handshake.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. // Copyright 2013 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package ssh
  5. import (
  6. "crypto/rand"
  7. "errors"
  8. "fmt"
  9. "io"
  10. "log"
  11. "net"
  12. "sync"
  13. )
  14. // debugHandshake, if set, prints messages sent and received. Key
  15. // exchange messages are printed as if DH were used, so the debug
  16. // messages are wrong when using ECDH.
  17. const debugHandshake = false
  18. // keyingTransport is a packet based transport that supports key
  19. // changes. It need not be thread-safe. It should pass through
  20. // msgNewKeys in both directions.
  21. type keyingTransport interface {
  22. packetConn
  23. // prepareKeyChange sets up a key change. The key change for a
  24. // direction will be effected if a msgNewKeys message is sent
  25. // or received.
  26. prepareKeyChange(*algorithms, *kexResult) error
  27. }
  28. // handshakeTransport implements rekeying on top of a keyingTransport
  29. // and offers a thread-safe writePacket() interface.
  30. type handshakeTransport struct {
  31. conn keyingTransport
  32. config *Config
  33. serverVersion []byte
  34. clientVersion []byte
  35. // hostKeys is non-empty if we are the server. In that case,
  36. // it contains all host keys that can be used to sign the
  37. // connection.
  38. hostKeys []Signer
  39. // hostKeyAlgorithms is non-empty if we are the client. In that case,
  40. // we accept these key types from the server as host key.
  41. hostKeyAlgorithms []string
  42. // On read error, incoming is closed, and readError is set.
  43. incoming chan []byte
  44. readError error
  45. // data for host key checking
  46. hostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error
  47. dialAddress string
  48. remoteAddr net.Addr
  49. readSinceKex uint64
  50. // Protects the writing side of the connection
  51. mu sync.Mutex
  52. cond *sync.Cond
  53. sentInitPacket []byte
  54. sentInitMsg *kexInitMsg
  55. writtenSinceKex uint64
  56. writeError error
  57. // The session ID or nil if first kex did not complete yet.
  58. sessionID []byte
  59. }
  60. func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
  61. t := &handshakeTransport{
  62. conn: conn,
  63. serverVersion: serverVersion,
  64. clientVersion: clientVersion,
  65. incoming: make(chan []byte, 16),
  66. config: config,
  67. }
  68. t.cond = sync.NewCond(&t.mu)
  69. return t
  70. }
  71. func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
  72. t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
  73. t.dialAddress = dialAddr
  74. t.remoteAddr = addr
  75. t.hostKeyCallback = config.HostKeyCallback
  76. if config.HostKeyAlgorithms != nil {
  77. t.hostKeyAlgorithms = config.HostKeyAlgorithms
  78. } else {
  79. t.hostKeyAlgorithms = supportedHostKeyAlgos
  80. }
  81. go t.readLoop()
  82. return t
  83. }
  84. func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
  85. t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
  86. t.hostKeys = config.hostKeys
  87. go t.readLoop()
  88. return t
  89. }
  90. func (t *handshakeTransport) getSessionID() []byte {
  91. return t.sessionID
  92. }
  93. func (t *handshakeTransport) id() string {
  94. if len(t.hostKeys) > 0 {
  95. return "server"
  96. }
  97. return "client"
  98. }
  99. func (t *handshakeTransport) readPacket() ([]byte, error) {
  100. p, ok := <-t.incoming
  101. if !ok {
  102. return nil, t.readError
  103. }
  104. return p, nil
  105. }
  106. func (t *handshakeTransport) readLoop() {
  107. for {
  108. p, err := t.readOnePacket()
  109. if err != nil {
  110. t.readError = err
  111. close(t.incoming)
  112. break
  113. }
  114. if p[0] == msgIgnore || p[0] == msgDebug {
  115. continue
  116. }
  117. t.incoming <- p
  118. }
  119. // If we can't read, declare the writing part dead too.
