|
|
@@ -6,6 +6,7 @@ package ssh
|
|
|
|
|
|
import (
|
|
|
"bytes"
|
|
|
+ "crypto"
|
|
|
"crypto/dsa"
|
|
|
"crypto/ecdsa"
|
|
|
"crypto/elliptic"
|
|
|
@@ -25,7 +26,7 @@ const (
|
|
|
)
|
|
|
|
|
|
// parsePubKey parses a public key according to RFC 4253, section 6.6.
|
|
|
-func parsePubKey(in []byte) (out interface{}, rest []byte, ok bool) {
|
|
|
+func parsePubKey(in []byte) (pubKey PublicKey, rest []byte, ok bool) {
|
|
|
algo, in, ok := parseString(in)
|
|
|
if !ok {
|
|
|
return
|
|
|
@@ -41,141 +42,7 @@ func parsePubKey(in []byte) (out interface{}, rest []byte, ok bool) {
|
|
|
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01:
|
|
|
return parseOpenSSHCertV01(in, string(algo))
|
|
|
}
|
|
|
- panic("ssh: unknown public key type")
|
|
|
-}
|
|
|
-
|
|
|
-// parseRSA parses an RSA key according to RFC 4253, section 6.6.
|
|
|
-func parseRSA(in []byte) (out *rsa.PublicKey, rest []byte, ok bool) {
|
|
|
- key := new(rsa.PublicKey)
|
|
|
-
|
|
|
- bigE, in, ok := parseInt(in)
|
|
|
- if !ok || bigE.BitLen() > 24 {
|
|
|
- return
|
|
|
- }
|
|
|
- e := bigE.Int64()
|
|
|
- if e < 3 || e&1 == 0 {
|
|
|
- ok = false
|
|
|
- return
|
|
|
- }
|
|
|
- key.E = int(e)
|
|
|
-
|
|
|
- if key.N, in, ok = parseInt(in); !ok {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- ok = true
|
|
|
- return key, in, ok
|
|
|
-}
|
|
|
-
|
|
|
-// parseDSA parses an DSA key according to RFC 4253, section 6.6.
|
|
|
-func parseDSA(in []byte) (out *dsa.PublicKey, rest []byte, ok bool) {
|
|
|
- key := new(dsa.PublicKey)
|
|
|
-
|
|
|
- if key.P, in, ok = parseInt(in); !ok {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- if key.Q, in, ok = parseInt(in); !ok {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- if key.G, in, ok = parseInt(in); !ok {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- if key.Y, in, ok = parseInt(in); !ok {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- ok = true
|
|
|
- return key, in, ok
|
|
|
-}
|
|
|
-
|
|
|
-// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
|
|
|
-func parseECDSA(in []byte) (out *ecdsa.PublicKey, rest []byte, ok bool) {
|
|
|
- var identifier []byte
|
|
|
- if identifier, in, ok = parseString(in); !ok {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- key := new(ecdsa.PublicKey)
|
|
|
-
|
|
|
- switch string(identifier) {
|
|
|
- case "nistp256":
|
|
|
- key.Curve = elliptic.P256()
|
|
|
- case "nistp384":
|
|
|
- key.Curve = elliptic.P384()
|
|
|
- case "nistp521":
|
|
|
- key.Curve = elliptic.P521()
|
|
|
- default:
|
|
|
- ok = false
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- var keyBytes []byte
|
|
|
- if keyBytes, in, ok = parseString(in); !ok {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- key.X, key.Y = elliptic.Unmarshal(key.Curve, keyBytes)
|
|
|
- if key.X == nil || key.Y == nil {
|
|
|
- ok = false
|
|
|
- return
|
|
|
- }
|
|
|
- return key, in, ok
|
|
|
-}
|
|
|
-
|
|
|
-// marshalPubRSA serializes an RSA public key according to RFC 4253, section 6.6.
