Col } if cr.Row > valueRange[1] || valueRange[1] == 0 { valueRange[1] = cr.Row } if cr.Col > valueRange[3] || valueRange[3] == 0 { valueRange[3] = cr.Col } } // rangeResolver extract value as string from given reference and range list. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will // be reference A1:B3. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) { arg.cellRefs, arg.cellRanges = cellRefs, cellRanges // value range order: from row, to row, from column, to column valueRange := []int{0, 0, 0, 0} var sheet string // prepare value range for temp := cellRanges.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRange) if cr.From.Sheet != cr.To.Sheet { err = errors.New(formulaErrorVALUE) } rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row} _ = sortCoordinates(rng) cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3] prepareValueRange(cr, valueRange) if cr.From.Sheet != "" { sheet = cr.From.Sheet } } for temp := cellRefs.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRef) if cr.Sheet != "" { sheet = cr.Sheet } prepareValueRef(cr, valueRange) } // extract value from ranges if cellRanges.Len() > 0 { arg.Type = ArgMatrix for row := valueRange[0]; row <= valueRange[1]; row++ { var matrixRow = []formulaArg{} for col := valueRange[2]; col <= valueRange[3]; col++ { var cell, value string if cell, err = CoordinatesToCellName(col, row); err != nil { return } if value, err = f.GetCellValue(sheet, cell); err != nil { return } matrixRow = append(matrixRow, formulaArg{ String: value, Type: ArgString, }) } arg.Matrix = append(arg.Matrix, matrixRow) } return } // extract value from references for temp := cellRefs.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRef) var cell string if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil { return } if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil { return } arg.Type = ArgString } return } // callFuncByName calls the no error or only error return function with // reflect by given receiver, name and parameters. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) { function := reflect.ValueOf(receiver).MethodByName(name) if function.IsValid() { rt := function.Call(params) if len(rt) == 0 { return } arg = rt[0].Interface().(formulaArg) return } return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name)) } // formulaCriteriaParser parse formula criteria. func formulaCriteriaParser(exp string) (fc *formulaCriteria) { fc = &formulaCriteria{} if exp == "" { return } if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaEq, match[1] return } if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaEq, match[1] return } if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaLe, match[1] return } if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaGe, match[1] return } if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaL, match[1] return } if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaG, match[1] return } if strings.Contains(exp, "*") { if strings.HasPrefix(exp, "*") { fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*") } if strings.HasSuffix(exp, "*") { fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*") } return } fc.Type, fc.Condition = criteriaEq, exp return } // formulaCriteriaEval evaluate formula criteria expression. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) { var value, expected float64 var e error var prepareValue = func(val, cond string) (value float64, expected float64, err error) { if value, err = strconv.ParseFloat(val, 64); err != nil { return } if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil { return } return } switch criteria.Type { case criteriaEq: return val == criteria.Condition, err case criteriaLe: value, expected, e = prepareValue(val, criteria.Condition) return value <= expected && e == nil, err case criteriaGe: value, expected, e = prepareValue(val, criteria.Condition) return value >= expected && e == nil, err case criteriaL: value, expected, e = prepareValue(val, criteria.Condition) return value < expected && e == nil, err case criteriaG: value, expected, e = prepareValue(val, criteria.Condition) return value > expected && e == nil, err case criteriaBeg: return strings.HasPrefix(val, criteria.Condition), err case criteriaEnd: return strings.HasSuffix(val, criteria.Condition), err } return } // Engineering Functions // BESSELI function the modified Bessel function, which is equivalent to the // Bessel function evaluated for purely imaginary arguments. The syntax of // the Besseli function is: // // BESSELI(x,n) // func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments") } return fn.bassel(argsList, true) } // BESSELJ function returns the Bessel function, Jn(x), for a specified order // and value of x. The syntax of the function is: // // BESSELJ(x,n) // func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments") } return fn.bassel(argsList, false) } // bassel is an implementation of the formula function BESSELI and BESSELJ. func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg { x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber() if x.Type != ArgNumber { return x } if n.Type != ArgNumber { return n } max, x1 := 100, x.Number*0.5 x2 := x1 * x1 x1 = math.Pow(x1, n.Number) n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false result := x1 / n1 t := result * 0.9 for result != t && max != 0 { x1 *= x2 n3++ n1 *= n3 n4++ n2 *= n4 t = result if modfied || add { result += (x1 / n1 / n2) } else { result -= (x1 / n1 / n2) } max-- add = !add } return newNumberFormulaArg(result) } // BESSELK function calculates the modified Bessel functions, Kn(x), which are // also known as the hyperbolic Bessel Functions. These are the equivalent of // the Bessel functions, evaluated for purely imaginary arguments. The syntax // of the function is: // // BESSELK(x,n) // func (fn *formulaFuncs) BESSELK(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "BESSELK requires 2 numeric arguments") } x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber() if x.Type != ArgNumber { return x } if n.Type != ArgNumber { return n } if x.Number <= 0 || n.Number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } var result float64 switch math.Floor(n.Number) { case 0: result = fn.besselK0(x) case 1: result = fn.besselK1(x) default: result = fn.besselK2(x, n) } return newNumberFormulaArg(result) } // besselK0 is an implementation of the formula function BESSELK. func (fn *formulaFuncs) besselK0(x formulaArg) float64 { var y float64 if x.Number <= 2 { n2 := x.Number * 0.5 y = n2 * n2 args := list.New() args.PushBack(x) args.PushBack(newNumberFormulaArg(0)) return -math.Log(n2)*fn.BESSELI(args).Number + (-0.57721566 + y*(0.42278420+y*(0.23069756+y*(0.3488590e-1+y*(0.262698e-2+y* (0.10750e-3+y*0.74e-5)))))) } y = 2 / x.Number return math.Exp(-x.Number) / math.Sqrt(x.Number) * (1.25331414 + y*(-0.7832358e-1+y*(0.2189568e-1+y*(-0.1062446e-1+y* (0.587872e-2+y*(-0.251540e-2+y*0.53208e-3)))))) } // besselK1 is an implementation of the formula function BESSELK. func (fn *formulaFuncs) besselK1(x formulaArg) float64 { var n2, y float64 if x.Number <= 2 { n2 = x.Number * 0.5 y = n2 * n2 args := list.New() args.PushBack(x) args.PushBack(newNumberFormulaArg(1)) return math.Log(n2)*fn.BESSELI(args).Number + (1+y*(0.15443144+y*(-0.67278579+y*(-0.18156897+y*(-0.1919402e-1+y*(-0.110404e-2+y*(-0.4686e-4)))))))/x.Number } y = 2 / x.Number return math.Exp(-x.Number) / math.Sqrt(x.Number) * (1.25331414 + y*(0.23498619+y*(-0.3655620e-1+y*(0.1504268e-1+y*(-0.780353e-2+y* (0.325614e-2+y*(-0.68245e-3))))))) } // besselK2 is an implementation of the formula function BESSELK. func (fn *formulaFuncs) besselK2(x, n formulaArg) float64 { tox, bkm, bk, bkp := 2/x.Number, fn.besselK0(x), fn.besselK1(x), 0.0 for i := 1.0; i < n.Number; i++ { bkp = bkm + i*tox*bk bkm = bk bk = bkp } return bk } // BESSELY function returns the Bessel function, Yn(x), (also known as the // Weber function or the Neumann function), for a specified order and value // of x. The syntax of the function is: // // BESSELY(x,n) // func (fn *formulaFuncs) BESSELY(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "BESSELY requires 2 numeric arguments") } x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber() if x.Type != ArgNumber { return x } if n.Type != ArgNumber { return n } if x.Number <= 0 || n.Number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } var result float64 switch math.Floor(n.Number) { case 0: result = fn.besselY0(x) case 1: result = fn.besselY1(x) default: result = fn.besselY2(x, n) } return newNumberFormulaArg(result) } // besselY0 is an implementation of the formula function BESSELY. func (fn *formulaFuncs) besselY0(x formulaArg) float64 { var y float64 if x.Number < 8 { y = x.Number * x.Number f1 := -2957821389.0 + y*(7062834065.0+y*(-512359803.6+y*(10879881.29+y* (-86327.92757+y*228.4622733)))) f2 := 40076544269.0 + y*(745249964.8+y*(7189466.438+y* (47447.26470+y*(226.1030244+y)))) args := list.New() args.PushBack(x) args.PushBack(newNumberFormulaArg(0)) return f1/f2 + 0.636619772*fn.BESSELJ(args).Number*math.Log(x.Number) } z := 8.0 / x.Number y = z * z xx := x.Number - 0.785398164 f1 := 1 + y*(-0.1098628627e-2+y*(0.2734510407e-4+y*(-0.2073370639e-5+y*0.2093887211e-6))) f2 := -0.1562499995e-1 + y*(0.1430488765e-3+y*(-0.6911147651e-5+y*(0.7621095161e-6+y* (-0.934945152e-7)))) return math.Sqrt(0.636619772/x.Number) * (math.Sin(xx)*f1 + z*math.Cos(xx)*f2) } // besselY1 is an implementation of the formula function BESSELY. func (fn *formulaFuncs) besselY1(x formulaArg) float64 { if x.Number < 8 { y := x.Number * x.Number f1 := x.Number * (-0.4900604943e13 + y*(0.1275274390e13+y*(-0.5153438139e11+y* (0.7349264551e9+y*(-0.4237922726e7+y*0.8511937935e4))))) f2 := 0.2499580570e14 + y*(0.4244419664e12+y*(0.3733650367e10+y*(0.2245904002e8+y* (0.1020426050e6+y*(0.3549632885e3+y))))) args := list.New() args.PushBack(x) args.PushBack(newNumberFormulaArg(1)) return f1/f2 + 0.636619772*(fn.BESSELJ(args).Number*math.Log(x.Number)-1/x.Number) } return math.Sqrt(0.636619772/x.Number) * math.Sin(x.Number-2.356194491) } // besselY2 is an implementation of the formula function BESSELY. func (fn *formulaFuncs) besselY2(x, n formulaArg) float64 { tox, bym, by, byp := 2/x.Number, fn.besselY0(x), fn.besselY1(x), 0.0 for i := 1.0; i < n.Number; i++ { byp = i*tox*by - bym bym = by by = byp } return by } // BIN2DEC function converts a Binary (a base-2 number) into a decimal number. // The syntax of the function is: // // BIN2DEC(number) // func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument") } token := argsList.Front().Value.(formulaArg) number := token.ToNumber() if number.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, number.Error) } return fn.bin2dec(token.Value()) } // BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal // (Base 16) number. The syntax of the function is: // // BIN2HEX(number,[places]) // func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments") } token := argsList.Front().Value.(formulaArg) number := token.ToNumber() if number.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, number.Error) } decimal, newList := fn.bin2dec(token.Value()), list.New() if decimal.Type != ArgNumber { return decimal } newList.PushBack(decimal) if argsList.Len() == 2 { newList.PushBack(argsList.Back().Value.(formulaArg)) } return fn.dec2x("BIN2HEX", newList) } // BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8) // number. The syntax of the function is: // // BIN2OCT(number,[places]) // func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments") } token := argsList.Front().Value.(formulaArg) number := token.ToNumber() if number.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, number.Error) } decimal, newList := fn.bin2dec(token.Value()), list.New() if decimal.Type != ArgNumber { return decimal } newList.PushBack(decimal) if argsList.Len() == 2 { newList.PushBack(argsList.Back().Value.(formulaArg)) } return fn.dec2x("BIN2OCT", newList) } // bin2dec is an implementation of the formula function BIN2DEC. func (fn *formulaFuncs) bin2dec(number string) formulaArg { decimal, length := 0.0, len(number) for i := length; i > 0; i-- { s := string(number[length-i]) if i == 10 && s == "1" { decimal += math.Pow(-2.0, float64(i-1)) continue } if s == "1" { decimal += math.Pow(2.0, float64(i-1)) continue } if s != "0" { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } } return newNumberFormulaArg(decimal) } // BITAND function returns the bitwise 'AND' for two supplied integers. The // syntax of the function is: // // BITAND(number1,number2) // func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg { return fn.bitwise("BITAND", argsList) } // BITLSHIFT function returns a supplied integer, shifted left by a specified // number of bits. The syntax of the function is: // // BITLSHIFT(number1,shift_amount) // func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg { return fn.bitwise("BITLSHIFT", argsList) } // BITOR function returns the bitwise 'OR' for two supplied integers. The // syntax of the function is: // // BITOR(number1,number2) // func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg { return fn.bitwise("BITOR", argsList) } // BITRSHIFT function returns a supplied integer, shifted right by a specified // number of bits. The syntax of the function is: // // BITRSHIFT(number1,shift_amount) // func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg { return fn.bitwise("BITRSHIFT", argsList) } // BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied // integers. The syntax of the function is: // // BITXOR(number1,number2) // func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg { return fn.bitwise("BITXOR", argsList) } // bitwise is an implementation of the formula function BITAND, BITLSHIFT, // BITOR, BITRSHIFT and BITXOR. func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name)) } num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber() if num1.Type != ArgNumber || num2.Type != ArgNumber { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } max := math.Pow(2, 48) - 1 if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } bitwiseFuncMap := map[string]func(a, b int) int{ "BITAND": func(a, b int) int { return a & b }, "BITLSHIFT": func(a, b int) int { return a << uint(b) }, "BITOR": func(a, b int) int { return a | b }, "BITRSHIFT": func(a, b int) int { return a >> uint(b) }, "BITXOR": func(a, b int) int { return a ^ b }, } bitwiseFunc := bitwiseFuncMap[name] return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number)))) } // COMPLEX function takes two arguments, representing the real and the // imaginary coefficients of a complex number, and from these, creates a // complex number. The syntax of the function is: // // COMPLEX(real_num,i_num,[suffix]) // func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments") } real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i" if real.Type != ArgNumber { return real } if i.Type != ArgNumber { return i } if argsList.Len() == 3 { if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix)) } // cmplx2str replace complex number string characters. func cmplx2str(c, suffix string) string { if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" { return "0" } c = strings.TrimPrefix(c, "(") c = strings.TrimPrefix(c, "+0+") c = strings.TrimPrefix(c, "-0+") c = strings.TrimSuffix(c, ")") c = strings.TrimPrefix(c, "0+") if strings.HasPrefix(c, "0-") { c = "-" + strings.TrimPrefix(c, "0-") } c = strings.TrimPrefix(c, "0+") c = strings.TrimSuffix(c, "+0i") c = strings.TrimSuffix(c, "-0i") c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c) c = strings.Replace(c, "i", suffix, -1) return c } // str2cmplx convert complex number string characters. func str2cmplx(c string) string { c = strings.Replace(c, "j", "i", -1) if c == "i" { c = "1i" } c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c) return c } // DEC2BIN function converts a decimal number into a Binary (Base 2) number. // The syntax of the function is: // // DEC2BIN(number,[places]) // func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg { return fn.dec2x("DEC2BIN", argsList) } // DEC2HEX function converts a decimal number into a Hexadecimal (Base 16) // number. The syntax of the function is: // // DEC2HEX(number,[places]) // func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg { return fn.dec2x("DEC2HEX", argsList) } // DEC2OCT function converts a decimal number into an Octal (Base 8) number. // The syntax of the function is: // // DEC2OCT(number,[places]) // func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg { return fn.dec2x("DEC2OCT", argsList) } // dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and // DEC2OCT. func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name)) } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name)) } decimal := argsList.Front().Value.(formulaArg).ToNumber() if decimal.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, decimal.Error) } maxLimitMap := map[string]float64{ "DEC2BIN": 511, "HEX2BIN": 511, "OCT2BIN": 511, "BIN2HEX": 549755813887, "DEC2HEX": 549755813887, "OCT2HEX": 549755813887, "BIN2OCT": 536870911, "DEC2OCT": 536870911, "HEX2OCT": 536870911, } minLimitMap := map[string]float64{ "DEC2BIN": -512, "HEX2BIN": -512, "OCT2BIN": -512, "BIN2HEX": -549755813888, "DEC2HEX": -549755813888, "OCT2HEX": -549755813888, "BIN2OCT": -536870912, "DEC2OCT": -536870912, "HEX2OCT": -536870912, } baseMap := map[string]int{ "DEC2BIN": 2, "HEX2BIN": 2, "OCT2BIN": 2, "BIN2HEX": 16, "DEC2HEX": 16, "OCT2HEX": 16, "BIN2OCT": 8, "DEC2OCT": 8, "HEX2OCT": 8, } maxLimit, minLimit := maxLimitMap[name], minLimitMap[name] base := baseMap[name] if decimal.Number < minLimit || decimal.Number > maxLimit { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } n := int64(decimal.Number) binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base) if argsList.Len() == 2 { places := argsList.Back().Value.(formulaArg).ToNumber() if places.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, places.Error) } binaryPlaces := len(binary) if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary))) } if decimal.Number < 0 && len(binary) > 10 { return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:])) } return newStringFormulaArg(strings.ToUpper(binary)) } // HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary // (Base 2) number. The syntax of the function is: // // HEX2BIN(number,[places]) // func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments") } decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New() if decimal.Type != ArgNumber { return decimal } newList.PushBack(decimal) if argsList.Len() == 2 { newList.PushBack(argsList.Back().Value.(formulaArg)) } return fn.dec2x("HEX2BIN", newList) } // HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal // number. The syntax of the function is: // // HEX2DEC(number) // func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument") } return fn.hex2dec(argsList.Front().Value.(formulaArg).Value()) } // HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal // (Base 8) number. The syntax of the function is: // // HEX2OCT(number,[places]) // func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments") } decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New() if decimal.Type != ArgNumber { return decimal } newList.PushBack(decimal) if argsList.Len() == 2 { newList.PushBack(argsList.Back().Value.