  120. t.mu.Lock()
  121. defer t.mu.Unlock()
  122. if t.writeError == nil {
  123. t.writeError = t.readError
  124. }
  125. t.cond.Broadcast()
  126. }
  127. func (t *handshakeTransport) readOnePacket() ([]byte, error) {
  128. if t.readSinceKex > t.config.RekeyThreshold {
  129. if err := t.requestKeyChange(); err != nil {
  130. return nil, err
  131. }
  132. }
  133. p, err := t.conn.readPacket()
  134. if err != nil {
  135. return nil, err
  136. }
  137. t.readSinceKex += uint64(len(p))
  138. if debugHandshake {
  139. if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
  140. log.Printf("%s got data (packet %d bytes)", t.id(), len(p))
  141. } else {
  142. msg, err := decode(p)
  143. log.Printf("%s got %T %v (%v)", t.id(), msg, msg, err)
  144. }
  145. }
  146. if p[0] != msgKexInit {
  147. return p, nil
  148. }
  149. t.mu.Lock()
  150. err = t.enterKeyExchangeLocked(p)
  151. if err != nil {
  152. // drop connection
  153. t.conn.Close()
  154. t.writeError = err
  155. }
  156. if debugHandshake {
  157. log.Printf("%s exited key exchange, err %v", t.id(), err)
  158. }
  159. // Unblock writers.
  160. t.sentInitMsg = nil
  161. t.sentInitPacket = nil
  162. t.cond.Broadcast()
  163. t.writtenSinceKex = 0
  164. t.mu.Unlock()
  165. if err != nil {
  166. return nil, err
  167. }
  168. t.readSinceKex = 0
  169. return []byte{msgNewKeys}, nil
  170. }
  171. // keyChangeCategory describes whether a key exchange is the first on a
  172. // connection, or a subsequent one.
  173. type keyChangeCategory bool
  174. const (
  175. firstKeyExchange keyChangeCategory = true
  176. subsequentKeyExchange keyChangeCategory = false
  177. )
  178. // sendKexInit sends a key change message, and returns the message
  179. // that was sent. After initiating the key change, all writes will be
  180. // blocked until the change is done, and a failed key change will
  181. // close the underlying transport. This function is safe for
  182. // concurrent use by multiple goroutines.
  183. func (t *handshakeTransport) sendKexInit(isFirst keyChangeCategory) (*kexInitMsg, []byte, error) {
  184. t.mu.Lock()
  185. defer t.mu.Unlock()
  186. return t.sendKexInitLocked(isFirst)
  187. }
  188. func (t *handshakeTransport) requestInitialKeyChange() error {
  189. _, _, err := t.sendKexInit(firstKeyExchange)
  190. return err
  191. }
  192. func (t *handshakeTransport) requestKeyChange() error {
  193. _, _, err := t.sendKexInit(subsequentKeyExchange)
  194. return err
  195. }
  196. // sendKexInitLocked sends a key change message. t.mu must be locked
  197. // while this happens.
  198. func (t *handshakeTransport) sendKexInitLocked(isFirst keyChangeCategory) (*kexInitMsg, []byte, error) {
  199. // kexInits may be sent either in response to the other side,
  200. // or because our side wants to initiate a key change, so we
  201. // may have already sent a kexInit. In that case, don't send a
  202. // second kexInit.
  203. if t.sentInitMsg != nil {
  204. return t.sentInitMsg, t.sentInitPacket, nil
  205. }
  206. // If this is the initial key change, but we already have a sessionID,
  207. // then do nothing because the key exchange has already completed
  208. // asynchronously.
  209. if isFirst && t.sessionID != nil {
  210. return nil, nil, nil
  211. }
  212. msg := &kexInitMsg{
  213. KexAlgos: t.config.KeyExchanges,
  214. CiphersClientServer: t.config.Ciphers,
  215. CiphersServerClient: t.config.Ciphers,
  216. MACsClientServer: t.config.MACs,
  217. MACsServerClient: t.config.MACs,
  218. CompressionClientServer: supportedCompressions,
  219. CompressionServerClient: supportedCompressions,
  220. }
  221. io.ReadFull(rand.Reader, msg.Cookie[:])
  222. if len(t.hostKeys) > 0 {
  223. for _, k := range t.hostKeys {
  224. msg.ServerHostKeyAlgos = append(
  225. msg.ServerHostKeyAlgos, k.PublicKey().Type())
  226. }
  227. } else {
  228. msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
  229. }
  230. packet := Marshal(msg)
  231. // writePacket destroys the contents, so save a copy.