|
|
|
-func marshalPubRSA(key *rsa.PublicKey) []byte {
|
|
|
- e := new(big.Int).SetInt64(int64(key.E))
|
|
|
- length := intLength(e)
|
|
|
- length += intLength(key.N)
|
|
|
-
|
|
|
- ret := make([]byte, length)
|
|
|
- r := marshalInt(ret, e)
|
|
|
- r = marshalInt(r, key.N)
|
|
|
-
|
|
|
- return ret
|
|
|
-}
|
|
|
-
|
|
|
-// marshalPubDSA serializes an DSA public key according to RFC 4253, section 6.6.
|
|
|
-func marshalPubDSA(key *dsa.PublicKey) []byte {
|
|
|
- length := intLength(key.P)
|
|
|
- length += intLength(key.Q)
|
|
|
- length += intLength(key.G)
|
|
|
- length += intLength(key.Y)
|
|
|
-
|
|
|
- ret := make([]byte, length)
|
|
|
- r := marshalInt(ret, key.P)
|
|
|
- r = marshalInt(r, key.Q)
|
|
|
- r = marshalInt(r, key.G)
|
|
|
- r = marshalInt(r, key.Y)
|
|
|
-
|
|
|
- return ret
|
|
|
-}
|
|
|
-
|
|
|
-// marshalPubECDSA serializes an ECDSA public key according to RFC 5656, section 3.1.
|
|
|
-func marshalPubECDSA(key *ecdsa.PublicKey) []byte {
|
|
|
- var identifier []byte
|
|
|
- switch key.Params().BitSize {
|
|
|
- case 256:
|
|
|
- identifier = []byte("nistp256")
|
|
|
- case 384:
|
|
|
- identifier = []byte("nistp384")
|
|
|
- case 521:
|
|
|
- identifier = []byte("nistp521")
|
|
|
- default:
|
|
|
- panic("ssh: unsupported ecdsa key size")
|
|
|
- }
|
|
|
- keyBytes := elliptic.Marshal(key.Curve, key.X, key.Y)
|
|
|
-
|
|
|
- length := stringLength(len(identifier))
|
|
|
- length += stringLength(len(keyBytes))
|
|
|
-
|
|
|
- ret := make([]byte, length)
|
|
|
- r := marshalString(ret, identifier)
|
|
|
- r = marshalString(r, keyBytes)
|
|
|
- return ret
|
|
|
+ return nil, nil, false
|
|
|
}
|
|
|
|
|
|
// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
|
|
|
@@ -307,28 +174,297 @@ func ParseAuthorizedKey(in []byte) (out interface{}, comment string, options []s
|
|
|
|
|
|
// ParsePublicKey parses an SSH public key formatted for use in
|
|
|
// the SSH wire protocol.
|
|
|
-func ParsePublicKey(in []byte) (out interface{}, rest []byte, ok bool) {
|
|
|
+func ParsePublicKey(in []byte) (out PublicKey, rest []byte, ok bool) {
|
|
|
return parsePubKey(in)
|
|
|
}
|
|
|
|
|
|
// MarshalAuthorizedKey returns a byte stream suitable for inclusion
|
|
|
// in an OpenSSH authorized_keys file following the format specified
|
|
|
// in the sshd(8) manual page.
|
|
|
-func MarshalAuthorizedKey(key interface{}) []byte {
|
|
|
+func MarshalAuthorizedKey(key PublicKey) []byte {
|
|
|
b := &bytes.Buffer{}
|
|
|
- b.WriteString(algoName(key))
|
|
|
+ b.WriteString(key.PublicKeyAlgo())
|
|
|
b.WriteByte(' ')
|
|
|
e := base64.NewEncoder(base64.StdEncoding, b)
|
|
|
- e.Write(serializePublicKey(key))
|
|
|
+ e.Write(MarshalPublicKey(key))
|
|
|
e.Close()
|
|
|
b.WriteByte('\n')
|
|
|
return b.Bytes()
|
|
|
}
|
|
|
|
|
|
-// MarshalPublicKey serializes a supported key or certificate for use by the
|
|
|
-// SSH wire protocol. It can be used for comparison with the pubkey argument
|
|
|
-// of ServerConfig's PublicKeyCallback as well as for generating an
|
|
|
-// authorized_keys or host_keys file.
