encode.go 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. // Copyright 2011 The Snappy-Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package snappy
  5. import (
  6. "encoding/binary"
  7. "errors"
  8. "io"
  9. )
  10. // maxOffset limits how far copy back-references can go, the same as the C++
  11. // code.
  12. const maxOffset = 1 << 15
  13. func load32(b []byte, i int) uint32 {
  14. b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
  15. return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
  16. }
  17. func load64(b []byte, i int) uint64 {
  18. b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
  19. return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
  20. uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
  21. }
  22. // emitLiteral writes a literal chunk and returns the number of bytes written.
  23. func emitLiteral(dst, lit []byte) int {
  24. i, n := 0, uint(len(lit)-1)
  25. switch {
  26. case n < 60:
  27. dst[0] = uint8(n)<<2 | tagLiteral
  28. i = 1
  29. case n < 1<<8:
  30. dst[0] = 60<<2 | tagLiteral
  31. dst[1] = uint8(n)
  32. i = 2
  33. case n < 1<<16:
  34. dst[0] = 61<<2 | tagLiteral
  35. dst[1] = uint8(n)
  36. dst[2] = uint8(n >> 8)
  37. i = 3
  38. case n < 1<<24:
  39. dst[0] = 62<<2 | tagLiteral
  40. dst[1] = uint8(n)
  41. dst[2] = uint8(n >> 8)
  42. dst[3] = uint8(n >> 16)
  43. i = 4
  44. case int64(n) < 1<<32:
  45. dst[0] = 63<<2 | tagLiteral
  46. dst[1] = uint8(n)
  47. dst[2] = uint8(n >> 8)
  48. dst[3] = uint8(n >> 16)
  49. dst[4] = uint8(n >> 24)
  50. i = 5
  51. default:
  52. panic("snappy: source buffer is too long")
  53. }
  54. if copy(dst[i:], lit) != len(lit) {
  55. panic("snappy: destination buffer is too short")
  56. }
  57. return i + len(lit)
  58. }
  59. // emitCopy writes a copy chunk and returns the number of bytes written.
  60. func emitCopy(dst []byte, offset, length int) int {
  61. i := 0
  62. // The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
  63. // threshold for this loop is a little higher (at 68 = 64 + 4), and the
  64. // length emitted down below is is a little lower (at 60 = 64 - 4), because
  65. // it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
  66. // by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
  67. // a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
  68. // 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
  69. // tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
  70. // encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
  71. for length >= 68 {
  72. // Emit a length 64 copy, encoded as 3 bytes.
  73. dst[i+0] = 63<<2 | tagCopy2
  74. dst[i+1] = uint8(offset)
  75. dst[i+2] = uint8(offset >> 8)
  76. i += 3
  77. length -= 64
  78. }
  79. if length > 64 {
  80. // Emit a length 60 copy, encoded as 3 bytes.
  81. dst[i+0] = 59<<2 | tagCopy2
  82. dst[i+1] = uint8(offset)
  83. dst[i+2] = uint8(offset >> 8)
  84. i += 3
  85. length -= 60
  86. }
  87. if length >= 12 || offset >= 2048 {
  88. // Emit the remaining copy, encoded as 3 bytes.
  89. dst[i+0] = uint8(length-1)<<2 | tagCopy2
  90. dst[i+1] = uint8(offset)
  91. dst[i+2] = uint8(offset >> 8)
  92. return i + 3
  93. }
  94. // Emit the remaining copy, encoded as 2 bytes.
  95. dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
  96. dst[i+1] = uint8(offset)
  97. return i + 2
  98. }
  99. // Encode returns the encoded form of src. The returned slice may be a sub-
  100. // slice of dst if dst was large enough to hold the entire encoded block.
  101. // Otherwise, a newly allocated slice will be returned.
  102. //
  103. // It is valid to pass a nil dst.
  104. func Encode(dst, src []byte) []byte {
  105. if n := MaxEncodedLen(len(src)); n < 0 {
  106. panic(ErrTooLarge)
  107. } else if len(dst) < n {
  108. dst = make([]byte, n)
  109. }
  110. // The block starts with the varint-encoded length of the decompressed bytes.