(formulaArg)) } return fn.dec2x("HEX2OCT", newList) } // hex2dec is an implementation of the formula function HEX2DEC. func (fn *formulaFuncs) hex2dec(number string) formulaArg { decimal, length := 0.0, len(number) for i := length; i > 0; i-- { num, err := strconv.ParseInt(string(number[length-i]), 16, 64) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } if i == 10 && string(number[length-i]) == "F" { decimal += math.Pow(-16.0, float64(i-1)) continue } decimal += float64(num) * math.Pow(16.0, float64(i-1)) } return newNumberFormulaArg(decimal) } // IMABS function returns the absolute value (the modulus) of a complex // number. The syntax of the function is: // // IMABS(inumber) // func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newNumberFormulaArg(cmplx.Abs(inumber)) } // IMAGINARY function returns the imaginary coefficient of a supplied complex // number. The syntax of the function is: // // IMAGINARY(inumber) // func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newNumberFormulaArg(imag(inumber)) } // IMARGUMENT function returns the phase (also called the argument) of a // supplied complex number. The syntax of the function is: // // IMARGUMENT(inumber) // func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newNumberFormulaArg(cmplx.Phase(inumber)) } // IMCONJUGATE function returns the complex conjugate of a supplied complex // number. The syntax of the function is: // // IMCONJUGATE(inumber) // func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i")) } // IMCOS function returns the cosine of a supplied complex number. The syntax // of the function is: // // IMCOS(inumber) // func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i")) } // IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax // of the function is: // // IMCOSH(inumber) // func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i")) } // IMCOT function returns the cotangent of a supplied complex number. The syntax // of the function is: // // IMCOT(inumber) // func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i")) } // IMCSC function returns the cosecant of a supplied complex number. The syntax // of the function is: // // IMCSC(inumber) // func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } num := 1 / cmplx.Sin(inumber) if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) } // IMCSCH function returns the hyperbolic cosecant of a supplied complex // number. The syntax of the function is: // // IMCSCH(inumber) // func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } num := 1 / cmplx.Sinh(inumber) if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) } // IMDIV function calculates the quotient of two complex numbers (i.e. divides // one complex number by another). The syntax of the function is: // // IMDIV(inumber1,inumber2) // func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments") } inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } num := inumber1 / inumber2 if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) } // IMEXP function returns the exponential of a supplied complex number. The // syntax of the function is: // // IMEXP(inumber) // func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i")) } // IMLN function returns the natural logarithm of a supplied complex number. // The syntax of the function is: // // IMLN(inumber) // func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } num := cmplx.Log(inumber) if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) } // IMLOG10 function returns the common (base 10) logarithm of a supplied // complex number. The syntax of the function is: // // IMLOG10(inumber) // func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } num := cmplx.Log10(inumber) if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) } // IMLOG2 function calculates the base 2 logarithm of a supplied complex // number. The syntax of the function is: // // IMLOG2(inumber) // func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } num := cmplx.Log(inumber) if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i")) } // IMPOWER function returns a supplied complex number, raised to a given // power. The syntax of the function is: // // IMPOWER(inumber,number) // func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } number, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } if inumber == 0 && number == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } num := cmplx.Pow(inumber, number) if cmplx.IsInf(num) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i")) } // IMPRODUCT function calculates the product of two or more complex numbers. // The syntax of the function is: // // IMPRODUCT(number1,[number2],...) // func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg { product := complex128(1) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString: if token.Value() == "" { continue } val, err := strconv.ParseComplex(str2cmplx(token.Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } product = product * val case ArgNumber: product = product * complex(token.Number, 0) case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { if value.Value() == "" { continue } val, err := strconv.ParseComplex(str2cmplx(value.Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } product = product * val } } } } return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i")) } // IMREAL function returns the real coefficient of a supplied complex number. // The syntax of the function is: // // IMREAL(inumber) // func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i")) } // IMSEC function returns the secant of a supplied complex number. The syntax // of the function is: // // IMSEC(inumber) // func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i")) } // IMSECH function returns the hyperbolic secant of a supplied complex number. // The syntax of the function is: // // IMSECH(inumber) // func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i")) } // IMSIN function returns the Sine of a supplied complex number. The syntax of // the function is: // // IMSIN(inumber) // func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i")) } // IMSINH function returns the hyperbolic sine of a supplied complex number. // The syntax of the function is: // // IMSINH(inumber) // func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i")) } // IMSQRT function returns the square root of a supplied complex number. The // syntax of the function is: // // IMSQRT(inumber) // func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i")) } // IMSUB function calculates the difference between two complex numbers // (i.e. subtracts one complex number from another). The syntax of the // function is: // // IMSUB(inumber1,inumber2) // func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments") } i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i")) } // IMSUM function calculates the sum of two or more complex numbers. The // syntax of the function is: // // IMSUM(inumber1,inumber2,...) // func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument") } var result complex128 for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } result += num } return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i")) } // IMTAN function returns the tangent of a supplied complex number. The syntax // of the function is: // // IMTAN(inumber) // func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument") } inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128) if err != nil { return newErrorFormulaArg(formulaErrorNUM, err.Error()) } return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i")) } // OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2) // number. The syntax of the function is: // // OCT2BIN(number,[places]) // func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments") } token := argsList.Front().Value.(formulaArg) number := token.ToNumber() if number.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, number.Error) } decimal, newList := fn.oct2dec(token.Value()), list.New() newList.PushBack(decimal) if argsList.Len() == 2 { newList.PushBack(argsList.Back().Value.(formulaArg)) } return fn.dec2x("OCT2BIN", newList) } // OCT2DEC function converts an Octal (a base-8 number) into a decimal number. // The syntax of the function is: // // OCT2DEC(number) // func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument") } token := argsList.Front().Value.(formulaArg) number := token.ToNumber() if number.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, number.Error) } return fn.oct2dec(token.Value()) } // OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal // (Base 16) number. The syntax of the function is: // // OCT2HEX(number,[places]) // func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments") } token := argsList.Front().Value.(formulaArg) number := token.ToNumber() if number.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, number.Error) } decimal, newList := fn.oct2dec(token.Value()), list.New() newList.PushBack(decimal) if argsList.Len() == 2 { newList.PushBack(argsList.Back().Value.(formulaArg)) } return fn.dec2x("OCT2HEX", newList) } // oct2dec is an implementation of the formula function OCT2DEC. func (fn *formulaFuncs) oct2dec(number string) formulaArg { decimal, length := 0.0, len(number) for i := length; i > 0; i-- { num, _ := strconv.Atoi(string(number[length-i])) if i == 10 && string(number[length-i]) == "7" { decimal += math.Pow(-8.0, float64(i-1)) continue } decimal += float64(num) * math.Pow(8.0, float64(i-1)) } return newNumberFormulaArg(decimal) } // Math and Trigonometric Functions // ABS function returns the absolute value of any supplied number. The syntax // of the function is: // // ABS(number) // func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Abs(arg.Number)) } // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given // number, and returns an angle, in radians, between 0 and π. The syntax of // the function is: // // ACOS(number) // func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Acos(arg.Number)) } // ACOSH function calculates the inverse hyperbolic cosine of a supplied number. // of the function is: // // ACOSH(number) // func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Acosh(arg.Number)) } // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a // given number, and returns an angle, in radians, between 0 and π. The syntax // of the function is: // // ACOT(number) // func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number)) } // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied // value. The syntax of the function is: // // ACOTH(number) // func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Atanh(1 / arg.Number)) } // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax // of the function is: // // ARABIC(text) // func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument") } text := argsList.Front().Value.(formulaArg).Value() if len(text) > 255 { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } text = strings.ToUpper(text) number, actualStart, index, isNegative := 0, 0, len(text)-1, false startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1 for index >= 0 && text[index] == ' ' { index-- } for actualStart <= index && text[actualStart] == ' ' { actualStart++ } if actualStart <= index && text[actualStart] == '-' { isNegative = true actualStart++ } charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} for index >= actualStart { startIndex = index startChar := text[startIndex] index-- for index >= actualStart && (text[index]|' ') == startChar { index-- } currentCharValue = charMap[rune(startChar)] currentPartValue = (startIndex - index) * currentCharValue if currentCharValue >= prevCharValue { number += currentPartValue - subtractNumber prevCharValue = currentCharValue subtractNumber = 0 continue } subtractNumber += currentPartValue } if subtractNumber != 0 { number -= subtractNumber } if isNegative { number = -number } return newNumberFormulaArg(float64(number)) } // ASIN function calculates the arcsine (i.e. the inverse sine) of a given // number, and returns an angle, in radians, between -π/2 and π/2. The syntax // of the function is: // // ASIN(number) // func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Asin(arg.Number)) } // ASINH function calculates the inverse hyperbolic sine of a supplied number. // The syntax of the function is: // // ASINH(number) // func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Asinh(arg.Number)) } // ATAN function calculates the arctangent (i.e. the inverse tangent) of a // given number, and returns an angle, in radians, between -π/2 and +π/2. The // syntax of the function is: // // ATAN(number) // func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Atan(arg.Number)) } // ATANH function calculates the inverse hyperbolic tangent of a supplied // number. The syntax of the function is: // // ATANH(number) // func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Atanh(arg.Number)) } // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a // given set of x and y coordinates, and returns an angle, in radians, between // -π/2 and +π/2. The syntax of the function is: // // ATAN2(x_num,y_num) // func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments") } x := argsList.Back().Value.(formulaArg).ToNumber() if x.Type == ArgError { return x } y := argsList.Front().Value.(formulaArg).ToNumber() if y.Type == ArgError { return y } return newNumberFormulaArg(math.Atan2(x.Number, y.Number)) } // BASE function converts a number into a supplied base (radix), and returns a // text representation of the calculated value. The syntax of the function is: // // BASE(number,radix,[min_length]) // func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments") } var minLength int var err error number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } radix := argsList.Front().Next().Value.(formulaArg).ToNumber() if radix.Type == ArgError { return radix } if int(radix.Number) < 2 || int(radix.Number) > 36 { return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36") } if argsList.Len() > 2 { if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } result := strconv.FormatInt(int64(number.Number), int(radix.Number)) if len(result) < minLength { result = strings.Repeat("0", minLength-len(result)) + result } return newStringFormulaArg(strings.ToUpper(result)) } // CEILING function rounds a supplied number away from zero, to the nearest // multiple of a given number. The syntax of the function is: // // CEILING(number,significance) // func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments") } number, significance, res := 0.0, 1.0, 0.0 n := argsList.Front().Value.(formulaArg).ToNumber() if n.Type == ArgError { return n } number = n.Number if number < 0 { significance = -1 } if argsList.Len() > 1 { s := argsList.Back().Value.(formulaArg).ToNumber() if s.Type == ArgError { return s } significance = s.Number } if significance < 0 && number > 0 { return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid") } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } number, res = math.Modf(number / significance) if res > 0 { number++ } return newNumberFormulaArg(number * significance) } // CEILINGdotMATH function rounds a supplied number up to a supplied multiple // of significance. The syntax of the function is: // // CEILING.MATH(number,[significance],[mode]) // func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments") } number, significance, mode := 0.0, 1.0, 1.0 n := argsList.Front().Value.(formulaArg).ToNumber() if n.Type == ArgError { return n } number = n.Number if number < 0 { significance = -1 } if argsList.Len() > 1 { s := argsList.Front().Next().Value.(formulaArg).ToNumber() if s.Type == ArgError { return s } significance = s.Number } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } if argsList.Len() > 2 { m := argsList.Back().Value.(formulaArg).ToNumber() if m.Type == ArgError { return m } mode = m.Number } val, res := math.Modf(number / significance) if res != 0 { if number > 0 { val++ } else if mode < 0 { val-- } } return newNumberFormulaArg(val * significance) } // CEILINGdotPRECISE function rounds a supplied number up (regardless of the // number's sign), to the nearest multiple of a given number. The syntax of // the function is: // // CEILING.PRECISE(number,[significance]) // func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments") } number, significance := 0.0, 1.0 n := argsList.Front().Value.(formulaArg).ToNumber() if n.Type == ArgError { return n } number = n.Number if number < 0 { significance = -1 } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } if argsList.Len() > 1 { s := argsList.Back().Value.(formulaArg).ToNumber() if s.Type == ArgError { return s } significance = s.Number significance = math.Abs(significance) if significance == 0 { return newNumberFormulaArg(significance) } } val, res := math.Modf(number / significance) if res != 0 { if number > 0 { val++ } } return newNumberFormulaArg(val * significance) } // COMBIN function calculates the number of combinations (in any order) of a // given number objects from a set. The syntax of the function is: // // COMBIN(number,number_chosen) // func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument") } number, chosen, val := 0.0, 0.0, 1.0 n := argsList.Front().Value.(formulaArg).ToNumber() if n.Type == ArgError { return n } number = n.Number c := argsList.Back().Value.(formulaArg).ToNumber() if c.Type == ArgError { return c } chosen = c.Number number, chosen = math.Trunc(number), math.Trunc(chosen) if chosen > number { return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen") } if chosen == number || chosen == 0 { return newNumberFormulaArg(1) } for c := float64(1); c <= chosen; c++ { val *= (number + 1 - c) / c } return newNumberFormulaArg(math.Ceil(val)) } // COMBINA function calculates the number of combinations, with repetitions, // of a given number objects from a set. The syntax of the function is: // // COMBINA(number,number_chosen) // func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument") } var number, chosen float64 n := argsList.Front().Value.(formulaArg).ToNumber() if n.Type == ArgError { return n } number = n.Number c := argsList.Back().Value.(formulaArg).ToNumber() if c.Type == ArgError { return c } chosen = c.Number number, chosen = math.Trunc(number), math.Trunc(chosen) if number < chosen { return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen") } if number == 0 { return newNumberFormulaArg(number) } args := list.New() args.PushBack(formulaArg{ String: fmt.Sprintf("%g", number+chosen-1), Type: ArgString, }) args.PushBack(formulaArg{ String: fmt.Sprintf("%g", number-1), Type: ArgString, }) return fn.COMBIN(args) } // COS function calculates the cosine of a given angle. The syntax of the // function is: // // COS(number) // func (fn *formulaFuncs) COS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } return newNumberFormulaArg(math.Cos(val.Number)) } // COSH function calculates the hyperbolic cosine (cosh) of a supplied number. // The syntax of the function is: // // COSH(number) // func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } return newNumberFormulaArg(math.Cosh(val.Number)) } // COT function calculates the cotangent of a given angle. The syntax of the // function is: // // COT(number) // func (fn *formulaFuncs) COT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(1 / math.Tan(val.Number)) } // COTH function calculates the hyperbolic cotangent (coth) of a supplied // angle. The syntax of the function is: // // COTH(number) // func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number))) } // CSC function calculates the cosecant of a given angle. The syntax of the // function is: // // CSC(number) // func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(1 / math.Sin(val.Number)) } // CSCH function calculates the hyperbolic cosecant (csch) of a supplied // angle. The syntax of the function is: // // CSCH(number) // func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(1 / math.Sinh(val.Number)) } // DECIMAL function converts a text representation of a number in a specified // base, into a decimal value. The syntax of the function is: // // DECIMAL(text,radix) // func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments") } var text = argsList.Front().Value.