encode.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. // Copyright 2011 The Snappy-Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package snappy
  5. import (
  6. "encoding/binary"
  7. "errors"
  8. "io"
  9. )
  10. // We limit how far copy back-references can go, the same as the C++ code.
  11. const maxOffset = 1 << 15
  12. // emitLiteral writes a literal chunk and returns the number of bytes written.
  13. func emitLiteral(dst, lit []byte) int {
  14. i, n := 0, uint(len(lit)-1)
  15. switch {
  16. case n < 60:
  17. dst[0] = uint8(n)<<2 | tagLiteral
  18. i = 1
  19. case n < 1<<8:
  20. dst[0] = 60<<2 | tagLiteral
  21. dst[1] = uint8(n)
  22. i = 2
  23. case n < 1<<16:
  24. dst[0] = 61<<2 | tagLiteral
  25. dst[1] = uint8(n)
  26. dst[2] = uint8(n >> 8)
  27. i = 3
  28. case n < 1<<24:
  29. dst[0] = 62<<2 | tagLiteral
  30. dst[1] = uint8(n)
  31. dst[2] = uint8(n >> 8)
  32. dst[3] = uint8(n >> 16)
  33. i = 4
  34. case int64(n) < 1<<32:
  35. dst[0] = 63<<2 | tagLiteral
  36. dst[1] = uint8(n)
  37. dst[2] = uint8(n >> 8)
  38. dst[3] = uint8(n >> 16)
  39. dst[4] = uint8(n >> 24)
  40. i = 5
  41. default:
  42. panic("snappy: source buffer is too long")
  43. }
  44. if copy(dst[i:], lit) != len(lit) {
  45. panic("snappy: destination buffer is too short")
  46. }
  47. return i + len(lit)
  48. }
  49. // emitCopy writes a copy chunk and returns the number of bytes written.
  50. func emitCopy(dst []byte, offset, length int32) int {
  51. i := 0
  52. for length > 0 {
  53. x := length - 4
  54. if 0 <= x && x < 1<<3 && offset < 1<<11 {
  55. dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1
  56. dst[i+1] = uint8(offset)
  57. i += 2
  58. break
  59. }
  60. x = length
  61. if x > 1<<6 {
  62. x = 1 << 6
  63. }
  64. dst[i+0] = uint8(x-1)<<2 | tagCopy2
  65. dst[i+1] = uint8(offset)
  66. dst[i+2] = uint8(offset >> 8)
  67. i += 3
  68. length -= x
  69. }
  70. return i
  71. }
  72. // Encode returns the encoded form of src. The returned slice may be a sub-
  73. // slice of dst if dst was large enough to hold the entire encoded block.
  74. // Otherwise, a newly allocated slice will be returned.
  75. //
  76. // It is valid to pass a nil dst.
  77. func Encode(dst, src []byte) []byte {
  78. if n := MaxEncodedLen(len(src)); n < 0 {
  79. panic(ErrTooLarge)
  80. } else if len(dst) < n {
  81. dst = make([]byte, n)
  82. }
  83. // The block starts with the varint-encoded length of the decompressed bytes.
  84. d := binary.PutUvarint(dst, uint64(len(src)))
  85. for len(src) > 0 {
  86. p := src
  87. src = nil
  88. if len(p) > maxBlockSize {
  89. p, src = p[:maxBlockSize], p[maxBlockSize:]
  90. }
  91. d += encodeBlock(dst[d:], p)
  92. }
  93. return dst[:d]
  94. }
  95. // encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
  96. // assumes that the varint-encoded length of the decompressed bytes has already
  97. // been written.
  98. //
  99. // It also assumes that:
  100. // len(dst) >= MaxEncodedLen(len(src)) &&
  101. // 0 < len(src) && len(src) <= maxBlockSize
  102. func encodeBlock(dst, src []byte) (d int) {
  103. // Return early if src is short.
  104. if len(src) <= 4 {
  105. return emitLiteral(dst, src)
  106. }
  107. // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
  108. const maxTableSize = 1 << 14
  109. shift, tableSize := uint(32-8), 1<<8
  110. for tableSize < maxTableSize && tableSize < len(src) {
  111. shift--
  112. tableSize *= 2
  113. }
  114. var table [maxTableSize]int32
  115. // Iterate over the source bytes.
  116. var (
  117. s int32 // The iterator position.
  118. t int32 // The last position with the same hash as s.
  119. lit int32 // The start position of any pending literal bytes.