  111. d := binary.PutUvarint(dst, uint64(len(src)))
  112. for len(src) > 0 {
  113. p := src
  114. src = nil
  115. if len(p) > maxBlockSize {
  116. p, src = p[:maxBlockSize], p[maxBlockSize:]
  117. }
  118. if len(p) < minNonLiteralBlockSize {
  119. d += emitLiteral(dst[d:], p)
  120. } else {
  121. d += encodeBlock(dst[d:], p)
  122. }
  123. }
  124. return dst[:d]
  125. }
  126. // inputMargin is the minimum number of extra input bytes to keep, inside
  127. // encodeBlock's inner loop. On some architectures, this margin lets us
  128. // implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
  129. // literals can be implemented as a single load to and store from a 16-byte
  130. // register. That literal's actual length can be as short as 1 byte, so this
  131. // can copy up to 15 bytes too much, but that's OK as subsequent iterations of
  132. // the encoding loop will fix up the copy overrun, and this inputMargin ensures
  133. // that we don't overrun the dst and src buffers.
  134. //
  135. // TODO: implement this fast path.
  136. const inputMargin = 16 - 1
  137. // minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
  138. // could be encoded with a copy tag. This is the minimum with respect to the
  139. // algorithm used by encodeBlock, not a minimum enforced by the file format.
  140. //
  141. // The encoded output must start with at least a 1 byte literal, as there are
  142. // no previous bytes to copy. A minimal (1 byte) copy after that, generated
  143. // from an emitCopy call in encodeBlock's main loop, would require at least
  144. // another inputMargin bytes, for the reason above: we want any emitLiteral
  145. // calls inside encodeBlock's main loop to use the fast path if possible, which
  146. // requires being able to overrun by inputMargin bytes. Thus,
  147. // minNonLiteralBlockSize equals 1 + 1 + inputMargin.
  148. //
  149. // The C++ code doesn't use this exact threshold, but it could, as discussed at
  150. // https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
  151. // The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
  152. // optimization. It should not affect the encoded form. This is tested by
  153. // TestSameEncodingAsCppShortCopies.
  154. const minNonLiteralBlockSize = 1 + 1 + inputMargin
  155. func hash(u, shift uint32) uint32 {
  156. return (u * 0x1e35a7bd) >> shift
  157. }
  158. // encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
  159. // assumes that the varint-encoded length of the decompressed bytes has already
  160. // been written.
  161. //
  162. // It also assumes that:
  163. // len(dst) >= MaxEncodedLen(len(src)) &&
  164. // minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
  165. func encodeBlock(dst, src []byte) (d int) {
  166. // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
  167. // The table element type is uint16, as s < sLimit and sLimit < len(src)
  168. // and len(src) <= maxBlockSize and maxBlockSize == 65536.
  169. const maxTableSize = 1 << 14
  170. shift, tableSize := uint32(32-8), 1<<8
  171. for tableSize < maxTableSize && tableSize < len(src) {
  172. shift--
  173. tableSize *= 2
  174. }
  175. var table [maxTableSize]uint16
  176. // sLimit is when to stop looking for offset/length copies. The inputMargin
  177. // lets us use a fast path for emitLiteral in the main loop, while we are
  178. // looking for copies.
  179. sLimit := len(src) - inputMargin
  180. // nextEmit is where in src the next emitLiteral should start from.
  181. nextEmit := 0
  182. // The encoded form must start with a literal, as there are no previous
  183. // bytes to copy, so we start looking for hash matches at s == 1.
  184. s := 1
  185. nextHash := hash(load32(src, s), shift)
  186. for {
  187. // Copied from the C++ snappy implementation:
  188. //
  189. // Heuristic match skipping: If 32 bytes are scanned with no matches
  190. // found, start looking only at every other byte. If 32 more bytes are
  191. // scanned (or skipped), look at every third byte, etc.. When a match
  192. // is found, immediately go back to looking at every byte. This is a
  193. // small loss (~5% performance, ~0.1% density) for compressible data
  194. // due to more bookkeeping, but for non-compressible data (such as
  195. // JPEG) it's a huge win since the compressor quickly "realizes" the
  196. // data is incompressible and doesn't bother looking for matches
  197. // everywhere.
  198. //
  199. // The "skip" variable keeps track of how many bytes there are since
  200. // the last match; dividing it by 32 (ie. right-shifting by five) gives
  201. // the number of bytes to move ahead for each iteration.
  202. skip := 32
  203. nextS := s
  204. candidate := 0
  205. for {
  206. s = nextS
  207. bytesBetweenHashLookups := skip >> 5
  208. nextS = s + bytesBetweenHashLookups
  209. skip += bytesBetweenHashLookups
  210. if nextS > sLimit {
  211. goto emitRemainder
  212. }
  213. candidate = int(table[nextHash])
  214. table[nextHash] = uint16(s)
  215. nextHash = hash(load32(src, nextS), shift)
  216. if load32(src, s) == load32(src, candidate) {
  217. break
  218. }
  219. }
  220. // A 4-byte match has been found. We'll later see if more than 4 bytes
  221. // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
  222. // them as literal bytes.