|
|
|
-func MarshalPublicKey(key interface{}) []byte {
|
|
|
- return serializePublicKey(key)
|
|
|
+// PublicKey is an abstraction of different types of public keys.
|
|
|
+type PublicKey interface {
|
|
|
+ // PrivateKeyAlgo returns the name of the encryption system.
|
|
|
+ PrivateKeyAlgo() string
|
|
|
+
|
|
|
+ // PublicKeyAlgo returns the algorithm for the public key,
|
|
|
+ // which may be different from PrivateKeyAlgo for certificates.
|
|
|
+ PublicKeyAlgo() string
|
|
|
+
|
|
|
+ // Marshal returns the serialized key data in SSH wire format,
|
|
|
+ // without the name prefix. Callers should typically use
|
|
|
+ // MarshalPublicKey().
|
|
|
+ Marshal() []byte
|
|
|
+
|
|
|
+ // Verify that sig is a signature on the given data using this
|
|
|
+ // key. This function will hash the data appropriately first.
|
|
|
+ Verify(data []byte, sigBlob []byte) bool
|
|
|
+
|
|
|
+ // RawKey returns the underlying object, eg. *rsa.PublicKey.
|
|
|
+ RawKey() interface{}
|
|
|
+}
|
|
|
+
|
|
|
+// TODO(hanwen): define PrivateKey too.
|
|
|
+
|
|
|
+type rsaPublicKey rsa.PublicKey
|
|
|
+
|
|
|
+func (r *rsaPublicKey) PrivateKeyAlgo() string {
|
|
|
+ return "ssh-rsa"
|
|
|
+}
|
|
|
+
|
|
|
+func (r *rsaPublicKey) PublicKeyAlgo() string {
|
|
|
+ return "ssh-rsa"
|
|
|
+}
|
|
|
+
|
|
|
+func (r *rsaPublicKey) RawKey() interface{} {
|
|
|
+ return (*rsa.PublicKey)(r)
|
|
|
+}
|
|
|
+
|
|
|
+// parseRSA parses an RSA key according to RFC 4253, section 6.6.
|
|
|
+func parseRSA(in []byte) (out PublicKey, rest []byte, ok bool) {
|
|
|
+ key := new(rsa.PublicKey)
|
|
|
+
|
|
|
+ bigE, in, ok := parseInt(in)
|
|
|
+ if !ok || bigE.BitLen() > 24 {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ e := bigE.Int64()
|
|
|
+ if e < 3 || e&1 == 0 {
|
|
|
+ ok = false
|
|
|
+ return
|
|
|
+ }
|
|
|
+ key.E = int(e)
|
|
|
+
|
|
|
+ if key.N, in, ok = parseInt(in); !ok {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ ok = true
|
|
|
+ return NewRSAPublicKey(key), in, ok
|
|
|
+}
|
|
|
+
|
|
|
+func (r *rsaPublicKey) Marshal() []byte {
|
|
|
+ // See RFC 4253, section 6.6.
|
|
|
+ e := new(big.Int).SetInt64(int64(r.E))
|
|
|
+ length := intLength(e)
|
|
|
+ length += intLength(r.N)
|
|
|
+
|
|
|
+ ret := make([]byte, length)
|
|
|
+ rest := marshalInt(ret, e)
|
|
|
+ marshalInt(rest, r.N)
|
|
|
+
|
|
|
+ return ret
|
|
|
+}
|
|
|
+
|
|
|
+func (r *rsaPublicKey) Verify(data []byte, sig []byte) bool {
|
|
|
+ h := crypto.SHA1.New()
|
|
|
+ h.Write(data)
|
|
|
+ digest := h.Sum(nil)
|
|
|
+ return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), crypto.SHA1, digest, sig) == nil
|
|
|
+}
|
|
|
+
|
|
|
+func NewRSAPublicKey(k *rsa.PublicKey) PublicKey {
|
|
|
+ return (*rsaPublicKey)(k)
|
|
|
+}
|
|
|
+
|
|
|
+type dsaPublicKey dsa.PublicKey
|
|
|
+
|
|
|
+func (r *dsaPublicKey) PrivateKeyAlgo() string {
|
|
|
+ return "ssh-dss"
|
|
|
+}
|
|
|
+func (r *dsaPublicKey) PublicKeyAlgo() string {
|
|
|
+ return "ssh-dss"
|
|
|
+}
|
|
|
+func (r *dsaPublicKey) RawKey() interface{} {
|
|
|
+ return (*dsa.PublicKey)(r)
|
|
|
+}
|
|
|
+
|
|
|
+// parseDSA parses an DSA key according to RFC 4253, section 6.6.