(formulaArg).String var radix int var err error radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) { text = text[2:] } val, err := strconv.ParseInt(text, radix, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(float64(val)) } // DEGREES function converts radians into degrees. The syntax of the function // is: // // DEGREES(angle) // func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } if val.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(180.0 / math.Pi * val.Number) } // EVEN function rounds a supplied number away from zero (i.e. rounds a // positive number up and a negative number down), to the next even number. // The syntax of the function is: // // EVEN(number) // func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } sign := math.Signbit(number.Number) m, frac := math.Modf(number.Number / 2) val := m * 2 if frac != 0 { if !sign { val += 2 } else { val -= 2 } } return newNumberFormulaArg(val) } // EXP function calculates the value of the mathematical constant e, raised to // the power of a given number. The syntax of the function is: // // EXP(number) // func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number)))) } // fact returns the factorial of a supplied number. func fact(number float64) float64 { val := float64(1) for i := float64(2); i <= number; i++ { val *= i } return val } // FACT function returns the factorial of a supplied number. The syntax of the // function is: // // FACT(number) // func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if number.Number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newNumberFormulaArg(fact(number.Number)) } // FACTDOUBLE function returns the double factorial of a supplied number. The // syntax of the function is: // // FACTDOUBLE(number) // func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument") } val := 1.0 number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if number.Number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } for i := math.Trunc(number.Number); i > 1; i -= 2 { val *= i } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val))) } // FLOOR function rounds a supplied number towards zero to the nearest // multiple of a specified significance. The syntax of the function is: // // FLOOR(number,significance) // func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } significance := argsList.Back().Value.(formulaArg).ToNumber() if significance.Type == ArgError { return significance } if significance.Number < 0 && number.Number >= 0 { return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR") } val := number.Number val, res := math.Modf(val / significance.Number) if res != 0 { if number.Number < 0 && res < 0 { val-- } } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number))) } // FLOORdotMATH function rounds a supplied number down to a supplied multiple // of significance. The syntax of the function is: // // FLOOR.MATH(number,[significance],[mode]) // func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments") } significance, mode := 1.0, 1.0 number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if number.Number < 0 { significance = -1 } if argsList.Len() > 1 { s := argsList.Front().Next().Value.(formulaArg).ToNumber() if s.Type == ArgError { return s } significance = s.Number } if argsList.Len() == 1 { return newNumberFormulaArg(math.Floor(number.Number)) } if argsList.Len() > 2 { m := argsList.Back().Value.(formulaArg).ToNumber() if m.Type == ArgError { return m } mode = m.Number } val, res := math.Modf(number.Number / significance) if res != 0 && number.Number < 0 && mode > 0 { val-- } return newNumberFormulaArg(val * significance) } // FLOORdotPRECISE function rounds a supplied number down to a supplied // multiple of significance. The syntax of the function is: // // FLOOR.PRECISE(number,[significance]) // func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments") } var significance float64 number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if number.Number < 0 { significance = -1 } if argsList.Len() == 1 { return newNumberFormulaArg(math.Floor(number.Number)) } if argsList.Len() > 1 { s := argsList.Back().Value.(formulaArg).ToNumber() if s.Type == ArgError { return s } significance = s.Number significance = math.Abs(significance) if significance == 0 { return newNumberFormulaArg(significance) } } val, res := math.Modf(number.Number / significance) if res != 0 { if number.Number < 0 { val-- } } return newNumberFormulaArg(val * significance) } // gcd returns the greatest common divisor of two supplied integers. func gcd(x, y float64) float64 { x, y = math.Trunc(x), math.Trunc(y) if x == 0 { return y } if y == 0 { return x } for x != y { if x > y { x = x - y } else { y = y - x } } return x } // GCD function returns the greatest common divisor of two or more supplied // integers. The syntax of the function is: // // GCD(number1,[number2],...) // func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument") } var ( val float64 nums = []float64{} ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString: num := token.ToNumber() if num.Type == ArgError { return num } val = num.Number case ArgNumber: val = token.Number } nums = append(nums, val) } if nums[0] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments") } if len(nums) == 1 { return newNumberFormulaArg(nums[0]) } cd := nums[0] for i := 1; i < len(nums); i++ { if nums[i] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments") } cd = gcd(cd, nums[i]) } return newNumberFormulaArg(cd) } // INT function truncates a supplied number down to the closest integer. The // syntax of the function is: // // INT(number) // func (fn *formulaFuncs) INT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } val, frac := math.Modf(number.Number) if frac < 0 { val-- } return newNumberFormulaArg(val) } // ISOdotCEILING function rounds a supplied number up (regardless of the // number's sign), to the nearest multiple of a supplied significance. The // syntax of the function is: // // ISO.CEILING(number,[significance]) // func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments") } var significance float64 number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if number.Number < 0 { significance = -1 } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number.Number)) } if argsList.Len() > 1 { s := argsList.Back().Value.(formulaArg).ToNumber() if s.Type == ArgError { return s } significance = s.Number significance = math.Abs(significance) if significance == 0 { return newNumberFormulaArg(significance) } } val, res := math.Modf(number.Number / significance) if res != 0 { if number.Number > 0 { val++ } } return newNumberFormulaArg(val * significance) } // lcm returns the least common multiple of two supplied integers. func lcm(a, b float64) float64 { a = math.Trunc(a) b = math.Trunc(b) if a == 0 && b == 0 { return 0 } return a * b / gcd(a, b) } // LCM function returns the least common multiple of two or more supplied // integers. The syntax of the function is: // // LCM(number1,[number2],...) // func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument") } var ( val float64 nums = []float64{} err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString: if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } case ArgNumber: val = token.Number } nums = append(nums, val) } if nums[0] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments") } if len(nums) == 1 { return newNumberFormulaArg(nums[0]) } cm := nums[0] for i := 1; i < len(nums); i++ { if nums[i] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments") } cm = lcm(cm, nums[i]) } return newNumberFormulaArg(cm) } // LN function calculates the natural logarithm of a given number. The syntax // of the function is: // // LN(number) // func (fn *formulaFuncs) LN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Log(number.Number)) } // LOG function calculates the logarithm of a given number, to a supplied // base. The syntax of the function is: // // LOG(number,[base]) // func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments") } base := 10.0 number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if argsList.Len() > 1 { b := argsList.Back().Value.(formulaArg).ToNumber() if b.Type == ArgError { return b } base = b.Number } if number.Number == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV) } if base == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV) } if base == 1 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Log(number.Number) / math.Log(base)) } // LOG10 function calculates the base 10 logarithm of a given number. The // syntax of the function is: // // LOG10(number) // func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Log10(number.Number)) } // minor function implement a minor of a matrix A is the determinant of some // smaller square matrix. func minor(sqMtx [][]float64, idx int) [][]float64 { ret := [][]float64{} for i := range sqMtx { if i == 0 { continue } row := []float64{} for j := range sqMtx { if j == idx { continue } row = append(row, sqMtx[i][j]) } ret = append(ret, row) } return ret } // det determinant of the 2x2 matrix. func det(sqMtx [][]float64) float64 { if len(sqMtx) == 2 { m00 := sqMtx[0][0] m01 := sqMtx[0][1] m10 := sqMtx[1][0] m11 := sqMtx[1][1] return m00*m11 - m10*m01 } var res, sgn float64 = 0, 1 for j := range sqMtx { res += sgn * sqMtx[0][j] * det(minor(sqMtx, j)) sgn *= -1 } return res } // MDETERM calculates the determinant of a square matrix. The // syntax of the function is: // // MDETERM(array) // func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) { var ( num float64 numMtx = [][]float64{} err error strMtx [][]formulaArg ) if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument") } strMtx = argsList.Front().Value.(formulaArg).Matrix var rows = len(strMtx) for _, row := range argsList.Front().Value.(formulaArg).Matrix { if len(row) != rows { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } numRow := []float64{} for _, ele := range row { if num, err = strconv.ParseFloat(ele.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } numRow = append(numRow, num) } numMtx = append(numMtx, numRow) } return newNumberFormulaArg(det(numMtx)) } // MOD function returns the remainder of a division between two supplied // numbers. The syntax of the function is: // // MOD(number,divisor) // func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } divisor := argsList.Back().Value.(formulaArg).ToNumber() if divisor.Type == ArgError { return divisor } if divisor.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero") } trunc, rem := math.Modf(number.Number / divisor.Number) if rem < 0 { trunc-- } return newNumberFormulaArg(number.Number - divisor.Number*trunc) } // MROUND function rounds a supplied number up or down to the nearest multiple // of a given number. The syntax of the function is: // // MROUND(number,multiple) // func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments") } n := argsList.Front().Value.(formulaArg).ToNumber() if n.Type == ArgError { return n } multiple := argsList.Back().Value.(formulaArg).ToNumber() if multiple.Type == ArgError { return multiple } if multiple.Number == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } if multiple.Number < 0 && n.Number > 0 || multiple.Number > 0 && n.Number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } number, res := math.Modf(n.Number / multiple.Number) if math.Trunc(res+0.5) > 0 { number++ } return newNumberFormulaArg(number * multiple.Number) } // MULTINOMIAL function calculates the ratio of the factorial of a sum of // supplied values to the product of factorials of those values. The syntax of // the function is: // // MULTINOMIAL(number1,[number2],...) // func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg { val, num, denom := 0.0, 0.0, 1.0 var err error for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString: if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } case ArgNumber: val = token.Number } num += val denom *= fact(val) } return newNumberFormulaArg(fact(num) / denom) } // MUNIT function returns the unit matrix for a specified dimension. The // syntax of the function is: // // MUNIT(dimension) // func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument") } dimension := argsList.Back().Value.(formulaArg).ToNumber() if dimension.Type == ArgError || dimension.Number < 0 { return newErrorFormulaArg(formulaErrorVALUE, dimension.Error) } matrix := make([][]formulaArg, 0, int(dimension.Number)) for i := 0; i < int(dimension.Number); i++ { row := make([]formulaArg, int(dimension.Number)) for j := 0; j < int(dimension.Number); j++ { if i == j { row[j] = newNumberFormulaArg(1.0) } else { row[j] = newNumberFormulaArg(0.0) } } matrix = append(matrix, row) } return newMatrixFormulaArg(matrix) } // ODD function ounds a supplied number away from zero (i.e. rounds a positive // number up and a negative number down), to the next odd number. The syntax // of the function is: // // ODD(number) // func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument") } number := argsList.Back().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if number.Number == 0 { return newNumberFormulaArg(1) } sign := math.Signbit(number.Number) m, frac := math.Modf((number.Number - 1) / 2) val := m*2 + 1 if frac != 0 { if !sign { val += 2 } else { val -= 2 } } return newNumberFormulaArg(val) } // PI function returns the value of the mathematical constant π (pi), accurate // to 15 digits (14 decimal places). The syntax of the function is: // // PI() // func (fn *formulaFuncs) PI(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments") } return newNumberFormulaArg(math.Pi) } // POWER function calculates a given number, raised to a supplied power. // The syntax of the function is: // // POWER(number,power) // func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments") } x := argsList.Front().Value.(formulaArg).ToNumber() if x.Type == ArgError { return x } y := argsList.Back().Value.(formulaArg).ToNumber() if y.Type == ArgError { return y } if x.Number == 0 && y.Number == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } if x.Number == 0 && y.Number < 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Pow(x.Number, y.Number)) } // PRODUCT function returns the product (multiplication) of a supplied set of // numerical values. The syntax of the function is: // // PRODUCT(number1,[number2],...) // func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg { val, product := 0.0, 1.0 var err error for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } product = product * val case ArgNumber: product = product * token.Number case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { if value.String == "" { continue } if val, err = strconv.ParseFloat(value.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } product = product * val } } } } return newNumberFormulaArg(product) } // QUOTIENT function returns the integer portion of a division between two // supplied numbers. The syntax of the function is: // // QUOTIENT(numerator,denominator) // func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments") } x := argsList.Front().Value.(formulaArg).ToNumber() if x.Type == ArgError { return x } y := argsList.Back().Value.(formulaArg).ToNumber() if y.Type == ArgError { return y } if y.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Trunc(x.Number / y.Number)) } // RADIANS function converts radians into degrees. The syntax of the function is: // // RADIANS(angle) // func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument") } angle := argsList.Front().Value.(formulaArg).ToNumber() if angle.Type == ArgError { return angle } return newNumberFormulaArg(math.Pi / 180.0 * angle.Number) } // RAND function generates a random real number between 0 and 1. The syntax of // the function is: // // RAND() // func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments") } return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64()) } // RANDBETWEEN function generates a random integer between two supplied // integers. The syntax of the function is: // // RANDBETWEEN(bottom,top) // func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments") } bottom := argsList.Front().Value.(formulaArg).ToNumber() if bottom.Type == ArgError { return bottom } top := argsList.Back().Value.(formulaArg).ToNumber() if top.Type == ArgError { return top } if top.Number < bottom.Number { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1)) return newNumberFormulaArg(float64(num + int64(bottom.Number))) } // romanNumerals defined a numeral system that originated in ancient Rome and // remained the usual way of writing numbers throughout Europe well into the // Late Middle Ages. type romanNumerals struct { n float64 s string } var romanTable = [][]romanNumerals{ { {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}, }, { {1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}, }, { {1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}, }, { {1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}, }, { {1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}, }, } // ROMAN function converts an arabic number to Roman. I.e. for a supplied // integer, the function returns a text string depicting the roman numeral // form of the number. The syntax of the function is: // // ROMAN(number,[form]) // func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments") } var form int number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if argsList.Len() > 1 { f := argsList.Back().Value.(formulaArg).ToNumber() if f.Type == ArgError { return f } form = int(f.Number) if form < 0 { form = 0 } else if form > 4 { form = 4 } } decimalTable := romanTable[0] switch form { case 1: decimalTable = romanTable[1] case 2: decimalTable = romanTable[2] case 3: decimalTable = romanTable[3] case 4: decimalTable = romanTable[4] } val := math.Trunc(number.Number) buf := bytes.Buffer{} for _, r := range decimalTable { for val >= r.n { buf.WriteString(r.s) val -= r.n } } return newStringFormulaArg(buf.String()) } type roundMode byte const ( closest roundMode = iota down up ) // round rounds a supplied number up or down. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 { var significance float64 if digits > 0 { significance = math.Pow(1/10.0, digits) } else { significance = math.Pow(10.0, -digits) } val, res := math.Modf(number / significance) switch mode { case closest: const eps = 0.499999999 if res >= eps { val++ } else if res <= -eps { val-- } case down: case up: if res > 0 { val++ } else if res < 0 { val-- } } return val * significance } // ROUND function rounds a supplied number up or down, to a specified number // of decimal places. The syntax of the function is: // // ROUND(number,num_digits) // func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } digits := argsList.Back().Value.(formulaArg).ToNumber() if digits.Type == ArgError { return digits } return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest)) } // ROUNDDOWN function rounds a supplied number down towards zero, to a // specified number of decimal places. The syntax of the function is: // // ROUNDDOWN(number,num_digits) // func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } digits := argsList.Back().Value.