  223. d += emitLiteral(dst[d:], src[nextEmit:s])
  224. // Call emitCopy, and then see if another emitCopy could be our next
  225. // move. Repeat until we find no match for the input immediately after
  226. // what was consumed by the last emitCopy call.
  227. //
  228. // If we exit this loop normally then we need to call emitLiteral next,
  229. // though we don't yet know how big the literal will be. We handle that
  230. // by proceeding to the next iteration of the main loop. We also can
  231. // exit this loop via goto if we get close to exhausting the input.
  232. for {
  233. // Invariant: we have a 4-byte match at s, and no need to emit any
  234. // literal bytes prior to s.
  235. base := s
  236. s += 4
  237. for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
  238. }
  239. d += emitCopy(dst[d:], base-candidate, s-base)
  240. nextEmit = s
  241. if s >= sLimit {
  242. goto emitRemainder
  243. }
  244. // We could immediately start working at s now, but to improve
  245. // compression we first update the hash table at s-1 and at s. If
  246. // another emitCopy is not our next move, also calculate nextHash
  247. // at s+1. At least on GOARCH=amd64, these three hash calculations
  248. // are faster as one load64 call (with some shifts) instead of
  249. // three load32 calls.
  250. x := load64(src, s-1)
  251. prevHash := hash(uint32(x>>0), shift)
  252. table[prevHash] = uint16(s - 1)
  253. currHash := hash(uint32(x>>8), shift)
  254. candidate = int(table[currHash])
  255. table[currHash] = uint16(s)
  256. if uint32(x>>8) != load32(src, candidate) {
  257. nextHash = hash(uint32(x>>16), shift)
  258. s++
  259. break
  260. }
  261. }
  262. }
  263. emitRemainder:
  264. if nextEmit < len(src) {
  265. d += emitLiteral(dst[d:], src[nextEmit:])
  266. }
  267. return d
  268. }
  269. // MaxEncodedLen returns the maximum length of a snappy block, given its
  270. // uncompressed length.
  271. //
  272. // It will return a negative value if srcLen is too large to encode.
  273. func MaxEncodedLen(srcLen int) int {
  274. n := uint64(srcLen)
  275. if n > 0xffffffff {
  276. return -1
  277. }
  278. // Compressed data can be defined as:
  279. // compressed := item* literal*
  280. // item := literal* copy
  281. //
  282. // The trailing literal sequence has a space blowup of at most 62/60
  283. // since a literal of length 60 needs one tag byte + one extra byte
  284. // for length information.
  285. //
  286. // Item blowup is trickier to measure. Suppose the "copy" op copies
  287. // 4 bytes of data. Because of a special check in the encoding code,
  288. // we produce a 4-byte copy only if the offset is < 65536. Therefore
  289. // the copy op takes 3 bytes to encode, and this type of item leads
  290. // to at most the 62/60 blowup for representing literals.
  291. //
  292. // Suppose the "copy" op copies 5 bytes of data. If the offset is big
  293. // enough, it will take 5 bytes to encode the copy op. Therefore the
  294. // worst case here is a one-byte literal followed by a five-byte copy.
  295. // That is, 6 bytes of input turn into 7 bytes of "compressed" data.
  296. //
  297. // This last factor dominates the blowup, so the final estimate is:
  298. n = 32 + n + n/6
  299. if n > 0xffffffff {
  300. return -1
  301. }
  302. return int(n)
  303. }
  304. var errClosed = errors.New("snappy: Writer is closed")
  305. // NewWriter returns a new Writer that compresses to w.
  306. //
  307. // The Writer returned does not buffer writes. There is no need to Flush or
  308. // Close such a Writer.
  309. //
  310. // Deprecated: the Writer returned is not suitable for many small writes, only
  311. // for few large writes. Use NewBufferedWriter instead, which is efficient
  312. // regardless of the frequency and shape of the writes, and remember to Close
  313. // that Writer when done.
  314. func NewWriter(w io.Writer) *Writer {
  315. return &Writer{
  316. w: w,
  317. obuf: make([]byte, obufLen),
  318. }
  319. }
  320. // NewBufferedWriter returns a new Writer that compresses to w, using the
  321. // framing format described at
  322. // https://github.com/google/snappy/blob/master/framing_format.txt
  323. //
  324. // The Writer returned buffers writes. Users must call Close to guarantee all
  325. // data has been forwarded to the underlying io.Writer. They may also call
  326. // Flush zero or more times before calling Close.
  327. func NewBufferedWriter(w io.Writer) *Writer {
  328. return &Writer{
  329. w: w,
  330. ibuf: make([]byte, 0, maxBlockSize),
  331. obuf: make([]byte, obufLen),
  332. }
  333. }
  334. // Writer is an io.Writer than can write Snappy-compressed bytes.
