// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssh import ( "crypto" "crypto/dsa" "crypto/ecdsa" "crypto/elliptic" "crypto/rsa" "errors" "fmt" "math/big" "sync" ) // These are string constants in the SSH protocol. const ( kexAlgoDH1SHA1 = "diffie-hellman-group1-sha1" kexAlgoDH14SHA1 = "diffie-hellman-group14-sha1" kexAlgoECDH256 = "ecdh-sha2-nistp256" kexAlgoECDH384 = "ecdh-sha2-nistp384" kexAlgoECDH521 = "ecdh-sha2-nistp521" hostAlgoRSA = "ssh-rsa" hostAlgoDSA = "ssh-dss" compressionNone = "none" serviceUserAuth = "ssh-userauth" serviceSSH = "ssh-connection" ) var supportedKexAlgos = []string{ kexAlgoECDH256, kexAlgoECDH384, kexAlgoECDH521, kexAlgoDH14SHA1, kexAlgoDH1SHA1, } var supportedHostKeyAlgos = []string{hostAlgoRSA} var supportedCompressions = []string{compressionNone} // dhGroup is a multiplicative group suitable for implementing Diffie-Hellman key agreement. type dhGroup struct { g, p *big.Int } func (group *dhGroup) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, error) { if theirPublic.Sign() <= 0 || theirPublic.Cmp(group.p) >= 0 { return nil, errors.New("ssh: DH parameter out of bounds") } return new(big.Int).Exp(theirPublic, myPrivate, group.p), nil } // dhGroup1 is the group called diffie-hellman-group1-sha1 in RFC 4253 and // Oakley Group 2 in RFC 2409. var dhGroup1 *dhGroup var dhGroup1Once sync.Once func initDHGroup1() { p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF", 16) dhGroup1 = &dhGroup{ g: new(big.Int).SetInt64(2), p: p, } } // dhGroup14 is the group called diffie-hellman-group14-sha1 in RFC 4253 and // Oakley Group 14 in RFC 3526. var dhGroup14 *dhGroup var dhGroup14Once sync.Once func initDHGroup14() { p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AACAA68FFFFFFFFFFFFFFFF", 16) dhGroup14 = &dhGroup{ g: new(big.Int).SetInt64(2), p: p, } } // UnexpectedMessageError results when the SSH message that we received didn't // match what we wanted. type UnexpectedMessageError struct { expected, got uint8 } func (u UnexpectedMessageError) Error() string { return fmt.Sprintf("ssh: unexpected message type %d (expected %d)", u.got, u.expected) } // ParseError results from a malformed SSH message. type ParseError struct { msgType uint8 } func (p ParseError) Error() string { return fmt.Sprintf("ssh: parse error in message type %d", p.msgType) } type handshakeMagics struct { clientVersion, serverVersion []byte clientKexInit, serverKexInit []byte } func findCommonAlgorithm(clientAlgos []string, serverAlgos []string) (commonAlgo string, ok bool) { for _, clientAlgo := range clientAlgos { for _, serverAlgo := range serverAlgos { if clientAlgo == serverAlgo { return clientAlgo, true } } } return } func findCommonCipher(clientCiphers []string, serverCiphers []string) (commonCipher string, ok bool) { for _, clientCipher := range clientCiphers { for _, serverCipher := range serverCiphers { // reject the cipher if we have no cipherModes definition if clientCipher == serverCipher && cipherModes[clientCipher] != nil { return clientCipher, true } } } return } func findAgreedAlgorithms(transport *transport, clientKexInit, serverKexInit *kexInitMsg) (kexAlgo, hostKeyAlgo string, ok bool) { kexAlgo, ok = findCommonAlgorithm(clientKexInit.KexAlgos, serverKexInit.KexAlgos) if !ok { return } hostKeyAlgo, ok = findCommonAlgorithm(clientKexInit.ServerHostKeyAlgos, serverKexInit.ServerHostKeyAlgos) if !ok { return } transport.writer.cipherAlgo, ok = findCommonCipher(clientKexInit.CiphersClientServer, serverKexInit.CiphersClientServer) if !ok { return } transport.reader.cipherAlgo, ok = findCommonCipher(clientKexInit.CiphersServerClient, serverKexInit.CiphersServerClient) if !ok { return } transport.writer.macAlgo, ok = findCommonAlgorithm(clientKexInit.MACsClientServer, serverKexInit.MACsClientServer) if !ok { return } transport.reader.macAlgo, ok = findCommonAlgorithm(clientKexInit.MACsServerClient, serverKexInit.MACsServerClient) if !ok { return } transport.writer.compressionAlgo, ok = findCommonAlgorithm(clientKexInit.CompressionClientServer, serverKexInit.CompressionClientServer) if !ok { return } transport.reader.compressionAlgo, ok = findCommonAlgorithm(clientKexInit.CompressionServerClient, serverKexInit.CompressionServerClient) if !ok { return } ok = true return } // Cryptographic configuration common to both ServerConfig and ClientConfig. type CryptoConfig struct { // The allowed key exchanges algorithms. If unspecified then a // default set of algorithms is used. KeyExchanges []string // The allowed cipher algorithms. If unspecified then DefaultCipherOrder is // used. Ciphers []string // The allowed MAC algorithms. If unspecified then DefaultMACOrder is used. MACs []string } func (c *CryptoConfig) ciphers() []string { if c.Ciphers == nil { return DefaultCipherOrder } return c.Ciphers } func (c *CryptoConfig) kexes() []string { if c.KeyExchanges == nil { return defaultKeyExchangeOrder } return c.KeyExchanges } func (c *CryptoConfig) macs() []string { if c.MACs == nil { return DefaultMACOrder } return c.MACs } // ecHash returns the hash to match the given elliptic curve, see RFC // 5656, section 6.2.1 func