(formulaArg).ToNumber() if digits.Type == ArgError { return digits } return newNumberFormulaArg(fn.round(number.Number, digits.Number, down)) } // ROUNDUP function rounds a supplied number up, away from zero, to a // specified number of decimal places. The syntax of the function is: // // ROUNDUP(number,num_digits) // func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } digits := argsList.Back().Value.(formulaArg).ToNumber() if digits.Type == ArgError { return digits } return newNumberFormulaArg(fn.round(number.Number, digits.Number, up)) } // SEC function calculates the secant of a given angle. The syntax of the // function is: // // SEC(number) // func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Cos(number.Number)) } // SECH function calculates the hyperbolic secant (sech) of a supplied angle. // The syntax of the function is: // // SECH(number) // func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(1 / math.Cosh(number.Number)) } // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied // number. I.e. if the number is positive, the Sign function returns +1, if // the number is negative, the function returns -1 and if the number is 0 // (zero), the function returns 0. The syntax of the function is: // // SIGN(number) // func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument") } val := argsList.Front().Value.(formulaArg).ToNumber() if val.Type == ArgError { return val } if val.Number < 0 { return newNumberFormulaArg(-1) } if val.Number > 0 { return newNumberFormulaArg(1) } return newNumberFormulaArg(0) } // SIN function calculates the sine of a given angle. The syntax of the // function is: // // SIN(number) // func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Sin(number.Number)) } // SINH function calculates the hyperbolic sine (sinh) of a supplied number. // The syntax of the function is: // // SINH(number) // func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Sinh(number.Number)) } // SQRT function calculates the positive square root of a supplied number. The // syntax of the function is: // // SQRT(number) // func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument") } value := argsList.Front().Value.(formulaArg).ToNumber() if value.Type == ArgError { return value } if value.Number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newNumberFormulaArg(math.Sqrt(value.Number)) } // SQRTPI function returns the square root of a supplied number multiplied by // the mathematical constant, π. The syntax of the function is: // // SQRTPI(number) // func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi)) } // STDEV function calculates the sample standard deviation of a supplied set // of values. The syntax of the function is: // // STDEV(number1,[number2],...) // func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument") } return fn.stdev(false, argsList) } // STDEVdotS function calculates the sample standard deviation of a supplied // set of values. The syntax of the function is: // // STDEV.S(number1,[number2],...) // func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument") } return fn.stdev(false, argsList) } // STDEVA function estimates standard deviation based on a sample. The // standard deviation is a measure of how widely values are dispersed from // the average value (the mean). The syntax of the function is: // // STDEVA(number1,[number2],...) // func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument") } return fn.stdev(true, argsList) } // stdev is an implementation of the formula function STDEV and STDEVA. func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg { pow := func(result, count float64, n, m formulaArg) (float64, float64) { if result == -1 { result = math.Pow((n.Number - m.Number), 2) } else { result += math.Pow((n.Number - m.Number), 2) } count++ return result, count } count, result := -1.0, -1.0 var mean formulaArg if stdeva { mean = fn.AVERAGEA(argsList) } else { mean = fn.AVERAGE(argsList) } for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString, ArgNumber: if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") { continue } else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") { num := token.ToBool() if num.Type == ArgNumber { result, count = pow(result, count, num, mean) continue } } else { num := token.ToNumber() if num.Type == ArgNumber { result, count = pow(result, count, num, mean) } } case ArgList, ArgMatrix: for _, row := range token.ToList() { if row.Type == ArgNumber || row.Type == ArgString { if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") { continue } else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") { num := row.ToBool() if num.Type == ArgNumber { result, count = pow(result, count, num, mean) continue } } else { num := row.ToNumber() if num.Type == ArgNumber { result, count = pow(result, count, num, mean) } } } } } } if count > 0 && result >= 0 { return newNumberFormulaArg(math.Sqrt(result / count)) } return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } // POISSONdotDIST function calculates the Poisson Probability Mass Function or // the Cumulative Poisson Probability Function for a supplied set of // parameters. The syntax of the function is: // // POISSON.DIST(x,mean,cumulative) // func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments") } return fn.POISSON(argsList) } // POISSON function calculates the Poisson Probability Mass Function or the // Cumulative Poisson Probability Function for a supplied set of parameters. // The syntax of the function is: // // POISSON(x,mean,cumulative) // func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments") } var x, mean, cumulative formulaArg if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber { return x } if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber { return mean } if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError { return cumulative } if x.Number < 0 || mean.Number <= 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if cumulative.Number == 1 { summer := 0.0 floor := math.Floor(x.Number) for i := 0; i <= int(floor); i++ { summer += math.Pow(mean.Number, float64(i)) / fact(float64(i)) } return newNumberFormulaArg(math.Exp(0-mean.Number) * summer) } return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number)) } // SUM function adds together a supplied set of numbers and returns the sum of // these values. The syntax of the function is: // // SUM(number1,[number2],...) // func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg { var sum float64 for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if num := token.ToNumber(); num.Type == ArgNumber { sum += num.Number } case ArgNumber: sum += token.Number case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { if num := value.ToNumber(); num.Type == ArgNumber { sum += num.Number } } } } } return newNumberFormulaArg(sum) } // SUMIF function finds the values in a supplied array, that satisfy a given // criteria, and returns the sum of the corresponding values in a second // supplied array. The syntax of the function is: // // SUMIF(range,criteria,[sum_range]) // func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument") } var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String) var rangeMtx = argsList.Front().Value.(formulaArg).Matrix var sumRange [][]formulaArg if argsList.Len() == 3 { sumRange = argsList.Back().Value.(formulaArg).Matrix } var sum, val float64 var err error for rowIdx, row := range rangeMtx { for colIdx, col := range row { var ok bool fromVal := col.String if col.String == "" { continue } if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if ok { if argsList.Len() == 3 { if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx { continue } fromVal = sumRange[rowIdx][colIdx].String } if val, err = strconv.ParseFloat(fromVal, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sum += val } } } return newNumberFormulaArg(sum) } // SUMSQ function returns the sum of squares of a supplied set of values. The // syntax of the function is: // // SUMSQ(number1,[number2],...) // func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg { var val, sq float64 var err error for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString: if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sq += val * val case ArgNumber: sq += token.Number case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { if value.String == "" { continue } if val, err = strconv.ParseFloat(value.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sq += val * val } } } } return newNumberFormulaArg(sq) } // TAN function calculates the tangent of a given angle. The syntax of the // function is: // // TAN(number) // func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Tan(number.Number)) } // TANH function calculates the hyperbolic tangent (tanh) of a supplied // number. The syntax of the function is: // // TANH(number) // func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument") } number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } return newNumberFormulaArg(math.Tanh(number.Number)) } // TRUNC function truncates a supplied number to a specified number of decimal // places. The syntax of the function is: // // TRUNC(number,[number_digits]) // func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument") } var digits, adjust, rtrim float64 var err error number := argsList.Front().Value.(formulaArg).ToNumber() if number.Type == ArgError { return number } if argsList.Len() > 1 { d := argsList.Back().Value.(formulaArg).ToNumber() if d.Type == ArgError { return d } digits = d.Number digits = math.Floor(digits) } adjust = math.Pow(10, digits) x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust) if x != 0 { if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } if (digits > 0) && (rtrim < adjust/10) { return newNumberFormulaArg(number.Number) } return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust) } // Statistical Functions // AVERAGE function returns the arithmetic mean of a list of supplied numbers. // The syntax of the function is: // // AVERAGE(number1,[number2],...) // func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg { args := []formulaArg{} for arg := argsList.Front(); arg != nil; arg = arg.Next() { args = append(args, arg.Value.(formulaArg)) } count, sum := fn.countSum(false, args) if count == 0 { return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero") } return newNumberFormulaArg(sum / count) } // AVERAGEA function returns the arithmetic mean of a list of supplied numbers // with text cell and zero values. The syntax of the function is: // // AVERAGEA(number1,[number2],...) // func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg { args := []formulaArg{} for arg := argsList.Front(); arg != nil; arg = arg.Next() { args = append(args, arg.Value.(formulaArg)) } count, sum := fn.countSum(true, args) if count == 0 { return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero") } return newNumberFormulaArg(sum / count) } // countSum get count and sum for a formula arguments array. func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) { for _, arg := range args { switch arg.Type { case ArgNumber: if countText || !arg.Boolean { sum += arg.Number count++ } case ArgString: if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { continue } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { num := arg.ToBool() if num.Type == ArgNumber { count++ sum += num.Number continue } } num := arg.ToNumber() if countText && num.Type == ArgError && arg.String != "" { count++ } if num.Type == ArgNumber { sum += num.Number count++ } case ArgList, ArgMatrix: cnt, summary := fn.countSum(countText, arg.ToList()) sum += summary count += cnt } } return } // COUNT function returns the count of numeric values in a supplied set of // cells or values. This count includes both numbers and dates. The syntax of // the function is: // // COUNT(value1,[value2],...) // func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg { var count int for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: if arg.ToNumber().Type != ArgError { count++ } case ArgNumber: count++ case ArgMatrix: for _, row := range arg.Matrix { for _, value := range row { if value.ToNumber().Type != ArgError { count++ } } } } } return newNumberFormulaArg(float64(count)) } // COUNTA function returns the number of non-blanks within a supplied set of // cells or values. The syntax of the function is: // // COUNTA(value1,[value2],...) // func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg { var count int for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: if arg.String != "" { count++ } case ArgNumber: count++ case ArgMatrix: for _, row := range arg.ToList() { switch row.Type { case ArgString: if row.String != "" { count++ } case ArgNumber: count++ } } } } return newNumberFormulaArg(float64(count)) } // COUNTBLANK function returns the number of blank cells in a supplied range. // The syntax of the function is: // // COUNTBLANK(range) // func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument") } var count int token := argsList.Front().Value.(formulaArg) switch token.Type { case ArgString: if token.String == "" { count++ } case ArgList, ArgMatrix: for _, row := range token.ToList() { switch row.Type { case ArgString: if row.String == "" { count++ } case ArgEmpty: count++ } } case ArgEmpty: count++ } return newNumberFormulaArg(float64(count)) } // FISHER function calculates the Fisher Transformation for a supplied value. // The syntax of the function is: // // FISHER(x) // func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument") } token := argsList.Front().Value.(formulaArg) switch token.Type { case ArgString: arg := token.ToNumber() if arg.Type == ArgNumber { if arg.Number <= -1 || arg.Number >= 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number))) } case ArgNumber: if token.Number <= -1 || token.Number >= 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number))) } return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument") } // FISHERINV function calculates the inverse of the Fisher Transformation and // returns a value between -1 and +1. The syntax of the function is: // // FISHERINV(y) // func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument") } token := argsList.Front().Value.(formulaArg) switch token.Type { case ArgString: arg := token.ToNumber() if arg.Type == ArgNumber { return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1)) } case ArgNumber: return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1)) } return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument") } // GAMMA function returns the value of the Gamma Function, Γ(n), for a // specified number, n. The syntax of the function is: // // GAMMA(number) // func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument") } token := argsList.Front().Value.(formulaArg) switch token.Type { case ArgString: arg := token.ToNumber() if arg.Type == ArgNumber { if arg.Number <= 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(math.Gamma(arg.Number)) } case ArgNumber: if token.Number <= 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(math.Gamma(token.Number)) } return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument") } // GAMMALN function returns the natural logarithm of the Gamma Function, Γ // (n). The syntax of the function is: // // GAMMALN(x) // func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument") } token := argsList.Front().Value.(formulaArg) switch token.Type { case ArgString: arg := token.ToNumber() if arg.Type == ArgNumber { if arg.Number <= 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(math.Log(math.Gamma(arg.Number))) } case ArgNumber: if token.Number <= 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(math.Log(math.Gamma(token.Number))) } return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument") } // HARMEAN function calculates the harmonic mean of a supplied set of values. // The syntax of the function is: // // HARMEAN(number1,[number2],...) // func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument") } if min := fn.MIN(argsList); min.Number < 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } number, val, cnt := 0.0, 0.0, 0.0 for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: num := arg.ToNumber() if num.Type != ArgNumber { continue } number = num.Number case ArgNumber: number = arg.Number } if number <= 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } val += (1 / number) cnt++ } return newNumberFormulaArg(1 / (val / cnt)) } // KURT function calculates the kurtosis of a supplied set of values. The // syntax of the function is: // // KURT(number1,[number2],...) // func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument") } mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList) if stdev.Number > 0 { count, summer := 0.0, 0.0 for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString, ArgNumber: num := token.ToNumber() if num.Type == ArgError { continue } summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4) count++ case ArgList, ArgMatrix: for _, row := range token.ToList() { if row.Type == ArgNumber || row.Type == ArgString { num := row.ToNumber() if num.Type == ArgError { continue } summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4) count++ } } } } if count > 3 { return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3)))) } } return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } // NORMdotDIST function calculates the Normal Probability Density Function or // the Cumulative Normal Distribution. Function for a supplied set of // parameters. The syntax of the function is: // // NORM.DIST(x,mean,standard_dev,cumulative) // func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg { if argsList.Len() != 4 { return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments") } return fn.NORMDIST(argsList) } // NORMDIST function calculates the Normal Probability Density Function or the // Cumulative Normal Distribution. Function for a supplied set of parameters. // The syntax of the function is: // // NORMDIST(x,mean,standard_dev,cumulative) // func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg { if argsList.Len() != 4 { return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments") } var x, mean, stdDev, cumulative formulaArg if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber { return x } if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber { return mean } if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber { return stdDev } if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError { return cumulative } if stdDev.Number < 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if cumulative.Number == 1 { return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2))))) } return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number))))) } // NORMdotINV function calculates the inverse of the Cumulative Normal // Distribution Function for a supplied value of x, and a supplied // distribution mean & standard deviation. The syntax of the function is: // // NORM.INV(probability,mean,standard_dev) // func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments") } return fn.NORMINV(argsList) } // NORMINV function calculates the inverse of the Cumulative Normal // Distribution Function for a supplied value of x, and a supplied // distribution mean & standard deviation. The syntax of the function is: // // NORMINV(probability,mean,standard_dev) // func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments") } var prob, mean, stdDev formulaArg if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber { return prob } if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber { return mean } if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber { return stdDev } if prob.Number < 0 || prob.Number > 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if stdDev.Number < 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } inv, err := norminv(prob.Number) if err != nil { return newErrorFormulaArg(err.Error(), err.Error()) } return newNumberFormulaArg(inv*stdDev.Number + mean.Number) } // NORMdotSdotDIST function calculates the Standard Normal Cumulative // Distribution Function for a supplied value. The syntax of the function // is: // // NORM.S.DIST(z) // func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments") } args := list.New().Init() args.PushBack(argsList.Front().Value.