  335. type Writer struct {
  336. w io.Writer
  337. err error
  338. // ibuf is a buffer for the incoming (uncompressed) bytes.
  339. //
  340. // Its use is optional. For backwards compatibility, Writers created by the
  341. // NewWriter function have ibuf == nil, do not buffer incoming bytes, and
  342. // therefore do not need to be Flush'ed or Close'd.
  343. ibuf []byte
  344. // obuf is a buffer for the outgoing (compressed) bytes.
  345. obuf []byte
  346. // wroteStreamHeader is whether we have written the stream header.
  347. wroteStreamHeader bool
  348. }
  349. // Reset discards the writer's state and switches the Snappy writer to write to
  350. // w. This permits reusing a Writer rather than allocating a new one.
  351. func (w *Writer) Reset(writer io.Writer) {
  352. w.w = writer
  353. w.err = nil
  354. if w.ibuf != nil {
  355. w.ibuf = w.ibuf[:0]
  356. }
  357. w.wroteStreamHeader = false
  358. }
  359. // Write satisfies the io.Writer interface.
  360. func (w *Writer) Write(p []byte) (nRet int, errRet error) {
  361. if w.ibuf == nil {
  362. // Do not buffer incoming bytes. This does not perform or compress well
  363. // if the caller of Writer.Write writes many small slices. This
  364. // behavior is therefore deprecated, but still supported for backwards
  365. // compatibility with code that doesn't explicitly Flush or Close.
  366. return w.write(p)
  367. }
  368. // The remainder of this method is based on bufio.Writer.Write from the
  369. // standard library.
  370. for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
  371. var n int
  372. if len(w.ibuf) == 0 {
  373. // Large write, empty buffer.
  374. // Write directly from p to avoid copy.
  375. n, _ = w.write(p)
  376. } else {
  377. n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
  378. w.ibuf = w.ibuf[:len(w.ibuf)+n]
  379. w.Flush()
  380. }
  381. nRet += n
  382. p = p[n:]
  383. }
  384. if w.err != nil {
  385. return nRet, w.err
  386. }
  387. n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
  388. w.ibuf = w.ibuf[:len(w.ibuf)+n]
  389. nRet += n
  390. return nRet, nil
  391. }
  392. func (w *Writer) write(p []byte) (nRet int, errRet error) {
  393. if w.err != nil {
  394. return 0, w.err
  395. }
  396. for len(p) > 0 {
  397. obufStart := len(magicChunk)
  398. if !w.wroteStreamHeader {
  399. w.wroteStreamHeader = true
  400. copy(w.obuf, magicChunk)
  401. obufStart = 0
  402. }
  403. var uncompressed []byte
  404. if len(p) > maxBlockSize {
  405. uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
  406. } else {
  407. uncompressed, p = p, nil
  408. }
  409. checksum := crc(uncompressed)
  410. // Compress the buffer, discarding the result if the improvement
  411. // isn't at least 12.5%.
  412. compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
  413. chunkType := uint8(chunkTypeCompressedData)
  414. chunkLen := 4 + len(compressed)
  415. obufEnd := obufHeaderLen + len(compressed)
  416. if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
  417. chunkType = chunkTypeUncompressedData
  418. chunkLen = 4 + len(uncompressed)
  419. obufEnd = obufHeaderLen
  420. }
  421. // Fill in the per-chunk header that comes before the body.
  422. w.obuf[len(magicChunk)+0] = chunkType
  423. w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
  424. w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
  425. w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
  426. w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
  427. w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
  428. w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
  429. w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
  430. if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
  431. w.err = err
  432. return nRet, err
  433. }
  434. if chunkType == chunkTypeUncompressedData {
  435. if _, err := w.w.Write(uncompressed); err != nil {
  436. w.err = err
  437. return nRet, err
  438. }
  439. }
  440. nRet += len(uncompressed)
  441. }
  442. return nRet, nil
  443. }
  444. // Flush flushes the Writer to its underlying io.Writer.
  445. func (w *Writer) Flush() error {
  446. if w.err != nil {
  447. return w.err
  448. }
  449. if len(w.ibuf) == 0 {
  450. return nil
  451. }
  452. w.write(w.ibuf)
  453. w.ibuf = w.ibuf[:0]
  454. return w.err
  455. }
  456. // Close calls Flush and then closes the Writer.
  457. func (w *Writer) Close() error {
  458. w.Flush()
  459. ret := w.err
  460. if w.err == nil {
  461. w.err = errClosed
  462. }
  463. return ret
  464. }