log.go 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. package metrics
  2. import (
  3. "time"
  4. )
  5. type Logger interface {
  6. Printf(format string, v ...interface{})
  7. }
  8. func Log(r Registry, freq time.Duration, l Logger) {
  9. LogScaled(r, freq, time.Nanosecond, l)
  10. }
  11. func LogOnCue(r Registry, ch chan interface{}, l Logger) {
  12. LogScaledOnCue(r, ch, time.Nanosecond, l)
  13. }
  14. // Output each metric in the given registry periodically using the given
  15. // logger. Print timings in `scale` units (eg time.Millisecond) rather than nanos.
  16. func LogScaled(r Registry, freq time.Duration, scale time.Duration, l Logger) {
  17. ch := make(chan struct{}, 1)
  18. go func() {
  19. for range time.Tick(freq) {
  20. ch <- struct{}{}
  21. }
  22. }()
  23. LogScaledOnCue(r, ch, scale, l)
  24. }
  25. // Output each metric in the given registry on demand through the channel using the given
  26. // logger. Print timings in `scale` units (eg time.Millisecond) rather than nanos.
  27. func LogScaledOnCue(r Registry, ch chan interface{}, scale time.Duration, l Logger) {
  28. du := float64(scale)
  29. duSuffix := scale.String()[1:]
  30. for {
  31. <-ch
  32. r.Each(func(name string, i interface{}) {
  33. switch metric := i.(type) {
  34. case Counter:
  35. l.Printf("counter %s\n", name)
  36. l.Printf(" count: %9d\n", metric.Count())
  37. case Gauge:
  38. l.Printf("gauge %s\n", name)
  39. l.Printf(" value: %9d\n", metric.Value())
  40. case GaugeFloat64:
  41. l.Printf("gauge %s\n", name)
  42. l.Printf(" value: %f\n", metric.Value())
  43. case Healthcheck:
  44. metric.Check()
  45. l.Printf("healthcheck %s\n", name)
  46. l.Printf(" error: %v\n", metric.Error())
  47. case Histogram:
  48. h := metric.Snapshot()
  49. ps := h.Percentiles([]float64{0.5, 0.75, 0.95, 0.99, 0.999})
  50. l.Printf("histogram %s\n", name)
  51. l.Printf(" count: %9d\n", h.Count())
  52. l.Printf(" min: %9d\n", h.Min())
  53. l.Printf(" max: %9d\n", h.Max())
  54. l.Printf(" mean: %12.2f\n", h.Mean())
  55. l.Printf(" stddev: %12.2f\n", h.StdDev())
  56. l.Printf(" median: %12.2f\n", ps[0])
  57. l.Printf(" 75%%: %12.2f\n", ps[1])
  58. l.Printf(" 95%%: %12.2f\n", ps[2])
  59. l.Printf(" 99%%: %12.2f\n", ps[3])
  60. l.Printf(" 99.9%%: %12.2f\n", ps[4])
  61. case Meter:
  62. m := metric.Snapshot()
  63. l.Printf("meter %s\n", name)
  64. l.Printf(" count: %9d\n", m.Count())
  65. l.Printf(" 1-min rate: %12.2f\n", m.Rate1())
  66. l.Printf(" 5-min rate: %12.2f\n", m.Rate5())
  67. l.Printf(" 15-min rate: %12.2f\n", m.Rate15())
  68. l.Printf(" mean rate: %12.2f\n", m.RateMean())
  69. case Timer:
  70. t := metric.Snapshot()
  71. ps := t.Percentiles([]float64{0.5, 0.75, 0.95, 0.99, 0.999})
  72. l.Printf("timer %s\n", name)
  73. l.Printf(" count: %9d\n", t.Count())
  74. l.Printf(" min: %12.2f%s\n", float64(t.Min()) / du, duSuffix)
  75. l.Printf(" max: %12.2f%s\n", float64(t.Max()) / du, duSuffix)
  76. l.Printf(" mean: %12.2f%s\n", t.Mean() / du, duSuffix)
  77. l.Printf(" stddev: %12.2f%s\n", t.StdDev() / du, duSuffix)
  78. l.Printf(" median: %12.2f%s\n", ps[0] / du, duSuffix)
  79. l.Printf(" 75%%: %12.2f%s\n", ps[1] / du, duSuffix)
  80. l.Printf(" 95%%: %12.2f%s\n", ps[2] / du, duSuffix)
  81. l.Printf(" 99%%: %12.2f%s\n", ps[3] / du, duSuffix)
  82. l.Printf(" 99.9%%: %12.2f%s\n", ps[4] / du, duSuffix)
  83. l.Printf(" 1-min rate: %12.2f\n", t.Rate1())
  84. l.Printf(" 5-min rate: %12.2f\n", t.Rate5())
  85. l.Printf(" 15-min rate: %12.2f\n", t.Rate15())
  86. l.Printf(" mean rate: %12.2f\n", t.RateMean())
  87. }
  88. })
  89. }
  90. }