(formulaArg)) args.PushBack(formulaArg{Type: ArgNumber, Number: 0}) args.PushBack(formulaArg{Type: ArgNumber, Number: 1}) args.PushBack(argsList.Back().Value.(formulaArg)) return fn.NORMDIST(args) } // NORMSDIST function calculates the Standard Normal Cumulative Distribution // Function for a supplied value. The syntax of the function is: // // NORMSDIST(z) // func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument") } args := list.New().Init() args.PushBack(argsList.Front().Value.(formulaArg)) args.PushBack(formulaArg{Type: ArgNumber, Number: 0}) args.PushBack(formulaArg{Type: ArgNumber, Number: 1}) args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true}) return fn.NORMDIST(args) } // NORMSINV function calculates the inverse of the Standard Normal Cumulative // Distribution Function for a supplied probability value. The syntax of the // function is: // // NORMSINV(probability) // func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument") } args := list.New().Init() args.PushBack(argsList.Front().Value.(formulaArg)) args.PushBack(formulaArg{Type: ArgNumber, Number: 0}) args.PushBack(formulaArg{Type: ArgNumber, Number: 1}) return fn.NORMINV(args) } // NORMdotSdotINV function calculates the inverse of the Standard Normal // Cumulative Distribution Function for a supplied probability value. The // syntax of the function is: // // NORM.S.INV(probability) // func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument") } args := list.New().Init() args.PushBack(argsList.Front().Value.(formulaArg)) args.PushBack(formulaArg{Type: ArgNumber, Number: 0}) args.PushBack(formulaArg{Type: ArgNumber, Number: 1}) return fn.NORMINV(args) } // norminv returns the inverse of the normal cumulative distribution for the // specified value. func norminv(p float64) (float64, error) { a := map[int]float64{ 1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02, 4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00, } b := map[int]float64{ 1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02, 4: 6.680131188771972e+01, 5: -1.328068155288572e+01, } c := map[int]float64{ 1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00, 4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00, } d := map[int]float64{ 1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00, 4: 3.754408661907416e+00, } pLow := 0.02425 // Use lower region approx. below this pHigh := 1 - pLow // Use upper region approx. above this if 0 < p && p < pLow { // Rational approximation for lower region. q := math.Sqrt(-2 * math.Log(p)) return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) / ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil } else if pLow <= p && p <= pHigh { // Rational approximation for central region. q := p - 0.5 r := q * q return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q / (((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil } else if pHigh < p && p < 1 { // Rational approximation for upper region. q := math.Sqrt(-2 * math.Log(1-p)) return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) / ((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil } return 0, errors.New(formulaErrorNUM) } // kth is an implementation of the formula function LARGE and SMALL. func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name)) } array := argsList.Front().Value.(formulaArg).ToList() kArg := argsList.Back().Value.(formulaArg).ToNumber() if kArg.Type != ArgNumber { return kArg } k := int(kArg.Number) if k < 1 { return newErrorFormulaArg(formulaErrorNUM, "k should be > 0") } data := []float64{} for _, arg := range array { if numArg := arg.ToNumber(); numArg.Type == ArgNumber { data = append(data, numArg.Number) } } if len(data) < k { return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array") } sort.Float64s(data) if name == "LARGE" { return newNumberFormulaArg(data[len(data)-k]) } return newNumberFormulaArg(data[k-1]) } // LARGE function returns the k'th largest value from an array of numeric // values. The syntax of the function is: // // LARGE(array,k) // func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg { return fn.kth("LARGE", argsList) } // MAX function returns the largest value from a supplied set of numeric // values. The syntax of the function is: // // MAX(number1,[number2],...) // func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument") } return fn.max(false, argsList) } // MAXA function returns the largest value from a supplied set of numeric // values, while counting text and the logical value FALSE as the value 0 and // counting the logical value TRUE as the value 1. The syntax of the function // is: // // MAXA(number1,[number2],...) // func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument") } return fn.max(true, argsList) } // max is an implementation of the formula function MAX and MAXA. func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg { max := -math.MaxFloat64 for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { continue } else { num := arg.ToBool() if num.Type == ArgNumber && num.Number > max { max = num.Number continue } } num := arg.ToNumber() if num.Type != ArgError && num.Number > max { max = num.Number } case ArgNumber: if arg.Number > max { max = arg.Number } case ArgList, ArgMatrix: for _, row := range arg.ToList() { switch row.Type { case ArgString: if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") { continue } else { num := row.ToBool() if num.Type == ArgNumber && num.Number > max { max = num.Number continue } } num := row.ToNumber() if num.Type != ArgError && num.Number > max { max = num.Number } case ArgNumber: if row.Number > max { max = row.Number } } } case ArgError: return arg } } if max == -math.MaxFloat64 { max = 0 } return newNumberFormulaArg(max) } // MEDIAN function returns the statistical median (the middle value) of a list // of supplied numbers. The syntax of the function is: // // MEDIAN(number1,[number2],...) // func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument") } var values = []float64{} var median, digits float64 var err error for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: num := arg.ToNumber() if num.Type == ArgError { return newErrorFormulaArg(formulaErrorVALUE, num.Error) } values = append(values, num.Number) case ArgNumber: values = append(values, arg.Number) case ArgMatrix: for _, row := range arg.Matrix { for _, value := range row { if value.String == "" { continue } if digits, err = strconv.ParseFloat(value.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } values = append(values, digits) } } } } sort.Float64s(values) if len(values)%2 == 0 { median = (values[len(values)/2-1] + values[len(values)/2]) / 2 } else { median = values[len(values)/2] } return newNumberFormulaArg(median) } // MIN function returns the smallest value from a supplied set of numeric // values. The syntax of the function is: // // MIN(number1,[number2],...) // func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument") } return fn.min(false, argsList) } // MINA function returns the smallest value from a supplied set of numeric // values, while counting text and the logical value FALSE as the value 0 and // counting the logical value TRUE as the value 1. The syntax of the function // is: // // MINA(number1,[number2],...) // func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument") } return fn.min(true, argsList) } // min is an implementation of the formula function MIN and MINA. func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg { min := math.MaxFloat64 for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { continue } else { num := arg.ToBool() if num.Type == ArgNumber && num.Number < min { min = num.Number continue } } num := arg.ToNumber() if num.Type != ArgError && num.Number < min { min = num.Number } case ArgNumber: if arg.Number < min { min = arg.Number } case ArgList, ArgMatrix: for _, row := range arg.ToList() { switch row.Type { case ArgString: if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") { continue } else { num := row.ToBool() if num.Type == ArgNumber && num.Number < min { min = num.Number continue } } num := row.ToNumber() if num.Type != ArgError && num.Number < min { min = num.Number } case ArgNumber: if row.Number < min { min = row.Number } } } case ArgError: return arg } } if min == math.MaxFloat64 { min = 0 } return newNumberFormulaArg(min) } // PERCENTILEdotINC function returns the k'th percentile (i.e. the value below // which k% of the data values fall) for a supplied range of values and a // supplied k. The syntax of the function is: // // PERCENTILE.INC(array,k) // func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments") } return fn.PERCENTILE(argsList) } // PERCENTILE function returns the k'th percentile (i.e. the value below which // k% of the data values fall) for a supplied range of values and a supplied // k. The syntax of the function is: // // PERCENTILE(array,k) // func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments") } array := argsList.Front().Value.(formulaArg).ToList() k := argsList.Back().Value.(formulaArg).ToNumber() if k.Type != ArgNumber { return k } if k.Number < 0 || k.Number > 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } numbers := []float64{} for _, arg := range array { if arg.Type == ArgError { return arg } num := arg.ToNumber() if num.Type == ArgNumber { numbers = append(numbers, num.Number) } } cnt := len(numbers) sort.Float64s(numbers) idx := k.Number * (float64(cnt) - 1) base := math.Floor(idx) if idx == base { return newNumberFormulaArg(numbers[int(idx)]) } next := base + 1 proportion := idx - base return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion)) } // PERMUT function calculates the number of permutations of a specified number // of objects from a set of objects. The syntax of the function is: // // PERMUT(number,number_chosen) // func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments") } number := argsList.Front().Value.(formulaArg).ToNumber() chosen := argsList.Back().Value.(formulaArg).ToNumber() if number.Type != ArgNumber { return number } if chosen.Type != ArgNumber { return chosen } if number.Number < chosen.Number { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number))) } // PERMUTATIONA function calculates the number of permutations, with // repetitions, of a specified number of objects from a set. The syntax of // the function is: // // PERMUTATIONA(number,number_chosen) // func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments") } number := argsList.Front().Value.(formulaArg).ToNumber() chosen := argsList.Back().Value.(formulaArg).ToNumber() if number.Type != ArgNumber { return number } if chosen.Type != ArgNumber { return chosen } num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number) if num < 0 || numChosen < 0 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } return newNumberFormulaArg(math.Pow(num, numChosen)) } // QUARTILE function returns a requested quartile of a supplied range of // values. The syntax of the function is: // // QUARTILE(array,quart) // func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments") } quart := argsList.Back().Value.(formulaArg).ToNumber() if quart.Type != ArgNumber { return quart } if quart.Number < 0 || quart.Number > 4 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } args := list.New().Init() args.PushBack(argsList.Front().Value.(formulaArg)) args.PushBack(newNumberFormulaArg(quart.Number / 4)) return fn.PERCENTILE(args) } // QUARTILEdotINC function returns a requested quartile of a supplied range of // values. The syntax of the function is: // // QUARTILE.INC(array,quart) // func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments") } return fn.QUARTILE(argsList) } // SKEW function calculates the skewness of the distribution of a supplied set // of values. The syntax of the function is: // // SKEW(number1,[number2],...) // func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument") } mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0 for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgNumber, ArgString: num := token.ToNumber() if num.Type == ArgError { return num } summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3) count++ case ArgList, ArgMatrix: for _, row := range token.ToList() { numArg := row.ToNumber() if numArg.Type != ArgNumber { continue } summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3) count++ } } } if count > 2 { return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2)))) } return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } // SMALL function returns the k'th smallest value from an array of numeric // values. The syntax of the function is: // // SMALL(array,k) // func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg { return fn.kth("SMALL", argsList) } // VARP function returns the Variance of a given set of values. The syntax of // the function is: // // VARP(number1,[number2],...) // func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument") } summerA, summerB, count := 0.0, 0.0, 0.0 for arg := argsList.Front(); arg != nil; arg = arg.Next() { for _, token := range arg.Value.(formulaArg).ToList() { if num := token.ToNumber(); num.Type == ArgNumber { summerA += (num.Number * num.Number) summerB += num.Number count++ } } } if count > 0 { summerA *= count summerB *= summerB return newNumberFormulaArg((summerA - summerB) / (count * count)) } return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } // VARdotP function returns the Variance of a given set of values. The syntax // of the function is: // // VAR.P(number1,[number2],...) // func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument") } return fn.VARP(argsList) } // Information Functions // ISBLANK function tests if a specified cell is blank (empty) and if so, // returns TRUE; Otherwise the function returns FALSE. The syntax of the // function is: // // ISBLANK(value) // func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" switch token.Type { case ArgUnknown: result = "TRUE" case ArgString: if token.String == "" { result = "TRUE" } } return newStringFormulaArg(result) } // ISERR function tests if an initial supplied expression (or value) returns // any Excel Error, except the #N/A error. If so, the function returns the // logical value TRUE; If the supplied value is not an error or is the #N/A // error, the ISERR function returns FALSE. The syntax of the function is: // // ISERR(value) // func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" if token.Type == ArgError { for _, errType := range []string{ formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA, } { if errType == token.String { result = "TRUE" } } } return newStringFormulaArg(result) } // ISERROR function tests if an initial supplied expression (or value) returns // an Excel Error, and if so, returns the logical value TRUE; Otherwise the // function returns FALSE. The syntax of the function is: // // ISERROR(value) // func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" if token.Type == ArgError { for _, errType := range []string{ formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA, } { if errType == token.String { result = "TRUE" } } } return newStringFormulaArg(result) } // ISEVEN function tests if a supplied number (or numeric expression) // evaluates to an even number, and if so, returns TRUE; Otherwise, the // function returns FALSE. The syntax of the function is: // // ISEVEN(value) // func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument") } var ( token = argsList.Front().Value.(formulaArg) result = "FALSE" numeric int err error ) if token.Type == ArgString { if numeric, err = strconv.Atoi(token.String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if numeric == numeric/2*2 { return newStringFormulaArg("TRUE") } } return newStringFormulaArg(result) } // ISNA function tests if an initial supplied expression (or value) returns // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function // returns FALSE. The syntax of the function is: // // ISNA(value) // func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" if token.Type == ArgError && token.String == formulaErrorNA { result = "TRUE" } return newStringFormulaArg(result) } // ISNONTEXT function function tests if a supplied value is text. If not, the // function returns TRUE; If the supplied value is text, the function returns // FALSE. The syntax of the function is: // // ISNONTEXT(value) // func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "TRUE" if token.Type == ArgString && token.String != "" { result = "FALSE" } return newStringFormulaArg(result) } // ISNUMBER function function tests if a supplied value is a number. If so, // the function returns TRUE; Otherwise it returns FALSE. The syntax of the // function is: // // ISNUMBER(value) // func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument") } token, result := argsList.Front().Value.(formulaArg), false if token.Type == ArgString && token.String != "" { if _, err := strconv.Atoi(token.String); err == nil { result = true } } return newBoolFormulaArg(result) } // ISODD function tests if a supplied number (or numeric expression) evaluates // to an odd number, and if so, returns TRUE; Otherwise, the function returns // FALSE. The syntax of the function is: // // ISODD(value) // func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument") } var ( token = argsList.Front().Value.(formulaArg) result = "FALSE" numeric int err error ) if token.Type == ArgString { if numeric, err = strconv.Atoi(token.String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if numeric != numeric/2*2 { return newStringFormulaArg("TRUE") } } return newStringFormulaArg(result) } // ISTEXT function tests if a supplied value is text, and if so, returns TRUE; // Otherwise, the function returns FALSE. The syntax of the function is: // // ISTEXT(value) // func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument") } token := argsList.Front().Value.(formulaArg) if token.ToNumber().Type != ArgError { return newBoolFormulaArg(false) } return newBoolFormulaArg(token.Type == ArgString) } // N function converts data into a numeric value. The syntax of the function // is: // // N(value) // func (fn *formulaFuncs) N(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument") } token, num := argsList.Front().Value.(formulaArg), 0.0 if token.Type == ArgError { return token } if arg := token.ToNumber(); arg.Type == ArgNumber { num = arg.Number } if token.Value() == "TRUE" { num = 1 } return newNumberFormulaArg(num) } // NA function returns the Excel #N/A error. This error message has the // meaning 'value not available' and is produced when an Excel Formula is // unable to find a value that it needs. The syntax of the function is: // // NA() // func (fn *formulaFuncs) NA(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments") } return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } // SHEET function returns the Sheet number for a specified reference. The // syntax of the function is: // // SHEET() // func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments") } return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1)) } // T function tests if a supplied value is text and if so, returns the // supplied text; Otherwise, the function returns an empty text string. The // syntax of the function is: // // T(value) // func (fn *formulaFuncs) T(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument") } token := argsList.Front().Value.