|
|
|
+func parseDSA(in []byte) (out PublicKey, rest []byte, ok bool) {
|
|
|
+ key := new(dsa.PublicKey)
|
|
|
+
|
|
|
+ if key.P, in, ok = parseInt(in); !ok {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ if key.Q, in, ok = parseInt(in); !ok {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ if key.G, in, ok = parseInt(in); !ok {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ if key.Y, in, ok = parseInt(in); !ok {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ ok = true
|
|
|
+ return NewDSAPublicKey(key), in, ok
|
|
|
+}
|
|
|
+
|
|
|
+func (r *dsaPublicKey) Marshal() []byte {
|
|
|
+ // See RFC 4253, section 6.6.
|
|
|
+ length := intLength(r.P)
|
|
|
+ length += intLength(r.Q)
|
|
|
+ length += intLength(r.G)
|
|
|
+ length += intLength(r.Y)
|
|
|
+
|
|
|
+ ret := make([]byte, length)
|
|
|
+ rest := marshalInt(ret, r.P)
|
|
|
+ rest = marshalInt(rest, r.Q)
|
|
|
+ rest = marshalInt(rest, r.G)
|
|
|
+ marshalInt(rest, r.Y)
|
|
|
+
|
|
|
+ return ret
|
|
|
+}
|
|
|
+
|
|
|
+func (k *dsaPublicKey) Verify(data []byte, sigBlob []byte) bool {
|
|
|
+ h := crypto.SHA1.New()
|
|
|
+ h.Write(data)
|
|
|
+ digest := h.Sum(nil)
|
|
|
+
|
|
|
+ // Per RFC 4253, section 6.6,
|
|
|
+ // The value for 'dss_signature_blob' is encoded as a string containing
|
|
|
+ // r, followed by s (which are 160-bit integers, without lengths or
|
|
|
+ // padding, unsigned, and in network byte order).
|
|
|
+ // For DSS purposes, sig.Blob should be exactly 40 bytes in length.
|
|
|
+ if len(sigBlob) != 40 {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ r := new(big.Int).SetBytes(sigBlob[:20])
|
|
|
+ s := new(big.Int).SetBytes(sigBlob[20:])
|
|
|
+ return dsa.Verify((*dsa.PublicKey)(k), digest, r, s)
|
|
|
+}
|
|
|
+
|
|
|
+func NewDSAPublicKey(k *dsa.PublicKey) PublicKey {
|
|
|
+ return (*dsaPublicKey)(k)
|
|
|
+}
|
|
|
+
|
|
|
+type ecdsaPublicKey ecdsa.PublicKey
|
|
|
+
|
|
|
+func NewECDSAPublicKey(k *ecdsa.PublicKey) PublicKey {
|
|
|
+ return (*ecdsaPublicKey)(k)
|
|
|
+}
|
|
|
+func (r *ecdsaPublicKey) RawKey() interface{} {
|
|
|
+ return (*ecdsa.PublicKey)(r)
|
|
|
+}
|
|
|
+
|
|
|
+func (key *ecdsaPublicKey) PrivateKeyAlgo() string {
|
|
|
+ return "ecdh-sha2-" + key.nistID()
|
|
|
+}
|
|
|
+
|
|
|
+func (key *ecdsaPublicKey) nistID() string {
|
|
|
+ switch key.Params().BitSize {
|
|
|
+ case 256:
|
|
|
+ return "nistp256"
|
|
|
+ case 384:
|
|
|
+ return "nistp384"
|
|
|
+ case 521:
|
|
|
+ return "nistp521"
|
|
|
+ }
|
|
|
+ panic("ssh: unsupported ecdsa key size")
|
|
|
+}
|
|
|
+
|
|
|
+// RFC 5656, section 6.2.1 (for ECDSA).