  120. // Copied from the C++ snappy implementation:
  121. //
  122. // Heuristic match skipping: If 32 bytes are scanned with no matches
  123. // found, start looking only at every other byte. If 32 more bytes are
  124. // scanned, look at every third byte, etc.. When a match is found,
  125. // immediately go back to looking at every byte. This is a small loss
  126. // (~5% performance, ~0.1% density) for compressible data due to more
  127. // bookkeeping, but for non-compressible data (such as JPEG) it's a
  128. // huge win since the compressor quickly "realizes" the data is
  129. // incompressible and doesn't bother looking for matches everywhere.
  130. //
  131. // The "skip" variable keeps track of how many bytes there are since
  132. // the last match; dividing it by 32 (ie. right-shifting by five) gives
  133. // the number of bytes to move ahead for each iteration.
  134. skip uint32 = 32
  135. )
  136. for uint32(s+3) < uint32(len(src)) { // The uint32 conversions catch overflow from the +3.
  137. // Update the hash table.
  138. b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3]
  139. h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24
  140. p := &table[(h*0x1e35a7bd)>>shift]
  141. // We need to to store values in [-1, inf) in table. To save
  142. // some initialization time, (re)use the table's zero value
  143. // and shift the values against this zero: add 1 on writes,
  144. // subtract 1 on reads.
  145. t, *p = *p-1, s+1
  146. // If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte.
  147. if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] {
  148. s += int32(skip >> 5)
  149. skip++
  150. continue
  151. }
  152. skip = 32
  153. // Otherwise, we have a match. First, emit any pending literal bytes.
  154. if lit != s {
  155. d += emitLiteral(dst[d:], src[lit:s])
  156. }
  157. // Extend the match to be as long as possible.
  158. s0 := s
  159. s, t = s+4, t+4
  160. for int(s) < len(src) && src[s] == src[t] {
  161. s++
  162. t++
  163. }
  164. // Emit the copied bytes.
  165. d += emitCopy(dst[d:], s-t, s-s0)
  166. lit = s
  167. }
  168. // Emit any final pending literal bytes and return.
  169. if int(lit) != len(src) {
  170. d += emitLiteral(dst[d:], src[lit:])
  171. }
  172. return d
  173. }
  174. // MaxEncodedLen returns the maximum length of a snappy block, given its
  175. // uncompressed length.
  176. //
  177. // It will return a negative value if srcLen is too large to encode.
  178. func MaxEncodedLen(srcLen int) int {
  179. n := uint64(srcLen)
  180. if n > 0xffffffff {
  181. return -1
  182. }
  183. // Compressed data can be defined as:
  184. // compressed := item* literal*
  185. // item := literal* copy
  186. //
  187. // The trailing literal sequence has a space blowup of at most 62/60
  188. // since a literal of length 60 needs one tag byte + one extra byte
  189. // for length information.
  190. //
  191. // Item blowup is trickier to measure. Suppose the "copy" op copies
  192. // 4 bytes of data. Because of a special check in the encoding code,
  193. // we produce a 4-byte copy only if the offset is < 65536. Therefore
  194. // the copy op takes 3 bytes to encode, and this type of item leads
  195. // to at most the 62/60 blowup for representing literals.
  196. //
  197. // Suppose the "copy" op copies 5 bytes of data. If the offset is big
  198. // enough, it will take 5 bytes to encode the copy op. Therefore the
  199. // worst case here is a one-byte literal followed by a five-byte copy.
  200. // That is, 6 bytes of input turn into 7 bytes of "compressed" data.
  201. //
  202. // This last factor dominates the blowup, so the final estimate is:
  203. n = 32 + n + n/6
  204. if n > 0xffffffff {
  205. return -1
  206. }
  207. return int(n)
  208. }
  209. var errClosed = errors.New("snappy: Writer is closed")
  210. // NewWriter returns a new Writer that compresses to w.
  211. //
  212. // The Writer returned does not buffer writes. There is no need to Flush or
  213. // Close such a Writer.
  214. //
  215. // Deprecated: the Writer returned is not suitable for many small writes, only
  216. // for few large writes. Use NewBufferedWriter instead, which is efficient
  217. // regardless of the frequency and shape of the writes, and remember to Close
  218. // that Writer when done.
  219. func NewWriter(w io.Writer) *Writer {
  220. return &Writer{
  221. w: w,
  222. obuf: make([]byte, obufLen),
  223. }
  224. }
  225. // NewBufferedWriter returns a new Writer that compresses to w, using the
  226. // framing format described at
  227. // https://github.com/google/snappy/blob/master/framing_format.txt
  228. //
  229. // The Writer returned buffers writes. Users must call Close to guarantee all
  230. // data has been forwarded to the underlying io.Writer. They may also call
  231. // Flush zero or more times before calling Close.