(formulaArg) if token.Type == ArgError { return token } if token.Type == ArgNumber { return newStringFormulaArg("") } return newStringFormulaArg(token.Value()) } // Logical Functions // AND function tests a number of supplied conditions and returns TRUE or // FALSE. The syntax of the function is: // // AND(logical_test1,[logical_test2],...) // func (fn *formulaFuncs) AND(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument") } if argsList.Len() > 30 { return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments") } var ( and = true val float64 err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if token.String == "TRUE" { continue } if token.String == "FALSE" { return newStringFormulaArg(token.String) } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } and = and && (val != 0) case ArgMatrix: // TODO return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } return newBoolFormulaArg(and) } // FALSE function function returns the logical value FALSE. The syntax of the // function is: // // FALSE() // func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments") } return newBoolFormulaArg(false) } // IFERROR function receives two values (or expressions) and tests if the // first of these evaluates to an error. The syntax of the function is: // // IFERROR(value,value_if_error) // func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments") } value := argsList.Front().Value.(formulaArg) if value.Type != ArgError { if value.Type == ArgEmpty { return newNumberFormulaArg(0) } return value } return argsList.Back().Value.(formulaArg) } // NOT function returns the opposite to a supplied logical value. The syntax // of the function is: // // NOT(logical) // func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument") } token := argsList.Front().Value.(formulaArg) switch token.Type { case ArgString, ArgList: if strings.ToUpper(token.String) == "TRUE" { return newBoolFormulaArg(false) } if strings.ToUpper(token.String) == "FALSE" { return newBoolFormulaArg(true) } case ArgNumber: return newBoolFormulaArg(!(token.Number != 0)) case ArgError: return token } return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument") } // OR function tests a number of supplied conditions and returns either TRUE // or FALSE. The syntax of the function is: // // OR(logical_test1,[logical_test2],...) // func (fn *formulaFuncs) OR(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument") } if argsList.Len() > 30 { return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments") } var ( or bool val float64 err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if token.String == "FALSE" { continue } if token.String == "TRUE" { or = true continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } or = val != 0 case ArgMatrix: // TODO return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or))) } // TRUE function returns the logical value TRUE. The syntax of the function // is: // // TRUE() // func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments") } return newBoolFormulaArg(true) } // Date and Time Functions // DATE returns a date, from a user-supplied year, month and day. The syntax // of the function is: // // DATE(year,month,day) // func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments") } year := argsList.Front().Value.(formulaArg).ToNumber() month := argsList.Front().Next().Value.(formulaArg).ToNumber() day := argsList.Back().Value.(formulaArg).ToNumber() if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments") } d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number)) return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String()) } // DATEDIF function calculates the number of days, months, or years between // two dates. The syntax of the function is: // // DATEDIF(start_date,end_date,unit) // func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments") } startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber() if startArg.Type != ArgNumber || endArg.Type != ArgNumber { return startArg } if startArg.Number > endArg.Number { return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date") } if startArg.Number == endArg.Number { return newNumberFormulaArg(0) } unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value()) startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false) sy, smm, sd := startDate.Date() ey, emm, ed := endDate.Date() sm, em, diff := int(smm), int(emm), 0.0 switch unit { case "d": return newNumberFormulaArg(endArg.Number - startArg.Number) case "y": diff = float64(ey - sy) if em < sm || (em == sm && ed < sd) { diff-- } case "m": ydiff := ey - sy mdiff := em - sm if ed < sd { mdiff-- } if mdiff < 0 { ydiff-- mdiff += 12 } diff = float64(ydiff*12 + mdiff) case "md": smMD := em if ed < sd { smMD-- } diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1 case "ym": diff = float64(em - sm) if ed < sd { diff-- } if diff < 0 { diff += 12 } case "yd": syYD := sy if em < sm || (em == sm && ed < sd) { syYD++ } s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed)) e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd)) diff = s - e default: return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit") } return newNumberFormulaArg(diff) } // NOW function returns the current date and time. The function receives no // arguments and therefore. The syntax of the function is: // // NOW() // func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments") } now := time.Now() _, offset := now.Zone() return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400) } // TODAY function returns the current date. The function has no arguments and // therefore. The syntax of the function is: // // TODAY() // func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments") } now := time.Now() _, offset := now.Zone() return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1) } // makeDate return date as a Unix time, the number of seconds elapsed since // January 1, 1970 UTC. func makeDate(y int, m time.Month, d int) int64 { if y == 1900 && int(m) <= 2 { d-- } date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC) return date.Unix() } // daysBetween return time interval of the given start timestamp and end // timestamp. func daysBetween(startDate, endDate int64) float64 { return float64(int(0.5 + float64((endDate-startDate)/86400))) } // Text Functions // CHAR function returns the character relating to a supplied character set // number (from 1 to 255). syntax of the function is: // // CHAR(number) // func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type != ArgNumber { return arg } num := int(arg.Number) if num < 0 || num > 255 { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } return newStringFormulaArg(fmt.Sprintf("%c", num)) } // CLEAN removes all non-printable characters from a supplied text string. The // syntax of the function is: // // CLEAN(text) // func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument") } b := bytes.Buffer{} for _, c := range argsList.Front().Value.(formulaArg).String { if c > 31 { b.WriteRune(c) } } return newStringFormulaArg(b.String()) } // CODE function converts the first character of a supplied text string into // the associated numeric character set code used by your computer. The // syntax of the function is: // // CODE(text) // func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg { return fn.code("CODE", argsList) } // code is an implementation of the formula function CODE and UNICODE. func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name)) } text := argsList.Front().Value.(formulaArg).Value() if len(text) == 0 { if name == "CODE" { return newNumberFormulaArg(0) } return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } return newNumberFormulaArg(float64(text[0])) } // CONCAT function joins together a series of supplied text strings into one // combined text string. // // CONCAT(text1,[text2],...) // func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg { return fn.concat("CONCAT", argsList) } // CONCATENATE function joins together a series of supplied text strings into // one combined text string. // // CONCATENATE(text1,[text2],...) // func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg { return fn.concat("CONCATENATE", argsList) } // concat is an implementation of the formula function CONCAT and CONCATENATE. func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg { buf := bytes.Buffer{} for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString: buf.WriteString(token.String) case ArgNumber: if token.Boolean { if token.Number == 0 { buf.WriteString("FALSE") } else { buf.WriteString("TRUE") } } else { buf.WriteString(token.Value()) } default: return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name)) } } return newStringFormulaArg(buf.String()) } // EXACT function tests if two supplied text strings or values are exactly // equal and if so, returns TRUE; Otherwise, the function returns FALSE. The // function is case-sensitive. The syntax of the function is: // // EXACT(text1,text2) // func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments") } text1 := argsList.Front().Value.(formulaArg).Value() text2 := argsList.Back().Value.(formulaArg).Value() return newBoolFormulaArg(text1 == text2) } // FIXED function rounds a supplied number to a specified number of decimal // places and then converts this into text. The syntax of the function is: // // FIXED(number,[decimals],[no_commas]) // func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments") } numArg := argsList.Front().Value.(formulaArg).ToNumber() if numArg.Type != ArgNumber { return numArg } precision, decimals, noCommas := 0, 0, false s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".") if argsList.Len() == 1 && len(s) == 2 { precision = len(s[1]) decimals = len(s[1]) } if argsList.Len() >= 2 { decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber() if decimalsArg.Type != ArgNumber { return decimalsArg } decimals = int(decimalsArg.Number) } if argsList.Len() == 3 { noCommasArg := argsList.Back().Value.(formulaArg).ToBool() if noCommasArg.Type == ArgError { return noCommasArg } noCommas = noCommasArg.Boolean } n := math.Pow(10, float64(decimals)) r := numArg.Number * n fixed := float64(int(r+math.Copysign(0.5, r))) / n if decimals > 0 { precision = decimals } if noCommas { return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed)) } p := message.NewPrinter(language.English) return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed)) } // FIND function returns the position of a specified character or sub-string // within a supplied text string. The function is case-sensitive. The syntax // of the function is: // // FIND(find_text,within_text,[start_num]) // func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg { return fn.find("FIND", argsList) } // FINDB counts each double-byte character as 2 when you have enabled the // editing of a language that supports DBCS and then set it as the default // language. Otherwise, FINDB counts each character as 1. The syntax of the // function is: // // FINDB(find_text,within_text,[start_num]) // func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg { return fn.find("FINDB", argsList) } // find is an implementation of the formula function FIND and FINDB. func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name)) } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name)) } findText := argsList.Front().Value.(formulaArg).Value() withinText := argsList.Front().Next().Value.(formulaArg).Value() startNum, result := 1, 1 if argsList.Len() == 3 { numArg := argsList.Back().Value.(formulaArg).ToNumber() if numArg.Type != ArgNumber { return numArg } if numArg.Number < 0 { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } startNum = int(numArg.Number) } if findText == "" { return newNumberFormulaArg(float64(startNum)) } for idx := range withinText { if result < startNum { result++ } if strings.Index(withinText[idx:], findText) == 0 { return newNumberFormulaArg(float64(result)) } result++ } return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } // LEFT function returns a specified number of characters from the start of a // supplied text string. The syntax of the function is: // // LEFT(text,[num_chars]) // func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg { return fn.leftRight("LEFT", argsList) } // LEFTB returns the first character or characters in a text string, based on // the number of bytes you specify. The syntax of the function is: // // LEFTB(text,[num_bytes]) // func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg { return fn.leftRight("LEFTB", argsList) } // leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT, // RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese // (Traditional), and Korean. func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name)) } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name)) } text, numChars := argsList.Front().Value.(formulaArg).Value(), 1 if argsList.Len() == 2 { numArg := argsList.Back().Value.(formulaArg).ToNumber() if numArg.Type != ArgNumber { return numArg } if numArg.Number < 0 { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } numChars = int(numArg.Number) } if len(text) > numChars { if name == "LEFT" || name == "LEFTB" { return newStringFormulaArg(text[:numChars]) } return newStringFormulaArg(text[len(text)-numChars:]) } return newStringFormulaArg(text) } // LEN returns the length of a supplied text string. The syntax of the // function is: // // LEN(text) // func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument") } return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String))) } // LENB returns the number of bytes used to represent the characters in a text // string. LENB counts 2 bytes per character only when a DBCS language is set // as the default language. Otherwise LENB behaves the same as LEN, counting // 1 byte per character. The syntax of the function is: // // LENB(text) // // TODO: the languages that support DBCS include Japanese, Chinese // (Simplified), Chinese (Traditional), and Korean. func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument") } return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String))) } // LOWER converts all characters in a supplied text string to lower case. The // syntax of the function is: // // LOWER(text) // func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument") } return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String)) } // MID function returns a specified number of characters from the middle of a // supplied text string. The syntax of the function is: // // MID(text,start_num,num_chars) // func (fn *formulaFuncs) MID(argsList *list.List) formulaArg { return fn.mid("MID", argsList) } // MIDB returns a specific number of characters from a text string, starting // at the position you specify, based on the number of bytes you specify. The // syntax of the function is: // // MID(text,start_num,num_chars) // func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg { return fn.mid("MIDB", argsList) } // mid is an implementation of the formula function MID and MIDB. TODO: // support DBCS include Japanese, Chinese (Simplified), Chinese // (Traditional), and Korean. func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name)) } text := argsList.Front().Value.(formulaArg).Value() startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if startNumArg.Type != ArgNumber { return startNumArg } if numCharsArg.Type != ArgNumber { return numCharsArg } startNum := int(startNumArg.Number) if startNum < 0 { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } textLen := len(text) if startNum > textLen { return newStringFormulaArg("") } startNum-- endNum := startNum + int(numCharsArg.Number) if endNum > textLen+1 { return newStringFormulaArg(text[startNum:]) } return newStringFormulaArg(text[startNum:endNum]) } // PROPER converts all characters in a supplied text string to proper case // (i.e. all letters that do not immediately follow another letter are set to // upper case and all other characters are lower case). The syntax of the // function is: // // PROPER(text) // func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument") } buf := bytes.Buffer{} isLetter := false for _, char := range argsList.Front().Value.(formulaArg).String { if !isLetter && unicode.IsLetter(char) { buf.WriteRune(unicode.ToUpper(char)) } else { buf.WriteRune(unicode.ToLower(char)) } isLetter = unicode.IsLetter(char) } return newStringFormulaArg(buf.String()) } // REPLACE function replaces all or part of a text string with another string. // The syntax of the function is: // // REPLACE(old_text,start_num,num_chars,new_text) // func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg { return fn.replace("REPLACE", argsList) } // REPLACEB replaces part of a text string, based on the number of bytes you // specify, with a different text string. // // REPLACEB(old_text,start_num,num_chars,new_text) // func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg { return fn.replace("REPLACEB", argsList) } // replace is an implementation of the formula function REPLACE and REPLACEB. // TODO: support DBCS include Japanese, Chinese (Simplified), Chinese // (Traditional), and Korean. func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg { if argsList.Len() != 4 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name)) } oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value() startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if startNumArg.Type != ArgNumber { return startNumArg } if numCharsArg.Type != ArgNumber { return numCharsArg } oldTextLen, startIdx := len(oldText), int(startNumArg.Number) if startIdx > oldTextLen { startIdx = oldTextLen + 1 } endIdx := startIdx + int(numCharsArg.Number) if endIdx > oldTextLen { endIdx = oldTextLen + 1 } if startIdx < 1 || endIdx < 1 { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } result := oldText[:startIdx-1] + newText + oldText[endIdx-1:] return newStringFormulaArg(result) } // REPT function returns a supplied text string, repeated a specified number // of times. The syntax of the function is: // // REPT(text,number_times) // func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments") } text := argsList.Front().Value.(formulaArg) if text.Type != ArgString { return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string") } times := argsList.Back().Value.(formulaArg).ToNumber() if times.