  232. packetCopy := make([]byte, len(packet))
  233. copy(packetCopy, packet)
  234. if err := t.conn.writePacket(packetCopy); err != nil {
  235. return nil, nil, err
  236. }
  237. t.sentInitMsg = msg
  238. t.sentInitPacket = packet
  239. return msg, packet, nil
  240. }
  241. func (t *handshakeTransport) writePacket(p []byte) error {
  242. t.mu.Lock()
  243. defer t.mu.Unlock()
  244. if t.writtenSinceKex > t.config.RekeyThreshold {
  245. t.sendKexInitLocked(subsequentKeyExchange)
  246. }
  247. for t.sentInitMsg != nil && t.writeError == nil {
  248. t.cond.Wait()
  249. }
  250. if t.writeError != nil {
  251. return t.writeError
  252. }
  253. t.writtenSinceKex += uint64(len(p))
  254. switch p[0] {
  255. case msgKexInit:
  256. return errors.New("ssh: only handshakeTransport can send kexInit")
  257. case msgNewKeys:
  258. return errors.New("ssh: only handshakeTransport can send newKeys")
  259. default:
  260. return t.conn.writePacket(p)
  261. }
  262. }
  263. func (t *handshakeTransport) Close() error {
  264. return t.conn.Close()
  265. }
  266. // enterKeyExchange runs the key exchange. t.mu must be held while running this.
  267. func (t *handshakeTransport) enterKeyExchangeLocked(otherInitPacket []byte) error {
  268. if debugHandshake {
  269. log.Printf("%s entered key exchange", t.id())
  270. }
  271. myInit, myInitPacket, err := t.sendKexInitLocked(subsequentKeyExchange)
  272. if err != nil {
  273. return err
  274. }
  275. otherInit := &kexInitMsg{}
  276. if err := Unmarshal(otherInitPacket, otherInit); err != nil {
  277. return err
  278. }
  279. magics := handshakeMagics{
  280. clientVersion: t.clientVersion,
  281. serverVersion: t.serverVersion,
  282. clientKexInit: otherInitPacket,
  283. serverKexInit: myInitPacket,
  284. }
  285. clientInit := otherInit
  286. serverInit := myInit
  287. if len(t.hostKeys) == 0 {
  288. clientInit = myInit
  289. serverInit = otherInit
  290. magics.clientKexInit = myInitPacket
  291. magics.serverKexInit = otherInitPacket
  292. }
  293. algs, err := findAgreedAlgorithms(clientInit, serverInit)
  294. if err != nil {
  295. return err
  296. }
  297. // We don't send FirstKexFollows, but we handle receiving it.
  298. if otherInit.FirstKexFollows && algs.kex != otherInit.KexAlgos[0] {
  299. // other side sent a kex message for the wrong algorithm,
  300. // which we have to ignore.
  301. if _, err := t.conn.readPacket(); err != nil {
  302. return err
  303. }
  304. }
  305. kex, ok := kexAlgoMap[algs.kex]
  306. if !ok {
  307. return fmt.Errorf("ssh: unexpected key exchange algorithm %v", algs.kex)
  308. }
  309. var result *kexResult
  310. if len(t.hostKeys) > 0 {
  311. result, err = t.server(kex, algs, &magics)
  312. } else {
  313. result, err = t.client(kex, algs, &magics)
  314. }
  315. if err != nil {
  316. return err
  317. }
  318. if t.sessionID == nil {
  319. t.sessionID = result.H
  320. }
  321. result.SessionID = t.sessionID
  322. t.conn.prepareKeyChange(algs, result)
  323. if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
  324. return err
  325. }
  326. if packet, err := t.conn.readPacket(); err != nil {
  327. return err
  328. } else if packet[0] != msgNewKeys {
  329. return unexpectedMessageError(msgNewKeys, packet[0])
  330. }
  331. return nil
  332. }
  333. func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
  334. var hostKey Signer
  335. for _, k := range t.hostKeys {
  336. if algs.hostKey == k.PublicKey().Type() {
  337. hostKey = k
  338. }
  339. }
  340. r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey)
  341. return r, err
  342. }
  343. func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
  344. result, err := kex.Client(t.conn, t.config.Rand, magics)
  345. if err != nil {
  346. return nil, err
  347. }
  348. hostKey, err := ParsePublicKey(result.HostKey)
  349. if err != nil {
  350. return nil, err
  351. }
  352. if err := verifyHostKeySignature(hostKey, result); err != nil {
  353. return nil, err
  354. }
  355. if t.hostKeyCallback != nil {
  356. err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
  357. if err != nil {
  358. return nil, err
  359. }
  360. }
  361. return result, nil
  362. }