  232. func NewBufferedWriter(w io.Writer) *Writer {
  233. return &Writer{
  234. w: w,
  235. ibuf: make([]byte, 0, maxBlockSize),
  236. obuf: make([]byte, obufLen),
  237. }
  238. }
  239. // Writer is an io.Writer than can write Snappy-compressed bytes.
  240. type Writer struct {
  241. w io.Writer
  242. err error
  243. // ibuf is a buffer for the incoming (uncompressed) bytes.
  244. //
  245. // Its use is optional. For backwards compatibility, Writers created by the
  246. // NewWriter function have ibuf == nil, do not buffer incoming bytes, and
  247. // therefore do not need to be Flush'ed or Close'd.
  248. ibuf []byte
  249. // obuf is a buffer for the outgoing (compressed) bytes.
  250. obuf []byte
  251. // wroteStreamHeader is whether we have written the stream header.
  252. wroteStreamHeader bool
  253. }
  254. // Reset discards the writer's state and switches the Snappy writer to write to
  255. // w. This permits reusing a Writer rather than allocating a new one.
  256. func (w *Writer) Reset(writer io.Writer) {
  257. w.w = writer
  258. w.err = nil
  259. if w.ibuf != nil {
  260. w.ibuf = w.ibuf[:0]
  261. }
  262. w.wroteStreamHeader = false
  263. }
  264. // Write satisfies the io.Writer interface.
  265. func (w *Writer) Write(p []byte) (nRet int, errRet error) {
  266. if w.ibuf == nil {
  267. // Do not buffer incoming bytes. This does not perform or compress well
  268. // if the caller of Writer.Write writes many small slices. This
  269. // behavior is therefore deprecated, but still supported for backwards
  270. // compatibility with code that doesn't explicitly Flush or Close.
  271. return w.write(p)
  272. }
  273. // The remainder of this method is based on bufio.Writer.Write from the
  274. // standard library.
  275. for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
  276. var n int
  277. if len(w.ibuf) == 0 {
  278. // Large write, empty buffer.
  279. // Write directly from p to avoid copy.
  280. n, _ = w.write(p)
  281. } else {
  282. n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
  283. w.ibuf = w.ibuf[:len(w.ibuf)+n]
  284. w.Flush()
  285. }
  286. nRet += n
  287. p = p[n:]
  288. }
  289. if w.err != nil {
  290. return nRet, w.err
  291. }
  292. n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
  293. w.ibuf = w.ibuf[:len(w.ibuf)+n]
  294. nRet += n
  295. return nRet, nil
  296. }
  297. func (w *Writer) write(p []byte) (nRet int, errRet error) {
  298. if w.err != nil {
  299. return 0, w.err
  300. }
  301. for len(p) > 0 {
  302. obufStart := len(magicChunk)
  303. if !w.wroteStreamHeader {
  304. w.wroteStreamHeader = true
  305. copy(w.obuf, magicChunk)
  306. obufStart = 0
  307. }
  308. var uncompressed []byte
  309. if len(p) > maxBlockSize {
  310. uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
  311. } else {
  312. uncompressed, p = p, nil
  313. }
  314. checksum := crc(uncompressed)
  315. // Compress the buffer, discarding the result if the improvement
  316. // isn't at least 12.5%.
  317. compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
  318. chunkType := uint8(chunkTypeCompressedData)
  319. chunkLen := 4 + len(compressed)
  320. obufEnd := obufHeaderLen + len(compressed)
  321. if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
  322. chunkType = chunkTypeUncompressedData
  323. chunkLen = 4 + len(uncompressed)
  324. obufEnd = obufHeaderLen
  325. }
  326. // Fill in the per-chunk header that comes before the body.
  327. w.obuf[len(magicChunk)+0] = chunkType
  328. w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
  329. w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
  330. w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
  331. w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
  332. w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
  333. w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
  334. w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
  335. if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
  336. w.err = err
  337. return nRet, err
  338. }
  339. if chunkType == chunkTypeUncompressedData {
  340. if _, err := w.w.Write(uncompressed); err != nil {
  341. w.err = err
  342. return nRet, err
  343. }
  344. }
  345. nRet += len(uncompressed)
  346. }
  347. return nRet, nil
  348. }
  349. // Flush flushes the Writer to its underlying io.Writer.
  350. func (w *Writer) Flush() error {
  351. if w.err != nil {
  352. return w.err
  353. }
  354. if len(w.ibuf) == 0 {
  355. return nil
  356. }
  357. w.write(w.ibuf)
  358. w.ibuf = w.ibuf[:0]
  359. return w.err
  360. }
  361. // Close calls Flush and then closes the Writer.
  362. func (w *Writer) Close() error {
  363. w.Flush()
  364. ret := w.err
  365. if w.err == nil {
  366. w.err = errClosed
  367. }
  368. return ret
  369. }