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number") } if times.Number < 0 { return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0") } if times.Number == 0 { return newStringFormulaArg("") } buf := bytes.Buffer{} for i := 0; i < int(times.Number); i++ { buf.WriteString(text.String) } return newStringFormulaArg(buf.String()) } // RIGHT function returns a specified number of characters from the end of a // supplied text string. The syntax of the function is: // // RIGHT(text,[num_chars]) // func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg { return fn.leftRight("RIGHT", argsList) } // RIGHTB returns the last character or characters in a text string, based on // the number of bytes you specify. The syntax of the function is: // // RIGHTB(text,[num_bytes]) // func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg { return fn.leftRight("RIGHTB", argsList) } // SUBSTITUTE function replaces one or more instances of a given text string, // within an original text string. The syntax of the function is: // // SUBSTITUTE(text,old_text,new_text,[instance_num]) // func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg { if argsList.Len() != 3 && argsList.Len() != 4 { return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments") } text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg) newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0 if argsList.Len() == 3 { return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1)) } instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber() if instanceNumArg.Type != ArgNumber { return instanceNumArg } instanceNum = int(instanceNumArg.Number) if instanceNum < 1 { return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0") } str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1 for { count-- index := strings.Index(str, oldText.Value()) if index == -1 { pos = -1 break } else { pos = index + chars if count == 0 { break } idx := oldTextLen + index chars += idx str = str[idx:] } } if pos == -1 { return newStringFormulaArg(text.Value()) } pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:] return newStringFormulaArg(pre + newText.Value() + post) } // TRIM removes extra spaces (i.e. all spaces except for single spaces between // words or characters) from a supplied text string. The syntax of the // function is: // // TRIM(text) // func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument") } return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String)) } // UNICHAR returns the Unicode character that is referenced by the given // numeric value. The syntax of the function is: // // UNICHAR(number) // func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument") } numArg := argsList.Front().Value.(formulaArg).ToNumber() if numArg.Type != ArgNumber { return numArg } if numArg.Number <= 0 || numArg.Number > 55295 { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } return newStringFormulaArg(string(rune(numArg.Number))) } // UNICODE function returns the code point for the first character of a // supplied text string. The syntax of the function is: // // UNICODE(text) // func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg { return fn.code("UNICODE", argsList) } // UPPER converts all characters in a supplied text string to upper case. The // syntax of the function is: // // UPPER(text) // func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument") } return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String)) } // Conditional Functions // IF function tests a supplied condition and returns one result if the // condition evaluates to TRUE, and another result if the condition evaluates // to FALSE. The syntax of the function is: // // IF(logical_test,value_if_true,value_if_false) // func (fn *formulaFuncs) IF(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments") } token := argsList.Front().Value.(formulaArg) var ( cond bool err error result string ) switch token.Type { case ArgString: if cond, err = strconv.ParseBool(token.String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if argsList.Len() == 1 { return newBoolFormulaArg(cond) } if cond { return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String) } if argsList.Len() == 3 { result = argsList.Back().Value.(formulaArg).String } } return newStringFormulaArg(result) } // Lookup and Reference Functions // CHOOSE function returns a value from an array, that corresponds to a // supplied index number (position). The syntax of the function is: // // CHOOSE(index_num,value1,[value2],...) // func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments") } idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number") } if argsList.Len() <= idx { return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values") } arg := argsList.Front() for i := 0; i < idx; i++ { arg = arg.Next() } var result formulaArg switch arg.Value.(formulaArg).Type { case ArgString: result = newStringFormulaArg(arg.Value.(formulaArg).String) case ArgMatrix: result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix) } return result } // deepMatchRune finds whether the text deep matches/satisfies the pattern // string. func deepMatchRune(str, pattern []rune, simple bool) bool { for len(pattern) > 0 { switch pattern[0] { default: if len(str) == 0 || str[0] != pattern[0] { return false } case '?': if len(str) == 0 && !simple { return false } case '*': return deepMatchRune(str, pattern[1:], simple) || (len(str) > 0 && deepMatchRune(str[1:], pattern, simple)) } str = str[1:] pattern = pattern[1:] } return len(str) == 0 && len(pattern) == 0 } // matchPattern finds whether the text matches or satisfies the pattern // string. The pattern supports '*' and '?' wildcards in the pattern string. func matchPattern(pattern, name string) (matched bool) { if pattern == "" { return name == pattern } if pattern == "*" { return true } rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern)) for _, r := range name { rname = append(rname, r) } for _, r := range pattern { rpattern = append(rpattern, r) } simple := false // Does extended wildcard '*' and '?' match. return deepMatchRune(rname, rpattern, simple) } // compareFormulaArg compares the left-hand sides and the right-hand sides // formula arguments by given conditions such as case sensitive, if exact // match, and make compare result as formula criteria condition type. func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte { if lhs.Type != rhs.Type { return criteriaErr } switch lhs.Type { case ArgNumber: if lhs.Number == rhs.Number { return criteriaEq } if lhs.Number < rhs.Number { return criteriaL } return criteriaG case ArgString: ls, rs := lhs.String, rhs.String if !caseSensitive { ls, rs = strings.ToLower(ls), strings.ToLower(rs) } if exactMatch { match := matchPattern(rs, ls) if match { return criteriaEq } return criteriaG } switch strings.Compare(ls, rs) { case 1: return criteriaG case -1: return criteriaL case 0: return criteriaEq } return criteriaErr case ArgEmpty: return criteriaEq case ArgList: return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch) case ArgMatrix: return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch) } return criteriaErr } // compareFormulaArgList compares the left-hand sides and the right-hand sides // list type formula arguments. func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte { if len(lhs.List) < len(rhs.List) { return criteriaL } if len(lhs.List) > len(rhs.List) { return criteriaG } for arg := range lhs.List { criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch) if criteria != criteriaEq { return criteria } } return criteriaEq } // compareFormulaArgMatrix compares the left-hand sides and the right-hand sides // matrix type formula arguments. func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte { if len(lhs.Matrix) < len(rhs.Matrix) { return criteriaL } if len(lhs.Matrix) > len(rhs.Matrix) { return criteriaG } for i := range lhs.Matrix { left := lhs.Matrix[i] right := lhs.Matrix[i] if len(left) < len(right) { return criteriaL } if len(left) > len(right) { return criteriaG } for arg := range left { criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch) if criteria != criteriaEq { return criteria } } } return criteriaEq } // COLUMN function returns the first column number within a supplied reference // or the number of the current column. The syntax of the function is: // // COLUMN([reference]) // func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg { if argsList.Len() > 1 { return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument") } if argsList.Len() == 1 { if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 { return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col)) } if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 { return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col)) } return newErrorFormulaArg(formulaErrorVALUE, "invalid reference") } col, _, _ := CellNameToCoordinates(fn.cell) return newNumberFormulaArg(float64(col)) } // COLUMNS function receives an Excel range and returns the number of columns // that are contained within the range. The syntax of the function is: // // COLUMNS(array) // func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument") } var min, max int if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 { crs := argsList.Front().Value.(formulaArg).cellRanges for cr := crs.Front(); cr != nil; cr = cr.Next() { if min == 0 { min = cr.Value.(cellRange).From.Col } if min > cr.Value.(cellRange).From.Col { min = cr.Value.(cellRange).From.Col } if min > cr.Value.(cellRange).To.Col { min = cr.Value.(cellRange).To.Col } if max < cr.Value.(cellRange).To.Col { max = cr.Value.(cellRange).To.Col } if max < cr.Value.(cellRange).From.Col { max = cr.Value.(cellRange).From.Col } } } if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 { cr := argsList.Front().Value.(formulaArg).cellRefs for refs := cr.Front(); refs != nil; refs = refs.Next() { if min == 0 { min = refs.Value.(cellRef).Col } if min > refs.Value.(cellRef).Col { min = refs.Value.(cellRef).Col } if max < refs.Value.(cellRef).Col { max = refs.Value.(cellRef).Col } } } if max == TotalColumns { return newNumberFormulaArg(float64(TotalColumns)) } result := max - min + 1 if max == min { if min == 0 { return newErrorFormulaArg(formulaErrorVALUE, "invalid reference") } return newNumberFormulaArg(float64(1)) } return newNumberFormulaArg(float64(result)) } // HLOOKUP function 'looks up' a given value in the top row of a data array // (or table), and returns the corresponding value from another row of the // array. The syntax of the function is: // // HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup]) // func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg { if argsList.Len() < 3 { return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments") } if argsList.Len() > 4 { return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments") } lookupValue := argsList.Front().Value.(formulaArg) tableArray := argsList.Front().Next().Value.(formulaArg) if tableArray.Type != ArgMatrix { return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array") } rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if rowArg.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument") } rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false if argsList.Len() == 4 { rangeLookup := argsList.Back().Value.(formulaArg).ToBool() if rangeLookup.Type == ArgError { return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error) } if rangeLookup.Number == 0 { exactMatch = true } } row := tableArray.Matrix[0] if exactMatch || len(tableArray.Matrix) == TotalRows { start: for idx, mtx := range row { lhs := mtx switch lookupValue.Type { case ArgNumber: if !lookupValue.Boolean { lhs = mtx.ToNumber() if lhs.Type == ArgError { lhs = mtx } } case ArgMatrix: lhs = tableArray } if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq { matchIdx = idx wasExact = true break start } } } else { matchIdx, wasExact = hlookupBinarySearch(row, lookupValue) } if matchIdx == -1 { return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found") } if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) { return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index") } row = tableArray.Matrix[rowIdx] if wasExact || !exactMatch { return row[matchIdx] } return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found") } // VLOOKUP function 'looks up' a given value in the left-hand column of a // data array (or table), and returns the corresponding value from another // column of the array. The syntax of the function is: // // VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup]) // func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg { if argsList.Len() < 3 { return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments") } if argsList.Len() > 4 { return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments") } lookupValue := argsList.Front().Value.(formulaArg) tableArray := argsList.Front().Next().Value.(formulaArg) if tableArray.Type != ArgMatrix { return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array") } colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if colIdx.Type != ArgNumber { return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument") } col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false if argsList.Len() == 4 { rangeLookup := argsList.Back().Value.(formulaArg).ToBool() if rangeLookup.Type == ArgError { return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error) } if rangeLookup.Number == 0 { exactMatch = true } } if exactMatch || len(tableArray.Matrix) == TotalRows { start: for idx, mtx := range tableArray.Matrix { lhs := mtx[0] switch lookupValue.Type { case ArgNumber: if !lookupValue.Boolean { lhs = mtx[0].ToNumber() if lhs.Type == ArgError { lhs = mtx[0] } } case ArgMatrix: lhs = tableArray } if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq { matchIdx = idx wasExact = true break start } } } else { matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue) } if matchIdx == -1 { return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found") } mtx := tableArray.Matrix[matchIdx] if col < 0 || col >= len(mtx) { return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index") } if wasExact || !exactMatch { return mtx[col] } return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found") } // vlookupBinarySearch finds the position of a target value when range lookup // is TRUE, if the data of table array can't guarantee be sorted, it will // return wrong result. func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) { var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1 for low <= high { var mid int = low + (high-low)/2 mtx := tableArray.Matrix[mid] lhs := mtx[0] switch lookupValue.Type { case ArgNumber: if !lookupValue.Boolean { lhs = mtx[0].ToNumber() if lhs.Type == ArgError { lhs = mtx[0] } } case ArgMatrix: lhs = tableArray } result := compareFormulaArg(lhs, lookupValue, false, false) if result == criteriaEq { matchIdx, wasExact = mid, true return } else if result == criteriaG { high = mid - 1 } else if result == criteriaL { matchIdx, low = mid, mid+1 if lhs.Value() != "" { lastMatchIdx = matchIdx } } else { return -1, false } } matchIdx, wasExact = lastMatchIdx, true return } // vlookupBinarySearch finds the position of a target value when range lookup // is TRUE, if the data of table array can't guarantee be sorted, it will // return wrong result. func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) { var low, high, lastMatchIdx int = 0, len(row) - 1, -1 for low <= high { var mid int = low + (high-low)/2 mtx := row[mid] result := compareFormulaArg(mtx, lookupValue, false, false) if result == criteriaEq { matchIdx, wasExact = mid, true return } else if result == criteriaG { high = mid - 1 } else if result == criteriaL { low, lastMatchIdx = mid+1, mid } else { return -1, false } } matchIdx, wasExact = lastMatchIdx, true return } // LOOKUP function performs an approximate match lookup in a one-column or // one-row range, and returns the corresponding value from another one-column // or one-row range. The syntax of the function is: // // LOOKUP(lookup_value,lookup_vector,[result_vector]) // func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments") } lookupValue := argsList.Front().Value.(formulaArg) lookupVector := argsList.Front().Next().Value.(formulaArg) if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList { return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array") } cols, matchIdx := lookupCol(lookupVector), -1 for idx, col := range cols { lhs := lookupValue switch col.Type { case ArgNumber: lhs = lhs.ToNumber() if !col.Boolean { if lhs.Type == ArgError { lhs = lookupValue } } } if compareFormulaArg(lhs, col, false, false) == criteriaEq { matchIdx = idx break } } column := cols if argsList.Len() == 3 { column = lookupCol(argsList.Back().Value.(formulaArg)) } if matchIdx < 0 || matchIdx >= len(column) { return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found") } return column[matchIdx] } // lookupCol extract columns for LOOKUP. func lookupCol(arr formulaArg) []formulaArg { col := arr.List if arr.Type == ArgMatrix { col = nil for _, r := range arr.Matrix { if len(r) > 0 { col = append(col, r[0]) continue } col = append(col, newEmptyFormulaArg()) } } return col } // ROW function returns the first row number within a supplied reference or // the number of the current row. The syntax of the function is: // // ROW([reference]) // func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg { if argsList.Len() > 1 { return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument") } if argsList.Len() == 1 { if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 { return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row)) } if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 { return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row)) } return newErrorFormulaArg(formulaErrorVALUE, "invalid reference") } _, row, _ := CellNameToCoordinates(fn.cell) return newNumberFormulaArg(float64(row)) } // ROWS function takes an Excel range and returns the number of rows that are // contained within the range. The syntax of the function is: // // ROWS(array) // func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument") } var min, max int if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 { crs := argsList.Front().Value.(formulaArg).cellRanges for cr := crs.Front(); cr != nil; cr = cr.Next() { if min == 0 { min = cr.Value.(cellRange).From.Row } if min > cr.Value.(cellRange).From.Row { min = cr.Value.(cellRange).From.Row } if min > cr.Value.(cellRange).To.Row { min = cr.Value.(cellRange).To.Row } if max < cr.Value.(cellRange).To.Row { max = cr.Value.(cellRange).To.Row } if max < cr.Value.(cellRange).From.Row { max = cr.Value.(cellRange).From.Row } } } if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 { cr := argsList.Front().Value.(formulaArg).cellRefs for refs := cr.Front(); refs != nil; refs = refs.Next() { if min == 0 { min = refs.Value.(cellRef).Row } if min > refs.Value.(cellRef).Row { min = refs.Value.(cellRef).Row } if max < refs.Value.(cellRef).Row { max = refs.Value.(cellRef).Row } } } if max == TotalRows { return newStringFormulaArg(strconv.Itoa(TotalRows)) } result := max - min + 1 if max == min { if min == 0 { return newErrorFormulaArg(formulaErrorVALUE, "invalid reference") } return newNumberFormulaArg(float64(1)) } return newStringFormulaArg(strconv.Itoa(result)) } // Web Functions // ENCODEURL function returns a URL-encoded string, replacing certain // non-alphanumeric characters with the percentage symbol (%) and a // hexadecimal number. The syntax of the function is: // // ENCODEURL(url) // func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument") } token := argsList.Front().Value.(formulaArg).Value() return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1)) } // Financial Functions // CUMIPMT function calculates the cumulative interest paid on a loan or // investment, between two specified periods. The syntax of the function is: // // CUMIPMT(rate,nper,pv,start_period,end_period,type) // func (fn *formulaFuncs) CUMIPMT(argsList *list.List) formulaArg { return fn.cumip("CUMIPMT", argsList) } // CUMPRINC function calculates the cumulative payment on the principal of a // loan or investment, between two specified periods. The syntax of the // function is: // // CUMPRINC(rate,nper,pv,start_period,end_period,type) // func (fn *formulaFuncs) CUMPRINC(argsList *list.List) formulaArg { return fn.cumip("CUMPRINC", argsList) } // cumip is an implementation of the formula function CUMIPMT and CUMPRINC. func (fn *formulaFuncs) cumip(name string, argsList *list.List) formulaArg { if argsList.Len() != 6 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 6 arguments", name)) } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } nper := argsList.Front().Next().Value.