// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package scrypt implements the scrypt key derivation function as defined in // Colin Percival's paper "Stronger Key Derivation via Sequential Memory-Hard // Functions" (http://www.tarsnap.com/scrypt/scrypt.pdf). package scrypt import ( "crypto/sha256" "encoding/binary" "errors" "code.google.com/p/go.crypto/pbkdf2" "code.google.com/p/go.crypto/salsa20/salsa" ) const maxInt = int(^uint(0) >> 1) // blockCopy copies n bytes from src into dst. func blockCopy(dst, src []byte, n int) { copy(dst, src[:n]) } // blockXOR XORs bytes from dst with n bytes from src. func blockXOR(dst, src []byte, n int) { for i, v := range src[:n] { dst[i] ^= v } } func blockMix(b, y []byte, r int) { var x [64]byte blockCopy(x[:], b[(2*r-1)*64:], 64) for i := 0; i < 2*r*64; i += 64 { blockXOR(x[:], b[i:], 64) salsa.Core208(&x, &x) blockCopy(y[i:], x[:], 64) } for i := 0; i < r; i++ { blockCopy(b[i*64:], y[i*2*64:], 64) } for i := 0; i < r; i++ { blockCopy(b[(i+r)*64:], y[(i*2+1)*64:], 64) } } func integer(b []byte, r int) uint64 { return binary.LittleEndian.Uint64(b[(2*r-1)*64:]) } func smix(b []byte, r, N int, v, xy []byte) { x := xy y := xy[128*r:] blockCopy(x, b, 128*r) for i := 0; i < N; i++ { blockCopy(v[i*128*r:], x, 128*r) blockMix(x, y, r) } for i := 0; i < N; i++ { j := int(integer(x, r) & uint64(N-1)) blockXOR(x, v[j*128*r:], 128*r) blockMix(x, y, r) } blockCopy(b, x, 128*r) } // Key derives a key from the password, salt, and cost parameters, returning // a byte slice of length keyLen that can be used as cryptographic key. // // N is a CPU/memory cost parameter, which must be a power of two greater than 1. // r and p must satisfy r * p < 2³⁰. If the parameters do not satisfy the // limits, the function returns a nil byte slice and an error. // // For example, you can get a derived key for e.g. AES-256 (which needs a // 32-byte key) by doing: // // dk := scrypt.Key([]byte("some password"), salt, 16384, 8, 1, 32) // // The recommended parameters for interactive logins as of 2009 are N=16384, // r=8, p=1. They should be increased as memory latency and CPU parallelism // increases. Remember to get a good random salt. func Key(password, salt []byte, N, r, p, keyLen int) ([]byte, error) { if N <= 1 || N&(N-1) != 0 { return nil, errors.New("scrypt: N must be > 1 and a power of 2") } if uint64(r)*uint64(p) >= 1<<30 || r > maxInt/128/p || r > maxInt/256 || N > maxInt/128/r { return nil, errors.New("scrypt: parameters are too large") } xy := make([]byte, 256*r) v := make([]byte, 128*r*N) b := pbkdf2.Key(password, salt, 1, p*128*r, sha256.New) for i := 0; i < p; i++ { smix(b[i*128*r:], r, N, v, xy) } return pbkdf2.Key(password, b, 1, keyLen, sha256.New), nil }