ecHash(curve elliptic.Curve) crypto.Hash { bitSize := curve.Params().BitSize switch { case bitSize <= 256: return crypto.SHA256 case bitSize <= 384: return crypto.SHA384 } return crypto.SHA512 } // serialize a signed slice according to RFC 4254 6.6. func serializeSignature(algoname string, sig []byte) []byte { switch algoname { // The corresponding private key to a public certificate is always a normal // private key. For signature serialization purposes, ensure we use the // proper key algorithm name in case the public cert algorithm name is passed. case CertAlgoRSAv01: algoname = KeyAlgoRSA case CertAlgoDSAv01: algoname = KeyAlgoDSA case CertAlgoECDSA256v01: algoname = KeyAlgoECDSA256 case CertAlgoECDSA384v01: algoname = KeyAlgoECDSA384 case CertAlgoECDSA521v01: algoname = KeyAlgoECDSA521 } length := stringLength(len(algoname)) length += stringLength(len(sig)) ret := make([]byte, length) r := marshalString(ret, []byte(algoname)) r = marshalString(r, sig) return ret } // serialize a *rsa.PublicKey or *dsa.PublicKey according to RFC 4253 6.6. func serializePublicKey(key interface{}) []byte { var pubKeyBytes []byte algoname := algoName(key) switch key := key.(type) { case *rsa.PublicKey: pubKeyBytes = marshalPubRSA(key) case *dsa.PublicKey: pubKeyBytes = marshalPubDSA(key) case *ecdsa.PublicKey: pubKeyBytes = marshalPubECDSA(key) case *OpenSSHCertV01: pubKeyBytes = marshalOpenSSHCertV01(key) default: panic("unexpected key type") } length := stringLength(len(algoname)) length += len(pubKeyBytes) ret := make([]byte, length) r := marshalString(ret, []byte(algoname)) copy(r, pubKeyBytes) return ret } func algoName(key interface{}) string { switch key.(type) { case *rsa.PublicKey: return KeyAlgoRSA case *dsa.PublicKey: return KeyAlgoDSA case *ecdsa.PublicKey: switch key.(*ecdsa.PublicKey).Params().BitSize { case 256: return KeyAlgoECDSA256 case 384: return KeyAlgoECDSA384 case 521: return KeyAlgoECDSA521 } case *OpenSSHCertV01: switch key.(*OpenSSHCertV01).Key.(type) { case *rsa.PublicKey: return CertAlgoRSAv01 case *dsa.PublicKey: return CertAlgoDSAv01 case *ecdsa.PublicKey: switch key.(*OpenSSHCertV01).Key.(*ecdsa.PublicKey).Params().BitSize { case 256: return CertAlgoECDSA256v01 case 384: return CertAlgoECDSA384v01 case 521: return CertAlgoECDSA521v01 } } } panic(fmt.Sprintf("unexpected key type %T", key)) } // buildDataSignedForAuth returns the data that is signed in order to prove // posession of a private key. See RFC 4252, section 7. func buildDataSignedForAuth(sessionId []byte, req userAuthRequestMsg, algo, pubKey []byte) []byte { user := []byte(req.User) service := []byte(req.Service) method := []byte(req.Method) length := stringLength(len(sessionId)) length += 1 length += stringLength(len(user)) length += stringLength(len(service)) length += stringLength(len(method)) length += 1 length += stringLength(len(algo)) length += stringLength(len(pubKey)) ret := make([]byte, length) r := marshalString(ret, sessionId) r[0] = msgUserAuthRequest r = r[1:] r = marshalString(r, user) r = marshalString(r, service) r = marshalString(r, method) r[0] = 1 r = r[1:] r = marshalString(r, algo) r = marshalString(r, pubKey) return ret } // safeString sanitises s according to RFC 4251, section 9.2. // All control characters except tab, carriage return and newline are // replaced by 0x20. func safeString(s string) string { out := []byte(s) for i, c := range out { if c < 0x20 && c != 0xd && c != 0xa && c != 0x9 { out[i] = 0x20 } } return string(out) } func appendU16(buf []byte, n uint16) []byte { return append(buf, byte(n>>8), byte(n)) } func appendU32(buf []byte, n uint32) []byte { return append(buf, byte(n>>24), byte(n>>16), byte(n>>8), byte(n)) } func appendInt(buf []byte, n int) []byte { return appendU32(buf, uint32(n)) } func appendString(buf []byte, s string) []byte { buf = appendU32(buf, uint32(len(s))) buf = append(buf, s...) return buf } func appendBool(buf []byte, b bool) []byte { if b { buf = append(buf, 1) } else { buf = append(buf, 0) } return buf } // newCond is a helper to hide the fact that there is no usable zero // value for sync.Cond. func newCond() *sync.Cond { return sync.NewCond(new(sync.Mutex)) } // window represents the buffer available to clients // wishing to write to a channel. type window struct { *sync.Cond win uint32 // RFC 4254 5.2 says the window size can grow to 2^32-1 } // add adds win to the amount of window available // for consumers. func (w *window) add(win uint32) bool { // a zero sized window adjust is a noop. if win == 0 { return true } w.L.Lock() if w.win+win < win { w.L.Unlock() return false } w.win += win // It is unusual that multiple goroutines would be attempting to reserve // window space, but not guaranteed. Use broadcast to notify all waiters // that additional window is available. w.Broadcast() w.L.Unlock() return true } // reserve reserves win from the available window capacity. // If no capacity remains, reserve will block. reserve may // return less than requested. func (w *window) reserve(win uint32) uint32 { w.L.Lock() for w.win == 0 { w.Wait() } if w.win < win { win = w.win } w.win -= win w.L.Unlock() return win }