|
|
|
+func (key *ecdsaPublicKey) hash() crypto.Hash {
|
|
|
+ switch key.Params().BitSize {
|
|
|
+ case 256:
|
|
|
+ return crypto.SHA256
|
|
|
+ case 384:
|
|
|
+ return crypto.SHA384
|
|
|
+ case 521:
|
|
|
+ return crypto.SHA512
|
|
|
+ }
|
|
|
+ panic("ssh: unsupported ecdsa key size")
|
|
|
+}
|
|
|
+
|
|
|
+func (key *ecdsaPublicKey) PublicKeyAlgo() string {
|
|
|
+ switch key.Params().BitSize {
|
|
|
+ case 256:
|
|
|
+ return KeyAlgoECDSA256
|
|
|
+ case 384:
|
|
|
+ return KeyAlgoECDSA384
|
|
|
+ case 521:
|
|
|
+ return KeyAlgoECDSA521
|
|
|
+ }
|
|
|
+ panic("ssh: unsupported ecdsa key size")
|
|
|
+}
|
|
|
+
|
|
|
+// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
|
|
|
+func parseECDSA(in []byte) (out PublicKey, rest []byte, ok bool) {
|
|
|
+ var identifier []byte
|
|
|
+ if identifier, in, ok = parseString(in); !ok {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ key := new(ecdsa.PublicKey)
|
|
|
+
|
|
|
+ switch string(identifier) {
|
|
|
+ case "nistp256":
|
|
|
+ key.Curve = elliptic.P256()
|
|
|
+ case "nistp384":
|
|
|
+ key.Curve = elliptic.P384()
|
|
|
+ case "nistp521":
|
|
|
+ key.Curve = elliptic.P521()
|
|
|
+ default:
|
|
|
+ ok = false
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ var keyBytes []byte
|
|
|
+ if keyBytes, in, ok = parseString(in); !ok {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ key.X, key.Y = elliptic.Unmarshal(key.Curve, keyBytes)
|
|
|
+ if key.X == nil || key.Y == nil {
|
|
|
+ ok = false
|
|
|
+ return
|
|
|
+ }
|
|
|
+ return NewECDSAPublicKey(key), in, ok
|
|
|
+}
|
|
|
+
|
|
|
+func (key *ecdsaPublicKey) Marshal() []byte {
|
|
|
+ // See RFC 5656, section 3.1.
|
|
|
+ keyBytes := elliptic.Marshal(key.Curve, key.X, key.Y)
|
|
|
+
|
|
|
+ ID := key.nistID()
|
|
|
+ length := stringLength(len(ID))
|
|
|
+ length += stringLength(len(keyBytes))
|
|
|
+
|
|
|
+ ret := make([]byte, length)
|
|
|
+ r := marshalString(ret, []byte(ID))
|
|
|
+ r = marshalString(r, keyBytes)
|
|
|
+ return ret
|
|
|
+}
|
|
|
+
|
|
|
+func (key *ecdsaPublicKey) Verify(data []byte, sigBlob []byte) bool {
|
|
|
+ h := key.hash().New()
|
|
|
+ h.Write(data)
|
|
|
+ digest := h.Sum(nil)
|
|
|
+
|
|
|
+ // Per RFC 5656, section 3.1.2,
|
|
|
+ // The ecdsa_signature_blob value has the following specific encoding:
|
|
|
+ // mpint r
|
|
|
+ // mpint s
|
|
|
+ r, rest, ok := parseInt(sigBlob)
|
|
|
+ if !ok {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ s, rest, ok := parseInt(rest)
|
|
|
+ if !ok || len(rest) > 0 {
|
|
|
+ return false
|
|
|
+ }
|
|
|
+ return ecdsa.Verify((*ecdsa.PublicKey)(key), digest, r, s)
|
|
|
}
|