(formulaArg).ToNumber() if nper.Type != ArgNumber { return nper } pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if pv.Type != ArgNumber { return pv } start := argsList.Back().Prev().Prev().Value.(formulaArg).ToNumber() if start.Type != ArgNumber { return start } end := argsList.Back().Prev().Value.(formulaArg).ToNumber() if end.Type != ArgNumber { return end } typ := argsList.Back().Value.(formulaArg).ToNumber() if typ.Type != ArgNumber { return typ } if typ.Number != 0 && typ.Number != 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if start.Number < 1 || start.Number > end.Number { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } num := 0.0 for per := start.Number; per <= end.Number; per++ { args := list.New().Init() args.PushBack(rate) args.PushBack(newNumberFormulaArg(per)) args.PushBack(nper) args.PushBack(pv) args.PushBack(newNumberFormulaArg(0)) args.PushBack(typ) if name == "CUMIPMT" { num += fn.IPMT(args).Number continue } num += fn.PPMT(args).Number } return newNumberFormulaArg(num) } // DB function calculates the depreciation of an asset, using the Fixed // Declining Balance Method, for each period of the asset's lifetime. The // syntax of the function is: // // DB(cost,salvage,life,period,[month]) // func (fn *formulaFuncs) DB(argsList *list.List) formulaArg { if argsList.Len() < 4 { return newErrorFormulaArg(formulaErrorVALUE, "DB requires at least 4 arguments") } if argsList.Len() > 5 { return newErrorFormulaArg(formulaErrorVALUE, "DB allows at most 5 arguments") } cost := argsList.Front().Value.(formulaArg).ToNumber() if cost.Type != ArgNumber { return cost } salvage := argsList.Front().Next().Value.(formulaArg).ToNumber() if salvage.Type != ArgNumber { return salvage } life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if life.Type != ArgNumber { return life } period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber() if period.Type != ArgNumber { return period } month := newNumberFormulaArg(12) if argsList.Len() == 5 { if month = argsList.Back().Value.(formulaArg).ToNumber(); month.Type != ArgNumber { return month } } if cost.Number == 0 { return newNumberFormulaArg(0) } if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (month.Number < 1) { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } dr := 1 - math.Pow(salvage.Number/cost.Number, 1/life.Number) dr = math.Round(dr*1000) / 1000 pd, depreciation := 0.0, 0.0 for per := 1; per <= int(period.Number); per++ { if per == 1 { depreciation = cost.Number * dr * month.Number / 12 } else if per == int(life.Number+1) { depreciation = (cost.Number - pd) * dr * (12 - month.Number) / 12 } else { depreciation = (cost.Number - pd) * dr } pd += depreciation } return newNumberFormulaArg(depreciation) } // DDB function calculates the depreciation of an asset, using the Double // Declining Balance Method, or another specified depreciation rate. The // syntax of the function is: // // DDB(cost,salvage,life,period,[factor]) // func (fn *formulaFuncs) DDB(argsList *list.List) formulaArg { if argsList.Len() < 4 { return newErrorFormulaArg(formulaErrorVALUE, "DDB requires at least 4 arguments") } if argsList.Len() > 5 { return newErrorFormulaArg(formulaErrorVALUE, "DDB allows at most 5 arguments") } cost := argsList.Front().Value.(formulaArg).ToNumber() if cost.Type != ArgNumber { return cost } salvage := argsList.Front().Next().Value.(formulaArg).ToNumber() if salvage.Type != ArgNumber { return salvage } life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if life.Type != ArgNumber { return life } period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber() if period.Type != ArgNumber { return period } factor := newNumberFormulaArg(2) if argsList.Len() == 5 { if factor = argsList.Back().Value.(formulaArg).ToNumber(); factor.Type != ArgNumber { return factor } } if cost.Number == 0 { return newNumberFormulaArg(0) } if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (factor.Number <= 0.0) || (period.Number > life.Number) { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } pd, depreciation := 0.0, 0.0 for per := 1; per <= int(period.Number); per++ { depreciation = math.Min((cost.Number-pd)*(factor.Number/life.Number), (cost.Number - salvage.Number - pd)) pd += depreciation } return newNumberFormulaArg(depreciation) } // DOLLARDE function converts a dollar value in fractional notation, into a // dollar value expressed as a decimal. The syntax of the function is: // // DOLLARDE(fractional_dollar,fraction) // func (fn *formulaFuncs) DOLLARDE(argsList *list.List) formulaArg { return fn.dollar("DOLLARDE", argsList) } // DOLLARFR function converts a dollar value in decimal notation, into a // dollar value that is expressed in fractional notation. The syntax of the // function is: // // DOLLARFR(decimal_dollar,fraction) // func (fn *formulaFuncs) DOLLARFR(argsList *list.List) formulaArg { return fn.dollar("DOLLARFR", argsList) } // dollar is an implementation of the formula function DOLLARDE and DOLLARFR. func (fn *formulaFuncs) dollar(name string, argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name)) } dollar := argsList.Front().Value.(formulaArg).ToNumber() if dollar.Type != ArgNumber { return dollar } frac := argsList.Back().Value.(formulaArg).ToNumber() if frac.Type != ArgNumber { return frac } if frac.Number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } if frac.Number == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } cents := math.Mod(dollar.Number, 1) if name == "DOLLARDE" { cents /= frac.Number cents *= math.Pow(10, math.Ceil(math.Log10(frac.Number))) } else { cents *= frac.Number cents *= math.Pow(10, -math.Ceil(math.Log10(frac.Number))) } return newNumberFormulaArg(math.Floor(dollar.Number) + cents) } // EFFECT function returns the effective annual interest rate for a given // nominal interest rate and number of compounding periods per year. The // syntax of the function is: // // EFFECT(nominal_rate,npery) // func (fn *formulaFuncs) EFFECT(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "EFFECT requires 2 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } npery := argsList.Back().Value.(formulaArg).ToNumber() if npery.Type != ArgNumber { return npery } if rate.Number <= 0 || npery.Number < 1 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newNumberFormulaArg(math.Pow((1+rate.Number/npery.Number), npery.Number) - 1) } // FV function calculates the Future Value of an investment with periodic // constant payments and a constant interest rate. The syntax of the function // is: // // FV(rate,nper,[pmt],[pv],[type]) // func (fn *formulaFuncs) FV(argsList *list.List) formulaArg { if argsList.Len() < 3 { return newErrorFormulaArg(formulaErrorVALUE, "FV requires at least 3 arguments") } if argsList.Len() > 5 { return newErrorFormulaArg(formulaErrorVALUE, "FV allows at most 5 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } nper := argsList.Front().Next().Value.(formulaArg).ToNumber() if nper.Type != ArgNumber { return nper } pmt := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if pmt.Type != ArgNumber { return pmt } pv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0) if argsList.Len() >= 4 { if pv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); pv.Type != ArgNumber { return pv } } if argsList.Len() == 5 { if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber { return typ } } if typ.Number != 0 && typ.Number != 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if rate.Number != 0 { return newNumberFormulaArg(-pv.Number*math.Pow(1+rate.Number, nper.Number) - pmt.Number*(1+rate.Number*typ.Number)*(math.Pow(1+rate.Number, nper.Number)-1)/rate.Number) } return newNumberFormulaArg(-pv.Number - pmt.Number*nper.Number) } // FVSCHEDULE function calculates the Future Value of an investment with a // variable interest rate. The syntax of the function is: // // FVSCHEDULE(principal,schedule) // func (fn *formulaFuncs) FVSCHEDULE(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "FVSCHEDULE requires 2 arguments") } pri := argsList.Front().Value.(formulaArg).ToNumber() if pri.Type != ArgNumber { return pri } principal := pri.Number for _, arg := range argsList.Back().Value.(formulaArg).ToList() { if arg.Value() == "" { continue } rate := arg.ToNumber() if rate.Type != ArgNumber { return rate } principal *= (1 + rate.Number) } return newNumberFormulaArg(principal) } // IPMT function calculates the interest payment, during a specific period of a // loan or investment that is paid in constant periodic payments, with a // constant interest rate. The syntax of the function is: // // IPMT(rate,per,nper,pv,[fv],[type]) // func (fn *formulaFuncs) IPMT(argsList *list.List) formulaArg { return fn.ipmt("IPMT", argsList) } // ipmt is an implementation of the formula function IPMT and PPMT. func (fn *formulaFuncs) ipmt(name string, argsList *list.List) formulaArg { if argsList.Len() < 4 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 4 arguments", name)) } if argsList.Len() > 6 { return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 6 arguments", name)) } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } per := argsList.Front().Next().Value.(formulaArg).ToNumber() if per.Type != ArgNumber { return per } nper := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if nper.Type != ArgNumber { return nper } pv := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber() if pv.Type != ArgNumber { return pv } fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0) if argsList.Len() >= 5 { if fv = argsList.Front().Next().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber { return fv } } if argsList.Len() == 6 { if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber { return typ } } if typ.Number != 0 && typ.Number != 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if per.Number <= 0 || per.Number > nper.Number { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } args := list.New().Init() args.PushBack(rate) args.PushBack(nper) args.PushBack(pv) args.PushBack(fv) args.PushBack(typ) pmt, capital, interest, principal := fn.PMT(args), pv.Number, 0.0, 0.0 for i := 1; i <= int(per.Number); i++ { if typ.Number != 0 && i == 1 { interest = 0 } else { interest = -capital * rate.Number } principal = pmt.Number - interest capital += principal } if name == "IPMT" { return newNumberFormulaArg(interest) } return newNumberFormulaArg(principal) } // IRR function returns the Internal Rate of Return for a supplied series of // periodic cash flows (i.e. an initial investment value and a series of net // income values). The syntax of the function is: // // IRR(values,[guess]) // func (fn *formulaFuncs) IRR(argsList *list.List) formulaArg { if argsList.Len() < 1 { return newErrorFormulaArg(formulaErrorVALUE, "IRR requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "IRR allows at most 2 arguments") } values, guess := argsList.Front().Value.(formulaArg).ToList(), newNumberFormulaArg(0.1) if argsList.Len() > 1 { if guess = argsList.Back().Value.(formulaArg).ToNumber(); guess.Type != ArgNumber { return guess } } x1, x2 := newNumberFormulaArg(0), guess args := list.New().Init() args.PushBack(x1) for _, v := range values { args.PushBack(v) } f1 := fn.NPV(args) args.Front().Value = x2 f2 := fn.NPV(args) for i := 0; i < maxFinancialIterations; i++ { if f1.Number*f2.Number < 0 { break } if math.Abs(f1.Number) < math.Abs((f2.Number)) { x1.Number += 1.6 * (x1.Number - x2.Number) args.Front().Value = x1 f1 = fn.NPV(args) continue } x2.Number += 1.6 * (x2.Number - x1.Number) args.Front().Value = x2 f2 = fn.NPV(args) } if f1.Number*f2.Number > 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } args.Front().Value = x1 f := fn.NPV(args) var rtb, dx, xMid, fMid float64 if f.Number < 0 { rtb = x1.Number dx = x2.Number - x1.Number } else { rtb = x2.Number dx = x1.Number - x2.Number } for i := 0; i < maxFinancialIterations; i++ { dx *= 0.5 xMid = rtb + dx args.Front().Value = newNumberFormulaArg(xMid) fMid = fn.NPV(args).Number if fMid <= 0 { rtb = xMid } if math.Abs(fMid) < financialPercision || math.Abs(dx) < financialPercision { break } } return newNumberFormulaArg(xMid) } // ISPMT function calculates the interest paid during a specific period of a // loan or investment. The syntax of the function is: // // ISPMT(rate,per,nper,pv) // func (fn *formulaFuncs) ISPMT(argsList *list.List) formulaArg { if argsList.Len() != 4 { return newErrorFormulaArg(formulaErrorVALUE, "ISPMT requires 4 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } per := argsList.Front().Next().Value.(formulaArg).ToNumber() if per.Type != ArgNumber { return per } nper := argsList.Back().Prev().Value.(formulaArg).ToNumber() if nper.Type != ArgNumber { return nper } pv := argsList.Back().Value.(formulaArg).ToNumber() if pv.Type != ArgNumber { return pv } pr, payment, num := pv.Number, pv.Number/nper.Number, 0.0 for i := 0; i <= int(per.Number); i++ { num = rate.Number * pr * -1 pr -= payment if i == int(nper.Number) { num = 0 } } return newNumberFormulaArg(num) } // MIRR function returns the Modified Internal Rate of Return for a supplied // series of periodic cash flows (i.e. a set of values, which includes an // initial investment value and a series of net income values). The syntax of // the function is: // // MIRR(values,finance_rate,reinvest_rate) // func (fn *formulaFuncs) MIRR(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "MIRR requires 3 arguments") } values := argsList.Front().Value.(formulaArg).ToList() financeRate := argsList.Front().Next().Value.(formulaArg).ToNumber() if financeRate.Type != ArgNumber { return financeRate } reinvestRate := argsList.Back().Value.(formulaArg).ToNumber() if reinvestRate.Type != ArgNumber { return reinvestRate } n, fr, rr, npvPos, npvNeg := len(values), 1+financeRate.Number, 1+reinvestRate.Number, 0.0, 0.0 for i, v := range values { val := v.ToNumber() if val.Number >= 0 { npvPos += val.Number / math.Pow(float64(rr), float64(i)) continue } npvNeg += val.Number / math.Pow(float64(fr), float64(i)) } if npvNeg == 0 || npvPos == 0 || reinvestRate.Number <= -1 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Pow(-npvPos*math.Pow(rr, float64(n))/(npvNeg*rr), 1/(float64(n)-1)) - 1) } // NOMINAL function returns the nominal interest rate for a given effective // interest rate and number of compounding periods per year. The syntax of // the function is: // // NOMINAL(effect_rate,npery) // func (fn *formulaFuncs) NOMINAL(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "NOMINAL requires 2 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } npery := argsList.Back().Value.(formulaArg).ToNumber() if npery.Type != ArgNumber { return npery } if rate.Number <= 0 || npery.Number < 1 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newNumberFormulaArg(npery.Number * (math.Pow(rate.Number+1, 1/npery.Number) - 1)) } // NPER function calculates the number of periods required to pay off a loan, // for a constant periodic payment and a constant interest rate. The syntax // of the function is: // // NPER(rate,pmt,pv,[fv],[type]) // func (fn *formulaFuncs) NPER(argsList *list.List) formulaArg { if argsList.Len() < 3 { return newErrorFormulaArg(formulaErrorVALUE, "NPER requires at least 3 arguments") } if argsList.Len() > 5 { return newErrorFormulaArg(formulaErrorVALUE, "NPER allows at most 5 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } pmt := argsList.Front().Next().Value.(formulaArg).ToNumber() if pmt.Type != ArgNumber { return pmt } pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if pv.Type != ArgNumber { return pv } fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0) if argsList.Len() >= 4 { if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber { return fv } } if argsList.Len() == 5 { if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber { return typ } } if typ.Number != 0 && typ.Number != 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if pmt.Number == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } if rate.Number != 0 { p := math.Log((pmt.Number*(1+rate.Number*typ.Number)/rate.Number-fv.Number)/(pv.Number+pmt.Number*(1+rate.Number*typ.Number)/rate.Number)) / math.Log(1+rate.Number) return newNumberFormulaArg(p) } return newNumberFormulaArg((-pv.Number - fv.Number) / pmt.Number) } // NPV function calculates the Net Present Value of an investment, based on a // supplied discount rate, and a series of future payments and income. The // syntax of the function is: // // NPV(rate,value1,[value2],[value3],...) // func (fn *formulaFuncs) NPV(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "NPV requires at least 2 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } val, i := 0.0, 1 for arg := argsList.Front().Next(); arg != nil; arg = arg.Next() { num := arg.Value.(formulaArg).ToNumber() if num.Type != ArgNumber { continue } val += num.Number / math.Pow(1+rate.Number, float64(i)) i++ } return newNumberFormulaArg(val) } // PDURATION function calculates the number of periods required for an // investment to reach a specified future value. The syntax of the function // is: // // PDURATION(rate,pv,fv) // func (fn *formulaFuncs) PDURATION(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "PDURATION requires 3 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } pv := argsList.Front().Next().Value.(formulaArg).ToNumber() if pv.Type != ArgNumber { return pv } fv := argsList.Back().Value.(formulaArg).ToNumber() if fv.Type != ArgNumber { return fv } if rate.Number <= 0 || pv.Number <= 0 || fv.Number <= 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newNumberFormulaArg((math.Log(fv.Number) - math.Log(pv.Number)) / math.Log(1+rate.Number)) } // PMT function calculates the constant periodic payment required to pay off // (or partially pay off) a loan or investment, with a constant interest // rate, over a specified period. The syntax of the function is: // // PMT(rate,nper,pv,[fv],[type]) // func (fn *formulaFuncs) PMT(argsList *list.List) formulaArg { if argsList.Len() < 3 { return newErrorFormulaArg(formulaErrorVALUE, "PMT requires at least 3 arguments") } if argsList.Len() > 5 { return newErrorFormulaArg(formulaErrorVALUE, "PMT allows at most 5 arguments") } rate := argsList.Front().Value.(formulaArg).ToNumber() if rate.Type != ArgNumber { return rate } nper := argsList.Front().Next().Value.(formulaArg).ToNumber() if nper.Type != ArgNumber { return nper } pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() if pv.Type != ArgNumber { return pv } fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0) if argsList.Len() >= 4 { if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber { return fv } } if argsList.Len() == 5 { if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber { return typ } } if typ.Number != 0 && typ.Number != 1 { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } if rate.Number != 0 { p := (-fv.Number - pv.Number*math.Pow((1+rate.Number), nper.Number)) / (1 + rate.Number*typ.Number) / ((math.Pow((1+rate.Number), nper.Number) - 1) / rate.Number) return newNumberFormulaArg(p) } return newNumberFormulaArg((-pv.Number - fv.Number) / nper.Number) } // PPMT function calculates the payment on the principal, during a specific // period of a loan or investment that is paid in constant periodic payments, // with a constant interest rate. The syntax of the function is: // // PPMT(rate,per,nper,pv,[fv],[type]) // func (fn *formulaFuncs) PPMT(argsList *list.List) formulaArg { return fn.ipmt("PPMT", argsList) }